
DOCUMENT RESUME

ED 249 928 fe
,

IR 011 352

AUTHOR Kurland, D. Midian
TITLE Educational Software Tools: Designing a Text Editor-

for en. Technical Report No. 8.
INSTITUTION Bank Street Coll. of Education, New York, NY. Center

for Children and Technology.
PUB DATE Apr 83
NOTE 12p.; Paper presented at the Annual Meeting of the

American Educational Research Association (Montreal,
Canada, April 11-15, 1983). For related document, see
IR 011 340. 0

PUB TYPE Reports - Descriptive (141) -- Speeches/Conference
Papers*(150)

EDRS PRICE 401/PC01 Plus Postage.
DESCRIPTORS *Computer Software; *Design Requirements; Educational

Research; *Elementary Education; *Instructional
Design; Instructional' Materials; *Material
Development; *Word Processing

ABSTRACT
An overview of the research and design process that

led to the creation of the Bank Street word processing program for
children is reported. The decision to create a word processor for the
classroom was based on the findings that commercially available
programs took too long to learn, required the memorization of too
many commands or rules, had difficult-to-read screen displays, and
made editing so clumsy that the whole point of using the word
processor to revise text was lost. The desig team established a set
of design principles: no control commands wo ld be used; there would ,

be comprehensive screen prompts; the display would allow upper and
lower case letters; and no hardware modific ions or additions would
be needdd in order for the program to run o a typical school
computer system. Functions that the program would and would not need
to carry out were identified. The design of the program serves as a
starting point for a general discussion of desirable features and
design characteristics for good educational software. Specific points...
covered include how to. design educational tools and the features
these tools and their manuals should have. (Author/THC)

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

A*********************

II

S. DEPARTMENT Of EDUCATION
N T IONAL INSTITUTE OF EDUCATION

ED ATIONAl RESOURCES IITFORMATION
CENTER tERICI

r Nb .10, ton, III lid% ,e0 1,,,ir0(1,,ced as
let elYeal Ir0 It

01,(4111dIslig

COto+, n t tctt It .,,,,prove

4)
cnti

II

0

1"A

ICI), t 1.11,1). I111%,

Pomta of vtf'W 0, 011111100c stated In INS CIOCL)

Mani do not mLessergy relnsent officnal NIE
oosttion or oottCy

II

4

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Educational Software Tools:
pesigning a Text Editor for Children

D. Nliciia.n Kurland

Technical Report No. 8

t

I

0

Educational Software Tools:-
Designing a Text Editor for Children

CENTER FOR CHILDREN AND TECHNOLOGY
Bank Street College of Education
610 West 112th Street
New York, NY 10025

D. Midian Kurland

Technical Report No. 8

cl3

EDUCATIONAL SOFTWARE TOOLS:
DESIGNING A TEXT EDITOR FOR CHILDREN*

D. Midian Kurland

In a recent survey, Electronic Learning magazine (October 1982)
asked 2,000 teachers and administrators to list their favorite software

"programs. The programs offered by those who responded were fir ?t
subdivided accord g, to whether they were intended for classroom or
professional (i.e., administrative) use. The classroom programs were
then further subdivided by subject area. Of the 52 programs listed
for use by students inmathematics, social studies, and English, four
were simulations, three were designed to teach Programming; and two
were aids for writing poems. The remaining 43 could best be de-
scribed as drill- and - practice programs and games. In contrast, every
program that --respondents 'favored lot their own professional use was
a software utility or tool--word processor, database management
system, program editor, graphics editor,. spreadsheet program, or file
manager. Why is there such a large gap between what passes as
educational software and the 'type of software favored by 'teachers?
If, in society as a whole, computers are used as a tool, why is this
one of the most neglected uses in the classroom?

