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4NTRODUCT1011

The AssOciation of Computing Michindy'S Administrative Di-
rectory for 1979 lists 207 American computer science departments
granting bachelor's degrees, 127 granting master's degrees, and ,73
offering Ph.D. oi D.Sc. degrees. In addition, the,directqrr includes
computer science programs at all levels embedded in 163 math-
ematics departments, 56 busines3 schools, 29 electrical engineering
departments, and 40 other schools_or departments, including such
diverse, areas as physics, industrial kengineering, and economics.
What makes these figures remarkable is the fact that the first coin-
piiter science departMent appeared less than-two decades-earlier:
To me, this rapid grpwth is but one of several, factors that combine,
to place computer science in an exceptional position vii-a,vis other
areas of inquiry:A-brief exploration of these points will be helpful

'in providing some general perspectiv4 within which the articles in
this study can be considered(

First, it important to, note that_ the burgeoning of coinp,uter
_

science programs cannot be equaiedwiththif inatbFatioircif-coni=
puler .science..There Aill is no "sraildard" (i.e., universally inoffen-
sive) definition al computer science, In fact, the existence of such a

The cyclopedia of Computer Science (A. Ralston and C Meek, eds., Pet-
rocelli/Charter, 1976) defines computer science as follows: "Computer science is
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discipline continues to, be a debatable point for a substantillo
nuMber 4, people. (A prominent educator, though himself it
cl)airman of a computer science department, cautions his audiences
to, regard with suspicion any discipline with "science" in its name
urban \$tibnce, consumer scicncc, economic science, social science,

.-- computer Sortie people think of computer science's "uni-
verse" as\a relatively restricted one, limited by definition to elm=
tronic .digital information processing ,,systcms. Definitions at the
othcr end o4 the spectrum perceive an arena consisting of an arbi-
trarily wide range of information processing systems, ineluding..bio.
logical ones. .Despite this diversity, thc digital cOmputer system is
clearly the dom'nant vehicle for study. Mildly staked, this is a very
unusual gituatio : Instead of. exploring the behavior of a cell,' a
fluid,ean Organis or a galaxy, the computer scientist seeks basic
observable phenomena from an artifact (i.e., the cornputcr itself or'
the program procesAtherein). Thus*,the quest cor"`natural rayvs7
carries little meaning\ here. There is no ultimate and final reality
against which e natory structures are to be assessed. The
"reality," .represente

\
ardwarc, Software, and

informations is arbitrarilX alterable. hough it may sound almost
facetiojis, the fact remains that, if an attempt (regardless of its
degree of formalism) falls ihRrt of explaining observed events, those
events (i.e., reality) can be c anged'to meet the explanation alf-
way. Inevitably, this has a pr ound effect on the phenomena com-
puter scientists seek to descri Nand the ways in which such de-
scriptions are voiced.

A second major peculiarity lies in-computer science's-inherent,
invisibility. End products Of comp terscienCe,4:e., information pro-
cessing systerns, generally are used and mbtivated) by people with

- little° interegt in computer. science. A major objective in the im-\plementation of such produ s to obscure their inner workings so.,.. , i ..t
s', i

that the user's attention r mains focUsed on the externally per
ceived behavior. For instance, a well-designed translating system

ford high=level -programming language (su\ ch at-FORTRAN) sue
' i`

.
4 .. \

concerned' with information processes, with the informatio4 structures and pro-
cedures that enter into representations of such processes\and with their implemen-

o.

tation and ihform tion proce&sing systems. It is also concerned with relationships
between informatioi processes and classes oftasks that givefse'io them."

.,. ......_./ \ 1.1"



INTRODUCTION .IX

cesifully promotes the illusion that 'the user's prbgrams execute
directly on a FORTRAN computer, with no apparent 'intervention
bctwccn the program (as .written) and the machinery. (This is cm- ,.
phasized by the jargon, which terms such a'system "transparent" to
its users.) -Conversely, implementors of such systems generhily are
less concerned with the ultimate uses than they are with the tcchni-
cal issues pertaining to a system's design and behavior. As system
objectives became more ambitious, their requirements grew more
intricate, thereby generating increasingly complex design and or-
ganizational problems. Not surprisingly, many of these problem
when abstracted, began to take on 'a separate existence, atrracting
many people interested in pursuing them within -their own context.
The resulting dichotomy produced a situation ip which a consider-
able amount of creative and intellectUally exciting work 'has been
done with. little or no connection to events in the field. Although it
is labeled "computer science theory," it.has not been motivated by
actual computing problems,Itor has it .exerted any substantial in-
ffirence On computing praCtice. Rather, the 'Breakneck pace that
characterizes the advance of computer applications has been fueled
for 'the most part by a loosely interwoven fabric of empirical tech-
nologies.

The'extent,,to which formal computer science and applied com-,,,
puter technology will continue on essentially independent paths

' remains a matter of speculation: There are' strong signs that certain
areas of formal inquiry (stich as computational comeexily, formal
languages, and automata thcory).alreay are beginning to have an
impact on the design 'of a variety of information processing pro-
cedures. (This, in part; motivates some of the emphasis on. these
areas, in this Study%) Moreover, the, realities of continued groirth in.-
computer applications militate for more concerted efforts to pro-
mote such, interactions; The conceptual demands imposed by many
of these new syMems are beginning to fall beyond the range of
complexity that can be 'accommodated without more generalized
models and applicable formal structures. However, an emerging
pattern of bridge-building between abstract computer science'and
applie'd computing technology remains to be defined.

Another important aspect of 'cOmputer science relates to the
computer's pervasiveness. The indoor record for platitudes may
well be held by variants of the statement that computers haveA
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touched everyAispect of human endeavor. Overworked as this
chestnut may be, it has long stopped being a hyperbole. While
.coniderable amount of this prciliferation is reasonably:attributable
to it sustained, impiessive selling effort, a significant impetus has
come from computer science, even as the discipline was seeking its

.identity. Despite the almost chaotic diversity 'that characterized'
early perceptions of computer science; one fundamental concept
emerged whose profound effect .on the-breadth of 'computer appli-
cations was felt almost immediately: This was nothing more (more
precisely, we should, say "nothing less"), than the realization tilat the
computer is primai'ily a symbol manipulator, with numerical
lation being but one relatively specialized activity. The, primitive
manipulations that are' specifiable on a computer receive their con-
text from the algorithm-designer. Thus we can define 'any system
we choose to define, representing its component's via an 'arbitrary
set 'of symbols and imbuing that system with a set of procedural
characteristic§ consistent with our definition. When' these symbols
are processed, the ,"rimaiiipg" of the operations perforrhed On them
derives strictly from our Perception. The slugeriiig result, then, is
that the computer ptesents itself as a vehicle for controlling (man-'
agineany procedure that we are able to describe precisely.

Self-evident as this recognition may appear, it all but escaped
any notice by many early-computer users. However, once substan-
tial interest was aroused, in examining' computer procedures and.

. klanguages for specifying such procedures, the revolution began in
earnest at:0.ft. persists unabated a,quarter of a century 'later. tom-

. ,

puter usage continues to proliferate, exerting, a. feedback effect on
the directions of hardware and software development.

It is this mutual interaction between computer usage and
computer-oriented_ research and engineering* that Nis helped en-
gender the enormous collection of applicable technology. At the
same time, this prdcless has catalyzed (to a substantial degree) the
identity problems that continue to Complicate computer science's
movement toward adulthbod. When computer applications are de-
veloped in a particular.areg, the resulting effect on that field miy.

* This is a community distinct from more abstractly ojiented computer scientists,
mentioned earlier, who have explicitly exempted therntelves from such interactions.



IN1'ROI?l1CTION xi

be quite piofound. For example, basic directions in therthodyn-
,

airtics have been altered by making "exotic" computations .routine
and prevIOu4 "impossible.' computations plausible, in a number
of disciplines, these effects have been so fundamental that it 5.teerned
natural to associate computers and computing with those. dis-
ciplines. Thus, cOmputer-oriented workers in; say, numerical analy-
sis found it reasonable to treat studies in computing.as being in
exorably linked with those in numerical analysis. Then, when it

; came to define an academic program, its natural habitat (for those
workers) was clearly in that.area..This situation replicated itself to
a sufficient extent so that as recently as 1974 the National Science
Foundation..deemed it necessary to affirm,;computer science as

being distinct from other disciplines.
.These perplexing characteriOcs make it all the more difficult to ,

identify a group of concerns that indisputably are "ccntrar.to com-
puter science and therefore represent inevitable candidates for in
elusion in a compendium such as this one. Consequently, cotrality,
(by whatever criteria) was not the only motivation in the selectidn
of these. articles: Considered also was the desirability of cmpha-
sizing topics that would be particularly interesting to mathema-
ticians aqd wOn)11 underscore the wide range of areas deeply and
continually affected by computer science.

The collection resulting from these deliberations consists of nine
articles. After a historical overview Of the mafor factors motivating
the development of cOmputer sicence; there are three'articles deal-
ing .with aspects of programs and the programming process...Regar-
dless of the objectives of a given computerized 'information hand,

.

ling process, the inescapable fact is that the generation of any
observable phenomena involves The execution .of a pro'g'rani.
Consequently, any study claiming to pay attention to the computer
science's mainstream issues must examine an interlocking chain of
Concepts and, technologies that includesthe characteristics of pro-
gramming languagei, design and implementation of algorithmic
translators for these languagtes, and the analyiis of programs writ-.
ten-in these-languages-:-Accordingly, an article, by William' E.,Ball

to systematic examination of programming languages as .
communication vehicles for expressing algorithms. Corresponding
language processors are then examined as means for analyzing' and
translating these programs, stated initerms convenient to the user,
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into: the more primitive forms required for execution on a com-
puter,.

The pivatal role of programming languages. has stimulated a'.
growing interest: in the study of their' features:a9d Properties within

° the broader context of formal language theory. Matheinatical.
models developed for the-exploration of natural language's.are selv-
ing as effective ,bases for deszibitig and characterizing computer
lartguagtes as yell: 'Results stemming from this, work haye provided
invaluable "i0ights that are exerting considetlable influence on the
directiOn of new languag'e designs and iMplementations. The scope
and impact of thes'e inquiries, together with the underlYing theo-
retical framework, are discussed in an article by R. V. Book on the

,tw
specification of formal languages.

. Work on programs and, prqgramming has engendered another
major avenue of formal study, this one dealing with .ti?e programs
themselves. While there are many people who still are convinced
that the process of designing and implementating computable algo-
rithms is characteristica4 resiStant to the imposition of any sub-
stantial formalism, a growing number. of investigators holding the
opposite conviction have made:important strides toward .defining
basic analytical tools fOr the formal description; of a program and
its behavioral properties. In an article on formal analysis of pro-

grams, T. W. Pratt discusses. the major directions this work ,has
taken and defines realistically the prospects for a theoretical basis
that will make possible the systematic generation of optinially con-
structed, pr bably correct programs..

Another f cal point in the study of computational processes ad-
dresses the c mputations themselves. Closely intertwined with the
properties off. rogramming languages and the behavior of algo
rithms, but sti I quite distinct:is; a set of concerns regarding the
characterization of algorithms in terms of their complexity. The
development of theoretical structures for assessing precisely the
relative difficulti of competing solution methods, well beyond the
.contemplative stage, is examined in an aritcle by F. P. Preparata.

The last four articles deal with areas that are of great interest
And- serious concern to computer science but whose rel-

tive to the "core" of the discipline continues to be debated. For
e,.areas such as artificial intelligence, numerical analysis, statis-
and simulation are important applications of computer/sci-

N
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ence. fathers take a diametrically opposite View; perceiving these
fields .as separate disciplines in. which computer science plays a
significant but supportive tole (S ilectron- microscopy.. might be
perceived in relation .to genetics or metalltirgy). Still others 'may .
think of `some or all of these areas as'branches of computer science

IrreSpective of ones orientation, there is an undeniably per-
VasiVe attribure shared by such fields: All of them have been
altered profoundly by their interaction with computing and corn-
puter science:

Perhaps the most conspicuous example of a branch of knowl-
edge in which computers have provided primary impetus is that of
artificial intelligence. Machine-oriented work has produced drama-
tic results, in pattern recognition, theorem firoving,' game playing,
and Lather cognitive- protesses that have affected the structUre, and
capabilities of information processing systems in several important
was More fundamentally, achievements .in artificial intelligence
have prompted some unsettling questions 'about the nature and
constancy of the boundaries between human and machine intelli-
gence. Accordingly, this area is addressed in a comprehensive arts
cle by James R. Slagle..

/Both numerical analysis and statistics have been revolutionized
by the sheer mass of compUtational power that can be Marshaled
to attack problems in these areas.* MethOdologies which in then/
past could only be :des bed. are now part of the standard
repertory; classes of algorithms whose potential computational' re-
quiremerits had placed theni beyond contemplation are now ac7
lively pursued, designed, implemented, and used Onebasic effect of,

available computational power has produced a most provoca-
live consequence in both these areas: Traditionally, many of the
assuMptions underlying a wide range of statistical and numerical
algorithms were accepted , implicitly because of the extensive
amount of computation required to test them and the even more
formidable work required to introduce corrections '(or alternative
Methodologies) should the tests reveal a violation..

'\* Numerical analysis, in particular, has emerged with renewed pro inenee and
continues to experience vigorous growth. In response, a separate volu e.in this
series is being planned to clraracterize this field,
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In an article 011 the impact of cornputerS on numerical analysis,
E. R. Bulgy and R: Ff. Pennington explore these effects as 'related fb

-a number of major areas, including function evaluation, numerical
quadrature, and systems of equltions. Rarticular emphasis is plac
on ways of explolting more sophisticated numerical algorithm
whose use for improving approxirhations and reducing error:build-
up no lbnger can be eschewed based on computational difficulty.

Digital simulation exemplifies an area whose basic spectrum has
been widened dramatically by the, introduction of digital com-
puters. Mark Franklin discusses the range of analytically ina'cces-
sible systems whose 'exploration has been made possible by the
deVelopment of models based on continuous and disCrete simula-
tion.:In addition, the article presents a discuision of pertinent mod-
eling and validation processes, along with a diScussion of algo-
rithms designed to specify these models and special languages for
implementing'such algorithms.

In his treatment of computational tools for statistical data analy-
sis, C. F: ,Starmer examines a hatically Analogous set of effects
resulting from simplifying assumptions that tend (artificially) 'to

, coalesce inherently different entities into groups defined as being
\"the same" for purposes of computational convenience. At a more
intrinsic level, there are numerous applications in which the combi-
nation of computationally. efficient algorithms and economical
automatic data collection techniques bring into serious question
the continued use of estimated parameters (forced on the statis-
tician because, of sampling) instead of the exactness provided by
gathering data from an entire'population.

In a study such as thig. one, it is futile to thope for cqmpleteneSs!
ACcordingly, there are inevitable gaps, several of them quite con-
spicuous. For example, the study of 'functional organization of
computing systems known as computer architecture, is an impor-
tant computer science subject. Moreover, its prominence is increas-
ing \ because dramatic advances in equipment technology have
broadened the range of practical-configurations so that the practi-
cini computer scientist is faced with an almost arbitrary range of
feasible options for a system configuration. These options include
architectures in which a number of computers are, linked together,
to allow the subdivision of an application into several simul-
taneously executing components. HOWever, opportunities to exploit
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1

this parallel processing are severely r stricted because there js only
a rudimentary undeKAanding df the nderlying phenonfena. Conse-
quently, there are growing areas of inquiry at finding formal
vetiicles for 'characterizing such pro sses, Ian uagesior_specifying
them, and algorithms,for.genera4in em froth equivalent sequert-
tial processes.

These and other aspects of computer science:may be the subjects
Of additional studies in the future. Meanwhile, it is hoped that this
study provides an, interesting look at an explosive field still in the
process of becoming.

SEYMOUR V. POLLACK



IliTROTAJCTIOR
Seymour V

THE DEVELOPMENT OF COMPUTER SCIENCE
Seymour V. Pollack, 1

,
PROGRAMMING LANGUAGES AND SYSTEMS
William E. Ball, 52

SPECIFYING FORMAL LANGUAGES
Ronald V. Baok,,95

FORMAL ANALYSIS OF COMPUTER "PROGRAMS
Terrence W. Pratt, 169

COMPUTATIONAL COMPLEXITY
Franco P. Preparata, 196

COMPUTER SCIENCE AND ARTIFICIAL
INTELLIGENCE ',-
James R. Slagle, 229

THE IMPACT OF. COMPUTERS ON,
NUMERICAL ANALYSIS
E. R. Buley and R. H. Pennington, 280

COMPUTER SIMULATION
Mark. Franklin, 299

COMkUTATIONAL _TockLs FOR STATISTICAL
DATA ANALYSIS
C. F. Starmer, 343

xvii



DEVELOPMENT OF r

COMPUTER SCIENCES
\

Seyinolir Va Poltack
6

Anytime one undertakes to chronicle the development of any
human endeavor, it is tempting to ciimb. on Time's ascending bal-
loon so that the receding .past appears more orderly. The license
granied by this "perspective" offers the convenience of reinterpret-
ing certain occurrences, or perhaas laying others aside as.the teem-
ing jumble fades into a systematic patchwork of related but well-
bounded entities. Events, one can-claim, foreshadow events, .and` we

develop a case study in inevitability.
When it comes to computing and computer science, in their

present state, it is easy to stand there, eyes ahead, and proclaim
successful resistance: The temptation to make things orderly simply
is not there. Computer science, after all, deals with our desire to
understand the transfdrmatiops occurring in an 'information pro-
cessing -system (more precisely, an electronic' digital computing
system). And_this amazing contrivance, though now ubiquitous, has
been with us barely a third of a century. (The "amazing" has not
yet worn off.) Moreover, its, arrival was ,not accompanied immedi-
ately by universal recognition that we have_ here° a device Whose
study. Warrants (much less demands) a full-blown "science," coin:

1



Seymour V. Pollack'

plete with. univysity depArtments,, johrnls, esoterica,sinternational
conventions, and other. accoutrements. Consequatiy,
we are 'looking at ea, very new area of inquiry, _with. direct fore-
runners.limited to-a handful-of strikingly prophetic individuals. The
imaginative-people produced ideas for machines that were far more

)chan automatic calcUlators: Not only4ould-they follow a rquence
of prescribed instructfohs, but ihoseiinstructiOnit could be altered
by the machine itself.-4 was not until a century after one man's
initial insights that 5 second wave of visionaries, abetted by a neViv
technology, a greater urgency, and a more responsive bureaucracy,,:

:revived these concepts, brought theth to'fruition, and set the stage
for the emergence of a distinct area of Study.

Tr

Additional background, less direct, must be Dulled together from y
a variety,of respodses to man's search for efficient meani,of gener-r
acing' data to alleViate a shortage and, paradoxically, his growing/
heed to .organize and handle an overabundance' of data While' not
direct antecedents of computer science, these diverse sources have:,..;
provided motivation for some of the equipment rriethOdologies t ,.
have been crucial to its development. This is an important poiriO'
for it underscores the central notion'that computer science deals,
inevitably, both with the machines themselves and with the vehicles°
for expressing,_ implementing, analyzing, and explaining processes
meant to opera on those machines. (Ma 'y people 'in the field
emphasize this duality by using the name 'computing science" in
preference to "'computer science";.pertstent use of-the latter term..
here does not imply any lesser emphasis.r.

THE SEARCH FOR DATA

It is no surprise that the widening interest in computers and
computing has prompted detailed inquiry into the history and de-
velopment of the entire range of calculating machinery..Accor%:1.:
ingly, these studies are turning up a kaleidoscope of dgvices and
mechanisms to add to the already fascinating array of better-

* In some views, computer science is more aptly termed "information science"
because its domain is seen to encompass all information processing systems; includ-
ing biological ones.
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% THE DEVELOPIAENTI Ott v;OMPUTER
1.
sCIENCE

V;
knpwn mc.Ifines./Ses;erat 400:nt historical accounts and cited at
the end of this article. (2)f partiCUlar fi.ote is B. Randell's The Origin
of Digital Comguters,[1];;O "chronicle in which a feeling of
drama is intensified w'Acluding reproductions of ;many. or the
originalyapers and aCCOVUts. , -!
,Many or these machines were'designed in respianie to an .emerg-

Al
ing need.for relia101ata, spurred by the growth of Commerce and
the. aliening of y uropean science and technolOg0 Napier's in-
ven n of to (1614); crucial as it was iii revolutionizing,the
wa of de in with numerical calculations, required the pro.-

ion' or logarithmic tables before it could be exploited. Such
les, labO y built by lland, bristled with errors. Better celes-
obsef ons began to provide data which, in conjunction with
fin/ theories thus engendered, promised major advances

y and navigation. Here again, these advances would
- _promises without the extensive sets of computed tables

el them. Even thessimpleadditioris and subtractions used
f lading and.other commercial documents began to place

table bdrdens on the time and-endurance- of the human
tiCianS/trying to meet growing demandi while maintaining.

ey.,0
r',"" .Thlis,there was no lack of motivation for reliable, tireless calcu-

lating machines. (The abacus, though used extensively and rou-
tinely in.tlieEast, was known in Europe but never went beyond the
"interesting toy" stage there.) In 1642 the 19-year pld Blaise Pascal
built the prototype of a machine which added and subtracted, seek-

.ing to provide computational relief .fpr his father's customs work. ,

This7was the first in a long and varied process of digital calculators
` invented (and reinvented) tbroughbut the ensiling three centuries.
_Excellent summaries are to be found in Bowden [2], Goldstine [3],
and. Eames [4]; with more detailed chronicleSbeing cited therein.

By the early.nineteentli century, the use of mathematical table
had grown considerably, but the few mechanical calculators then
Available had little impact' on the preparation of_these tables. (Nei,
titer their speed nor reliability,taused sustained excitement.) Conse-
quentlyAhe prOmile of accurate tables still was unfulfilled at that
time. One of the people angered by these deficiencies was Charles
Babbage. In 1812 this young English mathematician (then 20) de-
cided to seek a mechanized vehicle for computing function values.
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He proposed to situp ify the automation process by using the
nthod of differences,anApproach that would allow the evaluation
of.a polynomial function at systematic intervals witiiOut, involving
anything more complicated., than addition. This is illustrated below

12' for = X2 + X + 41 brevaluating Y for X = 0,1, ..., 8. This
-PrObablY is,the function Babbagefirst usedlorpres,ent his ideas-:

Y D1 D2
Al

43

47

53

.61

10

Y1

1D21= D11,1 D11)

71

83

9`

12

14

16

8 113'

It is clear from the table that, by starting with the constant second-
order difference (nth order for a polynomial of degree n), one could
apply successful addition and come up with corresponding function
values at successive integer values of the variable. Moreover, the
constant nth order difference_can serve as a verifier. For example, a
Y value of 175 for X = 1 d would prodice a corresponding D2 of 4,
indicating an error. Procedures already had been laid out whereby
similar- tables were mass-produced by squadrons of computers (the
term by which such people were known then) who were set to work,
each person performing a particular addition in the cycle. Ver-
ification did not seem to be a particularly widespread-custom, as
manifestedby the numerous errors-to be found in, such tables. This
is likely to have provided additional motivation for Babbage, Who
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planned a mechanism for handling up to sixth-order differences
with an accuracy of 32 decimal places. A responsive goVemmentf, '
provided Babbage with support for the.project in 1824. Work pro-
ceeded in fits -and starts-until support ultimately was withdrawn in
1842 Despite 'all the setbacks, .a. working difference engine was
built 'by;Babb' e's son, demonstrated; and used far many years by04
the British &,.. ernment and by their insurpce industry. MO-eover,
it provide(t the inspiration for a more'./#1odest differente engine
(capable a producing fourth-order differences to thirteen places)
prothiced by Scheutz in Sweden in 1854 and used productively for
many years. The Method of differences, and "engines" based on it,
remained useful for table preparation well into the twentieth cen -.
tury. In 1928, Leslie J. Comrie, then beputy Superintendent of thee".
Royal Naval College's Nautical Almanac OffiCe, used a variety of
mechanical calculators as difference-engines to produce tables rang-.:
ing from'Bessel functions to nautical tables. of lunar data. Thus we
find in these difference engines, and in the quest for reliable, data,

-something approaching a continuous thread through the "progres-
sion" from calculating to computing machines. Moreover, it served
as the impetus for the surge of interest in digital calculations that
eventually produced the first, automatic electronic computers. In-
terestingly, this need for rapid, voluminous, accurate numerical
computations also helped lay the groundwork for the early and
persistent ,misco,nception that computer science is fan intriguing but
relatively limited offshoot of numerical analysis.

THE*ANALYTICAL ENGINE

While providing valuable new insights into the ingenuity and
diversity of early calculating machines and difference engines, re
newed inquiries also have served, reconfirm° the uniqueness of
Charles Babbage's position as .the unmistakable "father" of the
automatic digital computer. As he pursued the development of his
difference engine, Babbage already pegan -to be -bothered- by its
inherent dedication to a very specific task, i.e., computation of a
table of values for a -polynomial function. With the engine still
incomplete (1833), he envisioned its replacement by a more general
"analytical engine" which, by following appropriate instructions,
Would produce values for any function. To an amazingly accurate
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extent, the .fundamental concepts governing the o }ganization and
behavior of today:s digital systems are. embbdied Babbage's
plans for his analytical engine: Ais design specified a machine that
would fallow a sequence of instructions submitted to' it. Those
instructions would activate computational components, accept
input data:and produces human compatible (i.e.,printed) output.
More significantly, results produced at sorneinterim point in the
process would dictate the rrature of, the machine's stibsequent ac-
tivity by selecting an alternative pathway of instructions for the
Machine to follow. -

Of course the idea of self-regulating .levices.did not origina
with Babbage. By the time he was thinking througfi some of the
ideas for his. analytical engine, James Watt's steam engine, reg-
ulated by a, ball governor,already was an established device and
the principle of the thermostat had been worked out. Scientific and
technological histories of the nineteenth century are 'abundantly
dotted with instances of such devices in which a pottion of the
output is fed back to the input side, thereby regulating the system's
behavior. In some instances, this "self-guiding" propertythas
prompted the efforts to represent these mechanisms as forerunners
of computers. However, tempting as this analogy might be, it is
wide and serendipitous jump from these single-purpose mecha-
nisms to Babbaget:s dazzling idea of a general'vehicle in which the
operation (as perceived by the users) changes with each new set of 4

7, ',automatically sequenced instructions.
The great frustration of Babbage's life was that he never saw his

analytical engine design move from the drawings to reality. The
device itself was to be a very ambitious one: Its storage' unit, to,be

`implemented by means of pegged cylinders, would .accommodate
up to 1,000 50-digit decimal numbers. Motivated by instructions
supplied on punched cards (more about these later); selected num-
bus would be brought automatically to the central computational
mechanism (which Babbage called the mill)-where arbitrarily speci-
fied combinations of arithmetic operations wo-uld be performed._
Results, transferred from the mill to storage, eventually would find

,their way to a printing device which, again automatically, would
pro-duce human readable output directly or prepare a plate from..
which copies could be made. All of this activity was to be purely
mechanical, driven by steam power. The accompanying tolerance
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requirements were so stringent that they fell beyond the manufac-
turing capabilities then current. It was not Until decades later that
his son, General Henry, Babbage, wad able, to dethonstrate the
soundness of his father's theories by successfully assembling and-
operating a subset of the mill, equipped with a printing mechanism.

There is no (discernible) continuous thread from Babbage to the
early pioneel-s in electronic digital computing. In- Wet, Babbage
hiniseq left relatively little ;n the way of documentation. RecOgni-
tion of his colossal intellectual achievement in this regard stems
primarily from an annotated translation by his associate Countess
Lovelace (Lord. Byron's daughter) of a detailed description written
by an Italian engineer named Menebrea.* These two individuals
seem to comprise the population of Babbage's contemporaries who
understood the impact of his invention. Several subsequent designs
for analytical engines, independently conceived, have surfaced in
response to renewed historical interest and are described in [1] and
[2].

THE PROBLEM OF ABUNDANT INFORMATION

While the scientific and commercial communities of the nine-
teenth century industrial world began to deal with' their growing
need for reliable data, another facet of this growth produced a'
somewhat contrasting problemthe prospect of a deluge of infor-
mation that could not be digested for meaningful use. For instance,
the required decennial census of the United States was beginning to
produce so much data that there was barely enough time fto pre-
pare and disseminate basic summaries before the next census. By
the 1880's the problem became sufficiently acute to prompt the
Bureau of the Census to seek ways of mechanizing the tabulation
fdr theTorthcoming 1890 census. (Some mechanItal aids were intro-
duced, to a limited extent, as far back as the 1870 census, but only
-rudimentary assistance was provided, a far cry frui the automated

--tabulation being;sought.) At the urging of S. Billings,
head of, planning for the 1880 census, a young bureau employee
named Herman HoIllerith dexeloped and patented an electrictabu-

* The paper is included as Appendix 1 in [2].

24..
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Alating system id vThich data were represented as a series of holes on

a continuous lenP h of f)erfo d paper, or on individual puriched
4 ci,atcls. Bath Hollerith and B bage may have drawn their inspira-
:,: tion for punched card usag rom a common sourcethe Jacquard

loom of 1804, in which punched paper cards controlled the selec-
tioh otstrands used to weave patterns. After successful applications'

:Iro regional data in Maryland, New Jerse'y, and. New Yak (1887- -
1889), Hollerith's machinery for apunching and counting data was

-.' used su0 wellfor .the 1890 census, during which well over 50
million cards were punched.

This success was repeated in a.number of European census oper- ,
ations, including an Austrian census in 1890 and aRussian census
in 1897. Improved keypunching equipment, among other 'inno-
vations, heightened the/success of the .1900 U. S. census, after Which
the Bureau of the Cetsus began producing its owns equipment

':.'. under the leadership of James Pdwers. Hollerith's original corn -
pany 1"the Tabulating Machine Company) becajne part of the
ComPuting-Tabulating -RecoYding Company, the direct forerunner
of the International Business Machines Corporation. Powers event.
ually .left the census bureau to form his own company.. This en-
terprise merged with Remington Rand, which ultiinately merged
with Sperry Gyroscope. Thus, the patents granted to these two men

; provided, the basis for competing punched card systems,- with
Remington iRand" (by then the Univac Division of Sperry Rand)

;giving up thilhost on its card design in the late 1960's.
The success of punched card equipment in handling masses of

census data was recognized quickly and exploited in a variety of .
commercial enterprises with abundant data problems (e.g., insur-
ance companies, railroad companies, public1utilities, large retailers).
By 19,10 the possibilities of Hollerith's machines (which by then
were able to add as well as sort and tabulate) already had prompt-
ed the systematization of many financial and managerial pro-
cedures..In addition to automating what has been done manually
by groups otclerks,-this equipment engendered applications_which_
had no equivalent manual prede6essors. Thus were born such pro-
cesses as cost analysis and sales analysis. More importantly, there
emerged a recognition that these information gathering and pro-
cess'ng devices were agents of change--catalyst4or reexamining
and redefining ways of doing things.

s
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As usage of tabulating equipment spread, calculating machinery
experienced a parallel growth. By the time the twentieth' century
entered its second decade, calculators such as Steiger's "million-
aire" and Odhner's Brunsviga numbered in the.thousands and were
to.be fOund in routine use,in 'widely, varying business and scientific
contexts: At the same time, machines like Felt's Comptometer and
Burroughs' Adding and Listing Machine. were making appearances
oupide of their customary accounting -environs. However; only a
small amount or computational ability crept into the design of

.Hollerith's and Towers' tabulating equipment. What now appears
(with 20-20hindsight) to be a "natural" marriage between machines
able to genwerate sizable amounts of data and those capable of
organizing and handling Such data was not so apparent in 1910.
Thus we find Karl Pearson, who was a gigantic factor in the spread
of statistical applications, preparing his massive tables with a
simple Brunsviga calculator.

It was not until the 1920's that L. J. Comrie, an official- of
British Nautical Office (who had learned about calculators
Pearson), began his systematic exploitation of tabulating
ment for scientific purposes. Departing from "normal"
such equipment;atomrie applied Babbage's different engi
niques on:, several ,commercial machines, among them Vol
tabulators. The results, which included a -set of greatly impr
nautical tables, underscored Comrie's important insight: By seek-
ing approaches designed specifically to exploit the properties of
these machines, he emphasized a quest for newly achievable appli-
cations in contrast to those representing a direct carry-over -of(
manual procedures.

A similar synthesis occurred at Columbia University under the
guidance of Benjamin D. WOod, an educational psychologist. Sens-
ing the importance of statistical analysis in educational appli-
cations,. he persuaded IBM's Thomas J. Watson (in 1928) to lend
she university a number of tabulating machines, thereby providing
the basis for Columbia's Statistical Bureau, the first of its kind
devoted to education. Working closely with IBM, Wood was in-
strumental in helping revolutionize educational testing by making
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it econbinically feasible on a large scale and greatly expanding
Pertinent Methodology. .

In 1931 Columbia's statistical laboratoff attracad the attention
of Wallace J. Eckert, an astronoiner, who began using the coinPu-

.tational faeilities for his work. By 1933 this usage had develoPed to
a sufficient extent to prompt the establishment of a separate com-
putational laboratory for astronoiny. This facility, later to become
the Astrononiical Computing Bureau, was eqtiipped with IBM's
latest tabulating and accounting equipment, which ickert tied to-
gether by means of a "mechanical programmer" that \alloived ttie
execution of. a. succession of steps, automatically. Late'r\ on, the

"'.:Astronomical. Computing Bureau was to play a significat sup-
Pdrting role in several Major projects during World War II, matt&
Mg the Manhattan Project. Eckert, Meanwhile, left Colunika to.
assume'the directorship of the Nautical Almanac Office, wher he
contifitied to apply his techniques for adapting punched card

llctiinery to scientific computing. The numerous tables t us procl
uced were soon to be applied to.a variety of wartime uses.- 'i- \

While it is impossible to pinpoint all the specific 'dates or events; ,
it ,is clear that the combined use of data,processing equipment and
ele.ctromectianical calculators in a single. context marks the he,

: ginning of a, steadily accelerating_ movement toward electronic'
digital computers..In_the -specific case of Coluinbia University's
A4ronomical Computing Buiteu, this facility,:served-as a catalyst
thaOtelPed:move IBM decisively. hi the directikn of scientific com-
pu9ng. With. continued CorporA!e support, the laboratory event-

..-trally (1937) became the -Thornas2J. Watson 'Astronomical Coin.-
c puting Bureau. While its primary interest was focused on astron-

omy and astronomical applicationk the bureau' served as a cradle
for 'Ideas in scientific eomptiting which were to have substantive
effects on other ,computing projects. Sortie appreciation of the
:bureau's central role can be gained from Herman H. Goldstine's
excellent account of those. days [3]. One quickly builds a Percep-
tion of a- rich and turbulent atniosphere in which people having'
sotne contact with the bureau keep showing up in various other
seminal computing projects.

The bureau's original Board of Managers included T. I-1: Brown
of Harvard. Consequently,,when 'Howard Aiken, then a Harvard
graduate student, expressed a strong active interestlin digital com-_,
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.
puting, Brown sent him to spend some time with Eckert at the
Watson Computing Bureau: The result was a collaborative projeCt
between IBM and Harvard begun in 1939.and culminating in 1944
with an electromechanical digital computer known as the IBM °'
Automatic Sequence Controlled palculatoro.and eventually termed
the Mark I. She computer was capable of storing 72 signed 23-digit
decimal numbers as well as 60 manually set constant values. Its
Machinery enabled it to perform a multiplication in about six sec-
onds' More significantly, a string of instructions, supplied to Mark,
I on perforated paper tape, permitted the execution of an arbitrary
sequence of operations without intervention. L J. Coinrie hailed
the comptiter as a realization of Babbage's dream. ,

While the HarvardABM project was taking shaPe; an indepen-
dent undertaking with basically similar intent was going on at Bell
Telephone Laboratories tinder the leadership of George R. Stibitz.
Using telephone relays for storage, Stibitz's group developed a ma-',
chine fqr performing arithmetic on complex numbers (1940). In-
structions and data were introduced via teletype, either through
direct connection or by long distance telephone. Stibitz astutely
recognized the advantages of using binary arithnietic and designed
the Complex Number Computer (as it was called) to use a 'binary
coded decimal system very similar to that still employed. The maL
chine, used routinely till 1949, served as a basis for more ambitious
digital computer'. projects at Bell Laboratories, establishing that
nrganization as an early and continuing ,contributor to the new
computer technology.

Under different circumstances, these. electromechanical Com-
puters would haVe generated .considerahle excitement After all,
here were untiring workers that could compute reliably at rater-7--
many times faster than possible heretofore. However, the timing
was unfOrtonate in that these devices appeared just as electronic
technology was beginning to mature.. As a result, much of the
impact was neutralized and, the electromechaniCal computer's
major role became that of predecessor.

A number of` other individuals and organizations recognized the
great potential inherent in combining data processing and compu-
tational technologies and >made the appropriate intellectual leap.
There is no intent here to obscure their work and deny them due
credit. The purpose, rather, is to emphasize the importance of this
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technological marriage in providing an essential stepping stone
into the computer age.

BALLISTICS AND BALLISTICS RESEARCH

In outlining the convergence of major forces to produce elec-
tronic digital computers, we must go back in time to pick :up
another important source of motivation. Unfortunately, Shfs source
stems from our seemingly unrelenting desire to hurl lethal projec-
tiles at one another. In \pursuing this somewhat bizarre approach to
population control, there always has been a need to develop me-
thods for calculating conveniently and accurately the landing
points of various bodies \dropped on, flung, fired, or launcheil at an
enemy. As weapons became more sophisticated, such information-
began to take the form of elaborate tables with thousands of trajec-
tories to account for a correspondingly bewildering array of projec-
tiles, launching conditions;, and external factors. Accordingly, a sub-
stantial segment of scientific computing, effort throughout the cen-
Nies has been devoted to, the development of theoretical models
a& practical methodologies that would permit such tables 'to be
produced with reasonable effort. Thus it is not surprising to find
prominent mathematicians throughout history associated with ar-
tillery boards and other ordnance agencie&

World War I saw a concerted attempt to place the American
ballistics effort on a sound scientific, basi& This included the estab-
lishment of proving grounds staffed with highly competent individ-
uals drawn together from a variety of disciplines, who, through a
combination of incisive theoretical work and well-planned experi-
ments, produced notable improvements in the accuracy of ballistic
calculations. Instrumental in one major program was Forest Ray
Moulton, who modified the finite difference methods used in
astronomy and applied diem successfully to ballistics compu-
tations: Of perhaps equal is the fAct that he persuaded
the armed forces to sponsor a program wherein talented officers
could pursue graduate work in mathematics and physics with spe-
cialties in ballistics. This helped reinface the idea of an ongoing
ballistics research effort. \

Concurrently, a secpnd ballistics p ogram was set up under the
leadership of Oswald Veblen, who helped place the newly es-
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tablished Institute for Advanced Study at Princeton UniverS4.
Moreover, he formed the .association body the
American ballistics research.effort, th reby setting the stage for an
extremely fruitful collaboration. Specifically, it was Veblen who
brought John Von /sleurnann to the institute and later placed him
(as well as many others) in contact with the problems surrounding
the ballistics work at the Aberdeen Proving _Grounds, This, of
course, was of profound importnce in the subsequent deyelopment
of computers and computer science.

The definition and verification of improved ballistic theories
prompted an increased desire for machinery on which the new
solutions could be implemented. Since much of this work involved
the solution of differential equations, the researchers' attention was
caught by Vannevar Bush's- differential analyzer, an elaborate
analog device designed to solve complex sets of differential equa-
tions encountered in the analysis of electrical network flow. While
similar devices had been built to analyze specific problems (in
effect, by serving as scale models of the particular systems being
investigated), Bush's machine, built at the Massachusetts Institute
of Technology, was much more general, being constructed to
handle a wide variety of problems expressible in term_s of differen-

- tial equation&
The analyzer's effectiveness also caught the e e of th rsity

of Pennsylvania's Moore School of ectrical Engineering. As a --
result, arrangements were made for Bush and his colleagues to
build an analyzer for each of these two organizations. Instalration
occurred in 1935. Thus the sphere of associations between the
American ballistics research efforts and university scientists con-
tinued to expand.

Altlibugh the Bush analyzer served as a very useful vehicle in
solving ballistics differential equations, its effectiveness was seen to
lessen as problems grew more and more demanding. This became
especially noticeable With increases in required computational pie-
cision. Since an -analog instrument is. an embodiment of a model
bad on continuous mathanatics, any increase in the model's pre-

' cision requires a corresponding increase in.:the instrument's precis-
ion as well. For example, if some continuous variable in the model
is represenied by a voltage in the instrument, another significant
figure in the variable would mean a tenfold improvement in the



voltages--accuracy---The -limited-ability-of-an -a nalog-sys tem-to-ac-
commodate these new requirements prompted a shift in attention
back to digital solutions and digital technologies. Thus, early
controversy as to whether the analog or digital approach would
predominate in machine-oriented scientific computing gradually
gave way to a realization thht the arbitrary level of precision made
possible by using discrete symbols to represent physical value's
would force the dominance ofdigital approaches by "natural selec-
tion." Hence digital computations became the focus around which
computing and computer science eventually developed. There no
longer is an "analog versus digital controversy." The former ap-
pr6ach, now implemented with contemporary electronic tech-
nology, still finds important use where its particular strengths can
be fruitfully exploited.

