
ED 248 833

AUTHOR
TITLE
PUB DATE
NOTE

PUB TYPE

DOCUMENT RESUME

IR 011 282

Swigger, Keith
A Structured Model for Software Documentation.
21 May 84
10p.; Paper presented at the Mid-Year Meeting of the
American Society for Information Science (13th,
Bloomington, IN, May 21, 1984).
Viewpoints (120) -- Reports - Research/Technical
(143) -- Speeches/Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Authoring Aids (Programing); Cognitive Processes;

*Computer Software; *Design Requirements; *Discouriie
Analysis; *Guides; Layout (Publications); Program4ng;
*Reading Comprehension; Reading Strategies

IDENTIFIERS *Computer Users

ABSTRACT
The concept of "structured programming" was developed

to facilitate software production, but it has not carried over to
documentation design. Two co cepts of structure are relevant to user
documentation for computer p ograms. The first is based on
programming techniques that e phasize decomposition of tasks into
discrete modules, while the second was developed in discourse
analysis to explain strategies\used by readers and to model their
cognitive processes in forming ental models of text content.
Consideration of the text produ tion and text comprehension
approaches together provides a b sis for designing "user-friendly"
software manuals. A model for str ctured documentation suggests the
need for: modules to be appy.opriaie macropropositions (global content
of the text); clear identi,fication of module function as a tutorial,
operational, or reference component; planned ordering of modules and
explicit superstructures to help readers identify effective
strategies; and adequate access points to modules through such
devices as indexes. An examination of the surface structures of 15
manuals for microcomputer file management indicated that structural
guidance in existing manuals is inadequate. Nine references and the
manuals that were examined are listed. (LMM)

* **
* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

A Structured Model for Software Documentation
re..4

U.S. DEPARTMENT OF EDUCATION

reN, NATIONAL INSTITUTE OF EDUCATION
EDUCATIONAL RESOURCES INFORMATION

(X) CENTER (ERIC)
XThis docertirri has been reproduced as

Co received from the person or cagier/awn
originating it
Minor changes have Leen made to improve

reproduction quality.

11=1 Points ut view or opinions stated in this docu

mend do not riticeFsaray represent official NIE

LiJ pOSIIM1 or policy

Presented at the 13th
ASPS Mid-Year Meeting

Bloomington, Indiana
May 21, 1984

Keith Swigger
School of Library Science
Texas Woman's University

DERMISSION TO REPRODUCE THIS

MA1 ERIAL HAS BEEN GRANTED BY

Keith Swigger

TO THE EDUCATIONAL RESOURCES

INFORMATION
CENTER (ERIC)."

This paper discusses two instantiations of the concept of

"structure" relevant to user documentation for computer
programs. The first, following some ideas suggested by Weiss

(1982, 1983), is derived from the concept of structure as
developed in programming techniques that emphasize decomposition
of tasks into discrete modules. The second concept of" structure

has been developed in discourse analysis to explain strategies
used by readers and to model their cognitive processes in forming .

mental models of content of texts (Pace, 1982, Jonassen, 1982,

van Dijk and Kintsch, 1983). By considering these two approaches
to structure together, one concerned with text production, the

other with text comprehension, some specific suggestions can be

made for design of software manuals that will meet demands for

"user friendliness."

Weiss suggests we view the relationship between a computer user

and a manual as similar to the relationship between a computer

and a program. A iranual should lead the user through an

unambiguous series of steps to accomplish a task, just as a

program directs a machine ir, performance of steps (Weiss, 1983).

Given the analogy between a manual and a program, Weiss argues

that design and evaluation of manuals can be guided by the same

principles that guide structured programming. The writing of

manuals, he says, should be structured and quantized. By

identifying the information needed for execution of specific

tasks, the process of writing can become a process of developing

standardized routines. "What we shall have eventually is

'structured documentation,' writing done in small, manageable
chunks, each self-contained, each clear, each linked to the rest
of the document according to one of a small number of 'standard
moves.'" (Weiss, 1983, p. 131)

Weiss's comparison of programs and manuals leads to some

practical advice for producing manuals. Units of manuals are

1

04

understood as tools for satisfying specific information needs.

