DOCUMENT RESUME

ED 248 258

TM 840 557

AUTHOR

Weiss, David J.

TITLE

Computer-Based Measurement of Intellectual

Capabilities. Final Report.

INSTITUTION SPONS AGENCY Minnesota Univ., Minneapolis. Dept. of Psychology. fice of Naval Research, Arlington, Va. Personnel

d Training Research Programs Office.

PUB DATE

Dec 83

CONTRACT

N 114-76-C-0243

NOTE

3up.

PUB TYPE

Reports - Research/Technical (143)

EDRS PRICE

MF01/PC02 Plus Postage.

DESCRIPTORS Ability; *Adaptive Testing; Adults; *Bayesian

Statistics; *Computer Assisted Testing; *Individual Testing; Latent Trait Theory; Measurement Techniques; *Monte Carlo Methods; Psychometrics; Response Style (Tests); Test Construction; Testing Problems; *Test

Theory

IDENTIFIERS

Marine Corps

ABSTRACT

During 1975-1979 this research into the potential of computerized adaptive testing to reduce errors in the measurement of human capabilities used Marine recruits for a live-testing validity comparison of computerized adaptive and conventional tests. The program purposes were to: (1) identify the most useful computer-based adaptive testing strategies; (2) identify testing conditions that maximize the positive rather than negative psychological effects of computerized testing; (3) investigate intra-individual multidimensionality problems in ability testing; (4) examine probabilistic responding and free-response methods for computerized adaptive testing in order to extract maximum information from each test item response; and (5) develop, refine and evaluate new computer administered ability tests for spacial, perceptive, memory, and other abilities not now measurable using paper and pencil testing. Monte Carlo and Bayesian adaptive testing methods were used in these studies. Fifteen major findings, primarily on adaptive testing and test administration conditions, and implications for further research are given. Abstracts of the 16 research reports for studies for this program are given. (BS)

Final Report

Computer-Based Measurement of Intellectual Capabilities

U.S. DEPARTMENT OF EDUCATION NATIONAL INSTITUTE OF EDUCATION EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

- > this parameter has been reproduced as many and bean the person of organization expendited to
 - Moral banger, have been made to improve reporter him questy
- Plants: Congrat openiors stated in this document discust one essably represent official NIE position or policy.

David J. Weiss

December 1983

COMPUTERIZED ADAPTIVE TESTING LABORATORY
DEPARTMENT OF PSYCHOLOGY
UNIVERSITY OF MINNESOTA
MINNEAPOLIS MN 55455

FINAL REPORT OF PROJECT NR150-382, N00014-76-C-0243

SUPPORTED BY THE

PERSONNEL AND TRAINING RESEARCH PROGRAMS

PSYCHOLOGICAL SCIENCES UIVISION

OFFICE OF NAVAL RESEARCH

AND THE

NAVY PERSONNEL RESEARCH AND DEVELOPMENT CENTER

APPROVED FOR PULLIC RELEASE; DISTRIBUTION UNLIMITED.

REPRODUCTION IN "HOLE OR IN PART IS PERMITTED FOR

ANY PURPOSE OF THE UNITED STATES GOVERNMENT.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT	ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
Final Report: Computer-Based Measure of Intellectual Capabilities	6. PERFORMING ORG, REPORT NUMBER
7. AUTHOR(*)	8. CONTRACT OR GRANT NUMBER(s)
David J. Weiss	N00014-76-C-0243
9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Psychology University of Minnesota Minneapolis MN 55455 11. CONTROLLING OFFICE NAME AND ADDRESS Personnel and Training Research Proj Office of Naval Research Arlington VA 22217 14. MONITORING AGENCY NAME & ADDRESS(II different from C.	13. NUMBER OF PAGES 20

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

This research was supported by funds from the Navy Personnel Research and Development Center and the Office of Naval Research, and monitored by the Office of Naval Research.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Adaptive Testing
Computerized Testing
Tailored Testing

Individualized Testing

Response-Contingent Testing

Latent Trait Theory Response Latency

Psychological Reactions to Testing

20. ABSTRACT (Continue on reverse side II necessary and identify by block number)

The research program's objectives are described, and the research approach is summarized and related to the sixteen technical reports completed under this contract. Fifteen major research findings are presented. The implications of the research findings and methods for future research in computerized testing and adaptive testing are described. Also included are abstracts of the sixteen technical reports.

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS ORSOLETE S/N 0102-LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (Phon Date Entered)

CONTENTS

Objectives		1
Adaptiv	ingsve Testing Strategies	3 3 4 5
T 1	for Burthar Rogarch	5
Adaptiv	ve Testing Strategies	7
Tatra-	Individual Dimensionality, Response Modes, and New illities	7
	eport Abstracts	9
75-6.	A Simulation Study of Stradaptive Ability Testing Some Properties of a Bayesian Adaptive Ability Testing	9
76-1.		9
76-2. 76-3.	Effects of Time Limits on Test-Taking Behavior Effects of Immediate Knowledge of Results and Adaptive	
76-4.	Testing on Ability Test Performance	
77-1.	and Adaptive Ability Testing	11
77-2.	A Comparison of Information Functions of Multiple-Choice	13
77-3.	Accuracy of Perceived Test-Item Difficulties	13
77-4.	Togt 100	14
78-2.	The Effects of Knowledge of Results and Test Difficulty on Ability Test Performance and Psychological Reactions to Testing	14
79-7.	The Person Response Curve: Fit of Individuals to Item	
80-2.	Interactive Computer Administration of a Spatial Reasoning	15
80-3.	Criterion-Related Validity of Adaptive Testing Stritegles .	17
80-5.	An Alternate-Forms Reliability and Concurrent Validity Comparison of Rayesian Adaptive and Conventional Ability	
81-2.	Tests Effects of Immediate Feedback and Pacing of Item Presentation on Ability Test Performance and Psychological Reactions to Testing	
83-1.		

FINAL REPORT:

COMPUTER-BASED MEASUREMENT OF INTELLECTUAL CAPABILITIES

Objectives

The objectives of this research program were based on a review of previous research literature that identified the potential of computerized adaptive testing to reduce at least five kinds of errors in the measurement of human capacities:

- 1. Errors due to mismatch of test item difficulty with testee ability;
- 2. Errors due to the psychological effects of testing;
- Errors due to insppropriate dimensionality;
- 4. Errors due to failure to extract sufficient information from the testee;
- Errors due to over-simplistic conceptualizations of intellectual capabilities.

Within the context of these five sources of error, which act to reduce the precision, accuracy and utility of current ability testing procedures, the research was designed to:

- 1. Extend previous research efforts to identify the most useful computer-based adaptive testing strategies.
- Study the psychological effects of computerized adaptive testing, to identify those testing conditions which minimize adverse effects and maximize positive effects.
- 3. Investigate the problem of intra-individual multidimensionality in ability testing.
- 4. Examine the use of such response modes as probabilistic responding and free-response methods for use in computerized adaptive testing in order to extract maximum information from each examinee's response to each test item.
- 5. Develop, refine and evaluate new computer-administered ability tests which measure abilities not now measurable using paper and pencil ability testing.

Research in pursuance of these primary objectives began in September 1975 and continued through December 1978. A contract extension, funded by the Navy Personnel Research and Development Center, was designed to complete a live-testing validity comparison of adaptive and conventional tests using Marine recruits. This extension continued the contract through September 1979. Technical reports were completed through January 1983.

Approach

The major focus of the research was on the evaluation of adaptive testing strategies by comparison of their characteristics with each other and with conventional tests. Both monte carlo simulation and live testing were used in these studies. In Research Report 75-6 the stradaptive testing strategy was examined in monte carlo simulation to evaluate various scoring techniques possible with this testing strategy, under various test lengths and prior information conditions. Performance of the stradaptive testing strategy was also evaluated in live testing (Research Report 80-3) by comparing its validity with that of a conventional test and a Bayesian adaptive test.

The Bayesian adaptive testing strategy was further studied in several reports. Monte carlo simulation was used in Research Report 76-1 to examine the performance of this testing strategy under several item pool configurations and at a number of test lengths. In Research Reports 80-5 and 83-1, the reliability and validity of the Bayesian adaptive test was compared with that of conventional tests in a college population (80-5) and in a military recruit population (83-1). Research Report 77-4 describes a procedure for improving the efficiency of item selection in Bayesian adaptive testing.

Several other problems concerned with the application of adaptive tests to the measurement of abilities were discussed in a symposium presented at the 1976 meeting of the Military Testing Association (Research Report 77-1). An overview of adaptive testing strategies, presented by McBride, included a discussion of item selection strategies, scoring adaptive tests, and problems of evaluating adaptive tests. The problem of estimating trait status in adaptive testing based on item response theory approaches was presented by Sympson, including a comparison of the characteristics of Bayesian and likelihood-based estimates. Vale, in his paper, considered the problem of classifying individuals into discrete ability categories (e.g., pass-fail); his monte carlo analysis compared adaptive and conventional tests designed for making dichotomous classifications.