Aberdeen's quest for effective digital computing machinery led it
to ask Bell Laboratories for an expanded and improved version of
its Complex Number Computer' The result was the Ballistics Com
puter. Installed in 1944, it had roughly three times the capacity of
its predecessor and could operate automatically for extended
periods (up to 24 hours)'on instructions submitted via paper tape.
This was superseded by a lunch larger computer (the Model V)
designed for more general use. In addition to supporting the work
at Aberdeen (where it was installed in 1947), this machine was used
for a variety, of ballistics applications both for the Navy and Air
Force. Bell continued to develop and improve relay cOMputers,.
predominantly for'its own internal use, until they were superhnnu-

. ated by the onrush of electronics.
IBM's interest in scientific computing, nurtured In part through

its collaboration with Harvard and Columbia universities, playeda
part in American ballistics work as well Thus, by 1944, numerous
IBM standard and specially designed digital devices were to be
found in several ordnance installations including Aberdeen, where
they were used in-computing bombing and firing tables.

THE EMERGENCE OF THE ELECTRONIC DIGITAL COMPUTER

The onset of World War II intensified greatly the, need for ballis-
tics tables. Briefly stated, the gunner (normally) knows the location
of his target, the characteristics of his gun and projectile, and cer-

.
1-1k
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tain weather conditions;,,a firing table takes these into account and,
for a given, set of conditions, specifies- angles of deflection and
elevation. Typically, each entry in a firing table describes a partied-
lar trajectory, and a firing table for a particular piece of artillery
may contain .on the order of 3,000 such trajectories. At that time,
the Bush analyzer (which still could meet precision requirements
for most cases) and Stibitz's:relayxomputer operated at about the
same speed: On either system it took somewhere between 10 to 20
minutes to perform the several hundred multiplications required to
produce a single one-minute trajectory. At that rate, each system
was capable of turning out a firing table in about a month. Since a
steady supply of these tables had to reach the men at the fronts, the
Ballistics Research Laboratory mobilized for the effort. The ana-
lyzer at the University of Pennsylvania was absorbed into the over-
all -project, and scores of people were trained, to operate the, sys-
tems. Under these ciecumstances, it is nq surprise that laboratory
personnel .were constantly on the lookout for faster machines, and
research efforts continued to improve the body of ballistics theory
itself.

By mid-1942 a. number of people already had concluded that
many electromechanical calculating circuity could realistically be
supplanted by functioilally equivalent electronic. components:
Among the strongest advocates were John W. Mauchly, a physicist
at the Moore School, and J. Presper Eckert, Jr., a graduate student
at that institution. Their strong arguments in favor of electronics as
a practical means for increasing computational speed helped con-
vince Aberdeen's Ballistics Researefi Laboratory that the time was
right to embark on the development of an electronic, calculator
and, in June, 1943, the Moore School received a, :contract to prod-
uce such a ,device for the Laboratory. The machine was to be called
Electronic Numerical Integrator And Computer ,(ENIAC). En-
thusiasm for the Project was not universal: Proponents of electro-
mechanical computers maintained that the desired increase, in
speed was obtainable via electromechanical means, -with much
greater reliability, by partitioning the work among §everal units
Operating concurrently. Others felt ' that similar improvements
could be realized by applying electronic technolOgy to analog--
equipment. Nor were ENIAC's principals under any illusion: They
fully recognized the enormous reliability problem in producing.

ti
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such a complex device (plans called for about 18,000 vacuum tubes
alone). Yet the need for higher computational speed overrode these
apprehensions and the project was approved.

ENIAC was not completed until 1946, but it worked, typically
reducing trajectory computation time by factor of 30.

The impact of ENIAC extended w eyond the computational
improvements effected at the Ballistics Laboratory. For example,
the need to provide ENIAewith appropriate input/output facilities
without undergoing another major developmenteffort prompted
Mauch ly to contact IBM and engage their help in adapting some
of their tabulating equipment for this purpose. As'a result, ENIAC
wak equipped to read from punched cards and to punch new cards
Compatible in format with available *IBM printing devices. Thus
IBM,"already.heavily, committed to scientific computing through its
association with the laboratories at Harvard and Columbia,
became an early participant in a major move toward electronic
computing.

Another major impact, is well worth discussing: Although the
ENIAC was being developed for ballistics work, it was fully in-
tended to make the machine available for other applications. In
fact, the first full problem actually run on the new computer was
one whose solution was needed by the Los Alamos Laboratory.
(Part of this run was incorporated subsequently into the official
demonstration.) In addition, pa variety of runs were implemented,
including some in aerodynamics, hydrodynamics, pure mathemat-
ics, and weather prediction: This was done even while ENIAC still
was installed at the Moore School. When the transfer to Aberdeen
was complete and the machine was operating again (in the summer
of 1947), general usage continued, with the machine serving
widening community well into the 1950's. In spite of the mainten-
ance difficulties mid other complications, the machine generally

.performed successfully, thereby leaving a very deep impression
among its users iegarding the future of electronic digital computers
in scientific work.

Thus the historical importance- of ENIAC is well established.
Questions remain, howeve4, regarding its status as the fiest elec-
tronic compbter. Despite the fact that many of the principal figures
still are alive and have been interviewed numerous times (a col-

' lection of such taped interviews has been given to the Smithsonian
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Institution and the the Museum of Science in Kent), the picture
remains clouded and chaotic. A good deal of the confusion was
resolved in 1972 with the a pearance of Herman H. Goldstine's
detailed chronicle [3]. This i a particularly important work in that
it was written by one of th rincipals, the author having served as
the Artily's chief direct nical participant in the ENIAC project
and its major successors. But ambiguities still remain regarding the
"correct" chronology and connectivity. While ENIAC was in
progress, Konrad Zuse, having started with a home-built relay
computer in the 1930's, steadily improved his machinery to a point
where the German Air Ministry in 1943 ordered several of his
general-purivse calculators for aerodynamic work.' Zuse went on
to establish his own successful computer company. A major effort
also was carried on in England, but much of the work in the early
1940's was kept secret, dealing as it did with special purpose com-
puters for cryptographic use. &number of working electronic digi-
tal devices were produced under these auspices (Randell has repor-
ted on some of these [1]), but the more general work appears to
have received its crucial impetus from the ENIAC project Three
major British computer projects were the National Physical Lab-
oratory's Automatic Computing Engine (ACE), Cambridge Univer-
sity's Electronic Delay Storage. Automatic Calculator (EDSAC),
and Manchester University's Manchester Automatic Digital Ma-
chine (MADM). Principals associated with these projects visited
the Moore School in 1945 to see the ENIAC nearing completion
and to exchange ideas about improvements in its design. Bowden
[2] provides an excellent account froth the British perspeetive.

At the same time-John V. Atanasoff, a physicist and mathema-
tician at Iowa State, acted on his conviction that electronic digital
computation was the proper approach toward automatic com-
puters and began building such components. By 1941 Atanasoff's
work had attracted sufficient attention so that an interested John
Mauchly (prior to his association with the Moore School) visited
Atanasoff and held extended discussions with him. Numerous other
related projects have been identified in various searches for a com-
plete and accurate log of computer development; however, the in-
tensive scientific and technological activity characteristic of the
World. War II years, make this already complex task all the More
difficult. Ironically, even at this writing litigation still is. pending
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regarding which computers preceded which othdr ones and who
invented what. Historians seeking to link these early electronic
computer efforts to Babbage's work in-somt substantive way have
been generally unconvincing. The, fact that some of the', crucial
documentation remains classified adds further plot thickener. Also,
the Russians still have not published the authoritative history of
computers, in which the first, electronic digital machine will be
proved to be the work of a physicist in. Odessa following principles
defined by a Ukrainian mathematician 152 years earlier. Thus such
controversy is likely to continue:

Beyond controversy is ENIAc's role as a major point Hof depar-
ture in the evolutio of electronic digital computers. Once the con-
tinued devekipment of ENIAC was est#blished as being a matter of
engineering and not of basic feasibility, plans were initiated for a
direct successor. Prtimary orientation toward ballistices calculations,
together with the imposition of a tight development schedule, left
the ENIAC design with a number of recognized shortcomings,
Consequently, the ENIAC group began an exploratiOn of the kinds ,
of techniques and components that could be used to produce a
machine that would store a lot more information using substan-
tially fewer vacuum tube's and would be easier to convert from one
application to another. (The ENIAC had to be rewired each time.)
A new research and development effort was recommended, the
resulting computer to be' called EDVAC (Electronic Discrete Vari-
able Automatic Computer). The EDVAC is of particular interest in
our context because of its role as a focal point around which many
basic structural concepts first were articulated [3].

By 1944, John Von Neumann, already a consultant to several
government laboratorieS, including Aberdeen,. had become deeply
'interested in the ENIAC project, having perceived the enormous
value of electronic digital computers in a wide range of applications
on which he was working. Consequently, it was natural for him to
become an active participant (with Goldstine's encouragement) in
the EDVAC project. His role in that capacity was pivotal, both in
terms of the project itself and with regard to its impact on subse-
quent thinking about computers: Fundamentally, Von Neumann
began looking at computers as logical (rather than electrical) de-
vices. Once this all-important premise. 'was established, he or-
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ganized and defined the logical functions which became a basis for
specifying and analyzing computer operations irrespective of how
those operations are implemented electrically. These precepts were,
expressed in the first draft of a report written by Von Neumann
and issued by the Moore School in 1945 [5]. Somehow that draft
never' was revised and ultimately it became the nucleus of an ongo-
ing dispute (still unresolvai in many people's minds) about the
exact origins of its contents. Regardless of who contributed what,
the draft still stands as perhaps the, most definitive single document
about coTputers. One of its most crucial aspects is the enunciation
of the ideal that the EDVAC (and computers in general) should be
equipped with electronically alterable storage components capa-
cious enough to accommodate the data used by the computer in
solving a given problem and the instructions guiding the computer
in effecting that solution. (The ENIAC's memory held twenty
values and instructions were prewired.) Moreover, each type of
instruction was to be expressed as a particular numerical code, with
the computer's control mechanism equipped to recognize these
codes and to determine when it was dealing with such codes and
not with data. The implication, then, was that the same memory.
could be used to hold both types of information and the instruc-
tions could be modified as easily as the data. Unlike the ENIAC, in
which replicate components were provided to allow certain calcu-
lations to proceed concurrently (this was tailored especially for
ballistics 'Work), Von Neumann perceived the computer as a com-
pletely serial logical machine in which each individual instruction
would be accessed from the machine's memory, analyzed (i.e., de-
coded), and executed in distinct sequence. Unless signaled to do
,otherwise, the machine's control unit automatically would execute
these instructions in the order in which they were stored. (Inciden-
tally, this last principle was one of the many points of contention
between Von Neumann and others in the EDVAC project 'which
contributed to the eventual breakup of the original group. Con-
trary to Von Neumann and Goldstine's strong recommendation;
each EDVAC instruction was designed to specify explicitly the
address in storage containing the next instruction to be executed)

Significantly, the formulation' articulated in Von Neumann's
draft continues to serve as the standard model for digital coin-

.,
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puters. Even now, despite drastic changes in physical circuitry and
overall performance, the overwhelming majority of computers are
Von Neumann machines. .

ENIAC spawned number of major computer projects besides
the EDVAC. Cambridge University's EDSAC, though it drew on
the ENIAC work and emulated mans' of EDVAC's concepts, actu-
ally was completed (in 1948) before EDVAC and is acknowledged
to be the first stored program electronic computer. Eckert and
Mauch ly formed their own computer company in 1946 and pro-
duced the first U. S.-made stored program ,machine, the BINAC
(Binary Automatic. Computer) for Northrop Aviation in. 1950.
(EDVAC itself was delivered to the Ballistics Research Laboratory
later that year.) They went on to build the first completely general-
purpose electronic computer, UNIVAC (Universal Automatic
Computer), which was turned over to the U. S. Census Bureau in .

1951. Not long thereafter, the company became part of Sperry.
Rand.

One of the most prominent visitors to the Moore School was Jaye.
W. Forrester, a co-fotinder of MIT's servomechanisms laboratory.
At work on a project to build a computer for a flight simulator,
Forrestor's concepts were influenced profoundly by his obser-
vations in Pennsylvania and the flight simulator evolved into
MIT's first major digital computer, the Whirlwind. Forrester went
on to found that institution's Digital Computer Laboratory and to,
invent ferromagnetic core storage, a medium for computers' main
memory components that lasted without serious challenge from
alternative technologies until the 1970's.

ENIAC engendered another project, in its way perhaps more
significant than the EDVAC. Even as EDVAC's concepts were
taking shape, concerns were raised about the future of computer
research and development once the impetus of war receded. Al-
though the Moore School came to mind as the logical site for
subsequent efforts, commitments to ENIAC and EDVAC, coupled
with a variety of other factors, prompted other centers to be con-
sidered. After, much deliberation, Princeton's Institute for Ad-
vanced Study was selected to house a major computer research
project, to he conducted under peacetime auspices. Von Neumann
returned to the Institute (1945) as project director and he was
joined by Goldstine in the next year. A number of others came to
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the project from the Moore School,,government, industry, and
from the Institute itself. .

Like its predecessois and contemporaries, the Institute's project
was centered around the projection of a machine (the IAS com
puter). However, the machine was not earmarked fdr any single

,application, nor was it destined for some specific organization. In-
stead, funded from a variety of sources, it was envisioned as a
research instrument available to support an arbitrary range of
scientific and mathematical inquiries, including those relating to its
own construction and behavior. As a result, the Institute issued
detailed reports about the machine's organization and construc-
tion. These were widely disseminated, thereby making available an
abundance of fundamentally useful information well in athance of
the machine's actual completion. As a result, the IAS project cata-
lyzed a' number of others and many of these were well under way
,prior to completion of the IAS computer itself. These included
MANIAC at Los Alamos, ORDVAC and ILLIAC at the Uni-
versity of Illinois, and major systems at RCA and IBM.

Thus, by 1947, the concepts allowing a unified functional percep-
tion of computers were well established and fairly widely recog-
nized, so that a substantial number of projects already were in
'progress by 1950.' Moreover, most of the systems around which
these projects were oriented were intended for general use, with
increasing emphasis on faCilitating the changes from one use to
another. Dramatic speed advantages over electromechanical piede-
cessors, amply demonstrated in a variety of specific contexts, pro-
vided an additional contribution to a climate which (with the
wisdom of hindsight)-was suitable for a technological and com-
mercial revolution.

BASIC COMPUTER ARCHITECTURE

Before attempting to trace the growth in awareness that the
logical and procedural phenomena in a computing system warrant
serious study, it will be useful to elaborate a little on the basic
functional components of a computing system. This will provide a
frame of reference against which one can mirror the concepts and
insights developed in the other articles. Toward this end we shall
develop a dismission around a model that (basically) characterizes
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Flo. 1, Major components of a computing system,

most of today's configurations and is very similar to the one put
forth for EDVAC and the IAS computer.

As shown schematically in Figure 1, a computing system is com-

prised of four fundamental components:

1.'An arithmeticfiggical unit (ALU) in which is embodied the
circuitry designed to perform certain elemental operations
(e.g., addition, ,iegation, 'comparison for equality, internal
movement of data). These operational circuits are Supplemen-
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ted by special memory units (regislers) used to hold the data
on which the ALU operates. The diversity and complexity of
these operations can vary widely among computer systems.

2. A, main storage unit. (memory) subdivided into 'a prescribed
number of equally sized elements (words)( each with its own

.unique permanent numerical address. Depending on the type
of computer, there may be tremendous variation in memory
size (number of words,) word size (the amount of information
accommodated by each word), speed (the time required to
obtain and reproduce the contents of a specified location), and
physical construction. HoweVer, the memory's functional as-
pects transcend these- individual differences: it is a passive
componcnt, initiating no action of its own. Instead, it receives'
or delivers information on demand. Except for very special
cases, this information is not characterized by its contents but
rather by its location in storage. For example, the machine is
not organized to print a 2pecified value; instead, it is designed
to Print the .contents of a specified storage element.

For example, the process C A -B (in which the contents of
location C are replaced with a value obtained by "subtracting
the contents of location B from those of location A) would
require a sequence such as the following:

(a) ReproduCe A's contents in the ALU's register (A's con-
tents are unchanged).

'-(b) Subtract from the valuvin the ALU's register an
amount equal to that found in location B (B's contents
are unchanged).

(c) Reproduce in, location C the value frOm the ALU's
register (C has, a new value in it; the ALU's register is
unchanged by step (c).

3. A set of input/output mechanisms to handle the transmission
of data between the computing system and the outside world:
Regardless of the number and diversity of input/output units,
it is the function of this component to manage the flow of
information to and from thdprocessing system.

4. &control unit which directethe activities of ths entire system.
In the basic Von Neumann machine, instructions are taken
from memory, examined, decoded, and executed onsm a time.

4 etw-
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Accordingly, the control unit is equipped with a counter that
keeps track of the main storage location whose contents rep-

.
resent the next instruction, and a' register into which that
instruction is copied for subsequent decoding. In this context,
the essential function of the control unit can,be represented as
an iterative :cycle of the sequence shown below. For con-
venience, let us assume that the next litstruc0on to be execu-
ted is stored in memory address n:

Ja) The instruction stored in location n is copied into the
appropriate control unit register.

(b) The control unit's counter is incremented to n + 1 (the
location of the next sequential instruction).

(c) The control unit decodes the instruction, thereby deter-
mining the operation to be performed and the word of
main storage involved in thatroperation. The repertoire
of operation types, each represented by its,own unique
numerical code, comprise. the machine language for a.
given type of computer. As an integral part of the de-
coding process, the' control unit activates those circuits
in the arithmetic/logical unit required to perfOrmi the
activities corresponding to that operation.

(d) The AIX is, activated, thereby executing the specified
operation. '

(e) Once thF (Oration has been completed, the control
unit resumes its basic activity beginning again with step
(a) above.

Thul, the instructions are executed in strict sequential corder.
Changes.in sequence are handlecLby an instruction whine execu-
tion causes the number(address) in the control unit's counter to be
changed. Then, without any alteration at all in the unit's basic
cycle, the sequential execution of instructions continues from that
new point. This makes it.possible to select an alternativilsequence
of events dynamically, based on prevailing conditions at that in-
stant.

The Von umann architecture Makes it possible to fulfill an-
other basic fu tion without compromising\ the fundamental sim-
plicity of the co trol unit's cycle: Since a sequence of instructions
can, be used, to o he contents of any storage location, to
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process those contents (i.e., change the value) and to place the new
result in the location from whence the original' value came, the
author of such a sequence could contrive to specify a loCation
.Whose contents happen to be one of the, instruction in the se-
quence.. With properly specified manipulations, the results! could
produce .a situation in which a particular instruction is executed
and then,"through a normal sequence Of activities,; hat instruction _
is replaced with a modified operation. A change in .Sequenctng (as
outlined above) forces the control unit back to execute again from
that location whose contents underwent the clange.Thus, in leffect,
the storage of instructions and data in .the same memory im edi-
ately implieS the aVailability of a self-modifying mechanism?- hose
flexibility is limited only by the user's perceptioh of how to e ploit
it.

EDUCATIONAL BEGINNINGS
:(

Regardless of the "true" hronolegy of concepts or the ambiguity
surrounding the proper ass i ment of credit for "firsts" to th right
individuals, organizations, or countries, electronic digital coin,
puters clearly were production items in the United States by the
mid-1950's. Well, over a thousand systems were in use and a
number of companies were seriously committed to the positional
scramble within the burgeoning industry. (IBM was just beginning
to assume preeminence) This growth, anything but systematic,
produced an increasingly acute shortage of personnel prepared to
deal with computers and their use. Manufacturets tried to provide
support for their customers by implementing their own training
programs, but the effort fell short as growth continued to acceler-
ate.

A possible sol tion was Seen in the university computer labora-
tories. Although e major design and manufacturing work was
shifting to industri settings, activity in the laboratories did' not
halt. Some maintained Or:research/design programs (with several
laboratories under manufacifirers' subsidy); others redirected their
emphasis toward developing and supporting new applications. This
latter orientation brought into sharp focus the desirability of pro-
viding a computing resource for use across an arbitrary spectrum
of university research and administrative activities. Prompted by

42



26 Seymour V. Pollack.

the increasing availability, of "ready-made" computers, more and
more universities established such laboratories (primarily) as ser-
vice facilities, inevitably including instruction in comRuting and
programming among their functions. While much of this instruc-'
tion was informal, intended to support. internal users, many
universities were quick to recognize an intrinsic educational re-
sponsibility to Ahe rapidly growing population involied with
computers.

By 1956 well over a dbzen American universities had compu-
+tation laboratories equipped with electronic digital computers and

organized attempts to characterize these, responsibilities were well
under way [6]. As would be expebted in any newpursuit, there was
greats diversity in people's perception of the nature and extent of
the educational needs: For example, some saw a relatively clear
dichotomy in which electronics engineers design, build, and main
tain computers, and experts in their respective fields (i.e., astrOn-\
omers, mathematicians, account4nts, meteorologists, and so on),
identify, design, and implement aioplications. Accordingly, the lab-
oratory's educational "duty, in this context, would be to provide
training in how to write programs and use the university's facility.
Other views were predicated on the need for a new type of person
ranging from an "analyst" schooled in mathematics, electrical
engineering, or business and trained in computers on the job, to a
"computer expert" produced by a vocational institution, to a
"mathematical engineer," the latter resulting from a graduate level
curriculum within mathematics. Still another view held that every
student headed for a career in science.or business should receive a
course in computers (either from the mathematics department, elec-
trical engineering, or the computer laboratory).

Some institutions began to provide a framework for students
interested in computer work, with the tendency being to provide
specialized courses in computing and programming on top of a
prescribed group of standkd offerings in applied mathematics. By
1958 several universities, through tir numerical analysis centers,
electrical engineering departments, or computer laboratories, were
offering fellowships specifically earmarked for. concentration in
computer work, and many others routinely included one type of
computer-related course or project in science, engineering, math-
ematics, and business curricula. The center of activity, though, still
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was the computer laboratory, whiCh continued to become an in-
creasingly recognized source of trained personnel for industry and
commerce.

As a result, computer manufacturers stimulated the growth of
university computing with the same zeal and determination that
characterized their campaigns for nonacademic customers. A
number of -companies instituted liberal discount policies, thereby
facilitating the establishment of centers throughout the country At
the same time, university people interested in the structure, admin-
istration, and impact of such centers were encouraged to band
together for cooperative study and discussion of these issues. (In
many cages the "encouragement" was more substantial, taking the
form of a quid pro quo in which the implementation of computer
courses was a precondition for installation of a'heavily discounted
machine.) The federal "government _also encouraged, formation of
university computer laboratories via institutional grants.

By 1960 about 200 colleges and universities were equipped with
digital computers, and the general infusion..of computer usage into
the educational process was well established. ProcesseS for devel-
oping computer programs were facilitated greatly by the introduc-
tion of high-level languages, which brought the coding of'programs
closer to human tgrms. The use of a program (compiler) to .mediate
between the high-level language and that required by the machirie
was pioneered by. Grace M. Hopper. As a naval officer she played a
significant role in Harvard's Mark I project. After World War II,
she implementedl, many of her ideas about language processors in
her position as senior mathematician with the Eckert-Mauchly
Computetorporation.

Use of computing facilities was simplified further by a variety of
convenient software products for creating, exploiting and maintain-
ing program libraries. Many of these supportive programs operated
beyond the users' perception and werei. in effect, "invisible." For
example; a numerical integration program coded in the FOR-
TRAN language could be submitted in that form (along with data)
to a computing system. Without further human intervention, the
system would deliver final results (it., integral values),. Unless ex-
plicitly informed otherwise, the user easily could sustain the illusion
that the numerical integrator and the computer were the sole par-
ticipants in that proceSs.
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As these procedures and services developed, realization grew that
here was a sizable bOdy of knowledge closely related to, but dis-
fillet from, the applications themselves. The problem addressed by
these concepts and techniques (e.g., 'analysis and translation of
languages, automatic generation of programs, creation and man-
agement of effective user-oriented working environments on com-
-puters) were far from trivial and they grew increasingly important

'with the advent of larger, more complex, and more versatile com-
pitting equipment.lt would be unrealistic to assign any degree of
unity, to this realization or to associate it with some kind of coordi-
natetreeaction to it. While the fruits of this technology were indis-
pens7hle. components of any successful' coniputing facility, there,
was: apthing near a consensus regarding the characteristics'of this
technology; opinions differed widely as to whether there was a

4's/cernible "body of knowledge" here, and, if so, wherd its proper
home was. Some argued that it was part of numerical analysis;/
others saw it as a newly emerging area subsumed, respectively,
under- mathematics, electrical engineering, industrial engineering,
linguistics, library science, and business (among dthers). Advocacy
for a new and distinct dscipline still was very sparse, owing in part
to the difficulties in asdibing some type of specific identity to this
field. Some thingwere fairly well settled: Notably, the complexities
inherent in the design and implementation of effective general pur-
pose systems components such as language translators and other
software products were sufficiently well appreciated to allow the
general abandonment of the idea of vocational settings for such
instruction. Nevertheless, there were.fundamental questions regard-
ing who teaches what to whom.

A number of institutions, feeling that detailed operational and
structural knowledge of systems software was central to the prep- ,
ara-tion of an effective user of computers, sought to include such
instruction by expanding the offerings in the department currently
teaching programming and Computing. The results, though dis-
appointing pedagogically, helped undericore the fact that many
(probably most) users had little or no interest, in the science and
technology of developing software. (Users' similar lack of en-
thusiasm for equipment details already was clear.) Consequently,
alternatives were considered wherein software specialists, now to be
distinct from application' programmers, computer designers, and
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computer users, were to align themselves with computer labora-
tories, under whose auspices such training could be formalized.

Another model was based on reorganization of computer - related'
studies into components of a new administrative unit (e.g., an
interdisciplinary program or department in which computer de-
.sign/engineering, numerical analysis, computer applications, etc.,
could be divisions, or-even a school in which they could be depart-
ments). These were impleinented, in one form or another,
by some universities. For example, by 1961 Carnegie-Mellon Uni-
versity (then Carnegie Institute of Technology) had an interdepart-
mental doctoral program in computer systems and communi-.
cations; Stanford University had a computer science division
within the mathematics department and the University of Wiscon-
sin set up a numerical analysis departmenNowever, most institu-
tions remained cautious, adding individual courses as the market
dictated..

Matters were complicated by individual identity problems, even
among majr practitioner& The following (hypothetical) situation
was typical: A pharmacologist needing some machine compu-
tations found that, for his situation, it would be most expedient for
him to implement the applications himself. After completing the
computer laboratory's informal programming course, he devetoped
and coded a program which, eventually, did what he wanted and
the project was concluded successfully. In the process of testing and
refining the program, the pharmacologist had learned much about
the laboratory's operation. (Re even may have written a utility
program in support of his project and then generalized it for incor-
poration into the laboratory's resources.) As a result, he found
himself spending more and more time helping others with their
applications and with the logistics of laboratory use. After a while
this became his Major activity and the laboratory formalized the
process ,by adding him to its staff. Yet he continued to think of
himself as a pharmacologist.

Other, more fundamental factors also impeded crystallization of
academic frameworks for computer-related instruction. Despite the
mushrooming growth_ of computer usage, many peopre (among
them those with heavy involvement in programming and appli-
cations) still held a vague and narrow perception of what a
computer is. While there was a rapidly expanding literature on

29
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equipment design; 'applications, and computational techniques,
relatiyely little of it 'addressed itself to more reflective aspects of this
new area This, coupled witli the primary motivations for early
computer development, made it very easy to propagate and rein-
force the contention that a computer is a fa-st, powerful, mathemat-
ical tool, a "super slide-rule." Accordingly, it was argued, pertinent
instruction should emphasize the design and maintenance of these
machines, the techniques for programming them, and the selection
of computational processes best,suited for implementation on com-
puters. cAn indication of, the roots for this perspective can be seen
by the fact that it was not until the UNIVAC was developed that a
digital ,computer was equipped to store and display nonnumeric
characiers. Moreover, numerous machines that were built subse-
quent to the UNIVAC were restricted to handling numeric data.)
Further encouragement for this outloo1 came from computer
manufacturers who actively propagated the myth that -"scientific
computing" and "business computing" were inherently different ac-
tivities requiring different approaches and different types of ma-
chines. (The former endeavor was characterized by arbitrarily Com-

. plex computations on relatively small amounts- of data; the latter
involved trivial computations on arbitrarily large amounts of data.)
As user sophistication grew and the spectrum of. applications
broadened, it became increasingly difficult to defend this over-.
simplification, and one rarely hears it nowadays.

A second factor which retarded movement toward an educa
tional identity was a notable dearth of "science" to go along with
the rapidly growing technology. It was easy enough to identify .a
collection of very useful and clever techniques for improving
various aspects of a computer system's effectiveness. In certain con-
lexis, it was possible to point to sets of general precepts which were
emerging as foundations for areas of applied' work. For example,
understanding of high-level programming languages and their
translators in the early 196Q4 enabled such objects to be
designed with a considerable amount of determinism, in contrast to
their weed-like predecessors. However, there were no .major
phenomenological frameworks that served to unify and- organize
the tremendous amount of empirical information that already had
accumulated. The people who were claiming exist ce of a separate
discipline called "computer science" or "informatio science" were
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hard pressed to identify the characteristics or cornerstones of such
a science. (One finds' references to such puzzling colitepts as the
"theory of applications.") st
. Certainly, such difficulties were understandable.;Unlike most

other areas of inquiry, there was no natural arena such as' an atom,
tissue, or crystal lattice to serve as a source of observations. In-
stead, the "universe" of interest was an artifact barely a decade old;
there was no direct heritage of contemplative structure to which
the newly acquired observations could be reconciled. In these cir-
cumstances it was natural for,seekers of academic respectability to'
fill the void with existing material that 'was strongly related to the
emphases at a particular institution. Thus/ at a university with
strong commitments to engineering computer applications and a'
desire to formulate an educational program, the scientific aspect of
such a program would be organized ar and relatively extensive
offerings in numerical analysis. The mor adventurous institutions
introduced organized efforts to analyze and compare numerical
algorithms with regard to their suitabi ity for computer impletrien-
tation; others taught numerical anal sis unaffected by computers,
leaving it to the old hapds in the laboratory to provide interested

`student's with the tricks of the tra e. Similarly, an institution em-
phasizing computer design and co struction would place numerical
analysis in a less dominant role i favor of Boolean algebra, switch=
ing "theory, and mathematical l gic. Here again, depending on the.
individual program, the material was augmented with explicit con-
nectors to computer technology, or questions of applicability were
left for the student to dis ern. Regardless' of the extent to which
such dovetailing was atte pted, the "pure" subjects generally were
not treated as "borrow d" disciplines which would serve until the
"real" computer scien matured. Rather, there was genuine convic-
tion that switching t eory, or numerical analysis, or documentation
theory. (or whateve ), was the proper nucleus around which com-
puter science woyld develop and grow. As it turned gut, this made
it a little easiey/to provide a still new and amorphous area with
some semblance of "tradition." A closer look at this notion will be
of interest ,-/ ,

As discussed earlier, one can point to a ,collection of compu-
tational and logical devices that span over three centuries and
conne t such devices conceptually to electronic digital computers.
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In the same general sense it is possible to identify certain contri-
butions in mathematics, logic, and philosophy as "spiritual
forerunners" of computer science. While this may, p vide a com-
fortable feeling of continuity, it really does not contri to substan-
tially to our current perception of computer science and its central"
issues. That does not= deny all connections; far from It. For, in-
stance, the impoftance of Boolean algebra to computer technology
and, subsequently, to computer science is beyond dispute. But
Boolean algebra has not become an aspectof computer science (or
vice versa). Rather, the precepts and techniques of Boolean algebra
have become part of the collection, of indispensable vehicles used in
computer science in the same way that partial differential equations
have been crucial to the study of astronomy or ballistics. As sepa-
rate computer science programs began to form, in the early sixties,
the perceived need for academic underpinnings made it especially
easy for many to adopt these disciplines, construing them as central
issues. Many of the csubsequent evolutionary changes in computer
science education can be related to an increasing awareness of the
conceptual distinction between the science itself and the expressive
and manipulative vehicle required for its pursuit:

Despite this jockeying for tradition, it would be misleading to
say that computer usage was developing with no science at all.
Considerable theoretical work was in progress and some of it pro-
vided the roots for today's substantial indrelevant body of know-

. ledge. For example, the complexity of 1964's state-of-the-art com-
puting systems necessitated the implementation of powerful exectf.--
tive software structures (operating systems) whose cost began to
rival (and soon would exceed) that of the hardware. Effective use of
the,equipment called for a multiprogrammed organization, wherein
a number of independent (and probably unrelated); programs would
be in the system at a given instant, each on its way to completion
and each contending for some subset of the system's resources.
Proper management of the ,resources and mediation among the
contenders without inflicting excessive overhead called for an inte-
grated system organization far more sophisticated than earlier ex-
ecutive'programs. In response to these demands, theories began to
emerge ,for' characterizing such systems, analyzing their per-
formance, and predicting behavioral effects wrought by specified
changes in operating parameters. Such exploration draws heavily
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on the techniques of,pperations research and statistics, but it is the
study of operating systems, reinforced by operating systems theory,
that is peculiar to computer science.

At about the same time, there was a growing realizatibn that the
process of preparing, developing, and testing programs was subject
to some degree of systematization that could raise such endeavors
to a more consistent level. Eindhoven 'Technological University's
E. W. Dijkstra began to 'identify coherent principles which
characterize sound program structure and form a basis for eventual
formal verification of a program's correctness. Work stemming
from these important insights has resulted in. new programmidg
languages (and extensions to existing ones) designed to facilitate
the application of these principles of structured programming. The
effectiveneiss of theSe precepts has been demonstrated repeatedly in
terms of less costlY, more reliable software product& More signifi-
cantly, these ideas have precipitated a fundamental change in atti
tudes toward program design and assessment such that the entire
cycle of implementing algorithms, a process central to computer
science, has lost a good deal of its eraftlike character ,and is ap-
proached in a 'much more disciplined manner [7].

Other areas of concern to computer science began to coalesce in
the same general way, driven by operational problems 'stemming
from new, equipment technologies and more challenging appli-.
cations. 'The resulting inforination-handling processes began; to
overtax the ad hoc':methodol6 es used to analyze simpler se-
quences, of events, and mpfe '"2"'ecinpreliensive models began to
appear.

THEORY VERSUS PRACTICE

At the same time another trend was taking shape. The rapid
growth of computer science education stimulated.increased interest'
in theoretical- areas (such as automata theory and forma',
languages) whose pufsuit predated computers. Now, these areag;::
were seen potentially to impinge on questions raised by the, design.
and use of compUter systems. Consequently, there appeared to be a
prospect of concurrent and mutually nourishing deVelopment in
computer science -..theory and practice. CuriouslY, this did not
happen. Tlie newly intensified effort generally maintained its own

5 0
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paths, interacting very little with the application-motivated prob-
lems that were helping to spur headlong advances in hardware and
software technology. ,

A brief look at the early role of automata theory provides an
interesting.example of this situation. Mathematical logicians, had
been concerned for some time with classes of computable numbers
and exact procedures for obtaining them. In 1936 these studies
received tremendous impetus from Alan Turing and Emil Post.
Working independently, each devised an abstract machine (an
automaton) in which the outcome ( a computable number) could be
represented as asequence of ones and zeros, and the egact pro-
cedure for producing that outcome as a sequence of well-defined
primitive actions: Moreover, Turing was able to show that it was
possible' to 'specify a "universal's machine of this character such
that ir edUld duplicate the results of any particular automaton,
even those producing arbitrarily complicated sequences. Thus, if a
number was computable, it could be computed on a universal
Turing machine. Both Turing and Von Neumann were acutely
aware of the applicability of these results to the description,.
characterization, and analysis of automatic computers. (Turing de-
clined an offer to become Von Neumann's assistant and went to
head England's Automatic Computing Engine project.)

Once the idea of teaching the "science of computing" began to
gain momentuni, many people Yel ;:s ability to formulate
aptomata as abstractions of corrtpute i vide the basis for

p -an increasing flow of ideas and results between t eory and practice.
Accordingly, automata theory became a mainstay of many early
'graduate programs in computer science.

However, the crossflow did not occur. Workers engaged in de-
vising coherent structures for the growing mass of observations
obtained from computer-related processes hoped eventually to ex-
ploit the models and insights that would flow from automata
theory. Meanwhile, it was important to teach the theory on its own
for its, rich cultural value (and it was respectable too). However,
work in automata continued within its own context, basically un-
disturbed by newly focused attention from computer science pro-
grams. It was not until well into the 1970's that the pathways of
automata theory and computer science began to converge, and
now the impact of one on the other is notable and useful.
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This metamorphosis of computing/computer technology/ com-
puter science was observed closely by a number of organizations
besides the academic institutions themselves. (We already have
mentioned, the government and computer industry.) In addition,
this process was of great interest to professional societies, promi-
nent among whom was the Association for Computing Machinery
(ACM). Formed in 1947, the ACM had assumed a central role in
encouraging the evolution of computer science as a distinct field of
study. By 1963 this concern took form via ACM's Curriculum
Committee who-se first recommended program in 1965 [8] rep-
resents one of the earliest attempts to produce a coherent definition
of computer science's major concerns_ In a direct predecessor to
this curriculum report, T. S. Keenan identified four such areas [9];---

I. Organization and interaction of equipment constituting an information
processing system. The system can induile \both machinery and people, and

its organization will be influend by the environment in which it is em-

bedded.
2. Development of software systems with which to control and communi-

cate with equipment....
3. Derivation and study of procedures and basic theories for the specifi-

cation of processes....
4. Application of systems, software, procedures and theories of computer

science to other disciplines.

1

This report was pivotal in several ways. Besides reaffirming the
idea of computer science being a distinct area of study, it gave
primary emphasis to the implementation of a computer science

curriculum as a distinct mathematical entity, with its own majors..
(Similar combinations of subjects were being suggested at about the
same time 'by the Mathematical Association of America's Com-
mittee on Undergraduate Programs in Mathematics (CUPM) and
by the. National Acadefily of Engineering's Committee, on Com-
puter Science in Electrical Engineering (COSINE) as areas of con-
centration for majors in mathematics and electrical engineering,
respectively.) Moreover, while the importance of numerical appli-

xations was emphasized (Table 1), there was a tentative but none-
theless explicit effort to depart from the self-limiting notions that
computers are numerical instruments and computer scientists are
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TABII

itcommended Curtictilum or Computer Science Majors.

pc(1
s,4.,41.24464

hetilLieL'e

Courses

Recom.

mendationi

.

Computer Science t

,

Supporting

,

Basic Courses

9

. .

.

Theory Courses

, ' , 1

Numerical Algorithms

1

Computer Models

and AppliCalions

Required

' ,

,

1. Introduction to ,

Algorithmic

Processes ,

2. Computer

Organization and

Programming

4. Information

Structures

5, Algorithmic

Languages and

'Compilers

.

.

3. Numerical

Calculus

(or Course

.

1)

,

.

.

.

Beginning Analysis

(12 cr.)

Linear Algebra (3)

.

p

Highly

Recommended

Electives

6. Logic Design and

Switching Theory

9. Computer and

Programming

Systems

\

.

°

,

, .

7. Numerical

Analysis I

8; Numerical

Analysis II

.

,

.

1

Algebraic Structures

Statistical Methods

Differential,/
Equations

Advanced Calculus

'Physics (6 cr.)

Other

Electives

,

10, Combinatorics

and Graph Theory

,

13, Constructive

Logic

14, Introduction

to Automata

Theory

II Formal

Languages

'

, .

.

.

'

.

1 I. Systems

Simulations

11 Mathematical

Optimization

Techniques

I& Heuristic

Programming

Analog Computers

Electronics

Probability and

Statistics Theory

Linguistics

Logic

Philosophy and

Philosophy of

Science

ReprintCd by permission from "An Undergraduate Program in Computer SciencePreliminary Recommendations," Communication of

the hociution for Computing Itigthinery, 8 (1965); 543-551 copyright )1)65 by the Association for qmputing Machinery,
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"superprogrammers" adept at implementing numerical algorithms.
The effort was tentative becauseeits curricular uncertainties still
were strongly evident: The primacy of algorithmic processes and
languages was clearly established (both are required). At the same
time, there was an apparent hesitancy in giving up familiar com-
forts, and, so calculus and linear algebra were required. (The
numerical courses are shown as computer science courses to em-
phasize their orientation toward computer usage.)

While the recommendations were not universally adopted, they
exerted great influence as a catalyst, prompting accelerated activity
in curriculum development throughout the'country. A rough index

- of this growth is obtained. by coMparing the number of United
States undergraduate degree programs in computer science in 1964
(about .a dozen) with thdse of 1968 (close to one hundred). A simi-
larincrease is seen at the masters level, and about a fourfold in-

crease (from about 10 to about 40) at the doctoral keyel. Less
evident but still present was the additional growth that occurftd
withiparent departments.