Analysis of information needs defines the components of the

manual. Once the required modules are identified, division of

labor in writing is possible. Wiess goes so far as to suggest

that eventually the production of documentation may be automated:

"If we make the modules small enough and logical enough, some day

we may even get the machines to write their own documentation."

(Weiss, 19831 P. 131.) The challenge for a Model of

documentation production, by human or machine, is identification

of modules and of "standard moves."

There are some cautions that must be kept in mind in ,considering
the analogy between a manual and a program, particularly when

considering microcomputer software. First, providing instruction

on carrying out specific sequences of steps is but one purpose of

a software manual, the operations function. Only a few of the

activities that manuals instruct users in are operations, where

operations include keyboard moves and other equipment

manipulation tasks. ' Operations are of course absolutely

essential but they are the least intellectually demanding of

computing activities. In large computer systems, where\there are

clear distinctions between operating personnel," systems ,

personnel, and end users, it makes sense to consider operations

.
manuals as a separate kind of document. Microcomputer software,

however, is usually intended for use by a single individual who

combines in him /herself all the personnel functions.

Documentation for such microcomputer software must serve

tutorial functions, operational functions, and reference

functions.

The "structured program" view of a manual does not provide

sufficient guidance for production of manuals that will serve all

three functions: operations, tutorial, and reference. It

provides a useful heuristic for operations components of manuals,

but the tutorial and reference components of manuals are not

intended to tell the user of a system how to do something.

The tutorial function of a manual serves to instruct the user in

the principles underlying the solution to a task that has been

automated. This function is particularly important in

microcomputer software, which may have been selected by a user

because he/she has been persuaded that a particular program will

accomplish some general purpose ("Knowledge Manager can help you

manage your information") (MDI3S, 1984). InfoWorld 6:19 (May 7,

1984), 136)) What the user needs to know is how the system works

conceptually, and that instruction is the major goal of the

tutorial component. In data management software, for example, it

is necessary to instruct the user in such concepts as relations

or networks. Whereas a computer follows a program without

learning from it, people use the tutorial component of

documentation to learn concepts which will be retained. The

modules in a manual as components cf the tutorial process must be
seen as units in a teaching design rather than as units

describing a process.

2

3

The reference- component of a manual serves as an aid to memory.
Here the commands used in a system are displayed with
explanations of the function, and sometimes the syntax, of each.
Like the tutorial component, the reference component of a manual
provides information rather than guidance on a series of steps to
execute. Reference modules must be organized in some apparent
fashion (alphabetical order by command or function name is
typical) so that they are locateable, but considerations of
sequencing may be less crucial than fOr operations or tutorial
modules.

Another difficulty with the analogy between manual and program
has to do with the differences between the ways human beings and
computers interact with 'instructions. Computers, of course,
follow orders. Human beings are less tractable. In fact,
research on humaa interaction with instructional manuals of
various kinds shows that people do not follow the ,"program."
In her summary of research on user behavior with 'Eechnical
manui..ls outside the realm of computers, Wright (1980,`1983) notes
that users tend to exhibit unwillingness to read documentation,
at least in the way that books are traditionally .organized.
Rather, they leaf through or browse in search on answers to
specific information needs. It appears from these studies that
people recognize a differente between manuals and the traditional
linear book, that is, the book that is to be read from beginning
to end. Readers do not access technical materials sequentially,
so alternative access structures should be provided.

Findings concerning behavior with manuals combined with the
multi-functional requirmements for microcomputer. program manuals
lead to the conclusion that Weiss's argument for modularly
structured documentation is too simple as it has been presented
so far. Modularity remains a valuable structural principle, but
these considerations raise questions concerning the, proper
ordering and representation of modules, when viewing a ,text
globally, and of 'the most effective ordering of information
within modules viewpd locally.