The effects of testing conditions on test performance were investigated in a number of live-testing studies. Since computer-administered testing permits immediate scoring of an examinee's answer to a test question, it becomes possible to inform the examinee immediately after each response is given as to whether the answer was correct or incorrect. This immediate knowledge of results, or immediate feedback, was investigated in several studies in terms of its effects on ability test performance in adaptive and conventional tests (Research Reports 76-3 and 78-2), its interaction with test difficulty (Research Report 78-2) and computer versus self-paced test administration (Research Report 81-2), and its effects on examinees' reactions to test administration (Research Reports 76-4 and 81-2). Related studies examined the effects of time limits on test-taking behavior (Research Report 76-2) and the accuracy of the perceived difficulty of test items (Research Report 77-3).

The question of intra-individual dimensionality in performance on ability tests was recast within the more general framework of the fit of individuals to item response theory (IRT) models. This issue was examined in one study (Research Report 79-7) in which the predicted and acutal performance of single individuals was examined for indications of lack of person fit due to intra-indi-

vidual multidimensionality or other factors reflecting non-fit to the unidimensional IRT models.

The use of test item response modes other than the multiple-choice item was examined in one study (Research Report 77-2) which compared test information derived from free-response administration to that of the same items administered in multiple-choice mode.

The use of the unique capability of interactive computers to measure abilities not measurable by paper—and—pencil tests was examined in one study (Research Report 80-2). An interactive spatial reasoning test was designed based on the popular "15 puzzle" in which examinees were required to restructure a set of 15 numerals into a target pattern using a minimum number of moves. Examinee performance on the test was analyzed in terms of such factors as number of moves to solution, quality of the moves, and response latencies at each point in the testing procedure.

Major Findings

The major findings below are generally organized according to the original objectives of the research program. Additional details are in the Research Report abstracts. Many of the original Research Reports contain additional important findigs.

Adaptive Testing Strategies

- 1. Monte carlo data comparing the stradaptive test with non-adaptive approaches to ability testing (Research Report 75-6) shows that the stradaptive test provides more equiprecise measurement than a peaked conventional test. As item discriminations increased, the equiprecision of the stradaptive test increased relative to that of the conventional test.
- 2. A stradaptive test with an average of 25% fewer items than a conventional test obtained significantly higher validaties with a college grade-point average criterion than did the conventional test (Research Report 80-3).
- 3. Monte carlo evaluation of a Bayesian adaptive testing strategy identified a number of psychometric problems in the ability estimates resulting from this testing strategy (Research Report 76-1). Bayesian ability estimates were highly correlated with test length, were non-linearly biased for about two-thirds of the ability range, and were dependent on the prior ability estimate.
- 4. Although the monte carlo simulations of the Bayesian adaptive test identified these potential problems with the Bayesian ability estimates, they appeared to have little impact on the reliability and validity of Bayesian ability estimates. Live-testing studies of the Bayesian adaptive testing strategy in a college population showed validities equal to that a conventional test (Research Report 80-3), and high reliabilities for tests of 2 to 30 items in length (Research Report 80-5); in the latter study, however, using a concurrent validity criterion, the conventional test had higher validity correlations than the adaptive test. In a military recruit popu-

lation (Research Report 83-1), the Bayesian adeptive test achieved both higher validities and higher reliabilities than did a comparable conventional test. In this population, a 9-item adaptive test achieved the same reliability as a 17-item conventional test; 10- to 11-item adaptive tests achieved the same concurrent validities as 28- to 30-item conventional tests.

- 5. The original form of the Bayesian adaptive test used an item-search procedure that could require excessive amounts of computing time for an interactive test administration environment. A rapid item-search procedure was developed and shown to select the same subset of items as the original procedure in about one-tenth the amount of computer time.
- 6. Different methods of estimating ability from adaptive tests have different characteristics. Validities in the prediction of college grade-point averages from a stradaptive test were higher for ability estimates not based on IRT methods than they were for IRT-based ability estimates (Research Report 80-3). Within the IRT methods for estimating ability, Bayesian methods are slightly order dependent, resulting in slightly different ability estimates with the same items administered in different orders (Sympson, in Research Report 77-1). Bayesian ability estimates also have different psychometric characteristics than do estimates based on maximum likelihood procedures.
- 7. Adaptive tests can be used for classification purposes as well as for measurement on a continuous scale. When compared to conventional tests designed to make classifications, adaptive tests can classify more accurately than conventional tests when it is necessary to make more than a single dichotomous classification based on test scores (Vale, in Research Report 77-1).

Test Administration Conditions

- 8. An analysis of response latency data showed that testees approach different testing procedures in different ways (Research Report 76-2). The response latency data suggest that these different test-taking styles and strategies might be potentially useful as moderator or predictor variables in the prediction of external criteria.
- 9. Computer-administered feedback (immediate knowledge of results) on a conventional test appears to result in enhanced ability test performance for testeees of all ability levels (Research Report 76-3). Under computer-administered feedback conditions, mean test scores were significantly higher for both high- and low-ability testees. Ninety percent of college students favorably evaluated their experience with computer-administered feedback (Research Report 76-4).
- 10. Adaptive tests appear to be more intrinsically motivating for low-ability testees (Research Report 76-4), and result in higher ability estimates (Research Report 76-3), than similarly administered conventional tests. This suggests that adaptive testing might eliminate some of the undesirable psychological effects characteristic of conventional testing procedures, resulting in fairer and more accurate test scores for testees who typically

obtain low scores on conventional ability tests.

- 11. Item-difficulty perceptions of college students were highly related to objective indices of test item difficulty (Research Report 77-3). This suggests that test difficulty, which may differ between conventional and adaptive tests for examinees of the same ability, might be an important factor affecting the test performance of individuals.
- 12. Test difficulty interacted with immediate knowledge of results to produce effects on ability estimates, but not on psychological reactions to the testing conditions (Research Report 78-2). Since difficulty is more equal across ability levels in an adaptive test than in a conventional test, these results suggest that the testing environment of adaptive tests will result in fewer sources of error in ability estimates than will conventional ability tests.

Other Findings

- 13. Analysis of person-fit data derived from the person response curve indicated that the vast majority of college students studied responded to a set of test items in accordance with the 3-parameter logistic IRT model (Research Report 79-7). The person response curve approach also identified a small group of individuals whose responses to the test items appeared to result from an underlying multidimensional ability structure with respect to the ability domain studied.
- 14. The dependence of adaptive testing on the multiple-choice item will result in test scores with less than optimal properties. Analysis of free-response item data indicates that more informative ability estimates can be derived from free response items than from the same items administered as multiple-choice items and scored by optimal IRT methods; differences were greater for high-ability examinees (Research Report 77-2).
- 15. Interactive computer administration of ability test items permits the design and implementation of ability tests using novel item formats, which may extend the range of measurable abilities beyong those now measurable using a dimensional approach. The design and implementation of an interactive spatial problem-solving test (Research Report 80-2) permitted the measurement and analysis of a number of problem-solving types of variables that described individual differences in problem-solving styles; these variables might be useful as ability kinds of variables, following further study and refinement.

Implications for Further Research

The findings and experience of this research program support the feasibility, utility and psychometric advantages of computerized adaptive measurement of intellectual capabilities. However, many new questions were raised by the research, and some of the original questions addressed are still in need of further research.

Adaptive Testing Strategies

Research has concentrated on comparison of the stradaptive and Bayesian adaptive testing strategies with conventional tests. Further research is needed (1) comparing these strategies directly with each other, in both live testing and in simulation, and (2) in comparing these strategies with other adaptive testing strategies, such as an information-based item selection routine.

All adaptive testing strategy comparisons to date that used monte carlo simulation techniques have made two assumptions that are not characteristic of real data. First, they have assumed that the item pool is characterized by items with known parameter values. In real item pools, however, item parameter values are never known, but are always estimated. These estimates are only approximations to the true values and, as a consequence, contain some degree of error, with rather substantial degrees of error for some of the item parameters. Since adaptive testing strategies are designed to explicitly select items based on these item parameter estimates, the possibility exists that in a real item pool with error-laden item parameters adaptive tests might perform less optimally due to the error in the item parameter estimates. Thus, simulation studies should be designed and implemented to experimentally vary the degrees of error in item parameter estimates and to evaluate the effects of these errors on the performance of adaptive testing strategies, in order to identify the effects of these errors on the performance of the testing strategies.

A second assumption made in all monte carlo comparisons of adaptive testing strategies is that the item pool is strictly unidimensional, since only one set of item parameter values is used for each item. In real data, however, item pools are very rarely strictly unidimensional. Frequently, item pools are characterized by second and succeeding factors that account for from trivial portions of the item pool variance to substantial portions of that variance. While multidimensional IRT models have no: yet been sufficiently operationalized to permit the estimation of item parameters for dimensions beyond the first, it is possible to examine the effects of multidimensionality on adaptive testing strategies. One approach to studying this problem is to simulate the administration of adaptive testing strategies with unidimensional item parameters when item responses are generated from an underlying multidimensional structure. This approach assumes that the dimensionality of the item responses is the true underlying multidimensional structure, while the apparent unidimensionality of the item pool is the result of the item parameterization process applied to it. Studies of this type would enable the identification of the degrees and types of multidimensionality that could be tolerated by the various adaptive testing strategies without serious degradation of their performance.

