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ABSTRACT
Research recurrently indicates that children who have

difficulty with arithmetic often use systematic routines that yield
wrong answers. Recent research has focused less on identifying the
most common errors among groups of children and more on analyzing
individual children's errors. This paper considers the source of

systematic errors in subtraction with multidigit numbers and
appropriate instructiona1 responses. The author argues that
conceptual misunderstandings lie at the heart of many errorful
procedures, and that these misunderstandings are what should be
addressed in instruction, as well as the problem of linking
conceptual understanding to procedural skill. Following an analysis
of the nature of "buggy algorithms" in subtraction, teaching the
semantics of procedures is considered. Principles of subtraction and
place value are presented, and children's knowledge of the principles
is reviewed. Instructional experiments on how the principles apply to
written arithmetic are described. Finally, conclusions and some
questions are presented. The importance of error analysis research is
confirmed. Systematic errors probably arise from a basic failure to
mentally represent arithmetic procedures in terms of operations on
quantities within a principled number system, rather than as
operations on symbols that obey largely syntactic rules. (MNS)
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Beyond Error Analysis: The Role of Understanding
in Elementary School Arithmetic

Lauren B.
4 University of

Cow of vie recurrent findings in research on
children's orittenerc performance is that children who
ore having difficulty with arithmetic often use
systematic routines that yield wrong answers. This
'obserViotion has been mode repeatedly, and a number
of studies have attempted to describe the most.
common errors. Bus*ell (1927) used a comblnaticri at
eye moyemnit and primitive solution-time measures,
pencil and paper tests constructed for diagnostic
purposes, and what we would now call "thinking-aloud
protocols" to deter nine the most common sources of
errors in calculation with whole numbers. Brownell
(1928, 1935) conducted similar studies In his many
yews of work on the psychology of mathematics
education.

These investigators were seeking to put into the
holds of teachers tools that would help them discover
the basis of individual pupils' u thmetic difficulties, Sc.
that appropriate remedial instruction could be offered.
The war' of Boswell and Brownell oral of other early
psycho, s and nothernatics educators was clearly
guided a recognition that children's errors were
systematic. Their research, hoWever, did not attempt
to describe inaiviclual children's calculation strategies
but concentrated instead an identifying the most
common errors among groups of children.

Recent research has focused more on the analy-
sis of individual children's errors. Lankford (1972), for
example, using a diagnostic interview procedure with
seventh graders, made it clear that the students'
computational strategies were highly individual, often
not following the orthodox models of textbook and
classroom. Some of the unorthodox strategies were
successful, others were not. Among mathematics
educators, members of the Research Council on Diag-
nostic and Prescriptive Mathematics hove often taken
the lead in uncovering regularities in children's *rue-
ful arithmetic, with on eye to adapting instruction to
individual error patterns. Among cognitive scientists, a
similar line of investigation an "buggy algorithms"
(Brown & Burton, 19781 has not only documented the
existence of consistent error-producing algorithms, but
has developed automated diagnostic programs capable
of reliably detecting the particular errorful algorithms
used by a child an the basis of responses to a very
small cut carefully selected number of problems.

Tne phenomenon of systematic errors in calcu-
lation then, is well established. What is less certain is
(a) the source of these errorful but systematic "inven-
tions" by children; and (b) the appropriate instructional
response to the observqtion that errors are systematic.
These are the questions I odaress in this paper. 1 use
the domain of subtraction of multi-digit numbers as
my primary example, in order to use the extensive
theoretical analyses and ewper nental investigations of
errors ;r1 this dornain that are ovailatie to me. My
concern is not for %.;htroctiors o such. however, but
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for certain more general principles and questions -hot
the case of subtraction illustrates.

Let me state at me outset that I intend to cast
doubt on the proposition that error analyses them-
selves, no matter how detailed, will yield the kind of
diagnoses that provide a strong basis for instruction.
Instead, I argue that for any given domain of arith-
metic a relatively sired' number of cone fuel DA:
understandings lie at the heart of many at erent
errorful procedures. it is these conceptual misunder-
standings that should be adckesseci in instruction. $ will
also show that conceptual understanding does not
oiways automatically produce correct procedures.
Thus, instruction also must address directly the pob-
lem of linking conceptual understanding to procedural

task that seems likely to prove more complex
than many of us once believed.

The Nature of Bogey Algorithms in Subtraction

Let us begin by establishing the nature of the
problem in our example domain of multi-digit sub-
traction. Figure I shows some of the most common
subtraction errors that have been identified by Brown
and his colleagues in their extensive work on buggy
algorithms in subtraction. This is only a partial list of
the known and demonstrated subtraction bugs, but it is
enough to allow us t.s consider the possible sources of
buggy procedures it this domain of arithmetic.