6

There are a number of reasons for the slow evolution of educational
software. Historically, computers were first viewed as substitutes for
doing more easily what had previously been done Using older technol-
ogies. For example, in business the computer was first used to take
over ongoing activities such as payroll management and accounting.
Few business people actually used computers, and thus were slow to
appreciate the full range of potential computer applications. It wasn't
until the development of a new generation of office software tools in
the mid-seventies that the situation in the bufineds world began to
change. Starting with visiCalcthe first s of the general-purpose
spreadsheet programs7-users of business computers began to see
that, in addition to such traditional tasks as budgets and accounts,
:computers could make possible a range of new activities that were
previously too expensive, too complicated, or too time consuming to
be practical. The development and rapid integration into the work-

*Paper presented at the annual meetings of the American Educa-
tional Research Association, Montreal, Quebec, Canada, April 11-15,
1983.

4

place of spreadsheet programs, relational database management sys-
tems, and powerful word ocessors radically changed the way infor-
mation . was collecled, manipulated, and transmitted in the office
'environment.

In educttion, we are beginning to see a similar trend. Until now,
the priniary use of computers has been to replicate what teachers
have been doing with other technologies (e.g., workbooks, dittos,
flashcards). Computer-assisted instruction (CAI) --using the com-
puter as an automated workbook, like business payroll programs - -is
an obvious entry point. In some contexts--again like payroll
programsCAI programs have significant advantages over noncom-
puterized systems. However, the type of activity involved is essen-

, tially the same whether or not the computer is being used.

In the educational sector, we seem to be in approximately the same
position as was the business we ld in the mid-seventies before Visi-
Calc. Por the most part, schools are using computers--often be-
grudgingly--as automated workbooks or, to a lesser extent, to teach
introductory programming.. Thus the bulk of children's experiences
with computers. resembles those that were available in classrooms
befoie computers..

How can we account for this relatively limited use of computers in the
classroom? Why has there been no educational, equivalent to VisiCalc
that demonstrates the power of the computer as a multi-purpose tool?
Part of the answer lies in the economic constraints on producing
software exclusively for the educational market. However, not all the
blame can be placed on the lack of financial resouzces to attract
talented programmers and designers to the educational market. Two
other fai:tors have placed limits on the development of effective soft-
ware tools ccir schools: (I) the need to restructure classrooms,
classroom management techniques, and teaching philosophies to accom-
modate innovative uses of software; and (2) a lack of information for
software designers and programmers concerning teachers' lieeds and
the developmental capabilities of children of different ages. A cur-
sory .review of most educational programs reveals that the designer
and/or programmer gave little consideration to the capabilities of the
intended users. The reading level or conceptual requirements of
many programs are frequently ,too high and require a herculean
memory to keep track of what to do, how to do it, and when to do it.

Conceptual models that help teachers think about innovative uses of
software in the classfoom have also been slow in developing. Teach-
ers and school personnel who use educational soltware face a chaotic
situation. Often untrained, they lack a framework for easily and

5

flexibly integrating the technoloe into classroom curricula and
organization. They must rely on pfrill ed materials, manuals, and the
software itself for information about computers in education. Cur-
rently, efforts are being made to evaluate software for teachers by
various groups and educational computing magazines. However,
because of their narrow focus on the behavioral and managerial objec-
tives of individual classroom programs, these review efforts tend to
perpetuate the narrow focus of the software being produced.

Software designers tend to concentrate on issues of appeal and indi-
vidual usability, largely ignoring deeper concerns .about learning,
particularly in the classroom .context. There is no body of research
to which designers can turn to help them relate the design of educa-
tional software to the levelopmental factors involved in children's
learning or. to the context of classroom use. Further, the design of
educational software is a new and varied craft. Producers range from
individuals in "cottage industries" to large publishing houses. Cot-
tage industry programmers often lack the educational background
and/or programming experience and resources to adequately design
and then test their programs. Publishers, faced with a diminishing
school market for printed materials, are under similar constraints.
Rather than devoting resources to the development of innovative
software and doing the necessary formative research, they opt for a
conservative strategy of producing software that complements--and
looks very much like--their textbook series.

Given the restricted range of software commonly found in classrooms,
what are students learning about computers? No matter how much
content a particular drill-and-practice program gets across, running
such a program does little to increase students' understanding of
computers or their uses. No one type Of software can possibly teach
a student what a computer is or the full range of its use. What is
needed is exposure to a wide range of different types of software and
the different uses of the computer.

