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, OXERVIEW

4

The 1980s are a time' of profound challenge to the technological strength
of the United States in the economic as well as the military sphered, and ,

our country's performance in research and development in its engineering .
laboratories, Nil Itbe an important and perhaps determining aspect of our
success in meeting this challenge. Advanced engineering development is
now based mainly on scientific computation, which in turn relies on math-
ematical modeling and laboratory experiments., Together thy represent
one of the areas in which the strength of.nations is being tested today..

- Mathematics is essential in the development of theoretical and.com-
potationsl models foi solving the highly complex.problems of engineering
and basic science, which encompass a range of scientific difficulties. On one
side are questions of computer architecture and the science Of algorithms.
On the other Side is the modeling of chemical and physical processes
by means of niathetnatical 'equations. The issues are tied together by
mathematical theory, which seeks a fulrunderstanding of the nonlinear-
phenomena eontained in the equations and implements this understanding
through computational methods. This span of sciejitific activities_ forms
the subject that is known as applied mathematics.

The principal conclusion of this committee is that computational
modeling, which it a high-leverage element pf our nation's scientific and
technological effort, requires increased emphasis and support. The conclu-

-sion is documented by an examination of typicahapplication areas, which,
reveals the pervasive difficulties that accompany computation of realis-
tic problems and leads one to consider both what Computers can do and
what they cannot currently do but might eventually be capable of doing.
As illustration, we examine several deep theoretical problems, including
turbulence and combustion. At the frontiers of attack on these prob-
lems we discover the limitations imposed by our current understanding of
model formulation and computational cs;ability. We examine modeling
'problems and algorithms iglapted both specific features of the desired
solution and to the computer ,architecture. We also examine computer
architecture and component delign and manufacture as a mathematical
modeling problem.

The Committee recommends increased support for

1 Researcrin computational modeling and applied mathematics,

1
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... ..
7 2. Computing facilities dedicated to this area, .

3. .Education and manpower development in computational and ap-
.

plied mathematics.' . 0 i
S.

These recommended increases include support from goTern-,.
mInt and industry as well as institutiOnalisupport from universities. r
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The extensive use of computers in advanced development work began dur-
ing World War II, and today computing is.a vital component of science,
engineering, and modern technology . Most advanced technological devel-
opmentgrom aircraft design to automobiles to petroleum to satellites now
follows this pattern of reliance' on the computer. Moreover, the needs of
national defense have posed scientific and engineering design problems as,
difficult' as any sever encountered. Numerical computation and applied
mathematics have played tin essential role in dealing with such problems.
In fact, numerical fluid dynamites was born during the 1940s for the pur-
pose of assisting in' the design of nuclear weapons, combat aircraft, and
conventional ordnance ant is now applied widely by industry

Most problems of engineering or scientific interest are too complex
to be modeled and computed quietly. Instead one considers a series
of .approximate models' and computations, each of which illuminates a.
diffsrent aspect or idealized portion of the overall problem. When used by
a skilled engineer or scientist, these mathematic.aLmodels greatly enhance
the judgment that goes into design decisions an educe the amount of
expensive laboratory) and field testing required. These Idvantages account
for the widespread use of these models.

More speCifically, mathematical models are used in engineering design
problem's in the following modes:

re" 11

-
1. To provide the first test of a new 'desitn..kdea. Beyond common

sense and simple hand calculations, the con-linker. model is usually the
cheapest and fastest rest of an idea. This test is applied before deciding
whether to conduct a series of experiments or to build-a prototype.

2. To reduce the time and cost associated with, laboratory and
field tests. Usuilly engineering problems containJevaial critical design
parameters that Will have involyed a certain amount of trial NW error in
the searlh for the optimum choice. The c iriputer is used qualitatively
(Will an increase in parameter X improve or degrade performance or
performance parameter Y?) and quantitatively (Whickvalues of .design
parameters X1, will optimize performance?).

3. To assist. in laboratory or field tests that determine model
parameters . equations. Often the model parameters; are measured

a

N.,
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only indirectly. Thus, a cot/puler model of the la 6oratay apparatus
may be nceded to extract the desired information from the observed data.
Usually these models are simpler than the complex engineering models,
and their defining equations can be solved with greater precision and fewer
approximations.

4. To replace laboratory or QM tests: Sometimeaotests are impossible
or impracticable. For example, measurement of chemical reaction rates

ft extreme conditions of pressure and temperature is Very difficult, and
accumulated experience through trial anti error is not adequate for solving
the problem of landing the Space Shuttle, for reasons .6f human safety as
well as cost.

5 To improve the education* and judgment of engineers and
Lists using the models. The mathematical modelslnd domputer solutlks
provide a vast increase in the quality and caliber of the data. Thus while
the laboratory measurement may produce some overall quantity (e.g., total.
flow in and out), the computer model might yield detailed velocities and
concentrations at eachRoint of the flow field. Because the equations are
nonlinear, it is-difficult to foresee all the relevant phenomena, much less to
uhderst.and their relative importance. Thus the mqdel becomes for users
an experimental tool that allows them to understand i problem at a level
or detail that cannot be achieved by other means.

In summary, mathematical and computer models are used because
they. are faster, cheaper, and moreeffective.

However, models have limitations. There are limitations in the
validity of the equations used, in the adequacy of the solution algorithm,
and in the size and speed of the computer. Alsq, the cost, accessibility., and
reliability of computer software and, sometimil, the cost of the computa-
tion itself can be limiting factors. Theie limitations in some sense define

'the frontiers of science, but more specifically they define the frontiers of
applied mathematical science.

probleffis of realistic interest ly.pically involve the study of divehe
physiealt.phenomena oz many scales of length in fully three-dimensional
settings. Though essential, experimental science in these contexts is ex-
pensive and difficult. The design of modern strategic weapons systems
epitomizes theie characteristics, For example, in the de4gn of a TRIDENT
submarine, the architecture of the vessel, the design& themissile, and -
the design of the nuclear Narhead all needlo ididhled and integrated,
which (eRuires many thousands of hours of cb npuier. time and stretfhts
available computing wer and modeling teclmiqueeto their limits.

Generally,. des and evaluation of new kinds ofAlefensesystems,

.

/
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ouch as remotely, controlled or robotic cies,' will require analysis of
entirely novel systens, using parallel comp er architectures among other
things. Th needs of industry for teehnological advances are similar 'and
are dominaled by *such, basic concerns as pollution, depletion of resources,
energy conservation, and efficient use of manpower. It seems safe to
say that defense and industrial needs will continue to lead numerical
corzputation'and applied mathematics into new and challenging regimes

Depending on the complexity of the problem and the magnitude of the
effort expended, models range kap excellent to merely suggestive in their

A -. quality and usefulness. in all cases, improvement of comptfterinodeling is
one of the most promising avenues to improved technoltgical performance
by our nation. ,

it 4, As one of the aims of_this report, the Committee wants to show and
7" emphasise that in the computational approaches to most of today's press-
. .ing and challenging scientific and technological problems the mathematical

'aspects cannot and should not be considered in isolation. There is a unity
among the various steps of the overall modeling procesS'from the formula.

. tion of the phi al problem to the construction of appLoPriatamathemati-
cal models, t 'gn of suitable numerical methodsrtlieir computational
implementation, and, last but not least, the validation and interpretation
of the computed results. In particular, the Committee wants to illustrate
that the step% are ipore often than not deeply interconnected and that
the computational Process may inakad be paid f` model construction.
At the sinittime, there are problem areas, such as turbulence, where cur-
rent theoretical research. may promise a deeper insight into an important
physical phenomenon. di

In line with thesems, the report uses a 'matrix approach" that
views the same problem, from three different standpoints. In Chapter 2, the
traditional approach is taken:of discussing a number of typical problems
leading/to computational modeling from the viewpoint of the scientific
or engineering discipline in which they arise. Then in Chapter 3 certain
of these/problems are touched on again, this time from the viewpoint of
the computational and mathematical difficulties that anise in connection
with them. For example, these difficulties may involve latge ,numbers of
degrees of freedom; different scaly of time and length, or-singularities of
various types. In Chapter 4 the viewpoint becomes that of the numerical
algorithms involved in the computations, such as various aiscretis
rnethalleitinliation approaches, and splitting techniques.,

cessity, many topics have been left out. The list of applications,
for example, is by no means complete, and, in fact, entire areas such,
as.reactor safety and reactor physics are not mentioned at all. Neither
did the,Committee attempt to address all computational and mathetnati-

5 '
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cal difficulties or all va& ons of numerical algorithms. The dhoice of
,topics was motivated in part 1py energy -r ted considerations, the ever-
4seaird interests of the Committee and its visers, artd.the report's broad,

01

purposf, whose, achievement lould be hindqed by any attempt to been-
cycloPedii. For the same reason, the report Is notifidttlletto be a tech-
micar summary, and this is als4 reflected in the fact that neattempt was
made ,to reference the relevant literature. Tli repoift is mainly addressed
to scientifically literate readers' who know how to consult the literature
when-necesary. : . .

-4The Committee obtained advice and technical support from many
colleigues across the country and from abroad. A list of names okall

''thostwho helped in this work is given in Appendix A, and the Committee
is extreinely graieful for all the often extensive documentations, special
write -ups, and other comments that wereceived, The report is the rault of
a study fieern by the Commit0e.in 1981 on computational mathematical
modeling incitnathernatics applied tithe physical sciences with particular
reference tbtheireedi oflhe Departrnent oEnergy (DOE). The prepara-
tion of The' refroit wasorted by the Applied Mathematical Sciences
Reseirch Progien.), of the Office of Basic Energy Sciences of DOE, and the
Committee also expresses its thanks and appreciation for this support.

As stressed iq thelVverview, the Committee found that improvement
of the mathematical and' computer, modeling of scientific problems ii an
important priority for our nation. The challenge is broad, and there are
no simple remedies for current shortcomings. Accordingly, the Committee
recommends the following:

4.14:p sllR

I Inci-eased researk ttipport for computational modelling and applied
mathematics

The technologicil challenges of the coming decades will impose new
tests of our abilities in computational and applied mathematics, and meet-
ing the tests will require increased research effort. As illustrated in this
report, the challenges are typically multidisciplinary in nature with applied
mathematics and modeling often in a central position. '

Hence, to support research in this area, multidisciplinary teams of
adequate size to make progresd on t plea problems should be
encouraged; and organizational means shou e devised to facilitate their
establishment, continuity, and success..
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2. Increased support for 'computing facilities dedicated to conipula
Wiled modeling and applied mathematics

-Ready access to. modem computing systems is essential. La6k7of
equipment is the critical tactor.most strongly limiting academic research
in computational mathemktic,s. There is need both for conveniently usabls
local equipment and for access to large-scale computers. Local facilitis
are necessary for entire problems of modest_ size and for such taskl as
code development, interactive debugging, test runs, analysis.
Large-scale computing is essential because of the size of many typical
probletbs as documented in.-this report. In this connection, the Committee
strongly endorses the findings and recommendations in the recent Report.
of the Panel on Large -Sc ake Computing in Science and Engineering Peter

D. Lax, Chairman, Nationhi Science Foundation, December 26, 1982.

7 .

S. Increased support for education and manpower development ill
computational add applied mathematics

Today there are unmet manpower needs in "computational and ,ap-
plied. mithemitics, as discussed, for example, in Science and Engineering
Education for the 80s and Beyo a National Science Foundation report,
October 1980. These needs are 0-;91 in industry, government laboratories,
and academic institutions. The critical challenges in this area call for a
focus oh quality. Specifically, the complex interdiscipfinarT nature of the
problems poses special educational challenges for students and young re
searchers, and graduate and postdoctoral fellowship support for participa-
tion in Multidisciplinary teams of the type.discussed above would also be
helgful.

A valuable aspect of such multidisciplinary education is the.interac-
tion it creates between applied mathematicians and other applied scientists
in universities, government, and industry.



2. APPLICATIONS

2.1 HYDRODYNAMIC SYSTEMS

Hydrodynamic processes touch nearly every aspect of our lives. In a report
even many times larger than the present one, we could not possibly discuss
all hydrodynamics applications. Therefore, we have chosen a few, with
the hope that they will serve to illustrate the importahce of hydrodynamic
models and to point out some of the problems that occur in developing
the models.

A large fraction of the current research. in computational modeling
it done with hydrodynamics applications in mind. The great variety of
responses that we received to our requests for material for this report
fittest to the diversity of tab applicittions. Among them were applications
haying to do with aircraft and wing design, both at subionic and supersonic
speeds; global weather prediction and local phenomena such as tornadoes;
water waves and ship hull design; piping networks, such as in nuclear
reactor or power plant design; geologic phenomena, such as glacier flow
or convection in the Earth's mantle; biological flows, such as the flow of
blood in the heart; and chemically reacting flow, such, as combustion.

The general system of equations governing hydrodynamics are.cilled
the Navier-Stokes equations. They area statement of mass and momen-
tum conservation, the momentum equation being a forniulatinn of
Newton's second law, F = ma. The Navier-Stokes equations were first
developed in France by Navier,in the early 1800s. They represented an
improvement over the Euler equitions that were first derived in 1755, in
that the Navier-Stokes equations included viscous effects that were absent
in the Euler equations. However, it was not Until 1904, when Prandt1 de-
veloped the boundary-layer approximations, that predictions of practical
viscous flows could be made. Practical solution of the full Navier-StOkes
equations had to await the development of modern high-speed compliers' ,.,
beginning in the 1940s.

Why are equations that have been known foi over 100 years so hard to
solve? The answer lies largely in their inherent nonlinear characteristics.
branediately upon looking at the equations one sees that the convective
transport terms (the acceleration in F = ma) involve velocity times its

8.



gradient. This nonlinearity is always present; and it is responsible (or
the existence of complex phenomena such as shock waves and turbulence.
In principle the Nittrier-Stokes equations alone provide a desiription of
turbulence, however, one would have to resolve.such small length.scales in
their solution that this approach is not of practical importance. Therefore,
a great many approaches to appioximating turbulence ehects are being
pursited. Typically, these models introdpee further nonlipearities into the
system.

Other problems that arise in the solution of hydrodynamic problems
are related to the disparate time and length scales that must be resolved.
In particular, convective transport is characterized by the fluid velocity,
whereas pressure waves travel at the sound speed-typically orders of mat
nitude faster thatrind speeds. At the same time the effects of diffusive
processes (e.g., s ,g stresses) are felt instantaneously throughout they
flow. In some cases the fluid can react chemically.. In those cases, the reac-
tion rates display a strong nonlinear dependence on the fluid temperature.
This introduces yet more characteristic scales into the models.

Depending on characteristic parameters such as the Reynolds number,
the solutions to the Navier-Stokes equations either can be smooth and
steady or they can exhibit regular oscillations. Or they can be completely
chaotic. It is clear that depending on the regime the appropriate solution
procedures could be quite different.

Finally a word about boundary conditions. In some problems the flow
is enclosed, and hence boundary conditions are applied at the boundariel
of -the enclosure (e.g., an automobile engine cylinder), which. can often
have a complex shape. In other cases, such as an aircraft wing, the flow
is effectively unbounded, and the boundary condition should be applied at
Infinity" (see Section 3.4). Some modeling problems arise in approximat-
ing infinity by some finite boundary. In still other problems, such as
the flow of blood in a heart, the boundary is both complex in shape and
deforms depending on the forces exerted on it by the fluid. Modeling such
a problem is clearly a challenge.

2.1.1 Wings, -Wind Tunnels, and Computers

The economics of the energy shortage implies that planes will fly at speeds
close to but less than the speed of sound, At such speeds there
"supersonic bubile" over tile wing, where the local 'velocity of the
relative to the wing is greater than the ,speed of sound. In this case the
presence of shock waves is typical and undesirable. They are undesirable

9
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because the drag can be contpUted as being propertional to the third power
of the shock strength. The goal of efficient wing design is to produce
wing shapes with no shocks or only weak shocks in this transonic region.
A general mathematical theory shows that shockless wing foils exist for
given transonic cruising'speeds., However, the problem of finding such wing
shapes is both overdetermined and extremely sensitive to small changes in
the data, i.e., "ill-posed" (see Section 3.6). The solutidh to such ill-posed
problems is still valid from an engineering point of view because operation
at neighboring off design conditions will prolluce only weak shocks and
small drag, see Fig. 2.1. . -

Using, computer algorithms created by applied mathematicians, it is
now possible to solve both the inverse problem (design) and the forward
problem (of determining the flow field for a given wing shape and velocity)
with sufficient accuracy that the use of costly ,wind-tunnel experiments can
be greatly reduced. This accomplishinent is a striking success of recent
applied mathenAtics.

The theoretical areas that have contributed to this study include the
theory of nonlinear elliptic equations, complex function theory, andpixed
problems, for which a prototype is the Tricomi, equation,

-a24/11 a20
Vax2 ,+ay2

Which is elliptic for y > 0 and hyperbolic for y<0. The elliptiogegion
' corresponds to the subsonic region, and the hyperbolic region to the su--- .

Personic "bubble." In a numerical ,Inethod for the design problem, an
analytic continuation makes the elliptic region.; hyperbolic. The resulting
equation is solved .btbe method of characteristics, and then the analytic
continuation back to real values of space is performed numerically.

:

f.rtichaos, ibrbulence, and Droplets
- ,

Thrbulencc pfoclusesaboundary layer along the trailing edge of an aircraft
wing The boundary layer degrades the Wing:petfognance and thus iaan
important part of tledesign problem. The flow behind the trailing edge of

. a,wiok contains ivortexlheet, and the roll-up of this Vortex sheet. produces
tuibalence.that ionatiutf...1. a safety hazard for small aircraft flying in the

......wake of ajinnlio jet.. Tfie aicip_4.the vortex is perpendicular to the
wing, and so the niell7up is intrinsically threidimensional. tn the simpler
case of -twoeclimensional .flOW the. vortex sheet is a line or curve in. the
planer eminatinglroin the trailing edge of the wing roil. In regions in

.
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which the line is stretching, it is geometrically stable. Insegions in which
it is contracting, it is unstable. Instead of contracting,' t forIis a spiral
vortex structure and hence is stable.

The two-phase flout of water and steam in a cooling pipe, or of oil'
and gas in an oil-reservoir production well, is also a problem in which
the geometrical ingitabillties of large-scale fluid motion are important.
Here An internal movable boundary separates regions of different material
properties. In some cases (a heavy fluid, e.g., water, falling into a light
fluid, e.g., airs the material interface is unstable against formation of
fingers. There is continuation of the nonlinear Instabilities leading to
pinchoff of droplets and a chaotic regime (mist) that can be analyzed on
various length scales, as discussed below in the case of turbulence.

During the combustion stroke of an automobile engine, the flame
is quenchedowhen it reaches the cold cyfindermalls, and incompletely
burned ,fuel present in the combustion chamber at this time contributes to

ution and to a loss of fuel 4ficiency. The rate of advance of the flame
fro the spark plug to the cylinder walls is governed by the laminar flame
speed and the rate of turbulent mixing Of these two effects, the second
is more important. The turbulent mixing is produced by vortices that
detich from the turbulent boundary layer at the wall during the intake
and compression strokes (see Fig.. 2.2). Thus, an accurate modeling
this problem requires an ability to treat a number of fluid singularities:

_ flame fronts, vortices, turbulence, boundary layers, undary-layer
separation.

The examples above dhow that singularities in fluid flow may be
geometrically unstable. When this instability occurs in a regime governed
by the scale-invariant Euler equations, the phenomenon is repeated on
all length scales and leads to chaotic oolutions. Thrbulenceovortex roll -
up, convection fingering, and droplet formation are examples broil,
phenomenon, which we now diicuss from iteneral point of view.

The Euler equations of fluid dynatnia allow intrinsic singularities,
namely ;vortices, boundary and shear discontinuity layers, *contact or
material interface discontinuities, and sbock waves (Fig. 2.3 shows a com-
putation of the stretching of a vortex tube in a periodic inviscid &W.).
Depending on the problem, special discontinuities such as flame fronts or
chemical reaction fronts (for fluid dynamics with chemistry) may occur.
Within the singularity, the Euler equations fail to be a correct description
of nature, apd cprrections (either parabolic effects or perhaps a more com-
plicated Euler equation with more state Variables) maybe required:As an
example, consider a shear layer (i.e., a jump discontinuity in the tangential
velocity component). Taking the curl of the Navier - Stokes equations, we
obtain far

12.
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V x v = vortic.ity

the equation
aw >..-8t + (ti v)(0, (01 v)v .-- v40.) g

where I, is the kinematic viscosity. To understand the significance of this
... .

equation, we specialize to two dimensions. Then w is a vector in the z
-4 direct*, (0, V)v, and'

,
1 4-0) V)

dt. . ..

is the total, or Lagrangian time derivative, so that the Navier-Stokes
equatiofi says that voracity moves by passive transport plus diffusion.
The extra term, (., V)t) above, indpces vortex pr4duction as a result of
the stretching of vortex lines in three dimensions' and is important for
considerations of geometrical stability as discussed below. In summary,
the diffusion, term v4iv ot the Navier - Stokes equation is responsible for
the vorticity leaving a boundary or internal shcar layer and diffusing into
the rest of the flow. Without viscosity there is no mechanism for voticity
to enter (an initially irrotational) flow region. The Prandtl boundary-layer

,
FIGURE 2.2 Stretching of a flame by avortical structure. Such stretching
is important for the efficient °petition otenginqs; it enhances ing by
increasing the area of thelame. (From A. J. Chorin, Flame ad ion and
propagation algorithms, J. Comput. Phys. 35, 1-11 (19130).1
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equations area special version of the Navier-Stokes equations (scaled in the
Airmal direction, so that, diffusion occurs onlyikormal to the boundary).

Often the fluid singularities are geometricaly unstable. They may
bifurcate- in a predictable fashion, developing "rolls' ouette .flow) or
"As' (Renard flow), or they may become irregular and highlir Convoluted
with a tendency toward chaos, known as turbulence. There is no scientific
reasonto question the4alidity of the Navter4tokes equation as a micro-

.-

scopic description of physics even into the turbulent regime. However, its
usefulnissas a description of fargeocale fluid motions in the turbulent
region can 'be questioned, and some other description of fluid flow, such as
a random ensemble of interacting vorticesh.q6* be more effective.