Two there es of the origin of subtraction bugs
have been proposed. One, by Young and O'Shea 119811,

ts that the simpler bugs arise when children
issigr forget or have never learned the standard
school-taught subtraction algorithm (see Figure 2 far
this algorithm). The second, by Brown and Vaniehn
(1980, 1982), is known as "repair theory." According to
repair theory, buggy algorithms arise when an arith-
metic problem is encountered for which the child's
current algorithms are incomplete or inappropriate.
The child, trying to respond, eventually reaches an
impasse, a situation for which no action is available.
At this point, the 'child calls on a list of "repairs"
actions to try when the standard action cannot be
used. The repair list includes strategies such as per-
forming the action In a different column, skipping the
action, swapping top and bottom numbers in a coksmn,
and substituting on operatiOn (sUch as incrementing or
decrerner.ting). The outcomes generated tivaueS this
repair process are then checked by a set of "critics"
that inspect the resulting solution for conformity to
some basic criteria, such as no empty columns, only
one digit per column in the answer, only one decre-
ment per column, and the like. Together, the repair
and the critic lists constitute the key elements in,a
"generate and test" oiublern-solving rcrAine.

This model's operations demonstrate the some
kind of "intelligent" problem solving that characterizes

5
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Borrow-From-Zero. When borrowing from a column whose top digit is 0, the student writes 9 but
does not .:ontinue borrowing from the column to the left of the 0.

4-04
3. Borrow-Across-Zero. tihen the stuiient needs to borrow frum a column whose top digit is 0 he skip.

that column and borrows from the next one. (Note: this bug requires a special "rule" for sub-
tracting from 0: either 0 N or 0 - N I' 0.)

a.

Stop-Borrow-At-:ero. The student fails to decrement 0, although he adds 10
digit of the active column. (Note: this bug must be Combined with either 0

703 _God
7#74. 397

307
Don't-Decrement-:ero. When borrowing from a column in which the top digit is 0, the student re-
writes the 0 as 10 but does not change the 10 to 9 when incrementing the active column.

ccarectly to the top
- 0 N or 0 - % O.)

ro-Instead 4)f-Borrow. The 4tudent writes

digit is larger than the top.

// o
0 as the answer in any 4:01umn in uhich the bottom

41-44%
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Boriuu-Iruin-Bott,:.,!e!nitea.1-4'i rn. i If top .111.0t it. the colic a being horrossed fr..4n 174 1.

the :it:fit flOrnMi4. intim the ":tom digit :nAte.id. fo-t: thi,: hug Imi. k comhicol %ith vithLr
= or i*

Cvnimon sal-lraction .vn)rs identfied
ReAnicK.

mix's, successful performances in otner domains (cf.
Simon, 1976, pp. 65, 913). With buggy algorithms, the
trouble seems to lie not in the reasoning processes but
in the inadequate data base applied. Inspection of the
repair and critic lists makes it clew that the genera-
tion and the test rules in this particular system can all
be viewed as "syntactic." That is, they all concern the
surface structure of the subtraction procedure and do
not necessarily reflect what we can call the "seman-
tics," or underlying meaning, of the procedure.

This distinction oetween the syntax and the
semantics of the proceaure becomes clearer when -e

h% I. . hn, R.P. Parton. and %Ant

3

consider some of the individual bugs. Inspection of the
bugs in Figure 1 shows that they tend to look right"
and to obey most of the important syntactic rules for
written' calculations The digit structure is respected,
there is only a single digit per column, all the columns
are filled, mid so forth. In the sense of being an orderly
and reasonable response to ci problem situation, the

jipf algorithms look quite sensible. But each of the
bugs violates fundamental mothernoticql constraints.
In this sense, they violate the conceptual g.eaning, or
serrontics, of suotraction. I can make this paint more
clearly by individually considering each of the bugs in
Figure I.

117'7
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A

Find rightmost column
Nark it as active .

column.

B

Active column: is
ttom J. top?

No Active column: write
a small 1 to the
left of top digit.

C

Active Column:
Subtract.

Move one column left
in top numeral. Mark
it as borrow column.

J
mow column:

is top digit
zero?

Yes

L

Sorrow columns
change 0 to 9.

'Move borrow
marker one
column to left

More
columns?

a

Read answer
below line.

Figure .:. Standard algorithm for subtraction. ,From Remick, 1982.,
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1. Snits Orr-From-Larger. Repair theory sug-
oests that this very common bug results from "switch-
its) arguments" to respond to a situation in which the
-child cannot mote the normal novae of subtracting the
tain from the top number in a column. In other

wnrds., the child makes the test at B in Figure 2 but
u, es not know how to barrow and decides that the
...t,itractiixt should be done in the 'opposite direction.
'i'oung and O'Shea's analysis suggests that this bug
arrives from simply not making the test and is the
T:orinal, or default, way for a child to proceed unless
e.? test is made and the various borrowing rules are
tiereby evoked. In both of these interpretations, all
tne syntax of written subtraction without borrowing is
r+,spected. What is violated is the constraint that the
to,tram quantity as a whole be subtracted from the tap
quantity as a angles The semantics of multi-digit
obtraction include tile constraint that the columns,
although handfed one at a time, cannot be treated as if
they were a string of unrelated single-digit subtraction
problems.

2. Burrow- From- Zero. Both repair theory and
Young and &Shea analysis suggest that this bug

ccrives from forgetting the part of the written proce-
(lure that is equivalent to steps 101-14( in Figure 2
!moving the borrow marker left, and reducing the new
t.olumn). The bug respects the syntactic requirement
shat, in a borrow, there must be a crossed-out and
rewritten numeral to the left of the active column. It
-iso respects the syntax of the special case of zero,
where the rewritten number is always 5. However, it
ignores the fact that the 9 real* results from borrow-
Ing one column further left (the hundreds column)
novirsg 100 as 10 tens into the tens column, and teen
narrowing from the 10 tens leaving 9 tens, or 90 (writ-
ten as 9).