While the ACM's curricula,\r recommendations had some unify-

ing effects, growth in computer science educatioiestill continued to
be turbulent, pulled in many directions by institutional differences
and diverse perspectives. Even where there was agreement that
computer science should stand by itself, there was controversy over
its placement, If the computer laboratory's key builders were math-
ematicians (as was true in most cases), the emerging computer
science 'department took .shape as a mathematical entity, 'housed in

the school of liberal arts. On the oihei hand, predominance of
engineering usage prompted the establi§hment of an engineering
department, with the curriculum's contents tending to ,he more
pragmatic. A third approach sought to emphasize the interdisci-
plinary. (or pandisciplinary) impact of computing by constructing a
curriculum in which basic courses- were to' be supplemented by a
somewhat arbitrary collection of offerings dealing with computers

in .

Another, more specific aspect of this turbulence is seen by the
fact that there was virtually no consensus on the stricture of an
introductory course. Sufficient insight already had developed, so

that the more progressive institutions agreed on what such a course
should not bea cookbook course in high-level language coding

.
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and on the fact that it should place major erriphaSis_On the study of
algorithms and algorithmic processeS. Beyond that-, Opinions di-
verged on bow these concepts should be imparted, with approaches

..,ranging from pencil- and-paper conceptual models, through spe-
cially designed pedagogical proglacnriting languages i to the use of
existing languages. Moreover, there was wide, disagreement on
computer_science's service Tole. At one end: of the spectrum there
was adVocacY fo a 'universal introductory' ...course (like General
Chemistry I);.at the other end, some favored fragmentation (more

statistics) where each department would provide its own
introductory course or send ,its, stUclents to the comPUter science
offering (intended for its own majors bUt open to others).

At a more.fundamernal level, many universities, while.convinced
of computer science's separate identity; felt that in. independent
program was premature. For them;coMputer science4.was;:a gradu;
ate specialty to be preceded by Undergraduate . concentration in
some established area (not necessarily mathematics or science).:-

" The pressures and experiences generated by this
growth helped accelerate the refinement of ACM's preliminary,
undergraduate curriculum so that a fully developed version ap
peared less than three :years later [10]. Even in that brief interval
some impdrtant conceptual proceses matured and; because of3this,,
Curriculum '68 (as it became known) stands as an important land
mrlefor computer science education, perhaps in the same sense
that yon Neurnann's IAS 'machine serves as .a milestone for con-
ceptdal computer design, Philosophically; 'Curriculum '68 marked

'the. end of debate. 'regarding, the separate existence, of computer
science. Moreover, it clearlyj placed such occupational areas . as
computer operations, doding, and data preparation outside the
realm, of computer science.

The perception of computer science itself. underient. important
organizational' shifts: In a very fundamental reorientation Cur-
ricUlum '68 identified the representation, structure, and transform-
ation ,of information as a major focuS, .conceptually dissociated
from specific-coinputer systerns or appliCations:

consistent with this outlook, hardware, and software systems,
perceived as 'separate areas in the earlier. recpmmendations, were
redefined in a single framework, Le:, systerns capable .of iransfor-
ing information. This alsoireflected-a Movement. in practice toward
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the unificationi-of hardware and software design necessitated by the
increased capability of new equipment, Effective eiploitation of
such hardware now began to require integrated design of a coin,
puter system's hardware and software instead of superimposing the
latter on the former.

Another, shift deVeloped with increased recognition of common
methodological :threads- running through computer usage.. As a

!result, a thiid major coMpnter science. focus was articulated, cen-
otered'arOund\ the, identification afichtleilelOpment of methoddlogies
derived from,'applications.with comirion processing characteriStics,
irrespective of the intritligrelations among them. Thus; for exam-
ple, the area Of computer graphics centralizes techniqneS distilled,
from (and useful for) visual display contexts as diverse as medicine,
geography, stress analysis, and textile de-sign:.

The conceptual division of computer seience. into these three
areas was supppried in Curriculum '68 by a fourth category. en;
compassing a wide Collection of disciplines involved with coin.- .

puters. (The contents of a given collection; of course,; would be
dictated by conditions at the particular institution.)

These perspectives were molded into the fully developed core
curriculum summarized in. Table 2. Compute!' science offerings are

grouped, into basiC, (B), intermediate (I); and advanced (A) leveli,
commensurate with academic background and maturity.: The r6le

Of the first two areas (information structures and information pro-
cessing.systems) is emphasized by requiring all stndents to take the
CdtirseSaddvssirtg those areas. A.more flexible approach is taken

to the third area (methodolOgies), with the student selecting th6se
courses most congruent with his interests and objectives.

Table 2, Curriculum '68 solidified an earlier con,
,tention that computer science is primarilya mathematical endeav-

-
or and its practitioners can expected to ..engage in .work
requiring predominan ly mathematical prOcesses. This was instill-

.

mental' in producing clear and consistent pic re of computer
science's..06Sition in a schOol of arts and, sciences, eith s a separ-
ate department or as a distinct but integral 'part of a broader

°mathematical environment As a result; ,it provided a very useful
source of inSpiration, serving as a guide for the formation of nu-

;
-merous new departments as well as for the reorientation of existing

ones.
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ACM Curriculum '68 Core Copses.

Cordpu,ter Science Courses Mathematics Coursest

Basic Courses Bl. Introductidn to Computing*
B2. Computers and, Programming*
B3. Introduction to Di Crete

° Structures*
B4. Numerical Calculus*

M 1. Introductory
Calculus*

M2. Mathematical
Analysis I*

M3. Linear Algebra*
M4. Mathematical

Analysis II*

Intermediate
Courses

IL Data Structures*
12. Programming Languages's'
13. Computer Organization*
14. Systems Programming*
15. Compiler Constructiont

'16. Switching Theoryt
17. Sequential Machinest
18. Numerical Analysis It
19. Numerical Analysis lit

M2P. Probability*
M5. Advanced

Multivariable
Calculust

M6. Algebraic
Structurest

M7. Probability and
Statisticst

Advanced
Courses

Al. Formal Languages and
Syntactical Analysis

A2. .Advanced Computer
Organization

A3. Analog/Hybrid Computing
A4. System Simulation
A5. Information Organization

and Rettreval
A6. Computer Graphics
A7. Theory of Computability
A8. Large Scale Information

Processing Systems
A9. Artificial Intelligence

and Heuristic Programming

* Required.
t At least two from each of the mathematics and computer science groups.

0 t Based on CUPM recomfnendations.

Reprinted by permission from "curriculum '68, Recommendations for AcademW
,Programs in Computer Science, A kReport of the ACM Curriculum Committee in
Computer Science," Communications of the Association for Computing.Machinery, 20
(1977),``13-21, copyright 1968 by the Association for Computing MachinerSt.

40
.1t;



THE DEVELOPMENT OF COMPUTER SCIENCE 41

Interestingly, Curriculum '68's influence also had a diChot-
omizing aspect: Its basically mathematical orientation sharpened
its contrast with more pragmatic 'alternatives. Most computer sci-

ence educators agreed that the proposed core courses included

issues 'crucial to computer sdieace. However, the curriculum
brought to the surface a strong division over, the way in which
these issues should be Viewed. In defining the contents_ of the
courses, Curriculum '68 establiShed clearly its alignment withmore
traditional mathematical, studies, giving' primary, emphasis to a
search for beauty and elegance. Pedagogically, this implied a set of
academic. objectives concerned ,chiefly with .preparation for gradu-
ate study leading to a career in research. Consequently,.those col-
leges and universities holding with this perception of computer
science saw Curriculum '68 as a reinforcement and endorsement of
their orientation and sought to implement it commensurate with

their resources.
On the .other hand, many educators felt, the curriculum to be at

odds with their perceptima of reality. They argued that the uses of
computer science and the observed roles of computer scientists
militate for an educational approach much closer to that used in
professional disciplines. After all, the ultimate outcome of most
computer science endeavors is a tangible product ''.(an efficient

language processor, chemical process ontroller, graphic display
vehicle, sales analysis system, midical. diagnostic aid, or other infor-
mation processing system) whose primary use is likely to be outside
of coMputer science. The computer' sciencethat underlies such a
product will be invisible to its users-or to its operation. How that
science was applied, i.e., the way in which the product was en-.
gineered, also will be beyond the user's perception but the effect
will be more direct, manifested in terms of the product's cost, per-
formance and reliability. In this light, computer science education
should have a strong professional flavor (it was argued), with

design principles, general approaches to problem solving, and ex-
periments with current methodologies receiving considerable atten-
tion. This would be consistent with the expectation of professional
employment starting at the baccalaureate level. Another, related
objection pointed out Curriculum '68's neglect of business and
commercial data processing, a set of general areas motivating the
bulk of the hardware and software industries.
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Thus the controversy-was not merely a-conflict between "theory"
and "practice." Rather, the dispute pivoted around the definition of
"proper" theoretical material and how closely that material should
be tied to actual problems experienced in the field. Strict adherents

"----to Curriculum '68 advocated continued use of material (such as
format language and sequential machine theories) pursued for its
own ends in relative isolation frpjn computing contexts. In addition
to their innate cultural value, such established and respectable pur-
suits would continue to lend credibility to the idea of computer
science. In this view, computer applications should be picked up,;
elsewhere. (A considerable number of educators favored a cur-.,
ricular model in which computer sci ce would be taken as a joint
major with some other discipline; othe felt practical knowledge is
best acquired on the job either after gr uation or via a work-
study arrangement.) Moreover, the "relevan " theory, engendered
by problems encountered in practice, would e an unsuitable re-
placement .because it still lacked maturity and coherence. Op-
ponents of this viewemphasized)the importance of establishing a
continuing interaction between theoreticians and practitioners,
contending that only in this way would it be possible to realize the
unfulfilled promise of a continuum from theory to applications.

As a result, computer science growth continued with no decrease
in turbulence. Even when basic direction was not an issue, there
were problems with implementation. Numerous attempts to install
a program based on Curriculum '68 were impeded by its size or by
the difficulty in staffing it with 'qualified faculty. Others found that
employers, unable to exploit the background acquired in such a
program, would not hire its graduates. On the other hand, efforts
to implement a more practically oriented curriculum often went
awry because of territorial disputes between computer science and
some other area (electrical engineering, mathematics, business, etc.).
In some institutions this forced abandonment of the idea of a sep-
arate computer science department with the consequent distri-
bution of areas among existing units. Others, feeling that no one

, program could handle the spectrum of concerns effectively, set up
complete programs in more than one department, each with its
own orientation and its own majors, (The resources required-for
such multiple coverage ruled it out for all but a relatively small
number, of instances.)

&.4
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In response to this turmoil, alternative curricula began to
appear, each intended to answer some class of objections raised by
Curriculum '68. A major effort in this regard was a management-
oriented curriculum in information systems stressing the informa-
tion structures side of computer science, with additional emphasis
on 'systems analysis, project management, human communication,
and organizational concepts. Curricula also -appeared in software
engineering; biomedical computer science, information science, ap-
plied mathematics (with emphasis on mathematics of computation),
computing center management, and computer engineering. The
latter term still causes extraordinary confusion in that it evokes a
mental image of involvement with computer fiardware that is arbi-
trarily related to the degree Of actual emphasis in a given program.

This situation tempts the eonclusion that Curriculum '68; despite
its solidification of the mathematical viewpoint, aggravated an al-
ready existing state of chaos in computer science education. How-
ever, there are overriding effects which secure the curriculum's
place as a major force in computer science's formative period. First
of all, it provided a definite focus for discussioh and response,
thereby initiating the demise of the ad hoc approach to curriculum
development in this area Thus, while many (probably most) com-
puter science departments (or institutions contemplating such de-,
partments) objected to something in the .curriculum, it became a
reference against which extensions, contractions, replacements, re-
arrangements, and other "improvements" were formulated and pro-
posed. Moreover,: almost everyone interested in computer science
education found something in the curriculum not to object to. As a
result, various aspects of the curriculum were emulated'in many
institutions having fundamentally differing viewpoints. The point is

that, despite the diversity of vantage points, there was considerably
more consistency with regard to the areas of major concern to
computer science.

In retrospect, Curriculum '68 was an effective catalyst for intensi-
fying this debate and nudging it in two fairly definite directions.
The ACM, harboring no illusions about the permanency of Cur-
riculum '68, remained a central participant in American curricular
activity. Through its Curriculum Committee and Special Interest.
Group on Computer Science _Education, it provided a continuing
forum for exchange of ideas dealing with the full range of curricular

6
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concerns. COSINE and CUPM also remained active, continuing to
examine the role of computer science within electrical engineering
and mathematics departments, respectively.

The decade .since .Curriculum '68's announcement has seen the
accumulation of a tremendous amount and diversity of eicational
experience. ,This, coupled with compelling advances, in technology,
new and increasingly pertinent theoretical findings, and feedback
from a rapidly widening base of employers, has exerted continuing
pressure on curriculum designers and developers. A sizeable litera-
ture built up on a wide spectrum of, topics, including form and
content of individual courses, laboratory support for computer sci-
ence, core sequences, service responsibilities, and entire curricula
[11]. One also began to see articles of a more introspective nature,
dealing with the direction of academic, computer science research,
occupational outlets for doctoral graduates, and other more con-
templative aspects of computer science. Much of this writing was
specialized, concentrating on specific matters in a carefully pro-
scribed context (e.g., implementation of a particular piece of soft-
ware for classroom use, selection of a laboratory computer, logis-
tics for ineorporating outside problems in a class on applications).

This hectic activity waS considerably less haphazard than its
written products might imply. Disputes and arguments not-
withstanding, computer science in the early 1970's was an emi-
nently viable area. A crude but nonetheless interesting indicator of
its vigor was the fact that many institutions could claim recurrent
employer acceptance of their computer science graduates at all
levels. Moreoiter, scrutiny of computer, science programs (especially
at the undergraduate and masters levels) outside the perspective of
local course differences, choice of teaching language, etc., reveals a
coalescent effect that makes it possible to characterize many of the
cQrnputer science; programs that have diverged from the Cur-
riculum '68 model:

1. Computer Science has a strong professional orientation,
drawing much of its motivation kom practical Oroblems and
providing a population of workers uniqueikqquipped to
address these problems.

2.: Computer .Science has an indispensable experimental aspect.
That is, the computer's role extends well beyond its basic use
as the vehicle oti which application algorithms (expressed as

6i
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programs) are implemented. In a very real sense, it is a crucial
4. laboratory for experiments whose purpose, distinct from any

application, is to enhance .,the understanding of information-
processing phenomena.

3.. Given the two premises stated above, there is ,no ne cur-
riculum that appears to be substantially more effective than
others in providing the "proper" growth environment for pro-
fessional computer scientists. Thus the choice between mcor-.
poration of a professionally directed computer science cur-
rictflum within another department or establishment of a new
administrative unit would appear to be dictated largely by
university politics. ,

The ACM, in dealing with curricular evolution, has become in-
creasingly sensitive to the accelerating growth of professionally fo-
cused computer science programs. Accordingly, the organization's
second major curricular framework [12] reflects a substantial shift -.
in that direction. The report identifies a combination of knowledge
and skills considered to be essential for all computer .scientists
regardless of the exact curriculum in which these are acquired:

1. The ability to produce correct (operable), clear, well-
.

m programs.
2. The ability to assess the structural quality and computational

efficiency of the program.
3. Background in the applicability of computer techniques to the

solution of certain problems.
4. Background in hardware system architecture*and component

behavior in preparation for configuration analysis and hard-
.

wale selection.

Superimposed on these attributes is the general requirement that
all computer science majors coming through an adequate .core cur-
riculum should be sufficiently well grounded in algorithmic tech-
niques, programming languages, hardware and software systems
organization, and mathematical foundations to pursue advanced
studies in'comptiter science and/or application areas of interest.

Fulfillment of these general objectives is embodied in a series of
eight computer science courses required of all majors. As shown in'
Table 3, these courses' assume support from six mathematics
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. Update of the ACM Recommended Curricolum,

Elementary Intermediate Advanced

fr

CS I

Programming algorithm

development, computer

organization"

CS 2

Stiuctured programming,

programiting techniques,

program testing methods,

data structure?

CS 3.

Assembly language programming,v

computer structure,

assembler construction'

CS 4

Bask logic design, computer

architecture, data

representation, computer

arithmetic'

CS 6

Basic structure of

operating 'systems,

intemelation between

hardware and software

architecture°

CS 1

Analysis and design

of, algorithms and

data structures, selection

of information

processing methods for

data base management'

CS 8,

Organization and formal

description of

Programming languages,

analysis of language

processing components'

Required, t Two courses from this category. arc required;

a II

Advancol systems

programming

CS 12'

Minicomputer laboratoryt

CS 13

Data base management

systems designt

CS 14

Advance,d,algorithm

analysist

CS 15

ProgrUmming language

theoryt

CS 16

Compiler laboratoryt

CS, 11

Atiornata and cornputabikt

One of MAlA, MA3 required.
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CS

File structure and ,organipilon,

data access methods'

Courses in specific programming.

languagest

MA I

Introductory calculus'

MA 2

Mathematical Analysis Il

MAZA

Probability and statistics

,MA, 3

Linear algebrat

CS3

Design and implementation

of operating systemst

1
CS 10

()

Societal Impact of computerst

MA 4

Discrete StructurCs°

MA 5

Mathematical analysis II

CS

Numerical Analysist

CS 19

Numerical linear

algebrat

Topics in computer

scieneof

Required: ,f Two,courses Irom this category are required, One of MA2A, MA3 required.

Reprinted by permission from R, H, Austin et al,, "CurriculumiRecommendations for the Undergraduate Program in dompuler Science,

A Working Report of the ACM Committee on Curriculum in Computer Science," SIGCSE Bulletin, 9, no, 2 (1917),1 -16, copyright 1977 by
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courses (four required) to provide mathematical maturity and ac-
culturation.

Once the 'core is assured, the new curriculum expects a flexible
approach to the remainder of the program, with emphasis dictated
by local preferences. As indicated by the breadth of the optional
computer science courses (CS 10 through CS 19 and -the "topics"
courses) the core may be complemented by conceptual work in a
variety of directions. Thus "Curriculum '77 (as this revision is called)"
has moved toward a more balanced program in which (pipdocto
ral) professional employment is an explicitly expected (and loerhaps
the predominant) possibility. Beside the practical orientation una-
voidably ol;tained from the beginning courses, many of the pro-4,;
posed higher level courses are split between lecture and laboratory
sessions, thereby reflecting increased recognition of the laboratory s
importance.

CURRENT STATUS AND TRENDS

Because of the widely different contexts, it not particularly
helpful 'to make a detailed comparison between Curriculum '77 and
its predecessor. While Curriculum '68 served as a very useful point
of departure and helped crystallize two basic alternatives for com-
puter science education to follow, the revisal set of recom-
mendations reflects the reality of roughly 65 American doctoral
programs in computer science and at least twice that number of
undergraduate and/or masters programs, with a substantial frac-
tion of these being professionally oriented.

The overall stabilization of undergraduate computer science in
an engineering context is indicated by the recent (1977) inclusion of
such departments as eligible candidates for accreditation by the
Engineering Council for Professional Development. Consequently,
it will be more interesting to consider the major issues that remain
open as computer science education completes its second decade.

It still is premature to ascribe to computer science a coherent set
of principles that unify its major aspects. The beginnings of such
structures are emerging as behavioral data obtained from com-
puting systems and are being accommodated by more and more
comprehensive models' which are catalyzing the formulation of
'more, effective design methodologies. Improvements in resulting

41t1,
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systems, assessed in engineering terms (e.g., shorter implementation
times, lower software failure rates), have accelerated the transfer of
this new knowledge to workaday, contents. The overall result has
been a noticeable increase in computer science research engendered
by problems encountered in practice, and an accompanying con-
vergence of theory and applications: Of course the effects of this
convergence -will -vary widely among academic institutions.

There has been no slowdown in the flow of problem's. Success
With a given application, coupled with, growing insight into further
improvement, usually encourages a more ambitious undertaking.
In many instances the concomitant increase in complexity stresses
current models beyond their effectiveness, thereby necessitating
further conceptual work. For example, there are numerous ap-
plications in which the advantages' of complex configurations in-
volving multiple computers are easily perceived: Moreover, the
construction of such configurations is well within current techno-
logical capabilities. However, the behavior of information processes
on many of, these complex constellations is insufficiently under-

-stood to allow their systematic exploitation.
This type of situation has a more fundamental aspect, stemming

from the fact that the hardware revolution is far from over. The
current phase, centered around microelectronics, is producing tech-
nologies that can place the processing capability of thousands of, ,
ENIACs on a single silicon chip. Moreover, the cost would make it
feasible to configure systems in which such a device is but a' single
c. 4 /.7 ept replicated an arbitrary number of times. The excite-1 1

M 4
3vulkSii plied by this "silicon. miracle" is vitiated by the thought

th ti,nningful use of such computational powermust be built on
an nderstanding of how such systems go together; the structure of
inforthation consistent with such systems, and the behavior of algo-
rithms operating in such environments. Consequently, the pressure
continues to mount for .computer scientists to develop ways for
-describing and examining these complexes. It is highly unlikely that
the ad hoc usage of sequential machines, initially built up as folk-
lore, can berepeated for these highly pakallel systems.

The consequences'of this cultural lag already have raised educa-
tional issues sharpened by' Curriculum '77. Perhaps the most con-
spicuous of these is the one stemming from the rapid blurring of
the boundary between hardware and software. Accordingly, the use
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of one vehicle or another to implement a particular algorithmin a
particular context no longer is a clear-cut matter. Experience with
systems involving such decisions is producing evidence that major
responsibility for'.these choices may fall to computer scientists. The
"proper" place fOr this responsibility will be the subject 'of continu-
ing curricular debate, with further dichotomization the likely, result.
Willingness to assume this responsibility implies an extended com-
mitment to hardWare within a computer science program; thereby
requiring substantial laboratory support independent of the institu-
tion's central facilities and unaffected by the, operating restrictions
that such facilities must impose. Consequently, the inclusion of
active hardware pursuit at the functional level will become an im7
portant attributeyto help characterize a program's position Within::
the spectrum of computer science curricula. But the breadth of that
spectrum, is not likely to narrow. This ongoing turmoil, fueled by a
diversity of viewpoints, will continue to enrich the discipline and
could well lead to convergence on not one but several viable ident-
ities. '
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PROGRAMMING LANGUAGES
AND SYSTEMS

William .E. Ball

oy

INTROOUCTION

7.

*tienevef i'person needs to use a digital computer, it is necess-
arOO comMunieate to 'the Machine the step-by-step procedure to
follOw..:This act of communication re4uires some means of ex -.
titeSSing the desired pcoinputational ste s in a form that is under:.
Ondable toe both the person specify' g the steps and the computer
fiat, is to,:execute them: In ,this pa er we Shall look at a range of

.,, pbssibilities, fronfdiredt specificati n in a langdage that the fl.la-
:chine is` designed to Understand, to attempts for getting the, ma-

me to understand a lang ge as close to natural language as
possible. ,Historically, the t end

more
been from simple machine-

s' oriented methods .to more nd More sophisticated programming
systems that can better qupPort the needs of a general -user com-
munity. Ind ptitt to put some of these current systems into prop&
perspec Aall'.first review, a few,pf the highpOnits in the

4,0-;
/ 'dtvelopm ung,uages for man-mac

-,. q

.52 ' r ,
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11.1. Algorithms and Programs. The concept of an algorithm is
lasic to comPuter science. It repres1 ntS the fundamental infor.:

. . ,

iriAion that we must communicate to any computing device for it
to function adequately. An algorithm is defined [1] by the fo4ow-.
ing five properties: \

1. Finiteness. For a computational procedure to be considers
: an algorithm, we must guarantee that it will terminate aftera
. i finite number of operations.
2. Definiteness. The step-by-step operations that specify how our

computation. is to be made:must be described in terms of
actions that are rigorousb, and unambiguously defined.

3: Input. Values that start the computation must be specified
clearly. . . -

4. Output. The normal fuRction olany computational proCedure
isto operate' on the input values' to produce some specified
output . h :

5..:Effectiveness. The basic operations that comprise the dompi..-
k

tational sequence representing an algorithm must-be stich.that
they can be performed in-an,effeetive \manner. This concept of
effectivenesS is somewhat vague, but in principle fit. implies

1

that a person using pencil and paper actually can perform the
Operations- Specified. That is, an effetive and definite oper-
ation'might be."multiplication." An operation that is definite,
but not effective, would be '"Solve a complex nonlinear three-
dimensional partial-differential equatio4u in five minUtes." ..

.
It is the PUrpose of programming langtiages-to let us present; our

coMPutatioriaI.. requSrements 1 to a compbtng device in such ; a
Manner that the algorithmic aspects. are cleIy specified. That is, a
programming language must enable the us r to describe the se-:.

'.,;.qt.ience ofdefinite operations which will guide the computing
deviCe from the input values through the Specified steps to the'
production of the final output values. \

. Two related questions are outside the scope of this paper: What
is the finite number of steps required fOr the termination cif. the
algorithrii? Is the program output 'Correct bsed on the original
function's specifications? These iterris are discussed in [2]:

1.2." Program Represen atioiL,Perhaps the ideal programming
.;:.language would be Eng t11, or some 'other naItiral language: The

1,4

,..04
t ? ei: 4 .z."

'Th;
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.

user, simply could write the problem specification as if conferring
with a colleague, submit it to the computer, and have the desired,

. computation performed. Unfor'tuna'tely, this brings us immediately
to the question of just what an effective operation is. Normally, the
transformation from a vague problem specification in .nattral
language to a precisely .stated step-by-step computational pro-
cedure (i.e., an algorithm) is a very difficult one, involving a signifi-
cant amount of mathematical maturity, experience, and training.
Although there .has been .considerab1e research in this area, our
present systems are still not capable of "understanding" a natural
language dialogue to an extent sufficient to automate thiS trans-
formation. Some aspects of this work <are discuSsed in Dr. Slagle
article. Weinberg [3] considers why natural languages are hot pro7
gramming,languages. y, .<?

Atthe other end of the language spectrum, the early days saw an
:operational sequence specified by actually plugging wires into

appropriate locations in the computing device. To carry the infor-
mation from, say, an arithmetic unit to a' printer required physi-
cally, connecting the two units. Clearly;theflexibility and power of
a hard-wired or plug-wired device leaves a lot to be desired. The
concept of the stored program computer, in which a general
memory served to store both, the data to. be processed and the
instructions that described the operations to be performed, was the
key that allowed, the versatility needed for the development of our
modern computational Methods. However, the programmers of the
early devices ran into a serious problem: They had to actually .set
the exact values of the stored. program instructions into the
memory in a crude, laborious, manual fashion. Significant concep-
tual breakthroughs "occurred when it was realized that once a
person specified such a program; a major savings of effort could be
achieved if another. person' could access this prior work easily and
direCtly. Thus, early in the 1950's; systems based on libraries of
reusable programs came into existence. These 'made it convenient
for one person to use ,the programs created by someone else, either
as independent processing procedures or as components in larger

\ programs. Rosen [4] and gammet [5], [6] havepresenitd extensive
and detailed discussions of some of these early developments, along
with the factors motivating them.'`

In order to clarify these language concepts and to illustrate fur-
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thee tit e.relation between program language specification and algo-
rithmic representation, we shall look at a number of particular
approaches #at have been developed over the.'past few decades.

2. ASSEMBLY LANGUAGES

2.1. The Assembly Process. If we define the operations 'in our
algorithmic specification to be the instructions executable direetly
by a computing device, then ihgt, is no question but that our
operations will be definite arp?,effective. An operation such as "load
a value from a memory 'location into a register" is a clearly speci-
fied and effective operation: The actual machine instruction usually
will be a pattern of zeros and ones (i.e., a binary number interpre-
ted as a sequence of bits) which, when properly translated by the
control mechanism in the computer, first will direct the hardware
to select a particular memory location. The information contained
in that address would then be transferred into an accumulator, a
register in which all arithmetic and logical operations take Place. ,

Further operations may then be performed on the datum moved
into the accumulator, such as "add on a value from another`
memory location."

It was soon found that the (conceptually) simple task of assign-
ing specific memory locations for various items of data is a task
with a high potential for clerical mistakes. However, it is reason-
ably straightforward to program a computer to perform this job:
First, make all of the memory references symbolic; then tabulate all
of (he symbolic references;` finally, assign sequrty memory ad-
dresses to the list of symbolic addresses. As a consequence, one of
the very earliest software tools (i.e a program developed to help
people work with tht computer) was the assembler. This program
intercedes on behalf of the programmer, who uses symbolic ad-
dresses and mnemonic instructions and takes over most of the
routine chores of preparing a detailed. .set of/machir s nrefis
for computer. .execution on a Particular, type of equipment. Stein-
hart and Pollack [7] present detailed directions for using one par
ticular, assembler program, but the principles of using an assembly
language are easily learned and transfeli-ed-tO175Ther machines and
systems.

It is far easier. for a programmer to remember and to write.
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"LDA" to request the operation of "LoaD Accumulator" tban it is
to remember the series of bits that must be stored as a machine
language instruction. In a similar fashion, it is, far easier to write the
symbolic reference "X" than it is to remember where the item of
information called 'X is really stored and to always use that as-
signed numerical location. Thus an assembler is a program that
can accept as input a line such as

and generate as output _the corresponding bit pattern representing
the actual machine operation tlit must be executed, including' the
assignment of an approprike location to store."X".

Figure 1 illustrates the assembly process for one specific ma-
chine, the Texas Instrunients Model 980B minicomputer, but the

As part of a larger problem, compute the sum of A + B + C and store the' result
in D. ,

Input
Assembly Language

<label> <op code> <address>

Output
Machine Language

(numbers are base 16)

<location> <contents>

ADD

ADD

8TA

7

B DATA 9

A DATA 11

BSS 1

0100 0062

0101 2060

0102. 205E

0103 8060

0161 0007

0162 0009'

0163 000B

0164 0000

7t3

FIG. I. The assembly process.
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principle is the same from microprocessors to extremely large ma-
chines. The TI980B uses-a memory organized into 16-bit address-
able Units (words). One word may contain an instruction of the
form:

4 5 6 7 8 15

<op code> IXB <displacement>

where: <op code> = 5-bit code indicating the operation to be per-
formed.

IXB = 3 bits to describe how the machine will interpret the
address specification.

< displacement>. 8-bit field whose exact meaning depends
on the setting of the IXB tits but whose,basic purpose is
to indicate the address of the datum involved in the oper-
ation. In the example of Figure 1 (IXII = 0) the address is
given as a relative displacement from a reference address.

Memory wordi also may contain codes, logical
switches, integer numbers, floating point numbers, or anything that
we wish the bit patterns to represent. In Figure 1, integers were .
assigned and stored for the values of A, B, and C. Since one hexa-
decimal digit. (base 16) represents any one of 16 possible values, it
corresponds exactly to, 4. binary bits. Thus, each of these 16-bit
binary numbers is expressed as 4 hexadecimal digits simply to
shorten the number of characters required to write them.

The assembler statements consist of three fields:

<label> <op code> <address>

where the fields are each terminated by one or more blanks. The
operation codes used in the example consist of the instructions:

LDA X = LOad the accumulator with the contents of memory.
location X.

STA X = Store the contents of the accumulator in memory
location X.

ADD X. = Add the contents of memory location X to the con-
.. tents of the accumulator, leaving the sum in the'accu-

.
mulator.

74
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The. TI980B assembler actually uses a total of 99 such instructions.
There also are assembler directives (i.e., instructions for the as-
sembler program itself to direct the code generation process). For
instance,

<label> DATA (value> directs the assembler to assign the cur-
rent location as the value of the symbol in the label field
and then to store the given value in the current location.

<label> BSS <count> assigns the current location as the value
.of the symbol in the label field and then advances the
current location by the mimber contained in the count
field in order to reserve that many locations for data to
be stored later.

The TI980B assembler has 21 such directives.
One computer software tradition was established soon after the

creation of, the first programs: Once,a Program is running, some-
body will think or an improvement °or an-enhancement that must
be made. to obtain a new and better program. Thus, the basic
assembler had many features added to it to make it more con-
venient for the human to interface with the computer hardware.
Although the assenibler already had built into it every possible
machine instruction, assembler directives were added to aid it in
allocating storage for data, printing, and spacing of output into
more easily read format, conditional features to allow code vari-
ation, and various options for saving the generated machine code
for later reuse. All of these enhancements were directed toward
making the human/machine interface a smoother, more easily navi-
gated boundary.

2.2. Macro. Definition. An interesting early observation made by
programmers was that they were continually writing the same pro-
gram fragments over and over again: As long as there is a block of
code that is to, be duplicated, with perhaps only a few changes to be
made from one copy to another, it again seems reasonable to let
the computer do this essentially) mechanical work. As a conse-
quence, the concept of a macro definition was implemented in most
assembly language 'processors. This procedure allows a code string
to be defined once in terms of a set of parameters and an assigned
name. Parameter values then would be specified later in terms of
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variables to generate the actual desired code. Wegner [19] de-
scribes the details of how this may be accomplished.

Figure 2 illustrates this process and demonstrates some of the
power and flexibility that the macro capability provides to the
programmer. In the example the name of the macro is SUM, with
parameters A, B, C, and D. All of these parameters enter Into the
addreis fields of the instructions contained within the macro body,
but we could just as well have written an operation code or even an
entire instruction as a parameter. The macro body may be con-
sidered as a template in which the formal pararwrs are replaced
by the actual parameter values at the time of thiPAI of the macro.

Macro Definition:
k

Macro Calls:

Input ,

MACRO SUM A,B,C,D

LDA A

ADD B

ADD C il

STA D

t\.

SUM X,Y, Z,A

SUM A,B,Z,X.

END

LDA A

ADD B

ADD Z

STA

FIG. 2. Macro definition.
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The correspondence between formal and actual parameters is de-
termined strictly by the ordinal position of the parameter in the
parameter list.

Although the simple substitution discussed above may be very
convenient, most of the real power of the macro concept arises
when other features are added. For example, a macro body also
may contain a macro call, producing nested macro calls. Con-
ditional directives may be added, in which case a given block of
code may be generated only if certain conditions are satisfied at the
time the macro is called. Finally, the macro definitions themselves
may be nested, allowing parameters to be used to change dynami-

*cally the macro definitions
b 1

ti
2.3. Summary. By impleAnting algorithms in assembly

languAge, the>programmer has complete access to all of the capa-
bilities .of the hardware. As a consequence, a great many of the
operating system p-rograms (i.e., programs dealing 'with the details
ormemory man ement, input/output, control of task execution,
etc.) and also the ut programs (i.e., copying'and reorganizing
colle.ctions of data, sorting programs, etc.) are frequently still writ-
ten in assembly language. This also allows the programmer to
obtain the utmost computer dfficiency for execution. The process is
one in which the programmer specifies his algorithm in terms of the
allowed symbolic language statements, passes these stateMents as
input into the assembler program, and then collects the ()input as a
series of machine instructions for execution. The output code may
be stored on some external storage device such as disc or tape. At a
later time, wheiCit i----desired to execute the program thus as-
sembled, another program (the loader) will be instructed to go to
the external device, pick up the appropriate assembler output, load
these instructions into the computer memory at specified locations,
and. then transfer control to those instructions for final' execution.
The entire process consists of the four sequential stages:

1. piogram preparation
2. assembly
3. loading
4. execution
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3. PROCEDURE - ORIENTED HIGH-LEVEL LANGUAGES

A line of assembly language code produces essentially one ma-
chine language instruction. A line of code from a "high-level
language" may produce an arbitrarily large number of machine
language instructions. Moving from an assembly language program
to add two numbers and to store the result:

LDA X
ADD Y
STO Z,

to a higher-level language statement to perforry the equivay..._16114state-
peration,

Z X + Y,
seems like a relatively small step. In practice, of course, we want to
go in the reverse direction, from the higher level to the lOwer.
However, higher-level languages accept statements that may con-
tain a complex structure that must be analyzed before the output
(essentially a set of assembly language statements) may bt gener-
ated. Use of a high-level language may achieve a large improve-
ment in the ease of communication from man to machine, but only
at the expense of requiring the computer to perform the extra work
of structure analysis. However, this approach still requires the
effort on the part of the programmer to understand the intellectual
concepts involved for .the program prepar4tion, since the necessary
algorithmic steps still must be described in detail. Essentially only

idetailsaresavedby -the -use- of a
high-level language.

There is a basic difference between the formal artificial languages
of the computer world (PL/1, FORTRAN, PASCAL, COBOL, etc;
see [8] for a more detailed description of many of these langu es)
and a natural language such as English. We know how t do. a
complete structural analysis of a formal language (Sectio 4), but
we do not know how to do the equivalent analysis of a natural
langu4ge. The program that performs this, language analysis and
generates the' corresponding machine language code is called, the
compiler. Higher-level languages continue to evolve, along with our
ability to create compilers, so that source languages are. becoming
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more convenient sfot human use. However, we are still far from
being able to write compilers that accept a completely "natural"
language as input. Variations of FORTRAN will be with us for a
long time to come.

3.1. Data Elements and Variables. We shell use the expression
"elementary datum" to describe a basic unit of information that
can be accessed and modified as a single value within a given
programming language. Normally, elementary data items will con-
sist of such things as numbers, either integer or floating point,
character strings, Boolean values, bit strings, or references to actual
machine addresses (called pointers). Sincelthese items represent the
fundamental units ofnformation that must form the basis' for any
algorithmic development, it is essential that a high-level language
provide a mechanism bwhich the programmer may store, retrieve,
and manipulate th se items. The standard mechanism is.to provide
symbols called vd iables to name the datum. Additional symbols,
the operators, in ate what processing is to be done.

The normal basic variable in a standard language such as FOR-
TRAN or PL/1 essentially names a given location in the computer
memory. A reference to this variable, then, is a reference to the
value stored at the indicated location. Thus, a statement of the
form .

X Y

may be interpreted as telling the computing system to go to the
location_named by Y,_reproduce,the value of the item stored there,
and move it into the location named by X. This seemingly simple
operation may invoke a number of obvious and also subtle prob-
lems. For example, if the datum named by Y happens to be-an
integer numeric value, and -that named by X is supposed to be a
character string value, then what does the assignment of values
really mean? Clearly, in order to maintain a consistency of infor-
mation described by the symbols, one of two alternative disciplines
should be enforced:

Data elements, on being stored into named locations, must
take on exactly the characteristic; implied by the, variable
fame with its attributes.
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2. Data,elements, on being stored. into named locations, must
also carry descriptive information giving their exact character-
istics.

As a consequence, all languages must 1ve specific rules as to what
elementary data items they allow, what elementary data items may
be automatically translated from one (internal) form to another
(and when), and how the variables take on (i.e., how the machine
"knows") the appropriate attributes of the assigned data items.

Thus we see that a fundamental decision must be made in de-
signing a programming language: Are the, variables to have fixed
attributes defined before the compiler processes the program (as is
the case in languages such as PL/1, FORTRAN, and COBOL) or
may the attributes vary, as defined by the data stored in them at
the time the program executes (as in APL, SNOBOL, LISP)? As a
gross generalization, we can state that the former tends to produce
more efficient code, since the compiler knows more about the data
types to be processed. The latter tends to produce more flexible,
easily used systems, since the programmer does not need to be as
concerned with the details of the data while still writing the
program.

To illustrate this dichotomy further, the PL/1 language requires
a complete specification at compile time of the type of information
that will be associated with a particular variable name (the type
information may be provided by the programmer or by the
language default values if not explicitly specified). That is, during
the compilation of the program, the PL/1 compiler knows that a
reference to thesymbol X. stands for exactly one type of datum,
such as numeric value with the attributes' floating pot; base 10,

signiffint digiti,-6ff.-This set of attributes-will-beunique-and
unchanging throughout the execution of the program. All genet -,
ated code. that refers to this variable will be specific, thereby Mini-
mizing the amount of data-cheaing that must- be 'performed. In
contrast, SNOBOL, primarily a string manipulation language, does
not have any preassigned attributes associated with a variable
name. Consequently, a very dynamic type of environment is ere-
ated in which the attributes associated with a particular name will
be defined (bound) only when an, actual.. value is stored. We may
write an assignment which stores an integer number as the value of
the variable X at one point inoa .ptogram, and then a later assign-
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ment may store a character string for that same variable. To handle
this situation, the executing code must at all times check the type of '
information stored for the particular variable to ensure that con-
sistent operations are being performed. If the variable X contains a
character string and X appears in an expression requiring numeri-
cal addition (X + 1), appropriate instructions will be required to
convert the character string form into a numeric form for the addi-
tion operation. If X was then reassigned a numeric value, the code
required for the evaluation of the same source expression (X + 1)
would be quite different.

It is an unfortunate situation, but a very common practice in
man/ current programming languages, to usg a single symbol to
stand for two entirely different operations. The exact meaning may
be inferred only from the context in which the symbol appears. One
example of the problems that this practice creates comes from the

'use of the equal sign, " ", to mean both an assignment of value
operation and a relational test for equality. Thus we have that
strange-looking assignment- statement that has confused gener-
ations of fledgling programmers,

X = X ± 1,

where the " = " really means "aSsignment of value." In PL/1, this
dual meaning prodUces an even odder looking statement:

A = B = C..