Further live-testing comparisons of adaptive testing strategies are also necessary. The four live-testing studies completed under this contract yielded somewhat conflicting results. In two of the four studies, adaptive tests obtained higher validities than conventional tests with a smaller average number of items, and in one study with a smaller median number of items. In the study using military recruits a very clear advantage was obvious for the adaptive tests beginning at short test lengths. When a large group of college students was studied, however, although the expected differences in reliability were obtained, the conventional test performed better on the concurrent validity crite-

- 7 -

rion. Since the design of the two large-sample studies was similar, differences in results could be attributable to differences in the examinees, the item pools, or the criterion tests. Additional live-testing studies are needed to evaluate the effects of these conditions, as well as to evaluate the performance of other adaptive testing strategies and to evaluate their performance with additional criterion variables.

Test Administration Conditions

The research results show that a number of test administration variables influence test scores, IRT-based ability estimates, and/or examinees' reactions to tests. These include test speededness, test difficulty, and immediate feedback to examinees as to whether their item responses are correct or incorrect. Testing strategy (adaptive versus conventional) also had some effects on test performance and reactions, probably due to the differing difficulties of adaptive and conventional tests. Immediate feedback of results appeared to be an important potential factor in increasing test-taking motivation and improving test scores.

Studies completed on the effects of test administration conditions have all utilized volunteer college students as examinees and have used verbal ability items in the tests administered. Since the test-taking motivation of volunteer students might differ when tested under conditions where the tests are being used for grading or other purposes, future studies should examine the effects of test administration conditions when the tests being administered are to be used for purposes other than research. In addition, the generality of the observed effects should be studied on populations other than college students, and using other tests in addition to verbal ability tests. Further studies should also include the effects of other adaptive testing strategies as test administration conditions, in conjunction with immediate knowledge of results.

Intra-Individual Dimensionality, Response Modes, and New Abilities

Research in these three areas was only begun during the contract period. The person characteristic curve results show that the vast majority of the one group of college students studied responded to a set of test items in accordance with the three-parameter logistic IRT model. A small group of students was identified, however, whose responses appeared to be reliably divergent from that model." These deviations were ascribed to intra-individual multidimensionality. Since the person response curve method was used in only this one study, further studies are indicated. Of importance is the performance in monte carlo simulations of the person-fit indices under conditions of unidimensionality, the derivation of appropriate sampling distributions of the person-fit indices, the evaluation of alternate person-fit indices, and the effect of test structure characteristics (e.g., distributions of item characteristics) on the performance of person-fit indices. Additional live-testing studies should also be implemented to study the effects of various test administration conditions (e.g., interruptions, poor testing conditions, immediate knowledge of results) on intraindividual dimensionality by means of the person response curve and associated indices of person fit.

Failure to extract sufficient information from an examinee's responses to

multiple-choice test items can lower the quality of obtained measurements. The one study completed on this problem indicated that the use of free-response items was able to improve the measurement precision of a set of vocabulary items beyond that possible from scoring the same items as polychotomous multiple-choice items. Both of these administration/scoring modes provide better measurement than dichotomously-scored multiple-choice items. Since this study used college atudents on a single short vocabulary test, further studies are obviously needed to examine the generality of the results. In addition, research is needed to examine the performance of other alternatives to the dichotomously-scored multiple-choice item such as probabilistic responding, which are now feasible when administered by interactive computers.

Interactive computer administration of ability tests makes possible the development of a wide range of new kinds of ability tests to supplement the standard dimensionality-based tests currently in use. This project has demonstrated that interactive administration of a problem-solving type of test can result in substantial amounts of new kinds of data on examinees in addition to the traditional number of items answered correctly. These data can include information on problem-solving styles and response latencies that might be indicative of other individual differences problem-solving variables. Future research should investigate the psychometric characteristics of these variables, including their reliabilities and their contributions to validity, as well as examine the utility of the interactive computer for measuring other abilities such as spatial, perceptual, and memory abilities which are now possible to be measured by computer administration.

RESEARCH REPORT ABSTRACTS

Research Report 75-6

A Simulation Study of Stradaptive Ability Testing

C. David Vale and David J. Weiss

December 1975

, A conventional test and two forms of a stradaptive test were administered to thousands of simulated subjects by minicomputer. Characteristics of the three tests using several scoring techniques were investigated while varying the discriminating power of the items, the lengths of the tests, and the availability of prior information about the testee's ability level. The tests were evaluated in terms of their correlations with underlying ability, the amount of information they provided about ability, and the equiprecision of measurement they exhibited. Major findings were (1) scores on the conventional test correlated progressively less with ability as item discriminating power was increased beyond $\theta = 1.0$; (2) the conventional test provided increasingly poorer equiprecision of measurement as items became more discriminating; (3) these undesirable characteristic of scores on the stradaptive test; (4) the stradaptive test provided higher score-ability correlations than the conventional test when item discriminations were high; (5) the stradaptive test provided more information and better equiprecision of measurement than the conventional test when test lengths and item discriminations were the same for the two strategies; (6) the use of valid prior ability estimates by stradaptive strategies resulted in scores which had better measurement characteristics than scores derived from a fixed entry point; (7) a Bayesian scoring technique implemented within the stradaptive testing.strategy provided scores with good measurement characteristics; and (8) further research is necessary to develop improved flexible termination criteria for the stradaptive test. (AD A020961)

Research Report 76-1 Some Properties of a Bayesian Adaptive Ability Testing Strategy James R. McBride and David J. Weiss March 1976

Four monte carlo simulation studies of Owen's Bayesian sequential procedure for adaptive mental testing were conducted. Whereas previous simulation studies of this procedure have concentrated on evaluating it in terms of the correlation of its test scores with simulated ability in a normal population, these four studies explored a number of additional properties, both in a normally distributed population and in a distribution-free context. Study I replicated previous studies with finite item pools, but examined such properties as the bias of estimate, mean absolute error, and correlation of test length with ability. Studies 2 and 3 examined the same variables in a number of hypothetical infinite item pools, investigating the effects of item discriminating power, guessing, and variable vs. fixed test length. Study 4 investigated some properties of the Bayesian test scores as latent trait estimators, under three different item pool configurations (regressions of item discrimination on item difficulty). The properties of interest included the regression of latent trait estimates on actual trait levels, the conditional bias of such estimates, the information curve

of the trait estimates, and the relationship of test length to ability level. The results of these studies indicated that the ability estimates derived from the Bayesian test strategy were highly correlated with ability level. However, the ability estimates were also highly correlated with number of items administered, were non-linearly biased, and provided measurements which were not of equal precision at all levels of ability. (AD A022964)

Research Report 76-2 Effects of Time Limits on Test-Taking Behavior T. W. Miller and David J. Weiss April 1976

Three related experimental studies analyzed rate and accuracy of test response under ime-limit and no-time-limit conditions. Test instructions and multiplechoice vocabulary items were administered by computer. Student volunteers received monetary rewards under both testing conditions. In the first study, college students were blocked into high- and low-ability groups on the basis of pretest scores. Results for both ability groups showed higher response rates under time-limit conditions than under no-time-limit conditions. There were no significant differences between the time-limit and no-time-limit accuracy scores. Similar results were obtained in a second study in which each student received both time-limit and no-time-limit conditions. In a third study each testee received the same testing condition twice, and higher response rates were observed under the time-limit condition; response accuracy remained consistent across testing conditions. All three studies showed essentially zero correlations between response rate and response accuracy. Response latency data were also analyzed in the three studies. These data suggested the existence of different test-taking styles and strategies under time-limit and no-time-limit testing conditions. The results of these studies suggest that number-correct scores from time-limit tests are a complex function of response rate, response accuracy, test-taking style and test-taking strategy, and therefore are not likely to be as valid or as useful as number-correct scores from no-time-limittests. (AD A024422)

Research Report 76-3 Effects of Immediate Knowledge of Results and Adaptive Testing on Ability Test Performance Nancy E. Betz and David J. Weiss June 1976

This study investigated the effects of immediate knowledge of results (KR) concerning the correctness or incorrectness of each item response on a computer-administered test of verbal ability. The effects of KR were examined on a 50-item conventional test and a stradaptive ability test and in high- and low-ability groups. The primary dependent variable was maximum likelihood ability estimates derived from the item responses. Results indicated that mean test scores for the High-Ability group receiving KR were higher than for the No-KR group on both the conventional and stradaptive tests. For Low-Ability examinees, mean scores were higher under KR conditions than under No-KR conditions on both tests, but the difference was statistically significant only for the conventional test.

