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An Evaluation of One- and Three-Parameter
Logistic Tailored Testing Procedures
for use with Small Item Pools

Tailored testing has shown ctonsiderable promise as an
alternative to conventional paper-and-~pencil testing, but
before it can be implemented on a widescale basis, a number
of issues must be addressed. Tailcred testing procedures
involve a number 5f complex components, and there are often
a number of. alternatives which may be chosen for each.
Although there has been considerable research conducted in
this area, it is still unclear which ¢f tie many alternative
components should be usea in any particular application.

For instance, one important component of tailored  tésting is
the item response theory{IRT) model upon which the procedure
is-to be based. There are numerous IRT models, several of
which have been proposed for use in tailored testing. The
purpose of this study was to compare tailored testing
procedures based on two of the most popular IRT models, the
one-parameter lostistic (1PL) and three-parameter logistic
(3PL) models, to determine whether one of the two models is
preferable to the other in &4 tailored achievement testing
setting. The tailored testing procedures based on the iPL
and 3PL models were compared on the basis of the ability
estimates which were vielded by the procedures. Before
reporting the results of the study, it may be helpful to
review previous research comparing tailored testing
procedures based on these two models.

Comparisons of 1PL and 3PL Tailored Testing Procedures

Several studies have been conducted to compare the use of
the 1PL and 3PL models for tailored testing. One such
study, reported by Koch and Reckase (1978), was a direct
comparison of 1lPL and 3PL tailored testing procedures in an
application to vocabulary measurement. Both procedures
employed maximum likelihood ability estimation techniques,
and in both procedures items were selected to maximize the
information function at the current ability estimate. ' The
results of this study indicated that both models could be
successfully applied to vocabulary ability measurement. The
3PL procedure had a slightly higher reliability (a cross
between test-retest and equivalent forms reliabilities)} than
the iPL procedure {(r = .77 for the 3PL procedure, r = .61,
for the 1PL procedure). However, the 3pL procedure falled
to converge to ability estimates in hearly one third of the
cases, while nonconvergence was not a serious problem with
the 1PL procedure.
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In a second study, reported by Koch and Reckase (1979),
1PL and 3PL tailored testing procedures were applied to a
multidimensional achievement test. Results of this study
indicated very poor performance for both procedures,
primarily due to small sample sizes, poor linking
procedures, and poor selection of the stepsize and initial

ability estimates for the maximum likelihood estimation
procedure.

A study reported by McKinley and Reckase (1980) attempted
to correct the problems encountered in the Koch and Reckase
studies. Close attention was paild to appropriate item
parameter linking and selection of the operating
characteristics of the procedures. The results of this
study indicated that hoth models could bhe quite successfully
applied teo tailored achievement testing if correctly
implemented. Both 1PL and 3PL reliabilities were higher
than the reliability of a classroom test over the same
material. The 3PL procedure yielded hetter f£it to the data
than the 1PL procedure, and it also yielded higher test
information than the 1PL procedure. This study concluded
that for tailored achievement testing the 3PL model was the
model of choice. However, the test used in this study was
highly multidimensional. It is unclear how generalizable
the results are to less multidimensional zchievement test.

Urry (1970, 1977) also concluded that the 3PL model was
the model of choice. Through a series of simulation studies
Urry found that tailored testing kecomes less effective when
a model with an insufficient number of parameters is used.
He concluded that construct valdity decreases as a function
of the degree of degeneracy of the model, and the 1PL model
was particularly inappropriate for use with multiple-choice
items because it did not portray multiple-choice response
data with fidelity (Urry, 1977).

This review of previous research indicates that if
careful attention is paid to all components of the tailored
testing procedure, both 1PL and 3PL tailored testing can be
successful. The 3PL model tends to yield higher
reliabilities and test information than the 1PI. procedure,
but is more prone to complications such as nonconvergence.
It is also indicated that the 3PL model yields hetter f£it to
multidimensional data’. Thus, the results of these studies
tend to favor the 3PL model. Of course, these results were
obtained using relatively large item pools. It is unclear
from these studies what results would be obtained using
smaller item pools. The purpose of this study was to
compare the 1PL and 3PL models in a taileored achievement
testing application for which a re¢latively small item pool




is available.
Method
Models
The two models selected for this study were the one-
parameter lodistic (1PL) and the three-parameter logistic