The first equal sign is an assignment operator' and thelsecond one
is -a relational operator. Thus A is assigned the valu461"true" or
"false" depending upon whether or not B has the same value as C.
4

-31; Data-Structures and-Storage Structures. -Noirically,-theiogical_
constructs involved in solving a problem-6r implementing an alg&'
rithm-require more than just the.elementary data items. We use the
expression data structure" to de-scribe that particular logical entity
that represents the information that we actually wish4o manipylate
in the algorithmic process. For example, we may wish to deal with
the concept of a set or a graph as the. basic structure in our process.
Two particularly common types of data structures occurring in
scientific and mathematical computations are vectors and matrices.
These`arrays normally are composed of elementary data items as
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previously described. In the algorithmic sense, if our data structure
consists of sets, thenc, the operations we might :wish to perform
probably would include such things as "is aparticulailelement a
member of a particular set," "find the union of two sets," "find the
intersection of two sets," etc". These are welkdefined operations on
_well-defined data structures. However, when it is time actually to

. implement an algorithM on a real computer we are faced -with the
question of how to store a "set" in a_ computer memory that has
only a linear addressing :capability. Also, we must determine how
set operations are actually executed; given a particular method of
storing the set informatOoft. The implementation of an algorithm
always requires an ans'Oier to the question of wharf storage structure
should be used to represent a particular abstract data structure.
One of the most common stumbling blocks in algorithmic im-
plementation stems from failure to differentiate between the data
structure, which is conceptual, andL the storage structure, which is
an actual realization.

Figure .3 illustrates the comparison of data structures and stor-
age structures for a vector (a one-dimensional array) and a matrix
(a two-dimensional array). The notation is to indicate that the first
element of the vector, V(1), may be stored in the addressable stor-
age location "L". If an element occupies "s" addressable locations,
then the second vector element, V(2), will be stored at location

+ s". For example, the IBM System/370 computer attaches a
separate numerical ,location to each byte of storage,'and a double
precision floating point number occupies 8 bytes. Hence if V(1) is
stored at location 1000, then V(2) must be stored at location 1008,
V(3) at 1016, etc.

In the full linked list forfn 'the notation means that one cell
contains:

1. The datum
2. The address of the next cell.

. The last cell containm special value in lieu of ,the next cell address
`to indicate the tennitation of the list: The matrix form also may be
stored in a solid column,,major order, or 'in one of a number of
posSible variations of the linked list forms: Extensions to higher
dimensional arrays may easibAbe accommodated.

Given a storage strUOtire iMplethentatiOn of a data structure, it
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FIG. 3:baid structures and storage structUres.-

4

is necessary. to pro he g: function that IntS..,'the'
..'system access a particular e nt of storagestrnifre -when-

eOrreiponding::04iiO4.0to;data structure is referenced
in the algotithm.. For;example,%gisien the data strncture ; for a
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. .. l'
matrix, h IN doeS. the 'program ''actually find the -toe TiOn- of a(1,-.1) ). ,.

7When'that datuni is required? The matrix eZamplejs ri.,interesting' -:
one;ln the sense-that, for a solid representation, it, s possible to
op nte a specific location for the element. directly from,
he indices-in-the array reference. The..mapping function in this Case-

would lie (for row- .major storage order): ', ,-, ',

L[a(i, j)] = L[a(0, 0)] s (d(2)

;''

.6T where: L[ ] = "the location of "
) S,= size, in addressable storage ,units, of 'one iatunl item

(normally fixed by the computeearehitectur
,

= number-. of elements ii the second di
rows) of the matrix.

Thus it is Sufficient to ,knoOthe, values of L[a(0; 0)], d(2), and s to
.store: or retrieve all of the elements of any two-dimensional array,
based on this storage structure.

In some storage structures, such as in the vector repi-e4tation
using 'a fUll-linked list,'it is, no-possible to-get the fifth element in

kthe list withOut actually stepping ,through the list by finding the
location of `the first, second; third; and fourth elements OnlY:the
fourth element contains the required locatioti!.of the fifth: elefii5nt...
In the sparse form, the fifth (element will'appear only if itj'ianeedea
(say for.nonzero values being stored) Consequently, the sibscritit4
values must:' be checked during a linear `scan of the list in orler1..to;:".?.

determine whether the desired element has been found, Or'if it is

Element retrieval questions, however, are not, the only iinportant
aspect of She storage,structures used to implement a tlarticular data

structure concept.. Consider the case in which it is dosiredi'-1to; insert
eleMent'betWeen the fourth and fifth eleMents in aw existing

victor. Given a' packed repreentation of the vector,, the only way'
such An, element could a inserted is by physically moving all of the,.
following elements down one location in the stOrage structtire. In ar

such an insertion can be made simply iby,
cfeattng a, new eleMent. and changing One-address pointef. It is ,,;
considerations such as these that 'indicate that:. the study fy,data

striktnres And storage structures has aIrentendOus ihipact the
.. . 1,



efficiency' with which computations are dgSigned. ptirsuing this
topic furtherls:beyond the scope of this pa4 Here we Shall limit-
ourselves to an examination of the languagetechniques by which a
desired structure.may be implemented.

3.3. Contiol Structurei. When an absTract algorithm isiimplemen
ted, a specification must be 'introduced in the implementation
language to indicate precisely The sequence: of operations to be

..performed.-We shall assume that the sequence in which statements
are \written will be the sequence in which they would normally be
expected to be executed. HoWeVer;'Variations' from this 'normal
sequence. must be allowed so .6lic operations; conditional
execution: of statements, and othe44 decision-related events can

.

be accommodated.
In sometif the early higher-levellanguages, such as FORTRAN,

it n. was thotight sufficient simply to carry. :over the assembly
language control stiucture, embedding it in the higher !language.
Thus ; =we 'find such statements as

tit
,44 GO .TO

for the uric onditionaltransfer of contraand the arithmetic IF,

"IF-0(j 10,20,30,
9

.

A.14, ttests: : A- numeric value.- for negatiVe (GO TO 10), zero
. (GO TO 20),' or pogitive (GO, TO 30), totproduce° a conditiOnal

transfer: of control; These 'statements essentAlly represent a direct
.--. Carry-over from the machine lafiguage bf 'the computer on which

FORTRAN originally was designed and, implemeated. Unfortu- '
hatelM teinents of this, type induce `a tendency to write programst a,

invol4ii a convoluted iligicat;i1U, of control, with transfers back
and forth ebetw%n small segMentS,Of :coding being quite common.
It has been founAin-pfactice thatprograins having thislragmented
characteristie are very diffiCult to debug and maintainppecifically,
it is very difficult for someone (even the original programmer!) just
to trace through the logic of a program in order to establish exactly
what the° code will do in a given situation. We shall return to this
poInt shortly.. .- ...'

( t4..... The, sequence of oRerationspgge by a cpmputer code re-
sulting from cdinpibgt

)
.progr kimon',4 number of sep-

c'. t. . .
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arate and distinct factors:
1: The actual ,sequence. of statement's, as written by the, pro-

grammes.
2. Within a statement,' the order of evOlAafiOn of the operatOri

as defined in the language itself.-!. :1P..r-te

3. TechniqUes used Sik\ittiin the cortnpildrliciiiroduce the final (op-
. timiied) output code.

The first item is clearly the (:tttrtft Of the prograninter,. but
`the other tvva have effects that are'sCiii6finiiksUrprising.'

The result of a Sequence:.oftiperati8nlioni.. a sin le statemep, nt,
can depend heavily on the pro'perties:Orthe ,Ornputkng deviceton
which the statement code is executed. 90 grit1e-iiinificaqiftte13-77
lems is that computer arithmetic is' biied ph finite"' size titinibers
and hence .differs friim :laiheniafiCal definitions For

,

example, floating point a Ailton p; not associative as%we Nould
aSSume,fiOrmalirithmetic addition ibe.4that is, cronsider:the
sum A B.4-1'C,- where the slightly smaller
than:the smallest nUniber-,th4,,W*0
perfOrM, the 'addition in 10,:tits*7 tile4esaltirg valu will`

be the ,same as A ancrhino0'.:eidirl -,Alsei,'Ppicl,

value, of A. Howeyer;if.WePeffbrin:4he:additionJfiviii,'..,pg*,*ief
the value of (13- -i-:"C)triay.,ke'l:OISuittelenfiklZe to C rigt.lbC value,
A. Thus we have, for the

then.',,12

and f".'' .1.029PR ''. tk
As a . consequence; the code; generation al inthms"i ised by the?

ir
compiler may affect, the 'ciiiiiktittediireOff ,. AllOgh in a math::
ematical sense, the order 61.e3:009001t.l.i9'iitd riot: matter.

Another,significapt c a u s e fit i p f W e r 0 a siigle.sate
Tent, is the use of?ftnctfonip4ily i:sidc,ef cts.:CO440r;4t
simple . example prarrf4,ppoq,,cal

i
:pf:( tbitretWiSz:

value (X'+ 1;)/2, but also changes t Nail of the:'afganii0
.4. it,;:,, .';''':

X + 1: In PL/1 this function ,;i9 tittetras:.-

,5( -_,i X 1f ;1'

Etijii.NS'(FLAT).
7;.7. 14

PROCEDURE HALF

.:,RETURN(;
END HALF;



...

The expression X,,,,.. HALF(X) now becomes 'ambigu
':-.:,.._ Tk.,value depen4.,upori the 'order °in which the operatou; ' .,1' rd.

folined, That is, first, finding the value of HALF(X) an ,, ti.
plying by ,the,Nalue of x will not produce the same r -1 alciUg

value of X' and multiplying it by ,the value of 1-jkl,F(X).

Ball,E: l

sequence:
X = 3
Y = HALM);

will'produce 8.for, e former case fild 6 for the latter.
Wit:Ain( the past ecade,-einafbr questio'n in computer science

has beeideidewliat4ypes,-olLcontrol structure language.:fea-
;tiiresjhould be included in new language designs. The objective of
these structures would be to

1 Maximize the probability of writing a correct program.
;"2. Makimize:the.readability of the code..

;,;'3:> Make it easier for a cornpiler_to_analyze-the.flow-of control to
'help optimizd the machiiiecode that, is generated.

The results of, numerous stirdies.4garly indicate the program logic
.can be more clearly written' and eiwlained if the possible language d

' constructs are restricted ,to a few fundamental control, structures.
' These control structures all have one very, significant feature-in
:eomnion:, There is only one entry Ponit\into,the structure and only'
one exit point! froin the structure. This is in contrast to the-unre-
stricted use of. the traditiOnal, GO TO method of control transfer.
McdoWan and Kolisq91-discuss these motivations ektensiypely;'
):,The basic allowable control structures may be selected

number of potentiaj types,: but the folloWing set is . sufficient. for
'most algorithmic design or programming tasks

I. N4rmal seqUentialVitienting
'2: I.F.-7.,TION:- ELS8'.'-'4..-f..'''
3. DO WilILE $

4. 'REPEAT 4.04

Figure 4 illustrates hoW tfleSe tures affect the flow of control in
...

a normal program. \ d . 2
,,

Not only.do these structured constructs 'thikance clarity of ex
. .,01 76

pression of an algorithm,.they also aid in design* a coqect pro-
gram by using a tomdownfclesign approach [91V11 ylieestait by



,

`' 'eicpressing our algorithiri in terms ofvery laige scale operation
thereby, limiting its dOoriPtion tck,:ife mpliked dontrol
itructurO;N:ve may. essentially judge t o* rogram
that wechave'Vritten: A series of step aftti,iii idi,'' at
every leypl; a complex operation isf':

1. 7.4
yt &'Sfri 1 :a., -- t ,t,

-detailiWill still 'maintain the original ,': A ili61Wa:rk
eaclyrefinem nt is itself correct. This s vi :49_,Jghletit Maylze

,continue n ever-expanding' detail ufitille: tfie,-roitii.ktiOlk!jave
,!.'been speCified afa'leyel corresponding to that of the progiaMming

'4: language We are Usin. One imPortant acivintage:of using a high.7..
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level language. is that this' e ement may stop much sooner than it
would have if we were con Ileditto refine all the way down to
machine language instructi. ns, Theis, it.:; usually follows that the
higher the level Of the language.mvailable to us tfie richer the
language and data constructs), theqasier it is to ement algo
rithms correctly.

3.4. An gxample Program. In order to clarify some of the pre
vious remarks, let us look at onesampie prdblem. We shall- illus.'
trate the development of an algorithm; the conversion of the algo
rithm into a. program; and the corresponding control add, data
structures needed for the implementation/. Sorting .bY,insertion is
the problem chosen to illustrate these.: principles. In Figures 5,
column 1 represents a gross, statement -of t.t\he problem. Column 2
rePreseif6 l'an expansion of eolumn 1 that includes some of the
details .of, the algorithm being implemented, but still not in suf-
ficient detail to code directly. Column 3, a further refinement of
cdlurnn 2; is much closer to the level.Of detail required for aiding.
Column 4 represents the final conversion of the flowchart into, the
PL/1 programming language. ,

At each stage in the stepwise refinement of the flowchart, one
operatiOn' was expanded into a more detailed tlekription pf,the
RrOcesS uSing.onIrthe'strUctured blocks led in Figure 4:Thus the

one -in /one out control logic is aTwaYs..giaintained'Auring;,
the. deVelopinene. of the program. After the algoritfiM kas been
detailed Suffia,ently by:this procession may be converted, into any
suitable ,programming language. A language with;operatxus; and=
data structures closely resembling what appears

r
in'tfie red roblem

V;wa clearly make thiS final coding task . easier than totally
. unrelated language was used.

HIGH -LEVEL LANGUAGE TRANSLATION

Detailed specifications for two separate aspects of a ,program`
::1:ming language must.be presented in order to describe it completely..

The SYNTAX (i.e:,,whatsYMbols may appear' in what order) must'
be unambiguously tdefined in order to establiSh whkrii legal seu:.
tence is Furtherniore,' once we have 'identified ,a ,061-string* we ",

must also specif)iittiRSEMANTICS (i.e.,' ;the meangng,.of the par-
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ticular phrases that are introduced into' the language). Thege two
sets of specifications then must be encoded into a program (the
"compiler") whichwill actually translate the source language ;state

2rOvided by the programmer (described by the syntax)hto a
set of machine language instructions (described by the semantics).
Aho and Ullman [10] present an excellent treatment of this entire
process.

As our knowledge 'of language constructs has imaoved over the
past few years, we have been able to develop software tools that
incorporate algorithms for the transformation of these two, specifi
cation sets directly into a working compiler. This type of software
development tool makes it possible for us to create and test new
languages and language features at' a minimum cost. The creation
of a new compiler today is not the vast multiyear, multiperSon6:'
project of the 1950's and 60's, but, instead, a project in which the .

developers need concentrate only on the'principles of interest.

4.1. Syntax Specification.. How do we know the statement
X = A + B is .a valid FORTRAN assignment statement? This
question could be answered by listing every possible valid assign-
ment statement, and then searching the list every time we wanted to
see if a gkien statement was included. However, the size Of. an
'exhaustive list Makes this approach impractical.* An .equiv-
alent ch k may hkdoneby a Constructive aPproach, sufficient for
the types f languages thatiy,!e area considerjrig .,. by defining the
languages stgcriii. licidliii0;a-context free gramniar. A context free

,'.grammar' FG) consistst'l four, parts:-

1. Termi lalsthe basic symbols which compose strings in the
langu ge (i.e.; ...). ,

2. Non erminalsspecial symbols that denote sets of strings. (i.e.,
<variable>, <assignment statement>. The,<" and ">" are con-
ventional brackets for theseosSimbols.):, Also referred to as
phrase names. p.

ji,
,-.,. A tyoicai ediTRAII-V0able name consists of a letter followed by up to five,..
additional letters ordigitSi There' are 1 617,000Ponlegal variable names that maii3'7-
begin an assignment ita-5 tement! ,.,

..'..r.. .



3. Start ymbnl--one nontertniMinrichat denotes the set of
strings consisting -of all of the ,valid statements in which we are
interested.

4. Produetion Rulqthese rules define the ways in which sym-
bols and strings nay be legally combined to produce new
strings. The nmeitcontext free" implies that the production
rules are restricted to be of the form:

"nonterminal symbol" - "string of symbols" (

where this rule implies thpt, for any occurrence;pe, the symbol
orrtit left, it may be replked by the string on the right.

To illustrate hoW such a CFG allowS us to recognize valid state-
,ments in a language, consider a grammar defining a simple arith-
metic Osignment statement language:

1. ;eiminal symbol set = {A,B,C,D, ,X,Y,Z}
2.-"Nonterrninal symbol set --= { <V >, <E>, <A>}'

3.` Symbol. <A>

4: PioductiOpitifes;*
4)". <A '74 (V> 7
(2) <E>.- <E> 42,-<E> l'Or>
(3) <V>-*AIBICI 67.

An additional notational convention has"been introduced to short-,x
en the-wriling of these rules.*When two rules have the same left-,
hand side7Pmbol, the rules are merged .using_ the symbol "I" to

f.--4cp,resent the alternate right-hand side strings fro& .the
kph

rules. Thus; the nonterminal symbol <V> denotes the-set of itrings
consisting o.upper-case single letters. The symbol may also be
descriptive of the phrises it names, such as <Variables> or <V>.

If We begin with the start sykhol,.:we may; use the propoion
(.i.rules to substitute strings for rminal symbols to produce.;

-Strings called sentential forms:-

> [setantial,forit;'inie P1.1].
X4.= <E> [sentetitialiform; rultP1:3k]

.v .1".
<E> + <E> [senferitiirkini,,fillet,P1:2a]

<F>, [sentential Farm, rule P1.26]
[sentential form, rule P1.3a]
[sentential form, rule
[sentential form, rule Pl.-13'

-

-
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sentence. Th _ mg the Is called
the language genera e r.

Since we have worked ATI tn&Ibill' 'a 'derivation showing how -the.
string X = A + B may bedeveloped from the start symbol of our
sample grammar,- we see that this',sirinii.!fl'fk.the: set 91::,:strin:xs
denoted by <A>, and hence it is a sentence.'in:the langtagggeneF-
ated by this grammar. That is, we Ckincludelli4::thiS-string is a
valid assignment statement! Note, howeverT:kt.Vve still have not
said anything about What, thissentence

A parse tree is an alternative meth '.d of showing the derivation
that establishes a particular senten in a language. This tree is ,

constructed by using a nonterminal mbol as a tree node,' with the
right-hand-side string symbols:as d pendent nodes. At any stage in
a derivation, the tree leaves:ma up the sentential form. Corre-
sponding to the previo erivation we have the following parSe
tree:

Note that the derivation

<A> <V> ==s <E> <V> <E> + <E>
<V> = <E> + <V> <V> = <E> + B
<y> <v> + B <V> =- A + B

^o X..= A + f
_. applies the same rules as before, but in a differefit.dfder:- However,,

the..parse trees for these alternative derivations are exactly the'
same; hence the recognized :phrases in the sentence also are exactly
the same,
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If we wish to add multiplication to the, set of legitl op9rations in
`tur language, we might try the following modified Troduction rule

(1,)' <A> - <V> = <B>" .
(2) <E> - <E> + <E> I <E> * <E> I <V> .

(3) <y>-0,4.1Bicl..:1114
The following two dprivalions, equally valid 'based c the above
rule set, produce exactly the same final terminal string:

(1) <A> <V> = <E>
<V> = <E) + <E>
<V> = <E>94- <E> * <E>

X A + * C .

(i.e., add A to the product of B and C)

<A> <V> ^ <E>
<V> <E> * <E>
<V> frt <E> + <E> * <E>

Xr--.A+B*C
multiply the sum of A and B by C)

but with the two different parsetrees:

<A>
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In general, if the samNterminal string can,,bclproduced by two
different derivations-that correspond to twd different parse trees,.
then it is not clear what symbols must be associated , with each
nonterminal string set. This situation is termed ambiguous; and the,
grammar that allows it; an ambiguous gra ',mar. The definition is
intuitively satisfying since we saw that in he last example, using,
P2, it was not clear which of the possible par 'es was intended:

(I)

Or

X =.(A + (B * C))

(2) X = ((A B) C)

Thus, the question of ambiguity centers around the uniqueness of
the parse trees, not the number of possible derivatiyes.

As a general, principle, we want our_languages to be unarnitigu-
ous so that when we write, a particular _statement in the language
we know precisely the interpretation that the compiler will, place
upon that statement. We saw an example of a context-free gram-
mar that contained, both addition and multiplication operators in
which the grammar was ambiguous. Can we resolve this ambiguity
problem and still retain all of the desired features of the CFG
approach? The solution requirds that we intrbduce the concept of

verator precedence; in this case multiplication is an operation that
should take precedence over addition. Consider the following re-
vised set of production rules which include both operator prece-
dence and the ability to use parentheses to force t desired order to
a calculation:* ; ,

P3: (1) <A>--+ <V> = <E>,
(2) <E> -- <E> + <T> I <-0

)(3) <T>--+ <T> <F> I <F>
<F> (E)) I <V>

'(5) <V>7' /1131C I ... IXIZ

The following pa,ise tree illustrates that, in this grammar, multipli-
cation takes precedence over addition. The phrases involving the
multiplication,,operator are folCed by production rules P3.4 and
P3 3a to be expressed is subtrees under the addition operator. That
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ft rmed before any addition ,maybe1s, .multiplication mush he
undertaken.

79

<A> X = A 4' o`C

<A>

<f> <t>

+ <rt>.

cf>

I

<y>

, 4.3. Language nition. We .have seen how to generate sen-
tences; but t real prOb em we face is thar the input tsi' the system
is a given terminal string, and we must find outif there is a parsd
tree that Will connect these.termintil symbols to the stag symbol of
the grammar. One of the Most direct methods of establishing the
parse tree, if it exists, is to use the recursive descent algorithm, ar
.top -down Method. That is, it begins with the start symbol of the'
grammar as the roots of the parse tree and 'tries to build the tree:
down to-Connect with the symbols jil the source string as leayes in

the 'tree. It accom ashes this by repeatedly asking the question,
. dan 'ah instance of the desired nontenninal string class be fOundin

the input string? ,

,Unfortunately,' di tct application of this top-down method tothe
sample grammar' roduces an infinite recursion for the rule

<E> --4 <E>+ <T>. 1 this case the recursive' escenf algorithm.
would look for in i stance of the sfringoolasi ) at the current

It
.- position in the input tring by first trying to find an instance of <E>,'

in the input tring. hiS is a disastrous situation for, a computer
, program! T e Probl m arises because 'the, rule in question is left' .

recursive, a -S., tua' 4 whithl nenterminal is defined by ,a symbol
a string that b 'I the same symbol being defined:

There are o ring algorithms that can accept left recursive
ptoduction rulesdirec ly. However,-let us modify our sample gram-

,

.mar so ithat. it still generates the same language and is also in a





hprm suitable for recursive descent Parsing. The left recursion n a
neo-cluction rule of form <A> --- <A>x ley may be eliminat d hy
converting the single rule into pair of rules' via the additi ofa
ne\w nonterminal symbol; ,f4

<A> --r Y<N>
: <A1> x<A5 I null,

where "x" and "y' are arbitrary strings and "null" represenp the
enriptY\string. A convenient iteration form that is equiyalent to this /

pajtjs
<A> -4 y {x}

/ i ' ..
where the braces 0 indicate that :th.' inc ded symbots, may be '
repeated zero or more times. All thtee formulations prodtice exact-
ly the Same\language, the'set:of strings {y,:yx

P4 is a version of the sample irainmar, agnriodified by removing
left recursion;.that is suitable for a recursive d scent recognizeri

\ ,--.. ^ i
;;P4: (1): <A> --4 <Y> = <E> ...

(2). , <E> -4 <T> { ti<T>} .
(3) <T>4-0 <F> {'AI, <F>4 i

,:- (4) -, <F> ---0 (<E>yl <V>
(5) '<ID-0 AIRICI I ylz

4

Figure 6 contains flowchart that implements the recursive descent
0,

Arecognizer for this version Of the sample grammar. A trace of the
operation of this program is presented in. Figure 7i after code gen-
eration capabilities, have been a eed to the recognizer. The dia-
gram,-however, doeS not 'contain all of the necessary detail: V is the
procedure that checks f:° gee if e current input snymbol is a letter;

,
NEXT is', a procedure to niov on to the next input symbol and to'.
store that iymbol in the variable IS;°ERROR 'is a procedure that

;
issueS'a inessage when atfeyfor has been found in the input string. ,.

and/also terminates execution,ion, since the parSe tree cannot be Cori-
. ,

str cted.

43. Semantic Speci#c/ ation.:The construction of the parse tree
or\a statement is sufficient to show the validity of both the state-

ment and its orgailiz.ation into phrases.,However; parsing does not
prbduce executable Itistructionswe must provide a "meaning" for

/
.40
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FIG. 6. Recursive descent rectlgnizer.

each of the phrases to be-found in the lartguage:For example, is the
plus sign a unary operator or a binary operator? If it is binary,
does it refer to integer addition, floating point additidn, matrix
additiOn (integer or or fit rhaps the logical OR operation?
Such a meaning must be supplied, for every symbol used in the \`"
language io that the compiler may °generate the priropriat code
for the local context of the symbol. Notationallyewe could pr ide
an escape character which would allow us1to intersperse se an is
commands Aithin tie production rules. Then, as a production rule
is applied dung the parsing of the input string, the semant
mands would indicate the semantic routine that should be pp o' et
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'input Strini Oqograii Execution,

Call V
return from V

Yet
Call X

Call T
Call F

IS.0.('7 no

4811 V

return from' V
return from F
ISO as? no

return from T
ISO +'14 yet
Call, T

. 911 F
('?

eafi V

return from V
return, from P

" Yeturn from 2'.

7 no

, :Yeturn flpm
return from A

Parse StrioR'

<V> (X)
. :

ft

<Va:(S)<V>(Al

01>(X)-<F>(A)

<V>09.<T>(A)

<V>(X)7<T>(A)+

.Code

cy?.60.<T>(A)+0>(B).

CV>'0(1.<T>(A)4<F>(B).

.a<V>(X)11,<T>(A)-kT> (8)

<V> (k)'1) LDA:A:
1 ADD)!

STA t

<A>.

FIG. 1. Recursive descenpiaCiand code producliort.
_ A - '

at that Ixlint in the code generatioh process. This is the technique'
hat will betikd in a later etarriple. An extension of this concept

offers' even more flexibility: Provide ; the capability of introducing
the selhant,i,c routine code directly into the production rules by
all@ifig a complete block of code. to be adged'o each rdie. This
code block then provides forMfraiever code' generation actions are
necessaryJThis, is the approach used in the Y.ACC [11] system, for
exainple, to implement a Mimber highly sucessful compilers.

The following example illusttaies how a simple set of machine,'
instructions i1 ay+lie 'producbd-44 the sample arithmetic assigriment
language. TriAe- develciiment is based on a variation of the Methods,
Jibed by Graham [13].

.)First, let,tis assume that the; target computer cOdg,timilar to that

1.DA

STA X
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discussed. in Section 2.2, consists of the instructions listed .there

MPY X the contents of the accuMulator by the con-
tents of memory location X and leave the products
in the accumulator.

We also need to extend the production rules in two ways:

1. Add the escape., character "." to flag semantic commands.:
These will have the form ".n" to indicate the,execution of the
nth semantic routine.

2. Associate each phrase name in the parse tree with a symbolic
address that will eventually correspond to the location in
memory that contains the value of the phrase. Thus'<V> may
be associated with X, and <E> associated with T3, the third
generatedo temporary syMbolic address.. The generated ad..
dresses will be needed to hold values during the eVaivation of
an expresyion. .

.The final grammar for our example language including the ,sem
antic calls:

P5: (1) <A>-- <V; <E>.1
,1 (2) <E> <T> { + <T> .21

<T>-- <F> { * <F> .3}
(4) <F> (<E)) I <V>
(5) <V>---AIBICI:..1Z

'here the indicated semantic routines must produce tho actipns:

.1: Generate the code t store the value of the right hand ex7
.

pression in t
.

ide variable. V --
4

.2: Generate the code.to add the tvk/o terms together and to store
I

the result in a new temporary location.
.3: Generate4he code to multiply the two factors together and to

store the result in a new temporary location'.
-

In all cases the last symbolic address used or generated onhe right. r
side of the production rule should be associated with the phrase
name on the left side. Figure 7 demotrates this process bysillus-
trating the step-by-step ProCedure fot2- the development of a parse .

tree and its.associated generated .code.
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,4.4. Cod? ptintization. The code. generation 'cia \plc a the'
. previous seotioni suffers frOitt.!tWO major deficiepaca \iii,terms of the
required performance, of real cOMpilers.,Fir§t,::it'aisumes a comPU-;',
tationaPrnae,A4Ip that I far simPler than most current computers
The .semantic routines; list be augmented significantly to account
far.; items such/ as mul iple accumulators and different modes of
addressing.iSeCond, generated Code contains a number of in
struorions that' act ally unnecessary. The redundant instiuc-
tioPs werecreated,beca se of the treatment of each phrase, as,
independent entity irrespective of the context in, which it appeat's\:c.

This latter situation ma be improved by applying the techniquds,-.
of code optiMizacion to the code as produced by the semantic
routines: We Iwtwever, that when we.look At the subject
ode dptimization, it immediately splits into two distinctly different

4ares. , .J.

I. Local Code Opthrfi2ationimproving' the code efficiency by
working within the immediate local 'context of the particular
phrase Jving,parsed, essentially Within the'confines of a single
statement. '

/ Global Code Optimizationimproftrtlie-Code efficiency, by
looking at the interaction between .statements. For example.
by not repeating the evaluation of a duplicated expression Or
by factoring lodp-independent expressions .butsides the loops
in which they appear. 4.

".The code as generated for the example, in Figure 7 was

LDA
ADD 'B,

, STA T1.
LDA T1
STA X

The value of the sum is available in the accu ator when the-time
comes ,to store that value in X. Conse ntly, the 4LDA Ti': in-
struction is clearly unnecessary. Is the `S, A Tl" dinstruction
not needed? If the .origifial sourcefang age prdgram never used the
valtie again, then *there would "be advantage lo saving it The
reason for storing any value is tip' ve it for later use, thus making
it'UnnecessaQp reevaluate theisame expression. Consider how the

C)
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1'
following fragment could be' andled by an optimizing

-compiler: r

+ B
Y + B)

Now the tempbrary saving of a su could easily produce the
, .

0 tcode

_.+11.`11

LDA"
B

f: STA ' T1
STA ,X
M T,1

STA y
w1 h d cptreSpOttlingl sig ificant improvement the object code.1/4

',effipiency;
The theoryl of form' 1 languag recognition has been studied for

some time, and it is bw pOSsib e to produae software *tools that
provide most of the' d tail work necessarj, to develOp compilers fOr

t.new languages. The 15 lem of. code generation is not nearly as
clean'Tand well defined! is highly dependent on the machine and
language;and'hence ha been solved' by using many heuristic and

,ad,. hoc Methods. Grah m 113] describes many of thelocal.code
optimization, techniqu used in the earls, compiled. Lowry and
Medlock.[1.4] describe the global code optimization rhettods used .

in the IBM. FORTRAN H compiler, a program that produces a
*''Very. efficient, object code, Aho and Ullman [1W .describe more

recent:developments, including some of the efforts being made to
:sysiematize the field.

,

5. PROBLEM-ORIENTED HIGII-LEVEL LANGUAGES
1 %.

While general&parpose high-level languages were being deyel-
bpecii,. another, parallel) stream of language develonment was taking
place Computer users with specific requirements tended to create
languages that were more oriented,tOward their particular prob-
lems. Strme of the oharacteristiC4 of these problem-oriented
languages lare sufficiently diffe#nt from the general-purpose
procedure-oriented languages that we'sfiall discuss a re-presentative

102
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sample of them in a number of 'Seel-orate application specific cat
egories.,

. , /7

4$.1. Report Generatori. RPG (Report Program Generator) [15]
is a', specifidlanguage.,that is widely used on small computer-sys-

,
terns.e..We shall use it', as an example of the general class of

41anguages.tdevoted to 'writing reports. The basic assumption, in a
report gene6toi. system is that a series of reco;ds will be read
Sequentially Ir in one or more input files; some information will be
extracted from al Itlected set of these records, and then one br more
output files, a ng, with a final printed summary, will be pro4uced,

iiks a result, t e overall.logie of the program ik'btrilt into, the SY em
and the pro rammer does not need to specify the exact sequen e of
steps; rath r, he ihdicatei what operations are tg 'be done. In act,
one; pf th main concerns in the design of procedare-oriented
languages ( he definition of control structures for flow orcoRtrol,
specification) is geneftilly of no concern in a report generatioh
language. This t?pe of information is completely defined within the
language compiler. 7 '1

To simplify the Puree program preparation further, a fixed
forni4t of some t pe usually is specified for the source language.

r, This may be en most easily by studying a few of the common
RPG statem nt types: .

c.f

1. Fi Description SpecificationDeclares- the names and
hysical descriptions or all files that'are used in the program..

. 2 Input SpecificationDeclares the names and attributes of all
,

items of information that are read from the inpuVfiles.
3. Calculation SpecificationDescribes the icalctations to be

applied, to the input data. I 4'`

4. Output-Format SpecificationDescribes. all output infor-
mation to be produagd, including formats and files des-
ignations..

s.

The inforrnation fields on a file description specification include:

to,
column 6: 'F', to indiCate statement type.

7-14: file name. _r

15: indication if input, output, or update file.
24-27: number of characters in each record.
r-46:-physital deOce holding file (tape, disk, etc.).
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.4e .

A specification ,for a file of input punched cards would be:

F INPUT ") I 80 READO1
. .

This statement describes the-File named INPUT .as an Input file
'Consisting. of 80 claracter records (one° 80-column punched card)

k on the card reader READO1.
The, informption fields, of an input specification statement in-,

elude: . . ,
; .

1

column 6: 'I', to indicate statement' type.
-7-14: file name. ,

19.20: record identif itig iindicator.
21.41: record identifi tipii codes.el
44.51: field location. .,

%%,, - 53-58: field name.
i

ThiS statemenir introduces a fundatnelltal data type in an RPG
:program,: the-krdicator. Each indicator is identified by a two-digit -

code. (01-99).and represents a two-positioh swit h (on/Off). The in-

in columns 1-41, will turn on
dicators'are notmally turned off before an input ecord is read. The
record identification code, detailed
the appropriate indicatdr if the- data in the record meets .the speci-
fied condition (such as "there must be a 'D' in positiOn 10 of the
input record"). If the conditions are satisfied, the variables listed in
the name fields also will be assigned values from the positions
specified by the locitiOn fields. The lines:

L 4

. , I INPUT 14 40 C D 11 30 NAME
I 40 60 ADDR

will turn 'on indicator 14 if the contents 'of positiop 10 is the
Characte? 'D', and also will store tibsitions 11-30 in the variable
NAME and positions 40-60 in the variable ADDR. The output

:,
.specification, is similar, but with the added complication of exten-
sive editing and formdting capabilities.

The calcuration specification includes:

column' 6: 'C', to indicate statement type.
7-17: Indicator logieal expression.

Factor 1.
28-32: Operation.
33-42: Factor 2.
43-48:-Result field.
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Theindicator logical expression evaluates to "yes" or "no" b9sed
on the settings of the indicators (such as "if indicator 20 iron' and
indicator 22 is 'off,' then 'yes; otherwise `no"). Tithe answer is

.
":`no," the balance of the statement is ignored. If "yes,". the statement
is eNecuted. For example,

RATE MULT QVERTM SAVE" ' ..1

ill multiply the two factors RATE and OVERTM and store the.
resn It in SAVE. . .

' The execution of an bRPG program consists of reading an in
record; setting the indicators, doing what is desired based on the
indicators, and then repeating this cycle until the input data have

\been exhausted. The simplicity and directness of this approach has
. been so successful that the language has expanded far beyond what

' this shortintroductiOn can describe. t. -,,
\.

5.2,Database Query Language. The agility of compqter systems
to store Irg4moUnts of information has affected all of us in many
Ways. However, just storing information is not sufficient to make it
usefulwe mug also be able to locate-it again when we need it. It

.

is the function of \ a database query language to allow a user that is,
not a computer specialist to access and manipulate the information

- _ stored within a dal base system. As a representative of this class we
-shall look briefly at EQUEI 2 [16]. Wiederhold [17] contains an
extensive list of refer ees to Additional systems of this type, as well,
as a detailed, discussi6 of the data structures required to suppOrt
such a language system:

SEQUEL 2 assumes t at the database has a relational [18] form.
' /

That is, information is \ tored in files that have a tabular or-
ganization:

EMPLOYEE . ..

NAME i DEPTNO SALARY . JOBTITLE

John Jones -40 1,5000 Programmer t
Shirley Snlith 20 -\ 16000 . Mathematician

The name of this relation is EMPLOYEE, with the column names
(or attributes) NAME, DEPTNO, SALAItY, and JOBTITLE. This
d7scriptive information about the relation may be summarized as

EMPLOYEE(NAME,DEPTNOSALARY,JOBTITLE).

106
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'Each line in the table is called a tuple... A triple represents. one
instance of the'relation, with each tuple assumed to be unique,The
topics, are unordered in the relation. Normally a datalxise would
contain Many such relations in order to express all of the dcsircd
information.

The basic operation of thes'SEQUEL 2 language is'a mapping, in
which a knovin qt antity is transformed into a dcsircd quantity by
means of a given relation. The strtkAure of this mapping statement
is.:

SELECT <list of attributes to be returned)
FROM <name' of relation to use>
WHORE <predicate Iss determine what topics 'A) select)

Thus to find the personnel Hsi of departtitent..20 we could use the
query:

SELECT NAME FROM EMPLOYEE WHERE
DEPTNO = '20'.

We could obtain a list of all mathematicians making more than
$15,000 by using the query:

SELECT NAME FROM
EMPLOYEE WHERE SALARY > '15000'

AND JOBTITLE = 'Mathematician'.

A relation maybe' viewed 'as a set of topics. Since a mapping
returns a desired set of values, a mapping may also be considered
as producing a new relation as its output. Thus the simple
SE-QIJEI 2 mapping operation may be easily extended 'by nesting
mappings and by using set operations such as union and'intersec-
tion. Toillustratelhese extensions,, assume that our database, also
contains the relation:

DEPT(DEKINO,LOCATI6N,MANAGER)

We may find all of the people that work in St. Louis by using the
query.:

SELECT NAME FROM
EMPLOYEE WHERE DEPTNO =

SELECT DEPTNO FRAM. DEPT
WHERE LOCATION 'St. Louis'.

?0,

1. t;
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What if we were interested in the names of all of the department.
managers that had salaries greater _than $20,0007 This information
could be obtained by lindinkboth the set of all managers And the
set of all employees with the desired salary, and then determining
the intersection of these two sets:

SELECT NAME FROM EMPLOYEE
WHERE. SALARY > '20000'

. INTERSECT
SELECT MANAGER FROM DEPT.

Since the, hist mapping does not contain a WHERE clailse,'every
tuple from the DEPT relation be selected, thits producing a list
of all of the managers.

There are many additional features in the language ranging from
simple query facilities easily learned by nonspecialists to, more com-
plex facilities intended for professional programmers, nctions
such as AVG; SUM, COUNT, MAX, and MIN are provided for
application ,tb set of values found by the SELECT statement,. A
relation may be partitioned into separate tuple sets by the GROUP
command or sorted by the ORDER command.

Relations may be created, modified, or destroyed. The user who
creates a relation is fully and solely authorized to perform actidns.
'upon it,.but may grant access rights to the relation for other users.
These access rights include, among others, the ability to Fend,
insert, delete, and *late fuplcs in the relation: ThiS'facility alloWs
the owners of the information total confra (hopefully!) over,,who

Inlay have access to ita critically important featurb for any data,
base system.

5.3. Graphic Linguages. The ability to sit at a computer terminal
that contaipsia graphics display tube has created a new world of
possibilities kir the mathematical modeling of curves, surfaces, and
figures. LG, [20] is a. language allows the definition of geo-

etric objects and elements, computes their parameters, and dis-
plays the results. It was designed specifically for use by non-
programmers, being easy to learn and very close to the natural
language used in'geotrietry.

LG is a conversational language, providing for a user dialogue
with the,graphic terminal by means of a command-answer typeofe

1 0
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processing. command is given by the user, and the system re-
. spondis.with two forms: the computed standard-parameters of the
desired geotnetric clement and a display of the element Itself on the
screen. .

The Lt3 Instruction line that establishes 'what the user wants
done consists of three parts separated by delimiters:

2 <command>: <name): <definition),

<command>--Valid commands arc either' built in by being
defined at system generatinti.time or added on-line by the
user. Ma* of the standard types of joemetric items (POINT, '

LINE, SPHERE, etc.) would normally Pe.built in, as well as a
number .of standard functions to be performed (LOCUS,
COMPUTE, MACRO, etc.). The user may, add tic*. com-
mands at any time using the MACRO capability.

,2. <pame>The name to be assigned to the neWly..specitied geo-
metric clement. :

3. <dcfmition>.*-SpeCifies a,,list of data elements, separated by
delimiters, which defines the geometric element. Each element
ip the list is 'either the name of a Ore.viously defined geometric
clement or a keyword set ual to. an arithmetic expression.*eq.

Softie sample instruction lines:

POINT; PI : X = COS(3.5),.. Y = L, Z = 2 * ALPHA

The point named Pt is defined by giving its X, Y, Z coordinates.
Y, Z are the keyWords. indicating which cbordinates are set by tiie
respective arithmetic expressions. These expressions may contain
scalar elemeots, FORT1 AID operators and functions. PI is called a
fixed element because it has bccn Completely specified,

LINE; L: PI, P2

The line L is.defined by specifying two previously defincdpoints.

COMPUTE; PI: = 4 *.ATAN(1.0) -
Thi$ command represents essentially a standard 'assignment state-.
ment.

POINT; A: L, X = 3
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The point A has been defined as the intersection of the line L and
the plane x = 3.