However, the higher mean scores of the Low-Ability testees on the stradaptive test indicated that for low-ability examinees, adaptive testing had the same effects on test performance as did the provision of immediate KR. Knowledge of results did not have significant effects on either response latencies, response consistency on the stradaptive test, or the internal consistency reliability of the conventional test. No significant score differences were found on a 44-item post-test administered without KR, indicating that the facilitative effects of knowledge of results on test performance were confined to the test in which KR was provided. The results of the study were interpreted as indicating the potential of both immediate knowledge of results and adaptive testing procedures to increase the extent to which ability tests measure "maximum performance" levels. (AD A027147)

Research Report 76-4 Psychological Effects of Immediate Knowledge of Results and Adaptive Ability Testing Nancy E. Betz and David J. Weiss June 1976

This study investigated the effects of providing immediate knowledge of results (KR) and adaptive testing on test anxiety and test-taking motivation. Also studied was the accuracy of student perceptions of the difficulty of adaptive and conventional tests administered with or without immediate knowledge of re-Testees were 350 college students divided into high- and low-ability sults. groups and randomly assigned to one of four test strategies by KR conditions. The ability level of examinees was found to be related to their reported levels of motivation and to differences in reported motivation under the different testing conditions. Low-ability examinees reported significantly higher levels of motivation on the stradaptive test than on the conventional test, while the reported motivation of high-ability examinees did not differ as a function of ability level. Low-ability testees reported lower motivation with KR than without KR, while higher ability testees reported higher motivation with KR. Analysis of the anxiety data indicated that students reported significantly higher levels of anxiety on the stradaptive test than on the conventional test. The provision of KR did not result in significant differences in reported anxiety. However, highest levels of anxiety were reported by the low-ability group on the stradaptive test administered with KR. These results, in conjunction with previously reported data on effects of KR on ability test performance, were interpreted as being the result of facilitative anxiety. Students were able to perceive the relative difficulty of test items with some accuracy. However, perceptions of the relative degree of test difficulty were much more closely related to actual test score on the conventional test than on the stradaptive test. Over 90% of the students reacted favorably to the provision of immediate KR. These results suggest that adaptive testing creates a psychological environment for testing which is more equivalently motivating for examinees of all ability levels and results in a greater standardization of the test-taking environment, than does conventional testing. (AD A027170)

Research Report 77-1

Applications of Computerized Adaptive Testing

James R. McBride, James B. Sympson,

C. David Vale, Steven M. Pine, and Isaac I. Bejar

Liited by David J. Weiss

March 1977

This symposium consisted of five papers:

- Adaptive testing is defined, and some of its item selection and scoring strategies briefly discussed. Item response theory, or item characteristic curve theory, which is useful for the implementation of adaptive testing is briefly described. The concept of "information" in a test is introduced and discussed in the context of both adaptive and conventional tests. The advantages of adaptive testing, in terms of the nature of information it provides, are described.
- 2. James B. Sympson: Estimation of Latent Trait Status in Adaptive Testing Procedures

 The role of latent trait theory in measurement for criterion prediction and in criterion-referenced measurement is explicated. It is noted that latent trait models allow both normed-referenced and criterion-referenced interpretations of test performance. Using a 3-parameter logistic test model, an example of sequential estimation in a 20-item adaptive test is presented. After each item is administered, four different ability estimates (two likelihood-based and two Bayesian estimates) are calculated. Characteristics of the four estimation methods are discussed. The information available in the items selected by the adaptive test is compared with the information available from application of latent trait theory, and adaptive testing is advocated as a useful approach to human assessment.
- 3. C. David Vale: Adaptive Testing and the Problem of Classification
 The use of adaptive testing procedures to make ability classification decisions (i.e., cutting score decisions) is discussed. Data from computer simulations comparing conventional testing strategies with an adaptive testing strategy are presented. These data suggest that, although a conventional test is as good as an adaptive test when there is one cutting score at the middle of the distribution of ability, an adaptive test can provide better classification decisions when there is more than one cutting score. Some utility considerations are also discussed.
- 4. Steven M. Pine: Applications of Item Characteristic Curve Theory to the Problem of Test Bias

 It is argued that a major problem in current efforts to develop less biased tests is an over-reliance on classical test theory. Item characteristic curve (ICC) theory, which is based on individual rather than group-oriented measurement, is offered as a more appropriate measurement model. A definition of test bias based on ICC theory is presented. Using this definition, several empirical tests for bias are presented and demonstrated with real test data. Additional applications of ICC theory to the problem of test bias are also discussed.

5. Isaac I. Bejar: Applications of Adaptive Testing in Measuring Achievement and Performance
The paper reviews two relatively recent developments in psychometric theory—the assessment of partial knowledge and research in adaptive testing. It is argued that the use of non-dichotomous item formats, needed for the assessment of partial knowledge, and now made possible by the administration of achievement test items on interactive computers, should result in achievement test scores which are a more realistic and precise indication of what a student can do.

(AD A038114)

Research Report 77-2 A Comparison of Information Functions of Multiple-Choice and Free-Response Vocabulary Items C. David Vale and David J. Weiss April 1977

Twenty multiple-choice vocabulary items and 20 free-response vocabulary items were administered to 660 college students. The free-response items consisted of the stem words of the multiple-choice items. Testees were asked to respond to the free-response items with synonyms. A computer algorithm was developed to transform the numerous free-responses entered by the testees into a manageable number of categories. The multiple-choice and the free-response items were then calibrated according to Bock's polychotomous logistic model. One item was discarded because of extremely poor fit with the model, and test information functions were determined from the other 19 items. Higher levels of information were obtained from the free-response items over most of the range of abilities between $\theta = -3.0$ to $\theta = +3.0$.

Research Report 77-3 Accuracy of Perceived Test-Item Difficulties J. Stephen Prestwood and David J. Weiss May 1977

This study investigated the accuracy with which testees perceive the difficulty of ability-test items. Two 41-item conventional tests of verbal ability were constructed for administration to testees in two ability groups. Testees in both the high- and low-ability groups responded to each multiple-choice item by choosing the correct alternative and then rating the item's difficulty relative to their levels of ability. Least-squares estimates of item difficulty, which were based on the difficulty ratings, correlated highly with proportion-correct and latent trait estimates of item difficulty based on a norming sample. Least-squares estimates of testee ability, which were based solely on the difficulty perceptions of the testees, correlated significantly with number-correct and maximum-likelihood ability scores based on the testees' conventional responses to the items. These results show that item-difficulty perceptions were highly related to the "objective" indices of item difficulty often used in test construction, and that as testee ability level increased, the items were perceived as being relatively less difficult. The relationship between a testee's ability

and his/her perception of an individual item's relative difficulty appeared to be weak. Of major importance was the finding that items which were appropriate in difficulty levels from a psychometric standpoint were perceived by the testees as being too difficult for their ability levels. The effects on testees of tailoring a test such that items are perceived as being uniformly too difficult should be investigated. (AD AO41084)

Research Report 77-4 A Rapid Item-Search Procedure for Bayesian Adaptive Testing C. David Vale and David J. Weiss May 1977

An alternative item-selection procedure for use with Owen's Bayesian adaptive testing strategy is proposed. This procedure is, by design, faster than Owen's original procedure because it searches only part (as compared with all) of the total item pool. Item selections are, however, identical for both methods. After a conceptual development of the rapid-search procedure, the supporting mathematics are presented. In a simulated comparison with three item pools, the rapid-search procedure required as little as one-tenth the computer time as Owen's technique. (AD A041090)

Research Report 78-2 The Effects of Knowledge of Results and Test Difficulty on Ability Test Performance and Psychological Reactions to Testing J. Stephen Prestwood and David J. Weiss September 1978

Students were administered one of three conventional or one of three stradaptive vocabulary tests with or without knowledge of results (KR). The three tests of each type differed in difficulty, as assessed by the expected proportion of correct responses to the test items. Results indicated that the mean maximum-likelihood estimates of individuals' abilities varied as a joint function of KR-provision and test difficulty. Students receiving KR scored highest on the most-difficult test and lowest on the least-difficult test; students receiving no KR scored highest on the least-difficult test and did most poorly on the most-difficult test. Although the students perceived the differences in test difficulty, there were no effects on mean student anxiety or motivation scores attributable to difficulty alone. Regardless of test difficulty, students reacted very favorably to receiving KR, and its provision increased the mean level of reported motivation.

Research Report 79-7

The Person Response Curve: Fit of Individuals

to Item Characteristic Curve Models

Tom E. Trabin and David J. Weiss

December 1979

This study investigated a method of determining the fit of individuals to item characteristic curve (ICC) models using the person response curve (PRC). The

construction of observed PRCs is based on an individual's proportion correct on test item subsets (strata) that differ systematically in difficulty level. A method is proposed for identifying irregularities in an observed PRC by comparing it with the expected PRC predicted by the three-parameter logistic ICC model for that individual's ability level. Diagnostic potential of the PRC is discussed in terms of the degree and type of deviations of the observed PRC from the expected PRC predicted by the model.

Observed PRCs were constructed for 151 college students using vocabulary test data on 216 items of wide difficulty range. Data on students' test-taking motivation, test-taking anxiety, and perceived test difficulty were also obtained. PRCs for the students were found to be reliable and to have shapes that were primarily a function of ability level. Three-parameter logistic model expected PRCs served as good predictors of observed PRCs for over 90% of the group. As anticipated from this general overall fit of the observed data to the ICC model, there were no significant correlations between degree of non-fit and test-taking motivation, test-taking anxiety, or perceived test difficulty. Using split-pool observed PRCs, a few students were identified who deviated significantly from the expected PRC.

The results of this study suggested that three-parameter logistic expected PRCs for given ability levels were good predictors of test response profiles for the students in this sample. Significant non-fit between observed and expected PRCs would suggest the interaction of additional dimensions in the testing situation for a given individual. Recommendations are made for further research on person response curves.

