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Research recurrently indicates that children who have

difficulty with arithmetic c¢ften use systematic routines that yield
wrong answers. Recent research has focused less on identifying the
most common errors among groups of children and more on analyzing
individual children's errors. This paper considers the source of
systematic errors in subtraction with multidigit numbers and
appropriate instructional responses., The author argues that
conceptual misunderstandings lie at the heart of many errorful
procedures, and that these misunderstandings are what should be
addressed in instruction, as well as the problem of linking
conceptual understanding to procedural skill. Following an analysis
of the nature of "buggy algorithms" in subtraction, teaching the
semantics of procedures is considered. Principles of subtractior and
place value are presented, and children's knowledge of the principles
is reviewed. Instructional experimcnts on how the principles apply to
written arithmetic are described. Finally, conclusions and some
questions are presented. The importance of error analysis research 1is
confirmed. Systematic errors probably arise from a basic failure to
mentally represent arithmetic procedures in terms of operations on
quantities within a principled number system, rather than as
operations on symbols that obey largely syntactic rules. (MNS)

AP A AARDAARARARFTAAAAA RN AAAAAAA RIS KX A XX KA IR AFARAARA TSI F AR AT K P X A AR TR AR A RK NS A ARR

4 Reproductions supplied bv EDRS are the best that can be made *

*

from the original document. *

*i'}*i*ﬂ*i'As‘i'kk**'ﬂ'*****ﬁk*****i********i*********ﬁ*h*ﬁf‘l AAdh 23 b PR &3P s pRd

a m e e nmmmE ik NN W1 ARt W A N DR TR | R D Y e AN 6 e e St SO0 B 5 PERTRCAIRY PRI ALY ey L e wn vy g e SN gl S



-

LEARNING RESEARCH AND DEVELOPMENT CENTER

BEYOND ERROR ANALYSIS: THE ROLE OF
UNDERSTANDING IN ELEMENTARY SCHOOL ARITHMETIC

£ED248099

1964/30

&
.
;':s DEPARYMENT OF EDUCATION PEHMISSION TO BEPRODUCE THIS o
‘ VIONAL INSTITUTE OF EQUCATION MATERIAL HAS BE EN GRANTLD BY '
R ) ENITE YRR TR ° ’
{0 J(M&
¢ ' : “ 1oy THE £ DU A TIONAL BT TOURCES ’/:
. . " INF ORMATION CENTE RO ERIC, /

of




BEYOND EPROR ANALYSIS: THE ROLE OF UNDERSTANDING
IN ELEMENTARY SCHOOL ARITHMETIC

lauren B. Resnick

I carning Research and Developmeut Center
University of Patt burgh

1984

Reprnted by pemussion from HON. Cheek (Fd ), Diagnostic and prescriptive mathemat-
iy Issues, ideas, and insights. Keat, OH: Research Councal for Diagnostic aad Prescup-

tive Mathematics. { 1984 Rescarch Monograph)

The research reported herem was presented as the 1982 John W. Wilsan Memonal [ ecture
i Butfalo, NY. Thus sesearch was supported by the L earning Rescarch and Developient
Center, funded s part by the National fnstitute of Fducauon (NIF), U S Department ol
b ducation. The opimons expressed do not necessaniy reflect the position of NI and o
ofticial sndorsement should be nferred.



Beyvond Error Analysis: The Role of Understanding
in Elementary School Arithmetic

: Lauren 8. Resnick
P University of Pittsburgh

Gre of the recurrent tindings in research on
children's arithmet.c performance is that children who

“ore having ditficulty with arithmetic often use

systematic routines that yield wrong onswers. This
‘abservation has been made repeatediy, ond o number

of studies have ottempted to describe the maost.

common errors. Buswell (1927) used a combinaticn of

eye movemant ana primitive solution-time measures,
pencil and paper tests constructed for diagnostic
purposes, and what we would now call "thinking-aloud
protocols™ fo deter nine the mast common sources of
errors in calculation: with whole numbers. Brownell
(1928, 1935) conascted similar studies in his many
years of work on the psychology of mathematics
education,

These investigators were seeking fo put into the
- hands of teachers tools that would help them discover
the basis of individual pupils’ ¢ thmetic difficulties, so
thot appropriate remedial instruction couid be offered.
The wor” of Buswell and Brownell ard of other early
- psychol s ond mathematics educatars was cleorly
guided . a recognition thot.children's errors were
. systematic. Their research, however, did not attempt
to describe inaividua! children's colcuiation strategies
but concentrated instead on identifying the most
common errors among groups of children,

Recent research has focused more on the anoly-
sis of individua! children's ercors. Lonkford (1972), for
exomple, using @ diagnostic interview procedure with
seventh groders, made it clear that the sfudents’
computationol strategies were highly individual, often
not following the orthodox modeis of textbook ond
classroom. Some of the unorthodox sfrotegies were
successful, others were not. Among mathematics
educators, members of the Research Councii on Diog-
nostic and Prescriptive Mathematics have often taken
the lead in uncovering reguiorities in children's error-
ful arithmetic, with on eye to odapting instruction to
individua! error patterns, Among cognitive scientists, o
simitar line of investigotion on "buggy algorithms”
{Brown & Burton, 1978) hos not anly documented the
existence of consistent error-producing algorithms, but
has developed gutomated diagnostic progroms capaoble
of reliably detecting the porticvlar errorful algorithms
used by o child on the basis of responses to o very
sinoll vt carefully selected number of problems.