Some insights intjo possible answers come from research in
discourse analysisj., particularly van Dijk's and Kintsch's work
related to structure of texts. In a series of works (van Dijk
and Kintsch, 1977, van Dijk, 1980, van Dijk and Kintsch, 1983),
van Dijk and Kintsch have developed a theory of text
superstructure, macrostructure and macrostructure.
Microstructure refers to the ways in which propositions are
developed, represented, and understood in individual sentences or
paragraphs. Macrostructure refers to the broad representation of
a document that forms in a reader's mind as he/she reads the
text; studies of macrostructure are concerned with
generalizations, or the "gist" of a document that a reader
constructs and which is stored in long term memory.
Superstructure is "an overall form that organizes the
macropropositions (the global content of the text)."(van Dijk and
Kintsch, 1983, 16) For many types of text there is a

conventional superstructure with which readers are familiar and

3

.

which they use as a helping strategy to set up expectations about
the order and content of material in texts. Such superstructures
are only beginning to emerge for microcomputer documentation, It

is 'reasonable to expect that generic structures will evolve as

the literature matures and as writers engaged /in mutual

imitation. More research is needed on superstructures in various
genre, certainly in the genre of computer documentAtion.

The concepts , of macrostructure and superstructure are useful

heuristics for modeliing structures for microcomputer
documentation, particularly when combinediwith the notions of

modularity proposed by Weiss. Because they are concerned with
propositions, summary understandings, and reading strategies,
the.lie concepts provide principles on which we can base specific
advice for manual writing.

ok

Superstructures may exist for readers before they approach

documents. In some genres these are taught in the educational

system. We teach a superstructure for research papers, for

example, that can be summarized as:

- -Statement of the problem
--Significance of the problem
--Review of relevdnt research
- -Description of method
--Discussion of findings
--Limitations of study
--Concl/usions

These superstructures are conventional, and thus vary from one

discipline or tub-culture to another. In a relatively new genre
such as microcomputer documentation, it is not clear whether

readers, or specific groups of readers, have learned

superstructures or set up structural expectations. Research on

that point is needed, but a guess is that these are not well

developed. In that case, it is the task of the writer to make

the superstructure apparent to the reader through signals in the
surface structure of the text.

The theory of acquisition of macrostructures is evolving; in

their earlier work, van Dijk and Kintsch argue that

macrostructures as orderings of macropropositions are the result

of readers' logical processing of propositions in the discourse

itself. More recently (van Dijk and Kintsch, 1983) they have

suggested that the inference of macrostructures is the result of,

"contextual macrostrategies" which set up "anticipatory

expectations" about topics and of "textual macrostrategies" in

which the reader uses properties of the text itself to "provide

the definite decisions about the actual topic" (p. 201).

Contextual macrostrategies depend upon the. knowledge a reader

brings to a text; textual macrostrategies depend upon cues

provided by the writer.

The goal of a writer, clearly, particularly a technical writer,
is to provide cues that will cause the reader to create what is,

4

from the writer's pdrspective, a proper macrostructure. As,van
Dijk and'Kintsch observe, "One obvious way is to explicitly tell
in the discourse itself what the main topics are" (van Dijk and
Kintsch, 1983, p. 202). The devices availabl. for presenting the
writer's view of the appropriate macrostructure are familiar
ones: underlining topic sentences of paragraphs, use of section
headings, chapter titles, tables of contents, and emphatic notes
within text. Such surface devices as labels and headings may
even be more important in shaping the reader's representation of
the text than the semantic processing that takes place in the

reader's mind.

The simple implication of this work in discourse analysis is that
texts should be replete with guides to the reader. The
importance of such surface devices has long been apparent to

those involved in indexing and abstracting. These surface
signals are precisely the elements of text one turns to to most
quickly construct a summary of content. It is interesting to

note that in their research on texts, workers in the field of

discourse analysis have Largely'ignored the whole field of

indexing and abstracting.