Research Report 80-2 Interactive Computer Administration of a Spatial Reasoning Test Austin T. Church and David J. Weiss April 1980

This report describes a pilot study on the development and administration of a test using a spatial reasoning problem, the 15-puzzle. The test utilized the on-line capabilities of a real-time computer (1) to record an examinee's progress on each problem through a sequence of problem-solving "moves" and (2) to collect additional on-line data that might be of relevance to the evaluation of examinee performance (e.g., number of 1) legal and repeated moves, response latency trends). The examinees, 61 students in an introductory psychology class, were required to type a sequence of moves that would bring one 4 × 4 array of scrambled numbers (start configuration) into agreement with a second 4 × 4 array (goal configuration), using as few moves as possible. Data analyses emphasized the comparison of several methods of indexing problem ditriculty, methods of scoring individual performance, and the relationship between response latency data, performance, and problem-solving strategy.

Subjective ratings of the perceived difficulty of replications of the 15-puzzle were obtained from a separate student sample to investigate (1) the subjective dimensions used by students in evaluating the difficulty of this problem type, (2) how accurately the actual performance difficulty of these problems could be evaluated by students, and (3) whether there were reliable individual differ-

ences in difficulty perceptions related to actual performance differences.

Results of the study suggested that four performance indices might be useful in indexing problem difficulty: (1) mean number of moves in the sample, (2) proportion of students solving the problem in the optimal number of moves, and (4) a Special Difficulty Index, defined as the sample mean number of moves divided by the minimum number of moves required. Four alternative methods of scoring total test performance and two methods of scoring individual problem performance were studied. The scores that took into account differential numbers of moves between the optimal and maximum number allowed were related somewhat more to performance ratings obtained from independent judges.

Examination of problem performance indices, the Special Difficulty Index, and students' perceptions of the difficulty of the test problems indicated that most of the problems were too easy for most students. However, the possibility of obtaining a more discriminating subset of problems was suggested by item-total score correlations obtained for each problem. The data suggested that better consistency might be obtained using problems of similar difficulty levels, and it was hypothesized that an adaptive test tailoring problems to the ability level of each student would increase the reliability of measurement.

Mean initial and total "move" latencies for each problem were strongly related to some of the performance indices of problem difficulty. At the level of individual performance, only total latency or problem solution time was related to problem performance. Latency data appeared to confound differences in the ability to visualize a sequence of moves and differences in students' work styles. Strong evidence for these work styles was found in student consistency of initial, average, and total response latency measures across all problems.

Perceived difficulty ratings showed reliable individual differences in the level and variability of difficulty perceptions. The data suggested that the individual differences found were related to individual differences in ability to visualize and to maintain a sequence of moves in short-term memory. It was concluded that an adequate selection of problem replications should be able to tap these differences, resulting in reliable solution performance differences.

Improvements in problem selection and design were suggested by the data in this study. Future tests of this type should consist of fewer but more difficult problems, particularly problems not permitting reactive, impulsive solutions. This type of test would seem especially appropriate for adaptive administration: (1) scores on problems tailored to the individual's ability would likely be more highly related to each other, resulting in more highly reliable total scores; (2) the motivational aspects of the tests, which seem more taxing and potentially frustrating than conventional item formats, would likely be improved, and (3) for most testees equally precise measurements could be obtained in shorter periods of time than with conventional test administration.

Research Report 80-3 Criterion-Related Validity of Adaptive Testing Strategies Janet G. Thompson and David J. Weiss June 1980

Criterion-related validity of two adaptive tests was compared with a conventional test in two groups of college students. Students in Group I (N = 101) were administered a stradaptive test and a peaked conventional test; students in Group 2 (N = 131) were administered a Bayesian adaptive test and the same peaked conventional test. All tests were computer-administered multiple-choice vocabulary tests; items were selected from the same pool, but there was no overlap of items between the adaptive and conventional tests within each group. The stradaptive test item responses were scored using four different methods (two mean difficulty scores, a Bayesian score, and maximum likelihood) with two different sets of item parameter estimates, to study the effects on criterion-related validity of scoring methods and/or item parameter estimates. Criterion variables were high school and college grade-point averages (GPA), and scores on the American College Testing Program (ACT) achievement tests.

Results indicated generally higher validities for the adaptive tests; at least one method of scoring the stradaptive tests resulted in higher correlations than the conventional test with seven of the eight criterion variables (and equal correlations for the eighth), even though the stradaptive test administered over 25% fewer items, on the average, than did the conventional test. The stradaptive test obtained a significantly higher correlation with overall college GPA (r=.27) than did the conventional test; when math GPA was partialled from overall GPA, the maximum correlation for the stradaptive test with an average length of 29.2 items was r=.51, while the 40-item conventional test correlated only .36. The data showed generally higher criterion-related validities for the mean difficulty scores on the stradaptive test in comparison to the Bayesian and maximum likelihood scores; the different item parameter estimates had no effect on validity, resulting in scores that correlated .98 with each other.

Although the mean length of the Bayesian adaptive test was 48.7 items, the median number of items (35) was less than that of the 40-item conventional test. Ability estimates from this adaptive test also correlated higher with seven of the eight criterion variables than did scores on the conventional tests, although none of the differences were statistically significant.

These data indicate that adaptive tests can achieve criterion-related validities equal to, and in some cases significantly greater than, those obtained by conventional tests while administering up to 27% fewer items, on the average. The data also suggest that latent-trait-based scoring of stradaptive tests may not be optimal with respect to criterion-related validity. Limitations of the study are discussed and suggestions are made for additional research. (AD A087595)

An Alternate-Forms Reliability and Concurrent Validity Comparison of Bayesian Adaptive and Conventional Ability Tests G. Gage Kingsbury and David J. Weiss December 1980

Two 30-item alternate forms of a conventional test and a Bayesian adaptive test were administered by computer to 472 undergraduate psychology students. In addition, each student completed a 120-item paper-and-pencil test, which served as a concurrent validity criterion test, and a series of very easy questions designed to detect students who were not answering conscientiously. All test items were five-alternative multiple-choice vocabulary items. Reliability and concurrent validity of the two testing strategies were evaluated after the administration of each item for each of the tests, so that trends indicating differences in the testing strategies as a function of test length could be detected. For each test, additional analyses were conducted to determine whether the two forms of the test were operationally alternate forms.

Results of the analysis of alternate-forms correspondence indicated that for all test lengths greater than 10 items, each of the alternate forms for the two test types resulted in fairly constant mean ability level estimates. When the scoring procedure was equated, the mean ability levels estimated from the two forms of the conventional test differed to a greater extent than those estimated from the two forms of the Bayesian adaptive test.

The alternate-forms reliability analysis indicated that the two forms of the Bayesian test resulted in more reliable scores than the two forms of the conventional test for all test lengths greater than two items. This result was observed when the conventional test was scored either by the Bayesian or proportion-correct method.

The concurrent validity analysis showed that the conventional test produced ability level estimates that correlated more highly with the criterion test scores than did the Bayesian test for all lengths greater than four items. This result was observed for both scoring procedures used with the conventional test.

Limitations of the study, and the conclusions that may be drawn from it, are discussed. These limitations, which may have affected the results of this study, included possible differences in the alternate forms used within the two testing strategies, the relatively small calibration samples used to estimate the ICC parameters for the items used in the study, and method variance in the conventional tests. (AD A094477)

Research Report 81-2

Effects of Immediate Feedback and Pacing of Item Presentation on Ability Test Performance and Psychological Reactions to Testing Marilyn F. Johnson, David J. Weiss, and J. Stephen Prestwood February 1981

The study investigated the joint effects of knowledge of results (KR or no-KR), pacing of item presentation (computer or self-pacing), and type of testing

strategy (50-item peaked conventional, variable-length stradaptive, or 50-item fixed-length stradaptive test) on ability test performance, test item response latency, information, and psychological reactions to testing. The psychological reactions to testing were obtained from Likert-type items that assessed test-taking anxiety, motivation, perception of difficulty, and resctions to knowledge of results. Data were obtained from 447 college students randomly assigned to one of the 12 experimental conditions.

The results indicated that there were no effects on ability estimates due to knowledge of results, testing strategy, or pacing of item presentation. Although average latencies were greater on the stradaptive tests than on the conventional test, the overall testing time was not substantially longer on the adaptive tests and may have been a function of differences in test difficulty. Analysis of information values indicated higher levels of information on the stradaptive tests than on the conventional test. There was no statistically significant main effect for any of the three experimental conditions when test anxiety or test-taking motivation were the dependent variables, although there were some significant interaction effects.

These results indicate that testing conditions may interact in a complex way to determine psychological reactions to the testing environment. The interactions do suggest, however, a somewhat consistent standardizing effect of KR on test anxiety and test-taking motivation. This standardizing effect of KR showed that approximately equal levels of motivation and anxiety were reported under the various testing conditions when KR was provided, but that mean levels of these variables were substantially different when KR was not provided. Consistent with theoretical expectations, the conventional test was perceived as being either too easy or too difficult, whereas the adaptive tests were perceived more often as being of appropriate difficulty.

The results concerning the effects of KR on test performance, motivation, and anxiety found in this study were contrary to earlier reported findings; and differences in the studies are delineated. Recommendations are made concerning the control of specific testing conditions, such as difficulty of the test and ability level of the examinee population, as well as suggestions for the further analysis of the standardizing effect of KR.