The phenomenon of systematic errors in caicu-
lation then, is well established, What is less cerfain is
{0) the source of these errorful but systematic “inven-
tions" by children; and (b) the oppropriate instructional
response to the abservgtion thot errors ore systematic.
These are the questions | adaress in this paper. | use
the domain of subtroction of multi-digit numbers as
my primary exomple, in order to use the extensive
theoretic ol analyses and experimental investigotions of
errors n this domain thot ore ovailable to me. My
concern 15 not for ssptraction as such, however, but

for certain more generdal principles and guestions ~hat
the case of subtraction .}ustrates.

Let me state at the outset that | intend 10 Ccast
doub! on the proposition that error onalyses them.
selves, no matter how detailed, will yield the kind of
diognoses that provide a strong basis for instruction,
instead, | argue that for any given domain of arith-
metic a relatively smal' number of conceptual mis-
ynderstandi tie at the heart of mony aifferent
errorful procedures. it is these conceptual misunder-
stondings that shouid de addressed in instryction. | will
olso show that conceptual understanding does not
olways outomatically produce correct procedures,
Thus, instruction also must oddress directly the prob-
lem of linking conceptual understanding to procedural
skill—~a task that seems likely to prove more complex
than mony of us once believed.

The Nature of Buggy Algorithms in Subtraction

Let us begin by establishing the noture of the
problem in our example domain of mwiti-digit sub-
tracrion, Figure | shows some of the most common
subtraction errors that hove been identified by Brown
ond his colleagues in their extensive work on buggy
aigorithms in subtraction, This is only o partial list of
the known and demonsirated subtraction bugs, but it is
enough to allow us 1o consider the possible sources of
buggy procedures ir this domoain of orithmetic,

Two theor .es of the origin of subtroction bugs
have been proposed. One, by Young and O'Sheo (1981),

ts that the simpler bugs arise when children
ei forget or hove never learmed the standard
school-taught subtroction aigorithm (see Figure 2 for
this oigorithm). The second, by Brown ond Vanl.ehn
(1980, 1982), is known os “repair theory.” Accerding to
repair theory, buggy algorithms arise when on arith-
metic prablem is encountered for which the child's
current qligorithms are incomplefe or inappropriote.
The child, frying to sespond, eventuaily reaches an
impasse, @ situation for which no action is avoilable.
At this point, the child calls on g list of “repoirs™—
actions fo try when the stondard action connot be
used. The repair list includes strotegies such as per-
forming the action in o different column, skipping the
action, swapping top ond bottom numbers in g column,
and substituting on opetatibn (such as incrementing or
decremerting), The outcomes generated through this
repoir process ore then checked by a set of "critics”
that inspec? the resuiting solution for conformity fo
some basic criteria, such as no empty columns, only
one digit per column in the onswer, oniy one decre-
ment per colummn, and the like. Together, the repair
ond the critic lists constitute the key elements in 0
“generate and fest" p; sblem-solving ru.tine.

This model's operations demonstrate the same
kind of “intelligent™ problem solving that characterizes

Chu. L. n‘f.;.;..':'g 1)
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1. smaller-Tiom-larger. (he student subtracts the smaller Qigit in a3 colm from the largey Ligv
regardless of which one is on top.

8326 J;"z

2. Borrow-From-Zero. When borvowing from a column whose top Jdigit is 0, the student writes 9 but
dous a0t cantinue porrowing trom the column to the lett of the U,

cH2 giv
-$37 ~396€.
368 o6 _

3. Borrow-AXross—lero. When the stuient needs to borrow frum a column whuse top digit is 0 he ship.
that colum and borrows from the next one. (MNote: this hug requires a special “rule” for sub-
tracting from 0: either 0 -N=Nor ¢ - N=0.)

Fo2 Y
-327 - ¥5
—2as 308
4. Stop-Borrow-At-Zero. The student fails to Jecrement 0, although he adds 10 correctly to the top
digit of the active colum. (Mte: this bug sust be tombined with either 0 - N\ = Nor 0 - N = ,)
\ 703 Lo¥
674 -397
7 307
S Don’t-Decremeat--ero. ihen borrowing from a column in which the top digit is 0, the stulent re-

writes the 0 as 10 but Joes not change the 10 to 9 when incresenting the active column.

6. Zero-Instead-Qf-Borrow,
digit is larger than the top.

572
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. Rortum-trom-Bottor-Tastead-y - e,

the student norrom< (rom the
- N=Nort o N =1y
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The stident writes ) as the answer in any column in which the bottom
T

- 5
o200

1§ the top digat it the colura being horrowed (eem 15 0, tiv
~:ttom digit :nstead,

i\t this by mist he combined with ettt
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Comren sabtraction
tkrom Resnich, J9s..

many successful performances in otner domains (cf.
Simon, 1978, pp. 65, 98). With buggy algorithms, the
trouble seems to iie not in the recsoning processes but
in the inadequate data base applied. inspection of the
repair and critic lists inckes it cleor that the genera-

Frgure i

tion and the test rules in this porticulor system con all

be viewed as "syntactic.” That is, ther all concern the
surfoce structure of the wbtraction procedure ond Jdo
not necessar.ly reflect what we con call the "seman-
tics,” or underlying meaning, of the procedure.

This distinction detween the syntax and the
samontics of the procedure hecomes clearer when e

rears tJenteried

1.5. Fvamn, R.R. Burton, and K, \antobi,

consider some of the individual bugs. Inspection of the
bugs in Figure | shows that they tend fo "look right”
aond to obey most of the important syntactic rules for
written calculations The digit structure is respected,
there is only g single digit per column, all the colurmns
ore fitled, and so forth. in the sense of being an arderly
and reasonable response to G problemn situation, the
e, Jgv algorithms look quite sensible. But each of the
buys violotes fundamental mothematical constraints.
In this sense, they violate the conceptua!l .eaning, of
semagntics, of subtraction. | can make this point more
cleariy by individually considering each of the bugs in
Fig.re i,

6
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A

. Find righimost column
Mark it as active
column.