(3PL) models. The 1PL model is given by

exp( (gj-bi )xlj)

P(xij) =
1+exp(9j-bi)

where Oj is the ability parameter for examinee j, bi is the
difficulty parameter for item i, xij is the observed score
(O or 1) on item i for examinee j, and P(Xij) is the

probabkility of response Xy to item i by examinee j. The

3
3PL model iz given by
expgDai(ej—bi))
P(x;4=1) = c;+(1~c;) ,
1+exp(Dai(Bj-Li))

where c5 is the pseudo-guessing parameter for item i, ay is
the discrimination parameter for item i, where Pi{ﬂj) is the

probability of a correct response to item i by examinee j,
and the remaining terms are as previously defined.

Estimation Prodgrams

For both the 1PL and the 3PL models parameters were
estimated using the LOGIST prodgram (Wingersky, Barton, and
Lord, 1982). For the 1PL model the pseudo-guessing
parameter was held fixed at 0.0. The discrimination
parameter was held fixed at a value computed by the LOGIST
program. To check the 1PL estimates obtained from LOGIST,
they were compared to parameter estimates obtained for the
same data using the MAX program {(Wright and Panchapakesan,
1969), which was designed for use with ihe 1PL model. Since
the results cbtained from the two prodrams were almost
identical, LOGIST was used throughout the study. The LCGIST
program was used for both models in order to avoid problems
due to different parameter estimate scales. For both models
the scales were based on the ability estimate distributions.

Tailored Testing Procedures

Tailored testing procedures have three main components:
an item selection routine, an ability estimation technique,

8
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and a stopping rule. In this study both the 1PL and 3PL
procedures selected items to maximize the value of the
information function (Birnbaum, 1968) at the most recent
ability estimate. The informatiin for each item at the
examinee's current ability estimate was computed. and the
item with the greatest information at that ability estimate
was administered, with the provision that the information
had to be greater than 0.226 for the 1PL procedure and 0.450
for the 3PL procedure. These values were selected on the
basis of several trial runs. They were selected so as to
yield approximately egual average test lengths for the two

models. For both procedures 20 items was the maximum test
length allowed.

Prior to testing initial estimates of ability were
assigned to set the starting peints in the item pocol. The
initial abkility estimates for this.study were set to be
0.22) for the 1PL procedure and 0.420 for the 3PL procedure.
These values represent difficulty values near the medians of
the item pool difficulty parameter distributions. The first
item was then selected to maximize information at the
initial ability estimate. The response of the examinee to
that item was then simulated in the following manner. For
the first part of the study, response data came from a fixed
length, non-tailored test comprised of all the items in the
pool. These items had been administered in paper and pencil
form to all of the examinees used in this study. An
examinee's response to an item in the tailored tests was the
actual response of the examinee to the item onh the paper and
pencil test. For the second part of the study, simulated
response data were generated for each examinee for each item
in the pool. These data were generated according to the 3FPL
model using the 3PL item parameter estimates obtained for
the real response data and examinee abilities selected @
random from a standard normal distribution. These responses
were used regardless of whether a 1PL or 3PL based tailored
test were used.

Once the response by an examinee to an item had been
obtained, a new estimate of ability was computed by adding a
fixed stepsize to the cld ability estimate if the response
were correct, and by subtracting a fixed stepsize if the
response were incorrect. This fixed stepsize procedure was
used until a maximum likelihood ability estimate could be
obtained (i.e., when both correct and incorrect responses
were obtained). The stepsize used was (0.300 for both
procedures. Each new item was selected to maximize the
information at the new ability estimate, with the
restriction that no item could be used more than once.
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Two stopping rules were used for the tailored testing
procedures. The tests were terminated when there were no
items left in the item pool with information at the current
ability estimate greater than the minimum specified above,
or when 20 items had been administered.

Design

This study emploved a two-staye design--one involving the
use of real data, and one involving simulated data. In the
first stage of the study, response data were obtained for a
large sample on a relatively short paper and pencil test.
Part of the large sample was then used to calibrate the
items on the test using both the 1PL and 3PL models. Using
the resulting item parameter estimates, 1PL and 3PL tailored
tests were simulated for the examinees not included in the
calibration sample. The responses by the examinees to the
items in the tailored tests were the same responses they
made to the items when taking the paper and pencil test.