Research Report 83-1 Reliability and Validity of Adaptive and Conventional Tests In a Military Recruit Population John T. Martin, James R. McBride, and David J. Weiss January 1983

A conventional verbal ability test and a Bayesian adaptive verbal ability test were compared using a variety of psychometric criteria. Tests were administered to 550 Marine recruits, half of whom received two 30-item alternate forms of a conventional test and half of whom received two 30-item alternate forms of a Bayesian adaptive test. Both types of tests were computer administered and were followed by a 50-item conventional verbal ability criterion test.

The alternate forms of the adaptive test resulted in scores that were much more

similar in means and variances than were the conventional tests for which most means and variances for various test lengths were significantly different. Adaptive testing resulted in significantly higher alternate forms reliability correlations for all test lengths through 19 items; reliability of a 9-item adaptive test was equal to that of a 17-item conventional test. Validity correlations were higher for the adaptive procedure for all test lengths. Validity of an Il-item adaptive test was equal to that of a 27-item conventional test, in spite of lower discriminating items being used, on the average, by the adaptive tests in comparison to the conventional test. Very few of the recruits had difficulty in responding to the computer-administered instructions on use of the testing terminals. Analysis showed some differences in test duration between the two testing strategies; where they occurred, they were explained by the ability level of the examinees, i.e., higher ability examinees who were administered adaptive tests received more difficult items and therefore had significantly longer testing times. Combined with reduced test length for the adaptive test to obtain similar reliabilities and validities to the conventional test, however, the slight increases observed in adaptive testing time were negligible.

The data support the feasibility of adaptive testing with military recruit populations and support theoretical predictions of the psychometric superiority of adaptive tests in comparison with number-correct scored conventional tests.

(AD A129324)

Navy

- l Dr. Ed Aiten Navy Personnel R&D Center San Diego, C4 92152
- 1 Dr. Arthur Bachrach Environmental Stress Program Cauter Naval Nedical Research Institute Bethesda, ND 20014
- 1 Dr. Neryl S. Waker Navy Personnel R&D Center San Diego, CA 92152
- l Lieison Scientist
 Office of Naval Research
 Branch Office, London
 Box 39
 FFO New York, NY 09510
- I Lt. Alexander Bory Applied Psychology Neasurement Division SANRL NAS Pensacola, PL 32509
- 1 Dr. Robert Bresux HAVTRABQUIPCEN Code H-095R Orlando, FL 32813
- 1 Dr. Robert Carroll NAVOP 115 Washington , DC 20170
- l Chief of Haval Education and Training Liason Office Air Force Human Resource Laboratory Operations Training Division WILLIAMS APB, AZ 85224
- I Dr. Stanley Collyer Office of Maval Technology 800 M. Quincy Street Arlington, VA 22217
- 1 CDR Tike Curran Office of Navel Research 800 N. Quincy St. Code 270 Arlington, VA 22217
- i Dr. Doug Davis CNRT Pensacols, FL
- 1 Dr. Tom Duffy Navy Personnel R6D Center San Diego. CA 92152
- l Tike Durweyer Instructional Program Development Building 70 NET-PDCD Great Lakes NTC, IL 60788
- i Dr. Richard Elster Department of Administrative Sciences Naval Postgraduate School Monterny, CA 93940
- I DR. PAT FEDERICO Code P13 NPRDC Sen Otego, C4 92152

- 1 Dr. Cathy Fernandes Nevy Personnel MAQ Conter San Diego, CA 92152
- l Dr. Jim Hollan Code 14 Navy Personnel R & D Center San Diego, CA 92152
- l Dr. Ed Hutchins Navy Personnel RAD Center San Mego, CA 92152
- l Dr. Horman J. Kerr Chief of Haval Technical Training Naval Air Station Hamphia (75) Millington, TW 38254
- 1 Dr. Leonard Kroeker Navy Personnel MAD Center San Diego, CA 92152
- 1 Dr. William L. Heloy (02)
 Chief of Havel Education and Training
 Havel Affil Station
 Pensacola, FL 32508
- 1 Dr. James McBride Navy Personnel R&D Center Ses Diego, CA 92152
- 1 Dr William Wontague MPRDC Code 13 San Diego, CA 92152
- 1 Bill Nordbrock 1032 Fairless Ave. Libertyville, IL 60048
- i Library, Code P201L Hevy Personnel R&D Center Sen Diego, CA 92152
- 1 Technical Director Havy Personnel R&D Center San Diego, C4 92152
- 6 Personnel & Training Research Group Code 442PT Office of Nevel Essearch Arlington, VA 22217
- 1 Special Aset. for Education and Training (OP-OIE) Em. 2705 Arlington Annex Washington, DC 20370
- 1 LT Frank C. Petho, MSC. USN (Ph.D) CNET (N-432) HAS Penmaccia. FL 32508
- 1 Dr. Bernard Rimland (OIC) Navy Personnel R&D Center San Diego. CA 92152
- l Dr. Carl Ross CMRT-PDCD Building 90 Great Lakes HTC. IL 69088
- 1 Dr. Robert G. Swith Office of Chief of Neval Operations OP-987H Washington, DC 20350

- 1 pr. Alfred F. Smode, Director Training Analysis & Evaluation Group Dept. of the Nevy Orlando, Pt 32813
- l Dr. Richard Sorensen Newy Personnel R&D Center San Mago, CA 92152
- I Dr. Frederick Steinhalesr CSO ~ OPII5 Heavy Annex Arlington, VA 20370
- 1 Mr. Brad Sympton Newy Personnel R&D Center San Stego, CA 92152
- I Dr. Frank Vicino Navy Porsonnel R&D Center San Diego, C4 92152
- 1 Dr. Edward Wegman Office of Naval Research (Code 41184P) 800 North Quincy Street Arlington, VA 22217
- 1 Dr. Ronald Weitzman Maval Postgradusta School Department of Administrative Sciences Montarey, CA 93940
- 1 Dr. Bouglas Wetzel Code 12 Wavy Personnel R&D Center San Diego, CA 92152
- I DR. MARTIN V. WISKOPP MANY PERSONNEL RA D CENTER SAN DIEGO. CA 92152
- i Mr John M. Wolfe Navy Personnel R&D Center San Diego, CA 92152
- 1 Dr. Wallace Wulfeck, III Navy Personnel R&D Center San Diego, CA 92152

Marine Corps

- I N. William Greenup Education Advisor (E031) Education Center, MCDEC Quantico, VA 22134
- l Director, Office of Manpower Utilisatio HQ, Marine Corps (MPU) BCB, Bldg. 2009 Quantico, VA 22134
- 1 Headquarters, U. S. Marine Corps Code MPI-20 Washington, DC 20380
- I Special Assistant for Marine Corps Matters Code 1004 Office of Mayal Research 800 N. Quincy St. Arliagton, VA 22217
- 1 DR. A.L. SLAPKOSKY SCIENTIFIC ADVISOR (CODE RD-1) HQ. U.S. MARINE CORPS WASHINGTON, DC 20360

l Hajor Frank Yohannan, USAC Headquarters, Harine Corps (Code NAL-20) Washington, DC 20380

1

- 1 Technical Director
 U. S. Army Research Institute for the
 Behavioral and Social Sciences
 5001 Bisenhower Avenus
 Alexandria, VA 22313
- 1 Mr. James Saker Army Research Institute 5001 Elecuhower Avenus Alexandria, VA 22333
- 1 Dr. Kent Beton Army Research Institute \$001 Sisenhower Blvd. Alexandria . VA 22333
- 1 Dr. Spatrice J. Farr U. S. Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333
- i Dr. Myron Fischl U.S. Army Research Institute for the Social and Behavioral Sciences 5001 Eisenhower Avenue Alexandris, VA 22333
- 1 Dr. Wilton S. Kats Training Tochnical Area U.S. Army Research Institute 5001 Bisenhower Avenue Alexandria, VA 22333
- I Dr. Harold F. O'Neil, Jr. Director, Training Research Lab Army Research Institute 500: Sisembower Avenue Alexandria, VA 22333
- I Commander. U.S. Army Research Institute for the Behavioral & Social Sciences ATTN: PERI-BR (Dr. Judith Orasanu) 5001 Eisenhower Avenus Alexandria, VA 20133
- I Joseph Protks, Ph.D. ATTH: PERI-IC Army Research Institute 5001 Eisenhower Ave. Alexandria, VA 22113
- 1 Mr. Bobert Ross U.S. Army Research Institute for the Social and Behavioral Sciences 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 Dr. Robert Saswor U. S. Army Research Institute for the Behavioral and Social Sciences 5001 Bisenhower Avenue Alexandria, VA 22333
- I Dr. Joyce Shields Army Research Institute for the Enhavioral and Social Sciences 5001 Eisenhower Avenue Alexandria, VA 22333
- I Dr. Hilds Wing Army Research Institute 5001 Eisenhouer Ave. Alexandrie, VA 22333

l Dr. Robert Wieber Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333

ALT FORCE

- ! Air Force Human Resources Lab
- AFHEL/KPD Brooks AFB, TX 78235
- 1 Technical Documents Center Air Force Ruman Resources Laboratory WPAFE, OR 45433
- l U.S. Air Force Office of Scientific Research Life Sciences Directorate. ML Bolling Air Force Base Washington, NC 20312
- i Air University Library AUL/LSE 76/443 Maxwell AFS, AL 36112
- 1 Dr. Eurl A. Aliutsi EQ. AFERL (AFSC) Brooks AFB, TX 78235
- 1 Mr. Reymond E. Christal APHRL/NOE Brooks AFS. TX 78215
- 1 Dr. Alfred H. Freqly AFDSR/NL Bolling AFB. DC 20332
- 1 Dr. Genevieve Hadded Program Memager Life Sciences Directorate AFOSR Boll'ang AFB, DC 20332
- 1 Dr. T. M. Longridge AFREL/OTE Villiams AFS. AZ 85224
- 1 Mr. Rendolph Park APHRL/MOAM Brooks AFS, TX 78235
- 1 Dr. Roger Fennall Air Force Homan Resources Luboratory Lowry AFB, CO 80230
- 1 Dr. Melcolm Ree AFREL/MP Brooks AFE, TX 78235
- 1 3700 TCHTW/TTCHR 2Lt Tallarigo Shoppard AFB, TX 76311
- 1 Lt. Col James E. Watson MQ USAF/MPEDA The Pentagon Washington, DC 20330
- 1 Major John Welsh AFMPC Readolph AFB. TX
- 1 Dr. Joseph Yasatuke AFMRL/LRT. Lowry AFS, CO 80230