H ¢

Active column: write
a small 1 to the
left of top digie.

Active colunmn: is No

bottom S top?

-

c b ¢
1 Active Column: Move one column left
Subtract. in top numeral. Mark
it as borrow column.

L

Borrow column:
change 0 to 9.

Active column:
write result
below line.

Borrow colum : Reduce ‘Nove borrow
top digit by 1. sarker one

colunmn to left

A 4
G
Read answer
below line,

F

Move active marker
one column to left

Figure .. Stundard algorithm for subtraction. (From Resnick, 1982.)
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I. Smalier-From-Larger. Repair theory sug-
Jests that this very common bug rewlts from “switch-
vy arquments” 1o respund to a situation in which the
—nild cannot maxe the norimal -nove of subtracting the
s 'tom from the top number in @ column. in other

words, the child makes the test at B in Figure 2 but

G »8 not know how to borrow ond decides that the
watroction should be done in the vpposite direction.
voung and O'Shea’s analysis wggests that this bug
drrives trom simply not making the test ond is the
noriml, or default, way for a child 10 proceed unless
t-» dest is made and the various borrowing rules are
tvereby evoked. In both of these interpretations, all
t~e syntax of written subtraction without borrowing is
rspected, What is violated is the constraint that the
Lattom quantity as a whole be subtracted from the top
quantity as a who semontics of multi-digit
subtraction inc » constraint that the columns,
atthough handled one at o time, cannot be treated as if
they were a string of unrelated single-digit subtraction
problems.

2. Borrow-From-Zero, Both repair theory and
e Young aond analysis suggest that this bug
unrives from forgetting the part of the written proce-
care that is equivalent to steps M-J-K in Figure 2
toving the borrow marker left, and reducing the new
wolumn), The bug respects the syntactic requirement
mat, in a borrow, there must be a crossed-out and
rewritten numeral to the left of the active column, it
~is0 respects the syntax of the special case of zero,
~here the rewritten number is always 5, However, it
igrores the fact that the 9 realiy resuits from borrow-
ing one cojumn further left {the hundreds column)
aoving 100 as 10 tens into the tens column, and then
porrowing from the 10 tens leaving 9 tens, or 90 (writ-
‘enas 9,

3. Borrow-Across-Zero. Repair theory offers
rwo different derivations of this bug. The first is that
this bug arises from the child's search for a ploce to do
the decrementing nperation with the condition that the
column not have g zero in the top number. This wouid
nq)pmahen'hechihdoesn‘timowhowtohmdle
zeros or thinks they have "no vaiue® and thus can be
skipped. This solution respects the syntactic constraint
that a small | must be written in the active column
and that some other (nonzero) column must then be
decremented. But the semantic knowledge that the

_increment and decrement are actually addition and

subtraction of 10 is ignored {or not krown). Repair
theory's second derivation, which agrees with Young
ind U'Sheqa's analysis, produces this bug by simply
deleting the ruie that changes 0 to 9 (L in Figure 2).
This too is a completely syntoctic derivation, for it
allows deletion of g rule without reference to the
semantic information that justifies the operation.

4. Stop-Borrow-At-Zero. Hoth repair ftheory -
and Young 5% OShea's analysis interpret this bug as

sinply omitting a rule or an operation. $1ps t-J-K of
Figure 2 are sumply skipped. This bug fails to obey toth
syntactic and semantic constraints, Svntactically it
aroduces aniy the ncrerrent port of the Sorrow opera-
tion--the | in the octive column--but-does not show a
crossed-out ~umher or the cwncrge of o 0 to o 9.
Semmantically, it violates the iustification for the
Sorruw 1 -cfe rent--that is, 10 order to add a quantity
to the active Gob.ma on equisclent guantity must be

subtracted from another colurmn,

5. Don't-Devreinent-Zerg. The change of 0 to
10 in this Dug is the proper "semanfu™ nove after
borrowing from the hundreds column. But it broduCss
an outcome that the child may not have encounterad
and thus does not respond to dppropriately, Failure to
chunge the 10 to 9 may result from o syntatic con-
straint that each colurmn be operated an only once,
Thus syntactic constraint is not “correct™ but might be
reasonobly inferred fiom extensive experiznce with
protlems thut contain no zeros. It so, the syntactic
constraint is in direct opposition fo the semantic
demonds of the situation.

6. Zero-instead-Of-lorrow. Like Smaller-
From-Larger, this bug avoids the borrowing operation
aitogether, while observing all of the important syn-
tactic constraints of operating within columns, writ.g
only one small digit per colurmn, and the like. This bug,
however, does not violate tne semantics of the digit
structure as blatantly as the Smatler-From-Larger bug.
in fact, a child producing this bug may be foilowing a
semantics of subtraction that generally precedes
any understanding of negative numbers, in this inferred
semantics of subtraction, when a lorger number (wst
be taken from a smaller, the decrementing i begum
and continved until there are no more left--yielding
zero as the answer.