3. Borrow-Across-Zero. Repair theory offers
two different derivations of this bug. The first is that
this bug arises from the child's search for a place to do
the decrementing.nperation with the condition that the
column not have a zero in the top number. This would
Playpen when the child doesn't know how to handle
zeros or thinks they have "no value" and thus can be
skipped. This solution respects the syntactic constraint
that a sown I must be written in the active column
and that some other (nonzero) column must then be
ckcremented. But the semantic knowledge that the
increment and decrement are actually addition and
subtraction of 10 is ignored (or not known). Repair
theory's second derivation, which agrees with Young
...nd O'Shea's analysis, produces this bug by sireply
deleting the rule that changes 0 to 9 (L in Figure 2).
This too is a completely syntactic derivation, fax it
allows deletion of a rule without reference to the
sernontic information that justifies the operation.

le. Stcv-Borrow-At-Zero. Botts repair theory
and Young and OShea's witlls4 interpret this bug as
simply omitting a rule or an operation. Steps of
F;isoe 2 are simply skipped. This bug fails to obey Loth
syntactic sand semantic constraints. Syntactically it
;,,rJe4)ces tolty the increrrent part of the burrs.. Opera -
tion - -the I in the active coign-in--but-does not show a
crossed-out -Arnber or the cnange of a 0 to a 9.
Semantically, it violates the 'Iustification for the
burro* i cre rent- -that is, in order to add a quantity
to the :active on ece,ivalent quantity trust be

5

subtracted from another column.

S. Don't-Decrement-Zero. The change of 0 to
10 in this bug is the proper °seinantiC niter
borrowing from the hundreds column. But it oro.luVs
an outcome that the child may not have en,:ounno td

and thus does not respond to appropriately. Failure to
change the 10 to 9 may result from a synth tic con-
straint that each column be operated on only once.
This syntactic constraint is not "correct" but might be
reasonably inferred ham extensive experience with
problems that contain no teros. If so, the syntactic
constraint is in direct (*Position to the semantic
demands of the situation.

6. Zer-instead-Of-13arrow. Like Smaller-
From-Larger, this bug avoids the borrowing operation
altogether, while observing all of the important syn-
tactic constraints of operating within columns, writing
only one small digit per column, and the like. This bug,
however, does not violate tne semantics of the digit
structure as blatantly as the Smaller-From-Larger bug.
In fact, a child producing this bug may be following a
semantics of subtraction that generally precedes
any understanding of negative numbers. In this inferred
semantics of subtraction when a larger number must
be taken from a smaller, the decrementing is begun
and continued until there are no more leftyielding
zero as the answer.

7. Borrow-From-Bottom -Inst ad-Of-Zero. This
bug appears to be purely syntactic in the sense that
the search for something to decrement appears to lead
the child to itylore the digit structure and the

semantics of exchange that justify borrowing within
the top number. But it does produce a "funny-looking"
solution, so it would probably be generated only by a
child whose syntactic rules did not specifically require
that all increments and decrements be in the top
number.

Teaching the Semantics of Proced.les

The analysis gust presented suggests that chil-
dren who invent buggy algorithms are already awing
attention to the surface aspect* of the calculation
rolitines they ore taught. Their invented algorithms
deviate only slightly tram the correct ones, and by and
large they respect the strictly procedural rules of
written subtraction. The trouble seems to lie in keep-
ing details of procedural riles when and where to
decrement) in mind and combining the various r4ies
correctly. Two instructional respo4.ves to this proce-
dural confusion con be imagined. Tne first is to focus
directly on the procedural rules, designing practice anti
feedback that will focus children's attention on the
specific points at which they inisuppl, the rules. -1,ere

it mould be ideal to adapt the instructon to individual
children's errors, although "standardized" instruction
to address the most common buggy .ilgorithms could
oiso be designed. The second respole is to focus
iiistrvction on the semantic principles that ore violated
in invented buggy algurithrns, in the hope that children
aiii1 then br,r,y tthe a ix ir,c;pirs int) p *!" ?ft thef
fcxe subtraction problems fur which aleir leorhed
ore incomplete.



Priftt.i'llttSt S.:atruction and Place Value.

One of trw reasons for preferring semantically
buset: t.nt. over p.orefy procedural instruction is
its wentiol Konkti Tttcre are iTaany specific tome-
dutuf rules to loam und many specific problems to
apply tnem to, all of which would need to be'addressed
in rule-nose. instruction. There we also a nurnher of
different mathematically correct algorithms for
subtraction. Rule-wsed instruction would either have
to limit "acceptaate" responses to just one of these
algorithms or systematically teach several of them (a
costly matter, not only because it would take a great
deal of time but because it sould pruoably induce
confusions between algorithms and this produce some
new bugs). Alt of the rules, however, and all of the
different algorithms of subtraction are expressions of
a very few basic principles. These are:

1. The difference firinciple. The goal of sub-
traction is to find the difference between two quanti-
ties (which we call "bottom" and "tap" for convenience
here).

2. The composition principle. Each of these
two quantities may be expressed as compositions of
smaller quantities (e.g., hundreds, tens, units). What is
sought, however, is the difference between the bottom
quantity as a whole and the top quantity as a whole.