In the second stage of the study, the item parameter
estimates obtained from the 3PL calibration of the paper and
pencil test were used as true parameters, along with the

rue abilities selectad at random from the standard normal
distribution, to generate simulated response data to fit the
3PL model. Data were generated for a large sample for all
the items from the paper and pencil test. The procedure
used for the real data part of the study was then repeated
using tnese simulated data.

Data

For the real data part of the study, response data for
the 40 item Mathematics Usage subtest of the ACT Assessment
(The American College Testing Program, 1982) were obtained
for 3000 cases from the October, 1982 administration of the
ACT Assessment (Form 23B). For the second stage of the
study, data were simulated for 40 items and 3000 cases. For
both stages, then, rather small item pools were used.

Anal yses

The analyses performed in this study consisted primarily
of computing and comparing correlations. For both the real
and the simulation data, the 1PL and 3PL tailored test
akility estimates were compared by computing the correlation
between them. For the simulation data the two sets of
ability estimates obtained from the tailored tests were also
compared to the true abilities used to generate the data.
Again, the comparisons were performed using correlations.

10




Results

Real Data Analyses

Item Pool Calibration The firs: analysis performed on the
real data was the calibration of the items for use as a
tailored testing item pool. The calibration of the items,
which was based on response data for the first 2000
examinees, was performed three different ways. The first
two calibrations were performed for the 1PL model using the
LOGIST and MAX programs while tche third was performed for
the 3PL model using LOGIST. The MAX and LOGIST 1PL item
difficulty parametersr estimates had a correlation of 0.999,
as did the abkility estimates obtained from the two program.
This comparison was performed in order to determine whether
the LOGIST program could be used for both models throughout
the study. These findings indicated that it could, thus
simplifying the problem of placing the estimates from the
two models on the same scale.

The item parameter estimate distributions obtained for
the two models using LOGIST are shown in Figure 1. These
distributions are summarized by the statistics shown in
Table 1. As can be seen, most of the 3PL discrimination
parameter estimates were .60 or higher, so most of the items
were of fairly high quality. From the 3PL difficulty
parameter estimate distribution, however, it can be seen
that the items are appropriate only for a limited range of
ability, since most of the item difficulty estimates £fall in
the range from -1.0 to 1.75. Most of guessing parameter
estimates are .3 or less, with only two items having
guessing parameter estimates greater than .3. From these
data it would appear that these items actually form a fairly
high quality item pool for tailored testing, except for the
limitation on the range of difficulty.

For the 1PL model, the LOGIST program assigned to all
items a discrimination value of 0.561. The pseudo-guessing
parameter was, of course, 0.0. The 1PL difficulty parameter
estimate distribution is somewhat different from the 3PL
difficulty distribution although the two sets of estimates
had a correlation 2f .88, with the biggest difference being
a shift downward of the bulk of the estimates for the 1PL
model. Most of the difficulty parameter estimates fall
within the same range as for the 3PL model, but there
appears to be a shift toward the negative end of that range.
Still, for that range the items form an item pool of fairly
high quality.

11




Figure 1

The 1PL and 3PL Item Parameter Estimate
Frequency Distributions for the Real Data
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Table 1
Descriptive Statistics of Item Parameter
Estimates for the Real Data

1PL 3PL
Statistic

b a b c
Mean 0.03 0.98 0.46 0.17
Median 0.22 0.90 0.41 0.16
5.D. 0.91 0.34 1.10 0.08
Skewness -0.24 0.40 -0.20 1.14
Kurtosis 0.1¢ -0.04 0.99 1.19
Low Value -2.07 0.31 -2.12 0.8
High Value 2.04 1.81 3.15 0.41

Figure 2 shows the test information function for the item
pool based on the 1PL item parameter estimates, while Figure
3 shows the test information function based on the 3PL
estimates. As can be seen from Figure 3, the 3PL curve is
negatively skewed, and is centered around 1.0, thus yielding
more information for the positive end of the ability scale.
The 1PL curve, on the other hand, is not skewed, and is
centered around 0.2. It would appear from this, then, that
the 1PL item parameter estimates are appropriate for a wider
range for ability than the 3PL estimates are. Of course,
the ability scales are not exactly comparable because they
are based on different item parameters.