7. Borrow-From-Bottom-inst ad-Uf-Zero, This
bug appears to be purely syntactic in the sense that
the search for something to decrement appears to' leod
the child to ignore the digit structure ard the
semantics of exchange that justify borrowing within
the top number. But it does produce o “funny ~looking™
solution, so it would probubly be generated only by o
child whose syntact.c rules did not specifically require
that all increments ond decrements be in the top
number.,

Teoching the Semantics of Proced:res

The analysis just presented suggests that chil-
dren who invent buggy algorithrms are already paving
attention fo the surface aspects of the calcuiation
routines they are taught, Their invented algorithms
devidte omuy stightly trom the correct ones, ond by and
large they respect the strictly procedural rules of
written subtraction. The trouble seems fo lie in keep-
ing details of procedural rales (=.g., when and where to
decrement) in mind and cornbining the varicus rules
correctly. Two instructional respocaes ta thisy proce-
dural confusion can be imagined. Tne first 1s to focus
directly on the procedural rules, designing practice und
feedback that will focus children's attention on the
specific poirts of which they misapply the rules, Here
it mould be ideal 10 adapt the instruchion to ndividual
chaldren's errars, although “stondard.zed” instruction
to oadress the most comimon buggy Jigorithms could
niso be designed. The second resporse s 1o focus
stroction on the semantic principles that ure violated
in invented bugqgy glgurithins, in the hope that cnildren
will then brig these porcpley nty plav ahen the s
face subtraction probieins for which trner learned roles
are incomgpiete,
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Prig ijdes of Soutraction and Place Velue

One of the reasons for preferring semantically
bused Nt 1,0 over porety procedural instruction is
it vatential ey, There are many specific proce-
dural rules to legrer and many specific problems to
apply them to, all of which would reed fo be addressed
in ryle-base. instruction. There are afso a numher of
different athematically correct olgorithms  for
subtraction. Rule-hased instruction would either have
to limit “acceptadie” responses 10 just one of these
algorithms or systematically teach several of them (o
costly matter, not cnly because it would take o great
deal of time but because it would pruoably induce
confusions between algorithms ond thus produce some
new bugs)h All af the rules, however, and all of the
- ditferent algoarithms ot subtraction are expressions of
a very few basic principles, Thes: are:

1. The difterence principle. The goal of sub-
traction is to find the ditference between fwo quanti-
ties {(which we call "bottom™ and “top™ far convenience
here).

2. The compesition principle. Eoch of these
two quontities moy be expressed as compositions of
smatler quantitics {e.g., hundreds, tens, units), What is
sought, however, is the ditference between the bottom
quantity as a whole and the top quantity as a whole,

3. The portition principle. it is permissible to
find the difference by partitioning the quantities info

any convenient subguantities (parts), finding the dif-
ference betweer each bottorn port and one of the fop
ports, ond then recomposing the results fovnd into @
single quantity. The portition principle is what permits
column by column written subtraction. It aiso permits
o variety of mental subtraction procedures, some of
which are described below,

4., The wwm)ﬂ 'ginc?ie. It may be
convenient ract portitioning fo incre-

ment or decrement the parts in one of the quantities,
This is permissible as jong as on increment is compen-
soted by o decrement {or vice versa) such that e
value of -the total quontity is preserved. The compen-
sation princigle is what permits borrowing.®

S. The valve %incige. The specific incre-
ments and rements are permissible fo sotisfy
mecormensoﬁmprhclphdepmdmﬂ\emof
each digit in the written numbers. These volves are
determined by the columm in which o digit is written:
The value of a digit is the digit times the column
valve.

Children's Knowledge of the Principles

Severa! bodies of research on oddition and
subtraction knowledge suggest that inost children of 9
or 10 yeors of age, including those who use buggy sub-
traction olgorithms, already know a grect deol obout
the five principles outlined gbove, This knowledge is
evident when they work in number represenfations
other thon the written—such as money, the abacus, or
Dienes biocks--or when they do mental arithmetic.
Some exa:nples of performance that give evidence of
knowledge of these principles ore the following:

Ural co.nting, Trere is sorne evidence that 1.e
compositional structure of numbers orises first ir. the
context of oral counting. Several investigators (Fuson,
Richards, & Briors, 1982; Siegler & Rabisson, {982}
have found that mony 4- ona S-year-olds can oroliy
count well into the decodes above 20 and that theu
counting shows evidence of being organized uround the
decade structure. For example, the moat common
s10pping points in children's counting are at a number
eading in 9 ar 0 (e.g., 29 or 40), ard their omssions in
the number siring fend to be omissions of entire
decades (e.g., “...27, 28, 29, 50...%). Children aiso
sometimes repeat entire decodes (e.g., "...38, 39, 20,
21..") ond sometimes moke up nonstandard number
names reflecting o concatenation of the tens and the
units counting strings (e.g., “...twenty-nine, twenty-
ten, twenty-eleven..."). Finally, children con usuvally
succeed in counting on within a decade higher thon
their own highest stopping. point when asked by the
experimenter 10 start counting from a particulor
number, such as 51 or 71, This is, | think, on important’
precuraor of the composition principle—~that is, of the
idea that numbers are composed of smailer numbers,

Quantifying block and moneﬁ digggs. The
composition principle is more directly evi in
children’s ability to quantify ond compare sets of
objects that ore coded for decimal value (see Figure 3 |
for examples of such displays). These performances
also display knowledge of the volue principie. in our
own research on place valve we have found that the
typical method children use in this kind of task is to
begin with the largest denomination and enumerate the
biocks of that denomination using the appropriate
dec:mally structured counting siring. A successful
quantification of the display in Figure 3a, for exomple,
would produce the counting string: *100, 200, 300, 400,
410, 420, 630, 440, 450, 460, 461, 462, 4i3." A few
children, mainly those- who show the moit sophisti-
cated knowledge of other aspecls of plxe volue,
count ail denominations Ly ones and then “mwitiply” by
the appropriate valve (e.g., fr Figure 3m |, 2, 3, §,
400; 1, 2, 3, 4, S, 6, 860; 1. 2, 3, 463). However, count-

using the decimally structured numb¥r strings
seemns 10 be the eorliest application of composition and
valuve principles to the task oi quantifying sets.

Other performonce charocteristics of children
in an early stage of decimal number knowledge suggess
that children typically recognize the reictive values of

*The compensation principle 13 actually only one
way of satisfying a more genersl pyinciple, which
18 that the difference between the top and bottom
quantities must be meintained no matter what er-
changes are made between parts. One wsy tc keep
the difference constant 1s to change neither quan-
tity. Annther way is to change both quantities by
the same amoynt. This is what is done in & sub-
tractior, algorithm taught in many countries.