3. The partition principle. It is permissible to
find the difference by partitioning the quantities into
any convenient subquontities (parts), finding the dif-
ference bet weer. each bottom part and one of the top
ports, and then recomposing the results for nd into a
single quantity. The partition principle is what permits
column by column written subtraction. It also permits
a variety of mental subtraction procedures, some of
which ore described below.

4. The sation principle. It may be
convenient whenc=cting by partitioning to incre-
ment or decrement the parts in one of the quantities.
This is permissible as long as an increment is compen-
sated by a decrement (or vice versa) such that the
value of-the total quantity is preserved. The compen-
sation principle is what permits borrowing.

S. The value principle. The specific incre-
ments and decrements that we permissible to satisfy
the compensation principle depend on the values of
each digit in the written numbers. These values we
determined by the C011111111 in which o digit is written:
The value of a digit is the digit times the column
value.

Children's Knowledge of the Principles

Several bodies of research on addition and
subtraction knowledge suggest that most children of 9
or 10 years of age, including those who use buggy sub-
traction algorithms, already know a great deal about
the five principles outlined above. This knowledge is
evident when the y work In number representations
other than the writtensuch as money, the abacus, or
Dienes blocks --or when they do mental arithmetic.
Some exo:nples of performance that give evidence of
knowledge of these principles ore the following:

6

prol_co,ritima. Trfre is some evidence riot t.e
compositional structure of numbers arises first ir. the
context of oral counting. Several investigators (FL son,
Richards, 8 Briars, 1982; Siegler & Robir.son, 1,1132)
have found that many 4- and 5-year-olds con orally
count well into the decades. above 20 and that their
counting shows evidence of being organized uround the
decode structure. Fat example, the most common
stopping points in children's counting are at a number
ending in 9 or 0 (e.g., 29 or 40), and their on-ussions in
the number string tend to be omissions of entire
decodes (e.g., "...27, 28, 29, 50...1. Children also
sometimes repeat entire decodes (e.g., "...38, 39, 20,
N..") and sometimes make up nonstandard number
nwnes reflectina a concatenation of the tens and the
units counting strings (e.g., "...twenty-nine, twenty-
ten, twenty-eleven..."). Finally, children con usually
succeed In counting on within a decode higher than
their own highest stepping. point when asked by the
experimenter to start counting from a particular
number, such as 51 or 71. This is I think, an important
precursor of the composition principlethat is, of the
idea that numbers are composed of smaller numbers.

fiivantifeina, block and money displays. The
composition principle is more directly evidenced in
children's ability to quantify and compare sets of
objects that are coded for decimal value (see Figure 3
for excenples of such displays). These performances
also clisplay knowledge of the value princi;ge. In our
own research on place value we have found that the
typical method children use in this kind of task is to
begin with the largest denomination and enumerate the
blocks of that denomination using the appropriate
decimally structured counting string. A successful
quantification of the display in Figure 3a, for example,
would produce the counting string: "100, 200, 300, 400,
410, 420, 430, 440, 450, 460, 461, 462, 44.° A few
children, mainly those, who show the most sophisti-
cated knowledge of other aspects of place value,
count all denominations by ones and then *multiply" by
the appropriate value (e.g., far Figure Sat I, 2. 3, 4,
400; 1, 2, 3, 4, 5, 6, grith l; 2, 3, 463). However, count-
ing using the decimally structured number strings
seems to be the earliest api.lication of composition and
value principles to the task of quantifying sets.

Other performance characteristics of children
in an early stage of decimal number knowledge suggest
that children typically recognize the relative values of

+The compensation principle is actually only one
way of satisfying a more general plinCiple, which
is that the difference between the top and bottom
quantities must be maintained no matter what er-
changes are made between parts. One way to keep
the difference constant is to change neither quan-
tity. Another Wag IS to change both quantities by
the same amount. This is what is done in a sub-
traction algorithm taught in many countries.

The principles given in the body of the text are
those that justify the commonly taught subtraction
algorithm in Unite,/ States schools and a number of
variations that fal do riot involve changing the
bottom number and lb) assume that only positive
Ante-grx will be used throughout the procedure.
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the isiffereil ports shut muke op the whole number.
For exainpie, most second through fourth graders we
hove ,nterveNed compared numbers "lexica :1r nihi-
cally." Thus .s, they first compare the highest-val
digit in the fud nLvnberS Q(11:1 declare the number with
the .".411er ii.ja to be larger. Only if tne two digits ore

"e ;iti on to compare the digits to Ow

right. F i.x,:nple, when comparing block displays for
the ix,p7.ers 472 and 427, a child would typxolly say
72 ow :is lor7er "because it has 7 tens (or 70) nil the
other lei, ? tins."

7

Mental, arithmetic. The most stunning diplays 0f
the compositional and value principles cue in cnildren'S
invented mental calculation ?nettled's. 'these tnetho.
almost always involve application of the partiti..n
principle as well. Consider the following performance
by one of our 11-year -ok. subjects, Arnernitil

Es Can you subtract 27 from 53?

As 34,

E: Haw did you figure it out?

At Weil. SO minus 20 is 30. Then take away 3 is
27 and plus 7 is 34.