Ability Estimates For those examinees not included in the
calibration sample, four different estimates of ability were
computed. For each examinee a 1PL and 3PL ability estimate
was obtained from simulated tailored test. In addition,
ability estimates for each examinee for both models were
obtained from LOGIST using the item parameter estimates and
the examinee responses from the 40 item paper and pencil
test. This made possible not only a compariscn of the two
tailored testing procedures, but also a comparison of the
tailored testing procedures with the paper and pencil tests.

Table 2 summarizes the distributions of the ability
estimates obtained for both models from the tailored tests
and from the paper and pencil tests. Table 3 shows the
intercorrelation matrix for these four sets of ability
estimates. &s can be seen from these data, the two sets of
tailored test ability estimates were similar, with a
correlation of (0.77. However, there were some differences
in the two distributions.

13
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For instance, the skewness value of -0.97 for 3PL ability
estimate distribution was significantly different from zero
(with a sample size of 1000, the standard error for the
skewness coefficient is 0.08), while the 1PL ability
estimate distribution +as not significantly skewed. Also,
the kurtosis value of 1.96 for the 3PL ability estimate
distribution was significant (standard error = 0.16). while
the kurtosis value of the 1PL ability estimate distribution
was not significant.

Table 2

Descriptive Statistics of Ability Parameter
Estimates for the Real Data

Tailored Tests Paper and Pencil Tests
Statistic
1PL 3PL 1PL 3PL
Mean 0.15 0.01 0.21 0.11
Median 0.14 0.23 0.16 0.25
S.D. 1.36 1.40 1.13 1.18
Skewness 0.10 -0.97 0.74 -0.35
Kurtosis 0.21 1.96 3.48 4.39
Low Value -3.65 -4.00 -2.92 -4.00
High Value 6.22 6.42 4.00 4.00
Mean Test Length 12.84 12.16 40.00 40.00
S$.D. of Test Length 4.51 4.73 0.00 0.00
Note. For the LOGIST calibraticns arbitrary minimums and
maximums of -4.00 and 4.00 were set on the ability
estimates. The same limits were placed on the tailored
tests except in those cases where all items were answered
correctly or all were answered lncorrectly.
Table 3
Intercorrelation Matrix for Ability Parameter
Estimates for the Real Data

Ability Tallored Tests Paper and Pencil Tests
Estimate 1PL 3PL 1PL 3PL
Tailored 1PL 1.00 0.77 0.89 0.87

3PL 1.00 0.81 0.86
Paper/Pencil 1PL 1.00 0.95

3PL 1.00
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The 1FL and 3PL ability estimates from the paper and
pencil test had a correlation of 0.95. Both distributions
were leptokurtic (kurtosis = 3.48 for the 1PL estimates,
4,39 €for the 3PL estimates), and the two distributions had
similar meoans and standard deviations. The only real
driference hetween these two distributions was that the 3PL
distribut.on was significantly negatively skewed (skewness =
-0.3%), while the 1PL distribution was significantly
positively skewed {skewness = 0,674).

The two sets of tailored test ability estimates were
fairly similar to the paper and pencil test ability
estimates. The two sets of 1FL estimates had a correlation
of 0.82, and the two sets of 3PL estimates had a correlation
of 0.86. A comparison of these two correlations via
Fisher's r to z transformation yields a Z =2.20, p < .05,
indicating that the 1lPL correlation was significantly higher
than the 3PL correlation. Interestingly, the 3PL tailored
test ability estimates had a correlation with the 3PL paper
and pencil test estimates which was not significantly
different from the correlation between the 1PL tailored test
ability estimates and the 3PL paper and pencil test ability
estimates (r = 0.86 for the 3PL estimates, 0.87 for the 1PL
estimates). The 1lPL tailored test ability estimates did
have a significantly higher &orrelation with the 1PL paper
and pencil test estimates than did the 3PL tailored test
ability estimates {r = 0.8% versus r = 0.81).