The principles given in the body of the test are
those that justify the comwonly taught subtraction
algorithm in United States schools and a number of
variations that {a, do not involve changing the
bottom number and (b)) assume that only positive
integers will be used throughout the procedure.
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the ditterect purts that muke op the whole number.
For exqmpie, most second through tourth graders we
have nterviesed compored numbers "lexicogr xuhi-
caliy.” That ., they first compare the nighest-vaiue
St 0 the Tao nuinbers and declure the ryrber with
the *.gtwer 151 to De targer. Only if tne two digits ore
the s e JO they Jo on to compare the diifs fo the
right, For ax: mple, when comparing block dispiays for
the nuimners 472 and 427, a child would typ.cally say
%72 w1 turjer “because it has 7 tens (or 70) um the
other aniys *os Y tens,”

Mental arithmetic. The most sturhing diplays 8F
the compositional and value principles are in children's
invented mental calculation methads, These methos a
almost always involve application of the partitin
principle as well. Consider the following pertorawnce
by one of aur B-year-olu subjects, Amandas

E: Can you subtract 27 from 537
A: 3“0

€: Haw did you figure it out?

Ar Well, 50 minus 20 is 30, Then toke away 3 is
21 and plus 7 is .

Amanda come up with the wrong answer, but by
a method that clearly displayed her understonding of
the compositional structure and valve of two-digit
numbers ond of the partition principle for subtraction.
She first decomposed each of the numbers in the
pfablem into tens and units, ond then performed the
approgriate subtraction operation on the tens compo-
nents. Next she proceeded to odd in ard subtract out
the units components. She should have subtrocted 7
ond added 3, but instead reversed the d.gits, Amanda
performed an other problems without this difficuity,
yielding correct answers. Other children have shown
similar strategies.

in our laboratory we have also explored deci-
mail-based mental arithmetic vusing reaction time
methods as children attempt to solve problems in
which a single-digit number is odded fo a twa-digit
number. This is an extension of research an children's
invented algorithms for single~digit addition and
subtraction algorithms (e.g., Groen & Resnick, 1977
Woods, Resnick, & Groen, (975; Svenson & Hedenborg,
1979). That research showed that young children do
mental arithmetic as if they hod a “counter in the
head” that con be set to any number, incremented of
decremented by one any number of times, and then
“read out*® 10 yield an answer. The pattern ot reaction
times for o set of problems depends on the number of
increments or decrennents reyuirad in the purticular
algorithm the child uses, For our two-~digit pilus one-
digit problems there ore two hasic mental counting
procedures, one that ignores the composition pricipte
arnd gnother that uses that principle fo reduce me
umber of counts recdeds

1. Set the mental courter to the two-digit
number, then odd in the single~dijit nu:nber in incre-
ments of one. Reaction times would be, a function of
the single-digit number (in our experundntal problems,
always the second msmber), We call ths the Min of the
Addends procedure. No use of the compowtion princi-
ple is made in this procedure,

2. Decompose the two-digit number into o
tens component and a ones component, ther recomb.-e
the tens component with whichever of the tao uinly
quantities s larger. Set the counter to this recon-
stituted nuinber und then odd in the smaller units digit
" increments of one. For examnple, for 23 « 9, the
counter would be set at 29 ond then sremented 3
times to @ sumn of 32. Reaction time would be a func-
tion of the smaller of the two units digils, w0 the
procetyre is cglled Min of the Units, This procedure is



61 sutiple version of the one Amardo usedy it cleatly
depends on the cotpnaition principle,

Ne fit eacti of these wedels to B reaction
tuney {fur correct solutions only) of eau!s of our sub-
16 s, Several children's data clearly tit the Min of the
Lnits prediction, These children usually also described
this proceduere when askeda in interviews how they did
these prablerns, It 45 irnportant to note thot several of
the children who showed evidence of these partition-
based mental grithmetic stratejies were gmong those
taving difficulty with written subtraction. indeed,
their buggy subtruction rules were in some Cases ouf
reason for Jirk luding the chiidren in our reseatch sam-
ples. Thus, mastery of the vahw w@w] composition
prixiples in the context of mental anithmetic does not
auternatically transfer 1o written procedures.

Multiple representations of guantity. An early
appreciation of the valve and compasition principles is
evidenced in the ways in which children construct ond

"read" block ond other displays, as described above. In

the cases described so for, however, eoch quantity had
only one block representation: @ “cononical” represen-
fation, with no maore thon nine blocks per column, in
this cononical disploy there exists Q one-10-one match
between the number of blocks of a particulas denomi-
notio? ond ihe digit in a corresponding column in
stancurd wriften notation. insistere on the cononical
form megns that there is no basis for carrying and
borrowing--or, in block displays, for exchanges ond
multiple representations of @ quantity., There is no
basis, in ather words, for the compensation princiole
ond thus for borrowing ar carrying. A little late; in
their mathemnatical development, chiidren show that
they understand that a quantity can be represenfed in
mare than one way. This mwitiple representation ¥
based on the compensation principle.