Where areihree energy or length soles' Which quite distinct charac-
teristictetstic phenomena dominate. 'The smallest length scale is that on which.'
energy dissipation dominates. On this length scale, the Navier-Stokes

0 equations are the correct equations. The viscosity is large, Calling velocity
fluctuations to be rapidly smoothed and solutions to be (locally) "laminar." .

Since smoothness of solutions is a locak property, we may conjecture that
arsolutions of the Nivier-Stokes equations should be smooth for.all time.
This conjecture is the major unsolved itroblt_m of the .energy dissipation
range: It is khown that solutionslirith smooth data will remain smooth
for a skirt 'Mine, and solutions with smooth and small data will remain
smooth for all tirae. Both statements exclude turbulent regimes.

For weak solutions,' Leray showed that the set of times t for which

r tr(x,t) fails to tsmooth is a set of Measure zero. Recently .considerable
progress has been ,niade in restricting the possible singularities of the
iNavier-Stokes equations. ristNcs,

Fr longer length scales, viscous effects do not lay a.,,major role
and the fluid' flow can be described by Euler equation lloweier. this.
simplificatiop gives riseto probleing. The problems arias 'perk techni- !,.
cal but reflect the intrinsically complex phenonienology of uid dynamics.,
The Euler equations are scale-invariant. Thus if v.= v(F, t) is a solution, so
is v Aqx, at). The inertial range is the'set of length scales dominated by
scale-invitiant, unibersal physics. 'Whatever phenomena can occur (e.g.,
vortices) will be repeated on g length scales in th(inertial range. 'lig
inertial rands limited at the ithalipr.endby viscous dissipation. A3 the
larger end, iy.is limad Wthe spet.41 bohndary ihd_ initial conditions
imposed on the flaw, which result In speciar(nonuniversal),flow behavior.

The, inertial region is doniinked by ,scale - invariant behavior. ,,There
is a flow of energy from largscale motions to smallen ones, (the "energy
cascade"/. This cascade seems plausible on physical grounds as a the of
third law of thermodyn'amics but does not have a rigorous mathematical
status. It scan be explained as a consequence of the,geometrical instability'
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of vortex lines and Aka? layers. Ai these go-unstable, they generate
(smaller) new vortices'and voracity. .

The energy cascade leads tb's dimensional analysis &characteristic
exponents and, to the Kolmogoroft5/3 power law

..`"
BOO

for the energy distribution as /function of wave number k. *discussion of
the experimental data in connection with the Kolmogoroff theory has the
vortices, which occur on all length scales in the inertial range, as fillingr space. Actually, it may he better to assume the ccintrary:. vortices of
a given size fill only a small part of space. Then the in-faller vertices,
which are driven by the largo ones, will occur only within the region of
these larger vortices, and in fact only within iC small part of this region.
This is the notion ofilatennittency. It leads to the idea of a singular set
for solutions of the EU er equations, which is a Cantor set of fractional
dimension less than .

Intermittency leads to modifliatiOns in the Koltnctoroff expcinent
and to a renormalization group type picture of turbulence. Numerical
calcidations to determine intermittency and energy cascade exponents
have been performed. The calculations start by tracking vortex lines in
a fluid &Nand proceedjhrough a sequence or renormalization group
length aisle transformations $o focus An the singular Cantor set within
tie solution: "

In most problems, the inertial region contains length too small to be .
'used directly in a fluid calculation. Its importance liesin its role of fixing

*

parameters inch as an effective or eddy viscosity, which-are then used to
determine the large-scale motion of the fluid. The inertial region is not
particularly well understood from either the theoretical or numerical point
of view. t _ .

The large-scale fluid motions are produced directly by the initial and
boundary conditions imposed on the flow. These motions are strongly
problem dependent. Numerical calculations and experiment are important
tools in their study as is the detailed analysts of simplified and idealized
flow configurations. An important theoretical question is the evolution of
initially unstable flow configurations. This question arises in connection
with the...onset. of turbulence and in connection with the energy cascade,
where large-scale vortices excite and drive small-scale ones.

-In some problems (supertritical turbulence), the instability in an ini-
"NA tially laminar flow is nonturliulent but arises from! the bifurcation of a

fixed point. Further bifurcations-lead to higher-rfimensional tori, and a
general theory explainsithat generiCally the flow on the (sufficiently high-

. dimensional) torus. has .a strange attractor as its limit set and that this,
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strange ittractor is chaotic in nature. This picture has been analyzed in
the context Of the Lorentz flow, which is the truncation of the Navier-
Stokts equations to include only a small number of modes., The strange

. attractors found theire have a Cantor-like structure. An example of super-
critical turbulence is Couette flow.

Subcritical turbulence occurs when the finite (noninfinitesimal) per-
turbation is less stable than the infinitesimal one. Then turbulence occurs
below ehe critical Reynolds numbers at which the linear theory shows

-instability and may go directly to turbulent behavior without a discrete
".1 sequence of nonturbulent bifurcations starting with laminar flow.

2.2 CHEMICAL SYSTEMS AND7COMBUSTION

. . .

FrOm the. invention and manufacture of an enormous range of syn
thetic materials (e.g., ptastics) to the refining aged burning of fossil fuels,
chemistry and chediical processes affect nearly every phase of our liyes.
Naturally it is important to understand pad control, as fully as possible;
many of these complex chemical processes. For example, we seek to find
new and better materials, to reduce costs and to generate energy more"
efficiently and with less pollution. Appligl mathematics and computa-
tional modeling Continue to play a valuable role in meeting these goals.

One of the oldest chemical'processes harnessed by man is combustion.
The' successful modeling of combustion proVides an extraordinarily rich

_source of challenges for the computational mathematician. Frequently,
combustion models have to incorporate all the difficultiesi of complicated
fluid meehMics coupled with complex chemical kinetics. The challenges
include developing algorithm ko ensure accuracy and to reduce computer
time and storbge. The modeler also seeks appropriate simplifications that
take advantage of any special attributes of the governing physics in order
to gain more efficient computation. Since combustion contains a wide
range-of chemical processes, we use it here as an example to illustrate
points of mathematical interest in general-chemical sybtems.

Even within the topic of combustion there. is an enormous diversity
of. applications. The first topic that probably comes to mind the model.
ing of internal combustion engines, and this is an importantapplication.
Modeling is a.part of ongoing research to design new types of engines (e.g.,
direct injected stratified charge);.to improve,fuel economy, to utilize alter-..
nate fuels (e.g., alcohols), and to reduce pollutant formation. Similarly;
research for other combustors, such as gas turbines or power.plant boilers

e
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benefit from computational models., Still there are many other, important ',ye
combustion problems Hide froni power generation. For example, the field
of fire research is dev d to problems.such_ as howl fifes spread in'build-
ings and the behavior 6/ious fire-mum:boil materials. An important .

current topic in reactor sa y is the characterizi,tion of hydrogen-air fires
such as occurred in the Three Mile Island accident. Another public safety
question deals with the problems of fire and explosion associated with
a liquid-nit-oral-gas tanker accident: - Problems of burning coal and coal
gasification are also topics of great current interest.

Perhaps tie simplest chemical procesi from' a physical viewpoint is
chemical equilibriati. At equilibriirm ail, chemical reactions are issumell
to hare gone to ctimpletionand the species concentrations ,are such that
the mixture is in a minimum free-energy state. The mathematical com-
putation of the chemical equilibrium state is posed as a constrained mini-
mization problem. In combustion the etnilibrium composition corresponds
to the 'products of combustion long after the combustion is complete.
Physically'', the next step in complication comes w,ith the inclusion of finite-
rate chemical reactions. Here the mathematical,prOblem is one of solving
systems of stiff ordinary differential equations (see Section 3.2 for a discus-
sion of stiffness). Models- of shock tubes or flow reactors, which are used
frequently to probe fundamental questions in chemical reaction kinetics,
fall into this class of problems. The physical situation is complicated fur-
ther by tie inclusion of fluid motion and heat and miss transport,. In this
case the mathematical problem is one of solving systems of parabolic'or
elliptic partial diff'e'rential equations.

Consider the internal'combustion engine as an example. What are
the things that we might hope to learn from modeling? Ultimately, we
hope to influence geometrical considerations such as combustion chamber
shine and component placement (e.g. valves, spa Tugs, fuel injectors).
We also hope to provide a fundamental understandin , on the molecular
level, about how fuels are oxidized and how pollutants are formed. With

, '' such understanding we can suggest ways to alter the cdmbuttion process
to advantage. Iri the past only power and size were important consider&
tions, and engine optimization could proceedmostly experimentally. Now,
however, there are too .many parameters to optimize simultaneously, and
computational modeling is increasingly important.

. Because of.fimitations in available computational resources, two tacks
are taken in engine modeling. One is to consider mostly -hydrodynamic
effects. Here the modeling of boundary shapes and component placement
is of *primary importance (e.g., How should the-piston face be gaped,
and where should the spark plug be placed?). CoMplex domains and two-
and three-dimensional erects are important. The models must incorporate
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.FIGURE 2.4 Velocity vectors computed in a direct-injection, stratified-
charge engine at a position near top dead center. The combustion takes
place in a swirling environment in a 'cup-like region machined into the
pistott Several vortices are seen to develop in the cup. [From T. D. Butler,
L. D. Cloutm,ab,J. K. Dulcowicz, and J. D.(Rarnshaw, -Multidimensional
numerical simulation of reactive flow in,internal combustion engines, Prog.
Energy Combust. sci.4a9,3
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turbulent hydrodYliamic effeCti .04 sometimes phase-change processes,
such as fuel spay' inj*tions: The chemistry is usually simplified in these
models.becauselt is not feasible to consider both complex chemical kinetics
and hydrodynamics on current computers. Figure 2.4 shows the velocity
vectors that result from a two-dimensional simulation of a direct injected,
stratified charge engine. This is-a riew engine concept that is being studied
in a U.S. Department of Energy-sponsgred cooperative prof= including
General Motors Research Laboratories, Princeton University, and three
National Laboratories.
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In addition to the hydrodynamic aspects of engine combustion, there
are important unanswered questions about the chemistry. Therefore, the

4 second tack is to consider simplified hydrodynamic situations, such as
lanipar flames, and treat the chemical kinetics in great detail. 'These
models address issues such as ignition phenomena and pollutant formations..
Figure 2.5 shows some species profiles computed in an atmospheric pres-
sure acetylene- oxygen premixed flame (acetylene is an important reactant
in soot formation). This model used 30 chemical species and-103 reactions.
The results were computed Using an adaptive 'mesh placement strategy,
and they resolve detailed structure within the flame. Note that the flame
is very "thin": its thickness is on the order of one millimeter, while com-
bustion chamber dimensions are on the order of tens of centimeters.

An interesting aside is to note that these two approaches to combus-
tion modeling match corresponding approaches to experimental investiga-
tion. That is to say, it is not possible to measure or compute minor
species concentrations 1111 complex turbulent flows, whereas it is possible

, to coo so in laboratory flames.

.
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FIGURE 2:5 Species mole fraftton profiles showing the internal structure
of an atmospheric-pressure stoichiometric_acetylene-air flaine. (From J. A.
Miller and-R. J. Kee, Sandia National Labortitories.1 4, .
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The inherently disparate time scales of chemical reactions, in other
words their stiffness, contribute to the numerical difficulty of solving com-
bustion models (see Section 3.2). The inherently disparate time and length
scales for fluid transport, heat transfer, and chemical reaction are respon-
sible for the presence of steep fronts in the solutions. Also, there are many
degrees of freedom in the system of equations. The number of governing
partial differential equations is large because a transport equation must be
included for each species involvedin the chemical reaction set. A system
of 30 to 50 species, involving 100 or more chemical reactions is typical even
for fuels as simple as methane. Also, for practical combustors, the model
must ultimately include complex three-dimensional geometries. Because
complete models of real combustors are too large for present computers,
ap important challenge is to simplify the models (including the physical
assumptions) to a tractable level. In addition to these problems, there are
potential difficulties related to scaling. The temperatures are on the order-

. of 103 K, while some species can have important effects even when their
mass fractions are as low as 10-10. Moreover, before the computation,
the peak mass fractions of the various species are usually.known only to
within several orders of magnitude. "-

Many of the challenges of combustion modeling have been met by,the
numerical-analysis community', however, many more wait resolution. For

example, for systems of ordinary differential equations tand
to treat the stiffness that results_ rom the 'complex chemical kinetics by
using stable implicit methods. However, for systems of parti`41 differential '
equations the application of these methods leaves many open questions
about holy to treat the linear algebra and how to compute the error
estimates. Operator splitting methods are important in rendering the
linear algebra tractable for large problems. Stiffness also occurs in low-
Mach-number flows due to very high velocity, but low-amplitude; pressure
Waves. Usually, we do not care _about the details of these, waves, but
they can Unreasonably limit the size of the time step in explicit methods.
Subcycling methods, rather than implicit methods, are sometimes used .
to alleviate this problem. Subcycling is a form of operator splitting (see
Section 4.7) in which the iivicid hydrodynamic equations are solved with
small time steps, while the yiscous parts ofthe eqtiations and the energy
and mass transport equations are solved using. a much larger time step.

Another particularly important topic in combustion mociels,concerns
the adequate resolution of localized behavior such as flame frOnti. Olie

., line of research considers.adaptive mething strategies in which a spatial
mesh network is adjusted dynamically so as to capture the local behavior
accurately. Other work considers front-tracking methods, where the flame

. 1
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is treated as a local discontinuity and conservation equations connect.both
sides of the front and predict its movement. -

Combustion models must account also for fluid turbulence, an area
where even the underlying physics is not well understood. Here, computs7
tional models such as the random vortex method are proving valuable
in simulating turbulence effects, especially in the investigation of large -
scale turbulent eddies, the so-called coherent structures. We classify these
methods as "problem-dependent methods" because the physics and the
numerical model depend heavily on each other (see Section 4.9). Recently,

the-random-vortex-methud-Irss-been combined with a flame propagation
algorithm so that combustion events can be modeled. Figure 2.6 is a se-
quence of computer plots that shows the vortex velocity fields and flame
fronts as computed from a model of turbulent combustion behind a step.

2.2.1 Asymptotic Analysis

We mention here that applied analysis (in concert with computation) is
valuable for many problems in combustion. Asymptotic .methods, for.
example, can actually take advantage of phenomena such as steep fronts.
They can thus be used to provide insights and to suggest approximations
that help to reduce the complexity of the numerical models and thus render
them more tractable. An important aspect of the asymptotic analysis is
the possibility of considering the dynamical stability of flames. Such work
may lead to fundamenial understanding of such phenomena as the onset
of turbulence.*

Asymptotic methods exploit the fact that the overall activation energy
of the chemical reaction is typically large, a well - known consequence of
which is that flame fronts are very thin. That is, chemical reaction is
only important in a thin region where the temperature first appro'aches
its burned value. On the unburned side of this region, chemical reaction
is negligible because the temperature is too low, and on the burned side,
it is negligible because the reaction has essentially gone to completion,
depleting the unburned fuel. Mathematically speaking, this thin chemi-

,eally reactive region may be thought of as an internal boundary layer,.
separating the unbuined and burned gases. In the limit of asymptotically
larmactivation energy, the boundary layer is infinitely thin, and we may
use asymptotic matching principles to connect, or match, the solutions in-
side and outside the bohndary layer. The result is a flame sheet model in
which the solutions on either side of thoaheet are connected by nonlinear
jump conditions that depend on local conditions at the,front. Though the

22

2.9



resulting problem is still nonlinear, it.represents a significant simplification
over the original problem with Arrhenius kinetics and is in fact equivalent
to the original problem in the asymptotic limit of infinitely large activation
energy.

The first 'studies using large activation energy asymptotics began to
appear about a dozen years ago and were noteworthy for providing for the
first time analytical flame speed formulas for a steadily propagating planar
flame. The most significant results to come out of this approach to date are
the predictions of instability and bifurcation phenomena, which describe
cellulai and pulsating modes of flame propagation. These more complex
solutions branch, or bifurcate, from the basic solution (in this case, a

FIGURE 2.6 A sequential series of computer plots displaying velocity
fields and flame fronts in turbulent combustion behind a step a`t inlet
Reynolds number of 10000. The combustion itstabilizecl by a recirculation
region behind the step. The unburned gas is a mixture of propane and air
at an equivalence ratio of 1/2. (From A. F. Ghoniem, A. J. Chorin, and
A. K. Oppenheim, Numerical modelling of turbulent flow in a combustion
tunnel, Phil. Mins. R. Soe..London° Ser. A 304, 303425 (1982).]
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steady, Lamar flame) as one or more parameters exceed critical values for
instability of the basic solution. Their significance lies partly in the fact
that they represent intermediate modes of propagation of the flame in its
evolution from a laminar to turbulent form of propagatiti. Experimental
observations of these transitional modes in their pure form have recently
been reported, and the theory thus identifies critical parameter thresholds
that separate one form of flame propagation from another. A number
of bifurcation analyses using nonlinear perturbation methods have been
successful in characterizing these nonsteady and/or nonplanar flames for
parameter values near the instability threshold. However, numerical ap-
proaches may be used to great advantage in describing these transitional
solutions when parameters far exceed their critical values for instability of
the basic solution.

2.3 PLASMA PHYSICS

Controlled nuclear fusion provides a possible Jong-range energy source.
As currently conceived, a fusion device must contain a deuterittin and
tritium plasma for a sufficiently long time for net energy production. The
confinement may be effected either by magnetic fields or by simple iner-
tia effects Inertial confinement Of a pellet, coupled with laser or particle
beam heathig, is a distinct possibility, although the bulk of.the world
fusion program centers on magnetic confinement of a plasma. The un-
derlying problems in magnetic confinement are the determination of the
equilibrium, stability, transport, and heating properties of plasmas under

r realistic conditions. Numerical modeling and computation represent major
tools in this study. In recognition of their importance, th'e Magnetic Fusion
Energy Computing Center has been established at Lawrence Livermore
National Laboratory in Livermore, California. This Center is the third
largest scientific computing center in the United States, and its sole func-
tion is to provide computing capability to the scientists and engineers in
the U.S. fusion community. Fusion plasma physics spans a diverse
tion of fields, with significant efforts occurring in the fields of Hamiltonian
particle.dynamics, statistical inechinics, kinetic theories, and dissipative
and nondissipative single and mpltifluid models. The complexity of the
problems involyed makes computation an integral part of the research and
development program for fusion.

Controlledfusion confinement experiments have indicated that, even
in grossly stable configurations, fluctuations may play. an important role in
determining energy and particle transport. Thus, an understanding of the
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nonlinear behavior of various plasma models is fundamental to describing
such

id
h behavior. For both ideal magnetohxdrodynamics, a fiiii odel, and

the Vlasov-Maxwell system, a kiabtic Model, linearized equ ns have
been studied extensively. These analyses are appropriate for cribing
small-amplitude deviations.. from a quiescent equilibrium but omit the
effects of mode-mode coupling and the onset, properties, and evolution
of turbulence. The development of a self-consistent model of plasma
equilibrium with fluctuations, stochastic particle and m etic-field-fine
behavior, and resulting transport will continue to be an im ch
area.

,

Plasma fusion applications present many problems in which the equa-
tions of Hamiltonian .dynamics appear. These systems describe single-
particle phase-space trajectories in the Vlasov-Maxwell theory. of colli-
sionless plasmas. in addition, the trajectory of a magnetic field line in
a toroidal system is described by a nonlinear Hamiltonian. Thus, the
question of the existpnca and construction of adiabatic invariants, ex-
plicitly time-dependent or not, is or fundamental importance for these *s-
tems. Significant progress in this area might be made by combining ideas
from modern topological dynamics, numerical simulation, and perturba-
tion analysis. Fbr example, if magnetic field lines are ergodie throughout
a volume rather than lying on closed invariant surfaces, akis given by
the Kolmorogoff-Arnold-Mpser theory, then, owing to electron streaming,
the thermal conductivity *Rhin this volume will be very fast. Thus, such
suestions,as when ergodicity arises and what the properties pf Hamiltonian
dynamics area under ergodic circumstances impact strongly on these ap-
plications.

Since computational modeling of the full three-dimensional plasma
equations is out of the question, current work utilizes a range of different
compromises, simplifying to different degrOs.either the physics or the
geometry to obtain a number of computationally tractabliproblems, each
of which illuminates in a distinct fashion, a different aspect of the full
plasma problem. in spite of these difficulties, the computational approach
is a major route to progress on the problem of controlled fusion. The
reason is simple. Experiments are expensive'and must be supplemented to
the maximum extent possible by theory. The theory Is highly complex and
nonlinear and is obtained by a combination of numerical experimentp and
physicalintuition. Clearly improved computational methods are one of the.
methods through which progress is achieved in this area. Development of
more powerful computers will also be required, as it is hard to believe that
'smart algorithms will by themselves suffice:
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2A- PARTICLE PHYSICS

. ,

The problem is to find the equations that describe the elementary particles
of subnuclear physics. This problem is among the most difficult to have
been considered seriously by science in this century. In recent years there
have been significant gains in our understanding of the mathematical
structure of the equations of quantum field theory. An analysis of the
mathematical existence question for the quantum 0 equation

a2A ...

v ao+nogs+x03 .0
ao

shows that in space-time dimension d < 3, the theory exists, whereas in
d> 5, there is no such theory (as would be given by standard methods)
'except for the trivial case X = 0. The method- of proof suggests nonex-
istence for the physical case d = 4 as well and offers confirmation from
the side of exact mathematical analysis of ideas Wvanced by tEeoretical
physics. This mathematical confirmation is much more compelling than
any confirmation yet offered from experimental physics.

The 0 model is "near" Co the Sine-Gordon equation, which is com-
pletely integrable. Among recent results are the discoveries of a large
class of stable, localized (in space), periodic (in time) solutions (analogs
of the Sine-Gordon breather) and of the existence of breather formation
resonances in soliton/antisoliton scattering. There are many related' chal-
lenging problems in nonlinear ruathematids and dynamical systems theory.