SPHERE; S: R = 1, 0, 11( = 0, Z 0:

the definition of a'sphere of unit radius centered at die'Origiri. All of .4
the examples above representl fixed dements and hensce will be

-displayed automatically.
'Consider the following sequence of commend

PARAMEIEIC; T :
,POINT ; PI : X = T, Y 0, Z =-0

POINT ; P2: X=0,Y=T,=
LINE ; 1.3 : Pl, P2
LOCUS ; L : T, MIINV= 10, MAX = 10, STEP = 0.5

The first line creates the scalar variable T as a parameter and
initializes its value. P1, P2, and L are called variable elements since
they contain a parameter in their definition: Variable elements will
be displayed only on specific instructions, such as the last line
containing the LOCUS command. The display will be a hyperbolic
paraboloid coMpOsed of the line L drawn for the values of T equal
to 10, 9.5, 9.0, ... , -4-10. The use of

- TRACE; L

would display L for the current value of any parameters. A
parameter value may be changed at any time by the command:

REPLACE; T: = 4. _

Tl current implementation contains approximately .80 corn-
mand . There are also many additional ways to define geometric
elements, including models such as intersections, transforMations,

.
arid alternaiiN;re coordinate systems. The language has teen used in
studying variations in complex geometric figures, problems in kin-
ernatics arid mechanics, and for some applications in optics and
topography.

6. CONCLUSIONS

Sammet [21] lists a total of 166 programming languages that are
in use today, 76 in the categories ofriumerical scienfific, business
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data probessing, list piocessing, string processing, formula manipu-
fation, and multipurpose: More :specialized application areas (such
as. accOufiting, circuit, design, editing and publishing, simulation,
etc.) cover the remaining 90 langtiages._

There are some, interesting and contradictory trends taking place
that help to aexplain the proliferation of languages. First, it should
be toted that only a small number of the available languages are in
widespread use There, is an important economic motivation for
this: We do not Want to reprogram a problem every time we want
to irun it 'on a different machine. If we use a high -level language
that is machine independent, then we may run the program on any
comphter, that has a compiler for that language, Thus, this-
portability issue argues strOngly for a few powerful, standardized
languages that are'implemented'on as many different computers as
possible. Since programs. that are .widely distributed are frequentlY
production-type tasks (everybody runs a payroll program regular-
ly it is important that thetompilers produce efficient.objett code:
This, in turn,rneans that the compilers themselves are large expens-
ive programs; and hence tend to be restricted, in numbers. We now
have standard COBOL, standard FORTRAN, and a few other
languages either already standardized or being studied in prep
aration for standardization. ;

On the other. hand, the software tools now exist that make it
pOssible to desigAand implement a language quickly. The price,
paid for a fast implementationmay be slow, execution, as compared
to what could be achieved with More effort spent on code opti-
mization for the particular hardware in use However, consider that
in a research environment, say where language constructs are being
studied, code efficiency may not be really important. Also, as hard-
ware costs decrease and programmer. costs increase,,, it beComes
more" important to concentrate on human .efficiency (i.e., language
and system design) than on hardware. efficiency. This is particularly
true for programs that are to be executed just a few times, since
niost of the costs will be concentrated in program preparation and
testing.

It look's as if both trends will continue in full force: A few very
general languages will be fixed by standardiu.,:tion to achieve a
maximum degree of portability and efficiency. Me also will be a
continuing stream of new languages, Loth general purpose and
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problem oriented, as we attempt to make it as- convenient and as
easy as possible for eireryone to use a computer.,
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SPECIFYING FORMAL LANGUAGES
a

Ronald' V. Eook

\,
1. INTRODUCTION

What is formal language theory? Thee are several 'themes that
provide partial answers to this question and that together provide
a first approximation to the answer.

(1) Mathematical models for natural language provide a formal
basis for studying the nature of languages such as English and
French. It is important to have such models if linguists are to
understand the common features of such languages and their gen-
erative structures, and if automatic translation between such
languages is to be achieved [7]', [19][21], [23], [60].

(2) The essential features of the iyntax of many programming
languages can be faithfully modeled by means of context-free gram-
mars, the same structures that have been used to describe the
syntax of natural languages. By using context-free grammars to
describe the syntax of a programming language, tools for trans-

During the preparation of this paper, the author's research was supported in part
by the National Science Foundation under Grants MCS76-05744 and MCS77-
11360.
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lati'tlg between source programs and rnAchtne,.code have been de-
veloped ;and, the automatic of'cgrrtain portions of can-
pilers has been facilitated [3], [18],1511 [P], [94], [9'5].
,,(3) Abstract automata provide rnathefnatical models for certain

aspects of the .process,of computation.;, e.g., -there are Turing ma-
chines, devices "whichcapture the 'notion of computation is de-
scribea by logicians, and there are .finite-state machines which.
model the behavior of switching Cirstidits. Other devices, such as
pushdown store transducers, aro! used to moael aspects of the Tom-
piling process. Formal language theory provides toolt for describ,.
ing preci4y the power and the limitations of such models and thus
is extremely useful. in relating studies- in computability theory,
automata theory, and computational 'complexity [2], [28], [37],
[41], [58], [67], t81], [82]

(4) Formal language theory as an abstraction Df many aspects of
real computation is'a new brafacfi'"of mathematics related, to logic
and to combinatorial algebra [29], [96].

In this paper, language theory is presented from the standpoint
of (3) with the understanding that (1) has provided much initial
motivation, that (2) has provided motivation and applications, and
that (4) has not yet fully emerged. It is the use orformal language
theory as a tool for investigating a, wide variety of topics within
theoretical computer science that has brought forth the rich family:
of generative and automata-theoretic structures and the.. many
properties of languages and classes of languages that have given
structure' to the theory. Thus the classical connections between
generative structures, automata, and properties of languages and
classes of languages gre surveyed here with the intent of exemp-

' lifyirig for, the nonspeCialist the questions asked in the study of
formal language theory.

A language is a set of strings,of symbols where the symbols are
taken from some finite set, the alphabet. A language may have
structure becliuse its strings are related by some common property,
e.g., {w e {a, b}*1 the number of a's occurring id w is equafto the-
number of b's occurring iri,w} or {w e {a, b}*1 the number of .a's
occurring in w is equal to the number of b's occurring in w and ar
any prefix y of w, the number of a's in y is greater than or equal to
the number of b's in y }'. A language may be finite or infinite. In the
case that a language is in o e we encounter the notion underlying
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-mu cif the theory: To dilfctiss an infinite language inAterm§ 1 of

e ctive computation, the language must have s'ome finite rep-
resentation; auciihis're prisentation Inust give infonriation abou..
the 'language that will allow one to construct effective prolures, . ,
for generation oraccePtance. / e°

There, are twee methdets that have .lieen chKd extensively for .

.'Er-inelyspecifyinglanguag .

(i) Define a finite structure .,- that generates the stri gs of" the
language. Thus one must 1p9cify an effectivelprocedur that 'enu-

-merates the language and nothing outside of the lang age. The
most familiar example of such a system is a phrase-structure gram-
mar and the notion of derivation in such a grammar. Gener ive
gtructures are similar to formal systems as studied by logicians: .

(ii) Define a finite structure that recognizes or accepts the words
of the language.. Examples' here include finite-state acceptors,
Turing machines, pushdown store acceptors, etc. Generally, the
device .examines_ an input string and computes the characteristic
function of the language, giving an answer "yes" or "no" to the
question "Is w in L?" ' ,

(iii).Explicitly specify a language by -defining it from given
languages and certain operations on languages. ,

The class of context-free languages lies at the core of the theory
of formal languages, and so it is useful to explain just how contekt-
free languages can be° specified. In keeping with 41), a language is
context-free if and only if it is generated by a context-free grammar.

-(These" notions are developed in; Section 3.) In keeping with (ii), a
language is context-free if and only if it is accepted by a nondeter-
ministic pushdown store-acceptor. (These notions are developed in
Section 4.) In keeping with (iii), a language is context-free if and
only 'if it can be obtained from the Dyck set on two letters by a,
finite number of applications oNhe following operations.: intersec-
tion with regular sets, inverse homomorphism, and homonior-
phism. (These notions are developed in Section 3.4, particularly
Theorem 3.14.)

Just as individual languages are specified by grammars, auto-
mata, or algebraic characterizations, classes of languages may be
sl3eCified by considering all languages generated by a spVfic class
Of grammars or all languages accepted by a specific 'class of 6
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-- ,, automaSa or alt languages defined algebraically from a certain basis°
class of-languages> .

A .

in this paperj the class of ,context-free languages, is- used; 'ito
,exemplify:themes that arise in formal language theory. ExtensiOns
and- restrictions of this class are described and the study of-coni- '

overviewplexity classes is introduced. 'However, this oveview is notr,ian
' e0austive- survey. The topies mentioned here are central to the

study of formal language theory; but the topics, omitted arqtOcr
! numerous to list in this brief pape.rf:.. .: ;s 'b

The practical role of context free languages in compilihg. a ;3ro- °
/ .

gram (written in a context-free language) is discussed in,the' preced-
ing article by 'Ball.

, , / J 4
The primary references given here e included because ,

of. their
historical interest, because they havt played a_key9 role in th&devel-°
opment of the subject, because the material included isil';eilot de-
sCded in ally secondary source, or because they give the.flaor of:. c-
cueent work. Many secondary references are included so that the
reader has a chance to learn sOme of the 'basic material;,
plunging into research papers. , . -4,

...Finally, it should be noted that the* popularity ,...of fotinal
language theorY has fluctuated greatly. It is my contention that
many of the themes in formal langunge theory are central to theor-
etical co uter science and that despite these fluctuations formal

_

w-

lang age theory will continue as a lively and'vital area of research.

.4

2. PRELIMINARIES

In this section we establish notation and state some results on
two fundamental classes of languages, the regular sets and the re-
cursively enumerable sets.

2.1. We assume as an undefined-primitive the notion of a symbol.
A string (word, sentence) is a finite sequence of symbols and the
empty word e is the empty sequence. The length of a string w is the
number of symbols tn w; it is denoted byl w I . Thus I e I = 0 and, if
w is a string and a is :a symbol, then I a I= 1 and I wa I = I w I la I.
The basic operation on sfringslused here is concatenation: the
concatenation xy of strings x and y is the result of juxtaposing x
andy, and so I xy l=lx1+1Y1..
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A finite set 0(5)14001g is in alphabet ivocafrultenty). If E is an
alphabel, then E*,!4;ithe set of all strings over E, E* = {a1 an I

n 1, each ,a ec'S; {4., Any subset of El` is a language over
. Thus, to say7tiat L is a la guage is to say tha,t there is sonie

1//alPhanet,l,Such?that L S.E *. '
'iWe will,14oncerned witoperations on langu;ge& first: there..

are .thug clolean oPeratidns:, corn-union, intersection,. and co-
prementa SA. Second, there are the Kleeni operations: concat-
enat he concatenation) of languages .L1 and L2 is 1.4[1,2 =
/ e L1 and w2 e L2 }), 'Kleene * (L* = Ur co where

, L' and .L"+1 = LL"), and .Kleene + (L +
°

is an alphahet, thenE* is the free semigroup with identity.
e monoid) generated by S. Here the semigroup multipliCation is

eo catenation,::of strings, an associatiVe binary operation. The
pty word: e is the iclentiy. Since every w E has a unique

"=":factorization as a finite .sequence of syMbols from E, E*iis the free
semigrouP with identity generated by E. For a language L g_ E*,
J..;* is the subsemigroup (of E*) with-identity e generated by I:

Another operation' on languages is reversal. If I is an alphabet
rid, w e'E*, the:reversal %TR of w is defined as follows: wR.-= w if

w e E {e}; No, = ayR if w =- ya for y e E*, a e 2. If L then
the reversal of L is LR = w E L).

An important consideration in formal language theory is the
study of several types of mappings between languages. The proto,
type of the mappings considered in this paper is the notion of
homomorphism. For alphabets E and A, a homomorphism h from.

E* to A* is a function h : A* with the property that for all
x, y e E*, h(xy) = h(x)h(y). Since each w e E* has a unique factori-

. zation asa finite sequence of symbols from E, a hcimomorphism is
uniquely determinpd by defining its values on the symbols in E.
Thus we are considering homomorphisms between free semigroups.

A homotnorphism h : A* is nonerasing if for every w e E*;
h(w) = e implies 'No/ =. e (equivalently, h(a) e for every-la e E) and
is length-preserving iflh(w)I I w I for every w e E* (equivalently,
111(01 = .1 for every a e E). Thits a symbol is "erased" if it is

mapped to the empty word. Clearly one can view homomorphisms
as functions taking strings to strings with no thought of the simple
algebraic structure involved.

1 .1 0



.100 Ronicl V. Book

, If. h : E*--,11* is a hornomorphism and L .g. E*, we write
,

h(L) -for '{h(v),"),1 vv e L}. if ' L .g. A*, we write h-1(L) for
{w e Bl,1 h(w) e.L}. We refer to:The mapping 11- 1 from subsets. of
A*4to subsets of E* as.an inverse homomorphism. ' I.0

A homomorphism substitutes a string for a Symbol. His of con-
siderahle interest in formal Janguage theory to substitUte a

,., letaguage for a syMbol. To.define this notion consider an alphabet
E4 For, each a e. ; let Ea be an alphabet and let 'Tca):_q: E: . Let

,

T(e) = {e} and T(w6) = T(w)T(a)'for each a e E, w e-E*. Then T is
'.. a substitation on E. If 2' is a class of languages sfich that for each,

a e E, T(a) e then T-is an .99-substitution. A class Yi is closed` under 2'2. subst ution if fof every L e 21, when E is an _alpha--
bet such that L _c_. E* and T is 'an 2'2 -substitution on E, then
T(L) e YI.r s ,, ...

Oneof the important themes in The study of formal languages
and abstract automata is the chalacterizatip .:-of classes - of

klanguages and automata by means 'of operations under which the
class of languages is closed. Recall that if 0 is an. nTary, operation on ,,,
languages, then a class Y of lanjuages is closed under operation
0 if for every choice LI, .'.., L of lapguages in,..V,ALI, ..., La is
in 2'.

2.2. Now we turn to the notion of "regular sets," the languages
recognized by finite -state machines operating as accptors. The
study of finite-state machines as devices to compute functions arises
in the theory of switching circuits and the study of logical circuit
design. The restriction of this study to machines that compute only
characteristic functions is one of the most important areas of the
theory of abstract automata.

A deterministic finite-state acceptor D (K, E, 6, go , F) tias a
finite set K of states, -an input alphabet I, a transition function
6 : K x K, gn initial sto4 qo e K, and a set F of accepting
states, I F g. K. The transition function is extended to
6* : K x K by defining 6*(q,e) = q and

6 *(q, ya) = 6(6*(g, y), a)

for every q e K, a e E, y e E*, and since 6* agrees with 6 on K x E
the notation is abused by referring to 6 on K x. E* instead of 6*.

11/
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The language accepted by D is

L(D) = {w e E*15(qc, , w) e F).

101

-A language L is a regular set. (regular language) if there is some
deterministic finite-state acceptor D such that L(D) = L.
,7Intuitively, a finite-state acceptor is a machine which has an

Input pe (see Figure 1). On the input tape there is a read-only
,::'he which moves across. the to from left to riiht, reading- the
co ents of successive tape squar The set of staffs and the transi-
tigfn function represent the "logiC" oi the machine and may be
viewed as a program with no variables other than a single input
variable which takes values read by the input h6ad.

These definitions describe a finite-state acceptor as an extremely ,0
simple model of a computer: The regular sets so describes may
represent sets of numbers or logical predicates or sets of strings
with alnple linguistic or syntactic pattern. In compiler construc-
tion one constructs finite-state acceptors to recognize portions of
the input as part of the lexical analysis. Notice tPitit The construc-
tion of such a device requires only a bounded amount of memory.

) While finite-state acceptors are 'quite simple, the class of regular
/sets is rich in structureThis is showri in part by the following

result.
I

THEOREM 2.1. The class f regular sets is closed under the Bool-
ean operations, the Kleene operations, subltitutidm, revel-eel, homo-
morphism, and inverse homomorphism.

a

I I IN-IpluIT

READ HEAD

FINITE
STATE
CONTROL

FIG. 1. A finite-state acceptor.
.
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Let us sketch the constructions usethimproving that4thet cl4ssof
regular sets is closed under the Boolean operations. First, -recall
that the only available method of specifying a regular-set is by
specifying a finite-state acceptor Which accept-fill and only mem-
bers of that set. For i = 1, 2, let '

Mi = (Ki, E, SI: gi, Fi)

be a finite-state acceptor. Define

: (Kix K*2), x E-011C1 x K2

by

MN., P2), a)=01(Pi, a), (52(p2 s)) for pi e Ki, p2 e K2 , a

Let

and let

Then

F3 = (K1 x F2) k.) (F1 x K2)

F4 = Fi x F2. .

M3 = (K1 x K2, Ef -69 (q1, q2), F3)

is a finite-state acceptor such that
..-

L(M3) = L(M1) u L(M2),

and

M4 = (K1 x K2, E, (5, (q1, c12), F4)

is ,a finite-state acceptor such that

L(M3) = L(M1) n L(M2).

Further, if F5 = K1 Fi, then

M5 = (K1, 'E, Si, g1, /Fs)

E:

is a finite-state acceptor such that

L(M5) = ES L(M1).

If M (K, E, 6, go , F) is a given finite-state acceptor and w e E*
is a given input string (see Figure 2),/then. we can determine whe-
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A. 2. A finitestate acceptor with initial state qo and one accepting state, ql, such

that an-input string w in {0, 1, 2)* is accepted if and only if the sum of the digits in
w is 1 (mod 3).

ther w is in L(M) by computing O(qo , w) and inspecting F to
determine whether b(qo , w) is in V. Further, it is clear that if L(M)

is not empty, then there is some string w in L(M) such that iwI<t
where t is the number of states in K. Thus, one can determine
whether L(M) is empty by checking the finitely many strings in E*
with length less than t for membership in L(M). Similarly, one can
determine whether L(M) is finite by checking the finitely many
strings in E* with length between t and 2t 1: UM) is infinite if
and only if there is some w in L(M) such that t S I w I S 2t 1.

From these comments and the facts about Boolean operations,

one can show the following result.

THEOREM 2.2. For eai of the following problems, there is an
algorithm that provides the solution:

(i) Given a finite-state acceptor M° and a string w, does M
accept w?

(ii) Given a finite-state acceptor M, is L(M) empty?
(iii) Given a finitestate acceptor Mjs L(M) finite?
(iv) Given two finite-state acceptors M1 and M2, are L(M 1) and

LOAD equal?
-Let us consider a characterization of the regular sets in terms of

closure operations-.

THEOREM 2.3. Let E be an' alphabet. The class of regular sets
over E is the smallest clasi containing the finite subsets of E* and
closed under union, concatenation, and Kleene*.

120
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given, .The characterization of the regular subsets of giE* ven. in Theor-
, em 2.3 is important since it shows that each'regular set can be

described by a certain type of formal polynomial, a "regular ex-
pression," as welas by a finite-state acceptor.

If E is an alphabet, then the class of regular expressions over E is
defined inductively us follows:

- r'
(i) (A) and (0) are regular expressions, where A, 0, (,) are sym-

bols not in E; .

(ii) if a. is in E, then (a) is a regula pression;,
4. (iii) if P and Q are regular exp essions over then so are

(P + Q), (P Q), and (P*).

The correspondence between regular expressions attd regular, sets
is clear:

(i) (A) denotes {e} and (0) denotes 0;
(ii) for a e 1, (a) denotes {a} ;

(iii) if P(Q) i4 a regular expresiion dertoting the set P(Q), then
(P -4-°Q) denotes P u Q, (P Q) denotes PQ, and (P*) de- ,

notes P.

Usually the symbol and the parentheges are omitted when no
ambiguity is introduced.

The fact that a set is regular if and only Wit is denoted by a
regtilar expression follows from Theorem 2.1

Anther characterization of the regular sets has become impor-
tant in the study of the algebraic structure of abstract automata
and of formal languages.

Let E be an alphabet. A congruTce relation p (in E* is an
equivalence relation with the (property that for any x, y e E*, if xpy,
then for all z, w e E*, wxzpwyz. A congruence relation is of finite
index if it has only finitely many congruence classes.

THEOREM 2.4. let E be an alphabet and let L E*. The follow-
ing are equivalent:

(i) Lis a regular set;
(ii) L is the union of some of the congruence classes of a congru-

ence relation on E* that is of finite index;

121
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(iii) The relation defined as follows is a congruence relation on
E* that is of finite index:-for all xLy e E* x = y if and only if
for all z e E*, whenever yxz is in L, then wyz is in L, and

-conversely.

2.3. At the heaft of the study of abstract automata are the basic .

questions of computability theory: What is an algorithm? What ,-
does it mean to say that-a function-isco'mputable? trfgicians have
put forth numerous'. formal models to realize the notion or "algo-
rithm," the model of most-interest for the...study of "autornati,being
the Turing machine.-
- A Turing machine (see Figures' 3 and 4) is a device with a finite
set of "tape symbols," inclnding a "blank," a finite set of states, a .
read-write head which operates on a potentially infinite tape, and a
finite seta possible operations:

(i), erase a symbol and print a new symbol (overprint);
(ii) change state;
(iii) move right or left one square on the tape or do not moire at

all;
(iv) halt.

How do Turing machines differ from the finite acceptors
destribed in the previous section? First, the head *te (change
symbols) as well as read. Second, the head can id

41,

H I L I

READ-WRITE HEAD

FINITE
STATE
CONTROL

FIG. 3. A Turing machine.
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I I IN] PIUIT

READ HEAD

FINITE
STATE
CONTROL

READ-WRITE HEAD

ISITIOIRIAIG E

Flo. 4. A Turing =chin with one work tape.

right Thjrd, the head can move beyond the portion of the tape
which initially...contains the input and can write on initially blank
tape squares.

Fdr the sake of the uninitiated rea4er, one_ version' of Turing
machine formalism is presented here.

A Turing machine over'filphabet A is a structure (K, A, F, (5, q0)
where K is a finite set of states, A is 'a finite alphabet with blank'

e A, F = A u IL, N, RI where L, N, R are three symbols not
in K u A; (5 is a function from some subset of K x A, into A x
IL, N, x K; and qc, e K is the initial state. It is assumed that K
and F are disjoint

The function S may be viewed as a finite, set of quintuples such
that (q, S, T, Z, p) is in the set if and only if o(q, S) = (T, Z, p).

An instantaneous description (ID) relative to M is a string of the
form w1qW2 where w1, w2 e A*, w2 e, and q e K.

Let .:A and B be ID's relative to. M. We say 'A yields B and write
A I B if for some S, T e A - {p}, w, E A*, and q, p e K, one of
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the following.occurs:

(1) o(q, S) (T, N, p),
A = wqSw', wpTw';,,

(2) ;5(q, S) (T, R, p), either
A = wqSw', w' e, and
B = wTpws, or A =- wqS and ,B

q, S) (T, L, p), either
= wS'qSw', e A, and

B wpS'Tw', or :A= qSw' and B = p/3Tws..

An ID A is a terminal (halting) ID if there is no B suck that
A I- B. -

A computation of M is'a sequence of, ID's Ao, Ai, ... such that
either (1) the sequence is finite, its last member A is terminal, `and' .1'

A1_, I- Ai for i = 1, n, or (2) the sequence is infinite and Ai- 1_
H Ai for all A computationis proper or improper according
as (1) or (2) is the case. If Ao, , A is proper,.then A is .the
resultant of the computation beginning with Ao.

For ID's Ao, AI, A , if A1_1 F- Ai , i = 1, n, then we write

. It is clear that, for any Turing machine M = (K, A, I"; (5, q0) all
the relevant information about how M will behaVe is-contained in
b. Thus ö'may be considered to be the' machine itself. it

By considering certain , instantaneous descriptions of a Turing
machine,to be initial and interpreting the tape'corite5ts of terminal.;.,

ainstantaneous descriptions, one sees that .Turing 'Machine coin-
putes a (partial) function. It can be shown that the 'class of alj.such
"Turing computable". functions is precisely the', class of ,functions
specified by Post normal systems or by the lambda-calculus of
Church or by Markov normal algorithms or by the recursive func- ,
tions of Godel, Herbrand, and Kleene. °

We shall consider a function to be computable by algorithm if
and only if it is 'computed by a Turing machine that halts on every
input. SuCh a function shall be called recursive or total reeursive A
partiarfUnction computed by Turing machine' shall. be calleTpdr---
tiarrecursive. ;..

Here we shall %e concerned with the characteristic function of a
set. A set is recursive if its characteristic function is total recursive.
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A set B is recursively enumerable if there is a partial recursive
function f such that-f(b) is, defined and equal to 1 when b is in B
and f(b) is undefined or is equal to 0 when b is not in B. Thus we
may consider Turing machines with certain distinguished accepting
states so that a recursive set is the set of inputs accepted by ,a
Turing machine that halts on every input, and a recursively enu-
merable set is the set of inputs accepted by a Turing machine that
may not halt on some of-its inputs.

A question or problem or predicate is said to be decidable (solo-
.able) if there is an algorithm which will provide the correct answer
to every instance of the question; otherwise the question is undecid-

able (unsolvable). Generally we discuss questions with "yes-no" or
"0-1" answers when we consider its "decidability. To say that a
problem is undecidable is to say that there is no algorithm that will
compute its solution on every input. Of course this means that
there are infinitely many instances,of the problem.

Note that a Turing machine is a finite object. Thus by defining a
.Turing machine one, finitely specifies the set of inputs accepted by
the machine even though this set may be infinite, and so one can
"name" a recursively enumerable set by specifying a Turing ma-,
chKrtria7 accepts all and only members of that set. Since a Turing
machine is a finite object, it can be encoded as a string of symbols
in a certain form or as an integer. Such an encoding, usually called
a "GOdel numbering," provides an algorithm to map the descrip-
tion of a machine M = (K, F, (5, q0) to its encoding and also
pwvides an algorithm to produce the description of M as a set of
quintuples from its ,encoding; This allows one to enumerate the

mclass of all Turing machines or, equivalently, the class of all recur-
sively enumerable sets. Using such an enumeration, one can con-
struct a "universal Turing machine," a Turing machine U such that
on inputs e and x, U simulates the computation of the machine
with name e on fh input encoded by x. Further, using such an
enumeration as well as a diagonaliiation, one can obtain a basic
result of compdtability theory.

THEOREM 2.5. There is no algorithm which when given a descrip-
tion of a Turing machine M and an input x will answer the
question "Does M halt when started on input x?"
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This question is known as the "Halting Problem for Turing ma-
chines" and Theorem 2.5 can be restated as follows: The Halting
Problem for Turing machines is undecidable. An equivalent formu-
lation in terms of recursively enumerable sets is as follows: There is
no algorithm to answer the question "Is x in Le, for, an arbitrary
recursively enumerable set L (specified by a Turing machine) and
an arbitrary string X. Phrased in this way we say that the "member-
ship problem" for the recursively enumerable sets is undecidable.

There are numerous examples of questions''about Turing ma-
chines that are undecidable. We list several that occur in various
forms in automata theory:

.(i) Does a Turing machine halt on all of its. inputs? (Equiva-
lently, is a recursively enumerable set actually recursive?)

(ii) The finiteness prdblem: Does a Turing machine halt on only
finitel}, many inputs? (Is a recursively enumerable set finite?)

(iii) The emptiness problem: Does a Turing machine fail to halt

(iv) The e Turing machines accept
on input? (Is a recursively enumerable set empty ?)

uiyalence problem: Do two Turi
precisely the same set of strings? (Are two recursively enu-
merable sets equal?)

Throughout theoretical computer science the question of whe-

, ther or not a problem is decidable' has provided an important
theme for study. In this papetk we shall use the questions about
Turing machines stated above a prototypes for the questions to be
asked about the classes of aut opt. ta, grammars, and languages
tinder investigation. Notice that we have already done this with the
_cjass of finite-state acceptors in Theorem 2.2 where the answers
turn out to be exactly the opposite of those for Turing machines.

2.4. There are a number of secondary sources that describe
finite-state acceptors and regular sets in great detail. In particular,
the text by Salomaa [81] is very useful. A fundamental reference in
this area is the cAllection of papers edited by Shannon and Mc-
Carthy [88]. Another useful collection (that is unfortunately out of
print) is edited by Moore [67]. kparticularly important paper for
the study of formal languages is that of Rabin and Scott [75].

There are many books in logic which discuss Turing machines



110 Ronald V.. Book

and other 'formalisms tor studying computability as well as the
recursive and recursively enumerable sets. Books thin place special
emphasis, on the study of computability include those, by Davis
[28], Rogers [76], YaRuhara [92], Brainerd and Landweber [17],
Hennie [55], and Machtey and Young [63].,

3. CONTEXT-FREE GRAMMARS AND LANGUAGES

The, study of context-free langu giles is fu
,

ndamental to theoretical
computer science. Major advance 'n the use of artificial, languages
such as programming languages as4ell a& in the study of natural
languages came with the realization that formal mathematacal ma-
chinery was required in order to generate the infinite set of rings
of a language. Historically,.the notion of a context-free grammar as
an important generative structure " as'deveroped simultaneously by
researchers in programming langu ges and linguistics. <

In this section some of the i portant features of context-free
grammars and, languages are des. 'bed. This development is carried
further in Section 4.

3.1. We begin by defining context-free languages as the
languages generated by context-free grammars.

A context-free grammar is a structure (V, E, P, S) where V is
a finite set of symbols called the alphabet or the vocabulary of the
grammar, E a V is the terminal alphabet, S e (V E) is the initial,
or starting symbol (sometimes called the axiom of the grammar),
and Pis a finite set of ordered pairs, P a (V E) x V*. An element
of P is a production or rewriting rule and is written Z y. instead of

T4 definition of a context-free grammar does not explain how a
language is obtained from a grammar; it defines a context-free
grammar as a "static" object. To explain the "dynamics" involved
in the generation of a language, the notion of "derivation" must be
defined.

Let G = (V, E., P, S) be a context-free grammar. Define a binary

relation on V* as follows: for any a, /3 e. V* and Z- y e P, aZ/3

For each n z 0 define .a binary relation on V* as follows:
0

For every B EN*, 0 0; for 01, 02 e V*, if 01 02, then 01 4 02 ;
G
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for Or, 02, 03 e V*, if

binary relation ion
some n z 0, then Or
i 1, n, 0,_ r *0,
length .n in G.

1

01 i 02 !Ind 02 fi 03

V* as follows0 : if Or,

Z. 02. If k
, then 00 Dr (+\,--

, then or na'03. Define a

OTeV* and 01 4 02 for

, E V* and for each
.1 0 is a derivation of

The relation o is the transitive, reflexive closure of the relation
We read "Or generates 02" for Or 4713 02 or "Or generates 02 in n

n
steps" for 0; 02. When no ambiguity can arise, we omit the
subscript q and write = ( ),for ( ).

If G = (V, E, P, S) is a context-free grammar, then the language
ginerated by G is L(G) = {w E E*1S w }. A string y E V* such
that S y is a sentential form ofG.

A language L is a context free language if there is a context-free
grammar G such that L(G) = L.

It is useful to represent derivations graphically by meads`' of
"derivation trees." A tree is a directed acyclic graph with a dis-
tinguished node, the, root. The root has in-degree 0; all other nodes
have in-degree I and are accessible from .the root. The nodes, in a
derivation tree are labeled with the symbols used in the derivation.
The concept is illustrated in the following examples.

EXAMPLES 3.1.
(a) Let V = {a, b, S }, E = {a, b }, and P = {S.-0 aSb, ab} (see

Figure 5). The grammar GI = (V, E, P, S) is such that L(GI) =
{a"b" I n > 0}.

(b) Let V = {(,), S},'E = {(,)}, and P = {S 0(S); S-4 SS, S-4 e}
(see Figure 6). Let 02 = (V, E, P, S). The language L(G2) is the set
of all well-formed strings of correctly balanced parentheses. This
language is called the (semi-) Dyck language on one letter.

(c) Let V = {a, b, S }, E = {a, b }, and P = {S aSa, bSb,
S-4 e}. Let G3 = (V, E, P, S). The language L(G3) = {wwRflw E {a,
b} *} is the set of "palindromes" in {a, b} *, the set of strings that
read the same backwards as forwards.

(d) Let V'= {(,), S), E = {(,), [,)), and P = {SS),

120'



a
Da. 5. derivation tree for the derivation S = aSb aaSbb = aaaSbbb
aaaabbbb in the grammar 9, of Example.3.1(a).

SL* [S], 5, SS, S e). Let G4 (V, E, P, S). The language L(G4)
tsis the set of all well-formed strings of two types of parentheses

which are nested and correctly balanced. This language is callea.
the (semi-) Dyck language on two letters.

(e) Let V = {x, 3r, z, +, *, (, ),5, T, A), E = {x, 3r, z, +, *, (,)},
and P = {S A, S.(T + S (T*1'), T (T + 1'), T (T*T),
T A, A x, y, A Let Gs =%(V, E, P, S). The language
L(Gs) is the set of all well-formdcl, expressions over {x, y, z} with
binary operators + and *.

Note that none of the languages in Examples 3.1 is a regular set.
On the other hand, one can show that the regular sets are gener-
ated.by those context-free grammars that are "left-linear": G (V,

P, S) is left -linear if each rule is of :the form Z aY where
Zey---E,cceE*,andIfe(VE)v{e}.
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Fia:,15. A derivation tree for the derivation S 0(())() in the grammar G2 of Exam-
ple 3.1(b).

Representation of derivations by means of derivation trees rep-
resents the essential property of being context-free. If two nodes are
independent (neither is the descendant of- the other), then the
subtree rooted at one node represents a derivation that does not
depend on the derivation represented by the subtree rooted at the
other. This property is represented in terms of derivations by con-
sidering "left-to-right" derivations: At every step the leftmost non-
terminal symbol is, tr,ansformed. This derivation corresponds to the
construction of a derivation tree by ,always taking the leftmost
possible branch and adjoining the next subtree to the leftmost node

130
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of the current frontierif that node is labeled with a nonterminal
symbol. Defining this notion formally involves two steps.

(i) Let G = (V,, E, P, .S).. Define a. binary relation 4. on V* as
follows: For ariy a,fl, y e V*, and Z e V E, if aZfl ayfl
and a e E*, then aZil 4 nil.

(ii) Now define for each n Z 0 in order to obtain the notion
of left-to-right derivation of length n" and define 14 to be the
transitive, reflexive closure of 4. (Details are omitted.)

The notion of a left4o-right derivation provides a normal form
for derivations of terminal strings- from the initial' symbo in a
context-free grammar. This is /een from the following result.

TIIEOREM 3.2. Let G =AV, E, P, S) be a' context-free grammar.
For any p e V*, w e V`, and n Z 1, there is a derivation of w from
p in G with n .steps if and only if there is a left-to-right derivation
of w from p in G with n steps. Hence, L(G) = {w e E*1 there is a

.1eft-to-right derivation of w from S in 0).

Proof It is sufficient to show that if there is a derivation
of length n, then there is a left-to-right derivation

p g 4.w of length n. The proof is by indtiction on n.
If p w is a derivation of length 1, then there exist a, y e E*

and ZEVE such that p calj, w = ay/3, and Z+ y is the re-
writing rule applied in Since Z is the only nonterminal
symbol_ in p, the derivation p w is already a left-to-right deri-
vation of length 1.

Assume the result for all p e"V*, w e E*, and all derivations of
length no greater than n (for some n z 1). Suppose that Po Pi =;*

pn w is a derivation of length n + 1 with w e V'. Now

Pi = pn w is a derivation of length n in G so that by the

induction hypothesis there is a left-to-right derivation pi x.02
L L

On w of length n in G. If Po pi, then Po Pia 02 4
W the 'desired left-to-right derivation of w from Po of

length n 1. Otherwise, there exist w1 E E5, yi, y2 , y e V*, and Zi,
Z2 e V E such that po = WIZ4YIZ2 Y2 's PI = w1Z1Y1YY2, and
22 y is the rewritingtrule applied in the derivation po pp

131
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Since Zi is the leftmost honterminal.symbol in pi and pi 02 is
the left-to-right derivation, there exists fl e V* such that

L«
02 = wifiyiyy2 and Zi *fl is the rewriting rule.applied in pi (52.

L
wiflYiYY2Thus, Po = wiZiyiZ2 y2 w1flyiZ2 y2 =., = 02, so that

wItiYIZ2 Y2 02 = On w is a derivation of length n. By the
4113`induction hypothesis there is a left-to-right derivation wifly1Z2

y2 4 r2 4... .I' w of/length n in G so that po = w1Z1y1Z2

YpwiPY1z-.23'2 1 n is a left-to-right derivation
o length n +.1 that begins with Po and ends with w.

3.2. Representation of derivations of context-free grammars by
means of derivation trees suggests certain transformations that
yield normal forms and grammars. In particular, binary branching
derivation, trees suggest certain restrictions on the form of the re-

v
writing rules in the grammars.

ACOntext-free grammar G = (V, E, P, S) is in Chomsky Normal
Form if each production in P is of one of the following forms:

S+ e
aeE, Z e V E, Yi, Y2 e V E {S}.

z---*YiY2

THEOREM 3.3. From a context-free grammar_ G1, one can ef-
fectively construct a context-free grammar G2 in Chomsky Normal
Form such that L(G2) = L(G1).

If G = (V, E, P, S) is athomsky Normal Form grammar, then a
nonempty string w is in L(G) if and only if there is a derivation of
w from S in G of length 21w1 1, and the empty string is in L(G)
if and only 'if S+ e is a rewriting rule of G. Thus we have the
following result.

COROLLARY 3.4. There is an algorithm such that given a context-
free grammar G and a string w the algorithm determines the
answer to the question "Is w in L(G)?" Thus, every context-free
language is a. recursive set.

13___ 4
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In a context-free graMmar G = (V, E, P, S) it is quite common 'to
have certain symbols, in. V E that are "recursive": for some

yl, y2 E V*, Y1Y2 e, Z y1Zy2 . If Z is such that for some non-
empty.string y, Z 4.1 Zy, then a number of problems can arise. This
situation is eliminated when attention is restricted to Greibach
Normal Form grammars.

A context-free grammar G = (V, E, P, -S) is in Greibach Normal
Form if each production in P has one of the following forms:

S--+e

Z--+ a

aYi

Z aYiY2

THEOREM 3.5. From a context-free grammar GI one can ef-
fectively construct a context-free grammar G2 in Greibach Normal
Form such that L(02) = L(01).

Notice that if G = (V, E, P, S) is a Greibach Normal Form
grammar, then a nonempty string w is in L(G) if and only if there is
a derivation of w from S in G of length I w I.

Given a graMmar G = (V, E, P, 5) it may be the case that L(G) is
empty or that certain symbols in V or rewriting rules in Prare never
available for use in derivations of strings in L(G) beginning with S.
It is desirable that such symbols and rules be eliminated, and this
can be accomplished effectively.

A context-free grammar G = (V, E, P, S) is reduced if either
V = {S} and E = P = 0 or (i) for each Y E V there exist

a, /3 e V* such that S 1 ccY/3 and (ii) for each Ze VE there
exists y E E* such that Z 44y.

THEOREM 3.6. From a context-free grammar G1, one can ef-
fectively construct a reduced context-free grammar G2 such that
L(G2) = L(01) and, if GI is in Chomsky Normal Form (Greibach
Normal Form), then so is G2 .

COROLLARY 3.7. There is an algorithm to determine whether
L(G) = 0 for a context-free grammar G; that is, the emptiness
problem for context-free grammars is decidable.

aEE, Z e V -1- E, Yi, Y2 e V E
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Consider an arbitrary context-free grammar G = (V, E, P, S). Let
k be the number of symbols in V E. For any symbol Z e V E,
consider S(Z) .{y e V*I there is a derivation of y frorb Z of length
at most k}. Now if Y e V is any symbol such that for some
al. 6(2 e V*, Z oc1Ya2 , then there exist' e V* such that
/31Yfi2 is in S(Z). This fact is quite useful in proving Theorems 3,3,
3.5, and 3.6 in That it provides a bound on the number of deri-
vations to be 'consideied when testing for certain conditions regard-
ing the rewriting rules of the grammar. ,

33. There is a particularly useful result regarding the "structure"
of context-free languages. Its proof depends on'simple properties of
derivation trees.

THEOREM' 3.8. Let L be a context-free language. There exist in-
tegers p and q such that everY4string w e L satisfying Iwl >p
may be written as w = uvxyz with vy e, I vxy 15 q, and
{uv"xynz I n L.

PrOof. Let G = (V; E, S) be a Chomsky Normal Form gram-
mar such that. L(G) = L. Let k be the- number of nonterminal
symbols.

Note that since G is in Chomsky Normal Form, if a derivation
starting with any nonterminal symbol has a derivation tree with
longest path of length t, then the length of the string generated is at
niost 2', and if the string generated is in E*, then it has length at
most 2'1. .

Let p = 2k-1 and q = 2k. Suppose that w e L(G) and I w I > p.,
The longest path in the derivation tree of anyderivation of w from
S in G has length at least k + 1, and so has at least k + 2 nodes,
k + 1 of which are labeled with nonterminal symbols. Thus at least
two of these nodes are labeled with the same nonterminal symbol,
say AEVE labels nodes n1 and n2 with n2 closer to the leaf
than n1 and with the subpath rooted at n1 having length at most
k + 1.