We can synthesize the two major instantiations of structure
discussed above to make some suggestions about ways to structure
microcomputer software documentation:

--The appropriate modules, 'in the sense of structured
programming, ought to be what the writer sees as appropriate
macropropositions. Each macroproposition is a topic, so each
ought to be a separate module. To preserve its integrity as a

module and to guarantee its perception as a separate topic, it

ought to be clearly labeled as such.

--The function of each module as a tutorial, operational, or
reference component should be clear to the writer and clearly
identified to the reader.

--The search for smallest self-contained modules and for the
set of standard moves from module to module must be informed by

the differences among operations, tutorial and reference modules.
Attention to the differences among types of modules will help
prevent confounding of modules.

--The ordering of modules should be planned, but since
readers follow strategies rather than algorithms, the ordering
should help the reader identify effective strategies. (The

effective ordering of propositions remains at the level of art;

much more research is needed on which kinds of order are most

effective, particularly in documents like microsoftware
documentation which must be designed for broad audiences.)

--In the absence of generic superstructures for texts, it is

incumbent upon text designers,to provide explicit superstructures
to help readers formulate reading strategies.

--Since readers use manuals to solve problems (another way

5

of saying they follow strategies rather than algorithms) and do

not read linearly, it is necessary to provide adequate access
points to modules, through such devices as indexes.

Much of that advice seems obvious to me as I write it, but
apparently it needs to be said because manuals do not follow it.

A study of the surface structures of fifteen manuals for

microcomputer file management is summarized in Table .1. The
purpose of the study was not to identify any particular manual as
good or bad but simply to see what structural aevicPs were in

use, and with what frequency; No comparative study of user

satisfaction, learning rates, or macrostructure acquisition was
attempted because the differences in the systems, which vary from
the simple .PFS File to the complicated dBase II.

TABLE 1. STRUCTURAL SIGNALS IN DATA MANAGEMENT SYSTEM MANUALS

SIGNAL PRESENT IN MANUAL #:*
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table of contents * * * * * * * * * * * * * * *

(In manual 2, labelled "Index")
Chapter titles * * * * * * * * * * * * * * *

Chapter subheadings * * * * * * * * * * * * * *

Chapter sub-subheadings * *

Labelled page-tabs

Chaptey titles in text * * * * * * * *. * * * * *

Chapter subheadings in
A

text * * * * * * * *. * * * * *

Chapter sub-subheadings
in text * * * * *

Chapter heading on
each page * *

Italics for definitions *

Boldface for emphasis * * *

Keyword markers (e.g.
NOTE,IMPORTANT,etc.) * * * * * * *

Additional subheads
not in Table of Content * * * * *

Numbered features * * * * *

Numbered steps * *

Subject Index (to
page numbers)

Subject Index (to
text subdivisions) *

*Manuals are identified by number in the Appendix.

The table is presented to suggest that if the structural
considerations discussed are valid, then clearly existing manuals

6

O

4 4

are inadequate and the ,complaints commonly voiced about

difficulties in. use of manuals may be related to inadequate
structural guidance. A valid test of the argument would require
writing sets of manuals for particular software using different
structural devices for manuals for the same system; such a set is
currently in preparation for dBase II.

The problem of identifying modules or macrostructural elements
should be considered separately from the problem of gaining
access to them. If readers are to be guided structurally in

their use of manuals, the access tools provided in a manual
should consistently direct them to, or at least indicate, the
beginnings of modules. In programming terms, users should be
directed to the beginning of procedures, not allowed to jump into
the middle of them. Tables of contents, page tabs, and chapter
headings are examples of structural devices that serve primarily
as structural signals and secondarily as access devices.

Indexes, on the other hand, are primarily access devices and
secondarily structural sicinals. The access they provide,
however, ought to be to the beginning point of modules. Of the
manuals surveyed in Table 1, ten had indexes. Of these, entries
in only one point to structural elements such as sub-headings of
chapters; this manual uses boldface in the pointers to identify
the places in text where the subject identified in the index is

explained as a primary proposition. The utility of indexes is a
subject of dispute among manual designers, some of whom question
its cost effectiveness. Variations in index design' (including
omission of the index) will be included in construction oc the
set of test manuals of varying structure described above.