The problem with the i equation in d= 4 dimensions is one of several
reasons for considering in its place quantum gauge fields. A standard
approach to the quantization problem reduces it to the existence question
for a singular non-Gaussian functional integral'over an infinite-dimensional
space. In the case orgauge fieldOthe gauge potentials form an infinite-
dimensional affine space A on which the group § of gauge equivalence
ac ts. The 4ctional integral is only defined over the infinite-dimensional
manifold

At =- A/ § .

This manifold is not flat. The Integration over /4 has been shown by exact
mathematical analysis to require introduction of coordinate patches. Only

-locally, within a single coordinate patch can /4 = A/9 be regarded as an
open subset of Euclidean (Hilbert.) space.

One of the methods proposed for understanding integration over, X is ...
to understand the critical points A e M. This question leads tq a study of

. classical solutions of the Yang-Mills equation and a reduced form of this
II equation, called the self-dual Yang-Mills equation. Here we are looking,at
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a specific nonlinear elliptic equation in d = 4 dimensions.' A remarkable
analysis has led to a complete classification of its solutions, using methods
of geometry, topology, and algebra (fiber bundles, the index theorem, and
algebraic varieties).

The development of tumerical methods for the study of quantum
fields is in its infancy, mainly because theproblem is to a large extent out
of range of present-day computing machines. Among the methods used
on this problem, we mention Monte Cat. integration over a space-time.
discretioed version of )4 = A/9. The discretlzed problem is called a lattice
gauge field, and even after discretization, the dimension of M is too high
to allow evaluation of integrals by !Erect quadrature. A second approach is
to generate series coefficients from cluster expansions of statistical physics
and to reconstruct the desired function space integral from a Pade analysis
of thb coefficients. Other attempts-have been based on finite elements and
on the renormelization group. It may be that a collaboration of numerical
analysts with mathematical or theoretical physicists on.this problem would.

2.5 C01115ENSEIY-MATTER PHYSICS.

41

15.1 Statistical-Physics

. -

In this subject, the equation of state, transport coefficients (pressure,
viscosity, and thermal conductivity, for example), and other macroscopic
properties. of matter are related to and derived from intermolecular forces.
The area has diverse anlimportant applications, ranging from metallurgy
to polymer chemistry to semiconductors and is an active area of research
from the points.of view of theory, numerical methods, and experiment.
Here we limit ourselves to the two Mathematical aspects of this subject:
mathematical-theory and imniericaltmethods.

The equations of statistical physicskivolve a large or infinite number
of degrees of freedom, and solthe mathematical theorrof use here is
analysis over infinite-dimensional spaces. Almost the same mathematical
structure arisesas in the study of quintum fields, the relationship between
the two being that a quantum field is a continuum limit of a statistical
physics (crystarthattice) model.

.,. In a small class of models, including the two-dimensional king model,
exact solutions are known. A larger but still restricted class of models has
been analyzed mathematically with respect to qualitative behavior. One
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FIGURE 2.7 Monte Carlo simulation of a kinetic Ising model compared
with x-ray and neutron defraction measurements on an alloy of 60 percenfk
gold and 40 percent platinum that has been heatedand then quenched to
60 percent of its critical temperature. The abcisss is a reduced momentum
transfer, and the ordinate is a reduced scattering intensity. (From M. I-j.
Kalos, New York University.)

issue recently addressed in this work was the stability of surfaces, at is
relevant to the iroblem of crystal growth. Another is the effect of aperiodic
or random crystal structure on bulk materiallfroperties. A striking recent
development was the mathematical demonstration of the dipole binding
(Kosterlitz-,Tiiouless) phase transition. . . .

The numerical methods for statistical physics are.basically of three
types: In molecular-dynamics calculations, one takes a large number of
particles and follows their motion by integration of the ordinary differential
equation v . . - .

0 d2xi -
- . rftd7r =Fi(z, '- xi), i=1,--4N

. .

defined by the intermolecular forces F. This methOd is ,"exact' in its ,,
treatment of intermolecular forces, to the extent that they are known ;

4

we and that quantum effects can be negicted, but it-is approximate in its
treatment of statistics, since there are computer-dictated limits on the
number N of particles that can. be included. ,

s-, _ . .. .
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Next we mention the method Qf series expansions, applied to the
calculation of the equilibrium distribution di..) and the partition Z, which
typically has the form

en;) ds
t

and -)

Z fdo.t

ao

where V is the intermolecUlar potential.pnergy, Then thermodynamic
functions such as pressure einerge as derivatives or logarithmic derivatives
of Z with respect to the parameters (e.g., in V). If the potential energy

V(s) E fc?)

. '<3
;

is a sum of pair potentials U then the identity
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FIGURE 2.8 Energy of liquid helium as a function of density. The broken
line and points with errors show results of the Monte Carlo.quadrature of
the many-body nonrelitivistic Sehri5dInger equation. The solid line is a fit
to the experimental data..(From M. K Kalos, Nem+ York University.)
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substituted in the definition of du., above yields an expansion that is rapidly
convergent, where

, leu lle.<1,

.,

i.e., where U-44.0. this is the region of noninteraction, and so series ex-
, pansionssare especially useful to give weak corrections, for example, real

gas corrections to an ideal gas. The expansions appear to converge up
to critical points and with considerable work have been used to extract
information on the equation of state in that region. . .

. Monte Carlo methods are used in the quadrature of very large-
dimensional spaces, such as the determination of did) above, as well as in
the direct simulation of stochastic systems. These methods. have become
an experimental tool of mathematical physics. In studying the qualita-
tive and' quantitative behavior of a highly idealized model such as the
'sing modelio equilibrium or very far from equilibrium, or of lattice gauge
theories, chhtinuom and lattice models of polymers, and atomic models of
quantum liquids and solids, one can carry out numerical studies in Which
the high-dimensional (i.e., many-body) character of the" problem is not
distorted. .

In application to the calculation of the equilibrium distribution dw,
the essence of the Monte Carlo method is as follows: Starting from an ar-
bitrary point in a given ensemble, one modifies a single particle position z,
"at random" but usually so as to lower the potential energy V, oceasknally
so as tti raise V. After enough such elementary steps, convergence to the
distribution dw is obtained. As described here, the method is extremely
simple, and complications arise from the necessity to obtain convergence
in a reasonable time for realistic problems. . .

- Perhaps the most significant success has been' in the microscopic
theory of classical fluids, where Monte Carlo modeling has provided the
"experimental* basis for the accurate expansion in leu if mentioned
above. Another conspicuous success is the extraction of critical exponents
by joining ideas of the renormalization group to Monte Carlo simulation.
Figure 2.7 shows Monte Carlo simulation of a kinetic Ising model compared
with scattering measurements on a real alloy. .

Figure 2.8 shows how Monte Carlo methods applied-to the many-
body nonrelativistie Schrodinger equation give a quantitative account of

. the energy of rend) liquid helium as a function of density.

s

.
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2.6 GEOPHYSICAL-AFPLICATIONS

Out of a wide range of geophysical applications we limit ourselves here to
threemodeline problems in connection with the discovery and production
of petroleum Mathematically the discovery process is an inverse problem
(see Section 3.6)that of constructini geologic maps using seismic signals,
which in turn are generated by vibrations or, explosions at the surface of
the Earth. As the signals penetrate the Earth, they cross layers of differing
density: This causes reflected signals to be returned to the surface, where
they are then recorded and analyzed. The raw data are very noisy, owing
to irrelevant near-surface density fluctuations. The noise is removed by
averaging signals from neighboring receptors or from neighboring source
locations. Then multiply:elections musne subtracted, and a co n-
sation (called normal moveout) must be introduced for effects o onver-
tical signal propagation. Reflection from nonhorisontaliaxers rates
complicating shear waves as well as pressure waves. The subtraction of
multiple reflection signals can be based on Fourier analysis an a half-space
and a Wiener-Hopf factorization.

The correction for nonvertical .signals can,* based on a reduced
Helmholtz equation, (A + k2 + v)u 0, but in brder to focus on sig._
nals moving in only one direction (either up or down), one takes first: a
squari root and then a power series expansion of the square root. This
process is, known Is the pirabolic approximation, and leads to the familiar
Schiodinger equation. Alternatively, the analysis can be based on ray
tracing and the solution of ordinary differential equations. The numerical
problem is to implement these step? efficiently, in view of the large amount
of data to be analyzed.

The production problem is to describe the flow of oil, water, chemipals,
and/or heat in a porous sandstone layer. The equations to be solved
are a coupled system of nonlinear parabolic equations. Generally the
equations describe mass conservation of individual' species, and typically
some are nearly elliptic whereas others are nearly hyperbolic. In the
hyperbolic equations, coherent shock and rarefaction waves describing oil
bankt, absorption fronts, and flame fronts may form (see Sections 3.2 and
3.3). Depending on a dimensionless numbet known as the mobility ratio,
heterogeneities, and geometrical effects (Convergence versus divergence),
the fronts may became unstable with respect to the formation of fingers
(see Section 2.1).

Critical issues in this problem are the of solution, otlarge spine
linear systems arising from space and tinie, discretizations and the con.:
trol of numerical instabilitieS in the solution methods. The4hysical in-
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FIGURE 2.9 Successive time steps in the movement of an oil-water in-
terface toward a ptoducing well The view is a vertical cross section,
with the well located on the left boundary of the computational region.
The *stability is caused by three factors: by a heterogeneous conducting
channel near the bottom of the reservoir, by the converging cylindrical
flow - pattern near the producing well, and by the better flow properties of
the less viscous displacing fluid (water). ft-tom J. Glimm, B. Lindquist,
0. McBryan, and S. Yaniv, Statistical fluid dynamics the influence of
geometry on surfs; instabilities, in Frontiers in Applied Mathematics, Vol.

.1, R. Ewing, ed., AM, Philadelphia, Pa. (to be published)"

stabilities mentioned above are controlled `by the use of heat (to take
the oil flaw more easily), or the use of a heavier pushing fluid (polymer-
thickendd water in place of water or water and CO2 inplate of COO. .

e third modeling problem we discuss is the process of lifting the
oil the surface of the Earth. Because of the sudden drop in pressure,
co siderable gas will typically come out of solution, and the resulting two-
phase mixture is in the droplet or mist regime mentioned in Section 2.1.
In contrast to the case of reservoir flow, even the basic equations for two-
phase flow in a pipe are-not well understood.
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2.7 METEOROLOGY

Accurate forecasting of the movement of large-scale weatlsr patterns is
clearly an important problem. Here we mean the tracking of highs and
lows on the order of 1000 kilometers in diameter. In addition, we are
also concerned with the prediction of cloud patterns, precipitations, tem-

verature, and other elements of the weather in as much detail as possibV
Global predictions of the atmospheric Bow are now made routinely at as
many as 12 levels in the troposphere and stratosphere: .

By studying dynamic models of the atmosphere, estimates have been
made of.the sensitivity of the atmosphere to small perturbations, often ,

. quantified in terms of the error doubling time. Viso initial states of the
atmosphere differ by random variations of 1°, then it is found that the
resultant states will differ by 2° in about 3 days and by about 4° in about
6 days. Hence, meteorologists have said that the weather' is unpredictable
for periods of more than 2 to 3 weeks. But, the forecasters are still far__
from heing able to iredict.the weather accurately for even 1 weelt The
best results are currently obtained by the European Centre for Medium
Range Weather Forecasting, whose 4-5 day forecasts are currently superior
to those of the U.S. National Weather Service.

The accuracy of short-range predictions is limited by four somewhat
distinct factors:

1. Initializations: (a) The accuracy and completeness of obsertational
data and (b) the compatibility of these"data with the mathematical model,

I which is, of course, a simplified representation of the atmosphere.
2. The limited number of grid points or spectral components used

in the truncated, i.e., numerical, model as a result, of limited computer
power. .

3. Missin or severely truncated physical processes such as cloud
dynamics, pro r representation of turbulence, and radiation fields, lead-
ing to inad acy of the mathematical model dsscribing the atmosphere.

4. The inherent finite limits of predictability of certain types of non-
find,: dynamical systems such as the atmosphere. (Compare the previous
paragraph.) ,

p
11114

The study of problems related to the reduction of the influence 'of
these factors is at the heat of.most research that is directly related to the
improvement of weather" prediction.

The sparsity and inaccuracy of obiervational data 11(a)1 are being
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Partially overcome by the use-of weather-observing satellites. Concerning
1(b), considerable researci is currently directed toward the analysis'and
filtering of the observed data,so as to makelhem compatible with numeri-
cal models. Items 2-and 3 Litre closely relatedr:since, in a general way, the
lack, of a complete representation of all physical processes is related to the ,

incomplete numerical resolution of the mathematical model. Such physi-
cal processes include clmid dynamics (and the associated cloud physics),
boundary-layer dynamics. (including detailed features of the terrain and
local heat, moisture, and dust sources), and detailed radioactive processes.
In item 4 a new concept, "finite limits to predictability" has emerged
froitithe work of E.N. Lorenz, namely the idea. that the atmospherkand
perhaps certain other dynaniical systems max have finite limits of predic-
tability regardless of the accuracy and detail of their initial conditions
and the accuracy with which they are computed. Lorenz concluded from
a simplified model-that hydrodynamical systems with an energy spectrum
(in the customs' sense) having. slower-law exponent greater than 3
(e.g., 5/3) should be Unpredictable *detail after a finite time. He sug-
gests a time of about 15-days for the atmosphere, whose large-scale energy
spectrum seems to have an exponent of. about 2.8, with smaller scales
(i:e.rieas than say, 29-1m) having the 5/3 power law associated with
horritigglieous turbblence. This question of predictability is clearly related
to that of the stabilityk hydiodynamical.systems and to modern theiries
of bifurcatibn and chaos (see Section 3.5).

A large domponent of atmospheric research is concerned with topics
that have little direct application to forecasting. Their motivation may
he in basic scientific inquiry or in applications to other disciplines,
radio-witty transmission for satellite ,cominunications. They may involve
the study of fundamental hydrodynamic phenomena or other physical
processes several steps removed from:specific application. In all of these
stAdles we find extensity use of analytical and numerical modeling of

*.tiphysial systeznrandwoja.iidilition, a wyte variety of statistical _
approaches are used in all area's OFatmospheric research. I.

Let us mention a few moreriefif# study. In addition to the predikp
tion of large-scale weatfierpatterns,""Compoters..aregnsed in .limited -s
regions to study the ,develOpiiirent
bances,,uch as hurricanes, thunderstorms, and torractoiinforLikiptive
:§-tidqriethoda are used i(see Section 4.2). It is hoped, fsexfiminthat a
better understandingOf the details of these destructbre ,phenorriena will,
lead to possibilitrof altering their Course and development.

($n the longer tline scale, where seasonal forecasts ofaverage rai nfall
and temperature likinade over large regions of,the globe, there
present several potentially useful, but_nnproven ideas.' Here, hOwevert. "
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some new mathematical and physical insight is needed in order to develop
a satisfactory "average"' system of equations. This is an important.open
problem.

.On the4ttll longer time scale of decadrg;. and beyond, datArrnining
the effect of our mechanized civilization on the environment is a basic
problem. Significant progress has already, been made, through, the use
of simple climate models in conjunction with paleontology, astronomy,
geology, and volcanology, in efforts to underitand the factors that influence
irregular alternations of ice ages and interglacial periods. These statistical-
.dynamical climate models will be essential for predicting the long-term
effects of the observed increase in carbon dioxide and similar problems
that will almost certainly arise as our industrial civilization expands.

"1P2.8 ASTROPHYSICAL APPLICATIONS

Astrophysical studies pose a wide range of problems for mathemati-
cal and coniputational analysis. The underlying physical theories in-
clude hydrodynamics, mffetobydrodynamics and plasma theory, radia-
tive transport theory, atomic and nuclear physics, and genera, relativity
theory, and hence various comments made in o er applications sections
of this report apply to this area. s

: ..

In recent years considerable progress has .b e in theoretical and 4,,,,,,..
numerical studies 4 a number of astrophysi topics, as, for instance, the
study of stellar interiors, the formation of stars and galaxies, the spiral
structure of galaxies, the physics of supernovae and the evolutioh of su-
pernovae remnants, the formation of the solar system, and the behavior of
binary star systems, to mention just a few. The computational approaches
may range from relatively simple simulations to the numerical solution of
complex systems of partial differential' equations. - .

As an example of the first type, simulations have been applied to
the study of star formation in a galaxy. It may be assumed that when a
Massive star becomes a supernova the shock wave emanating from it can
compress the surrounding interstellar gas creating neyijitars. If at least
one new star is also a massivesstar the phenomenon can repeat, leading
to a chain reaction in the creation of stars. This is equivalent to a direct

.,., .percolation problem, and, as is typical for such problems, phase transitions
aloe involved. This is a nonlinear problem with &complicated structure in
space and time. AcCordingly, analytic, techniques are difficult, whereas

-.. .
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computational simulations are relatively straightforward and lead to the
development of realistic model galaxies.

Asa second type of example we mention a problem that is amenable
to considerable mathematical analysis as well as to computational attack.
This is the question of the spiral_ structure of galaxies. The so-called
density wave theory approaches this question as a dynamical,problem in
the form of the gravitational instability of a gallictic dish with_respect. to
spiral modes. There are three basic approaches in the calculation of spiral
structures of galaxies on the basis of density wave theory that may be
charrized loosely as the stellar model, particle model, and fluid model.

T stellar model represents the classical approach in the study of
stellar systems. In brief, a galaxy has a stellar component and a gaseous
component. The latter usually has a sufficiently small mass to be negligible
in first approximation. The basic equations governing the behavior of the
stellar component are the Boltzmann equation, usually in coffisionless form
when close encounters betieen stars are omitted, and the Poisson equation
for the gravitational potential. In a sense, these equations are much simpler
than the Vlasoir equations of plasma physics, but their numerical solution
nevertheless poses challenging questions.

In the particle model, the stellar component is
.
considered as a very

large but finite number of parades. As in our first example, the computa-
tional approach then assumes the form of a simulation process. In brief, the
riotiotns of the individual stars are followed, and their gravitational field
is calculated by a self-consistent evaluation of the field. This technique
has provided valuable qualitative information. But the number of stars in
these models is usually of the order of 1011±1:, and hence, by necessity`;
numerical simulations are extremely limited in accuracy and provide only
fey/ quantitative datiaor, specified galaxy models.

In the third approach, the stellar system is considered to be a con-
tinuous medium. In this setting one may then study the characteristics
of wave patterns over the ialactic disk and then, dependence on the mass
distribution. In particular, the spiral structure of galaxies may be ex-
plamed in terms of spiral wave- patterns of some kind. Such. stationary
wave patterns over a field of differential rotation are to be expected; in
fact, hYdroclynamic waves over shear flows are known 19 exist for some
time especially in the form of self-excited modes. The general form of -
thaiestdting theory of spiral galactic structures requires, elaborate
putational 'te:chninges. the samirnek..asymptotic approaches have .

'provided_ analytic results that.have led to a better understanding .Of.the
dynamical mechanisms despite their -limitations in accuracy and in, tho.
typeS,otgalrudes covered. -

..
4

As noted earlier, these are only some examples of the many different
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types of problems in astrophysics that relate closely with applied and coin-
putational mathematics. Many of these problems involve extremely wide
ranges In length and time scales. For example, calculations of stellar evolu-
tions have to range over billions of years, while the dynamics, say, of the
supernovae pbase takes plea' within milliseconds. Similarly, tbe size of a'
neutron star_diffets_b substantial orders of magnitude from the size of its
corresponding relevant gravity us, m , e m
and computational difficulties, discussed in Section 3.2,"are especially ap-
plicable hire. Moreover, tbe wide range of the underlying physical theories
leads to. many substantially different types of mathematical models, which
in turn require vex), different computational techniques.

f

2.9 STRUCTURAL MECHANICS

During the past two decades, the use of computers bas transformed
large parts of solid mechanics into practical tools, for a Multitude of
technological developments. SophisticatiVf:computotiOrl- software is
employed-throughout the nation's industries and research laboratories in
the analysis and design of structures and. mecbaniirequipment. There
is a strong, interactionhebareen- applied mathematics and solid mechanics.
Mathematical analysis has provided insight into model formulation and
the development of powerful numerical methods; and, vice versa, ,novel
engineering approaches have led to new research areas in applied mathe-
matics. . .

In tbe case_of ,linear problems there, exists now a relatively btoad
experience in computing solutions for a range of problems concerning

. the bebayior of solid bodies subjected to Specified loads. In general,
tbe computed results are considered reasonably reliable, and they have
bgen corroborated over a period of time by observation and practical
experimentation. There appears, however, to be a growing need for the
development of computable error estimates that can provide a realistic
clieck on the solution accuracy. Such aposterioribounds have been shown
to be feasible; but their applications to large, realistic problems in solid
mechanics still requires considerable research and software development.
The general availability of econothical a posteriori lat)inatmwoald make

.poasible the consistent use of adaptive mesh-refineinent4icliniques that
would reduce the cost of data preparation, by the users and make it possible
to generate near-optimal solutions foi _a given amount of computational
expense.
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The general trend in computational solid mechanics today is toward
extending the -computational methodology to nonlinear problems1/48ources'
of nonlinearity in structural problems are (1) geometric nonlinearity due ,
to nonlinear strain-displacedent relations, (2) material onlinearity due
to nonlinear constitutive apii"tions, (3) force nonlinearft due to nonlinear
stress boundary' conditions, and (4) kinematic constrain onlineatitv_du
td-nonlinear lipiindary conditions. he so of nonlinearity
affect's the Torii f the resulting nonlinear equations and,liencei influences
the effectiven Bohai& techniquei.

The numerical analysis of all of these nonlineag problems is not yet
at a satisfactory stage. May computer programs for such problems exist,
but the mathematical !mkt for most of the methods used is insufficiently
understOod, and then 1s little known about thkaccuracy of the computed
results. Moreover, in tjie case of nonlinear problems, few numerical corn-,
putetions can be appOemented with sufficient experimental experience.