Consider the subtree with root n1. No path in this tree has
length greater than k + 1 so that the terminal leaf string has length
at mdst 21` = q. Let x be the terminal leaf string generated by the
subtree with root at n2. Let v and y be strings so that vxy is the
terminal leaf string generated by the subtree with root at Ili. Thus,

1 3 4
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1 vxy I S q. Since G is in Chomsky Normal Form and n1 and n2 are
in the same path with n1 above n2, either v c or y

Let u and z be strings so that w = uvxyz. By considering the
portion of the derivation which docs not contain the subtree rooted

at node n 1, we have S uAz. By considering the p'ortion of the
derNation from node n1 to node n2 we have A .> vAy, and hence

for any n > 0, A vnAyn. By considering the portion of the tied-
*

.0.vation from node n2 , We have A x. Thus, {uvnxynzln z 0) G L.
0

(,)

COROLLARY 3.9. For each context-free grantnar G, there is an
integer k > 1 such that L(G) is infinite if and only if L(G) contains
a string w such that k S 1 w 1 < 2k. Hence there is an algorithm to
determine whether a context-free grammar generates only a finite
langyge, that is, the finiteness problem for context-free grammars
is decidable.

Theorem 3.8 is known as the "pump "ing lemma" for context-free
languages "and is an example of an "intercalation" theorem. A
stronger intercalation theorem for context-free languages is known.

For any set A of symbols, any w E EA* such that w # e, and any
integer i such that 1 S i S 1w1, the symbol a occurs in the ith posi-

tion of w if w = ylay2 and 1 yi 1 = i L

THEOREM 3.10. For each conte xt-free grammar G = (V, E, P, S),
there is an integeh5' 1 such that for any w E L(G) with 1 w I k, if
any k or more distinct positions in w are designated as dis-
tinguished, then there exist Z e V E and u, v, x, y, z e E* such
that each of the following cOnditions is fulfilled:

*
(i) S uZz, Z vZy, and w = uvxyz;

(ii) x contains at least one of the distinguished positions of w;
(iii) Either both u and v contain distinguished positions, or both

y and z contain distinguished positions;,
(iv) vxy contains at most k distinguished positions.

These results can be used to show that certain languages are not
context-free. For example, none of {inbnc".1 n >0}, fa"brnedn'In,

13u
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m > 0), or .{WcwRcw I w e {a, b}s} is context-froo but each can be
expressed as the intersection of two context-free languages.

.`"

COROLLARY 3.11. The class of contcxt-frcc languages is not
closed under intersection.

a

It should be clear that for an arbitrary context-free granamar
and an arbitrary string w in L(G), there May be. more than one
derivation of w in G or even more than one left-to-right. derivation.
Thus we are interested in the "ambiguity" of w in G.

Let G = (V, E,- P, S) be a' context -free grammar. A string
w e L(G) is ambiguous in G if there exist two distinct left-to-right
derivations of w from S in G. The grammar G is an ambiguous
context-free grammar if there exists a string in L(G) that is ambigu-
ous in G; otherwise, G is unambiguous. A context-free language L is
an inherently ambiguous context-free language if for every cOntext-
frt.* grammar G with L(G) = L, G is ambiguous; otherwise, L is
unambiguous.

The following result can be established by using Theorem 3.10.

THEOREM 3.12. There exist inherently ambiguous context-free
languages,, e.g., {a' bi = j or j = k}.

3.4. At this point the reader will note that the only method of
shoWing that a language is context-free is to exhibit a context-free
grammar and to show' that the grammar generates the language.
To provide another method of showing that a language is context-
free as well as . to enrich our understanding of this class of
languages, we consider closure properties of this class. ,

THEOREM 3.13. The clas's of all context-free languages is closed
under each of the following operations: union, concatenation,
Kleene * , intersection with regular sets, inverse homomorphism,
reversal, substitution, and arbitrary homomorphic mappings.

.The operations given in Theorem 3.13 are not independent; for
example, if L is any class of languages that contains the regular s is
and is closed under substitution, then L is closed under um n,,
concatenation, Kleene * , and arbitrary homomorphic mappi.
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.4; .

Further, these operations do not characterize "context-free-ness."
However, some of these operations can be used to provide such a

Fora
character ration.

n n > 1,.let A. be a set of 2iidistinct fetters, A. = {al, ...,
a al, ..., att). , Leta be the congruence on 'A: determined by
definineat a; e for each i = 1 . n. The Dyck set Do on n letters
is the set {w e A:jw e}:

Generalizing from Di and D2 in Examples 3:1(5)zat11, 3.1(d), it is
clear that for every n, D. is a conteitt-free language. For any n 1,

'" any two Dyck sets on n letters are isomorphic as subSemigroups of
free semigroups so that one refers to the Dyck set on n letter&
Intuitively, D. is the set of balanced nested strings of 'matching
mentheses n types. I

From the Dyck . sets we obtain a characterization of the
:context-free languages. This result is a version of the
"Choinsky-Schfitzenberger :Theorem." It represents an important
theme in the Mathematical theory of formal language&

THEOREM 3.14. For each context-free language L there is a
regulir, set R, a nonerasing hornombrphism ht; and fi homomor-
phism h2 such that L ht(hi 1(D2) R), where D2 is the Dyck set
on two letters.

Proof We-shall sketch the construction of a tegular set Rand a
homomorphism h1 such that (D R) t is a con-
stant that depends on a grammar generating L: If A,. {al, ...,
a1, ..:, at} and 02 = {a1 a2, al, 52); then the homomorphism h2 :

" At determined by defining h2(a,) = and h2(at) =
for every i has the property, that 112- it(D2) = D. Hence,
hi(h21(D2) R) = L.

Let G (V, E, P. S) be a Greibach Normal Form graininaf such
'that L(G) L {e). For each symbol Z e V, let Z be a'new
symbol and let et =7,y u {ziz,e V }, so that the numberOf
symbols in V. Let Oland q be two new symbols, p; q A,. Let
Go = ({p, q} u At, Po, p). be the .left linear grammar obtained
by defi ing Po as follows:

(i) p Sq is in Po ;z
(ii) fcir. ach Z e V E, a e E such that Z- is. in. P. q---+,aaZq

'is in P
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(iii) for each. Z, Y e V. E, a e E such that Z
q aa2Yq is in Po ;

(iv) for each Z, Yi, Y2 e V E, a e E such that- aY Y
cie-0 adZY; Yiq is in Po ;

(v) q e is in Po .

_ Let R = L(Go)oso that Go being a left-linear grammar implies
that R is a regular set Let hi : be the:, homomor-
phism determined by defining h1(a) = a for a e E and hi(a)
h1(Z) = h1(Z) = e for a e E, Z e V E. By considering left -to; ht
derivations in G, one can show that hi(D, (-) R) {e}_and-if
e e L, then hi(D; n R') = L where R' = R v {e}.By using a tech-
nical variation on-this construction, hi can be made nonera'sing. 0

Since each Dyck set is a context-freeianguage= and the class of
context-free languages is closed under inverse homomorphism, .

homomorphic mappings, an8 intersection with regular sets, the fol-
lowing result is immediate. '

COROLLARY 3.15. The class of context-free languageS 15 the smal-
lest class containing D2 and closed under homomorphism, inverse
homomorphism, and intersection with regular sets.

It should be noted that in Theorem 3.14, if D2 is replaced by D1,
then we cannot obtain all the context-free languages. i .

3.5. There is a result of mathematical interest .regarding the
number occurrences of individual letters in. the strings making
up a conte -free language.

For any k 0, let. (k) be the set of all k-tuples of natural num-
bers, so that Mk) I -lased under addition by coordinates and under
scalar multiplication.

A subset Q of N(k) is linear if thCre exist a, f 1, ..., fin, e N(k) such
that Q = {a + nifii + + nm flml ni e N}, and a subset of Nm is
semi-linear if it is a finite union of linear sets.

Let E be a finite alphabet, say E = 5 i 5 kr. The Parikh
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mapping.th of E*.ontoN(k) is defined as follows:

--------/ /k(e) = (0, - - - , a); f
frk(ai) = (Zil, ..., Zik) where Zji =-- 0 for j 0 i and Z = 1; ti

. t

IP& b.) = E tirk(bi), for n 1, each bi e E.
= 1

.
..

THEOREM 3.16. If L is a context-free language and L E* where
E. is a finite alphabet, then the image of L under the Parikh map
ping #(E) is a setni-linear set.

Of _course there exist languages that are not context-free but
do have a semi-linear image under the Parikh mapping, e.g.,
{anbnc" n Z 1}.

3.6. It has been noted-that certain questions about context-free
grammars- are decidable, e.g., the question "For a context-free
grammar G, is L(G) empty?" However, some other important
questions are undecidable. To show that a question about context
free grammars is undecidable,. one of, two basic techniques is us-
ualli employed: reduction to the halting problem (or some other
undecidable question) for Turing machines or reduction to the Cor-
respondence Problem.

,,Let us consider what is involved in reducing a question .about
context-free grammars to the halting problem for Turing machines.
We begin by considering a Turing machine M which has one tape
and one read-write head that operates on that tape. Without loss of
generality, assume that the computation of machine M on an input
string w halts if and only if M accepts w. A finite computation of M
on input w can be represented by a sequence of "instantaneous
descriptions," strings that describe 'M's tape contents and finite-
state control. Such a sequence ID0, ID1, ID. of instantaneous
descriptions represent an accepting computation of M on w if ID0
represents M's initial configuration on input w, ID. represents an
accepting (halting) configuration of M, and for each j = 1, n,
ID; represents M's tape contents and finite-state control after the
transition function acts on the instantaneous description IDi_ 1
Let A be the alphabet containing all the symbols used by M as well

0139
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as symbols representing the states in M's finite state control. Let #
be a symbol not in A. For each input string w, one can construct a
context-free grammar G (depending only on M and w) such that
L(G) is the set of ,all strings y in (A u # })* such that y is not
# ID0 # ID1 # # ID. # where ID0, ID 1, , ID. represents an
accepting computation of M on input. w. Thus .each y in L(G) either .

is not of the form of such an encoding of an accepting computation
or is of the form of such an encoding but contains a "mistake"; that
is, if y = # xo # xi.# # # _where each xi is a string in A* that
encodes a ,configuration of M, then either xo is not of the form of
an initial configuration of M on w or xi, is not of the form of an
accepting configuration of M or for some j, 1 S j 5 n, the string xi
is not of the form of the configuration obtained by applying M's
transition function to the configuration represented by xi Due
to our assumptions concerning M the computation of M on w
halts if and only if M accepts w. Thus, M accepts w if and only if
L(G) =_(A v { # -0*. Now (A u #I)* is a regular set and hence
L(G) is a context-free language. Thus the question "For context-
free grammars G1 and G2, is L(G1) equal to L(G2)?" is undecid-
able, for otherwise the halting problem for Turing machines would
be cida0le.

THEOREM 3.17. The equivalence problem for context-free gram-
_

mars is undecidable.

tigh
Variations on the technique described above can be used to

obtain the following results.

THEOREM 3.18. Each of the following questions is undecidable:

(a) For a context-free grammar G; is L(G) regular?
(b) Fora context-free grammar G and a regular set R; is

L(G) = R? ,

(c) For a context-free grammar G and a finite alphabet E, is
I* L(G) empty ?

' (d) For a.context-free grammar G, is L(G) co-finite?
(e) For a context-free grammar. G, is G ambiguous?
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(f) For a context-free grammar G, is L(G) inherently ambigu-
ous?

(g) For' context-free grammars G1 and G2 , is L(G1) n L(G2)
.empty?t

(h) For context-free grammars G1 and G2, is L(G1) n L(G2)
finite?

(i) For context-free grammars G1 and G29 is L(G1) g- L(G2)?

3.7. The concept of a context-free grammar and the language it
generates originates with Chomsky [19][25], who attempted to
develop a reasonable mathematical model for the. description of
natural language. The theory developed initially through the work t

of Chomsky and of Bar-Hillel [7][9]. Around 1,960 it was dis-
,covered that the. formal description languages used by Backus to
specify certain aspects of programming languages were precisely
the context-free languages. What has become known as Backus-
Naur Form (BNF) was used in the syntactic definition of the
language ALGOL 60 [68].

The textbook by Ginsburg [37] is a fairly cmiiplete treatment of
the theory of context-free languages circa 1966. The books by Salo-
maa [82] and by Hoperoft and Ullman [58] discuss the class of
context -free languages as well as other classes of languages. The
textbooks by Aho and Ullman [3], [94] and by Lewis, Ro-
senkrantz; and Stearns [61] describe those aspects of the theory of
context-free languages that are of great use in compiler design.

There are several papers which -are particularly useful in tracing
the development of the theorycOrgext-free -languages. These
papers contain some of the resurtrnoted in this section. Theorem,
3.5 is due to Greibach [45], Theorem 3.8 to Bar-Hillel, Perles, and
Shamir' [9], Theorem 3.10 oto Ogden [71], Theorem 3:14 to
Chomsky and Schiitzenberger [25], and Theorem 3.16 to Parilch
[72]. A different viewpOint of the specification of.:context-free
languages is due to Nivat [69].

4. PUSHDOWN STORE ACCEPTORS

Two characterizations of the contexyree languages were es-
tablished in the last section: First, a language was defined to be
context-free is it was generated by a context-free grammar; second,
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it was shown that a language is context-free if and only if it can be
represented as hi(h2- 1(D2) n_R) where hi and h2 are homomor-
phisms, D2 is the. Dyck set on two letters, and R is a regular set. In
this section we provide a characterization in terms of a class, of
abstract automata, the "pushdown store acceptors."

A "pushdown store acceptor" is an automaton with an input,
tape, a finite set of states, and a last-in first-out data structure: a
pushdown store. A pushdown store maybe regarded as a one-way
infinite tape whose contents can be changed only at one end, the
"top." The information obtained from the pushdown store 'in a
single step is the top symbol on the tape. Reading a symbol from
the pushdown store automatically erases ( "pops")' it trfrom the tape.
Symbols can be added only at the top and only a bounded trumber
can be added ("pushed down"). inany single step. The acceptors
have an input tape with a head that moves across the tape from left
to right, reading the contents of successive tape squares but newer

.writing. Depending on the current state, the input symbol being
scanned, and the symbol on the top of the pushdown store, the
transition function determines whether or not a new input symbol
is to be read, what the next state is to be, and how the pushdown
store is to be altered. r

Pushdown store acceptors may be viewed as extensions of finite-
state acceptors: add a pushdown store as auxiliary _storage to a
finite-state acceptor. However, there are several other differences.

A finite-state acceptor reads input from left to right and reads a
new input symbol at every step. Any abstract automaton .(or
Turing machine) with this property is said to operate in real time.
Notice that if an ainomaton operates in real time, then a compu-
tation on an input string of length n has' at most n steps. A push-

.down store acceptor need not read a new input at each step; it may:
perform a sequence of transitions that only change state and ma-
nipulate the pushdown store. It can be shown that for each pgsh-
down store acceptor there is a constant k such that a computation
on an input string of length n has at most kn steps. Any abstract
automaton (or Turing machine) with this property is said to oper-
ate in linear time.

There is an extremely important difference between the way that
.a finite-state acceptor_operates and the way that a pushdown store
acceptor operates. Insthe definition of finite-state acceptor (and of

.4
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TuAnLg machines) given in Section 2, at each step of the compu-
_\_ tation'i there is exactly one transition that the machine can make.

1 This means that the machineis "determi istic."-Howeverovhen
studying abstract automata, one considers the "nondeterministic"

ode of operation in which there is a fi ite number of possible
tra 'lions and the automaton must "gues " the coireet choice of
transits s. In this way, nondeterministic utomata do not faith-
fully mod lithe behavior of actual comp ting machines_ but do
form a. mathe tical construct that plays an important role in the
study of automa and formal languages and of computational
complexity. In partic ar, nondeterministic p'i.ishdown store accept-
ors characterize the clas of context-free lan uages while the deter-
ministic pushdown store ac eptors do not.

4.1. We begin[)the formarde
pushdown store Cceptors.

A determinists pushdown store acceptor (K, E, r, S, qo , F)
(see Figure 7) has a finite set K of states; a nput alphabet E, a
pushdown alphabet r, a (partial) transition funct n

: (E u {e}) x (F .0 {e})-- K x
.

an initial state e K, and a set F of accepting states. e transi-
tion function is restricted so that. for each q e K and Z a {6},
either (a) S(q, Z)\ is undefined and for each a e E, S(q, a, is
defined, or (b) (q, e,\Z) is defined and for each a e E, S(q, a, Z)
undefined.

lions by defining deterministic

In the deft, ition of a aeterministic pushdown store acceptor, the
transition f nction is defined \n such a way; that, based on the
current sta and the current "top" of the pushdown store, either a
new input symbol is read (part () or a transition involving only
change of state and manipulation of he pushdown store is ,specified
(part (b)r. This is An essential feature oi\ he definition of a determin-
istic inhine.

Again in note that the definition specifies a pushdown store ac-
cep Or as a static object. To explain the d namics of how such an
ac eptor computes is to explain how t'fie i tructions encoded in
t e transition function are applied to the inp t tape and the push-
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IG. 7. A pushdown store acceptor.

down store W1th a finite-state acceptor it was sufficient to exten4,
the transition function to input strings instead of, individual input
symbols ut here it is necessary to define "instantaneous desarip-
tions" and a "yield" relation between instantaneous descriptions.

(K, E, r, (5, go, F) is a pushdoWn store acceptor, then. an
/ nstantaneous description of D is an element of K x E* x r*. An

initial instantaneous description is'any element of {go} x t* x {e}.
Define a binary relation I (read: "yields" or "yields in one step")
on the set of instantaneous .desdriptions of D as follows: for p,
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q e K, e E L.) {e), u, v e r*, Z e r-u , w e E*,, if (5(ii, a,
Z) = (p, u), then (q, aw, Zy) (p, w, uv). t denote t i'transi-
tive reflexive closure of I-.

An instantaneous description (q, w, y) is interpreted as a push-
down store acceptor configuration with current state q, input string
w, and pushdown store contents y; w represents the input remain-
ing to be processed, and if w # e, then the leftmost symbol is the
Currently scanned input symbol; yrepresents the current pushdown
store contents, and if y # e, then the leftmost symbol of y
is the symbol on the "top" of the pushdown store. If (q, aw, Zy) F-
(p, w, uy), then ft'om state q, White reading a e'E L.) {e} (i.e., either
reading a e E as input or 9 ignoring the input if a = e) with.
Z e r L.) {e} on the top4 of the pushdown storp (i.e., the pushdown

rstore is not empty and the symbol Z e isibb contents of the top
tape square or the pushdown storeis empty and Z = ej, the accept-
or goes to state p and replaces Z on-'the top of the pushdown store
with u. If u = e, then this transition "pops" Z from the ,pushdown
store; if u e, then this transition erases Z and writes u in place of
Z, "pushing down" the rightmost I u I -- 1 symbols of u into the
pushdown store (one symbol per tape sqUare) so that the leftmost
symbol (top) of the store contains the leftmost symbol of u.

There are three notions of "acceptance" by a pushdown store
acceptor D = (K, E, I', 3, qo , F). Define L(D) = {w e E* I there
exists -q e F such that (q0, w, e) (cp e, e)), T(D)- {w e E* there
exist q e F and u e r* such that (q0, w, e) (q, e, u)), and
N(D) =_{w E* I there exist q e K such that (q0, w, e) 11,(q, e, e) }.

For a pushdown store acceptor D, L(D) represents'"acceptance
by final state, and empty store," T(D) represents "acceptance by
final state," and N(D) represents "acceptance by empty store."

It is easy to show that for any deterministic pushdown store
acceptor Di, one can construct a .de.terministic pushdown store
acceptor p2 with the property that L(D1) = N(132) = T(D2),' and
that for such a D1 one can construct a D3 with the property that
N(D1) = L(D3) =-.T(D3). However, the language L = {a}* t..) {anbm
I n z m 0} is such that there is a deterministic pushdown store
acceptor Di such that T(D1) = L but there is no acceptor D2 such
that N(D2) = L or L(132) = L. Thus, in order to describe the largest
class of languages as "deterministic context-free," we choose "ac-
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ceptance by final state" as the method of acceptance to specify
these languages.

A language L is deterministic context free if thereis a determini-
stic pushdown store acceptor. D such that T(D) = L.

At this point we have not justified the use of the term "determint-
stic context:free" since we have not shown that T(D) is a context-
free language when D is a deterministic pushdown store acceptor.
However, this will be an immediate corollary of the
characterization of the context-free languages as the languages ac-
cepted by nondeterministic pushdown store acceptors.

EXAMPLES 4.1.

(a) Let = {a, b, c} and L = {wce I w e {a, b}*}. For K =
{qo, q1,. 42}; r = {a, b}, F = {g2}, and the transition function 6

given below, D = (K, E, F, 6, go, F) is a deterministic pushdown
store acceptor such that T(D) = L.

qq (5(9o, a, e) = (c10
b, e) = (go, b)

(5(c10 = (c11,
o(go , a, a) = (gO, aa)
o(go, a, b)'= (q0, ab)
o(go , b, a) = (go.,-ba)
O(go , b, b) = (go, bb)

!'(5c90 =W1,
0(q0, b)
(5(gi, a, a) = (g1, e)
o(gi; b, b) = (q1, e),

= (c12

From the initial state qo, D reads a string w e {a, b}* andlcopies
it onto the pushdoyd store. When D first reads c, D transferi into
state q1 and then attempts to match the remaining input witdthe
contents of.the pushdown store. The input is accepted if_ and only if
the computation ends in state q2, and D moves into state42 if and
only if .D is in state q1 with the pushdown store empiy (io that the
input readbefore the c is the reversal of the input read after the c).

(b) Let = MI and let L El*: be the Dyck set on two
lftters (see Example 3.1(d)). For K = {qo, F {c [I, F = {go},

146
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and the transition function given below, D = (K, Ei r, 6, qo , .F) Xis a

deterministic pushdown store acceptor such that T(D) = L. 1.

Z(qo , (, e) = (q1, ()
.6(clo C, =

(, =(q1,(()
C, ()

(5(c1, 0
=
=

[-0
(0

(5(ch, C, 0 = CO
(5(c1, ), 0 = (q1,
6011,1 =- (cli,
4(cl1, (go, 0

Deterministic pushdown store acceptors "can be, made to halt,"
that-is, for every such Dis,pne can construct D2 such, that T(D2) =
T(D,), and on every inpu*t string D2's computation halts. Thus one

' show that the complement of a deterministic context-free
language is also a deterministic context-free language. This is, not a
property of the class of all context-free languages, for otherwise the
class of,context-free languages would be closed under intersection.:
Hence there are cOnteit-free languages dint are not, deterministic
context-free; for. example, L1 = {wwR I w {a, b }*} and. L2 =
{ebc1Cr I p q or q # r}. Finallyfito that deterministic pushdown
store acceptors "can be made to operate in linear time" but that the
language {w1 #,w2 # cn-i#41n sn 1,
each wj e {a, l? } *} is.a d context-free language that
cannot be accepted in real ti inistic pushdown store
acceptor (or multitape Turing machine

4.2. Now we turn to the study of . nondeterministic pushdown
store acceptors.

A nondeterministic pushdown store acceptor

D = (K, E, r, (5, qo , F).

has a finite set K of states, an input alphabet E, and pushdown
alphabet F', a transition function 6: K x (E k.) {e}) x (I" u Jen-4.
(finite subsets of K x r*), an initial, state q0, and a set F of accept-
ing states.

The notion of instantaneous description is defined just as in the
deterministic case. For a nondeterministic-pushdown store acceptor
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D = (K, E, I-, 6, go, F), define ,a binary relation F- on the set of
instantaneous descriptions of D as follows: for p, q e K,
a e E t..) {e}, Z e r ki {e}, u, v e r*, w e E*, if'(p, u) e c5(q, a, Z)
then (q, aw, Zv) I-- (p, w, uv). Let 1--* denote the transitive reflexive
closure of H.

The definition of a nondeterministic pushdown store acceptor,
differs from that of a deterministic acceptor in that the transition
function specifies a finite set of possible next. moves. To represent
all possible computations of a nondeterministic pushdown store
acceptor on a given input string, a "computation tree" of instanta-
neous descriptions is usedt A single computation is represented by .

a path in this tree starting at the root and ending at a leaf.
The three definitions of acceptance given for deterministic' push-

down store acceptors are valid for nondeterministic pushdown
store acceptors. However, in the case of the nondeterministic
model, the 'three methods of acceptance are of equal pokver:
{L(D) I D is a ,nondeterministic pushdown store acceptor) =
{T(D) I D is a nondeterministic pushdown store acceptor} = .
{N(D) I D is a nondeterministic pushdown store acceptor }.

It must be emphasized that a nondeterministic pushdown store
acceptor D accepts a given input string w if and only if there exists
an accepting computation in the computation tree of D and w.
Some computations of D on w may not end. in an accepting con-
figuration even though D accepts w. For D to reject w, all compu-
tations of Don w must end in nonaccepting computations. /Gener-
ally, a non eterministic pushdown store acceptor D cannot tell
whether it rejects an input string w; to determine this one must
"deterministically' simulate" all of D's computations, and construct
the computation tree for D and w.

EXAMPLES 4.2.
(a) Let E = {a, b} and L = {wwR I w e 1)1'aq. For K = {clo , q1,

q2}, F' = ta,, b }, F = {q2 }, and the transition function 6 given

below, D (K, E, F', 6, go, F) is a nondeterministic pnshdown
store acceptor such that T(D) = L(D) = N(D) = L.

6(q0, a, e) {(qo a)}
6(q0, b, e) = {(qo , b)}
6(q0, a, a) = 4%, aa), (q1, e)}

;l4c3
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6(q0, a, b) = {(qo , ab)}
6(qo , b, a) = {(qo , ban
6(qo , b, b) ((go, bb), (qi, e
43(q1, b, b) = {(q ,

6(qiea, a) {(q1 ,e)}
6(qt,:e, e) = {(q2,

D reads input symbols from E and tes these symbols on the
pushdown store while in state go. The on use of nondeterminisin
is the "guess" that half the input has been rea nd so it is time to
transfer Control to state qi and match the remaining input with the
contents of the pushdown store.

(b) Let E = {a, b, c}.. and L = {a9bIcv I p q or q r }. For K
{q, I = 0, ..., 9), r {1), F = {q4}, and the transition function 45
given below, D = (K, 45, go, F) is a nondeterministic', push-
down store acceptor such that T(D) = L(D) =,L.

6(q0, e, e) = {(qi, e), (q6 ,

6(q1, a, e) = {(q1, 1))
6(qi, a, 1) = {(q1, 11))
6(q1, b, 1) = {(q2,
O(cI2, b, 1) = {(cI2, e)}
6(q2, b, e) = {(q3,
O(c12 c, 1) = {(q4, e)}
o(q3 , e) = {(q3,e)}
(5(q3, c; e) = {(q4;
6(q4; c, e) = {(q4;e) }.
O(cia, c, 1) = {(q4,'e)}
45(q4, e, e) = {(q5, e)}
o(q4, e, 1) = {(q4,
45(q6 , a, e) {(q6,
6(q7, b, e) {(q7 , 1))
(5(q7 , b, 1) = {(g7;'ll)}
o(q7, c, 1) = {(q8,
o(qo, c,.1) = {(q8,
o(qo, c, e) = {(q4,
o(qo, e, 1) = {(q9,
o(q9, e, 1) = {(q9,
o(q9, e, e) {(q5:
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In this case D initially guesses that p # q (by going into state q1)
or that q r (by going into state q5). Once this guess is made, D
simply checks to see whether the guess is correct.

Now we sketch the proof of /he characterization of the context-
free languages as the languages accepted by the nondeterrninistic
pushdown store acceptors. ,

Recall that a language L is contexfree if and only if there is a
Greibach Normal Form r..gramma = (V, -E, P, S) such that
L(G) = L. From G construct a nondeterministic pushdown store
acceptor D = (K, E, r, 6, (10 ; F) as follows:. K {q0, q1, q2},

($) u - E) where $ is a symbol not in V E, F = {q2);
and 6 is given by (i)(iii).

if S-- e is in 'P,
(i) ,5(qo , e, = 11((qc111: Sstycl2 e)1' otherwise.
(ii) For each a e E and Z E V E, 5(qi, a, Z) = {(q1, y)ly E

(V EXV E) v (V E) v {e} and Z ay is in P}.
(iii) t5(q1, e, $) = {(q2, e)}.

Recall that w is in L(G) if and only if there is a left-to-right
derivation of w from S in G. The nondeterministic pushdown store
acceptor D is constructed so that its accepting computations sirriu-
late the left -to -right derivations of G. At ,any point in a compu-
tation, the symbol on the top of the pushdown store corresponds to
the leftmost noriterminal symbol in the string in the corresponding
derivation.

' This construction yields the following result.

THEOREM 4.3., For every context-free grammar G, one cans con-
struct a nondeterministic pushdown store aceeptorji* such that
L(D) = T(D) = N(D)= L(G).

In the construction of the nondeterministic pushdown store ac-
ceptor D from the Greibach Normal Form ,grammar G, the use of
the symbol $ as an "endmarker" for the pushdown store allows one
to claim that L(D) = T(D) = N(D).. Thus in the next theorem we
shall be concerned only with-L(D).

We wish' to shoW that if D = (K, E, t, 8, qc., F) is a nondetermin-
istic pushdown store acceptor, then L(D) is a context-free language.



1
134 Ronald V. Book.

To accomplish this weshow.how to construct context-free gram-
mar G so that the left-to-right derivations'Of strings in L(G) corre-
spond to the accepting computations of D.

,Let 0 = (K x r x K) u (1c; x: x !(.). We view the elements of
O as individual symbols and we assume* that E n 0 = 0..Let S be
a new symbol, S ct.0 A, and let V=Eu Au (S); Define the set
P. of productions of d as follOWs: :`

{S (klo e, P E g.: P;
(ii) For every. choice q,, q1, qt +4 e K,

Z. e u (e), Y1, , Yt e r, such that
tains (15, ,Y1 Yt) where p = qt+1, (q, Z,
q2)(q2., Y2, q3)'...(4 , q1 +1) is in P;

(iii) For every q, p e K, a EE u (e); zeru
o(q, a, Z) Contains (p, e), (q, Z, p)-- a is in P;

(iv) For every p e F, (p, e, p)7 e is in P.

The symbols (p, Z, q) "encode" three pieces of information. The
first coordinate represents the current state of a computation of D.
The second cooginate represents the symbol on the top of D's
gushdoWn stOre,if the store is not empty (Z # e) or is the -empty
word e if the .;store is empty.. The third coordinate represents a

7"guess" of the- state 5 will have reached when, in a subcomputtion
starting in state p with Z on the top of:the store, this square is
emptied for the first time

The productions in P allow for the simulation by a left-to-right
'derivation in G of a computation: of D. By induction on the length
n of the computation, it can be shown that for any w e E*, q e K,
and Y1, Y, e r, (cio; w, 1* (q, e, Y1 ... YJ is a computation
of length n in 'D if and only if for: every choice q1, qt+ 1 e K
with q1 = q, (gig, e, qt+1) w(qi, Y1, q2)... Yt , is a left-
to-right derivation of length n in G. Similarly, for any w e E* and
p e F, (q0 , w, e) 1* (p, e, e) is a computatibn in D if and only if S
=, (qo , e, p) w(p,- e, p) w is a left-to-right derivation it

This construction leads to the f011owing result.

aeEu/e},
o(q, a, Z)lbcon-
p)-- a(q1,

(e) §uch that

THEOREM 4.4. If D is a nondeterminisiic pushdown- store ac-
ceptor, then from D one can construct a context-free grammar G
such that L(G) = L(D).
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From Theorems 4.3 and 4.4 we have our characterization of the
context-free languages as the languages accepted by nondetermin-

' 'istic ciushdown store acceptori. Further, the constructive inter-

change between grammars and acceptors preseryes the de'CidabiliO
and .undecidability of questions about context-free languages
whether these languages are specified by grammars or by acceptors.

4.3. The importance_ of, the pushdown, store as a data structure
useful in natural languagoreicessing was recognized very, early (see

Kuno [60]).,P .ers by Chorrisky [22], Schfitzenberger [85], and

.:Evey [32]..d nstrated the usefulness of the formal model in
studying conteXt-free languages. Hartmanis [52] used pUshdowri
store acceptors to show' the undecidability of certain questions
about context-free languages. Ginsburg and Greibach [39] did a

. careful analysis, of deterministic pushdown store aCceptors.
The use of a pushdown store when studying multitape Turing

machines is illustrated in Book and GreibaCh [15].
Again, the text of Ginsburg [37] is a source bringing together

much of the early results on the study of context-free languages by

means of pushdown store,acceptots. The by Aho and Ullmari
[3], [94] and by Lewis, Rosenkpiantz, and Stearns [61] and the
dissertation by Brosgol [18] illustiate how deterministiC pushdoWn
store machines can be used in compiler construction.

The languages accepted ,by deterministic pushdown store ac-
c4tors are deterministic context-free languages;Grammars to gen-

' erate these languages are the LR(k) grammars of Knuth [95].

5. PARSING

As noted in Section 4, the class of context-free languages is pre-
ciiely the claSS of languages accepted by nondeterministic push-
down:stOre acceptors: For applications in programming:and cm-

, piling, it is necessary to hive an :,algorithM for recognition and
parsing of context-free gramMars. Not only, must one be able to
determine whether or not a. given string, is. generated by a given
context4ree grammar (recognition) but also when the string is so
generated it is necessary to find a derivation tree for it (parsing).
Clearly, these tasks can be performed by transforming the given
gramMar into some kind of standard form, say Chomsky Nonsial

1 5 .)
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Form, and then enumerating all derivations from the initiatsymbol
of 'a certain/length (in the case of Chonasky Normal Form, deri
vations of length 21w I-1 where w is the string in question).
However, it is qqite clear that such a procedure is hopelessly time-

, consuming and it is necessary to find efficient techniques for re-.
( cognition and parsing....

A great deal of efforts has been expended in the development and
analysis of algorithms for context-free recognition and parsing. In
this section, one recognition algorithm is sketched.

Let G = (V, E, P, S) be a context-free grammar Chomsky
Normal Form. Recall that e e L(G) if and only if S e is a pro-
duction in P, and that all other rules are of the form Z-4. a or.
Z Y1Y2 with a e E, Z e V -- E, and Yi, Y2 e V E {S}.
Given a nonempty string w e E*, say w = a1 ... a., a "recognition
matrix" for w is as follows: If V E contains q symbols, say
Vt E = {Z1, Z2, ... ,Zq} with Z1 = S, then let

T = [t(i, j, k' =1

be the three-dimensional binary matrix defined by t(i, j, k) = 1 if
and only if the substring .,_ I can be generated from Zk. In
such a recognition matrix, t(n, I, I) = 1 if and only if al ... ar, e
L(G).

A recognition algorithm- will result from an algorithm to con
struct the recognition matrix T given al ... a. and G, Let us consi-
der a simple iterative algorithm that constructs T. First, note that
the i = 1 plane is easily constructed by inspecting the set P of
productions since t(1, j, k) 1 if and only if Zk + ai is a prOduction
in P. Second, note that all other entries are 'obtained by considering
those productions in P of the form BC where A, B, CeVE
Thus, suppOng that all values t(i, j, k) have been computed for
r < i where i is, some integer greiter than 1 and all j, k, 1 < j, k S rt,
compute t(i, j, k) by taking the Boolean sum

1
E E t(s, j, k )t(i . s, j + s, k2).

z,-7, kP s=i

One can see that t(i, j, k) = 1 if and only if for some production
Zk --0 ZkiZk, e P and some s between 1 and i 1, ,both t(s, j, ki)
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and t(i s, j + s, k2) = I. Restating this in terms of the definition of
T, Zk' aj aj+1+1 if and only if there.qist Zkl, Zk2 e V E

such that Zk ZktZk, e P and for some s, 1 5 s S i 1, Zkt

aj .. aj +es and Zk2 4, aj+, . aj+i_i

Often the recognition matrix T .is- modified to be a two--
. dimensional ,matrix R whose entries are subsets of V E: Zk is in
the entry R(i, j) iLand only if T(i, j, k) = I. For a fixed gramma': G,
the modified mai% R can be computed from al ... a. in a number
of steps that is proportional to n3, and so the question "Is w in

L(G)?" can be answered in that amount of time; When the answer
is "yes," then a parse can be obtained by searching the matrix.

There are many variations on the recognition algorithm de-
scribed above,, some depending on the form of the grammar, some
on the type of machine used in 'implementing the algorithm, some
on the way the matrix is represented. One of the more recent
variations employs a- different representation of the recognition
matrix, a reduction of the computation of the transitive closure of a
binary relation to that of Boolean matrix multiplication, and "fast"
matrix multiplication techniques to obtain a running time on the
order of n2 +e,

A wide variety of parsing techniques are, discussed in Aho and
Ullman [3], [94] and in,Legs, Rosenkraniz, and Stearns [61]. A
careful analysis of the CoSe-kasami-Younger algorithm presented
in this section can be found in Graham" and Harrison [51].

6. VARIATIONS, ON CONTEXT;FREE LANGUAGES

We have noted, three characterizations of the context-free
languages: generation by context-free grammars, acceptance by
nondeterrninistic pushdown store acceptors, and "algebraic" rep
resentation in terms of a "generator," the Dyck set on two letters.

We now, consid &both extensions and restrictions of the context-
free languages based on these three methods If specification. Some
of the resulting classes of languages have eceived considerable
attention in the literature.

6.1. Let us consider restrictions of the context-free guages.
One approach puts restrictions on the form of the rules of a gram-

mar.
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A context-free grammar G = (V, E, P, S) is linear context-free if,
each production in P is of the form Z aYl where Z E V -
a, /3 e E*, and Y. e (V E) u {e }. A language L is a linear context-

free language if there is a linear context-free grammar G such that
L(G) = L.

The class of linear contextzfree languages is a rich class of
languages that plays 40,important role in the algebraic theory of
languages as well as in the study of languages specified by multi-
tape Turing machines. Every regular set is a linear context-free
language, the languages (wwR I w e {a, b).*) and (a"b" I 0) are
linear context-free but not regular, and the Dyck sets are context-
free but'not linear context-fr

The linear context -free la wages have a simple .algebraic
characterization. Consider a lin context-free grammar G
(V, E, P, S). Let the prod4ctions in e enumerated as r1, ...,
and let T = {t1, ... , tii,} be a set of m new symbols. Let R = (ti,

I n z 1, each th9re is a derivation Yo
Y y in

G such thatlo = S and yi, e E* and for each i = 1, n, ri, is the
production applied in the step yl_i yi). Let hi,' h2 : T* E* be
the homomorphisms determined as follows: For ri in P, if ri is
Z ccYfl, where Y e (V E) u {e }, then hi(ti) = ci and h2(ti) = fl.

It is clear that if ti, tin is in. R, then there is a derivation
S y in G with yr, e E* and hi(ti, tin)h2(tin

= 7...Clearly every string in, L(G) can be so represented. Thus,
L(G) (hi(y)h2(yR) I .y e R }. It is easy to see that R is a regular set;
in fact, . R is the language generated by the left linear grammar.
G' = ((V E) u T, T, P', S) where P' = (Z-0 ti Y I the production
ri in P is Z-4 ctYfl where Y e V E} u {Z-0 ti I 'the production' r,
in P is (5 where ö e E*).
dThe construction sketched above yields one part of the following

characterization.

THEOREM 6.1. A language '.L is linear context-free if and only if
there exist homomorphisms hi and h2 and a regular set R such
that L = (hi(w)h2(wR) I w e R).

Using Theorem 6.1 and the'fact that the class of linear context-
free languages is closed. under certain simple operations, one ob-
tains the following resullY,
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THEOREM 6.2. The class of linear context-free languages is the
smallest class containing {wwR I w e {a, b } *} and closed under
homomorphism, inverse homomorphism, and intersection with
regular sets.

It should be noted that the class of linear context -free languages
is not closed under concatenation or-finder Kleene * . Vor example,
{aabnambin I n, m Z I} is the concatenation of two linear languages
but is not itself linear context-free.

Now let us consider a class of restricted nondeterministic
down store acceptors that accept precisely the linear context-free
languages. These acceptors are restricted by allowing the push-
down store to make only one change from writing (pushing) to
erasing. (popping), during any computation. Thus, the read-write
head on the top of the pushdown store is allowed to make exactly
one "turn" or "reversal."

It is easy to see that if ,L is a linear'context-free language, then
there is a nondeterministic '`one-turn" pushdown store acceptor D
with, the property that L(D) = L. We use the representation
(112(w)h2(wR)1 w E R} for some regular set R and homomorphisms
h1 and h2. The pushdown store acceptor D readi the first part of
its input as h1(w), nondeterministically guessing a, string w and
storing w on its pushdown store while checking that w is in R by
simulating a deterministic finite-state acceptor for R in its finite=
state control. Then D empties its pushdown store while reading the
remainder of its input and checks whether this string is indeed
h2(wR).