Amanda come up with the wrong answer, but by
a method that clearly displayed her understanding of
the compositional structure and value of two-digit
numbers and of the partition principle for subtraction.
She first decomposed each of the numbers in the
ptablem into tens and units, and then performed the
appropriate subtraotion operation on the tens compo-
nents. Next she proceeded to add in aril subtract out
the units comPonents. She shouk1 have subtracted 7
and added 3, but instead reversed the digits. Amanda
performed an other problems without this difficulty,
yielding correct answers. Other children have shown
similar strategies.

In Our laboratory we have also explored deci-
mal-based mental arithmetic using reaction time
methods as children attempt to solve problems in
which a single-digit number is celded to a two-digit
number. This is an extension of research on childreles
invented algorithms for single-digit addition and
subtraction algorithms (e.g., Groot & Resnick, 1977;
Woods, Resnick, & Groan, 1975; Svenson & Hedenborg,
1979). That research showed that young children do
mental arithmetic as if they had a "counter in the
head" that can be set to any number, incremented or
decremented by one any number of times, and then
"read tout" to yield an answer. The pattern of reaction
times for a set of problems flepends on the number of
increments or decrements required in the particular
algorithm the child uses. For ON two-digit plus one-
digit problems there are two tmsic mental counting
procedures, one that ignores the composition principle
and another that uses that principle to reduce me
number of counts .leeded:

I. Set the mental courite.r to the two-digit
number, then odd in The single-digit nu:nber in incre-
ments of one. fieaction times would be a function of
the single-digit number fin our experiint ntal problems,
always the second number). We call this the Min of the
Addends procedure. No use of the composition princi-
ple-Ts-7ade in this procedure.

2. ikcempose the two-digit number into a
tens component and a ones component, then, recomb:,
the tens component with whichever of the tivo units
quantities is larger. Set the r.ounter to this rec.on-
stituted number unit then add in the smoily'r ,)nits digit
in increments of one. For example, far Z3 9, the
counter would be set at 29 od then inc 3

tinws to o sum of 32. flaction time would be a func-
tion of the smaller of the two units digits, so the
cirot.t-siure is called Min It the Units. This orocedure is

I 0 r



ti siAirile vet Sissf I Of me one Aniarido used; it clearly
depends on the c cm tiprisit iu'i pr 4)1E4

Ale tit each of niese nilels to bit: reaction
times (fur correct solutions only) of eao, of our sub-
jet ts. Severul children's data c featly fit the Min of tne
telits prediction. These children usually also described
this procedvre when askeo in interviews how they diet
these Problems. It is important to note that several of
the children veto snowed evidence of Mese par titian-
bawd inentot arithmetic strategies were among those
tiuving difficulty with written subtraction. Indeed,
their buggy subtraction rules were in some cases out
reason fur.inc hiding the rriildren in our research sam-
ples. Thus, mastery of the value and coinposition
pri'xziples in the context of mental arithmetic does not
auto-riatic.oily transfer to written procedures.

Multiple representations of ckiantity. An early
appreciation of the value and composition principles is
evidence:I in the ways in which children construct and
"react' block and other displays, as described above. In
the cases described so far, however, each quantity hod
only one block representation: a "canonical' represen-
lotion, with no more than nine blocks per column. In
this canonical display there exists a one-to-one match
between the nurnper of blocks of a par ticulat deno-ni-
nation and the digit in a corresponding column in
stars:Ord written notation. Insistence an the canonical
form means that there is no basis for carrying and
borrowing-4w, in block displays, for exchanges and
multiple representations of a quantity. There is no
basis, in other words, for the compensation principle
and thus fax borrowing or carrying. A little later in
their mathematical development, children show that
they understand that a quantity can be represented in
more than one way. This multiple representation *
based on the compensation principle.

At first, children can construct alternative
representations Only through an empirical counting
process. The following perfarnance of one of our
subjects illustrates this method. Molly was asked to
use Dienes blocks to subtract 29 from 47. She began by
constructing the block display that matched the larger
number- -aunt is, four tens and seven units. She then
tried to remove nine units and, of course, could not.
The experimenter asked if she could find any way to
get mare units. Molly responded by putting aside all of
the units blocks and one of the tens in her display,
leaving just three tens. She courted these by tens ("10,
20, 30") and then continued counting by ones, adding in
a units block with each count, up to 47. On the next
subtraction problem, 54 - 37, Molly began with a
noncanonical display of the top number. That is, she
put out four tens and counted in units blocks until she
reached 54, yielding a final display of four tens old
fourteen units. Molly thus appeared to hove loomed
that certain problems will require noncanonical dis-
91aysr she had incorporated into her plan for doing
010Cle subtraction a check for whether there were more
units to be removed than the canonical display would
provide. However, at this stage she was ithle to estab-
lish the equivalencies of the canonical displays only by

the counting process.

Later, children become able to construct or
recor;ze alternative displays without the need for
recounting the quantity. Instead of counting, they

trot* blocks for example, they discard a tens brue
aria count in 10 units, or they discatd n hundreds Waive
and count in 10 tern. Once children regularly tro le
blocks rather ttion recounting them, they often become
annoyed or urnised with the experimenter who keeps
asking them how they know that the display still to dies
the same number. They indicate the various ways that
they believe that if a ten-for-one trade has been mode,
the total quantity could not have changed. These
children clearly demonstrate understanding of !Fie
compensation principle.