. The Situation is itfill gest understood in the case a finite elasticity. .

Even there the matheinatical theory of the underlying equationss.incom-
plete, and the apprOximation theory for these equations is erally based
on various' sbnplifYingiAsstunptions that may or may not e valid for a
,particular problem:

'',The state of ibeTit in elasto-dynamic problems is I even worse
shape. It *known thiLmultiple solutions may exist and sh k waves can
develop. Moreover, Aral solutions are necessarily physically relevant.
The.questions of how to, model such phenomena numerically and how to
determine the physically ;realistic solutions are as Yet largely open. When
it comes to problenis iu ffnite plasticity even less is known. Although there
has been much progress in this area during recent years; no satisfactory
and complete mathematical model is available as yet. Especially, there
'are profound mathematical and computational difficulties in modeling
*Phase changes,. viscous effects; cracks and singularities, the growth of
cracks under dynsini a g, and the identification a' implementation
of physically reasonili stitutive equations describin these materials.

. ;

2.10 gIONDESTRUCT, :VE TESTING AND TOMOGRAPHIC
RE.G.tiNSTRUCTIQW ''''' -
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There is a periasiy,eneed in technology to evaluate quantitatively the
intety and the relniritliag reliable lifetime of components and structures,

; c e.i,..Trom bridge girders to high-perfohnance ceramic turbine disks. In_
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the past decade considerable progress has been made. This developing
technology is called nondestructive evaluation (NDE) to distinguish it
from older nonquantitative nondestructive testing practices. NDE presents
challenges to the applied mathematical sciences on many levels. ,A few of
the moreimportant and topical-problem areas are mentioned here.

,Iss-p1BB-applieationsr-a-componentris-eften-subjeetecl-tolsomemsrt-or
penetrating radiation with the aim of deducing information about its in-
ternal state from a measurement of the radiation field external to the part.
Examples include the use of ultrasonic radiation, x rays, and neutrons.
Because of its flexibility, relative cost, and safety, ultrasonic methods are
often used in NDE applications. The deduction of information about flaws
from the incident and scattered ultrasonic fields relies on the solution or
approximate solution' of the inverse scattering problem for elastic %times.
In some regimes it is possible to develop and adapt imaging techniques
to the ultrasonic setting. In either case information about defects must
be obtained from band-limited noisy data. A fundamental limitation to
our current briny to utilize ultrasonic techniques broadly is our limited
understanding of the elastic inverse. scattering problem in either the fre-
quency or the timedomain. -,

in otheryinsportant NDE applications, eleitrical currents are induced
in a material. These currents produce fields that vary depending on
whether a defect, e.g., a crack, is present in the material. The utilisation
of these so-called eddy-curienktechniques depends on the ability to infer
information about the defects from the measured fields they produce. This
again is an inverse problem that is impeilectly understood.

Passive methods in NDS are also widely used, Dior example;, when a
pressure vessel or aircrafts in servile, a crack once formed may grow and
propagate. This wilt be accompanied by the release of acoustic energy.
This energy can in turn be monitored at selected sites. The problem then
becomes one Of identifying and -classifying the sources of these sound pat-
terns using acoustic emission studies, ars increasingly important technique
in NDE. In mathematical terms theproblem is the so-called inverse source
problein, which is beset,dth the same type ordifilculties that the inverse
scattering prOblems pafsessa. Sparse, noisy data often taken at highly
nonoptimal locations are the raw information from which source charm-
terietigs must ;be deduced.

The techniques of NDE have application in other areas, And much
can be leariea in other applications fields that is valuable to NDE. For
example,, there is a,close connection between the need, for inverse scattering
results in geophysics and NDE and aeouiiicimaging.resailts in*E and
biomedical applications. An area of great success in mediCal applicationti)
tomography, can provide useful information.in selected NDE applications.
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The greatest success of tomography has been in medical applications
such as the CAT (computer assisted tomography) scanner. Unlike ordi-
nary x-ray technique, which masks important features by superposing on
a single picture information on planes perpendicular to the beam, com-
puterised x-ray tomography provides pictures of individual thin slices '
through the lody. Several hundred parallel x-ray pencil beams are
projected in the plane of the slice, and the attenuation of the x rays in
each beam is measured separately and recorded. The procedure is repeated
for many different beam directions. AP elaborate calculation then permits
approximate reconstruction of the x-ray attenuation density as a functiOn
of position within the slice:

The idealized mathematical is the reconstruction of a func-
tion of two variables from its integrals along lines. This problem, as well
ELS i4iihree-dimensional Version, was solved by Radon in 1917 and later
rediscovered in various settings such as probability theory (recovering a
pfobability distribution from its marginal distributions) and astronomy
(determining the velocity distribution of stars from the distribution of
'radial velocities. in ViriquidifecSjons). Of course, much work was needed
to adapt the Radon inversion formula to thiiiicomplete information avail-
able in. prictice. Various algorithms for the numerical inversion of this
ill-posed problem haie been proposed, with the present .trend favoring the
so-called convolution algorithm on account otits speed and accuracy. Each
area of application,. has, however, its own requirements and may need

,modification of existing reconstruction algorithms or even a custom-made
one. Some algebraic methods, for instance, can easily incorporate a priori
information about the object to be reconstructed.

Recent advances in medical tomography include nuclear magnetic
resonance (NyR) tomography and positron emission tomography (PET).
In 1MR, strong magnetic fields are used to affect the nuclear magnetic
spin rate of hydrogen atoms. By varying the fields and their direction, the
plane integrals of the denlity of hydrogen can be measured and the den-
sity reconstructed" by an algorithm based on the above three-dimensional
version of Radon's theorem. The technique is now regarded as competi-
Cie with x-ray tomography for many purposes; and, of course, it is not
ionizing. The advantagerPET, over CAT is that metabolic processes
can be followed. A compound such as glucose is made using carbon-11
atoms, which emit positrons. Photons resulting from the annihilation of
an emitted positron with an electron are detected by a bank of detectors
that can record coincidences. Recently, algorithms baied on probabilistic
arguments have been proposed for the PET reconstruction problem.
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2.11 MATHEMATICAL MODELS IN THE BIOLOGICAL SCIENCES

The biological manifestations of the physical laws of the universe present
us with a rich variety of new phenomena that require the devlopment
of new ma;hEtratical tools argl.compuUtibnii inettioas. We shall C11110188
just a few examples of mathematical research in cardiovascular physiology
and neurophysiology, with the knowledge that there are many other areas
of biological sciences in which mathematics and computing are fruitfully
applied.

Blood flow in the heart,obeys the incompressible Navier-Stokes equa-
tions, which, in turn, are simply a statement of Newton's laws in
differential form (see Section 2.1). The distinctive biological character
of the problem comes, however, from the moving boundaries that are in
contact with the blood. These include the muscular heart walls and the

CURVED PIVOTING DISC VALVE cip.4: I9 STREAMLINES

FIGURE 2.10 Computer-generated plots showing he predicted opening
movement of a,curved pivoting-disk valve moun in the mitral (inflow)
position of the ventricle. The curvature es the valve open more
widely than 21,.st sight valve piloted at the same point. It also helps -
to prevent stagnation in the smaller opening of the valve. From D..M. ,
McQueen and C. S. Peskin, Computer-assisted design of pivoting-di
prosthetic mitral valves,/ Mcrae. eardiovaseo Surg. (in press).1

.
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FIGURE 2.11 Tranimission and "reflection" of a nervy impulse at a junc-
tion where the diameter of the neuron suddenly increases. The plots show ' .

computed voltage as a function of time at equally spjiced positions. The
junction is at x = xo, and' the ratio of diameters there is 2.5:1. Note the
increase in propagation speed for x > xo. A reflected wave is set up,when
the larger fiber re-excites the smaller fiber after the refractory period of the
smaller fiber has elapsed. [From S. S. Goldstein and W. Rall, Changes of
action potential shape and velocity for changing core conductor geometry,
Biephysical .1. 14, 731 (1g14).]

elastic heart valve leaflets. The motions of these boundaries are not known,
in advance; they must be computed along with the,Ation.of the fluid.

These considerations have led to the development,of a computational
model. of the left' heart that can be used in the computer-aided design
pir artificial heart valves. In this model, the fluid equations are solved
by finite-difference methods on a regular, sqiare mesh (see Section 3.4).
The boundaries are represented in Langrangian for* as a collection of
moving points. Coupling coefficients between bonndammarkers and fluid
mesh points are computed with the aid of an apjmation of 'Dirac's-
8-function. This computer model (Fig. 2.10) has been used in tht design
of prosthetic heart valves to remedy problems of stagnation and blood
clotting in the smaller opening of the valve. The niodel has also been
helpthl in the study of disease processes, providing, for example, a possible
explanation. for mitral valve prolapie, '
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- Just as the flow of blood in the heart is ultimately governed by
Newton's laws,, the conduction of electrical signals along nerves is ul-
timately governed by Maxwell's:equations (Figs. 2.11 and 2.12). JHere
also, nature provides a peculiar bOundary condition that leads, to entirely
new phenomena. In this case the boundary condition comes from certain
voltage-dependent channels located in the nerve membrane. These intro-
duce a nohlinearity, and the equations of nerve conduction take the form
of nonlinear diffusion equationsthe Hodgkin-Huxley equations. Without

so 4

$
tI INPUT

A 1{
CURRENT

2 ,TO BI SI

4

0 25 .5 .75 1.25

'FIGURE 2.12 CoMputed electrical signals at .t4;iitlIsuE end of a neuron. A
'brief puke of current is'eOplied at the'peripliery of a tree, and the result-

volta61 are computed ilogarithmitiscale) at the input..(B1), at succes-
sive branch points (P, GP,, cm), and, at the tell pody, (SOMA).

Ala:lifted from J. Rinzel and,IN:Rall, Transient response in a dendritic
neuron model fOr Current.injected at one branch, Biophysicai J. 14, 759
(1974).1 .
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the nonlinearity, signals introduced at one end of the nerve would decay
rapidly; because of the nonlinearity such signals mite into a specific
waveform that propagates at a constant speed withouedistortion. This"

I.- wnvwfnrm t* maim the nerve iinpuhi and it. in thP istaie unit. of
7

distance communication in the nervous system.
Currently, there is aivide range of mathematical,;ctnputational, and

physiological research activity related to the Hodgkin-litudey equations.
Mathematically, there is extensive research on the bafic theory of .non-
linear diffusion equations. A narticularly fruitful approach here has been
the, use of piecewise linear models that expose the basic structure of the
equations. Singular perturbation me ds have also been useful because
the equations exhibit a disparity of e scales.

An important physiological en prise is the modification and applica-
tion of the Hodgkin. Huxley equations to other exciteige tissues. In the
heart, for example, equations of the Hodgkin-Htudey type describe the
electrical propesses that generate the cardiac rhythm thick coordinate the
heartbeat. Mathethaticians are just beginning to use these equations as
a basis for a theory of the abnormal rhythms of the heart, of which the
most serious is ventricular fibrilation. This theory heti connections with
recent work on chaotic dynamical systems and transitionito turbulence: it
appears that fibrilation is directly analogous to turbulence. This work has
enormous practical significance, since the principal cause of sudden death
following heart attacks is ventricular fibrilation.

Progress his also been made in the modeling of the 'input to the
neuron (whose output signal is the nerve impulse). The neuron integrates
information received through a tree of dendrites in which the signal-
ing mechanism ,is often described by thelinear diffusion equation with
leakage. Mathematical -modeling of the dendritic -tree-has -fiad a substan-
tial impact on experimental neurophyslology. One reason for this is that`
dendrites are too small to be penetrated with microelectrodes. Thus the
neurophysiologist can only record voltage or inject current at the cell body
and is forced to rely on the theory to indicate the significance of these
measurements with respect to activity in the dendritic tree.

Some major successes of the theory are is'follows:

1. Elucidation of the dramatic differences between effects of a synapse
close to the cell body and effects of a similar synapse far of tin the dendritic
tree.

2. A posiible explanation of the role of dendritic spines in learnine
and memory.

3. Prediction of the existence of dendpidendritic synapses based . ,

:1.
0

:;. , - 4'strzios***,-0*:._
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J on a mathematical model of field potentials in the olfactory bulb. Such
synapses, previously unheard of, were subsequently found in electron
micrographs. This work led to a fundamental new concept of local in-

'
.

without nerve impulses. Such processing is important in neural networks
such as the retina. Indeed, an extensive mathematical theory of the retina
has been developed, and this fs another aria'of current research.. ,.

2.12 ELECTRONIC COMPONENTS

The design and fabrication of modern integrated circuits is complex
process. The number of devices that one can put on a chip ependicon
the size of the chip and how small one can make 'its features. r the
years:the 41argest increase in the number' of devices off kchip has resulted
from the continuing reduction in feature size and with this a reduction in
device size.. .

consequently, process and design engineers have had continually to
redesign the process steps and then recalculate the resulting device charac-
teristics to ensure, good electrical behavior. This has had to be computa-
tiondincause the equations are mathematicalliiiitlittabre and atrial and
error approach is prohibitively expensive and time-consuming. Moreover,
experimental techniques tell us only what happened, not why. Effective
device design dependeon determining both the what and the why by vary-

. ing the problem parametereIn the computational model.
The mathematical -models' on- which- thelkory , of semiconductor

devices -rests are differential equations that describe the flow of current
(holes and electrons) under the influence of electric fields. When feature
sizes were large, the devices could be treated as though they consisted

. of plane surfaces and edge effects could be neglected. This allowed the
development and successful use of one-dimensional analytical models ob-
tained by solving a system of three 'coupled, nonlinear ordinary differential
equations. As device sizes shrunk, these models became more complicated
and las accurate as edge effects ber,anle more important. In very large-
soleintegration where device dimensions have reached a few micrometers,
these models are no longer adequate, Ana the coupled, Aiiilinear, partial
differential equations must now be solved in two nn01,39nietimes threei

dimensi ns. These differential equations consist of a:norifiri_kar Poisson
equatio that describes the potential of the electric fielifornid two non-
linear tr sport equations that describe the motion of the' holes and the
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electrons. Moreover, the smaller sizes have made some physical effects
important whereas they were previously neglected. This results in further
complications tQ the basic'equations. 1

Partial differential equations play an increasingly important role
in simulating the fabrication processes. he transistors in a chip are
'formed by implanting certain dopant io into selected arees of the chip.
Subsequent high-temperature pro saes, such as growing an oxide layer,
will cause these atomic impurities to diffuse. Their final di4ribution is an
important factkin determining device characteristics. Insights into these
fttbrication processes are especially important for'increasing the yield of

. reliable devices, which is a critical factor intheir economic viability. .

Tho design of the overaircult to be piped on a chip leads to large
systems of nonlinear differehttrequations that need to be Bolted numeri-
cally. Then the efficient layout of the circuit bn the chip. introduces corn-
binational d graph theoretical probleIns, Sivhich again pose formidable
computati bl ms.

a

I
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Computational mathematics and modeling is a relatively young science,
one that is expanding rapidly. The success and importance of the field
stems from the fact that its application provides the possibility of tack-
ling significantly more complex and difficult problems than would other-
wise be possible. Perhaps the greatest opportunity provided by a com-
putational approach is that it opens the wide realm 9f strongly non-
Wye phenomena to systematic, relatively accurate, and efficient model-
ing, improving the chance that important phenomena can be isolated
and analyzed. Nonlinearities pervade nearly all aspects of applied mathet,
raatics, and to a large extent these nonlinearities are responsible for the
difficulties that are encountered in computational mosisling. Our purpose
in this chapteeis to explore the source of some of ihese difficulties. In
Chapter 4, we will discuss the direction of some of the computational
researchleeded to resolve the problems. 4,

3.1 DEGREES OF FREEDOM

There are several reasons 'for the degrees of freedom in a model, and
hence the size of computational problems, to increase. One is that we
attempt to increase the accuracy and complexity of our representations of
the physical conservation laws. Increased degrees bf freedom come either

*from increasing the number of depend% or independent variables. For ex-
ample, in chemical models the ntunberof dependent variables is increased
by increasing the number of chemical species. considered.. An b6vious
need forincreased independent variables comes from the need to ripresent
phenomena in two and three spatial dimensions. However, even higher:
dimensional problems arise when the independent variables are not the spa-
tial coordinates but are various state descriptors; such higher-dimeniional
problems are common in pliisics and cheraistri. UnforlunatelyNlie'direct
application of numerical methods that work, wit nAne coy two dimensions
often are not. usable in three dimensions..Therefore,Iicreasing the degrees
of freedom may require significantly different algorithms:::-.
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Another way to indease the degrees of freedom in problems is to.;
allow the possibility of multivalued solustiatCertain physical system's
allow the solutions. to bifurcate, a phenomenon discussed in Section 3.5.
Other systems have hysteresis or "history-dependent"wroperties. In these,
problems the solutions depend not only on the boundary conditions but
also on the path that the transient solution follows. Structural dynamics
models for plastic materials in which the stress depends not only on the
strain but on the straining rate as well exhibit this behavior.

Consider an example to quantify the magnitude of the computational
requirements for multidimensional problems. First suppose we want to fol-
low the evolution of a chemical model having N chemical species. Suppose
also that the problem is stiff (see Section 3.2) so for each time step in.
the evolving system we solve N nonlinear °algebraic equations in N uri. --

linowns. Even for mOdels with larfe number of species this is a relatively
straightforward task. However, if We now want to introduce transport ".
phenomena, such as fluid mixing, the problem has to include the spatial si

dependence of each chemical species.
40

For a one-dimensional case assume that We use I spatial mesh.poiliti.
and that we estimatOvhat each species will do on the basis of its currfint
local value and that of its immediate neighbors (a three-pointspatial stencil,
involving all species). We .new have NI unIcnowneand a nonlinear systeib.
that has 3N1 nonzero entries in each equation. It is typical to have 40 to 50
species and to requlre300 mesh Pointe to resolve the species concentrations. --
accurately. In this case Over the quarters of a million words of memory
are needed just to store the approximating kcal linear system along with
the solution. This alone is larger than the fast-access memory of most
modern computers. Supposefirther that the same model is to be,posed
in two dimensions on a I x Imesh and in three dimensions on an I x I x I
mesh. The solutions themselves require NP and NP words orstorage,,
respectively. Worse, the totality of coefficients in the typical linear system ,..,.,
will be 5N212 and 7N213. It is of practical interest to want solutions to
three-dimensional combined 'kinetics and transport _problems. However,
even for a modest system of 20 species and 50 mesh points per spatial
dimension, 2.5 million *fordo are needed to store the soltition alone. Ant
additional 350 million are required to store the coefofr:lents of the linear.
system. (For comparison, we note that the largest computers currently
available have 4.million Words of fait-access rnenfory.) Moreover, in'the,
high-clitiensional cases, the linear 'system is not conveniently structured
for efficient solution:. ;;7161tote.

-

Cletuiy a major prohlem in solving high-dimensional sYstem54 par-
tial differential -*illations is that after discretization thoreiultingvItem...
of approximating linea r equations Can. he much too large to he solvecr.....

.

-
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effectively by direct means: Except, in simple cases the resulting equations
have to to solved iteratively, and, especially for strongly nonlinear equa
thins, the convergence properties of the iterative process may be a major
concern.

Operator splitting methods, such as alternating direction implicit
(ADI) (see Section 4.7), also provide a current effective approach for
high-dimensional problems. The approach here is to alternate the solu-
tion of a set of lower-dimensional problems. The alternated problem ap-
proximates the original problem with sufficient accuracy, but the set of
lower - dimensional problems is much more easily solved, even in aggregate.
Again convergence and accuracy properties must be established in all but
the simplest of cases. .

For some problems it may' n more efficient to depart from the con-
ventional ideas of discietizattin on a mesh network and consider instead
mesh-free methods or (see Sections 4.8 and 4:9)._Monte Carlo methods.
unknowns can be changed: instead of the agnOUnt of Materiel:at a given
locatio54_netcan ask for the at fount a:_given wavelength in the,Rolution
as a Whore:. In But& ritechanice, vortex methods could be a more efficient
approach. Sikh methods reduce the size of the linear. algebra problems, in
comparison with .the inesh:Oented methids, if the. new unknowns carir:

rall-the-importantrinfOrnilition-tlesirede-:-: . '7: .- .
. _ . . .

'Peeistons abo0- which -methods -are most effective 'may depend-
stroigly on adilie4 and .chaigei iir'compuier architeCture.
nrc4tOoture*. such 4-Yn0:--or Oarallei processors,_ axe now evolving,

numerical analyst has to-re-ovaltiatchis approaches periodically.; Also,.
considerations surd aithe relative cost of memory_ 3f.V.1418 central Processor
time cou.beKheaVffio4

-

" '
-
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.

. Atiniiple imodefr.an contain important length scales that range from
the site of an itpni to the size of the Universe., In prectice,_ however; we
limit the range of scales by appioxintation (see, for e'Fample,,Section_S.7). _

IsIevertiteless- it is. often. the case,that.'mathereatical Models of physical
processes are characterized" by -the nimultanenns presence in their soluti9n
of significantly Afferent time and iOngth scales. -_The,..ahltItihns.to these
models ,will- have regions Of,gtrongly.locelfzedebehAviori such as shoelg,_

.stgep. fronts, _or, other near discontinnit: Thereforelmportant .topies of
research in numerical analysis, are the consideratioh of such circumstances

.
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and the development of efficient theories and methodologies for their com-
putational solution. Indeed, we often find situations for which solutions
are not possible, or at least not practical, without the application of spe-
cialized methods to deal with the multiple characteristic scales.