To show that the language accepted by a nondeterministic one-
turn pushdown store acceptor is a linear context-free language, one
can use a "nondeterministic finite-siate-transducer," that is, a finite-
state acceptor, that is nondeterministic and that produces output.
The string written on the pushdown store before the pushdown
store makes its turn is the output of a nondeterministic finite-state
transducer, and the input read after the turn is made is the output
of another transducer whose input is the contents of the pushdown
store. The class of relations repreiented by such transducers is

closed under composition. If the set of input strings 'to a nondeter-
ministic finite-state transducer is restricted to a regular set R, then
the output is expressible as h1(h2 1(R) n R') where R' is another,.
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regular set and 111 and hi are homomorphisms. Applying Theorems
6.1 and 6.2 in this situation yields the following result.

THEOREM 6.3. A language L is linear context-free if and only if it
is accepted by a noindeterministic one-turill' pushdown store
acceptor.

In characterizing the linear context-free languages we restricted
the behavior of pushdown store acceptors by restricting the way
that the pushdown store's read-write head could move. Another
type of restriction thatone can make is ,to restrict the pushdown
store's alphabet to a single letter. The resulting acceptor is called a
"one-counter acceptor." The class of languages accepted by such
acceptors can be characterized as the smallest, class containing the
Dyck set on one letter and ?closed under hontomorphism, inverse
homomorphism, and intersection wifirtegular sets.

The class of one-counter languages and the class of linear
context-free languages are not comparable: {wwR I w e {a, b } *} is
not a one-counter language and the Dyck set on one letter is not
linear context-free.

If one considers pushdown store acceptors that are counters but
also are restricted to be one-turn, then one obtains the smallest
class of languages containing {anbn I n z 0} and closed under
homomorphism, inverse homomorphism, and intersection with
regular sets.

While numerous other subclasses of the context-free languages
have been studied, the classes described here are ubiquitous in
formal language theory arid' the methods used in defining and
characterizing them are typical of the restrictions imposed through-
out the subject.

6.2.,Now we Wm to the specification of classes of languages that
are not all COntext-free. We begin by considering specification by a
generative structure.

, , Al)
A rewriting system G = (V, E, P, S) alphabet V, a termin-

al alphabet E c V, an initial symbol S e V E, and finite set P
of productions (rewriting rules) of the form

W1Z1W2Z2.. Wt Zt Wt+ 1 WlY1W2 Y2 WthWt+1'

where each wi e E*, each Z1 e V E, each yi e V*, and there is
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some i such that yi 0 Z1. Define a binary relation =. on V* as
follows: for a, fie V*, if. p 0 is in P, then apfl = a0fl. Let 44

denote the transitive-reflexive closure of The language generated
by G is L(G) = {w e E* I S4. w}.

The notion of a rewriting system is very 'general. Productions
may rewrite more than one symbol per step and the new parts of
the string (i.e., yi's) may depend upon more than the single corre-
sponding symbol Zi . It is useful to consider restrictions on file form

, of the productions in a rewriting system. One restriction is to allow
':only one symbol to be rewritten .in a step. With this, restriction,

rewriting systems may also be viewed as generalizations of context-
free grammars.

This important extension of the notion of context-free grammar
is obtained by adding "context," that is, a symbol Z may be rewrit-
ten as :y only if Z occurs with the string cc on its immediate left and
the string # on its immediate right. Thus, a "context-sensitive"
rewriting rule has the form ocZ# ay#, and we distinguish between
the case where "erasing" is allowed, i.e., where y may be the empty
word, and where it is not.

A context-sensitive (without erasing) grammar is a structure
G = (V, E, P, S) where, y is an alphabet, E c V is the terminal

--alphabet, Se V E is the initial symbol, and P is a finite set of
productions (rewriting rules) of the form aZ/3-4 ay/3, where
cc, #, y e V*, y e, and Z e V- E. If the restriction that y e is
dropped, then the grammar is context-sensitive ,with- erasing.

Since context-sensitive grammars (with or without erasing) are
rewriting systems, the notions of derivation and of language gener-
ated by the grammar can be applied.

In a context-sensitive (without erasing) grammar G = (V, E, P,
S), there are no 'rules that decrease length: if 0 is in P,.then
P I < I 01. It is clear that if L is a context-free language and e L,

then there is a context-sensitive grammar G stich that L(G) = L.'
The following strate has been used to extend the definition. to
include languages ontaining the empty word. Let G = (V, E, P, S)
be such that is in P (so that e e L(G)), P {S--+ e} has no
erasing producti s and S does not occur on the right-hand
side of any production. in P (so that erasing cannot occur by
ocZ# aySc5# ay(5/1). Grammars with such a restriction are some-
times called "extended" context-sensitive.

A language L ins context-sensitive (extended .context-sensitive) if

C)
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there is a context-sensitive (extended context-sensitive) grammar G
such that L(G) = L.

While the restriction that a production of a rewriting system
Jewrite only one symbol/Or step forces one to consider only
context-sensitive with erasing grammars, there is no weakening of
generative capacity. A language is generated by a context-semitive
with erasing grammar if and only if it is generated by an arbitrary
rewriting system. A language is context-sensitive if and only if it is
generated by a rewriting system in which each production has its
ri*t-hand side at least as long as its left-hand side.

The hierarchy of grammars that goes from context-sensitive with
erasing to context-sensitive to context -fm to left linear context-free
(also called finite-state) is known as the. Chomsky hierarchy of
grammars. The correSponding hierarchy of classes of languages
corresponds to the four classes of languages that have been domi-
nant in the theory of formal languages: the recursively enumerable
sets, which are the languages generated by the context-sensitive
with erasing grammars; the context-sensitive (extended context-
sensitive) languages; the context-free languages; and the regular
sets, which are the languages generated by left linear context-free
grammars. ,

In Section 2 the class of recursively enumerable languages was
defined to be the class of languages accepted by, unrestricted Turing
machines. We have noted above that the class of recursively enu-
merable languages is thevlass of languages generated by.context-
sensitive_ with erasing gihmrnars. There are numerous algebraic
characterizations of this class but many of those of interest in the
study of, formal languages and abstract automata stem from
characterizations using automata. We will describe some. of these
characterizations as they arise in our strvey of automata.

The cl'ass of context-sensitive (or extended context-sensitive)
languages can be characterized by certain restricted Turing ma-
chines. A linear-bounded automaton is a Turing machine that is
restricted in such a way that in every computation the machine
visits only those tape squares upon which the input is originally
written. A language is accepted by a nondeterministic linear-
hounded automaton if and only if it is context-sensitive. This pro-
vides an automata-theoretic characterization of the' context-
sensitive languages.
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The class of linear-bounded automata', has a "universal Turing
machine theorem"; that 'is, there exists a linear-bounded automa-
ton U that will accept suitably encoded inputs M and x where M is
a linear-bounded automaton and x is an input accepted by
From this fact one obtains an algebraic characterization of the
context-sensitive languages in the following form.

THEOREM 6.4. There is a context - sensitive language Lo with the
property that for every context-sensitive language L. there exist a
nonerasing homomorphism hi,.a homoncorphism 11,2, and a regular
set R such that L = h1(h2 1(L0) n R)..

Both the class of recursively enumerable sets and the class of
context- sensitive languages are closed under many of the oper-
ations arising in the study of the contextLfree languages. In par-
ticular, both of these classes are closed under union, intersection,
and nonerasing homomorphism. The class of recursively enumer-
able sets is not closed under complementation but it is not known
whether the class of context-sensitive languages is closed under
complementation. Every context-sensitive .language is a recursive
set and every recursively enumerable set is the homomorphic image
of 'a context-sensitive language so that the class of context-sensitive
languages is not closed under arbitrary hotnomorphic Mappings.

Generalilationtof grammars and rewriting systems have been
obtained in several ways. One method is to regulate the way pro-
ductions.are applied, say by taking subsets of the set of productions
and imposing an order upon the members of each subset. Thus a
specified sequence of productions must be applied one after .the
other, and until .the sequence is exhausted, no other productions
can be applied. Another method of generalizing these systems has
been io _allow context to occur anywhere in 'the string, not neces-
sarily contiguous to the symbol being rewritten.

Within the wide variety of studies of generative systems in the
literature, one of the most fruitful in terms of mathematical ex-
plorations has been the study of "developmental systems and
languages," often called "L-systems." While originally. created to
model certain phenomena in developmental biology, it has,,become
one of the most vigorous parts of formal language theOry.., In.the
traditional notion of a rewriting system_ oroductions are applied-
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sequentially, one production applied at each step. In developmental
systems productions are applied in parallel. At each step every ,
symbol that can be rewritten must be rewritten.

The simplest type of developmental system is an "OL system."
An OL system G = (V, P, x) has an alphabet V, a finite set P of
context-free productions, and a string x e V* (e), the axiom. A
binary relation on V* is defined as follows:

If Z1, , Zk e V and for each i = 1, ,k, Z1 yi is in P, then
Z1 Zk Y1 ))1c The transitive reflexive closure of

is . The language generated by G is L(G) {w e V* I x 4.1
w}.

Thus an OL system has no distinguished terminal syrnFols andi.
productions are applied in parallel. fit

Consider the OL system G = ( {a }, {a aa}, a). In this.dasv'
L(G) = {a2" I In z 0} Now G has only one production but,VG) is
an infinite language that is not context-free. However a rewriting
system With only one production generates either a singleton set oft
the empty set:

There are many variations on the notion of an OL system and
both languages and sets of infinite sequences have been studied'.
Some of the language- theoretic results have been applied in the
-biological setting that motivated the original study and this area
has had serious impact on mathematical studies of growth and
form.,'

6.3. The method of specifying classes of languages that has
proved most fruitful for defining new classes is that of acceptance
by abstract automata. Starting with the definition of pushdown
store acceptors, we, can illustrate some of the methods used to

'define new classes of automata.
Recall that a pushdown store acceptor has an input tape that is

read in only one direction, a finite set of 'states, a pushdown store
that provides auxiliary storage, and a transition function that de-
scribes how the states change in accordance with the input symbol
currently read and the information obtained from the auxiliary
storagein this case, the symbol on the top of the pushdown store.
Further, both deterministic and nondeterministic modes of oper-
ation are considered. Thus we see that several parameters are in-

1.6k
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volved: (i) the method of reading input; (ii) the type of auxiliary
storage; (iii) the mode of operation, (iv) the number of read heads
on. the. input tape. In the case of automata that read the input only
in one direction, it is possible to allow still another parameter: (v)
whether the transition function may force the acceptor to read a
new input symbol at each step, that is, to operate in real time.

Consider a type of automaton obtained by varying one of these
parameters. An auxiliary storage tape that has the basic form of a
pushdown store but which can be read below the top without
erasing is called a stack. As with a pushdown store, a stack can be
altered only at the top, that "is, the read-write head Cari erase the
contents of a tape 'square only at the top and it can write only at
the top, but the read-write head of a stack can visit the interior of
the stack in the read-only mode. A one-way stack acceptor has an
input tape that is -read from left to right, a finite set of states, an
auxiliary storage tape that is a stack, a transition function, and a
set of accepting states. Since the interior of a stack may be read
without erasing, ,a deterministic stack acceptor can accept
languages such as {anbnc" I n z 1) and {wcw I w e {a, b} *}- that are
not context-free.

The class of languages accepted by one-way nondeterthinistic
(deterministic) stack acceptors has many of the same positive and
negative closure properties as the class of context-free (deter-
ministic context-free) languages. There is an intercalation theorem
for one-way stack acceptors that. allows' one to show that
an'bn2c"21n z 11 is a 14nguaie not accepted by such an automa-
Tn and hence that the class of languages accepted by one-way
ondeterministic (or deterministic) stack acceptors is not closed

under intersection. ,

,Since a pushdown store acceptor is a one-way stack acceptor, all
of the questions about ,nondeterministic pushdown store acceptors
that are undecidable (e.g., Is L1 = L2? Is L regular?) are also unde-
cidable when asked about one-way nondeterminisiic stack accept-
ors. The class of languages accepted by one-way nondeterministic
stack acceptors is a class of recursive sets and this class is closed
under arbitrary homomorphic mappings. Hence, the emptiness
problem is decidable. From the intercalation theorem one can
show that finiteness is decidable. As in the case of deterministic
pushdown store acceptors, the decidability of the equivalence prob-

1 6 -4?



146 Ronald V. Book

lcm for one -way deterministic stack acceptors (i.e., Are L(M1) and
L(M2) equal?) is open.

There are restrictions on the definition of one-way stack accep-
tors that yield classes of automata whose power of acceptance is
incomparable to that of the nondeterministic pushdown store ac-
ceptors. One such restriction is to forcc the stack to be "noricras-

hat is, the top symbol of the stack may be replaced by a
and symbols may be pushed down, but the .-length of the

stack cannot decrease. The language {1021 n z 1} is accepted (by
final state) by a onc-way deterministic noncrasing stack acceptor,
and the Dyck set on two letters is not accepted by any onc-way
nondeterministic nonerasing stack acceptor. Another restriction is
that the stack's contents cannot be altered once the read-write head
visits the interior of the stack for the first time; the resulting stack
is called a "checking" stack and a one-way deterministic checking-
stack acceptor, can accept the language {anbnc" I n z 1}:

Just as with pushdown store acceptors, one can restrict the stack
alphabet- to,be a single letter, thereby obtaining a (nonerasing,
checking) "stack counter." With any type of stack acceptor one
may further consider the number, of times t stack's read-write
head changes direction, obtaining "finite-turn" ) ("reversal-
bounded") stack acceptors.

Having taken, any of those variations of a stack as auxiliary.
storage, one may consider the different classes of acceptors ob-
tained by varying the parameters (i), (iii), (iv), and (v). In each case
the languages so specified are' recursive sets.

It is usually the case that a class of languages specified by deter-
ministic acceptors is closed under complementation if the a eptors
"can be made to halt," that a class of languages specified b nonde-
terministic acceptors is closed under union, that a lass of
languages specified by nondeterministic acceptors wit one-way
input is closed under nonerasing homomorphism, and that a class
of languages specified by acceptors with two-way input is closed
under intersection. If no restrictions are placed on the finite set of
states, then usually the class of languages specified is closed under
intersection with regular sets._

If an acceptor is allowed two separate storage structures, e.g.,
two pushdown stores or two counters or two stacks, then the re-
sulting acceptor may have the full power of a Turing machine

163
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unless some other festriction'is' imposed. For example, the running
time may be restricted by bounding it by a recursive function of the
size of the input. The study of abstract automata operating with
restrictions on such computational resources as running time or
amount of storage space fall into the area of computational com-

`plexity which will be briefly described in Section 7.

6.4. Many of the classe's of languages studied in the literature
share certain positive closure properties. In a number of cases, the
proofs that the classes are closed under these.operations are re-
markably similar. This has led to the devel4inent of a theory
emphasizing the study of classes of languages defined; by specific
collections of closure properties, of classes of languages
characterized as the smallest claSs containing a given base and
closed under certain operations, and of the relationship between
closure properties. of classes of languages an%1 characteristic proper-
tics of the behavior of abstract automata. Thi4theOry is mathemat-
ical and f 4s impact is on the theory of abstract automata
and the cory of formal languages as theories that are part orthe
mathematical foundations of computer science.

All abstract family of languages (AFL) is a class of, languages
containing at least one nonempty language and closed under non-
erasing homomorphism, inverse homomorphism, intersection with
regular sets,- union, concatenation, and Kleene + . A semi-AFL is
defined in the same way as an AFL except that closure under
concatenation and Kleene + is not required. An AFL (semi-AFL)
is full if it is closed under 'arbitrary homomorphism."An AFL (semi-
AFL) is (full) principal with generator L if it is the smallest (full)
AFL (semi-AFL) containing the language L.

By drawing upon the many classes of languages specified by
grammars or automata- or -examples, the various subsets of the
defining AFL operations have been studied in terms of their
relative independence. The class of context-ftee languages provides
an example of a full principal AFL (one-possible generator is the
Dyck set on two letters). The class of linear context-free languages,
is a full principal semi-AFL that is not an AFL (since it is not
closed under concatenation and Kleene +). The class of languages
accepted by one-way 11ondeterministic acceptors 'that -operate in
real ,time and thdtihave a finite number of counters as auxiliary

11 6
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storage (each such acceptor has a fixed finite number of counters,
but there is no bound on the number of counters that the acceptors
in the 'class may possess) is an AFL that' is not full and is not
pritiCipal; it is closed under intersection and under those substitu-
tions T Such that for any symbol a; 1(a) is in the class and T(a)
does .not.contairi

the study of abstract automata and formal languages, many
,types of acceptor's have been .defined in terms of the parameters
described above. The classes of acceptors that specify AFL are.
"abstract families of acceptors."

A storage schema (F, I, f, g), has a, nonempty set F,Of storage
symbols, a nonempty set I of instructions, a partial function f from
F* x to F*,..) {0} that determines how storage is to be altered,:;,.
at each step of an acceptor's computation, and a partial function

.from j* to the finite subsets of 11',' that specifies what information
can be >obtained from the storage in one step of an .acceptor's
computation. ,

The storage manipulation (write) function f is restricted so that
for each y in k..).{g(y)1 y.e r*}. there is an identity element 1), in r-
with' the property that f(y, =-- y' for ally such that y is in g(y').
Thiecondition provides a uhiform procedure forIllowing the stor-
age to remain unchanged while the acceptor manipulates the finite.;
state control-or reads input.

Thestorage.information (read) function g is restricted so that the
empty storage configuration is diStinguished from all other storage

..-,tonfigurations. ,i TY

For a,,,.storiage schema (F, I, f, g)- the abstract familyof acceptors.
(AF4)'defined by (I', I, f, g) is the class of all acceptors (K, E, (5, iio,
F) where. K is-a finite set of s tei, E is an inpUt alphabet, qc, e IC is.,
the initial State:, F .g_ K is the §et.of accepting states; and the transi-
tion function (5 is a function rom K x (E u {e}) x g(F*) into the
finite subsets of k x I such that {y j o(q, a, y) 0 0 for some q 'e K,
a e E u {e}} is finite: ° , . ' °

, - An AFA is a stOr ge schema together with all acceptors with
finite-state control,an a finite number of input symbols and auxili-
ary.st e, specffied by the.storage schema. Each acceptor has an

.., .,,.,..
e and a set of accepting states. ?\,-..ti.:

ass of nondeterministi4UshdOwn _stole acceptors defined
'is an AFA. The stciddge schema determines that the top

. ,..
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of the pushdown store is read at each step of a computation by
defining g(Z1 Zn) = Z1 for 1, each Zi e 17, and g(e)
storage' schema determines 'that only the top of the puShdown store
can be altered. The definitions of instantaneous description and the
"compute" relation for nOndeterministic pushdown store accePtors
provide examples of how these notions are defined for AFA.

For. each .AFL 2' there exists an AFA such that the-languages
accepted by final state and empty store by those acceptors that (i)
are specified,by this AFA, and (ii) operate in such a way that there

is a fixed finite bound On the number of consecutive transitions that
do not read new inpUt, are precisely all and only the 1,anguages in

If the AFL is fUll, then there 'is an, AFA with the same proper-
ties except that condition (ii) may be ornate yerSely, in just
this way every AFA ,specifies an AFL and every,AFA specifies a full
AFLwhen condition is omitted.

The formal definition Of AFA is cumbersome but, the concept has
given rise to some intuitive, descriptions of the behavim; of autb-

:, Mita that have been quite -fruitful in suggesting 'both teChniques
and results. The reader should consider the nonpterrnimstic push-
down store acceptors as typifying the concept of AFA.

'Since. only nondeterministic acceptors with one4ay input are
specified by the definition, of AFA, this theory 'does not provide a
framework for a comprehensive classification of abstract automata
studied in the literature. however; aspects,Of this theory have been
very, useful in studying clasSes .orlanguages specified by various
automata.

Many questiOns about classes of,languages have been studied in k.

forrnS of'AFL (and AFA):.. AFL clbsed under, substitution or re-
versal or intersection, 4F1. such that every language is Semi-lineaf,
AFL characterized as the smallest AFL containing some collection
of "bounded" language's (a language L is bounded if there is some
k > 1 and some strings y1, , yk such That {y1}*
etc. Perhaps the most fruitful application of this theory has been to
thestudy of subclasses of the class of context-free languages arid to
AFL and semi-AFL that have many of the 'structural propirties of
the class of 'context-free, languages. A rich algebraic theory, has
evolved through tbe_61131,,\of operators that produce infinite hier-
archies of ClasseS2Of language wheri applied without limit to a base
clasS. -

\
1

,-.
e /
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Some of the characterizing properties of AFL and semi-AFL and
some of the important examples of AFL and semi -AFL play an
essential role in the study of automata - based computational com-
plexity. A different abstract specification of certain classes of
langUages relating to the basic questions of automata-bsed com-
putational complexity is described in Section 7.

6.5.: The text by Ginsburg [37] offers background on subclasses
of context--free languages !mit for 'a broader treatment of classes of
languages one shOuld ;see the texts by Salomaa [82] and by Hop-
croft' and Ullman [58]'Certain motivation for some of this devel-
.opment can be found in Chomsky [21]; [23]. The study of
L- systems is enjoying great popularity among those working in
formal language theory. The text by Herman and. Rozenberg [57]
provides motivation and much. of the baSic groundwork. Stack
acceptors were introduced by Ginsburg, Greibach, and Harrison
[40] and much of the early work on stack languages, is summarized
in Hoperoft and Ullman [58].

Thei.lprimary reference on the .notion . of abstract -family of
languages is the memoir by Ginsburg, Greibach, and Hoperoft [41]
'while a secondary reference is the book by Ginsburg [38].. Exam-
ples of the rich, algebraic theory that has been developed, can be
found in papers :by Goldstine [42]-[44] and by Greibach [46],
[49], [50].

7.. COMPLEXITY CLASSES OF FORMAL LANGUAGES
;

The study of computational complexity :is currently the most
active area within theoretical computer science (see the article by
Preparata in thiS Study for a general discussion of this subject).
This area can be, approached in different ways: an axiomatic ap-
proach, "abstract" complexity, that is a part of recursive funation
theory; the study of classes of languages accepted (or functions
computed) by various models of "cOmpUtatioh with restricted re-
sources', and the relationships between-theseAasses; and the analy-
sisof specific algorithms and the coniplexii9 of specific concrete
functiOns or_p_rOblems in terms of restricted classes of algorithms.

In ',this section we focus on clasSes of formal languages specified
by abStract automata with restricted computational resources.
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1.1. In studying computational complexity one of the first tasks
is edefine the concept of computational difficulty (or complexity).
Such a definition requires a method of specifying or representing
algorithms as well as measure of cost that is applicable to that
method of specification. For example, if one wishes to define com-
putational difficulty by means of running times of programs, then
one must specify the class of programs allowed in terms of their
structure and atomic operations (or in terms of a formal program-
ming language) and bliOye individual steps are to be counted, i.e.,
what a step is and Ow much time a step takes.

One goal of a theory of computational complexity is to provide a
measure (or even. a definition) of the "intrinsic" complexity of a
function to be computed or of a problem to be solved. Thus one
would like to define the complexity of a function in a way that is
independent 'of the method of specification and the applicable
measure of difficulty. This goal suggests the need for formal com-
parisons between different models of computation and their various
measures of complexity.

Two quite different types of measures have been studied. One is
a "static" measure. The standard example of a,static measure is the
size of a program (i.e., the number of statements), a parameter that
does not depend on the input. On the other hand, a "dynamic" °
measure such as the running time of a program does depend on the
size of the input and thus describes the behavior of computations of
the prograni instead of its structure.

By studying these queitions in an abstract framework based on
recursive function theory, it has been shon that there exist func-
tions with no intrinsic dynamic complexity': For every program
that computes the fiinction, there is another program that com-
putes the same function but runs faster on infinitely many innts.
By studying certain- concrete problems, it has been shown that
there exist recognition problems whose minimum running times are
invariant (up to a certain factsir) under wide changes ofodel.

In the study of foimal languages and abstract automata, it ap-
pears that the most important questions concern recognition prob-
lems that are known to be not only recursive but even primitive
recursive (in fact, subelemetitary). We restrict the discussion here to
a description of the basic questions of automata-based compu-
tational complexity, focusing on multitape Turing machines as the
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basic model of computation and placing recursive bounds on the
computational resources of time and space.

7.2. The study of automata-based computational complexity fo-
cuses on the study of abstract computing devices, their or-
ganization and their computational power. This .work is aimed at-
understanding the dependence of computational difficulty on the
properties of the computing devices on which the computation is
performed.There are many models of computation and many com-
plexity' measures that have been studied, but the most influential
and widely studied model is the multitape Turing machine with the
running time of a computation (i.e., the number of steps in a com-
putation) and the amount of ,space used in a computation (i.e., the
number of memory cells visited) as complex-ity measures.

Given a model and a measure, one .wishes to characterize the
power of that model with respect to bounds on the measure. This
leads to the study of hierarchies of classes of languages accepted
based on hierarchies of recursive functions that bound the measure.
In the-case of multitape Turing machines, the possibility of hier-
archies based on the number of tapes has also been considered.

With the mode of 'operation as a parameter, the question of the
equivalence ;of the deterministic and nondeterministic modes arises.
With the, assumption that the nondeterministic mode is usually
morOpwerful (at least when considering classes defined by recur-
sive bound's on the time or space used by multitapeTuring ina-
chines), the question takes a slightly different form: When using the
deterministic mode of operation, what is the additional cost of
recognizing a language originally specified by a resource-bounded
machine operating in the nondeterministic mode?

Given a model of-computation, one may consider tradeoffs be-
tween measures. In the case- of Turing machines, one -wisles to
know how much space (time) is necessary to recognize a language
originally specified by a time-bounded (space-bounded) Turing ma-
chine.

While there are a number of other questions to be considered
when studying automata-based complexity, the themes just inai-
cated play a dominant role. We -turn to a brief survey of the known
(partial) answers to these questiohs.

0

First consider time-boundedcomputation. In this case we often
, -

1 6 j



SPECIFYING FORMAL LANGUAGES 153

restrict attention to machines that have an input tape that is read-
from left to right, finite-state control, and some finite number of
auxiliary "storage tapes. Without further restriction such machines
have the power of ordinary Turing machines and so the class of
languages accepted by such machines is the class of all recursively
enumerable sets. However a recursive bound on the running time
forces the, language accepted by the machine to be a recursive set.
For -this discussion such a recursive bound will be monotone in-
creasing and a "real-time countable" function: A function f is real
time countable if there is a deterministic multitape Turing machine
M such that upon input of length n, M runs for exactly f(n) steps
and then halts.

For any real-time countable function f, let DTIME(f) ( NTIME(f))
be the class of languages accepted by those deterministic (nondeter-
ministic) multitape Turing machines whose running times are
bounded by f. If. f(n) = n, then DTIME(f) is the class" of real-time
definable languages and NTIME(f) is the class of quasi-real-time
languages. The class of languages accepted by those deterministic
(nondeterministic) Turing machines whose running times are
bounded by a polynomial in the length of the input is denoted
by P (NP), so that P = Uk Z i DTIME(nk) (and "NP
Ur al NTIME(nk))

The classes DTIME(f) and NTIME(f) have been defined without
restricting the number of auxiliary storage tapes used by the ma-
chines. In the case of nondeterministic machines, it is sufficient too
restrict attention to machines with. only two auxiliary storage tapes
(where one may be a pushdown store and'the other a stack). In the
case of deterministic machines that operate in real Anne, the
number of storage tapes cannot be so restricted: For every integer
k > 1, there is a language that is accepted in real time by a deter-
ministic Turing machine with. k + 1 auxiliary storage tapes but not
by any-deterministic machine with only k storage tapes that oper-
ates in real time. For other time bounds it is not known vihether
additional storage tapes provide additional computing power.
However, if one is willing to sacrifice time, then one can restrict the
number of storage tapes: every language in DTIME(f) can be ac-
cepted by a deterministic machine MI with only two storage tapes
that operate in time f(n) log f(n) and by a machine M2 with only
one storage tape that operates in time MO'.
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Given a time bound f, how much larger must g be to ensure, that
DTIME(g) DTIME(f) is not empty or that NTIME(g)
NTIME(f) is not 'empty? Using the method of "enumerate and
diagonalize" just as it is used in showing that there are recursively
enumerable sets that are not recursive, one can show that if limn....
f(n) log f(n)/g(n) = 0, then there is a language in DTIME(g) that is
not in DTIME(f). It is known that one can do more in linear time
than in real time: there is a deterministic context-free language that
ig not' in DTIME(n). Thus, the case of real-time computation is
quite special since

U DTIME(cn) DTIME(n).
c > 0

However for any running time f such that limn-o n/f(n) = 0,

Uc > 0 DTIME(cf) --.., DTIME(f),. /
In the nondeterministic case things are. different. For any

-.7time bound f, NTIME(f) = H..../c>0 NTIME(cf). Also, if limnco
f(n)/g(n) = 0 'and -limns sup f(n + 1)/g(n) < op, then NTIME(f)
NTIME(g)

As noted in the discussion in the previous sections,_there are
classes of automata for which the deterministic and nondetermin-
istic. modes of operation have the same power of computation (e.g.,
finite-state, acceptors, unrestricted Turing machines) and there are
classes of automata for which the liondeterministic mode of oper
ation provides more computational power than the deterministic
mode. (e.g., pushdown store acceptors, one-way stack acceptors):
For any time bound f it is easy to see that

DTIME(f) NTIME(f) g_ U DTI M E(2a).
c>13

It is not known whether these inclusions are strict for any time
bounds' at all. Nor, is it known whether there is a time bound f such
that

U DTIME(f'`) = U NTIME(f
k 1 .4. k 1

While these problems .lave been studied in automata theory for
many years, they have received renewed attention due tothe in-
terest today in the study of P and NP and the many attempts to
show that. P NP. While many of those studying P and NP do so
from the standpoint of concrete complexity, there are a number of

1 71
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questions about formal languages and automata that are closely
related. For example, (i) a language L is in NTIME(n) if and only if
there exist three deterministic context-free languages LI, Lei and
L3 and a nonerasing homoinorphism h such that

n L2 n L3) =.L

and (ii) P = NP if and only if P is an °AFL if and only if
NTIME(n) g. P.

Now let us consider the effect of placing bounds on the mint
of space used in a computation. Just a h time bounds, a recur-
sive bound on the amount of space ullff in a Turing machine's
computations forces the language accepted by the machine to be a
recursive set. For this discussion such a" recursive bound will be
monotone increasing and a "tape-constructible" function: a func-
tion f such that f(n) z log n is tape-constructible if there is a deter-
ministic multitape Turing machine M such that upon input of
length n, M marks, exactly f(n) tape squares on the some one
distinguished storage tape and then halts, while visiting no more
than f(n) tape squares on'any of its storage tapes.

In the case of space-bounded machines, we shall consider multi-
tape machines with a distinguished input tape that can be read in
both directions (that is, an input tape with a read-only head that
can move both left and right). When the space bound f(n) is such
that f(n) z n, the ability-to read input in both airections during-a
computation provides no additional computational power. When
f(n) does not grow as fast as d(e.g., f(n) =- log n), the situation can
be quite different with the ability to read input in both direcfions
providing a great deal of additional computational power.

For any tape-constructible function f, let DSPACE(f)
(NSPACE(f)) be the class of languages accepted by those deWf-
ministic (respectively, nondeterministic) multitape Turing machines
whose work space is bounded by f. In the case f(n) = n, the ma-
chines are called (deterministic or nondeterministic) linear-bounded
automata.

The classes DSPACE(f) and NSPACE(f) are defined without re-
stricting the number of auxiliary storage tapes used by, the ma-
chines. In both the deterministic and nondeterministic cases, it is
sufficient to restrict attention to machines with only one auxiliary
storage tape.
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Given a space bound f, how much larger must g be to ensure
that DSPACE(g)DSPACE(f) is not empty or that NSPACE(g)
NSPACE(f) is not empty? Again using the method'of "enumerate
and diagonalize," one can show that,if limn a, f(n)/g(n) = 0, then
there is a language in DSPACE(g) that is not in DSPACE(f), so

tat DSPACE(f) DSPACE(g). Combining this result with certain
results on "simulation" and "translation," one can show that if

_limn a, (f(n))2 /g(n) = 0, then there is, a language in NSPACE(g) that
is not in NSPACE(f),so that NSPACE(f) NSPACE(g).

When we compare the deterministic and nondeterminiitie modes
of operation for space-bounded computation, again
we do not knolgvhether there is a space-bound f such that
DSPACE(f, = NSPACE(f). However, it is known that for any
space-bound r NPACE(f) g_ DSPACE(f 2). It is not known
wh9ther this inclusion is "strict or whether f 2 can be replaced by
f 6 for sorits e < 1 or by a function such as f(n) log f(n).

In thecase of the space-bound f(n) = n, the question of whether
DSPA (n) and NSPACE(n) are equal has received a good deal of
attention. e class NSPACE(n) is exactly the class of context-
sensitive (without erasing) languages and the question of equality of
DSPACE(n) and NSPACE(n) is usually referred to as the "LBA
problem" since Turing machines operating in space-bound n are
equivalent to linear-bounded automata. Thus,fthis question is-often
stated as follows: Is every c text-sensitive language accepted by a
deterministic linear-bounded au omaton?

Since for any space bound f, NSPACE(f) c DSPACE(f 2), we see
that Oka' DSPACE(nk) = UiZ NSPACE(nk). This class is often
referred to as.PSPACE.

A good deal of effort has been directed Coward the general
question of equality of DSPACE(f) and NSPACE(f) by focussing
on the special case where f(n) = log n. It is known that DSPACE
(log n) = NSPACE(log n) if and only if for all space bounds f,
DSPACE(f) = NSPACE(f) (recall that we required a tape-,
constructible function f to be such that f(n) log n). By using,
certain encoding techniques and by considering DSPACE(log n) as
a class of languages and examining its closure properties, the fol-
lowing statements have been shown to be equivalent: (i) DSPACE
(log n) = NSPACE(log 'n); (ii) DSPACE(log, ri) is closed under

Kleene + ; (iii) every linear' context-free language is in DSPACE
4

7



SPECIFYING FORMAL LANGUAGES 157

(log n); (iv) every language accepted by a nondeterministic erne-
counter acceptor is in DSPACE(log n).

7.3. In order to compare classes of languages, it is not always
inecessary to examine the entire class. Determining the inherent
complexity of some one language in the class may prOvide enough
information to determine the complexity of the entire class. For
example, to determine whether P equals NP it is sufficient to deter-
mine whether one specific language is in P. ,

A statement in the propositional calculus is in conjunctive normal
form if it is a conjunction of clauses where each clause is a disjunct
of propositional variables and negations of variables A statement '...-,
in conjunctive normal form is satisfiable if there is an assignment of
,truth values to the variables under which the entire- statement is

-"true," that is, under which every clause is "true." The set of state-
ments in conjunctive normal form that are satisfiable can be rep-
resented as a itiopolanguage Lo when the/ propositional variables are

,
e.

encoded as strings over an alphabet.
It is easy to see that Lo is in NP: A nondeterministic-Turing

machine (in fact, a nondeterministic one-way stock acceptor) can
"guess" an assignment of truth values to the variables in -a given
statement and then determine whether the assignment yields the
value "true" for the statement. All known deterministic algorithms
for recognizing Lo take exponential time; but Lo-has the property

that-Lo-is in_P_if_and only if P = NP. This result is established by
showing that for every language L in NP there is a function fi, such
that k can be 'computed by a deterministic Turing machine in
polynomial time. And ft- i(L0) = L. Thus one can reduce the
question "Is w in L?" to the question "Is fL(w) in Lo?" Suppose that
Lo is in P. Then there is some k > 1 and some deterministic Turing
machine Mo recognizing Lo and running in time Ilk. For an arbi7
trary language L in NP, one can construct a deterministic Turing
machine ML such that on input w, ML first com es fL(w) and
then simulates Mo on fL(w), so that ML accepts f and only if Mo
accepts fL(w). Thus, ML recognizes L and since fi, can be computed
in polynomial time, say time nt, ML runs in time I w it + I w l'.
Hence, L is in P. =

Any language L in NP with the property that tf- 1(L) I f can be
computed in polynomial time by a deterministic Turing ma-

/74
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chine} = NP is called NP-complete. Many problems from logic,
combinatorial mathematics, operations research, and the theory of
automata have been n-shown to be NP-complete when suitably' rep-.
resented as formal languages.

The discussion above can be summarized as follows.

THEOREM 7.1. (a) Some NP-complete language is in P if and only
if P = NP.

(b) The set of conjunctive normal form statements that are satis-
fiable is NP-complete.

Generally if 2' is a class of languages and is a class of func-
tions such that (2') S 2, then a language Lo in 2' is 2 '-
complete Or complete for 2' if (ff.- '( {W) = 2'.

We shall consider other important classes of languages and
problems (or languages) that are complete for these classes..

Recall from Section 2 that questions about regular sets are easily
decidable if the sets are specified by deterministic finite-state ac-
ceptors. When a regular set is specified by a regular expression, it is'
usually the case that a deterministic finite-state acceptor is con-
structed from the expression before testing membership, finiteness,
etc. Here we consider the complexity of questions about regular
expressions.

If E is a regular expression, let L(E) be the set of strings denoted
by E. For any alphabet E, let IN(E) = {L(E) I E is a regular ex-
pression over E such that L(E) E*). A. 'es:,

THEOREM 7.2. The language IN({0,1}) is complet8.--
NSPACE(n), and DSPACE(n) = NSPACE(n) if and only if
IN({0, 1}) is in DSPACE(n).

Theorem 7.2 says that testing whether a regular expression over
{0, 1} does not denote the set {0,. 1}* can be done nondeter-
ministically using linear space and that this test can always be
made deterministically in linear space if and only if every context-
sensitive language- (that is,.every language in NSPACE(n)) can be
accepted by a deterministic linear-bounded automaton.

The proof of ;Theorem 7.2 can be outlined as follows. Given a
nondeterministic Turing machine.M with exactly one tape and one
read-write head such that during a computation only that portion

1 7 5
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of the tape where the input is originally written is used, and given
an input stung w, construct a regular expression E over an alpha-
bet E such that w is accepted by M if and only if L(E).0 E*. There
is an algorithm to compute E froM M and w that operates in, linear
time so that the length of the expression E is bounded by a con-
stant multiple of the length of w. The regular expression E has the
form E1 + E2 E3 where (i) the regular expre'ssion E1 denotes the
set of strings that cannot encode accepting computations of M on
w because they do not beginwith the initial instantaneous descrip-
tion ofM on w, (ii) the regular expression E2 denotes the set of
strings that cannot encode accepting computations of M because
they do not end with an accepting instantaneous description, and
(iii) the regular expression E3 denotes the set of strings that cannot
encode accepting computations of M because they are'not of the
form of a sequence of instantaneous descriptions such that each
follows from thp previous one. Recall from Section 3 that the set of
"noncomputations" of a one-tape one-head Turing machine is a
context-free language; this fact;,was used to show that the question
"For a context-free grammar G, is L(G),equal to E*?" is undecid-
able. Here the-fact that the linear-bounded automaton M visits no
more than I w I tape squares in its computations on w allows one to
construct the regular ;xpression E3 Note that since w is given and
M is a linear-bounded automaton, each instantaneous description
in any of M's computatiotts on w is of length I w I + 1. The fact that
it is decidable whether M accepts w is translated to the fact that it
is decidable whether E is equivalent to E*, and Theorem 7.2 shows
that thik decision problem "costs" nondeterministic linear space.

It is easy to see that there is a function f that transforms any
regular expression E over E to a regular expression f(E) over {0, 1}
such that L(f(E)) 0 {0, ,1}* if and only if L(E) E*; f simply en-
codes symbols from t as strings in {0, 1}*. The function f can be
e.oinputed in linear time by a deterministic Turing machine so that
for any regular expression E, the expres§iOn f(E) has length bound-
ed by a constant multiple of the length of E. Thus, "Is L(E) not
equal to E*?" and "Is L(f(E)) not equal to {0, 1}*?" both have the
sante space complexity.

An algoptitlim that runs in linear time uses at most linear space.
ence, IIA10, 14) is in DSPACE(n) if and only if DSPACE(n) =

PACE(n).
0

7
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For any alphabet I, I* is a regular set; so Theorem 7.2 shows
that the question of inequivalence of regular expressions requires at
least nondeterministic linear space. In fact, this question is also
complete for NSPACE(n).

There are restrictions of the problem of inequivalencepf regular
expressions that are of interest. In particular, if the regular ex-
pressions contain no occurrence of * or if the alphabet is simply
{0), then the question of inequivalence is NP-complete. /

All of the questions considered so far have been directed toward
nondeterministic computation: One obtains either an answer "yes" ,

(or "accept") or no answer at a118 Thus we see that NP is closed
under complementation if and only if:the set of conjunctive normal
form statements that are not satisfiable is in NP, and the class of
context-sensitive languages, NSPACE(n), is closed under com-
plementation if and only if {E I E is a regular expression over {0, 1)
such that L(E) {0, 1} *), is _context-sensitive, These techniques
have also been used, to compare time and space.

Now we consider briefly the complexity of questions about
context-free languages. As noted in Section 5, the membership
question for a language specified by a Chomsky Normal Form
grammar is solvable in time n2+11, that is, every context-free
language is inDTIME(n2+e). Also, it is known that every context-
free language is in DSPACE((log n)2) and that there is a linear
context-free language L such that L is in DSPACE(log n) if and
only if DSPACE(log n) = NSPACE(log n).