How are we to bridge the gap between what computers can do and
what currently available software permits them to. do? One answer is
to adapt the powerful software from other fields, such as business,
for use in the classroom. ;this is, in fact, being done by some
energetic teachers, but several factors prevent this kind of
adaptation from solving the problem of educational software. First,
many of the better business programs operate ,with expensive equip-
ment not commonly found in schools (e.g. , 64K Apples with 80-column
boards and two disk drives running the CP/M 'operating system).
Second, the programs designed for business necessarily use examples
in the manuals and in the screen prompts which pertain to business

3

situations, thus making them seem less accessible to students. Fur-
ther, the reading level required by these programs and their manuals
tends to be high.

Another problem with many business programs is that they area de-
signed for the heavy user and, thus, tend to include a large number
of powerful but cryptic commands. Once mastered, these commands
give the user tremendous flexibility, but they take time to learn and
are easily forgotten if not used frequently. Many word proeessing
systems suffer from this problem. For example, in one of the best
selling word processors for the Apple, SHIrT CONTROL-Q is the
command for deleting the word following the cursor. This is just On
of some 130 commands that this program makes available to the user.
This poses no problem in an office, where the program is used daily
by a single typist. However, in the classroom, where students may
only have one hour a week to use the word processor, 'this consti-
tutes a serious hindrance.

A final problem with software tools designed for the business envi-
ronment -is- thatthey include many features that are rarely, if ever,
needed in the classroom (e.g., printing in multi-column formats,
providing facilities for automatically calculating mortgage rates, or
loan depreciation). The problem with such software tools is that they
tend to be more difficult to use,. take longer to learn, have more
complicated manuals, and offer less comprehensive on-screen prompts
because of the large number of commands.

What is needed are software tools designed specifically for students to
help them do their required school tasks, and to prepare them to
handle the powerful, specialized software tools that they will en-
counter in out-of-school contexts.

Software Tools for Schools

The need for more classroom software tools cannot be met by simply
removing the frills from existing office software and ',hen passing
these stripped-down programs on to the schools. The realities of
classroom life- -the type of Work, required' of students, the number of
users per computer, the expertise of the teacher, and the constraints
on student access to the computer--require programs designed specif-
ically for this environment.

Many business programs for microcomputers are simply modified
versions of programs that have been in use for decades on larger
machines; educational software designers 'do not have this background
to draw upon. Neirertheless, the domain of software tools designed

for education is not entirely without representation. Researchers and
curriculum designers around the country are beginning to make
available the first generation of software tools designed for the class-
room. For example, the Bank Street Writer (Broderbund Software
and ScLolastic, Inc.), Quill (Bolt Beranek and Newman, Inc.), and
The Writers Assistant (Jim Levin, UCSD) are examples of language
arts programs inspired by the electronic. office of the 'future but
designed for the classrooms of today. These programs share the
basic design goals of ease of understanding and use, and of putting
the student in control of the computer. Quill, for example, is a
family of programs (word processor, electronic mail, message center,
database) linked together as a single system through which students
can write and communicate. Although Quill and other classroom
software tools differ from their business counterparts in some re-.
spects (eg, the size of files they can handle or the number of
records they can maintain), they retain the power, ease of use, and
flexibility which have made software tools so popular in other seg-
ments of society.

The lesson that the developers of these programs. hive learned from
successful business tools is the critical interaction between software
and the context in which it is to be used. In order for software tip

/ be successfully incorporated into a work or educational environment,
it must be recognizable and usable as something fitting the work
needs o its intended users. To be maximally effective, the explora-
tion and exploitation of the software's potential must yield 'something
more powerful than numbers or words printed neatly on a page-
namely, new ways of thinking about, organizing, and communicating
information.