Find mechanics and chemical kinetics are two areas that provide a
rich source of examples for multiple and disparate scales. Fluid-mechanical
_processes are commonly characterized by groups of parameters that are
indicative of the various scales in a problem. Some examples are the Mach
number (relates velocities to sound speed), the Reynolds number (relates
inertial forces to viscous forces), the Prandtl number (relates viscous effects
to thermal effects), and the Darnkohler number (relates chemical reaction
rates to diffusion rates). When any of these numbers is very large (or
small) it is likely that' the solutions to the models will have regions of
localised behavior. For the case of large Mach amber the possibility of
shocks exists. Similarly for large Reynolds number we expect to encounter
boundary layers in the vicinity of solid walls. When the Prandtl number.
is large we expect that thermal boundary layers will be much thingr
than viscous boundary laybrs. And when DamkObler numbers are large we
expect nariow reaction fronts.

In chemical kinetics we find large numbers of chemical reactions com-
peting for the available chemical species at svidely different rates. Aa a
result some species are either consumed or produced rapidly or slowly,
while other species are being both produced and consumed simultaneously
at high rates,.with their net production rate being.relatively_slow. This
chemical behivior is responsible for the many widely differing time :males
in the mathematical models. The computational models of these processes
are characterized as either multirateproblems or stiff problems.

It is worthwhile, to point out the distinction between. multirate prob-
lems and stiff problems. In both prOblems the system itself Is equally
capable of rapid or slow changes. Multirate problems are those in which
at least one component of the solution is changing rapidly, even though
others are changing slowly. Numerical methods for these problems must
take time steps that are small enough to resolve the fast transients, so they

A

are controlled by accuracy not stability considerations. Stiff problems, on
the other hand, are. those in which all components' of the solution are
changing slowly compared with the fastest characteristic scales possible in
the "model. In theie cases explicit numerical methods are forced to take
much - smaller time steps than are needEd to maintain accuracy in order
to maintain stability. Often problems that begin as multirate problems
become stiff problems as an equilibrium. or steady -state condition is apT
proached.ltift problems are usually solved efficiently by implicit methods.
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For stiff or multirate problems, it is perhaps useful to consider methods
that treat the fast components differently than the slow components.

Given that multiple-scale problems are of practical importance, we
,must consider why are there computational difficulties, and what can be

one to ameliorate the difficulties? in thicase of disparate length scales
one difficulty is that of representing accurately the highly localized be-
havior.. H. the solution is represented discretely on a mesh network, the
mesh must be sufficiently fine to capturethe lolalised behavior accurately.
The whole topic of adaptive meshing is critically important for these prob-
lems (see Section 4.2). Here, instead of computing on a fixed prespecified
mesh, the mesh adjusts itself dynamically as the solution develops in order
to maintain accuracy in the solution.

For sithations in which the localized behavior is known to be ap-
proximated well by very sharp fronts (e.g., shocks or flames), front track-
ing methods can have significant ,advintages. Unlike the adaptive mesh
approach where the solution is resole smoothly through the front, the
front tracking method% approximate the front by a discontinuity whose
magnitude, speed, and location are to be found. Then elsewhere in th

onion the conventional discrete representations are adequate.
In problems like chemical kinetics, the disparati.time scales ca

the governing differential equations to be gift Here, explicit solu on
methods ark well known to be extremely inefficient, and some fo of
implicit method is needed. For systems of ordinary differential eq ions
the problem has been worked out, and high-qttality computer soft is,

available. However, when stiffness is encountered in the, context of ms
of partial differential equations the remedies are much less developed.. The
same techniques used for ordinary differential. equations, when applied
directly the partial differential equation problems. of practical interest,
often yield problems that are simply too large for current computers.

Several approaches show promise. One is to develop pperatorsplitting
methods in which the stiff,parts of the problem are split off and soTvecl as

anda series of smaller and fiance more tractable problems. Another approach
is to attempt to remove the stiffneek by solving instead an approximate
(yet sufficiently accurate) system of equations. This tack benefits from an
asymptotic analysis of the equations...136th approaches have found recent
successes in fluid mechanics and in combustion chemistry.

O



3.3 SINGULARITIES IN COEFFICIENTS, DATA, OR STATES'

Difficulties similar to those encountered in 'multiple-scale models are often
found in problems having singularities in coefficients or states. That is, a
singular or discontinuous coefficient can give rise to localized behavior in
tbe solution, such as very steep fronts. An example could be a material
interface in a structural or beat-transfer problem, say between a steel and a
plastic part. At this material interface the solution (stress or temperature
gradient) might change rapidly. In order to maintain accuracy in the
computed solution, the numerical procedure would have to resolve this
!rodlike behavior. The situation is analogous to the occurrence of a shock
or a flame front. However, we usually know where the material interfaces
are, so they are perhaps easier to deal with than phenomena such as shocks.

Phase transitions can also produce discontinuous coefficients. Take
a model in which a melting front is traveling through a region. Usually
the properties of the molten material are quite different than, those of the
solid material. In fact, different governing equations may even be required
for the two regions (e.g., fluid motion may be ,modeled in tbe liquid but
not the solid). In any case, the solution is likely to exhibit jumps in its
properties at the transition, and the numerical method will need to locate
and resolve it. This situation is more like a shock, in that the position of
the phase transition frcint is not known a priori, and thus the numerical
method must both locate and resolve it.

3.4 BOUNDARY CONDITIONS
-

The solution to a boundary. or initial-boundary-value problem depends
strongly on the boundary conditions. Thus it is important to understand
the relationship of the boundary condieions to the differential equations
and to their discrete representation. Most important, the boundary cool
ditions must chosei so that tbe problem is well posed. For a large class
of problems there is a satisfactQq theory of admissible boundary condi-
tions, but for many problems, those involving coupled hyperbolic-elliptic
systems or disparate time scales, for example, only a rudiinentary theory
is available, .

1'A possible error in prescribing boundary conditions or hyperbolic ,

equations is to overspecify or underspecify the number of boundary condi-
tions. Overspecification usually causes nonemooth solutions with mesh os-

:
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cillationsne,ar the boundary. Underspecffication does not ensure a tmiqui
solution, and the numerical -solution may tend to wander in steady-state
calculations. In either case, the results are not accurate and one should
be skeptical of even the qualitative behavior of the solution. It should
be noted that the way in which boundary conditions are speciged for the
difference equations can change a well-posed continuous problem into an
ill-posed (unstable) discrete problem. .

Two of the most common methods used to incorporate boundary
1.,colditions into discrete equations are the extrapolation and uncentered

differences methods. In the extrapolation method, the domain of the prob-
lem is extended and the solution is extrapolated to fictitious points outside
the integration region. The nonphysical solution at these points is defined
so that the discrete equations are consistent with as many relationships
as can be derived from the boundary conditions and differential equa-
tions. The extrapolation formula can do this best by incorporating the
discrete boundary condition.. into the extrapolant. Additional relations
can be generated by differentiating the boundary' conditions with respect to
time, replacing all time derivatives by space derivatives using the original
differential equation, and discretiaing the resulting equations.

The uncentered differencei_approach is to extend the number of
boundary conditions so that all components of the solution are defined
at the boundary. Again, these additional boundary conditions must be
consistent with the original problem and as many relationships as can be
derived from it. An uncentered difference approximation is then used to
approximate the spatial derivatives at the mall points nearest the bound-
ary.

Irregular domains can be imbedded in an underlying regular grid
that is not aligned with the boundary, or-an irregular grid can be con-
structed that conforms to the boundary. The discrete approximations to
the equations away from the boundary are much simpler on the regular
imbedded grids, but the boundary conditions are difficult to approximate.
Boundary-fitted grids can be generated algebraically In the original physi-
cal domain, or the doMain (and hence the grid) can be mapped onto a
regular grid in a simpler domain and the equations solvedthere. The
algebraic-gfid:generation methods have the advantage that the equations
and boundary conditions are unchangeds.hut the.differential Operators.are
more diifiOult to .approximate on the nonuniform grid. When using the
mapping method, the differential operations are easily approximated but
the transformation can Iieatly dimplicate=tha equation and sometimes
obscure important- properties such sile conservation laws expreseed by

. the .
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3.4.1 Boundary Conditions at Infinity

Many *physical problems require the solution of partial differential equa-
'. Uwe on some infinitely large domain 0. For computational reasons this

domain is often replaCed by a finite domain 01. Then the difficult problem
'of specifying boundary conditions at its finite artificial boundary B arises.

"'It'irtespecially important that these artificial boundary conditions do not
introduce spurious phenomena. Consider, for example, a nonviscous fluid
that at subsonic speed leaves O through the boundary B. There is one
characteristic direction that points back into the region 01, and there-
fore one boundary condition has to be specified on B. But, in general,
no detailed knowledge of the solution on B. is known and therefore other
principles have to be applied. For example, if one has solved the problem
by difference approximation then one predicts the solution on B fiom in-
side cob for all the deperfdent variables. rims this procedure amounts to
overspecification of the solution on B. Another principle has been proposed,
namely, to speCify the boundary conditions on B so that no reflection of
high frequency takes place. Howler, numerical experiments have shown
that sueh approathes do not always work.

3.5 BIFURCATIONS AND CHAOS

3.5.1 Buckling and Collapse Behavior, Bifurcations:

In general,,the equilibrium equations of a mechanical structure involve a
finite number of ptfameters, that is, they have the generic form fi(x,p)
0, where x varies in some state space X and p E R" represelite a parameter
vector. Thus, in general, the solution set {(x,p).6 X xRm; FU,R)=-- 0) is
a manifold X xRm, and one topic of interest is the location and character.
of the singular points

Without going into detail, suppose that we follow some curve oh.
the solution manifold defined by some c,ombination of parameter values,
with one degree of freedom represented by a single variable X.. -Then
we may encounter certain critical points on the solution curve where
the mechanical structure may -suffer a loss of stability. Such a loss of. .

stability actually corresponds to a dynamic phenomenon whereby the
Structure undergoes a sudden change of deformation. The dynamics of this ,
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phenomenon are not described by the equations of equilibrium At, p) .-- 0,
but it is possible to deduce from the shape of the (static) solution manifold
at thit point what type of sudden changes may be expected.

We use a few figures to illustrate the situation. In the upper left-hand
part of Fig. 3.1 the point denoted by (1) is a so-called limit point or turning
point and an increase of the load-intensity X beyond the critical value X
results in a jump from. (1) to (presumably) (2). This type of behavior is
called a snap-through or collapse. In the case of the upper right-hand part
of Fig. 3.1 the instability phenomenon is related to the bifurcation of tbe
solutions at (1). This behavior is called buckling. This pot of the figure
is a classical example of stable buckling where a distinct change in the ,

character of the load deformation is encountered when tbe load-intensity
X passes the buckling load Xe but where no failure of the structure occurs.
On the other hand, the lower part of Fig. 3.1 shows an unstable buckling
point where we again observe a dynamic departure from the bifurcation
point to some other state [presumably the equilibrium state (2)1. The
geometrical shape of the bifurcation branch II is the determining factor in
the 'question of whether the bifutcation point is stable or not.

These examples already indicate-that for a deeper understanding of
the bebavior of a mechanical system it is necessary to analyze the shape of
the full solution manifold. Of course, the choice of the parameters entering
into the definition of the equation is of critical importance here. In essence,
catastrophe theory provides some information about the selection of par-
ticular minimal numbers of parameters, but in practice the parameters
are :simply chosen to correspond to the certain natural features of the
structural problems.

In view of these observations the aim is to develop procedures for
a computational analysis of the 'form of the equilibrium surface. Some
methods for this purpose are mentioned in Section 4.4 on continuation
methods, but the entire problem is still a wide open research problem. In`
particular, it has to be noted that we can compute only points that are
approximately on the solution manifold of a discretization of tbe original_
problem. Thus, the questions arise whether phenomena, such as limit
points, or stable or unstable bifurcation points, encountered on the solution
set of tbe discretized problem actually correspond to similar phenomena
for the original problem, and, if *so, what errors have been encountered.
These questions are as yet largeLy_unanswered and represent considerable
research challenges. in this connection, it might be mentioned that for
nonlinear problems of this type the solution manifold of the discretized
equations often has a different number of connected components than
that of the original equations. The components that do not approximale

. the exact solution manifold have been called spurious, or numerically

k*:
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FIGURE 3.1-Instability behavior of shells under different loadings F. On
the right the load intensity X is plotted versus a characteristicdeflection
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for nonlinear finite element equations," State of the Art Surpep,of Finite
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Mechanical Engineers, New York (1983).j

56



irrelevant solutions. They are being observed more and more often in
variousvenous applications, but their study.has only recently begun.

3.5.2 Chaos in Deterministic Systems

It has been remarked that one of the most engaging problems in nonlinear
dynamics is that of understanding how simple deterministic equations can
yield apparently random solutions. As is now widely recognized, systems
with this behavior appear in many of the branches of scientific endeavor.
This near universality has come to the attention of physical scientists and
applied mathematicians principally through the use of computers in the
study of properties of dynamical systems. -

The onset of chaos indeterministic systems (the stochastic instability)
signals an unusual sensitivity to initial conditions, i.e., the trajectories in
phase space diverge widely as time goes on even though the initial con-
ditions are arbitrarily close, to one another. The behavior is such as one

'would expect in a space with everywhere negative Gaussian curvature. On
the other hand the trajectories may in fact tend to a single orbit nearly
filling a subspace of the phase space (a strange attractor) in an ergodic
manner. In even the simplest systems of this type it is possible for several
such attractors to coexist side by side, with the initial conditions deter-
mining which one is r ed asymptotically in time. These and other
numerous unusual prope es of dynamical systems displaying chaotic be-
havior have led to some o n problems in computational mathematics.

Examples of such pro !ems include the following: When on varying a
parameter the stochastic 'instability sets in, the continued use of an algo-
rithm describing the evolution of the system prior to the onset of chaotic
behavior may no longer be appeopriate. In this event it may be more prac-
tical' talce advantage of the stochastic nature of the system and use more
or less conventional statistical methods. In order to effect such a change in
computational methods it is necessary to detect the change from orderly
behavior of the system to chaotic behitiior..Theoretically, the sensitivity
of the system to initial conditions accompanies the occurrence of positive
Lyapounov exponents,' i.e., numerical indices of the asymptotic rate of
divergence of initially nearby system trajectories. Since, the Lyapounqv
exponents are defined as time asymptotic quantities, straightfoiward com-
putation of these quantities requires a:considerable computathirad effort,
including a calculation of the evolution of two initially nearby, trajectOries,
or the simultaneous integration of the associated variational equations.

An important tool for studying the properties of dynamical systeis

f .
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in the chaotic regime is the first return map, sometimes referred to as
the Poincare map. Such a map displays in a graphical manner various im-
portant aspects of the attractor. Unfortunately, the simplicity of generat-
ing such a map is restricted to systems no larger thin three dimensional,
because of the self-evident difficulty of making multidimensional graphic
displays. As the study of higher-dimensional dynamical systems advances
there wilt jie anever more urgent need fora higher-dimensional equivalent
of the first return map.

As mentioned earlier, in the chaotic regime it may be more appropriate
to describe the properties of the system trajectory in statistical terms than
in terms of a trajectory evolution. In order to obtain such a statistical
description it is necessary to have appropriate information about the in-
variant measure associated with the given dynamical system. With few
exceptions such measures cannot be derived a priori but must be obtained
from detailed calculations of the trajectories. A finite machine computa-
tion of the system trajectory', will inevitably introduce some errors that
may be all the more serious in the chaotic regime because of the previously
mentioned exponential divergence of nearby trajectories. There is then the
question of how accurate the computation of a chaotic trajectory must
be in order to yield enough information for constructing the appropriate

°invariant measure.
While the above examples have beeli drawn from dynamical sys-;

tans representable by ordinary differential equations there are other sys-
tems, e.g., those described by partial differential equations and by integral
equations, whose study is likely to be replete with similar computational
difficulties.

3.5.3 Symmetry Breaking

Bifurcations commonly arise in connection with a loss, or breaking of
symmetry. In such cases the extra structure of the problem symmetry
may simplify the analysis. We give an example from fluid mechanic& A
classic experiment concerns flow between two rotating vertical cylinders.
For small angular velocities of the cylinders the flow is laminar and is called .

Couette flow. As the angular velocity is increased the vertical_ translation_4

symmetry is broken and axisymrnetric Taylor cells appear. These cells'
resemble a row of adjacent smoke rings, each one rotating in a sense
opposite to its immediate neighbor. A further increase in velocity breaks
the axial symmetry, and the Taylor cells become wavy with a time periodic
shape. Eventually the flow beconies turbulent. Specific experiments on
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these systems are a classic topic in fluid meclanics. However as often
happens in science, one cannot see important phenomena in the absence o
a carefully thought out theory. Recently a number of precise experiments
have been conducted concerning the role of strange attractors. Routes to
turbulence and, in particular, wavy Taylor cells were carefully observed.
The results confirmed some of the theoretical predictions but not all of
them. One theoretical proposal was that generic limiting sets, known as
strange attractors, would dominate turbulent flow.patterns. This proposal
was supported by the fact that strange attractors were observed in low-
mode approximations to fluid flows. More refined calculations with more
modes included indicate an absence of these strange attractors, but the
phenomena is still indicative of the highly complex solution manifolds
that can arise in nonlinear problems.

3.6 ILL-POSED INVERSE PROBLEMS

r
The notion of a well-posed.problem is due to Hadamard: a solution must
exist, be unique, and depend cdntinuously on the data. The term "data"
can have a variety of meanings; in a differential equation it could include
any or all of the following: boundary values, initial wares, forcing term,
and even the coefficients in the differential equation: Since data cannot be
known or measured with arbitrary precision, it was felt for along time that
real physical phenomena had to be modeled by mathematically well-posed
problems. This attitude has changed considerably in recent years, and it
is now recognized that many applied problems are illitsed, particularly
iherithey require numerical answers in the presence of contamination of
the data.

Ill -posed problems often arise in the inversion of well-posed problems.
Consider, for instance,a well-posed problem that smooths the data or .

attenuates its high frequencies. The inverse problem, in which the role of
data and solution are interchanged, will then be ill-posed. A simple but
important example is the Fredholm integral equation of the first kind ;.,

okx,y)traa= v(X), 0 < x < I

or, in operator form

Assuming the kernel to be continuous &the closed unit square, the
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Riemann-Lebesgue lemma gives .

ohm k(x, y)sin nydy =
o

so that K attenuates high frequencies and thus transforms widely different
functions u into approximately the same v. If v is regarded as the data, the
solution u of the integral equation, therefore, cannot depend continuously
on the data. Indeed, it is not necessarily uniquely solvable, eithltr=take,
for example, f

K(z, y) = E as(z)b,(y) s
4101-4:

s =1 '004
14, unaware of these difficulties, one attempted to solve the integral equi-.
Ton by discretization, one would find that the corresponding matrix prob-
lem is singular or ill-conditioned (and-the finer the discretizatidn, the more
ill-conditioned the matrix problem).

More general inversion problems can be reduced to an equation
of the form Ku = v, where K is a cont uous transformation, v is the
data, and u is the solution being sought. may happen` hlt u itself is
not the quantity of principal interest but ra er some functionals of u such
as some of its momeliti or its values at a f "fled points.

Thus, there are three pieces of information that are central to the
numerical resolution of an inverse problem: (I) the modes M, representing
the equation involving a mapping K between appropriate spaces; (2) the
observation operator 0, representing the measurements that can be made;
for instance, we might have 0(v) {v(xs);i = I, 2,, n}; (3) the Intel-
ligence opetato'r J, which specifies the information we wish to extract from
the solution. For instance, we might have J(u) { f zku(x)dx; k J, 1,21.

Most of the existing approaches fOcus *told exclusively on the model
M, baking account of a priori information about the solution such as
smoothness, positivity, and bandwidth. The Tychonov regularization
method is,of this kind. By restricting K to a suitable subspace it may
be possible for the restriction of K to be one to one with a continuous in-
verse. It might be more appropriate to study the triplet.lvf,O,J for different
choices of 0 and J. Om goal of such a Ow approach would be to elaisify
and quadtify ill-posedness by developing comparison principles and order
structure. .

.

Bl-pOsed problems with their attendant numerical difficulties abound .

in practice. For instance, in scattering from :obstacled one may wish to
determine the ..shape of an object (or its surface impedance, if its shape is .
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known) from far-field measurements. Coefficient identification problems
arise in many contexts, one such problem being the determination of the t:
sound speed in subsurface media from measurements of the field at or
near the surface. Another dais of ill-posed problems Is associated with
image reconstruction (tomography), the medical applications of which are
now widely used (CAT scanners, for example) (see Section 2.12). More
recently, similar ideas have been applied to the nondestructive testing of
mechanical structures to detect cracks in fuel rods, weaknesses in rotor
blades of jet engines, and faults in screws in ships. Optiinum filtering
and inverse problems in Fourier optics (restoring data designed by a band-
limited filter, for example) are other areas of current reselah.

3.7 EFFECTIVE MEDIA .

The study of "bUlk" or "effective" pitrameters for composite media is of
fundamental importance. Depending on the particular application area it
may be relevant to consider a periodic (or an almost periodic) or a random
formulation.

3.7.1 Homogenization, the Deterministic Approach

Many problems of physical interest involve several length scales. As in
important example we mention the study of composite materials in struc-
tural mechanics. Owing,to a particular manufacturing process, a distinct
structure, e.g., periodically or almost periodicity, is often present.

Homogenization is' an approach for deriving, the . macroscopic
properties of the.material from the known microscopic ones. A variation,
of this is to rerilaca a complicated geometrical configuration by, a simplei
one, e.g., to replace a framiwork by a plate or to smooth out a rough

/ surface.
Homogenization may be applied to linear and nonlinear problems and

cian provide, qualitative information about physical macrolIps as well as
-7"-fgoo41a,ppratimations to the various parameters appearing in them laws.

The most important mathematical tool for thadeterministic approach
is sortie form of asyrattic expansion. The tfieotetical results concern the'
limiting behavior *h certain Of the relevant scales become very small.
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One is likely to obtain different homogenised formulations from different
limiting relations between the length scales, ..,...,.

The numerical solution of a problem introduces new length scale:
the mesh size in a fluittelement method, 'the step size in a finite:difference
method, or the wavelength in a spectral method. Different limiting rela-
tions between this new length scale and the originaLphysical length scales
Usually lead to different results. In this sense the numerical treatment has
to be considered simultaneously with the homogenization process. One has
to design algorithms that will adaptively select the correct homogenised
formulation and discretise it appropriately.