Average Test Length The average test length for the 1PL
tailored tests was 12.8 items, while the average 3PL
tailored test was 12.2 items long. This difference is of
little or no practical importance, except as an indication
that the atiempt to produce tests of equal length for the
two models was successful. Of some importance is the
finding that the 1PL tailored tests required approximately
one half of the CPU time required by the 3PL procedures. Of
course, if this difference had no signicant impact on
response time, then it alsc is of no practical significance.

Nonconvergence For the 1PL procedure there was no
nonconvergence, For the 3PL procedure, however, there was a
2.9% nonconvergence rate. Examinees for “hom there was
nonconvergence were assigned an ability estimate of 4.0 or
-4.0. Of those cases where there was nonconvergence, 96%
were at the low end of ability. This is consistent with the
finding that the 3PL test information curve was nedgatively
skewed and shifted toward the positive end. Nonconvergence
here means that the tailored testing procedure was not able
toc compute an ability estimate for an examinee. This could
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happen because the examinee answered all the items
correctly, or all the items incorrectly. It could also
happen if the examinee’s ability estimate drifted out of the
range for which there were appropriate items before both an
incorrect and a correct response were obtained. Inh such a
case, the tesc¢ would be terminated at 20 items, or when both
a correct and an incorrect answer Were obtained.

Simulation Data Analyses

item Pool Calibration The first step in the simulation
data stage of this study was the generation of data to fit
the 3PL model. The true item parameters used for these data
were the 3PL item parameter estimates obtained for the real
data used in the first part of the study. Data were
generated for 3000 cases, using true ability parameters
randomly selected from the standard normal distribution.
Once these data were generated, the items were calibrated
for both the 1PL and 3PL models using the first 2000 cases.
The distributions of tne obtained item parameter estimates ' :
are shown in Figure 4. These distrikutions are summarized
b, the statistics shown in Takle 4.

Table 4
Descriptive Statistics of Item Parameter
Estimates for the Simulation Data

1PL 3PL
Statistic

b a b C
Mean 0.00 1.04 0.41 0.17
Median 0.16 0.96 0.30 0.14
s.D. 0.90 0.34 1.12 0.08
Skewness -0.31 0.13 0.09 0.94
Kurtosis 0.38 .11 1.86 1.10
Low Value -2.20 0.28 -2.27 0.06
High Value 2.00 1.77 3.77 0.40

With feu exceptions, these distributions are very much
like the distributions of the item parameter estimates
obtained for the real data. The only real differences were
in the skewness of the 3PL model a-values, which went from
slightly positively skewed to not significantly skewed, and
the kurtosis of the b-values for the 3PL model, which had an
increased kurtosis for the simulation data.
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Figure 4

The IPL and 3PL Item Parameter Estimate
Frequency Distributions for the Simulation Data
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One other important difference that was found was that for
the IPL calibration the i1tems were assigned in a-value of
0.60. Since this was higher than thz value for the real
data (0.56), 1t was expected that the test information curve
for the 1PL model would be higher for the simulation data
than for the real data. it was unclear what effect this
would have on the simulated 1PL tailored tests, except that
it would prokably increase the average test length.

Table 5 shows the intercorrelation matrix for the true
and estimated item parameters for the simulation data. As
can be seen, the 3PL estimates were quite similar to the
true parameters. The correlations of the true and estimated
3PL item parameters were 0.89 for the a~values, 0.99 for the
b-values, and 0.92 for the c¢-values. The correlation of the
1PL, b-values with the true b-values was 0.88, and the
correlation of the 1lPL and 3PL b-value estimates was 0.88.

P~

. Table ©
Intecorrelation Matrix for the True and Estimated
;tem Param=eters for the Simulation Data

Item True 1PL Estimates 3PL Estimates
Parameter a b C b a b C
True a 1.00 0.25 0.10 .45 Q.89 0.21 -0.09

b 1.00 0.40 0.88 0.27 0.99 0.29
C 1.00 0.11 0.19 G.34 0.92
iIPL, b 1.00 0.41 0.88 -0.04
3PL a 1.00 0.23 0.08
b 1.00 0.26
C 1.00

Figures 5 and 6 show the test iaformation curves for the
1PL and 3PL item parameter estimates, respectively. As was
the case with the real data, the 3PL information curve is
shifted toward the positive end of the ability scale. It is
centered around .8, The l1PL curve, on the other hand, is
centered around 0.0. The lPI, pool once again appears to be
appropriate for a wider range of ability than the 3PL pool
is, especially at the lower end of the ability scale. As
was predicted from the item calibration results, the 1PL
test information curve was higher for the simulation data
than for the real data. An unexpected result was that the
3PL test information curve was also higher for the
simulation data than for the real data. This was probably
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a reésult of the fact that the simulation data =re dgenerated
to fit the 3PL model.