At ftirst, chiidren car construct alternative
representations only through an empirical counting
process. The following performance of one of our
subjects illustrates this method. Molly was osked to
use Dienes blocks 1o subtract 29 from 47, She began by
constructing the block display thot matched the lorger
number--thnt is, four tens and seven units. She then
tried to remove nine units ond, of course, could not.
The experimenter osked if she could find any way to
get mave units, Molly responded by putting aside oll of
the units blocks ond one of the tens in her display,
leaving just three tens, She counted these by tens (*10,
20, 307) and then continued counting by ones, odding in
a units block with each count, up to 47. On the next
subtraction problem, 54 - 37, Molly began with o
noncananical display of the top number. That is, she
put out four tens and counted in units blocks until she
reached 54, yielding o finol display of four fens od
fourteen units. Motly thus appeored to have teorned
that cerfain problems will require noncanonical dis-
clays; she had incorporated into her plan for doing
plock subtraction o check for whether the:e were more
units 10 be removed than the cononical display wouid
provide, However, at this stage she was able o estadb-
lish the eqivalencies of the canonical dispiays only by
the counting process, ’

Loter, children becorue oble to construct or
recognize olternative displays without the need for
recounting the quantity. Instead of counting, they

trade blocks--for example, they discard a tens bLluex
ard count in 10 units, or they discard a hundreds blgex
and count in 1Q tens, Once children regularly teo W
blacks rather than recounting them, they of ten begomie
ontoyed or umased with the experimenter who keeps
asking thern how they knaw that the display still ot ows
the sane number. They indicate the various ways that
they believe that if o ten-tor-one trade has been mode,
the tofal quantity could not have changed. These
children clearly demonstrate understonding of the
compensation principle.

Subtroction with blocks, Children's ability fo
perform subtraction problems using Dienes blocks or
simifor volue-coded tokens also reveals their under-
standing of the five principles under considergtion
here. In each of our studies, even children who were
baving ditficulty with written arithmetic typically
either knew, of quickly discovered, how fo subtract
with blocks. A typical block subtraction procedure
used by children was to display the top number canon-
ically and then work left to right (i.e., starting with
the hi t-vaived black denomination) to remove the
™~ of blocks specified in the bottom number,
When there were not enough blocks of some denoming-
tion, they traded with the adjocent column. This kind
of procedure-~especiolly when children show that they
can use it flexibly (for exampie, working from right to
left at the experimenter's request)--demonstrates an
understonding of the difference ond partition princi-
ples, as well as of the other three principles already
discussed,

Applying Principles to Written
Arithmetics Instructionol Expetiments

We see, then, that children--even those having
difficulty with written arithmetic—-frequently have
substantial semontic knowledge about procedures that
operate on concrefe representations of number. It
therefore seems likely that a useful method for assist-
ing cnildren in the development of a semantic inter-
pretation of written arithmetic would be to call their
attention 1o correspondences between the steps in
written arithmetic ond the performance of addition
ord subtraction with concrete moterials (cf. Dienes,
1966). One method for doing this, which we have colled
mapping instruction, requires the chiid to perform the
some problem mn blocks ond in writing, alternoting
steps between the two. Under these conditions the
written notations con be sonstrued as o “recerd” of
actions on the blocks. Fiure & summarizes this pro-
cess for o subtroction problem.

in cur initiol work, mapping instruction was
successfully used with several children who hod buggy
subtraction aigorithms (Re.nick, 1982). Not only did
their bugs disappeor, byt the children demonstrated
that they had acquired an understanding of the seman-
tics of the written olgorithm., Figure 5 gives two
examples of the kind of explanagtion of written borrow-
ing thot the children constructed--explanations that
were not provided in the instruction. In the first exar-
ple, Molly was asked to check another child's work. She
knew the 10 in the tens column should be changed to 9,
Her explanation in terms of the values of the decre-
ment and increment marks {(nine tens in the tens
column plus one fen in the wnits column) clearly
implies that o whole-preserving exchange must be
made; otherwise, she would not have sought the "other

11
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fen”. in the second extract, Molly shows even more
clearly that she was searching for parts to make up the
thousand that she recognized had been borrowed in the
course of decrementing the thousands column, Both of
fhese examples give evidence of application of the
compensation priociple 1o written borrowing,

‘Nith these encouraging resvits i hand, we
turned nex! to a more formal instructional experiment,

~irmany of mapping instruction for subtraction,

{I'rom Fesnick, 19820

one that would not only establish the effects of map-
ping instruction but olso would compure mapping
instruction with a form of instruction thct worked
more directly on cnildren's buggy aigorithinic perfor-
mance. The study was desig and conducted by ‘Susan
Omanson (1992). One group of children was fought by
the mopping method described above and a second by o
method we calied prohibition instruction. -
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The idea in prohibition instruction was 10
directly prohibit incorrect steps in the written aigor-
-ithm, without reference to Dienes blocks. To do tivis,
the experimenter (E) began the prohibition instruction
by introducing hersett as the student's subtraction
robot, who would do prablems for the student (S} but
who needed explici! directions abaut what 1o write. E
and S warked through o set of five problems—the same
five that were used in mupping instruction--with S
teiling £ what to do. If S totd £ to do anything wrong
or in the wrong ordes , E said, "l am not programmed to
do it that way. Try agow.” Otherwise, £ wrote what 5
toid her to write, If S could not felf & the correct
: E wrote the correct move
" and then asked S to continve from there. After doing
the first tive problems, £ and § worked through a list
~ of abous 20 more problems, eoch of which was
" designed to elicit certa.n bugs.