Department of Defense

-12 Defense Technical Information Center Comeron Station, Bldg 5 Alexandria, VA 22314 Atto: TC

- l Dr. Craig I. Fields
 Advanced Research Projects Agency
 1400 Wilson Blvd.
 Arlington, VA 22209
- I Jerry Lehnus HQ MEPCOM Attn: MEPCI-P Fort Sheriden, IL 60037
- 1 Military Assistant for Training and Personnel Technology Office of the Under Secretary of Defens for Research 4 Engineering Roses 20129. The Pentagon Weshington, DC 20101
- 1 Dr. Wayne Selimon Office of the Assistant Secretary of Defense (MRA & L) 28269 The Pentagon Washington, DC 20301
- i Mejor Jack Thorpe DARPA 1400 Wilson Blvd. Arlington, VA 22209

Civilian Agencies

- 1 Dr. Susan Chipman Learning and Development National Institute of Education 1200 19th Street MW Washington, DC 20208
- 1 Dr. Vern W. Urry Permonnel RhD Center Office of Personnel Hamagement 1900 E Street RV Weshington, DC 20415
- 1 Mr. Thomas A. Warm U. S. Coast Guard Institute P. O. Substation 18 Oklahoma City, OK 73169
- 1 Dr. Joseph L. Young, Director Hemory & Cognitive Processes Hational Science Foundation Washington, DC 20550

Private Sector

- 1 Dr. James Algina University of Florida Gainesville, FL 326
- 1 Dr. Erling B. Andersen Department of Statistics Studiestraede 6 1455 Copenhagen DESMARK
- i i Psychological Research Unit MBH-3-44 Attn: Librarian Morthbourne House Turner ACT 2601 AUSTRALIA
- 1 Dr. Yearc Bejar Educational Testing Service Princeton, NJ 08450

- 1 Dr. Habcha Sirenbeum School of Education Tel Aviv University Tel Aviv, Remat Aviv 59978 Israel
- 1 Dr. R. Darrell Bock Department of Education University of Chicago Chicago, IL 60637
- 1 Dr. Robert Brennen
 American College Testing Programs
 P. O. Sox 168
 Town City, IA 52243
- 1 Dr. Ernest R. Cadotte 307 Stokely University of Tennessee Knozvilla, TW 37916
- 1 Dr. John B. Carroll 409 Elliott Rd. Chapel Hill, MC 27514
- l Br. Norman Cliff Dept. of Psychology Univ. of So. California University Park Los Angeles, CA 90007
- 1 Dr. Hens Crombag Education Research Center University of Leyden Boerheavelian ? 2334 SM Leyien The METHERLANDS
- 1 Dr. Dattpraded Divgi Syracuse University Department of Psychology Syracuse, NE 33210
- i Dr. Fritz Drasgow Department of Psychology University of Illinois 603 E. Deniel St. Champaign, IL 61820
- I Dr. Susan Embertson PSYCHOL/CY DEPARTMENT UNIVERSITY OF KANSAS Lawrence, KS 66045
- 1 ERIC facility-Acquisitions 4833 Rugby Avenue Bethssia, MD 20014
- l Dr. Benjamin A. Fairbank, Jr. "CFann-Gray & Associates, Inc. 5925 Callaghan Suite 225 San Antonio, TX 78228
- l Dr. Leonard Feldt Lindquist Center for Heasurment University of Iows Iows City, IA 52242
- 1 Dr. Richard L. Ferguson The American College Testing Program P.O. Box 158 Lowe City, IA 52240
- I Univ. Prof. Dr. Gerhard Fischer Liebiggasse 5/3 A 1010 Vienns AUSTRIA
- l Professor Donald Fitzgerald University of New England Armidale, New South Weles 2351 AUSTRALIA

- 1 Dr. Dexter Flatcher WICAT Research Institute 1875 S. State St. Orem, WT 22333
- 1 Dr. Janice Gifford University of Massachusetts School of Education Amberst, MA 01002
- l Dr. Robert Glaser Learning Research & Devalopment Center University of Pittsburgh 3939 O'Hara Street PITTSBURGE, PA 15260
- 1 Dr. Bert Green Johns Hopkins University Department of Psychology Charles & 34th Street Baltimore, ND 21218
- 1 Dr. Ron Hembleton School of Education University of Messachusetts Amberst. MA 01002
- I Dr. Delwyn Harmisch University of Illinois 2425 Education Urbana, IL 61801
- 1 Dr. Faul Horst 677 G Street, #184 Chula Vista, CA 90710
- 1 Dr. Lloyd Numphreys Department of Psychology University of Illimois 503 East Dunial Street Champaign, IL 61820
- l Dr. Jack Hunter 2122 Coolidge St. Lansing, MI 48906
- l Dr. Huynh Huynh College of Education University of South Carolina Columbia, SC 29208
- 1 Dr. Douglas H. Jodes Advanced Statistical Technologies Corporation 10 Trafalgar Court

Lewrenceville, NJ 0914#

- i Professor John A. Keats
 Department of Psychology
 The University of Newcastle
 N.S.W. 2308
 AUSTRALIA
- 1 Dr. William Koch University of Texas-Austin Measurement and Evaluation Center Austin, TX 78703
- 1 Dr. Alan Leegold Learning RAD Center University of Pittsburgh 3939 O'Hara Street Pittsburgh, PA 15260
- 1 Dr. Michael Lavine
 Department of Educational Psychology
 210 Education Sldg.
 University of Illinois
 Champeign. IL 61801

- 1 Dr. Charles Lawis Faculteit Sociale Wetenschappen Rijkeuniversiteit Gromingen Oude Soteringestraat 23 9712GC Gromingen Wetherlahis
- l Dr. Robert Linn College of Education University of Illinois Urbans, IL 61801
- 1 Mr. Phillip Livingston Systems and Applied Sciences Corporatio 6811 Kenilworth Avenue Rivardate. MD 20840
- l Dr. Robert Lockman Center for Haval Analysis 200 North Beauregard St. Alexandria, VA 22311
- 1 Dr. Frederic M. Lord Educational Testing Service Princeton, NJ 08541
- 1 Dr. James Lumeden
 Department of Psychology
 University of Western Australia
 Wedlania W.A. 6009
 ABSTRALIA
- 1 Dr. Gary Marco Stop 31-E Educational Testing Service Princeton, NJ 08451
- 1 Dr. Sgott Maxwell Department of Psychology University of Notre Daws Notre Dame, IN 46556
- l Dr. Semuel T. Mayo Loyola University of Chicago 820 North Michigan Avenue Chicago, IL 60611
- l Hr. Robert McKinley American College Testing Programs P.O. Box 168 Lows City, IA 52243
- l Dr. Barbara Maens Homen Resources Research Organization 300 North Meshington Alexandria, VA 22314
- 1 Dr. Robert Mislavy 711 Illinois Street Geneva, IL 50134
- 1 Dr. Allen Munro Behavioral Tachnology Leboratories 1845 Elens Ava., Fourth Floor Radonio Beach, CA 90277
- 1 Dr. W. Alan Nicewander University of Oklahoma Department of Psychology Oklahoma City, OK 73069
- 1 Dr. Helvin R. Hovick 356 Lindquint Center for Heasurment University of lows Iowa City. IA 52242
- 1 Dr. James Oleon WICAT, Inc. 1875 South State Street Orem, UI 84057