Ability Estimates Four sets of ability estimates were
once again computed for the 1000 examinees not included in
the calibration sample. For each simulated examinee 1PL and
3PL ability estimates were obtained from the simulated
tailored tests as well as from LOGIST runs on the simulated
40 item fized length test using the item parameter estimates
from the calibration of the simulation data. Thus, all the
comparisons made with the real data results could be made
with the simulation data results. Because these were
simulation data and the true ability parameters were Known,
the ability estimates obtained for these data could also be
compared to the true abillties.

The statistics shown in Table 6 summarize the true
ability parameter distribution, as well as all of the
ability estimate distributions obtained using the simulation
data. Table 7 shows the intercorrelation matrix for the
true and estimated abilities for the simulation data. The
patterns appearing in these data are much like those found
for the real data. For these data the correlations are all
higher than for the real data, however, with the exception
of the correlation between the 1PL and 3PL (simulated) paper
and pencil test ability estimates, which was lower for the
simulation data (0.928 versus 0.946 for the real data). The
1PL tailored test ability eéstimates had a correlation of
0.931 with the 1PL siiulated paper and pencil test
estimates, which was significantly higher than the

‘correlation of 0.826 obtained between the 3PL tailored test

estimates and the 1PL paper and pencil test estimates ( 2 =
10.954, p < .01). The 1PL and 3PL tailored test estimates
had correlations of 0.920 and 0.8%4, respectively, with the
3PL paper and pencil test estimates. The difference hetween
these two correlations is significant ( z = 7.113, p < .01),
indicating that the 1lPL correlation was significantly
greater than the 3FL correlation.

The inclusion of the true ability parameters in the
analyses of the simulation data resulted in a very
interesting finding. While the 1PL and 3PL paper and pencil
test estimates had correlations with the true parameters
that were not significantly different {(0.894 for the 3PL
estimates, (.900 for the 1PL estimates), the correlation of
the 1PL tailored test ability estimates with the true
abilities was significantly higher than the correlation of
the 3PL tailored tests ablility estimates with the true
abilitiss (r . 883 for the 1PL estimates, 0.816 for the 3PL
estimates; 2z 5.452, p < .01). This was rather surprising
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since the simulation data were generated to £i1t the 3PL
model. Just as surprising was the finding that the 1PL
tailored test ability estimates had a correlation with the
true abzlities that was not significantly less than the
correlations betweeri the true abilities and the paper and
pencil test estimates, despite the fact that the maximum
length of the tailored tests was only half the length of the
paper and pencil tests.

Table &
Descriptive Statistics of True and Estimated Abilities
for the Simulation Data

Tailored Tests Paper and Pencil Tests

Statistic
1PL, 3PL 1PL

Mean -0. .08 -0.25 .02
Median Q. .07 Q.00 .10
S.D. 1. .30 1.48 .11
Skewness -0. .32 ~-0.58 .11
Kurtosis Q. .86 1.52 .27
Low Value -3. .61 -5.58 .47
High Value 3. .22 6.42 .00
Mean Test

Length .90 13.51 .00
$.D. of Test

Length 4,05 5.77

———

Note. For the LOGIST calibrations arbitrary minimums and
maximums of -4.00 and 4.00, respectively, were set on the
ability estimates. The same limits were placed on the
tailored tests except in those cases where all items were
answered correctly or all were answered incorrectly.