The aim of this paper has been to relate work in two fields, one
well understood and tested in practice, the other at the stage, of

emerging theory. Principles of structured programming are widely
accepted as guides in data processing; it is tempting to transfer
the techniques to a less-well understood problem, writing. But

in doing so, we must also consider theories of knowledge
acquisition through reading. The aim of this paper has been to

syLthesie these two approaches to structure to provide some

concrete suggestions for those who must face the practical
problem of producing a manual.

REFERENCES

Jonassen, David H. Implicit Structures in Text. In Jonassen,
ed. The Technology of Text. Englewood Cliffs, N.J.: Educational
Technology -blications, 1982, 5-14.

Pace, Ann Jaffe. Analyzing and Describing the Structure of Text.
n David H. Jonassen, ed., The Technology of TQX". "nglewood

Cliffs, N.J.: Educational Technology "ublications, 1982, 15 -20.

van Dijk, Teun A. Macrostructures: An Interdisciplinary Study of

7

.

\

Global Structures in Discourse...E. Interaction, and Cognition.

Hinsdale, Lawrence~ Eribaum Associates,1980.r

-an Dijk, 'un A. and Walter Kintsch. Cognitive Psychology and
Discourse; Recalling and Summarizing tories. -n Wolfgang U.

Dressler, ed., Cu rent Trends in Textlinguistics. New York:
Walter de Gruyter, 1977, pp. 61-80.

van Dijk, un A. and Walter Kintsch. Strategies of Discourse
Comprehension. New York: Academic Press, 1983.

Weiss, Edmond H. The Writing System for Engineers and

Scientists. Englewood Cliffs, ".J.: Prentice-Hall, Inc., 1982.

Weiss, Edmond H. Usability: Toward a Science of User

Documentation. ComRutetWorld 17 (Jan. 10, 1983), In-Depth, 9-

10*.

Wright, Patricia. Usability: The Criterinn for Designing Written
Information. In Paul A. Kolers, Merald E. Wrolstad, and Herman
Houma, eds., Processing of Visible LangRAge 2. New York: Plenum
Press, 1980, pp. 183-205.

Wright, Patricia. Manual Dexterity: A User-Oriented Approach to
Creating Computer Documentation. In Proceedings CHI 83

Horan Factors in Computing Systems. Boston, Dec. 12-15, 1983.

-w York: ACM, 1903, pp. 11-18.

1,PENDIX
Manuals Examined

1. CONDOR User's Manual. Ann Arbor: Condor Computer Corp.,

1982.

2. Data Bank Information Management System. Coral Gables, FL:

Data Access Corp., 1982.

3. The Data Factory. Highland Park, Ill.: Micro Lab, 1981.

4. Datafax. Santa Monica; Link Systems, 1982.

5. Datakeyper. Hollis, N.H.: ESP Computer Resources, Inc.,

1982.

6. dBase II User Manual. Culver City, CA: Ashton-Tate, 1982.

7. DB Master. San Rafael, CA: Stoneware Microcomputer Products,

1980.

8. The Executive Secretary User's Manual. John Risken, 1981.

9. File Manager+. Richmond, CA: Synapse Software, 1981.

10. JiNSAM Training Guide. Riverdale, N.J.: Jini Micro Systems,

8

Inc., 1982.

11. PFS. Mountain View, CA: Software Publishing Corp., 1981.

12. R:BASE Tutorial. Bellevue, WA: Microrim, Inc., 1983.

13. RL -]. User's Manual. Ann Arbor:-ABW Corp., 1982.

14. Versaform User's Guide. Los Gatos, CA: Applied Software
Technology, 1981.

15. 1,isifile User's Guide. Sunnyvale, CAt, Personal Software,
Inc., 1981.