- l Wayne M. Patience American Council on Education GED Testing Service, Suite 20 One Dupont Cirle, NV Washington, DC 20036
- 1 Dr. James A. Paulson Portland State University P.O. Box 751 Portland, OR 97207
- 1 Dr. Mark D. Reckase ACT P. O. Box 168 Lown City, IA 52243
- i Dr. Thomas Reynolds University of Texas-Dallas Marksting Department P. O. Box 688 Richardson, TX 75090
- 1 Dr. Lawrence Rudner 403 Els Avenus Takona Park, HD 20012
- l Dr. J. Ryan Department of Education University of South Carolina Columbia, SC 29208
- L PROP. FUNITED SAMEJINA DEPT. OF PSYCHOLOGY UNIVERSITY OF TEMMESSEE MODEVILLE, TH 37916
- 1 Frank L. Schmidt Department of Psychology Bldg. GG George Washington University Washington, DC 20052
- 1 Dr. Walter Schneider Psychology Department 603 E. Daniel Champaign, IL 61820
- l Lowell Schoer
 Psychological & Quantitative
 Foundations
 College of Education
 University of Iowa
 Iowa City, IA 52242
- 1 DR. ROBERT J. SEIDEL INSTRUCTIONAL TECHNOLOGY CROUP WENTED 300 H. WASHINGTON ST. ALEXANDRIA. VA 22314
- 1 Dr. Kasup Shigemasu University of Tohoku Department of Educational Psychology Kasauchi, Sandai 980 JAPAN
- 1 Dr. Edwin Shirkey Department of Psychology University of Central Florida Orlando, FL 32816
- 1 Dr. William Sime Center for Naval Analysis 200 Worth Bassregard Street Alexandria, VA 22311
- l Dr. H. Vallace Sinsiko Program Director Hampower Research and Advisory Services Smithsonian Institution 801 North Pitt Street Alexandria, VA 22314

- l Dr. Robert Sternberg Dept. of Psychology Yale University Box 11A, Yale Station New Haven, CT 05520
- 1 Dr. Peter Stoloff Center for Wevel Analysis 200 North Resuregard Street Alexandria, VA 22311
- 1 Dr. William Stout University of Illinois Department of Methamatics Urbana, IL 61801
- l Dr. Heriharan Swaminathan Laboratory of Psychonetric and Evaluation Essearch School of Education University of Massachusetts Amberst, NA 01003
- 1 Dr. Kikmi Tateuoka Computer Bashd Education Research Lab 252 Engineering Research Laboratory Urbans, IL 61801
- 1 Dr. Maurice Tatsucka 220 Education Bldg 1310 S. Sixth St: Champaign, IL 61820
- 1 Dr. David Thissen
 Department of Psychology
 University of Kansas
 Layrance, KS 66046
- l Dr. Robert Toutakawa Department of Statistics University of Missouri Columbia. NO 65201
- 1 Dr. J. Uhlaner Uhlaner Consultanta 4258 Benavita Drive Encino, CA 91436
- 1 Dr. V. R. R. Uppuluri Union Carbide Corporation Nuclear Division P. O. Box Y Oak Ridge, TW 37830
- 1 Dr. David Vale
 Assessment Systems Corporation
 2233 University Avenue
 Swite 310
 St. Paul, MW 55114
- l Dr. Howard Wainer Division of Psychological Studies Educational Testing Service Princeton, NJ 08540
- l Dr. Michael T. Waller Department of Educational Psychology University of Visconsin-Milwaukee Milwaukee, WI 53201
- l Dr. Brien Waters Hum 200 300 North Washington Alexandria, VA 22314
- 1 Dr. Rand E. Wilcom University of Southern California Department of Psychology Los Angeles, CA 90007

- 1 Wolfgang Wildgrube Streitkraefteaut Box 20 50 07 D-5300 Boxn 2 WEST GERMANY
- 1 Dr. Bruce Williams
 Department of Educational Psychology
 University of Illinois
 Urbana, IL 61801
- 1 Dr. Wendy Yen CTB/HcGraw Will Del Honte Research Park Hosterey, CA 93940

PREVIOUS PUBLICATIONS

Proceedings of the 1979 Computerized Adaptive Testing Conference. September 1980 Proceedings of the 1977 Computerized Adaptive Testing Conference. July 1978.

Research Reports

- Effect of Examinee Certainty on Probabilistic Test Scores and a Comparison of Scoring Methods for Probabilistic Responses. July 1983.
- Bias and Information of Bayesian Adaptive Testing. March 1983.
- Reliability and Validity of Adaptive and Conventional Tests in a Military 83-1. Recruit Population. January 1983.
- Dimensionality of Measured Achievement Over Time. December 1981. 81-5.
- Factors Influencing the Psychometric Characteristics of an Adaptive 81-4. Testing Strategy for Test Batteries. November 1981.
- 81-3. A Validity Comparison of Adaptive and Conventional Strategies for Mastery Testing. September 1981.
 - Final Report: Computerized Adaptive Ability Testing. April 1981.
- Effects of Immediate Feedback and Pacing of Item Presentation on Ability 81-2. Test Performance and Psychological Reactions to Testing. February 1981.
- Review of Test Theory and Methods. January 1981. 81-1.
- An Alternate-Forms Reliability and Concurrent Validity Comparison of 80-5. Bayesian Adaptive and Conventional Ability Tests. December 1980.
- A Comparison of Adaptive, Sequential, and Conventional Testing Strategies 80-4. for Mastery Decisions. November 1980.
- 80-3. Criterion-Related Validity of Adaptive Testing Strategies. June 1980.
- Interactive Computer Administration of a Spatial Reasoning Test. April 80-2. 1980.
- Final Report: Computerized Adaptive Performance Evaluation. February 1980. Effects of Immediate Knowledge of Results on Achievement Test Performance
- 80-1. and Test Dimensionality. January 1980.
- The Person Response Curve: Fit of Individuals to Item Characteristic Curve 79-7. Models. December 1979.
- Efficiency of an Adaptive Inter-Subtest Branching Strategy in the 79-6. Measurement of Classroom Achievement. November 1979.
- An Adaptive Testing Strategy for Mastery Decisions. September 1979. 79-5-
- Effect of Point-in-Time in Instruction on the Measurement of Achievement. 79-4. August 1979.
- Relationships among Achievement Level Estimates from Three Item 79-3. Characteristic Curve Scoring Methods. April 1979.
- Final Report: Bias-Free Computerized Testing. March 1979. Effects of Computerized Adaptive Testing on Black and White Students. 79-2.
- March 1979. Computer Programs for Scoring Test Data with Item Characteristic Curve 79-1.
- Models. February 1979. An Item Bias Investigation of a Standardized Aptitude Test. December 1978. 78-5.
- A Construct Validation of Adaptive Achievement Testing. November 1978.
- A Comparison of Levels and Dimensions of Performance in Black and White Groups on Tests of Vocabulary, Mathematics, and Spatial Ability. October 1978.

-continued inside-

PREVIOUS PUBLICATIONS (CONTINUED)

- 78-2. The Effects of Knowledge of Results and Test Difficulty on Ability Test Performance and Psychological Reactions to Testing. September 1978.
- 78-1. A Comparison of the Fairness of Adaptive and Conventional Testing Strategies. August 1978.
- 77-7. An Information Comparison of Conventional and Adaptive Tests in the Measurement of Classroom Achievement. October 1977.
- 77-6. An Adaptive Testing Strategy for Achievement Test Batteries. October 1977.
- 77-5. Calibration of an Item Pool for the Adaptive Measurement of Achievement.
 September 1977.
- 77-4. A Rapid Item-Search Procedure for Bayesian Adaptive Testing. May 1977.
- 77-3. Accuracy of Perceived Test-Item Difficulties. May 1977.
- 77-2. A Comparison of Information functions of Multiple-Choice and Free-Response Vocabulary Items. April 1977.
- 77-1. Applications of Computerized Adaptive Testing. March 1977. Final Report: Computerized Ability Testing, 1972-1975. April 1976.
- 76-5. Effects of Item Characteristics on Test Fairness. December 1976.
- 76-4. Psychological Effects of Immediate Knowledge of Results and Adaptive Ability Testing. June 1976.
- 76-3. Effects of Immediate Knowledge of Results and Adaptive Testing on Ability Test Performance. June 1976.
- 76-2. Effects of Time Limits on Test-Taking Behavior. April 1976.
- 76-1. Some Properties of a Bayesian Adaptive Ability Testing Strategy. March
- 75-6. A Simulation Study of Stradaptive Ability Testing. December 1975.
- 75-5. Computerized Adaptive Trait Measurement: Problems and Prospects. November 1975.
- 75-4. A Study of Computer-Administered Stradaptive Ability Testing. October 1975.
- 75-3. Empirical and Simulation Studies of Flexilevel Ability Testing. July 1975.
- 75-2. TETREST: A FORTRAN IV Program for Calculating Tetrachoric Correlations.
 March 1975.
- 75-1. An Empirical Comparison of Two-Stage and Pyramidal Adaptive Ability Testing. February 1975.
- 74-5. Strategies of Adaptive Ability Measurement. December 1974.
- 74-4. Simulation Studies of Two-Stage Ability Testing. October 1974.
- 74-3. An Empirical Investigation of Computer-Administered Pyramidal Ability Testing. July 1974.
- 74-2. A Word Knowledge Item Pool for Adaptive Ability Measurement. June 1974.
- 74-1. A Computer Software System for Adaptive Ability Measurement. January 1974.
- 73-4. An Empirical Study of Computer-Administered Two-Stage Ability Testing.
 October 1973.
- 73-3. The Stratified Adaptive Computerized Ability Test. September 1973.
- 73-2. Comparison of Four Empirical Item Scoring Procedures. August 1973.
- 73-1. Ability Measurement: Conventional or Adaptive? February 1973.

Copies of these reports are available, while supplies last, from: Computerized Adaptive Testing Laboratory

N660 Elliott Hall
University of Minnesota
75 East River Road
Minneapolis MN 55455 U.S.A.