Table 7
Intercorrelation Matrix for True and Estimated Abilities
for the Gimulation Data

Ability Tailored Tests Paper and Pencil Tests

Estimate 1PL, 3PL 1PL 3PL

True . 0.88 0.82 0.90 0.89
Tailored 1PL 1. 0.81 0.93 0.92
3PL 1.00 Q.83 Q.85
P&P 1PL 1.00 0.93
3PL 1.00
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Average Test Length The average test length of the 3PL
tailored tests for the simulation data was 13.5 items. The
average 1PL tailored test was 17.9 items long. Both of
these averages were greater for the simulation data than for
the real data as was predicted from the results of the test
information curve analyses. The average 3PL test increased
by 1.3 while the average 1PL test increased by $.1. The
increased length of the 1PL tests for the simulation data
could at least partially explain why the 1PL tailored test
estimates had higher correlations with the true abilities
and the paper and pencil test estimates than the 3PL
tailored test estimates did. Despite the longer average
length of the 1PL tailcored test, it should be pointed out
that the 3PL procedure required half again as much CPU time
as the 1PL procedure,.

Nonconvergence The 1PL procedure had a .3% nonconvergence
rate, while the 3PL procedure had a $.9% nonconvergence
rate. For the 1PL procedure all of the nonconvergence cases
{three of them) were at the positive end of the ability
scale. For the 3PL procedure 90% of the nonconvergence
cases were at the low end of the ability scale. As was the
case with the real data, examinees for whom there was
nonconvergence were assigned an ability estimate of 4.0 or
-4.0.

Discussicon

In recent years a number of studies reported in the
literature have addressed the issue of whether the 1PL model
or the 3PL model should be used in various tailored testing
applications. 1In a tailored achievement testing
application, the application of interest here, the research
has tended to favor the 3PL model. Because of the
inconclusiveness of these studies for applications inveolving
small item pocols, and because the 3PL model tends to be more
expensive to use, this study was conducted to determine, for
a specific application, whether there is sufficient
advantage to using the 3PL model to warrant the extra
expense. The results of this study will now be discussed,
and afterwards some conclusions regarding which model should
be used for this application will be presented. First,
however, a discussion of the specific application which is
of interest in this study will be presented.

The Application

The specific application of interest here has several
characteristics which require special consideration. The
type of application of concern is an achievement testing
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application. Achievement testing must be considered in a
different light than ability testing because it is learning
rather than ability that is being measured. While ability
tests generally have learning components, they are
constructed to measure a single trait, and as such are
usually reasonably unidimensional. Achievement tests, on
the other hand, are not specifically directed at a single
trait. Moreover, achievement tests ofrten are designed to
measure learning in a number of content areas. Therefore,
achievement tests typically are not unidimensional, and are
often highly multidimensional. The multidimensionality of
achievement tests causes problems for IRT, since most IRT
models assume unidimensionatiity.

One way to deal with the dimensionality problem when
measuring achievement via IRT is treat the different content
areas separately. Individual content areas typically are
not unidimensional, but they at least afford a closer
approximation to unidimensionalty than do multi-content area
tests. Treating content areas separately presents a hew
problem for tailored testing. A singie content area of a
test may not include very many items. Tailored testing
procedures work best when the item pool has a relatively
large number of items, with difficulties spread uniformly
over the ability range (Urry, 1977). Bullding an item pool
to meet those specifications., but using only items from a
single contant area might be difficult, and certainly would
be time-consuming. It seems likely, then, that at least in
the early stages of a tailored achievement testing program
that treats content areas separately the item pools will be
small.

There are at least two other ways to deal with the
multidimensionality of achievement tests in a tailored
testing application, but at this point neither way is
practicable. One way would be to sort the test items into
unidimensional subsets, and treat these subsets separately.
However, thus far there are no satisfactory procedures for
sorting items inte unidimensional subsets when the items are
dichotomously scored, which achievement test items typically
are (Reckase, 1981). Even if sorting could be done, the
problem of insufficient items in the pool would still be
present. .

The other way of dealing with the multidimensionality
problem is by using a multidimensional model.
Unfortunately, no one has yet developed tailored testing
procedures for a multidimensional model. Therefore, this
study took the approach of using a unidimensional model with
individual content areas. The content area used was the
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math subtest of the ACT Assessment Program. Using these
items, a pool of 40 items was constructed. Using this 40
item pool, a comparison of the 1PL and 3PL models was
conducted. The results of that comparison will now be
discussed, beginning with the real data part of the study.