Subtraction with blacks. Children's ability to
perform subtraction problems using Dienes blocks or
similar value -coded tokens also reveals their under-
standing of the five principles under consideration
here. In each of our studies, even children who were
having difficulty with written arithmetic typically
either knew, or quickly discovered, how to subtract
with blocks. A typical block subtraction procedure
used by children was to display the top number camel-
ically and then work left to right (i.e., starting with
the hiahest-valued block denomination) to remove the
number of blocks specified in the bottom number.
When there were not enough blacks of some denomina-
tion, they traded with the adjacent column. This kind
of procedureespecially when children show that they
can use it flexibly (for example, working from right to
left at the experimenter's request) -- demonstrates an
understanding of the difference and partition princi-
ples, as well as of the other three principles already
discussed.

Apply' Principles to. Written
Arithmetic: instructional Experiments

We see, then, that childreneven those having
difficulty with written arithmeticfrequently have
substantial semantic knowledge about procedures that
operate on concrete representations of number. It
therefore seems likely that a useful method for assist-
ing cnildrers in the development of a semantic inter-
pretation of written arithmetic would be to call their
attention to correspondences between the steps in
written arithmetic and the performance of addition
and subtraction with concrete materials (cf. Dienes,
1956). One method for doing this, which we have called
mopping instruction, requires the child to perform the
some problem in blocks and in writing, alternating
steps between the two. (hider these conditions the
written notations can be :onstrired as a "record" of
actions on the blocks. Fi,jure 4 summarizes this pro-
cess far a subtraction problem.

In our initial work, mopping Instruction was
successfully used with several children who hod buggy
subtraction algorithms (Remick, 1982). Not only did
their Imp disappear, but the children demonstrated
that they had acquired on understanding of the seman-
tics of the written algorithm. Figure 5 gives two
examples of the kind of exWanation of written borrow-
ing that the children constructedexplanations that
were not provided in the instruction, In the first exert-
ple, Molly was asked to check another child's work. She
knew the JO in the tens column should be changed to 9.

Her explanation in terms of the values of the decre-
ment and increment marks (nine tens in the tens
column plus one ten in the units column) clearly
implies that a whole-preserving exchange must be
mode; otherwise, she would not have sought the "other
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tent% in the second extract, Molly shows even more
clearly that she was searching for parts to node uP the
thousand that she recognized hod been borrowed in the
course of decrementing the thousands column. Both of
Mese examples give evidence of application of the
compensation principle to written borrowing.

Witn these encouraging results in hand, we
titned next to a more formal instructional experiment,

9

one that would nut only estublisti the effects of mop-
ping instruction but also would compote mapping
instruction with a form of instruction that worked
more directly on cnildren's buggy algorithmic perfor-
mance. The 31/.tdy was design:id and conducted by'Susan
Ornanson 11982). One group of children was taught by
the :napping 'reified described above and a second by a
method we called prohibition instruction.
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The idea in prohibition instruction was to
directly prohibit incorrect steps in the written *Igor-
-ithm, without reference to Dienes blocks. To do this,
the experimenter (E) began the prohibition instruction
by introducing herself os the student's subtraction
robot, who would do prOblems for the student. (S)) but
who needed explicit directions about what to write. E
and 5 wormed through o set of five problemsthe same
five that were used in mopping instruction--with S
telling E what to do. If S told E to do anything wrong
or in the wrong order , E said, "I am not programmed to
do it that way. Try egoist." Otherwise, E wrote what
told her to write. If S could not fell E the correct

-move otter a few guesses, E wrote the correct move
and then asked S to continue from there. After doing
the first five problems, E and S worked through a list
of cthous 20 more problems, each of which was
designed io elicit certo;ri bugs.

Both Mopping ond Prohibition subjects were
interviewed extensively before and after the instruc-
tion in order' to establish their understanding of sub-
traction principles, as revealed in their ability to
explain and justify written subtraction procedures.
Their calculation performance was assessed before and
'after instruction, using the diagnostic test for buggy
subtraction developed by Eiut on (1981). A delayed
poshest assessed the extent 14) which learning was
maintained over several weeks.

In one respect, the results were as we expected.
. The Mapping, but not the Prohibition, children
Improved significantly in their understanding of writ-
ten subtraction. Figure 6 ca ores the two groups on
responses that assessed -understanding of the value
principle; Figure 7 compares them on responses that
assessed understanding of the compensation princ4sle.
Figure 8 shows the improvement, or lock of it, in
individual children in the two groups. Each child's level
of understanding on a t to 5 scale developed for this
study at the pretest is shown in a circle labeled P;
each chitcfs level of understanding at the second
(delayed) posttest is shown in a circle labeled p2. As
can be seen, several Mopping children progressed
through one or more levels of understanding, but only
one Prohibition child progressed, and one regressed
All told, we con claim some success for mapping
Instruction in helping children to transfer their
understanding of blocks arithmetic Into the domain of
written arithmetk. However, there was nothing like r,

total transfer of understanding from blocks to writing.
One of the most important tasks ahead of us now is ;

accounting for individual differences in learning from I
mapping instruction.