Whereas much theoretical work has been clone within the last ten
years analysing the effects of multiple scales in continuous media, the
study of numerical discretizations of such problems is still very muck in
its infincy.

3.7.2 Analysis of Random Media

Assessing the effect of random fluctuations in the coefficients of a par._
tial differential equation is a basic mathematical iroblem that arises con-
stantly in science, applied science, and engineering._ Finding effective con-
ductivities of composite conducing materials such astoil or a metal alloy, '
finding effective fluid equations for flow in porous media (Darcy'elaw),
determining the rate of sedimentation of particles in a fluid, and many
other problems are problems that May require analysis of random media. -,
In addition to the quantitative aspects of the problem, many interesting
qualitative questions can be posed as well. For example, what is the nature
of the spectrum of the Schrodinger equation with a random potentialfIt
has been shown that in one dimehsion, for a large class of random poten-

vl tilt's, the spectrum is always discrete. For randomneis of large
it was recently shown that there is no diffusion, without restriction on the
dimension of the space. ,

Prom the applications' viewpoint, one can frequehtly model adt
5,......;., quately a random mediim, such as a suvension, for example by a con-

tinuum with suitable constitutive properties. Tlie continuum equations .

may be linear or nonlinear, and the constitutive Jaws may be known
only qualitatively from experimental, data. In such a context, theoreti-
cal investigations are 'useful a.ncl, necessary in order to understand how
the phenomenological continuum equations arise from the known micro-
scopic structure. One can then finis mathematical characterizations for
the relevant constitutive laws that can lead to interesting conclusions:

'
.
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Examples of this arise frequently as, for instance, the determination of
bounds for the effective conductivity of composite&

The effective media ideas of Maxwell in the last century dominated
theoretical calculations for a long time. In the last two decades, press-
ing technological needs have caused amajor expansion in materials re-
search. In attempting. to achieve a mathematical understanding of the
methodological basis for effective media caleulatiorlithat abound, one finds
a lack of theoretical foundations.

Mathematical methods in random, media are drawn from analysis,
probability theory, asymptotic methods, and differential equations. The
goal into develop tools that bridge the gap between microscopic and
Macroscopic descriptions, give qualitative information about constitutive
laws, and determine when residual stochastic effects remain and how they
can be charaCterized. In addition, it is of interest to find important specific
problems on which more detailed analysis, including numerical analysis,
can be carried out so that these problems can serve as benchmarks in the
theoretical. development.

3.8VALIDATION, ERROR ASSESSMENTS, AND
SENSMVITY ANALYSIS, -

The results look good, but are they really right? The question is often
not answered satisfactorily. Indeed, often too little attention is paid to
the difficult topic of model and code validation. Once the results look
plausible, we are often either unable or unprepared to take the 'valida-
tion process furthef. The validity of a model depepds both on having a
proper physiCal model (Do the governing equations adequately represent
the physics?) and on having an accurate computational representstjon of
the goVerning equations. The mathematician his a responsibility in both
areas. He should help determine the "well-posedness" of the.models and-
from a mathematical point of view help the physical scientist determine
the appropriateness of the model. Given that the equatiotis are proper, the
computational mathematician must be sure that the numerical procedures
used accurately approximate the solutionleof the governlitequations.

Prequently modeling is done in conjUnction with experiments, and
those results are used to validate the model. CoMparison with experiments
simultaneously tests _both the validity. of the governing equations in the ,

model and of their numerical solution. In this case the source of any.
discrepancy is not easily isolated. A reasonable goal,shOuld.be to validate
the numerical procedures and the physical models separately so that,a
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model can be developed more confidently. The-design of reliable numerical
error estimates for he computational methods is an important step.

8.8.1 A Posteriori Error Estimates

An important current research topic is the development and application
of a posteriori error estimates. Sid procedures are valuable for models in
which differential equations are approximated by their discrete analogs on
a mesh network. When aiposteriori estimates of the error associated with
the discretization of the conthruous model are Rossibleand they often
arethen potentially it is possible in control the errors. Adaptively moving
the/mesh network to control or mimimise the error is one application of
this approach. With a posteriori error estimates, it should be possible,
in principle, to give a strict bound for the error on completion of the.,
computation. .

The selection of the specific accuracy- reqrlirements depends strongly
on the goal of the computation. Often it is desired to obtain detailed
information about tie solution itself= in other cases, the main focus is the
value of a specified ilinctional of the solution, as, for example, a stress in-
tensity factor in fracture mechanics or a drag coefficient in fluid dynamics.
Other goals may be the determination of certain critical data, such as
collapse points or buckling points and' their associated loads in structural
mechanics. Sometimes special techaiquesotk, variational techniques, can

---yield highly accurate estimates of particular functional& .

In connection with most of these toils we are interested in quantitk
tive results that have a desired accuracy. For, this the error has to be
defined, in that a family 'of exact results has to be speiified with which
the computed data are to be compared, a norm has to be prescribed in
terms of which the error is to be measured, and some cedure has to be
established for estimating the error.

Such error estimation capabilities are ce y important in man
applications, provided they can be guaran to be reliable. For exampl
for the many types of certification eomputa ns required ifillie design o
complex structures or nuclear plants, the availability of reliable estimates
of the accuracy of the computed data is obviously important. In other
cases, such estimates may reduce the total deign effort and avoid un-
necessary Oierdesigu. At the same time, the availability of effective er-
ror estimates introduces the possibility of applying adaptive techniques to
structure the compulation to achieve a desired error tolerance at minimal
cost or to provide the rest p9ssible solution within an agowable cost range.

Many of thh tbeoretiCalatudies of solution algorithms far_ classes of
-
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differential equations provide for some a priori error estimates, usually
of an asymptotic,tne For the pfactical error assessment these a priori
bounds are rarely computable or Very accurate. Thus, one is led to the
necessity of developing a posteriori error estimates :that utilize information
gained during tVe computatiowitselt.

For the finiteelement solution of certain classes of elliptic boundary-
'Value Vioblemet-SoMe computable and reliable a posteriori error estimates

have beent4leyelopetaittanalpiid in recent years. Most of these a pos-
-ariori estimates are biased,On It local analysis. For a given mesh, consist.
ing of elements 411, : and vtith a corresponding approximate solution
on that mesh, an error indicator.% is associated with the jth element A,.
These ris have to be computable in terms of information about the prob-
lem and the approximate solution on A, and,..at most, on the Immediate
neighbors or-that element. -.On the basis of the indicators 911-- -inn an-
error estimarAfer.60 is then constructed. Of course, the as well as 4A)
depend on thkehosen norm. The theoretically important question is then
the relationship between e(A) and the norm of the actual error e(4). The
effectivity tit the estimation may be judged by the effectivity index 8 =
c(A)/11eNILIn practice, it is usually more important for- I/. to be close
to 1 thEih that 8 <1. Moreover, it is essential that 0 converges to 1 when
Be(A) I tends. to zero, so that for an accuracy of say, 5 to 10 percent the
value of t.0.7- Ills iisfifc.ted-to_beleis-thaii, say, 0.1 br 0.2.

The -44%1'0:Tint of designing error estimators with these properties
for realistielasseiol problems and various different norms certainly repre-
sents a &minding research task. The results' available so far suggest that
such error eitimithrii.canbe developed at least for linear- problems. For
nonlinear problems-the situation is in an embryonic stage although some
results available toi model problems in one space dimension indicatethat
estimators fOithe erivr along continuation paths and for the location of
critical points areIcninyita-tionallyfeaSible. 'There is certainly considerable
need for concentrated.researcin--thageneral area.

3.8,2 Other Validatidn.lvfeisuief

-7" -

Checkhig fi:or mesh dependencies at .d.eonvergence rates is another-way to.
help validate a model. If a method is inieppsed to .be, lay, 'second order,"

. . .then as the mesh intervals are-halved,.thketroi shoyjdibt-rechiced by a
factor of 4. Mile does not haiken aCcording to ones( error estimate, then -.
the method does not have the desired order yet and may be in error. Also
One should continue to refine the mesh until the resulteareindependert of
refinement to wi the desired Solutions can sisa be eheeked..,,

.
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for sensitivity to mesh orientation. The solution\ should not be aligning
itself with some special property of the mesh network.

Numerical methods can also be validated by- comparing Ahem with
analytic solutions. Often this is posiible by choosing limiting cases where'
an asymptotic analysis applies. In some cases complex constitutive laws
can be replaced with constants so an exact solution is possible. Higher-..,.
dimensionil models can sometimes be validated by comparison with pre-'
viously confirmed lower-dimensional results. Bounds on solutions are
another way to help verify a model- Often conservation laws or minimum
and maximum principles apply, or the solution is known to approach a
previously known equilibrium or steady-state condition. These properties
can be used as a basis for validation.

'lb the extent possible one should always write computer codes in
a modular fashion such that each part of the..model can be validated
separately. Even though this is just good structured programming prat-
tice, and not necessarily related to Mathematics, it is an important aspect
of model Validation.

3.8.3 Sensitivity Analysis

In addition to the Independent and dependent variables, most models also
depend on certain physical parameters. Unfortubately, those parameters
are often not known accurately. Sensitivity aklysis is a systematic
means. to quantify the relationship of model parameters and modt1 results.
Doing the sensitivity analysis requires solution of an .additional system
of differential equations. These equations are a forinitl ilateMent of
the relationship between the dependent variables of the system and the
parameters. The results ar4-given in terms of a matrix of partial deny*
tives ofthe dependent variables with respect to the System ,paratneters.
One way to think of the analysis: is as a method to provlde Iheorittcal
"erryr bars". for the model.

ew methods are being developed to solve these seativity,equations
quiteleficiently. The methods rely on,the dbservation thatt.thefiensitivity:
equations are linear, regardless of the nonlinearities in the origiial
The method solves differential equations for the Green's function o4kthe
sensitivity equations, and then the sensitivity coefficient matrices as gak-
puted by .quadrature for the various imhomogenous terms c.orrespondhig'
to the par eters. These methods have been succeesfUlly applied probe
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4. NUMERICAL METHODS_

.

4.1 DISCRETIZATION METclODS

Many important physical problems are modeled by boundary or initial-
boundary-value problems. In this modeling, the physical state under
consideration is characterised by a function u, which is the unique solution
to the boundary or initial-boundary value problem...Thus a major part of
the analysis of the physical problem is the dctermikation of n or some of
its derivatives or stime.functienal.of:ik

_ _ -
In nearly all important problems the determinatinnotu is an

diinensional problent_in the sense that ti_ dales -not In an explicitly
known finite-dimensional s or,. alternativeb?,-eannot_be'grvetssed iri
terms of a set of ekplicitly functions liY,Ine_ans.ors_hnfte set of
parameters. Thus u, cannot be "_completely" remsented on a coinpiter,
and it is necessary tolesortto sometime of approximation or diactetization
method. In essentially. all discretisatinrimethofis one atlempls_to4nstriict
a function, uz,pp, xhickon the saxe.liand to,41-44on;t4iiither
is characterisedbykliiite.aet of parameters,

The in of finding'uipm,_tbat is "c0;te". Ao.01-Initite precise by
requiring at Ilu %wpm, (or that Hu:- uapp, it < THAI), wiiire".
11.11 is a p sically relevant norm and r Is a physically relevant tolerance.
The goal ii-thus to find liapprox satisfying this
feast expenditure _oktompstationtegfor.,.Tgesselini oticIffieictifiatio0 .
procedure is inflgeiirhAti enlimbet..4.cou-sidarakkeis,:.tlielnqit j_mpeiitant; ,
of- which weno0:411s,-!"7-C : -

- , .
= -".... ; :,- `-. 0 .- : :11,-.,.....z`,Z;-," -.....:.- - -, --..t. t - 0'. - ..;7..-z - -. . ' ... , _.

;.;.,....I. The-goals Of pit an-alysisnp-the:filiYsicaliiriiigenn,',-,..._ -.c.....-.
2. lineWrkmatheinatical,ppperties of_:the pkv14.4.001)1eMand the .

algorithni-':::, i* \ . `-T, - ,:: .:* -=:;.h.:,..5.-..- -c....., ;.:_-,::_. _7s_-.`i-;..,._ , ..- .t:-.?

3. Hardw#ecoasider.ationa, e.g.. the .availability of -p4Tall:el pit:loess,-
- , .

ing. _.,::,-..., - . _,.'-_. .--.7... -....._:-.___,

4. Computerleience eonsiderakioni, e.g.;'.4ate-niansgement Keguire-
....

,,

malts. 1.-.:-.,

...::-:.: -.1i17.11.-' r '-'''

,..
:6)k-:"ro:.7.5. Restrictioni on computation time .and expense. _ .-_---.1..,.

.--_...--..,;:.

-:?-- -

: --.r-f---:.::, -:---=-s. - ..- . : ....-.67

P .
- Z :,

T..:
., -

" ,VT,
Vt-

't ., .



As indicated above, the exact solution is approximated by a function
ttapprox which is expressible in terms of a set of explicitly known (basis)

-

fUnctions by means of a finite set of parameters, which are determined
in the computation. One brad classification of methods is in terms
of the nature- Of the 6'sis functions, namely (a) those involving global
basis functions having global support and (b) those involving local basis
functions having small support. Another classification is based on the
extent to which the method is adaptive. Adaptive Methods refine and
modify themselyes on the basis of yartially completed computations. -

Of course, these classifications are not precise, and there are Methods
possessing the different pioperties in various degrees. We now turn to a'
more detailed discussion of the most commonly used discretization proce-
du'res..

N. S.

4.1.1Tinite Differencei,.';

One of the most,freqiently used' discretizaddi methods is the method
of finite differences. The _central idea ,is to replace each partial deriva-

.

jive: occurring in the differential equation'in the underlying boundary. or
beeindarkyalue problem by an approximating difference quotient.

For example, the; first -order derivative Ou(x,y)/8x may be replaced by
thifonyitd difference (ufx + h, y)---u( Y)i/h or the backward difference

u(x h,y)Vh, whereas the Laplacian Au u + uyy may be
replaced by the five-point difference operator

;.

Au u(x+ h,y) + u(x, y + + u(z h,Y)+ u(x, y h) 4u(z
h2

'This replacement of all derivatives in the differential equation by ap-
propriate difference quotienIt.,leadt.. itsystekk Of.. equations, called
difibrence equationi,for thenirmhers: 0, which are toappr-oximate the
values of the exact solution u(i,y). at the anite:diffekengt:meik points
(jh, 0:+1, +2, . where his ksinall- politive numbfr, 4led the
mesh parameter._ Noon,, meshes may be Donsidered as well,"&"4tit

-C-onsiderable compli4t14,in the .form of the 'difference quotients' n.the.
.resultiiig difference ns. -. : .

There are a num, ot impOitant questions that arise in.400-ction.
with .the study of difference methods, namely questions of

".*
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1. Accuracy of the method; o

2. Stability of the method;
3. Efficient solvability of the finite-difference equations;
4. Robustness of the method with respect to the input data (e.g.,

coefficients, forcing functions, meshes); and
5. For nonlinear problems, the separation of legitimate approximate

solutions, which correspond to an exact solution, from spurious ap-
proximate solutions, which do not correspond to any exact solution.

Finite-differenctimethods are an example of the local basis class of
approximation methods. They can be adaptive. Adaptivity is usually
introduced via adaptive mesh selection: the mesh chosen at any stage in
the computation is based on the previous computations.

Much important work on difference methods remains to be done. We
mention in particular the construction of effective difference methods for
nonlinear problems, in particular fon.those problems whose solutions have
shocks.

4.1.2 Variational Methods of Discretization

We will now discuss a class of discretization methods based on variational
ormulations of the physical problem under consideration. As noted above,

the problem of calculating the exact solution u is infinite dimensional in
the sense that u is only known a prioril4e in an infinite dimensional
space, say H. For a linear problem, a variational method of discretization
consists of (a) a finite-dimensional space S C H, called the trial space,
in which the approximate solution is sought,e(b) a finite dimensional test
space V, and (c) a bilinear form B(u, v) defined on HxV. The approximate
solution is then determined by requiring that .

uapp,,, E S \
.

B(uappr,, , u) = B(u, u), for all uE V

where for uEV, B(u, v) ittcoinputable from the data of the problem without
knowing u. Sinle S and V are fmite dimensional, th.pp.rox can be calculated
by 'Means of the solution of a system, of linear- equations if the original
equation is Usually,lor nonlinear problems, B is nonlinear; iii
and the resulting system of equations becomes nonlinear.
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The approximate solution depends on the selection of 'S, V,. and B.
For any problem there exists a wide variety of variational methods of
discretization, i.e., a wide variety of choices for 3, V, and B. The rational
selection of S, V, and B is a central problem:"

Variational methods can be of either the local-basis or global-basis
type. Of those of global-basis type we mention the various versions of the
spectral method and the p version of the finite - element method.
element methods, considered in more detail below, and collocation methods
are typically of the local-basis type. We also note that variatinpal methods
can be adaptive.

4.1.3 Finite-Element Methods

Finite - element methods arise if for S and V we choose spaces Si, and Vi,
of piecewise polynomials of fixed degree. :bat is to say, the underlying
spatial domain for the problem is broken up into small geometric pieces,
called "elements," whose size is measured by a parameter h. The functions
ilk bah Sh and Vh are then restricted to be polynomials in z and y on
each piece but allowed to be different polynomials on the different pieces.
In designing finite-element methods, i.e., in selecting ShtVh, and B, one
attempts to achieve approximibility, stability, and systems of equations
that can be solved elteCtively.

Approximability here refers to the ability of the 4Pace Sh to ap-
proximate the unknown solution u. The solution u is unknown a priori,
and often only the information u E H is available. In such situations
Sh has to be selected so that every function. in H can be approximated
sufficiently well-by one in Sh. However, an approximation based on a few
large elements can provide additional information on u, which can be used
in turn to refine those elements. This type of ,adaptive element selection
is especially important for problems with sharPly varying solutions (see
Section 4.2).

in the choice of the bilinear form B one has, in effect, the freedom to
choose a variety of variational principles, many of which have a natural
physical connection with the original problem. For instance, the stan-
dard Ritz method is based on the principle of minimum potential.energy:
An alternate variational principle is' the complementary energy principle.
Approximation methods based on this principle are referred to as corn-
plemeniary energy or e,quilibriburn methods. These methotrytirolve a
constraint that is usually difficult to satisfy. One Ivy to cimT 'vent. this
difficulty is to treat the constraint means of a*range multiplier. This



leads to the so-called mixed methods., They appear to be promising for
many important problems and have recently received a large'amount of
attention.

4.1.4yrransformation Methods

In the transformation or pseudospectral method, The discrete approxima-
tion u is first mapped by a transformation of the form

nt
Tu = E41014)

/-1

7

into the in- dimensional function space of the coefficients, al. The basis
functions 0; and the transformation are chosen so that T and are
fast (order of m log m operations) and so that differentiation D is simple
in transform space. The derivative approximation can then be written as

au T-1Dril
az

Some common transforms are based on the fast Fourier transform, where
the 01 are trigonometric functions or Chebyshev or Legendre polynoinials,
Selecting the eh as piecewise polynomials with ,compact support, such as
the B- s 'plines, is another good choice. By choosing the transfofmation
to incorporate some crucial prdperty such as the periodicity or symmetfy
of u one can improve the accuracy_of the method for a fixed number of
basis functions. This can sometinres best be done by choosing the basis
functions close to the eigenfunctions of the differential equation.

4.1.5 Semidiscrete Methods

... . .

When solving a partial differential equation., e sometimes discretizes with
,

respect to some but not all of the varialZ. or example, for the diffusion
equation governing the cooling of a hot e may discretize with respect
to the space but not the time variable, ereby replacing the original
partial differential ,equation by a syslem of ordinary differeptial equation
Such an approximation method is referred to as semidiscrete method or
as the method °nines. Semidiscreti'methods may b ,used fOrhyperbolic ....
as well as parabolic equations.

. -
- ' :. Ti



One has, of course, eventually to discretize with respect to the time
variable as well. Semidiscrete methods are based essentially on the view
that very effective time discretization methods are available (in the form of
preprogrammed software packages for the solution of ordinary differential
equations) and that the spatial discietization is the main concern. An
alternative point of view is to consider both discretizaiions simultaneously.
Such fully discrete methods have been analyzed and tested extensively.

Among important research problems for semidiscrete methods we
mention the problem of adaptive mesh selection for the spatial discretiza-
tion.

4.1.6 Method of Characteristics.

This is a method for hypertoolie, equations, particularly for those involving
only one space dimension. In these equations the solution at some point
in space-time depends primarily on its values along a fixed, finite number
of curves (characteristics) goirig back in time from the given point. The .

approximations to these values are determined from difference equations
that are closely related to the characteristics of the differential equations.
This method has a natural generalization to quasi-linear second-order
equations in two independent variables. It is especially important for
problems whose solutions have shocks.

4.2 ADAPTIVEAPTIVE GRID METHODS

For realistic problems it is rare!), feasible to design numerical processes that/
are reliable and accurate at a reasonable cost, and yet that do not utilize
some form of adaptivity: Put simply, most two-dimension i1 and virtually
all three-dimensional problems are undercomputed without this technique.
This statement will almost certainly remain true after the next generation
of computers is available: The adaptive approach is to distribute the come
putational effort nonuniformly, so as to concentrate on the most singular
parts or the solUtion or the most important parts of the sollitang rom the
point of view of critical design parameters. Correspondingly, lone must
give less computational effort to the regular or less critical parts of the
solution (also see Section 4.9). At the same time, 'adaptive approaches,
may also lead to a simplification of the input data needed for the program

4-
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and hence free the user of part of the drudgery typical in preparing such
input and in having to make the many a priori decisions required by most
of today's. programs. ...

The goal of adiptive grid methods is to choose .a grid that is par-
ticularly refined, or that is aligned or oriented optimally, with respect to
the *solution in regions of space and time that ore critical for solution ac-
curacy. Thus adaptive grids utilize local mesh refiginent or optimal local
mesh orientation. .