Real Data Analyses

Item Pool Calibration Probably the most significant
result from the item calibrations was the finding that the
3PL item parameter estimates yvielded a test information
curve that was negatively skewed and centered around a point
on the positive end of the ability scale, while the 1PL item
parameter estimates yielded a test information curve that
was symmetric and centered around zero. From these results
it would be exXxpected that the 3PL tailored tests would tend
to terminate pricr to convergence for examinees with ability
on the lower end of the scale. Such a tendency would not be
expected for the 1PL tailored tests.

Bbility Estimates The most important finding from the
anAalyses performed on the ability estimates obtained for the
real data was that the 1PL model performed as well as the
3PL model without requiring any additional items. The
correlation between the 1PL and 3PL tailored testing ability
estimates was fairly high (0.772), and the 1PL tailored test
estimates were just as highly correlated with the paper and
pencil test estimates as were the 3PL tailored test
estimates. From these data it appears that there is no
advantage to be gained from using the more complex {and
expensive) 3PL model.

Average Test Length For the real data tallored test
simulations, the average test length for the 1PL and 3PL
tests were about the same. This is as it should be, since
the information cutoff values for the two procedures were
selected to produce tests of egual length.

Nonconvergence There were no cases of nonconverdence for
the 1PL tailored test procedure. For the 3PL procedure
there was a 4.9% nonconvergence rate. Of those cases where
there was nonconverdence, 96% involved examinees at the low
<nd of the ability range. This is consistent with the
finding that the 3PL test information curve for the item
pool was negatively skewed. Clearly nonconvergence js more
of a problem in this case for the 3PL procedure than for the
1PL procedure,
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Item Pool Calibration What turned out to be one of the
most 1mportant ‘results of the item calibrations was that for
the 1PL calibration LOGIST assigned to the items a common a-
value which was higher than that assigned to the items using
the real data. This resulted in higher test information for
the 1PL model across the ability range. As a result of
this, the information cutoff for the 1PL proce.ure was
inappropriately low, which resulted in the tests being
longer than expected. The test information curve for the
3PL model was also somewhat higher than for the real data,
except at the extremes. This would also be expected to
increase the average test length of the 3PL tests, but not
as much as for the 1P tests. The 3PL curve was negatively
skewed, as was the case with the real data, which should
have once agaln resulted in some nonconvergence cases at the
low end of the ability scale.

Average Tes! Length As was expected, the average test
length increased for both procedures. The 3PL average test
length increased by a little over one item. while the
average test length for the 1lPL procedure increased by about
five items. There 1s no reason to assume that the quality
of the 1PL ability estimates would have dramatically
decreased had the 1lPL tests been shortened by several items,
although it would probably have been lower.

Nonconvergence For the simulation data the 3PL
nonconvergence rate increased to 5.9%. while the 1PL
procedure had a .3% nonconverdgence rate. Once again,
nonconvergence is clearly a more serious problem for the 3PL
procedure than for the 1PL procedure. 2as was the case for
the real data. the bulk of the nonconvergence cases for the
3PL procedure (90%) were at the low end of ability. This is’
consistent with the results of the test information curve
analyses for the simulation data item pools.

Summary and Conclusions

A study was conducted to compare the 1PL and 3PL models
in tailored achievement testing application. Both real and
simulation data were employed. For the real data, the 1FL
procedure was found to yvield ability estimates that
correlzted with paper and pencil test estimates as highly as
did the 3PL tailored test ability estimates. The 1PL tests
were of about the same average length as were the 3PL tests.
For the simulation data, an inappropriately low information
cutuff was used for the 1PL procedure. and as a result of
the 1PL tests were on the average four to five items longer
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than the 3PL tests. The 1PL ability estimates were found to
be significantly more highly correlated with paper and
pencil test estimates than were the 3PL estimates. It was
unclear what the results woula 2ave been had the 1PL t~sts
been terminated earlier.

The 1PL model is a more appealing model than the 3PL
model, since it is simpler to work with, requires smaller
sample sizes, and is overall much less expensive to use than
the 3PL model. The results of this study indicate that for
this type of high guality, small item pocl, there is no
justification for the added expense and complexity of the
3PL model. For this application, the 1PL model was found to
be the model of choice. )
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