The results for written calculation errors were
more surprising. Neither group improved reliably
between the pretest and the second posttest, although
there was a temnormy improvement for many children
at the time of the immediate posttest. For MOO
children, old bugs remained or reappeared at the
second posttest, or new ones were invented. We
expected such on outcome for the Prohibition group
because our theory, as we began the experiment, was
that only a command of the semantic principles of
subtraction would successfully block the use or con-
struction of buggy procedures that violate those prin-
ciples. But we did expect improvement in understand-
ing to produce improvement in calculation perfor-

mance for the Mapping subjects. It did not relidbly wio

(ao : I leant to show you sorx profiler that COW
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whether this, person corrective
not. This is the protIlem:

S

S:

F..

r:

S:

(b)

S:

F:

S :

St t if yu. can checi. ;114t, am!

check all the steps and mart
sure it has done correctly. If
you see, something wrong. tell
me what's wrongl

She left it a tenkept It a ten.
hhat should Ay hat: done?

Made it a 9.

Why i a, that?

lo take 90 tens f run here (hundreds) and
then the other,10 would go thert (the west.

How many do you take from here (hunddsi
altogethyr?

A hundred.

so-hou do you write that?

You put 10 there (13) and 9 there (in tens)
which is 90 and 9 theyeAhundreds), whic:h
is 900. (Writes: -ar.w3 )

O. So where are the 10 hundreds in the
writing'

100 is right here (points to top digits
in the ones column and tens columns) and
900 is right hule'tpoi-nts to the hundreds
column) .

Figure 5. Two extracts from a child's explanations
of written borrowing. (From Resnick, 1983).

A closer look at the data for the Mopping
groups suggests two possible interpretations. One is
that calculation performance improves only when
understanding improves to a very high level. Partial
understandkigespecially understanding that does not
include the compensation principtemay not be ade-
quate tr, block buggy performance. This interpretation
is consonant with OX data. The two children, Jan and
Dav, who reached the highest level of understanding
also eliminated MI bugs in the delayed posttest. The
other children who improved (Am, Em, and Den), but
not to the top levels, snowed little or no thange in the
number or kinds of bugs in their calculation. We cannot
reach a firm conckssion on the bails of the present
data, however, because the cumber of subjects is too
small.

The second possible interpretation Is that
principlei that ego be used by a child to construct

10 3
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explanations and justifications of a procedure are not
necessarily tic applied to performance of
that procedure:Tliis explanation would constitute a
strong challenge to our Initial predictions. Clearly we
need replication and some extension of this research in
order to decide between the two interpretations. This
work in now under way.

Conclusion,* and Some Questions

Although we cannot draw firm conclusions until
the results of our furtherresearch are in hand, it is
nevertheless useful to reflect now on the implications
of our present findings for the general questions about
arithmetic learning raised in the course of this paper.

11 t:

The central question we have been consider sng
is the relationship between understanding of imam
principles of number and numeration and
of arithmetic procedures. It is clear that per -
formance involve violations of basic principles, and
tbus it s-.-rinid reasonable to suppose that if children
acquired the principles they would be less Musty to
engage in buggy performances. kvOicit in this !medic-
Hon was the assumption that children would call tw
all relevant resources whenever they performed arith-
metic preceduresi.e., that if they knew principles,
they would use them in performance. If our replication
research shows that even high levels of understanding
do not reliably suppress buggy calculation =dor.
11101103$8 this =gumption will have to be abandoned.

A careful analysis of Brown and VerLehn's
nspair theory suggests why it might be so difficult for
newly acquired principles to affect calculation per-
formance in children. Repair theory has been formal,
iced as a running computer program that invents most
of the same bugs that children regularly invent bit
does not invent other logically possible bugs. Because
its performance is so similar to children's, it Is reason-
able to take the pogrom as a model of what children
do when they invent buggy algorithms. We can then use
the known details of the programs functioning to
reason (Smut what might be happening when children
learn new mathernatical prbmiples but foil to apply
them to their convitationcd algorithms.

As tHscussed earlier, the repair theory program
produces bugs by generating repairs and.checidng them
against critics. All of the critics in Me present repsir
program are syntactohs notwel they do not reflect
the basic principles traction discussed in fhb
parer. Suppose the program were to acquire a set of
semantic critics that did reflect the principles. Would
that effectively screen out all the buggy repairs? At
first blush, it seem reasonable to believe it would.

Careful consideration of the program, however,
shows that it is not possible to simply odd in the new
semantic critics without . making much more funda-
mental changes in the program (lianLehn, personal

cornmunicatian). This is imam the present program
treats subtraction as a system of operations on spa-
bob rather than as a system of operations an quanti-
ties. It °know" what symbolic marks need tq be mode
to do the incrementing and decrementing involved in
borrowing. But there is nothing in its knowledge base
to represent the fact that when it puts an increment
mark In the units COiUrliri it is adding 10, ar thdil when
it decrements the number in the hundreds column by
one it Is really subtracting 100. This being the case, a
critic that checks far whether the total quantity has
been maintained has nothing to refer to; the program
has no representation at all of the total quantity br of
the subquantities being transferred in the course °fug
borrow operation. To incorporate critics that refer to
principles dl quantity, such as the ones discussed in
this paper, it would be necessary to fundamentally
change the entire way in which the program represents
subtraction.

11

.