Both Mapping gnd Prohibition subjects were
_ intetviewed extensively before ond after the instruc-~
tion in order’'to establish their understonding of sub-
traction principles, a3 revealed in their ability to
‘explain ond justify written subfraction procedures.
. Their calculation performance was assessed before and
after instruction, using the di tic test for buggy
subtraction developed Lv Sution (1981). A delayed
postiest assessed the extent ‘o0 which learning -was
maintained over severai weeks,

in one respect, the resuits were as we expected,
.The Mapping, but not the Prohibition, children
improved significantly in their understonding of writ-
ten subtraction. Figure § campores the two groups on
responses that assessed -understonding of the volve
principle; Figure 7 compares them on responses that
assessed understanding of the compensation ptimiplz;
Figue 8 shows the improvement, or lack of it, !
individual children in the two groups. Each child's level
of understanding on a | to S scale developed for this
study of the pretest is shown in o circle lobeled P;
each child's level of understanding at the second
{delayed) posttest is shown in a circle labeled p2. As
con be seen, several Mapping children progressed
through one or more levels of uwiderstanding, but only
one Prohibition child progressed, ond one regressed!
All toid, we can claim sonw success for mapping
instruction in helping children to fronsfer their
understonding of blocks arithmetic info the domain of
written grithmetic. However, there was nothing like
total transfer of understanding from blocks fo writing.
One of the most importont tasks chead of us now is

H
¢
i
i
H

accounting for individual differences in learning from |

mapping instruction,

The resuits for written calculotion errors were
more swprising. MNeither group improved reliably
between the pretest ond the second posttest, although
there was a termnorary improvement for mony chikdren
at the time of the immediote posttest. For most
children, oid bugs remained or reappeared af the
second posttest, or new ones were inventfed. We
expected such an outcome for the Prohibition group
becavse our theory, as we begon the experiment, was
that only o commond of the semantic principles of
subtraction would successfully block the use or con-
struction of buggy procedures that violate those prin-
ciples. But we did expect improvement in understond-
ing to produce improvement in calculation perfor-

i)

:s:nce foc? the Mapping subjects. it did not rel#ﬂ do

ta; Lk: ] want to show vou somx problers that geme-

one cvlse did and sec : ¢ vou can tel}
whether this person did 1t correctay .

not. This 15 the problem:
:gbb See 1f vou ¢an chech {h;-t. and
- 1% check a1l the steps and makd
sure it was Jdone correctiv. If
e vou see something wrong, tell
a3z me shat's wrong, b

S- She left it a ;é-n4-kept, 1t a ten.
p o
What should she have done?

Made it 2 Y.

wWhy is that?

o m wnom

: To take 90 tens from here (hundreds) and
then the other 10 would go there (the ones),

F: How manv do vou take from here (hundreds)
altogether?

S: A hudred. -

(b) E:

0K, so-how do you write that?

S: You put 10 there (13) and 9 there (in tens)
which is 90 and 9 there (hundreds), which
is 900, (writes: ) .

E: Oh. So where are the 10 hundreds in the
writing”? : '

S: 100 is right here (points to top digirs
in the ones colum snd tens colums) and

© 900 is right h.re {points to the hmndreds
colusmn) .

Figure 5.

Two extracts from a child's explanations
of written borrowing. (From Resnick, 1983).

A closer look of the dota for the Mapping
groups suggests two possible interpretations. One is
that colculation performance improves only when
understanding improves to o very high level. Partiol
understanding—especially understanding thot does not
include the compensation principte--may not be ade-
quate t- block buggy performonce. This interpretation
is consonont with o doto. The two children, Jan ond
Dov, who reached the highest level of understonding
also eliminated afl bugs in the deloyed posttest., The
other chilkiren who improved (Am, Em, and Den), but
not 1o the top levels, showed little or no change in the
number or kinds of bugs in their colculation. We cannot
reach o firm conchision on the basis of the present
wﬁlm,bsmﬂunmaabiechhm
sma

The second possible interpretation is fthat
principles that ggn be used by a child fo censtruct
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RERRR ungE



* Correct 100
m -
T0 4+
w -
50 4+ l.h'~“‘-..

. e
0wt ° Prohihition
30 +
it I
10 L a4

4 + +
Pre Post-1 Post-2

Figure o. Correct responses hv Mapping and Pro-
hibition growps on value questions, showing
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Figure 7. \umber of stsdents (rom Mapping and
Prohihition groups showing wnderstamding of
compensation principle. (From Omanson, lusl2

explonations and justifications of o procedure ore not
necessarily M%!ﬂﬂ! opplied to performance of
that procedure, This explanation would constitute a
strong challenge to our initial predictions. Clearly we
need replication and some extension of this research in
order to decide between the two interpretations, This
work in now under way.

- Conciusions and Some Questions

Although we connot draw firm conclusions until
the results of our furtheg, Tesearch ore in hand, it is
nevertheless useful fo reflect now on the implications
of our present findings for the general questions about
arithmetic learning raised in the course of this paper.

-

re

[N
.".

1"

The central question we have been considering

is the reigtionship between understonding of bosic
principles of number and numeration I
of arittwnetic per=
formances involve violotions of basic principles ond
: that if children
acquired the principles they would be less likely to
mhmp«mmnkwhhmkm-
tion was the assumption that chil wavid call

all relevant resources whenever they performed arith-
metic procedures--i.e., that if they knew principles,
they wauid use them in performance. if our reptication
research shows that even high levels of understonding

ized a3 G running computer program that invents most

of the some bugs that children regulorly invent tut -

ily possible bugs.

to do the incrementing ond decrementing invoived in

But there Is nothing in its knowledge base
to represent the fact that when it pufs an
Mhﬂnuﬁhwhmltbmm.wmm
it decrements the number in the hundreds column by
one It is really subtracting 100. This being the case,
critic that checks for whether the fotal quaniity has
been maintainad has nothing to refer to; the program
bmmropresmmbnmouofmetohlqmmykd
the subquantities being transferred in the course of \a
borrow aperation, To incorporate critics that refer to
principles of guantity, such as the ones discussed n
this paper, it would be necessary o fundamentally
change the entire way in which the program represents
subtroction,

g
o

" e :
In much the same way, cbsence of aquontit
representation when performing written subtroction
may be the source of children's difficully in incorpor-
ating the principles. if, when they are doing calcula-
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Figufe 8. Individual students' changes in understanding of written subtraction. (From (manson,
1982.)
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tion, children do not repr =sent the problem fo thém-
selves as involving quantities but only as digits to be
manipulated, then there is no simple way for them fo
opply their newly leamed principles. They must first
interrupt their normal performance fo mxﬁﬂ the
problemn for themseives as one involving aperations on
quantities, This, however, meons giving up alt the
efficiency of an “gutomated” skill and requires paying
gttention fo every step. Especially for children w0
have been doing subtraction for several years (ribeit
with a certain tage of errors), rerepresenting is
something they are likely to do only when some special
constraint, such a8 an experimenter monitaring each
step, is imposed. .