Developin Educational Software Tools: The Case of the Bank Street
Writer

What are the design decisions that must be taken into account when
developing software for the educational sector? How should software
designers think about the special needs of children and teachers in
the context of the classtoom? While these questions cannot be an-
swered as yet, we can provide some preliminary ideas based on, our
experience in developing the Bank Street Writer, a classroom word
processor jointly produced by the Center for Children and Technology
at Bank Street College, and Intentional Education, the publishers of
Classroom Computer News.

The decision to develop a word processor specifically for children
grew out of research on children's revision strategies that was being
conducted at Bank Street College. Researchers were interested in

5

how Working' with a word processor would affect the number and
types of revisions students would make while writing. As part of
this research; a number of word processors for Apple and Atari
computers were carefully reviewed. This process included critiques
by student-user panels as well as by experienced adult users. It
was found that, although students enjoyed writing with the computer
and willingly put up with the clumsiest editing features, each of. the
program: reviewed had serious flaws which, even with some modifica-
tions, would maVe them too difficult for classroom use. The programs
took too long to learn, required the memorization of toci many com-
mands or rules, had difficult-to-1 ead screen displays, and made
editing so clumsy that the whole point of using the word processor
for revising text was lost.

The decision to create a word processor for the classroom was based
on these finding, and on the growing realization that a word proc-
essor designed specifically for the young writer would have to be
very different from theLse designed for office use. The word proc-
essors used by secretaies to enter, revise, and produce someone
else's work are complex and emphasize functions necessary for the
formatting and production of professional documents. A word proc-
essor designed for, creating text (i.e., one geared to the needs of the
writer, not the production editor) must place as few obstacles as
possible between the writer and the process of creating and manipu-
lating a text.

After maldng the decision to create a tool that would meet the needs
of the young writer, we had to settle on a design process. A funda-
mental belief shared by project staff was that no one person had the
expertise required to produce a good educational software tool.
Thus, the next and most important step was to assemble a design'
team consisting of researchers interested in writing, classroom teach-
ers, curriculum designers, professional writers, and ,.,the programmer
who was actually to implement the design. The coicept of a design
team for creating software, while not new is not yet typical. A17
though groups of programmers or engineers often work jointly on a
program, involving researchers, educators, and end users in the
design and validation process is rarely done. Project staff felt that
the robustness of the final design would depend on the pooled sensi-
bilities of the interested parties.

The design team began by establishing a set of design principles: no
control character commands would be used; there would be compre-
hensive screen prompts; the display would show upper- and 'lower-
case letters; and no hardware modifications or additions would be
needed in order for the program to run on a typical school computer

9
6

system. This was followed by identifying those functions that the
program would carry out and those that it would not. For example,
it was decided that students might reasonably need. a MOVE command
to relocate blocks of text or a FIND command to locate a particular
word in the text, but would have little use for or understanding of
macro commands that, at a single keystroke, can execute a' sequence
of user-defined instructions. Similarly, commands for creating in-
dexei, multi-column printouts, and setting line traps were judged not
to be features that children would use in their typical writing tasks.

Once the initial design had been agreed upon, the programmer put
together the prototype, which the design team then critiqued, re-. fined, and field tested with students and teachers in several settings.
The field-test results led to further discussions and refinements .. by
the design team; for example, it became clear that the names for some
of the commands were misleading and needed to be changed. More
serious changes involved redesigning 'the FIND and REPLACE com-
mands, and working out a way for students to get professional-look-
ing, printouts without using formatting commands. After repeating
this test-and-refine loop several times, the program was considered
ready4°r general use and was released to the *public. We are now in
the process of collecting feedback from the many users who have pur-
chased .the program, and are using their experiences to improve new
versions of the Bank Street Writer and to help in the design of
future classroorh software tools.

Our major conclusions about the design of effective educational soft-
ware tools can be summarized as follows:

E.

1. Students, like adults, are purpose-oriented. Most elect to
use a piece cif software because they want it to help them with a
specific job. They do not wish to spend large blocks of time learning.
a program before they are able to do something interesting with it.
Software tools, therefore, should provide easy entry into the pro-
gram, and more *sophisticated features can be addednf and when
needed.