In awes the same way, absence of a- quantity
representation .,en performing written subtraction
may be the source of children's difficulty in incorpor-
ating the principles. If, when they are doing calcula-
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lion, hildren do not repr esent the emblem to them-
selhs as involving quantitieit but only as digits to be
manipulated, then there is no simple way for them to
apply their newly learned principles. They must first
interrupt their normal performance to rerepresent the
problem for themselves as one involving operations on
quantities. This, however means giving up of the
efficiency of an "automated" skill and require* paying
attention to every step. Especially for children solo
have been doing subtraction for several years (ntbeit
with a certain percentage of errors), rerepresenting is
something they ore likely to do only when some special
constraint, such as an experimenter monitoring each
step, is imposed.

What would this interpretation imply for
instruction? First, we would have to conclude that
simply explaining and demonstrating the principles of
place value arithmetic to children would not have
much of an effect an their calculation performance.
Even improving children's understanding to the point
where they could construct explanations themselves
could not be counted on to eliminate buggy calculation
rules once children hod adopted a more or less auto-
matic procedure.

One possibilitynow being explored by my
colleague, Audrey Champagneis that early focus on
the principles of representing total quantities in deci-
mal notation and making appropriate exchanges among
the parts of a total quantity would prevent buggy rules
from ever becoming automated. This would imply
much more sustained attention than is now typical in
instruction both to the basic principles of the decimal
number system and to the ways in which these princi-
ples are incorporated into the written numeration
system. Most arithmetic textbooks do attempt to
explain and demonstrate the rationale for carrying and
borrowing, often using pictorial representations similar
to Dienes blocks. However, instr. ctional attention
passes quickly to efficient calculation, thereby
probably encouraging automation of calculation rules
that are not well linked to the principles. If
Chomp:tire's preliminary results are an indication, it
will require much more extensive attention to the
principles than is now common, and much more
explicit linkage of principles to written notation, to
achieve the desired results.

For children such as those in our experiment,
who have already acquired buggy and fairly automatic
calculation routines, our findings suggest that learning
principles alone probably will not be enough to correct
calculation errors. Instruction wilt probably have to
focus directly on the calculation performance. This
might take tne form of deliberately invoking, and
maintaining for as long as necessary, a reflective
attitude toward calc.)lation that would include thinking
about how the basic principles apply to each step of a
cakulation procedure. Such instruction would be in me
spirit of current research on teaching self-monitoring
skills for complex tasks such as reading comprehension
(see Palincsar grown, l%4). Our mowing instruction
did not systematically do this. At the very end of the
mopping sequence, children were asked to perform
only the written subtraction but to think about the
steps "as if there were a way to write down what one
did with the blocks." The protocols of the instructional
sessions sug,jpsi that only some children did reflect in

13

this way. Furthermore, minking about writing 4

record of blocks action does nnt automatically ent.ire
that one is thinking about the principles that um-ie.:lie
both blocks and writing. Our instruction thus did lot
fully test the possibilities far bringing principles ro
bear on calculation. Even with a more powerful version
of principle-based instruction, however, it seems likely
that direct attention to re-automating a new and
correct calculation procedure will also be needed.

What roles can we envisage for systematic
diagnosis of errors in the kind of instruction just
outlined? I can think of two. First, the process of
reflecting on performance and on the relationship of
procedures to underlying principles may be *pal-
canny enhiriced by asking children to identify buggy
procedures and to explain how these procedures violate
the principles of arithmetic. For this approach to
work, it may not prove necessary for chikken to
reflect an their own incorrect procedures, but it would
certainly be Important for them to reflect on !mica!,
errors. These are the errors that arise from the same
kinds of reasoning the children are likely to engage in
themselves. Thus, far each major procedural domain in
arithmetic, we would need to know *not the most
likely buggy procedures are.

Instruction focused mare directly an automated
procedural skill can also benefit from knowledge of
buggy algorithms. First, for any given child, it is
probably important to know whether errors in caleula-
tion are due to systematically faulty rules or to care-
less errors ("slips" rather than "hugs"). Children who
routinely make calculation slips probably need a dif-
ferent kind of arithmetic practice than if the elemen-
tary operations are correct but the processes, are
improperly put together. Second, it may prove useful
to tailor practice to specific kinds of buggy rules,
either by choosing particular examples that are
matched to a child's bugs or by giving special attention
to the parts of a procedure that evoke those bugs. In
either case, diagnostic tests capable of detecting
specific buggy algorithms will play an important role
in instruction.

The current evidence, then, confirms the impor-
tance of error analysis research both as a basis for
studies of arithmetic learning processes and as a
potential instructional tool. Our research also shows,
however, that systematic errors probably arise from a
basic failure to mentally represent arithmetic proce-
dures in terms of operations on quantities within a
principled number system, rather than as opigations on
symbols that obey largely s /ntactic rules. Instruction
probably needs to focus more explicitly and for a much
longer time than it now does on procedures as reflec-
tions of fundamental principles. Error analysis can
ieovide a framework for this kind of instruction, but it
is not clear that detailed diagnosis of indiv,dual child-
ren's buggy rules is rewired. Furthermore, it seems
likely that understanding alone does not reliably pro-
duce correct computational procedures. Direct
instructional attention to the problem of de-
uutoinating incorrect procedures and replacing them
With correct and automatic procedures will also be
neededot least if computational skill is accepted as a
goal of mathematics instruction. As we attend to this
problem, some of the recent work on self-monitoring
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and meta-cognitive skills may prove on important
Source of theoretical and practical ideas.
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