The simplest adaptive grid is a preliminary, alalytically determined
coordinate transformation. For example, in the transformed coordinates
the probleni may be approximately independent of one variable or other-
Wise, simplified. The next strategy is to choose a numerically deter-
mined coordinate transformation. Typically, in two dimensions the coorb*
dinate transformation is obtained by the solution of a subsidiary partial
differential equation. The resulting grids may be expected to give both

Improved mesh refinement and mesh orientation. The method is.some-
what problem dependent and can give rise to discretization errors in the
mapping of solution variables between the various grids.

Lagrangian grids for time-dependent problems are adaptive for
material interface singularities, because

particles.
the grid, points move with the

1. v.-
material articles. Since these well-established methods also develop...,
rezoning and mesh entanglement problems, they provide a reservoir of ex-
perience concerning the difficulties associated with other evolving, adaptiye
algorithms.

..

A refined grid can be constructed without recourse to a coordinate
transformation. In response to a critical solution parliteter or solution
error criteria, selected regions of space'can be flagged, preferred orients-
tions selected, and refined subgrids introduced locally. Then, small time
steps are chosen on the finer subgrid, and an interpolation problem must
be solved to blend fine and coarse grid solution values. Finally, the con-

, struction is recursive, so that three, four, etc. levels of refinement can be
introduced automatically, in response to some a posteriori error estimate
on thkneiit coarser grid. Precisely defined, reliable error estimators appear
to be central to the design of effective adaptive procedures.

In the context of finite elements for elliptic problems there is a devel-
oped theory, for a posteriori error estimates (and; hence, for.adaptivity),
which is based 'on local analysis. F6r a given mesh made up of-elements
AI, ..., An and with the aid of the corresponding approximate solution, an
error indicator th is computed for each element Af. For certain classes of
problems it has peen proven that asymptotically the errors become optimal
when all-the q) become equal. This equilibratiOn principle provide; the
basis for-the control of the adaptive process. lifessence only those elements

... .,!

..-
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A j are refined for which the error indicators are too large in comparison
with those of the other elements. And elements that are unnecessarily
small are combined with their neighbors. The study of suitable algorithms
for this has only recently begun. For example, some results have been ob-
tained for algorithms bitsed on the assumption that during the refinement
process none of the elements could be combined without increasing the
maximum value of the error indicatOrs. a

)

In time-dependent problems, differential equations can be introduced
for the ever-changing optimal location of the grid nodes. These equations
are then solved simultaneously with the original partial differential equa-
tion, leading to what are known as moving mesh methods.

Alignment of the grid without refinement is also possible, if fixed
.,- or moving boundaries or interior interfaces are specified as part of the

problem. By alignment (without refinement); a regular grid index structure
on btpreserved. Maintaining the grid structure has the advantage that it
potentially allows, fast iterative methods, such as fast Fourier transforms,
to be used as of the solution algorithm.

Adaptive grid techniques have been applied successfully tea range of
time-independent problems. The newer time-dependent methods need to
be developed to the point where they can be applied, to meaningful two-
and especially three-dimensional problem: Pend compared with alternative
methods. An important question requiring further attention is the con-
struction of efficient, computable a posteriori error estimates for realistic
classes of problems. Specifically, even for steady-state problems, there is
the question of the validity of the equilibration principle mentioned above
as well as the design and analysis of suitable adaptive control laws to
implement this principle., This latter problem may require examination
and incorporation of results in such fields as automatic control theory,
artificial intelligence, and leariii,ng processes. It also raises the problem
of. the choice of appropriate refinement techniques that produce meshes
with desirable properties. Last but not least there is the question of data
management, which must be handled successfully to control the vastly In-
creased algorithmic complexity associated with adaptivity and to achieve
computational efficiency.

.4,4
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i4.3 METHODS FOR SOLVING DISCRETI DIFFEFLENTiAL
EQUATIONS' , . , '

Finite-difference arid finite-element discretizations of partial differential
equations usually -give rise to large systems of equations in which each
unknown is coupled to only a few of the other unknowns. Systems with
tens or hundreds of thousands of equations are relatively common. For
time-dependent problems these systems arise- from the use of implicit
time discretizations. For sufficiently fine grids, the numerical solution of
these systems consumes a major put of the computer time for an entire

, simulation.
Most nonlinear systems are solved by some form of iteratA method

based on linearization, such as Newton's method. At each step, these
methods result in large sparse linear systems. In many cases, iterative
methods converge only if the initial guess is sufficiently close to the solu-

",

There are two basic approaches to solving large sparse linear systems
of dip ations: direct/ sparse matrix methods (i.e., some form of Gaussian
elimination that stakes advantage of the location of most of the zeros)
and iterative methods, where the sparsity makes each iteration relatively
inexpensive. No method is best for all problems. For many forOblems
a combination of methods is attractive. Usually this takes the form of a .
block iterative scheme using a direct method to solve the subsystems whose
diagonal blocks are matrices. Combinition methods ace of particular
importance for the solution of linear systems arislig.from coupled systems
of partial differential equitions.

Direct methods are ieladvely well understood today, and a number
of excellent implementations of them exist fOi :kris] 'computers. Direct
methods vary in the extent to which they take zeros into account. The
simplest, nontrivial, approach is band elimination, which takes account
only of those zeros occurring outside the bind determined by the extreme
nonzeros of the matrix. The most complei approaCh is general sparse
elimination in which all the entries that remain zero during the clinkina-
tion 'are taken into account. For. syiitenis that do not require pivoting

those hcivffig symmetric, positive definite matrices) there is a sym-
bolic preprocessing phase in whieh the .location of these .zerq,,Intries is
calculated. There'exist good techniques (the nested dissection ordering-
and the minimum degree orderink)_for arranging the "unknowns and "the.
equations so as to minimize the zero fill-in during eliMination, For mdel
problems it has been shown that the nested dissection ordering prides
asymptotically optimal results with respect to work and storage, The

-
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minimum degree algorithm is a valuable heuristic approach that is corn-
petitive in practice but that has defied analysis. For systems that require
pivbting for numerical stability one cannot compute the zero structure a
priori. Moreover, the ordering of the unknowns and equations to minimize
zero fill-in will usually be significantly altered.

Some of the strong points of direct methods.are as follows: (1) They .
provide an exact answer (modulo round-off error) to the linear system with
a fixed number of operations independent'of the system's condition num-
ber. Most production structural analysis packages such as NASTRAN use
some form of direct method, even for three-dimensional problems. In these
applications (many of'which are based on fourth-order elliptic problems)
it is necessary to use higher-order precision because of conditioning prob-
lems. (2) For problems with two dependent spatial variablps, their execu-
tion time is often shorter than the execution time for iterative methods,
especially for problem% of moderate sizes Some of that principal.disad-
vantages are the following: (1) they require considerably More storage than

.

iterative methods, even for two dimensidns; (2) they will almost always be
noncompetitive with iterative methods for; three-dimensional problems in
terms of running time and (3) except for the simpler 'methods such as
bend elimination (and to a lesser extent profile or envelope eliminititin)
they do not vectorise well. In fact, owing to .the necessary indirect ad-
dressing involved,, there are as yet no efficient implementations of general

....
sparse direct matrix methods for the CRAY-1 or CDC CYBER -205 super-
computers.

Except for structural problems, iterative methods are commonly used.
Classical iterative methods, such as successive overrelaxation; Chebyshev
semi-iterative methods, and such newer methods as the preconditioned
Conjugate gradient method, are fairly well understood for symmetric, posi-
tive defirllte systems, and they are easy to ImPlement.. However, the situa-
tion is not so bright for nonsymmetric or indefinite systems, though in
practice classical iterative methods may. converge rapidly with a clever
choice of the iteration parameters. Nonsyrnmetriesystesis with inddnite
symmetric parts are especially difficult to solve, and no satisfactory general
algorithms are Anown at this time. Such problems arise in the simulation
of secondary and tertiary thermal recovery techniques for petroleum reser-
voirs (see Section 2,t). , ,

r Some of the principal advantages f iterative methods are the follow-
k

-ing: . .

1. They tend to requireminimal storage (proportional to the number-'
of unknowns); .. r

, .4
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2. They are reasonably fast for a wide range of problems. Moreover,
the number of iterations recntrd is independent of the number of space
dimensions in the underlying pbtial differential equation (1)ut not of their
outer, or of the mesh size);

3. They can take advantage of good initial guesses to the solution; as
would be available in time-dependent or nonlinear problems; and

4. Many of them vectorize reasonably well on supercomputers.

Some of their disadvantages follow:

1. Mathematically rigorous stopping criteria may be difficult to for-,
mulate, e.g.,..for linear. systems with matrices .that are not symmetric,
positives definite;

2. Many of the methods require a selection of iteration parameters,
and the performance of the methods depends critically on such a selection
(this difficulty is being overcome somewhat by the relatively new adaptive
methods and the prpconditioned conjugate- gradient -type methods);

3. The interaction between linearization and iteration is not well
undtrstood, especially for discretizations of coupled systems of partial
differential e.njations; and

4. Nonsymmetric or indefinite problems may cause great difficulties
for iterative methods. .

The relatively new multigrid iterative method combines the well-
understood behavior of a given iterative technique with. the fact that an
underlying differential equation is being" solved approximately. It alter:.
nates iterating,!towar4 the. differential equation's solution, on fine and
coarser jubpids of the spatial network, with the gcial of perfomiing no
more coniputational work on the finer (hence expensive),grids than is ab;
solirkely necessary. Ininany cases of 'practical interest, such as inpeutron

in complex environments, .the technique yields sufficiently ac-
curate solutions to the equations. in.,a'comptifational time proportional to
the number of unlcitowns. This has been. a longtsoight-for goal in the
approximationof elliptic equations in more than one Space dimension. As
an iterative method, .also has a natural extension to nonlinear equitiOns;
and its logical structure, together with.thealready necessary calculation
of residual errors, points toward the incorporation of adaptivity for the
nesting spatial grids.

7
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4.4 CONTINUATION AND HOMOTOPY METHODS

For more than a century .the so-called continuation principle has proved
to be an important tool in mathematical theory. For example, early uses
date back at legit 100 years to H. A. gchwaraand his work on conformal
mappings; then, in the early part of this ceury, J. Hadamard and M.
Levy applied these techniques in connection with the inversion of nonlinear
mappings, and it is also a basic tool in J. Leray.and J. Schauder's work on
differential equations. But it was essentially-only in the early 1950s, with
the advent of automatic computing, that continuation approaches began
to be used in numerical applications. gine& then they have grown inte.an
extremely powerful technique for the numerical solution of wide classes of
'nonlinear problems.

--apt
One of the problems to which continuation techniques Fe applied

concerns the solution of a nonlinear equation F(x) = 0 in some space
X. In order to compute a specific solution eE.A: a possible approach is
to imbed the equation into a family of equations H(z,t) = 0, 0 5 t* 1,
for which there exists a computable solution path x = z(t), 0 < < in
X beginning at a known point_i(0) and ending at the desired solution .

z(1) = e. In other words, one considers a family of smoothly changing
problems, the final problem being the original problem in question and the
initial problem being one whose solution is easily determined. Use of the
continuation, therefore, requires an ability to solves- sequence of problems
when the solutions to nearby problems are known.

A related, but conceptually diitinct, problem arises in many app
lions in science and engineering where the equation under consideration
always includes a number of phySically relevant, intrinsic parameters. In
other words, the equation has the generic form F(x,p) = 0, where x belongs
to some state spar X and p varies in a Perimeter space P. In this setting
it is rarely of interest.todetermine only a few specific. solutions. Initead,
the requirement is to follow paths on the solution manifold {(x,p) E X x
P; F(z,p)= 0} in the space X xP of all state and parameter variables and
thereby to detect specific features of the manifold that signify.a change of

4- behavior of the systems under study._
For the first of these problems, namely the computation of a specific

solution or some question, two distinct continuation techniques armiyailf
able.. The first involves the case when the path of solutions to the family
is smooth, which in turn allows its representation as a solution of a
differential equation. The second approach is based on homological rather
than homotopic concepts and makes use_Of.a numerical form of.a result in
algebraic topology (Sperner's lemma). This approach has been reform-
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lated and is now considered principally in the form of algerithinaiingthcinA
piecewise-linear solution paths. Much of the tsentiresearch in tfiliticrea
concerns these piecewise-linear continuation method and their applicitiqn
tfted-point problems in economics optimization and game theory.

Continuation methods for following paths on the solution-manifold of
parametrized equations developed mainly in structural engineering. under

-,
the nsuhe of jlieremental Methods. Applications to other areas, as, for .,,..7 -T71
example, to computatienal fluid_ dynamics and to phase transitions in --
. _ - -
ita_tistical physics have only begun to appear relatively recently. For. a
numerical analysis of 4 given solution, manifold continuation methods hAve
to be considere&in a broader sense as a collection of numerical procedures
-tor completing a variety of tasks, including thefollowing:

...,.
JiC r . .

`,", e.

::' 1.` Follow numerically any -curve on the jmanifold specified by an to :-.-7----...7-:
iPriRriAliten cAnlignargin of parameter vilpa *idiom. degQee of freediti)..:,;": ;.

. On. arty such curve determine the exact location of target points' - -- '.: ' --
:-.,-,..-

-...--.,--:wkicre".a. given -state- variabte kas a:ppeatfied value...-. .__

A IldiesiriA,. at atiyA41.a*t point,gritch to the tire of a different :
,.... .

-iiIiitiottliff: - -- .'-'-. ''":-:". --_. -
-

.: 4"." any isila.licutve identity. and compute.* initial 'points where
... _ . _ -

. -stability May belestr . - .. ...... .

.0 -r_P?111 0*.i.thi of the critical- points follow a 'path in the critical .

boundary In._ coati-Tait to the caw 'oder such paths are typi ly \ . . 17
spicioeir fi4tiite..04,0ti4t pax$4nelerit *th:twf degrees of freedom
together Ihth 4 lipplielt-fitigireinint_ -41 Points otthe path are in

s

6: On .44'3,111.04 path 406inble-tlio location of bifttrcatioa.poiiits
04_ the: Opt_ intersectinviittlatioine 2 ". .

. 66

Ibr specific applicaticips addittonal:task4 m*.Arist: For_ instance,,
.E the parametrized-equation remsealstiie eqtifithriora.mglorepta.sys

of differential equations. then wpa yt:leciii.illeprlgurcoroa point's_
a particular solution ,alb. where imixOcTsgOio 4s. ockhcd.yuppic41.,

iytteM brancli*Ofrfrom. the static--eedibtitiln,ii:r_
In recent years mush imtartlgkaa beaT!.fgypt44 to.grstirgicUs:. . .

but there_reniiin-rOnny open ..LueitiOjit capp4411yik onnect49_ -

more silesetal444:fa4 nck git 19444114 trIOC .1044401Phits-_.
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*applications, as, for example,. to fluid-dynamic problems or to the case
of _structural problems.kyolving plasticity, creep, and viscoelastic effects,
the situation is still wide- -open; and only relatively ad "hoc techniques are

-Available,.._. ::,,,.y...,...

'y r
; 1,re-" --- - --:- ..-. ---, - - -- -.. _:-...---,A:v.:. - . -- I-'". .- - , . ..--, -.-

Al:. .. , .

.... ' . '
4.5 OPTIM4AT1ON METHODS.

s, s.

Opiiinization problems occur in all areas of. a_sieiiii: engineering,- ::. -::. - :._ ..____economics, and applied statistics, They, may involve some least- squares
.. _ipprcednuitiOn.otobseived dstaritting of parameters occurring in a math-

ematical model..-oh the basis of 'experimental observations, optimization of
...c. 4-1

-_ lihe,design') .an engineering structure, optimal of an engin
.. .. .system,,,or. 4.4el!ng 4 _economi"i-orinisriresk sYstem' s., These are,only a I

.,-.:_. -.few examp,.(Itat,.do not evep-h.egillp.covergie numerous types of op-
-;, --.-timizationprotileiiiilftaiise in . ; - -- 441c-i'''. . .. . - . N..

,.....,_ Hriadly,-Anilan*,..._ l'In, all of these problems a reat function, .4qaily
, .salieLthe objictifernifction ib to be minimized or maximized over some

- pustunnt set .in. a giyen finite-. or infinite-dimensional spice. The problems. .,-
.,-:--: et_cconderablIt,depending on the mathematical characteristics t

...,..,...,_;_;,..;" Ote-SimCgon4flAe constrahits, the dimension of the Space,
_.;,...;;...".79.11i.t...cf..C.q.naputage information that is available, and the requirements
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. .. .
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Corresponding to the Wide range of applicationL3, the for*? of-graph

problerns differ widely. For certain network models intrest rear center
on the connectivity properties of the gray thatis, oil .thedet,erniinatiqn
of whether a particular epnii.ividitx can. lie .traaspotted littween skeeillel.
vertieSt. Then questions arise al: 4:111:?, pinximum possible ilow..that can
be accommodated under particulai4iitiaints. These.problems in turn
related to the.se-called vtaperaZilitytind rellibilfty:problemi for networks.
On the other' hand; if titnn4 ;iiiter's:irito ionsideration then ..questions of ......,

waiting time and of best rontininlai.arise. These ale only ii,few of many
types of such proildins.,:?"- :s -:. ,-".:,;,z"-: :-\ - .-.. ' : - ,

From a computatiorinf viewpoint these various piobleme, have stiTnil-,,..,..,..
laced the development of numerous combinitorial and grapt4fieoretical :at ..z .
gorithms_ But there remain.nianiopqn reScar.ekquestions, elpecially'wheri
it coups to the production of generaLio. btist software and the availability.

_ -:.. 1 - '!..- .-4.....
.

. ,of algorithimfor problems.involvinglarge graphs. .: :,. .
Graph:theoretical forniulations are also finding increasing application

in connection With the numeric,aliolutien of problems that do not have an
inherent graphitructure:Olie,such clasii.of, 'Roblenth concerns tliecorn- '_,::
putationahaidling of large sparsematrices: Many of the algorithms used -.

here'perforM, aaequerice.Of steps that traosforip.t.)ze 'matrix into succes-
sively simpler matrices of,say, a more nea.rly.iiiiiier4rOngular or diagonal
t ype. These transformations achieve their aitn, by .intrOUcing zeros in ,-,,
place of originally nonzero matrix elements. But, as an unavoidable, by-
product they also introduce nonzero elementain.pli where the original

oh the sparsity_strIc- .:.

that either. allieittes-..
he.ornplitotioli or that

> , : i tt iv t t p it . o e c t r s . i n . . ___ ,
elbisit tor the design of- ...

matrix elenie,nts were zero. l'hus,,,irk Order.-to-e.
ture of the matrix one must plovide 10.fdivita?..tt
from the oilisot space for all :tke Ali- in.2iu lag_

. allows for a ;Eliliakical allqcatioir):nf amp- for :We
both cases gratakkoretical anproticIA:form

desirable almitigo?.
ezarniole :orbit use eta static data structure' it."thcse*A.

and column Pepiesentatitirt 'bring the matrix
bandwidth. This the

elliptic
thilinear Aysteinsalising.

in the finite-element discretilation of elliptic boundary-valtik problem*, .

and the corresponding bandwidth optimization ,toutines are Widely used
in praeti.celOn the other hand, if a dynamicjitorage structure is usect,.theli:;..
special care has to be taken in the design ofpivoting strategies for.,rOneing
fill-in while at the same time maintaining numerical stability. Various
sparse matrix packages hitye been ddveloped for thipurposo. They are
typcially rather largo and cpmplexpiecep of software. But the 'field is still
ullikler active develOpineRt; and, ere re Many open research questions....
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In particular, Ruch still needs to be done on the interrelation betWeen '

sparse matrix algorithms and special-purpose computer architectures.,
In recent years graph-theoretical approaches have also found increas-

ing application in the design of algorithms for the numerical solution of
problems of mathematical physics, in particular, of fluid dynamics. For ex-
ample, it has been observed that certain natural finite-difference discretiza-
tions of the equations of viscous, incompressible flow admit interpretations
as systems defining flows on certain associated networks. Typically, the
network nodes correspond to the idealized control volumes represented by
the mesh points of the finite-difference equations, whereas the network
arcs correspond to the paths on which one may identify the discrete finite-
difference mass fluxes. Such observations can lead to remarkable savings. .
in computing costs because they open the way to a priori transformations

,
,of the original (discretized) system of equations to completely equivalent
systems. in substantially fewer variables. For flow problems in two and

- thiee space dimensions the reduction factors are nominally 1/3 and 1/2,
respectively: In graph - theoretical terms this approach corresponds to the

N..
..tralisformation of the Maxwell-node equations to the Maxwell-mesh equa-

-.'' k'on s, longused in electrical-circuit problems. ft.
'the key reggirement in the application of network techniques to fluid-

°Yttfl probleproblems Mho the discretized momentum and continuity equations
\.:.." ..*interprqtable as "Ohm's laws" and "Kirchhoff -node laws" on an as-

soeia4chietworli. This requirement permits great generality in the actual+,,\'>-:\, .,_
form of these laws and easily, accommodates both implicit time dependent

t.;%,te-. . .
43 well E:S norilkwar :steady -state difference forms of the Navier-Stokes

...,.......... : .,

li;': s,,A.44,101,1AN\ 'Y . . :
.