What would this interpretation imply for
instruction? First, we woulid have to conclude that
simply explaining and dernonsirating the principles of
place valve arithmetic to children would not have
much of an effect on their calculation performance.

- Even improving children's understanding to the point
where they could construct explanations themselves
could not be counted on to eliminate buggy calculation
rules once children had adopted a more or less auto-
matic procedure.

One possibilisy—now being explored by my
colleague, Audrey s that early focus on
the principles of representing total quantities in deci-
mal notation and making appropriate exchanges among
the parts of a total quantity would prevent buggy rules
from ever becoming automated. This wouid imply
much more sustained attention thon is now typicol in
instruction both to the basic principles of the decimal
number system and fo the ways in which these princi-
ples are incorporated info the written numeration
system. Most arithmetic textbooks do attempt {0
explain and demonstrate the rationale for carrying ond
borrowing, often using pictorial representations similar
to Dienes blocks. However, instr. ctional atfention
passes quickly fo efficient calculation, ftheredy
probably encouraging automation of calculation rules
that are not well linked to the principles. If
Chompagne's preliminary results are an indication, it
will require much more extensive uttention fo the
principles thon is now common, and much more
explicit linkoge of principles fo written notation, fo
achieve the desired resuits.

For children such as those in our experinent,
who have already acquired buggy and fairly automatic
calculation routines, our findings suggest that learning
principles alone probably will not be enough to correct
colculation errors. Instruction will probably have to
focus directly on the cakulation performance. This
might take tne form of deliberately invoking, ond
maintaining for as long as necessary, a reflective
attitude toward ralculation that would include thinking
about how the basic principles apply to each step of a
calculation procedure. Such instruction would be in the
spirit of current research on teaching seif -monitoring
skifls for complex tasks such as reading comprehension
{(see Palincsar % Brown, 1984), Qur mapping instruction
did not systematically do this, At the very end of the
mopping sequence, children were asked 1o perform
only the written subtroction but 1o fhink about the
steps "as if there were a way to write down what one
4id with the biocks.” The pratocols of the instructionol
sessions sugyest that only sorne children did reflect in
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this way. Furthermore, minking about writing s 3
record of blocks uction does v automatically ensure
that one is thinking about the principles that und.rie
both blocks and writing. Qur instruction thus dia ot
fully fest the possibilities for bringing principies [0
heor on calculotion. Even with a more powerful vecsem
of principle-based instruction, however, it seems likely
that direct aftention to re-astomating o new and
correct calculation procedure will also be needed,

What roles can we envisage for sysfematic
diagnosis of errors in the kind of instruction just
outlined? | can think of two. First, the process of
reflecting on performance and on fhe relationship of
procedures to underlying principles may be signifi-
contly enhanced by asking children to identily buggy
procedures ond to explain how these procedures violate
the principles of arithmetic. For this approoch fo
wrk,itnwmtprovenecesswyford\it&mm
reflect on their own incorrect procedures, but it would
oertoinmknpoﬂmt for them fo refiect on typical
errars, are the errors that arise from the same
kinds of reasoning the children are likely to engage i
themseives, Thus, for each major procedural domain in
arithmetic, we would need to know what the most
likely buggy procedures are.

instruction focused mare directly on automnated
procedural skill can aiso benefit from knowledge of
buggy algorithms. First, for any given child, it is
probably important to know whether errors in calzula-
tion are due to systematically fauity rules or to care-
less errors (“slips” rather thon “bugs”). Children who
routinely moke calculation slips probably need a dif-
ferent kind of arithmetic proctice than if the elemen-
tory operations ore correct but the processes are
improperly put together. Second, it may prove useful
to tailor practice to specific kinds of buggy rules,
cither by choosing porticular examples that are
matched to a child's bugs or by giving special aftention
to the parts of a procedure that evoke those bugs. In
either case, diagnostic fests capable of detecting
specific buggy algorithms will ploy on importaont role
in instruction, A

The current evidence, then, confirns the irrpor-
tance of error analysis research both as a basis for
studies of arithinetic learning processes and a5 o
potential instructional tool. Our reseorch aiso shows,
however, that systematic errors probably arise from a
basic failure 10 mentally represent arithrnetic proce-
dures in terms of operations on quantities within a
principled number system, rather than as opr:rations on
symbols that obey largely s ntactic rules. Instruction
probably needs to focus more explicitly and for a much
longer tirme than it now does on pracedures as reflec-
tions of fundomental principles. Error analysis con
arovide a fromework for this kind of instr iction, but it
is not clear that detailed diognosis of indiv.dual child-
ren's buggy rules is rewired. Furthermore, it seems
likely that understanding alone does not relicbly pro-
duce correct computational procedures. Direct
instructional aftention to the problem of de-
wtomating incorrect procedures and replocing them
~ith correct cnd ovtomatic procedures will also be
needed--at least if computational skill is occepted as a
goal of mathematics instruction. As we ottend 1o this
oroblem, some of the recent work on self-monitoring
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and meto-cognitive skills moy prove on important
source of theoretical and practical ideas.
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