2. Students do not 'like to read complicated manuals in order to
master a program. Ideally, a manual is not needed; the .program
itself should provide the prompts and messages necessary for its use.
Any accompanying material should be short, function-oriented, and
should anticipate students' needs and the problems they are likely to
encounter. Separate manuals for teachers and students may be
considered \IZ.,the program is designed so that the teacher can select
options for students.

- 71.0

3. Manuals are not novels. Few people read them from cover to
cover or in order of chapter. Thus, it is important for critical
information to appear throughout the manual to ensure that the user
will see it sooner or later. A better solution is to incorporate
flexible on-line help files into the program which can be accessed
from within the program without interfering with the user's work.

4. Neither students nor adults like to read lengthy instructions
on the computer screen. Prompts which help children to use the
program are very important but should be kept simple; they should
inform students about the program's current status and the options
available at that time. In addition to serving as memory cues for the
program's functions, prompts can help in the development of better
writing skills by directing the user's attention to such stylistic con-
siderations as audience awareness, parallel construction, or the use of
suspense as a plot device.

5. Students should be able to know at all times where 'they are
in the program and how to get back to a particular screen or func-
tion but many programs do not provide this kind of assistance.
Using the prograin should not be a test of the student's power of
deductive reasoning or memory capacity.

6. Students should be able to use commands easily and to enter
their choices readily. For example, each command should require one
keystroke; multiple keystrokes to achieve one result are confusing for

r''-- children . How features are implemented is as critical as what fea-
tures are provided.

7. The program should let students know that something has
happened after a command has been entered. Children become con-
fused if their input seems to have no effect or to "disappear." For
example, when a. file is SAVED on a, disk, the program should inform
the user that the operation has been successfully completed.

8. Students sometimes make errors when using a program.. A
classroom software tool must have built-in safeguards against program
and disk errors. This means the program should not just stop if an
inappropriate command is entered; rather, an error message should
appear indicating what was wrong and how to correct it.

9. Good software must be sensitive to the user's theories of
how the computer and its associated parts function and interact. For
example, students often get confused about where the program and
their text is stored at any given moment. The distinctions between
the computer's volatile RAM memory ,' virtual disk memory, and perma-

1
8

11

nent disk memory are hard to grasp. A program that cannot elimi-
nate the need to memorize these distinctions must be defaulted to
automatically check that data is periodically saved properly, and to
give ample warning before a student can erase or forget to save data.

10. In many classrooms, students have to share data disks, and
a single program disk has to serve severtl machines. Therefore,
programs should load completely, into memory lo the program disk can
be removed and used to' load the program into another machine. This
feature also lessens the chance of ;the system's "crashing" in the
middle of a session.' Since several students may be using the same
data disk, it is important to have some protection scheme (e.g.,
passwords) so that files can be saved without the risk of other
students accidentally (or purposely) erasing or modifying someone
else's work.

11. Students will not need all the features that might be in-
cluded in a given tool. It does not follow that, because a computer
can perform a certain function, this function must ,automatically be
included in the program. Software developers are continually faced
with the problem of making a flexible and powerful program which can
do its primary tasks simply and clearly. The design team must
determine which features are most important for student users and
eliminate those that are unnecessary.' For example, when the Bank
Street Writer was developed, it was decided ,that students, would not
need the sophisticated and difficult-to-use text formatting features so

11, important for office word processors.

12. Designing a tool that can be used effectively by young
children can be a ,good way of making a program that adults will also
find useful. Children do not need stripped-down versions of adult
programs but, rather, programs which L:ilitate, as elegantly 'as
possible,, the execution of certain kinds of work. Thus, a well-
designed program that promotes children's writing should facilitate
the writing of adult users.

These principles provide a framework for thinking about the design of
classroom software tools. As the realization grows that CAI and pro-
gramming dc.) not exhaust the possibilities for computer use in schools,
teachers will increasingly, be attracted to those programs that can
turn their computers into powerful tools, thereby serving a diversity
of curriculum goals.' We look forward to seeing, in the near future,
the emergence of a wide range of classroom software tools to parallel
the many uses for the computer already in place in other segments of
our society.

-9