' Itiseven Poe-sibilto extend the network approach to compressible flow
pl.o lenel H,. e.r ,t4e. new idea appears to be the introduction of pseudo-

-.): -\t-.. . - v :%:, - - ,
41olxs.mk ,tlie pole Pittv.,.and the i8entification of corresponding pseirdot.

thfireateilitict to aegitient the Ohm's lawn obtained from, the momentum
hOorktioni,,fitthe rioristritlorlary case this prOduces numerical schemes

..-
,..Rmigiplityii iu4atantleutOf toe#1?acoustic velocities,

,.,,.....4.,i4.,,,. yheaktirte....-Areels,,Xuri.ireil.1"-"ctiN,Areseareh development. For ex-.
4-,-; si.. kle,,tlyssaie.01)rj,sliiirgp. migthIpeciel,flow problems undel ,the
Iv: e xey_ ,o.,elkiaiJA--jf-e0§,;, 1);111), jii*de, , 40 ..4 important special case,.
.;.i.v. tri .31c77F9.41e,in: i alare a cant!_ ricer . in the design of reliable
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4.7 SPLITTING METHODS AND DEFECT CORRECTIONS

Splitting is a means to separate a large intractable problem into a sequence
of smaller, or at least more easily solved, problems. These methods are
invoked to reduce significantly the computational effort (time and memory)
needed to solve a problem compared with solving it directly. Often a
form of splitting is required to make solution practical, and some cases
even tractable. Various forms of splitting are common in engineering and
scientific applications, even if they are not always recognized as such.

Defect correction is a widely used, if often unlabeled technique of
splitting. It presumes that one wants to solve a given hard problem, that
one has in hand a guess at its solution, and that one also has a nearby
problem that can be solved easily. It corrects the guess by solving the
easier problem with special data computed from the guesi.

To illustrate the method, suppose that after discretization it is neces-
sary to solve a finite-dimensional system of equations of the form

A(v) b = 0

where A is a nonlinear operator, 0 is a known vector, and v is the solution.
Often v is difficult to obtain directly, but the 'residual erroi

r =A(tv) b

for an approximate solution w is easy to evaluate. If there is a related
system'

Pfzu) b ,

that approximates the original System and that is easier to solve, the defect
correction algorithm may be appropriate. Given an estimate va near a
root va+i of the original system, we can expand the original equation in
a Taylor series to get

0 = A(v,,) b + P(un) ffiXtinti 7.t.0,0+ Qic2)

where c = vn+1 va. The defect correction iteration is any approximation
to the, above equation. The simplest such iteration is

-64,17

This, iteration will converge and ip the Jiieobian of h are,near:-
eito.tgh:,,.to-v'n+*1 ant.1J4, re:spOtively.

P(va.1.1)'=.1:),(va) A(va)-F b ,



One of the most common splitting algorithms in engineering applica-
tions is the alternating direction implicit$6.kDI) method. Here, the model
problem is a partial differential equation system having two or more in-
dependent spatial coordinates. Its direct solution requires too much com-
puter storage and time to be tractable. Using an ADI splitting, the prob-
lem is reduced to a manageable sequence of one-dimensional problems.
In terms of the defect corrections, the system P is the sequence of one-
dimensional problems that is much 'easier to solve, yet that closely ap-
proximates the original system. ,

Other forms of splitting also ilia. For exanfee, in certain systems of
partial differential equations some of the equatiOns are weakly coupled to
the others. In these cases:solving the equations sequentially (rather than
coupled) can result in significant savings. Similarly, in some combustion
problems, considerable savings are realized through operator splitting al-
gorithms in wttch the chemical rate terms are handled separately from the
species transport terms. These methods are equivalent to matrix splittings

.71

of the Jacohian 10, the system. 4 . .

Analysis of splitting, methods i$ important because the methods often
do not converge:We must be concernedabout accuracy and convergence
of the factored system. Even though each iteration may be fast, we
must have some idea about the overall convergence rates and about any
degradation in accuracy resulting from the split. Analysit will also likely
lead to. the identification of matrix properties that suggest.a beneficial
splitting that would not be apparent froniaml reasoning._ Splitting
can be considered as either a splitting of the original equations or as an
approximate factorization of.the iteration matrix. The former is the most
intuitive, and the one in which physical insight havaluable: However, the
latter is prohably the one mote amenable to analysis.

4.8 MONTE CARLO TECHNIQUES

-
Mathematical solution methods can he broken into two broad classes,
Monte Carlo methods and deterministic 'methods, depending on whether
chance events are included in the Method. AU scientists are familiar
with deterministic methods but most have little familiarity with.MOnte
Peril). methods. Deterthinistic _methods do not. depend on chance, and
calculations.performeitusing the same input data ,end the same computer

. code will pride exactly the same results. Monte Carlo calcuiations,using
the same input data slid the same computer code will provide different

_



results, depending on what chance events occur. In this section we discuss
what Monte Carlo methods are and how they might be improved.
. The Monte Carlo method estimates averages on a probability model.

Any quantity. that can be expressed as an average value can be calculated
by Monte Carlo techniques. Sometimes a probability model is obvious
from the problem' itself. For example, the probability that tossing three
fair coins and obtaining a desired outcome [for example two heads (H) and
one tail (T)) is easily estimated by Monte Carlo methods. The probability
model consists of assigning a probability of to an H and a probability
ori to a T on each toss and assigning a score of Ito a desired outcome
(HHT, HTH, THH) and a score of 0 to any other outcome (HHH, TTT,
THT, HTT, TTH). The computer has a random number generator that
geribrates random numbers uniformly on the unit interval (0,1). A uniform
distribution means that any random number e is equally likely to have any
value between 0 and 1. Thus a coin toss can be simulated on a computer
by:

H occurs if e <
T occurs if e >

To toss three coins the computer uses three random numbers 6, 6,
and e3 A typichl set of tosses might be el = 0.7 (T), e2 = 0.1 (H), and
e3 = 0.4 (H), scoring 1. The probability of obtainin heads and one
tail is (a7cProxiiniteTy) the average score (I) after manylets of computer
tosses.

Sometimes a probability.model is not immediately apparent, but after
a little thought the desired calculation can often be expressed as the
estimation of an average value. For example, the integral

b a aI = f(x)dx

. .

can be thought of as the average value of f(x) on the intervalla,b)." To
see this, note that by definitionthe average value of f(x) with respect to
a probability density p(z) is

f> a f(*(x)dx.

Thus I is the average value of 1(x) with respect to the probability density
p(z).= 11(b a). Here p(x) is a uniforin probability density on (a, b), and

.t
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x values can be samples uniformly on (a, b) by setting

whereupon
r

x. = a + (b

where I is the estimate of I.
There are many applications for the Monte Carlo technique, but the

application to neutron and photon transport has probably consumed more
compUter time than all other applications combined. Because of this, and
because neutron and photon transport problems have a n.aturalorckability
model, the remaining discussion will pertain to neutron or photon trans-

'port problems. Furthermore, because neutron and photon transport are
similar, the remaining discussion will refer to particle transport,

Particle flow in nature is a random process. Poe cannot say exactly
what will happen to an individual particle. One can only say what the
probabilities are that various events occur. For example, a particle travel-
ing through matter has a certain probability to collide,per unit diattance;
the actual distance between collisions is unknown, but the probability of
traveling a distance I without collisions is known. Similarly, the nuclide
a particle will collide with is not known, but the probability of colliding

Twith the nuclideis known.
The simplest Monte Carlo model for particle transport problems uses

the natural probabilities . that various events occur for the probability
model in essentially the same way as tke coin toss example. That is,
particles are followed fronra event to event in a computer, and the next event
is always selected ,(using tlie.random number generator) from a number of
possible next events according to the natural event probabilities. This
type of model is called the analog Monte Carlo because it is directly
analogous to -the naturally occurring transpo .

The analog Monte Carlo model works well when a significant fray
tion of the particles contributes to the estimate of the average. This is
analogoui to having a significant fraction of the particles in the physical
situation entering a detector. There are niftily, problems for which the
fraction of particles contribution (scoring) is very small, less than 10-6.
For these problems, analog Monte Carlo fails b cause fez any, of the f
particles contribute, and the statistical urioor ty in thIllasper is dim-.
ceptable. , '1, 4

.,,Althaugh the analog Monte Carlo model,is probably the simplest
conceptual probability model, there are an inikiite number of probability
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models for particle transport .that will estimate the same average value
as the analog Monte. Carlo model. These other techniques are known
as nonanalog Monte Carlo models, and they are useful because although
the average value remains unchanged, the variance (uncertainty) of the
estimate can often be made much smaller than the variance for the angle
estimate. Practically this means that problems that would be irniassible_
to 'solve in days of computer.time can be solved in minutes of computer
time.

A nonanalog Monti Carlo model attempts to follow "interesting" par-
ticles more often than noninwresting prerticles. An "interesting" particle,
by definition, is a particle that contributes a larg amount to the quantity
(or quantities) that needs to be estimated. There are many nonanalog
techniques, and they, skate meant to increase thg odds that a particle
stores (contributes). Teensure that the average score is.theaame in the
nonanalog game as in the analog game, the score is modified to remove
the effect of biasing (changing) the natural odds. Thus, if a particle is
artificially made ;q times as likely to execute a giv,en random walk, then
the particle's score is weighted -by (that is, multiplied by) ljg. The average
score is thus preserved because the average score is the sum, cntr all rim-
dom walks, of the probability of a random walk and the score dee to that'
random walk. The trick in obtaining lew-varianee solutions is to choose glE
such Ulla all random walks contribute the same scare, in fact the average_
score. This then would be a zero-variance solution.

It is always possible for ant (linear) Partiele transport problem to
select g's for each random walk such that every particle's score is the
average score; that is, a zero-variance solution. The hooker is, of course,
that the perfect q'ti are not known, thus a zero-variance solution is not.
practical. However, people have often been successful enough in guessing
good g's, thlit is hisiing the odds, to improve thescalculational efficiency

...by several orders of magnitude. This is.typically done iteratively with a
persorl making several short Monte Carlo computer iiins (calculations) and
using information gained on each run to better .guess,how to bias the next
run. When the persop guesses no jeger improve the calculation, a long
run is aone with the optimal biasin.earned in the short runs. -

Can the computer leap to optimize the biasing? The conmiter is,,
after all, supplying the information. that the person uses to learn. In
the-past decade a number of computer learning techniques hah been

, tested. Thus far it ,has proven impotsible for a computer to take an
arbitrary transport problem and, without human aid, optiinize the biasing.

However,.two thingeare worthy of note. First, computer learning aided
by human judgment appears to be substantially better in many cases than,
human learning alone. This typically works by having the computer inform

r ;.
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the person how the computer would bias the subsequent run and having
the person selectively alter the computer's suggestions acceding to the
person's intuition. Sec.ojid, the amount of human judgment required is
decreasing. The day may come when the computer needs iio humaii aid.

Qnce *human aid is no longer needed, the computevcan learn to
adjust its own biasing particle, as the calculation proceeds. An interesting
imPlication of an adaptive Monte Carlo Cichllique is that the common
central limit theorem of statistics that would constrain the accuracy of
the calculation to decrease as the square root 9f.ihe number of particles
followed no longer applies. The common central limit theorem applies
only When each particle's random walk is independent of all others and
the sampling process is identical for all particles. Consequently, the Fate
of convergehce may be more rapid. Although some limited statistical
theories exist for dependent random variables, it has not been investigated
whether these theories w profitably be applied to Monte Carlo particle
transport problemi. Thistik is uncertain how fast an adiptive Monte
Carlo calculation is converging or indeed what the maximum convergence
rate for a good leaining process might be. Empirical evidence shoyys that
the convergence can be substantially faster than the square pot of the
number of particles. In light of this, Monte Carlo methods can be expected
to become more competitive with deterministic calculations. '

4.9 PROBLEM-DEPENDENT METHODS

A variety of adaptive methods have a common goal: to overcome the
computer size and grid resolution limitations, which. are especially severe
in singular problems, by use of computational elements that fit or model
the singularity more directly. In this way, it may be possible to incorporate
into the solution algorithm considerable analjetic information beyond that
provided by the equations themselves. This theme occurs in many aspects
of numerical analysis: In the finite-element method, one. may choose
elements that include any singularities in the solution being computed (see
Section 3.3). Grid adaptivity (see Sectimi (2) 2,41so problem dependent.

_Here we discuss examples of somewhat more special methods. Of necessity
they,apply only to classes of problems that posses related singularities. .

-
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4.9.1 The Riemann Problem and Nonlinear Wave Modes

The Riemann problem for a nonlinear by perbolic system of consenation .
as is the Cauchy problem in one space dimension for data that are

et ery's here constant except for a single jump discontinuity at the °non.
The solution of the Riemann problem provides a resolution of this &coil-
tinuily into the nonlinear .modes. or waves, which propagate coherently
in tune. This idealized pr.oblem can be thought of as 'an approximate
description of a higher-dimensional flow field. especially in the neighbor-
hood of a discontinuity hypersurface. This point of %lett has led to a num-
ber of improted finite-differencelachemes, which attenipt to determine the
various nonlinear wale modes at each point in space and time and -to ad-
lust the diffeteacing of the diebrential equations to take advantagl of this
knowledge. This adaptivity is to the -structure of state space. in contrast
to the coordinate space adaptivity discussed in Section 4.2.

,,

".
4.9.2 Front Tracking

. .

.
...

Front tracking is a combination Qf adaptive grid methods wtth the use,of .
.Rieinann problems. The method is adapted to probais that have impor-
tent singularity hypersurfaces (lines in two space dimensions, surfaces in
three space dimensions), such as shock waves and contact discontinuities.
In one % ersion of this method, there is an overall time-dependent coordinate
transformation to map the discontinuity into a fixed grid line us some set ..

'of computational coordinates. In another % ersion, the discontinuity is rep-..
resented by a moving lower-dimensional grid that follows ("tracks") the

,, dynamical motion of the discontinuity.. The moticeof the discontinuity,
.

and of the moving grid points that track it are governed 15) solutions of
Rieman problems, or equivalently by the method of characteristics.

4.9.3 Vortex Method .
..,

e

This method introduces small Vrtiesor surfaces of vorticity .into a fluid flow.
The method is adapted to the study of shearlaycr discontinuities, bound-
ary tayers; boundary' -layer separation, and turbulence. The equations af
motion of an ideal fluid yield simple equations for the motion of a collec-
tion VI' % ortices imbedded in the fluid. in fact, the,tortices mote passively

/
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47 . Ai

t



with the fluid, and their mutual interaction is described by a Hamiltonian
system of ordinary differentiarequations, with Coulomb type interaction
energy. in the case of the Navier-Stokes equations, the vortex motion also
contains a diffusion term. .

These methods have been applied successfully to the problem of tur-
bulent flame propagation (see Section 2.2).. In this problem, the turbulent
mixing is a primary factor in determining the flame speed. The turbulence
comes from the boundary layer and in the boundary layer is c.Aculated by
a cortex method. Related methods have been developed under a variety of
names such as boundary integral methods and Green's function methods.

4.9.4. Scale Invariance and the Renoinialization Group

Scale transformations are the transformations x -+ sz, acting on space or
on space and time. A function u is homogeneous of degree a if

u(sx,sy, sz) s°u(x, y, z)

and scale invariant if a= 0. Many problems\lave solutions that are scale
invariant or approximately scale invariant over some parameter range.
Such solutions are called similarity solutioqs. [:sing the scale invariance,

. one of the independent variables can be eliminated: making the solution
mere elementary to compute. '
- However, scale invariance can'also indicate the occurrence of com-
plex pheivimena. Specifically, any singularity that occurs in a scale -
invariant problem must be repeated in all length scales (for which the
scale invariance holds). Mathematically, Cantor sets, snowflake curves,
and frictals arse examples of such phenomena.,14 statisticarphysic,s, criti-
cal phenomena in the equation of state is a scale-invariant problein. One
general picture of turbulence holds that scale invariance (vortices on a
large range of length scales) describe theinertial range, ot energy transport

'range, of turbulence...,
To implement these ideas in a eomputational algorithm, one integrates

over a given set of length scales in a standard manner. Tolle result of this
computation is taken as data for anew ealculation over a new set of length
scales (with the original degrees of freedom eliminated from the prob-
lem). This process is iterated and if convergegt gives the,scale exponent
a. Sample numerical calculations of this type were discussed in Section
2.1 in connection with turbulence. The method is well established for per-. .
turbative calculations (with a small parameter) in critical phenomena in
statistical physics.
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FIGURE 4.1 Tie evollfition :and merger of isolated vortex structures, as
FVpredicted by contour dynamical techniques. [om.E. A. Overman and

N. J. Zabusliy; Phys. Fluids 25, 1297-1305 (1982)4
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Since the renor z n group`methodts are novel, it is worth men-
tioning that the ma ernaticgi foundations of thistethod have been estab-
lished recently in several cases including examples of hierarchical models
in statistical mechanics, interval maps, and renormalized quantum fields.

ta

4.9.5 Contour Dynamical Methods

Contour dynamical methods are being applied to a variety of inconpress-
ible flows in two dimensions. These generalizations of the "waterbagn
method pros ide simplified models for following the evolution of contours
separating regions Of piecewlse-constant (pe) density that are the sou-Frees
of the flow. The flow is the result of the self and mutdal interaction of con-
tours that evolve, mainly by area maps. These pethods have
been applied to the Euler equations, where pc finite -area vortex regions.
and/or 'vortex sheets at/density interfaces are sources of the flow; and
the equations for a weakly ionized and strongly magrietized ionospheric
plasma cloud, where pc ion-density regions are sources of thellow. For the
former, a large class of steady-State translating and rotating solutions with
pd vorticity ("V-states") have been found.. Figure 4.1 shows the merger
and.breaking for a perturbed corotating V-state (two pc finite-area vortex
regions with the same circulation), a familiar process in free-shear layer
experiments. Notice how the two regions merge to Corm one region (by
snipping out the common boundary at t 10) and then stabilize by eject-
ing vorticity in thin filaments. With these methods it is possible to obtain
detailed information 'about the regions )-ecause the dimension is reduced

1:1 'One. The curvature of the contour provides a predictive signature of
the evolving small-scale structure, e.g., the roll up of vorticity filaments,
etc.

4.10 OMPUTER SOFTWARE AND HARDWARE

As previously didcussed, large-scale scientific calculations that tax the
resources of the most powerful.computers will continue to be essential to
modern research and development efforts. To obtain long-term reliability
and stability of future ipplioations 'codes, implementing and testing of
high-level numerical software should be coordinated. This will require a'
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41.

strong research and development effort wit Lion supported among
applications programmers, the theoretical cal methods researchers, .

and the computer-science software develope
.

Repetitiorr of expensive, error-prone, and time-consuming coding of
commonly used methods should be avoided. Much of the current scientific
software now being developed is redundant. If the common elements of the
existing codes were available as modules, future applications programmers
could use these routines and eliminate much of their efforts. New software
is most readily'Tceptecl if it is compatible .with existing techniques and
simple enough so that potential users can observe tangibly better results
in a tfial run than those existini methods can produce. If suukhigh-
level routines were available, thel could perfoirn many of the common
procedures found in applicitions codes, including grid generatio'n, rezon-
ing, numerical, interpolation, differentiation, integration; they could
approximate differentia, boundaryconditio and solve large, spar non-
linear systems of equations.

41; An important goal is the machine independence, of applications pro-
grams. This is a difficult task because methpds tailored specifically for a,,
particular machine architecture will proballbs.hecome more the norm than
the exception. We can, by keeping machine-dependent codes in libraries of
high-level software with standard user interfaces, strive to keep the user's
scientific applications codes portable. The underlying, library routines will
be, necessarily, Ids portable because the architecture of the now machines
will certainly be different from that of today's supercomputers. To uti- i

N. _.4,... e the inherent powers of the new machines we will have to re-examine
traditional methods and identify the better ones for tparticular machine _

-architecture. -- -- .. -:.1.\.....,-,

The continuing revolution in microelectronics is having a profound, . I
impact on scientific computing. Indeed, it is likely to change our concept
dramatically Of what scientific computations can and cannot be effectively
performed. Most certainly the impact of this revolution will be much
greater than, say, the impact that floating-point hardware had. Moreover,
while the costs of individual tasks will be greatly reduced, the domain of
scientific computations will be greatly expsided and "frontier computa-
tions" will continue to be,-gipensive. -

These changes are beingibrought about by :a number of factors:,
Individual components are becoming increasinglifaster and smallgi Very -

large -scale integration of such cOmponents is not only reducing the size of
the packaged, systems but also providing opportunities for customized in-
forrhation processors. Also, the decrease in the cost .and size of computer
memory implies that we can look for much larger memory systems. -This
will obviate many of the existing 'difficulties with secondary_storage.
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.
Despite the fact that components are becoming fasterthe h its of -

rave machine speeabare not visible: and further gains will eventual y have
to be made by using clever architectures and algorithms. Some ind of

. l....\
' parallelism-seems to be unavoidable. The programming issues invo ved in

using parallel machines are still not satisfactorily resolved. The automatic
detection of parallelism and the resulting scheduling of multiple resogrces
are important openproblem's. . .

Architectures, such as systolic arrays, bated on. specific subtasks caf
.s increase ' the performance of syptems involving these subta'sks' by. several

orders of maghitude and clearly have ribright future. Algorithms contain.
mg compute - intensive subtasks that can be vectorized in this fashion have
a bright future. Because these architeCtures are io general regular, the
algorithms that cap be vectotized for suoh machines tend to be regulary
i.e., simple, nonadapa, uniformirid, low-order algorithms. It
that-there are nicely behaved pfoblems for which these regular 'algo
on specialized machines will require significantly less time than algorithms
requiring fewer operations on serial machines. 11 is also clear that no
matter how t UK specialized machispes are, there are problems that
are facie ly diffi alt that more sophisticated algorithms are needed for
more n al-purpose computers. ,

In order to bring about these advances in architecture, it is necessary
to involve practitioners of scientific computation ii the design process.
Luckily, modern design automation.tools should take it possible for in-
terdisciplinary design teams to successfully synthesize innovative special-
purpose,systems, and automated fabrication facilities should make it pow-
sible for such systems to be built, debugged, and used. ,. '

__These advances in machine architeq.ure should also hive a dramatic
. effect on the 'design arid apalysisorafgorithins for seientifie- computing.

Traditionalli+, such analysis Das b ased on (asymptotic) estimates of
the number of arithmetic operation However, with these pew architec-
tures it is quite likely that the runn g4time of an algorithm will be more

(oider!endent on the movement of data than on the number of arithmetic
perations. Thus, we need to develop new analytic models of complexik of

scientific algorithins so thattsuch models give us usejjl information about
the relative performance of algorithms. . .-
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