There is a "harde'st" context -free language,ta language Lo such
that for any time-bound f, Lo is in DTIMEMIT and only if every
context-free language is in DTIME(f), and for any space-bound g,
to is in DSPACE(g) (NSPACE(g)). This language, a nondetermin-
istic version of the Dyck -set D2, Is complete rot the class of
context-free languages, where the function used to "reduce "' an ar-
bitrary context-free language to Lo is a homomorphism. That is,
{h-'(L0), '(Lo {e}). I h is a homomorphism) is the class of all
context-free languages.

A class of languages closed under inverse homomorphism and
intersection with regular sets is a cylinder. The smallest cylinder
containing a given language Lo is a principal cylinder with gener-
ator Lo . If 2' is a principal cylinder with generator Lo , then the
time or spate complexity of the membership problem for a
language in 2' is determined by the complexity of the membership

17/
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problem for Lo . Thus the class of context-free languages is a prin-
cipal cylinder, as are DSPACE(nk), NSPACE(nk), and NTIME(nk)
for any k. On the other hand, the class of deterministic context-free
languages and the class of linear context-free languages are not
principal cylinders, nor are P and NP.

Returning to the context-free languages, recall that the emptiness
problem is decidable. It can be shown that this question (when
suitably encoded) is complete for. P; in this case, the functions used
are computed by deterministic Turing machines that use at most
log n space.

7.4. Borodtn [16] has provided an excellent\ overview of the
study of computational complexity. The text by Aho, Hoperoft,
and Ullman [4] touches upon many of the topics studied in this
field. A pioneering paper by Hartmanis and Stearns [54] still plays
an impottant role in the study of automata-based complexity.

The real-time definable languages were studied by Rosenberg
[78] and the quasi-real-time languages by Book and Greibach
[15]. The hierarchy for deterministic real-time machines based on
the number of tapes was suggested by, Rabin [V] and established
by Aanderaa [1]. The hierardiy for deterministic machines based
on running times was established by Hartmanis and Stearns [54]
and improved by Hennie and Stearns [56], while for nondetermin-
istic machines Seiferas [86] strengthened the initial results of Cook
[27]:

The importance of the `1:' = ?NP" question was pointed out by
Cook [26] and underscored by Karp [59] Some connections be-
tween language theory and the "P = ?NP" question can be found
in Book [11].

Classes specified by space bounds have been extensively studied.
Hierarchy results can be found in. Hartmanis Sand Stearns [54],,
Stearns, Hartmanis, and Lewis [89], and Seiferas [86], [87].
Savitch [83] established the best result on deterministic simulation
of nondeterministic machines known to date. Translations between
classes specified by different space bounds can be fottnd in Savitch
[83], [8. ,and Book [12][14]. Problems relating to "DSPACE
(log n) = ?NSPACE(log n)" have been studied by Sudborough [90]
and MOnienf66]t,

The inherentooniplexity of questions about regular expressions
was explored ,by .Meyer and Stockmeyer [65] and extended by

1 7 6
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havelound useful tools in formal langttage Theory. are described in
:, a collection of papers edited by.Yeh [93] "

papetein formal language thelSry ate Published in a wide _variety
of journals,but in particular in the JoUrnal of Computer and ,Vstem,

a Sciimces, Mathematical System,*tyheory,-fid, Theoretical"Computer
Science' with,ot4sional papei-slin the Joui,n/ of the Association for

: Computing .MaChiniry, :SIAM M Journal of ((imputing, Acta Inforina-
tica, and- InformatiOn and Control. Many of the results are repSrted

- in'-various sympoSia but particularly in the annual. IEEE, Sympos-; .

i, ium on Foundations of Computer Science (forinerly;Iiiid IEEE
. iSymposium on Switching and Autoinata Ilheo0) and in' the Intei-

national Colloquium on Automaia, Languages, and Programming,
__sponsored by the European Association for Theoretical Computer.:
... Science. Papers in formal language theory have also been presented

. at the annual ``AC kg Symposi, on Theory orComputing and the
Conference on InfOrmation Science and'Systems.

Since 'this paper was first written, a number of important 'pub-
.

lidatiOns in formal language theory have appeared. Harrison [98]
has written:an introduction to many aspects of 4e ,field..Greibach (:,
[99] has written- a' schOlarly history of the early development of
formal language theory that illustrates how it developed from com- .
pUtational lingnistics nto a part of.theoretical coinputer3cience.-AT::-
bOok by Berstel '1100 developS:i the theoiy: of tontet-fiet
languages from Oin' algebraic standpoint by using the notion of
rational transduction. Rozenberg and -Salomaa-,[101T iitAvide :0:
MatheMatical develOpmeiit of L,systeMS, and Wood- [1021 ShOWsg-4
"how abstract notions of a grammhr are related'to '1].-sySteMsu. SalO:,,
,maa 1103] has brought together a number 'Of combinatorial '
properties, of formal languages in a delightfal-waw A sYmposium on .
formal loguage theOry was held in December J979 with the goat
dpntting past work into perspective and reporting' on the status. of
'Open problems The Proceedings [104] contains the texts of Ali:. Y
teen invited lecitifes which speak to these goals: ..

. .:.,
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FORMAL ANALYSIS. OF
COMPUTER PROGRAMS

Terrence W. Pratt

The,goal of this chapter is to provide a brief excursion into some
Of "the problems and results in the formal analysis of computer
programs. Most of the work ofttnterest is relarivgly recent, and
much is of a tentative and exploratory nature.. As with most (level-
oping research areas, there is substantial disagreement over even

attfie Central.questions are and how they should be approached.
giOfi7;a situation; it 'seems of little value to present any of the

-.:'current. formal theories in depth, as their value may be quite trans-.
itOry. Instead, an alternalive structure seems More appropriate:lari:':::
approaoh that begins with an exposition of the problems them:-
selves, followed by a survey of -some of the forMal approaches
the! solution ..6f these that are under (level° ent.

..,,course the rirlieiof:problenis to be solved' is considerabl this
!stifvey, fqurproblems have been chOsen the basis for discussion,
four problems that seem, to encompass ,a subg1antial part of the
work of interest. For the reader whose interest is aroused by any of
thelopics raised? 'the concluding section suggests further readings.

rhos twor ..#4*,SUp part by the National Science Eotitidtgion under
gran GR l5 f$ S8
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170 Terrence W. Pratt

1. PROGRAMS AND PROGRAMMING LANGUAGES *".6-r, -

A computer is a tool ordinarily used to perform quickly and
accurately sonie complex or tedious computationS. One has a set of
input data, upon which a well-defined sequence 61' operations is to
be performed to compute some output data of interest. In order to
specify the structure of'the input and output data and the, compu-
tation to be performed; a program is written according to the rules
of some programming language. The programming langUage is
simply a predefined notation for the specification of programs.

Let us take a particular problem and a program for its solution.
Suppose we wish to determine, to within a given accuracy, the
quotient of two positive real numbers, where the quotiept.Is be-
tween zero and one. The input data for the program l.y.it:set of
three numbers, representing the dividend, divisor, and'-the; desired
accuracy. The output data from the program. is a list of the input
datit followed by a single real num6r, the quotient. Figure 1 gives

.
ione program for making such a computation. The algorithm is one

deVeloped by Wensley [25]. The program is written in the pro-
grarriming languzige PASCAL, i.e., the notation used to express the
algorithm is, that of the PASCAL programming language [11].

FOUR' CENTRAL PROBLEMS IN THE ANALYSIS OF PROGRAMS
I.

Th e2cample program is neither particularly complex nor
olgrly psefulo yet whip off the central issues in the analysis of pro

;UO0E:eta-even .here. The four that concern us are the
lowing:

.

What does the'iii3tation mean? The first problem in construct-
ing a 'detailed'end. precise analysis of the program lies inthe nota-
tion, the programming language. The program is to be taken as
representing a set of instructions for a computer, but what are the
instructions, and what exactly is the computer being instructed to

07;For example, we see in Figurel the proiram segmentt.
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L. I

program Division(input,outptit);

var R,M,N,E: real;

function Quot(P,Q,E :real): real;

var : real;

begin A 0;

71. ,9,
,

Y 0;

while E 5 D do ;fp

begin

if P A + B then be

B:= B /2;

D := D/2

end;

Quot

biiin4reaci141; N, E);

R :=-- Quoti (11)",^N

write (111;;NE,.:'

FIG. 1. A PASCAL program to compute quotieents.
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cr Is the prograM correct? Presumably the program is intended
to compute home specified function, i.e., given a certain input data
set, it should produce the appropriate output data set. But does it
do so for the entire, range of input data, sets? Again it might.seem,

NI- and certainly would bdWed,; ihttt:4he'arisvier would "be readily
obtainable.. But again, the truth is far differentmost programs,
when originally designed and written; are incorrect, but the fact is .

hidden deep in the complexity of the program structure. Most of
the errors are detected only after a tedious, time-consuming, and
essentially at hoc, testing procedure; some are never detected at all.
A.centraloissue in the formal analysis of programs is that of provid-
ing methods for determining the correctness of programs dire

d. Is there a more.. 'eflicietit'' program tbemputelhe \sam
a wl? A final issue of Considerable importance4s--that-b1 fl
better versions of tne programprograms that represent the same
function but that have fewer instructions or are less costly in some
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other measure. Here we confront the question of whether tWOpro4*
grhMs compute the same function, i.e., after we modify'' the pro
gram, how can We be'sure that the new version still computes the

fiinctiOnas the"origifiao And if it.doeS, holiv can we be sure
that it is really better than the original?

All of these problems need and are amenable to `formal trgat-
ment.

3. DEFINITION_ OE PROGRAMMING LANGUAGES
. .

Let us now take up the problems mentioned in the previous'
section one by one, considering the problenISand difficulties en-
countered in the application of mathematics to each The first
problem is that of providing precise and complete definitions of the
programming languages used to write programs. Clearly, Without
such definitions efforts at careful analySis of programs to determine
correctness or efficiency must surely fail. First, a bit, of hi§tory will
,clarify why current programming languages lack precise definitipns.

Programming languages such as FORTRAN, COBOL, ALGOL,
and PL/I (to name just four of the many .hundredsjin existence)
developed primarily as solutions to a practical problem ;` as, simple
expedients. The practical problem was, and,still is, that computers
are very difficult to use directly. A typical Contuter.has,built into it
the capability to carry out programs of instructions written in a
primitive "Machine language." Typically the instructions iif/a.ina-
chine language consist only -of patterns of binary digits, ei, the
binary sequence oonoonl000000000totoioniopt may sense as

.--.an instruction to add two 'numbers stored in the internal .memory
:-..-

a the computer and store the result in a third storage location in
the same memory. Early users off' computers wrote programs di -..
rectly in such machinelanguages. However, the task was extremely
tedious and error prone'. It was soon recognized, that _better

nrr
"languages" for writing programs were. essential. He the general
purpose nature of ,cornputers was brought to bear: If was clear

IIIthat, once a bet otation for .writing programs was devised, a
. ,

§ingle program (w en' in machine language) could then be execu-
ted by the computer whose" functiOn' woad-be to translate the

instructions
,,,,,

am fKom the new notation into instructions in the..machine
e of the conaPinet:'ThetranslateclprOdam c1 ould then, in a

-,-
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second step, 13"t. executed by the computer to produce the desire
... computation Any.00rupctent prOgrammer.could.dciiisc a notatio4r.,
,. a ."progririming language," that would be suitable for his purposes,

1,-ic could then write- the appropriate tratislationprogratt to trans..:
late. his new 'Programming Ian ttge into machine, language, and
immediately his subsequent pi gramming could be entirely in the
new prograinniing langtiag e never again, or perhaps Only dc,
casionally; would need to go back to'. the diffieulties. of progrant
ming in. machine 'language. Once t -basic: 'concept of a compiler
.program, a program' to translate a program in one notation into a
program in a machine language (or another, already available, pro
gramming language), was grasped, and accepted,- numerous, pro-
gramming languages were designed and "implementee on- different
coMputers. SubseqUently, the need* to move grOgrarkis betw.een.dif7.)
ferent compUters and the need for programmers to communicate
with each other has led to some stanziardized languages, such as
FORTRAN and.COBOL, for which compiler programs are aVail-.
able on most computers.. . ,

For our purposes, the central fact about these programniing;
languages is the ad hoc method of their design' and definition. If we
ask, What is the meaning of this or that statement in,a program?
i.e., If I write this down, what will it cause the computer to do?a
precise answer isgenerally not to 'be found except in the following
way: The coinputer will perform those instructions prodUced by
the .compiler when it translates the given statement into machine
language. Since the actions the computer will take for each instruc-
tion are completely determined by' its internal structure (the
manner in which its circuits are connected), and the instruction's
produced by the compiler are completely determined by its internal
structure (i.e., by the actions generated by.instructions of the com-

,

piler prograin when it is executed by the computer), the "meaning"
. ...;in,4tritst.of actions to be taken by the computer is completely and

..4tiairi ,bigitotisly defined..linfOrtunately, it is quite impossible to
alge'.. Se.of this definition of the language as given by the structure

of t :'Computer and the compiler; both are entirely too compli-
cate' :.to be comprehensible., The computer may }eve millione4
circuits and the compiler may contain thausands of instructions.
Thusilike. the physicist who knows all the:laws of Inotion.yet kill
cannot Welt' the_ball we kriOw -the computation invoked by -a- ._. .L: ..-.:. MI' 'L : , . . . ,



10101A1. ANALYSIS 01 COMPU l'ItOCIRAMS 175

program is complply and precisely determined, yet we still cannbt
predict what thee' ogram will do. Clearly the defipition of a tiro..i
gramming language by a compiler. and computer' is, unacceptable;
its precision is of little valK

The value of a precise, complete, and intelligible definition6f4.-
,programming language was recognized early. The ,development of
adequate Mathematical tools for constructing such definitions has,.
been slow,:towever. 1..arge early successes were obtained in the
development Itfi'a, formal theory of the syntax of 'programming

AanguageS(aftOliic.discussed ifi another chapter),"most notably in
the theory'of context -free grammars and their derivatives. Thus it -

has long been posAble to give a precise, complete
;delinition of what it. is afloWable to write in a erc ,i0s, given,

language, which constructs are allowed,:and'Whiclf'aie.31,4; hOw the
statements are punctuated, etc. What has not been possible in any

accepted form is precise definition of the meaning of each
, statement or other syntactic construct.

A typical programming language may have from ten .tai fifty or
more different.. types of statements; declarations, expressions, etc.
The meaning of .each of these constructs is usually closely tied, to
the context in,which it occurs, so that thc same state `rent appear
ing in different contexts rcprcscnts a different,set of comp.utation).'
step to bc performed. Perhaps the most 'difficult aspect of defining
the semantics of a programming language lies in capturing the
notion of the "computational context" in which each Statement is
cxe

ornialodefinitions of the Semantics of programming languages
aye been based on a broad range of approaches. UnfortuntelY;

space constraints preclude e'en an example definitiog of a simple
langOage. A brief sketch of three differot apprOches must stillice4
to convey the flavor of somgvt the niNt promising approaches. A
final critique suggests so r& Of he difficulties with these.; ap-
proaches:. None has been accepted as a method for practical defini
tion of any large class of actual prOgramtling languages. InforMaV

. methods remain the standard for new langtiage definitions.

The "Abstract Machine" Approach.' The most straightforward
approach to the formal definition' of programming language's is
based on the notion. of an abstract machine (sometimes termed a
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virtual computer or executing automaton). An abstilict inac ne con-,
sistsibf: -

1,: a Se of states, each of which is a complex form structure
containing represgntations of idiograms and data;

2. a set of primitive opfrations on states (state tia sforntations)
that map 6,ne state into "next" state; /

3: a transition rule that zaps any state into a primitive oper-
ation, representing_the next operation to be ;applied, or into
the halt operation; and 1/

4. a subset of states that serve as initial states.

To complete the definition of a programming language, an abstract
Machine must be augmented by:

5. a formal langua#e,.,consiSting of c raet/er strings representing
syntacticalry valid programs'in th hinguage, tgually defined
by a forMalsrammar of some sort; nd

6. a translation function mapping ea h valid programt into an
initial state of the abstract machine.

. The formal language defines the/iret of valid programs in the
language. For, each of these valid progrems t14 function that it
cotnputes is determined as follovvs

1. First the prograrn is mapped into ,an initial state of the ma-
chine, by means of the translatichi function.

2. F,rom this initial state the transition rule and- primitive oper.:1,

ations of the abstract ma e define a sequence of.state transi
tions, first from the s ate to a next state and then from that
4ate to another following ate, etc. Ultimately either the halt oper:,
a,tion is produced, and th s the sequence ends, or the sequence may
continue without haltin . If the,sequence does end, then the final
statd in the sequence represents the result of program executiqn.

// i he inktial state is asstimed to contain die input data; the final state
'then contains the ou,lout data.

The Vienna Definition Language. The most widely known exam-
/ple of the abstrqct machine approach is the fOrmal system.known

as the "Vienna/Definition 'Language" (VDL). This approach was
developed by/the Vienna LaboratOry of IBM for use in the forinal
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-.definition of the language,P,L/I.,It hasbeeii used in definitions of
PL/I, ALGOL 60, and BASIc:ameog others.
I In a VDL 'clefinition'bf a programming language, each state of ,,
the abstract machine i§ represented by a finite tree with labeled

.

arcs, and nodes. The "state tree", that exists at any point during a
compatation 'Sequenci contains complete informatio about the
state of the ,cOnaputatietat. that point: It contains all the data
structures used by the program, the Program.text itself, various
"houtiekeeping" data structiireS needed to keep track of data names

' and/attributes, etc., and a "cotiti'orihbtree that contains the next
operation too be executed at any point together with any' pending
Operations. All this iformation is represented in the form Of
subtrees within the oierall state -tree.:, ... -'

The printernoperation% in a VDL abstract machine are defined
as tree trans ationS.that modify the state tree in . propriate
ways. The transition' rule is .straightforward: The' next i: ration tot,
be applied, given a current state tree; is,thenaperatici t' at labels a
terminal node of the control subtree in this current state: Usually
the control subtree hat "only a single terminal node, so, that the next\'
operation is uniquely specified, buVit, is possible for there to be
'Multiple terminal nodes, in which case the abstract machine bey .., .

comes nondeterministie: More than one sequFnce of state transi- . 0'
tions is possible depending on which of the4possible next &per-
ations is chosen for apPlicatioli to he current state.

-The initial states'of the abstract machine are define0 as follows: .

An initial state tree' has a number of invariant combonckts, pri-
marily representiqg elements of the state that are initially Zimpty..
The major variant component is the progr am textjubtree. This A .

44
cubtree contains the .program that is to be executed, represented as
an abstract syntax tree

i

derived from the ori4inal4r gram. The
abstract syntax' tree of a R. inogras essentially the pars tree,of the

4program with mo of the nonessential syntactic eleme s deleted
such:4s punctuati ;and a number of implicit specifications added, -,
such as default attributes for data stmetures.

Theeset. of valid programs in the language is.gledified W a
context-free grammar, and the translation from 'valid program to
the corasponding abstract syntax tree is defined by aitransl Hon
function i that maps the parse trees defined by the Vont free 1.

grammar into the appropriate abstract syntax trees. -, .-
i?
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TheSebott-Strachey Apprciach. 'A second, formal approach to pro::
gramming language definition attempts to_ ''directly describe, the`'
Meaninrof a prpgram in terms of the function, it computes...The

.,,foundations_ of this approach are due largely to Dana Scott and
thristopher.'Strachey. Conasely summarized, this approach is
basedon the.following constructs that differ fpni those used in' the
abstract inachine approach.:

1. :The Computation invoked by a particular program is still de
sciffbedin terms ofsh sequence of states, but the states now contain
bitly,the'clata being manipulated, not the program itself.

2.- States are donstructed from bOse sets, functions onAhese base
sets, higher-Order functions:over these functions, etc. A lattice struc-
lure is impOsestEn these sets,. and the functions depned must al be
"continuous-iii lan'applopriate sense on these ddlnains.-

3 The meaning.of t variduskatement types in"the languaseiis
defined directly, in terms of funclions mapping states into states
These definitions-typically will involve general recursive equation's
of the form (f). A unique'solution for Such systems of recursive
equations liroVided by a theory of feast fixed points; generalizing I
elle classical recursion result's of Kleen,e [12].

4. The overall meaning of,:a program is defined recursively, as
the application of the funcqon defined by the first. statement .in the
program to the initial state, followed by the, application of..the
remainder of the program to the resulting state.

5..S13ecause the meaning of a program is define,d directly an tennis
of its syntactic structure, ai:thg recursive composition. of the ffinc- '1

HOD§ defined by each of the' constituent statements of thb'program
in the written sequence; tfanIfers, of control from one statement to
another within the program (e.g' by goto or 'exit statements) cailse_

considerable difficulty., k rather 'complefoiliral structure called a
"continuation'is introdufe&to surmoun*this difficulty.

The resulting definition of a programming language in thisfor-.
malism is '-'a set of recursive equation§ over a set of syntactic and
seMantic doinains (ba-s,e set . the set valid vrogrnms in the
languages defined by a se of productions (equations) that eslen-
tially fortni a con,xt-freegrammar for the lafguage.

1,A61: 4 4
The i-loare "AxiOmatie Approach. lathes approach, the precise

definition of any sort of detailed "state" of Computation is avoid-
ed entirely. The meaning of a-statetrent in the guage is defined

A'
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terms.: of; axioms'ancl rules of inference, which allow, one to
'desCribe properties of the computational state (or after) exe-
cution of a given statement, given..known properties-of the state
after (or before) execution of thestatement. .

Two exdrnples will illustrate the technique:

1. Assignment axiom: Askiimeaa simple language With assignment
statements f the fo

Y: = F(X,Y, ) t
whose intended meaning is that the current -VIaldes of the variables
X, Y, ... referenced in the right=hand sid? are taken as argtnnents
for the function F, whose value is then assigned as'the new valtte of
the 'variable Y. An axiom that formaliies this meaning would'be:

{P(X,F(X, Y, - ), ..)) Y: ./{P(X, Y, . .)}

which is read: If p is a predicate (propositional form,u1a) specifying
relationships betWeen the values of the variables in the ,Current
state, and if p(X;Y, is true after execution of the assignment ,*

statement, Y: = ...), then we may deduce that
p(X,F(X,y, ...) was a 'true statement about the relationstips.
between the values of the variables before execution of thE
ment statement.

7. "While." statement inference rule.' Assume a simple language
with while statements of the form:

while B do S

where B is a predicate as above and S is a list of statements. .The
intended meaning is that the B is.to be evaluated using
the values of the variables in the current state, and if its value is
true, then the statementlist S is to be executed to produce a new
state, and the entire process repeated until the value of B in the
current state is false: The meaning'of this statement would be for-
mally defined by the rule:

{p A B}S{p}

{p} while ft da,S, {piA-1 /3}

which is read: If we can establish, for predicates p and B, thit
wheneVer both p and B are true before execution(of the statement I?

list S then p is true after 'execution as well, then we pay conclude
that whenever p, alone-is trim ',before execution of the while state-

1 9
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inent; 'WWI/ B S; that after execution both piatid `B must. be
true. 'Pre di ate'p is termedtne'loop

Sunirinify of the Pfoblem of Progrannning Language Definition.
1'N'one of the lechniquei for formal, definition of piogramMing
'languages has been entirely sii.ccessful. Various reasons may,be
.advanced'as to why this is so. On the one hand, existing Prograinf,

"thing languages are, almost without exception, far too, irregtilar.
semantically to adinit simple definitions. This irregularity is;largely
a result of the ad hoc method of their original definition.,Th\US they
are, in some sense intrinsically difficqlt to describe forma*. ;Equally"

,jrivortant in contributing to the lick of itt's ceess of forinal,
tionalIedIniquerhas been deep dislgreement as to the criteria for
evaluating these, techniques. Each .of the approaches mentioned

.:abOVehas-,been fairly successful.according to sorhe desiderata and
ha's failed accordinito others.

A brief sumrhary of some of the objections will suffice to illui-
tratez the-difficulties, without really doing justice' to any of them:

1. The abstract maChine approach introduces' a corriplex extra
player of definition. One cannot directly understand the meaning' of

a particular statemtnt in a program. Instead, the statement must
first be traced through a complex translation into a sequence of
operations for:the abstract 'machine,. and then the effect of these
operations must be observed: In additimi, the abstract, machine
approach seems to "overspecify" the lakuag6 semantics by speci-
fying details about exactly hbv? partic4ar- constructs are to be
handled; even though' this specification is irrelevant to the compu-
tation of.the output data.

2. Thkcott-Strachey approach avoids much of the detail of the
state structure, The meaning of a statement is defined directly in,
terms of its effeet on the current state; there is no translation step.
However, the definitions prOduced are 'complex and rather obscure,
due in part to fundamental problems with 'description orcommon
pr'ogramrning language constructs, ,articularlyAransfers of control

t and changes in the meaning of vari: bfe names.
'3. The Hoare axiornatic-appr,, .ch also provides direct semantic

definikns for statements a 'd
f

er syntacticsdonktvcts but suffers
even more severely from fficultips with description, of some

common: Oogramming language constructs, particularly'transfers
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of control, the meaning of, variable names, and data structures with
.shared storage. 4

4

4. THE FUNCTION. REIPIESEN'TED BY A PROGRAM
4-0

Any prdgram defindi a mapping from a family of input data sets
into a fainilY of output data setsti and thus, any, program defines a
function (pc. ,col*e.the range may be the empty set if the program
never Termivate. fora any' input).' It is natural to ask, given a pro-
gram, Wjat fUncition'does ircompute? Assume now that the Pro-

la-ngusage, has been carefully defined so that we May
igniitte,anyvqUeStio s of ambiguity in the notation. If vik knew what
fynetton the pro ram didiii fact compute (or represent), then' we

.could;, determin he orrectness ., of the program, i.e., whether it
cornputed4the .f ction c desired. The next section takes up this

iprOblem, the p b m of proving a' program correct. However, it is
'worthwhile to e the facile observation that any program rep-
resents a (Unction .,efore moving to the correctness problem.

are a i mber of characteristics of the functions rep-
resented:by pro: ms that Ilistinguish theM from most of the func-,
ions ordinarily seen in elementary, mathematics.) First, the func-.

tions computed are defined, almost Without exception, in terms' of
Cases-..:The family of input data sets is partitioned by the program
into a het of disjoint cases, and for each case tfie.program computes.
the output data set,in a different way. Of course the definilion of ,a

,.ft(nction iu terms of different cases is familiar from mathematics.
What is noteworthy .is the number of cases -treated: EVen a relL,
atively simple program with no loops is likely to consider 4undreds
of:different cases. It:the program contains a'loop, then the number
of Cases treated is pgtentially. unbounded.

Given a prograin,. it is 'straightforward?, to determine the cases
that theyprogram discriminates .and the computation invoked in
each case. Eavh different execution path, through the program cor-

k' t e..path itselfli.e., with computing values
responds to one? case. each path, part of the computation is
concerned with choosing
that are used at the next branch'point to determine the path along
which execution shouldcontinUe), and thus this part of the compu-
tation actually disCriminates the case into which the input data
falls: This part of the program is Usually termed- the control saws-

,

15-1d
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\.ture'of the pfosram. The remainder of the temputaiion along the

.c, path ig concerped with compu'ting the appropriate Output data If
one writes dOwn for each path the control part of eachpath and
the associate d coinpntation'of the output, then a descrilition of the/

`function, computed' may be derived.
The division program of Figure -;1 provides a/ good example.

vo- Figure 2 hews_ a paitial description of the cases treated by this
program and the output data computed in,each case. Since this
program Contains a loop, the number Of cases treated is potentially
.infinite, i.e.,Ithere are an infinite nuMber,of/different paths through
the program. ;

'61se Output Computed

E> 1 . R; =0

1/2 .< "E 5 I A Pi 2 R: = 0 + 1/2 = 1/2
1/2 crE 5 1AP < R: =O

1/4 < E A P Z (314)Q R: = 0 + 1/2 + (1/2)/2 = 3/4
1/4 < E 5 1/2 A Q/2 <t3/4)Q R: = 0 + 1/2 = 1/2
1/4 < 1/2 AV/ P < QI2 R: 0 + (1/2)/2 = 1/4
1/4 < E 1/2 A P < QI4 R: 0

1/8 < E 5 A P 2 (7/8)Q R: = 0 + .1/2 + (1/2)/2 + ((1/2)/2)/2 = 7/8
1/8 < 1/4 A (3/4)Q S P < (7 /8)Q R: = 0 t 1/2 + (1`/2)/2 = 3/4

Ft°. 2. The function computed by the program of Figure 1.

The assumption that the division program may treat an un-
bounded, number of cases is not realistic, of course. We do not
'expect,the value of E, the accuracy of the quotient, to be arbitrarily
small on any real computer. But even if we allow E to be no -

,smaller than 2T3,2 (certainly not uniealistic on many computers),
the number of cases treated by the program, although now finite, is
so large as to effectively preclude any case-by-case description or

\analysis.,
A second source of complexity.in describing the functions com-

e. puted by programs lies in the complexity of the control structure
computations that. disciiminate the cases treated by the program.
Thesetdse discriminations almost always,involve complex determi-
nations about the. sequence in which the input data is presented.
Thus the/various pieces of input data are not treated independent-

!
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ly, but, father, the rippearAncc of a certain piece of input data early
in the sequence causes a'changc in the way 'a later piece of data is
interpreted. Typically a substantial part 'of"the control sfructure of
a program serves to save the "context" created by early, data in the
input sequence so that it may be vsed to control the intecpretation
of the` later input data. Thus, if we wish to describe Oic function
computed by a* program in terms of the cases. treat(ed, then the
description of the casesmust iinclude these sequential.interdepen-
dencies in the input data. V

Yet a third source of complexity' lies in the presence of paths
through a, program that can never be traversed for any chbice of

'input, data.fdiThere are no such paths in the division program of
Figure .1' because for any pbssible execution paths there is in fact

soirchoice of input datathat will cause' execution to take that
h (ignoring the 'problem of a minimum value for E). Howeyei,

fewiprograms of 'even moderate size have this property. Consider
the prpgram of Figure 3, know,n as She 91- unction. The definition
of this function is: . -

For integcr input value X, the.value of the function is

JIB - 10 ifc > 100; and 91 otlierwisk

program Example (input, output);
var Xinteger;
function F9I(X integer):integer ;

.var AX:integeit
begin A: = X;

B: = 1;
while (A 5 100) oc(B 06 1) do

if A 5 100 then begin A: = A + 11;

B: = B + 1 end

else begin A: = A 10;

B: = B 1 end;

F9I: A 10

end; ,

begicad(X);

rite(X,F9I(x))
end.

FIG. 3. The 9! function.

200
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, l' 4
Note that the program contains many paths that can never be

traversed for any choice of input' value. Moreover, th(e control
structure of the program effectively con6eals the simplicity of the
function computed., It is difficult to determine that the descqtion
above is in fact an accur-ite description of the' function computed

,

from inspection of the program itself.
.. i\ Let us now return to the original problem: Given a program, can

\ we describe the function that it computes?.. The answer. is that,
\ while we cah do so, the description is likely to be almOst as con):

\ plex as the program itself. Even if the function has a simple defirii-
\lion, as with the 91-function above, the program' structurc. may

\ ,
e ectively hide the fact. But far morc likely the program will treat

k * interrelatedsu h a large number of cases, interrclated in such complex ways,.
tha no simple definition is possible, In fact, in many teases; the
prog nth itself may be ossentiany the simplest way we can think of
to de cribe the function precisely. Thus, ' although a program
(ilways\computes a function, we cannot presume in general that
such a function admits of a definition that is substantially simpler
than the Program itself.

\,..

.

%-)
5. PROVING PROGRAM CORRECTNESS

i
Once a prog am has been written, the next problem is Wh6ther it

is "correct," i.e., whether the program performs the intended cdm-
' putatiOn when i is executed. The traditional approach has been

Ialmost entirely adtoic; the program is' simply tested by being exe-
, cuted with some.example data sets, and the resulting output data is

inspected. If the out Put data is 'that desired for the given input data
in all the test cases, th n the program is presumed correct

The difficul .es,with program testing as a means of determining
correciness a easily seen, given our discussion of the preceding
section. Eac execution path through the program determines a
separate computation. In principle each of the possible pathstwould
need to beetested with each of the possible input dat4 sets before'
one could be sure' that the\program was correct. Of course the
number of cases involved in evens simple program is usually fdr
too large' to allow such exhaustive testing. ,

Program testing, then, is an ihadequate means of showing'that a
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program is correct.' NAt only is testing inadequate in theory, but
also in, practice: most computqr programs beyond the very smallest
contain errors, even prograrris that have been thoroughly tested
and , used for some years. These latent errors are an enormous
practical problem, and better means of assuring the correctness of
programs have been eagerly sought:

How can one formalize the notion of a program bcing "correct"?
Informally, the program is correct if it computes the desired func-
tion, i.e., if, for each of thb desired range of input data sets, the
program produces the desired output data set When executed. We
'need, then, a precise definition of the !unction that the program is
to compute!' Given such a funCtion definition, and given that the
meaning of the programming language has been precisely defined
so that the functiqn that the, program computes is also known, thcn
the program is correct if the function that it Computes is in fact the
giVen function.

Although this concept of program correctness is straightfoiward,
one is immediately mired in difficulties in attempting to apply the
concept to actual programs written in real programming languages.
Both the problems of the preceding sections come to the fore: First,
we usually do not have a precise, complete, and intelligible defini-
lion of the programming language; second, even if we did; the
function computed by the program is likely-to be extremely com-
plex to specify. If the specification' of this function desired is itself
almost as complex as the program in question, how can we be sure
that the specification is correct? Moreover, if we are to specify the
function desired, we must.have a precise notation for making this
specification. This notation must itself be defined.

The, general problem may, be restated: We havr two notations
for defining functions,.a specification language and a programming
language. Given a specification written in the' specification language
and a program written in the 'programming language, the problem
-Jew determine whether both define the same, function. If so, we
may say that the program is "correct," i.e., that it is a' correct
encoding of the specification. Alternatively, we might say that the
specification is 'a "correct" description of what the program com-
putes. Of course both program and specification may be incorrect
in the intuitive sense, in that neither actually represents the intent
of the person writing them.

'202'
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Formai) Correctness, liroofs of Program. A number of ap-
proaches have been studied to the probfeni of proving prograr's
correct. The most ,widely known is the inductive assertions,
proach developed first by Floyd (7]. References to other methods.
are given in the final section below.

In the inductive assertions, approach, the, usual specification..
language used is the predicate calculus and ordinary mathematical
notation. One gives an input predicate defining the doniain pf the
function represented by the program to be proved correct and an
output predicate defining the relationship between the input data
value and the output (btu .valuesri.c., defining the (dation com-
puted. In addition a loop invariant must be provided for each loop
in the program. A loop invariant is a predicate that is satisfied
whenever' the loop is entered from outside during program execu-
tion and that is also satisfied after each subsequent traversal of the
loop (i.c., after each execution of the statements within the loop).
From, these. predicateS and a precise definition of the. meaning Cif
the statements in the 41anguage, it is possible to 'prove that the
program is iii fact correct, i.e.,,that whenever the input data satisfies
the input pred'icate, the output data computed,by the program Will
satisfy the output predicate.

As an example of the technique, consider the division algorithm
of Figure 1. Since the main program simply calls the function Quot

. and prints' the result, we should concentrate attention on function
Quot. tithe-hree input values to Quor.are Q; and Ei. thenan.
appropriate input predicate would bpi: .

(0 5 P < Q) A (E > 0)

and the corresponding output prcdicat would be:

P/Q P/Q

where R is. the result computed by Quot..These two predicates
define the function that we wish the program to compute.

The next step requires that we provide a loop invariant suitable
for use in,the proof. This is the most difficult and creative step, for
the appropriate loop invariant) is oftel 'hard to find. An appropriate

P
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loop invariant, a predicate that will be true whenever oxecutlon
reaches the test E S Dia the beginning of the while loop is: k.

A.QxY
tl on. x (D/2)
D 2"14 for so,me integer k 0
P/Q D < Y P/Q.

The input and output predicates serve 1 to specify the function
that-the program is.to compute. To prove the. program corrcct, i,e.,
to prove that the program does in fact compute this function, we
proceed by proving three lemmas, or "Verification conditions":

LEMMA I. If the input data siitisfics the input predicate, and Ve*_
begin to exetute the program, then when We first reach thb while
loop,.the 104 invariant is satisfied.

LEMMA 2. If the loop invariant is satisfied and the'condition for'
mtccuting the loop is hlso satisfied by the current values of the
program variables,then after execution of the statements within the;
loop the loop invariant is again satisfied (for either of the two paths N.,.

through the loop). 9 is

LEMMA 3 If the loop invariant is- satisfied but the condition for
executing the loop-is. not satisfied by the current values of the
program variables, then after executing the statements following
the loop through the 'final statement in Quot the output value
satisfies the outpilt predicate.

. . _

To formally slate the lemmas requires .a formal)efmition of the
programming language, so that we have a precise conception of the
meaning of "execution " of the statements in the program. Of
course, we lack such a definition of PASCAL, the language use4tto
write the program of Figure I. However, since the. program is very
simple, it will suffice for this example to assume that the meanings
of assignment . statements and while statements are given by the
axioms stated in Se lion 3. The lemmas to be.proved may then be
written:

LEMMA I. If the three values read by the Read operation and
transmitted as parameters to Quot are the numbers p, q, and e, and

- .
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(0 s p < q) A 0) then (taking the loot; invariant and,substitut-
ing the values assigned to each of the variables in the preceding
assignments in the program of Figure 1):

qI2 = q x t1/2)

1 < 0 5 p/q:

the beginning of the while looprwe know that

E D
'A=ax Y
B = Q x (D/2)
b = 2' for some integer k Z 0

PIQ D < Y 5.PIQ

'then it is also true that (again substituting new values assigned
during execution of the loop):

A.+ B. Q x (Y + D12)
BI2 = Q x ((D/2)/2)
D/2 = 2" for some integer k 0
P/Q D/2 < Y + D/2 5 P/Q
A=Qx Y.
B12 Q x ((D/2)/2)
D/2 = 2" for some integer k Z 0
P/Q D/2 < Y 5 P /Q:

From this lemma we can conclude that if the loop invariant is
satisfied by one, set of values for P,Q, E, A, B, D, Y, and the loop is
executed, then the new values also satisfy the loop invariant.

LEMMA 3. If at the beginning of the while loop we know that

E> D.
A=QxY
B. Q x (D12)
D = 2-k for some integer k
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P/Q D < Y P/Q

then .

Proving these thiee lemmas would suffice to show that the pro-
, gram computes the desired results for inputs in the specified

domain, provided that execution ever terminates at all To corn-
plete the "prOof of the program' we must also show that program
execution always terminates for any input data satisfying the input
predicate. Such a proof. of termination is usually given separately.
For the example ptagram, execution can fail to terminate only if
the predicate in the while statement were to be satisfied on entry to
the loop and always thereafter, for some set of valid input data, no
Matter hov4 Many times the loop was executed. A simple argument
suffices to show such a situation impossible for this program. How-
ever, in general, proof of termination is nontrivial. This completes
the proof of correctness of the division program. As' an interesting
exercise the reader might edjoy,"proving" the 91-function (Figure
3) using the spification given in the accompanying text.

The conclutton provides references to fUrther, more complete,
discussions of tile formal theory of,correctness proofs for program&
Note how closely the problem of proving correctness is tied to the
problems discussed in the two preceding sections: We must have
both a good useable formal definition of the programming
language and a way of specifying_the function the program should
compute in order to state and prove the conditions for the'progiam
to be correct.

6. EQUIVALENCE AND TRANSFORMATION OF PROGRAMS

The fourth and final problem of this discussion is also one that
has generated a number of formal stud' . he problem' of opti-
mizing or improving a program' through transformation of its in-
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ternal structure. The need for such program transformation arises
in many application& The _most common case-is probably the need
to improve theseffisiency of a program, either through reduction'of
its storage requirements or through reduction of its execution time
Another set of useful transformations improve the internal siruc-
ture of a program to make it more intelligible.

The formal problem is easily' stated. Given a progranating
latiguage L, consider all the programs that may be written in L; the
set RI, . There is a natural equivalence relation definable on this set:

DEFINITION,: If P and Q are programl,
4

in RL ; then P Q P
and Q represent the same function, ix., iff P and Q are defined over
the same domain of input data sets and for each data set in this
domain, they produce identical output data sets.

Each of the equivalenceclasses will, in general, contain many pro-
grams, since therewill be many diffeient ways to compute, the same
function. 4

A transformation on programs in RL is a mapping from RL into
RL . A transform'ition, T, is valid if for any program P, P T(P),
ix., if the original and transformed programs both compute the
same function. Ordinarily the transformations of greatest interest
are the valid transformations that also produce an, improved pro-
gram according tb' some measure of program structure or per-
formance.

A general method for determining the equivalence of two pro-
grams in the set RL (for any given language L) would be a great
help. That - is, we would like to have a rule for deciding, given any
two programs P and Q in RL , whether P ^ Q. Unfortunately a
general solution to this equivalence problem is riot possible: Thee.
question is undecidable for any programming language. L b ond
the most trivial (see, e.g., Constable and Muchnick [3]).

Optimizing Transformations. Fortunately it is not necessary to
have a general solution to the program equivalence problem in
order to -develop valid transformations on programs. The largest
class of useful transformations is the class of "optimizing" trans-
formations, transformations that decrease the execution time or
storage requirements of a program. A few examples will suffice to
illustrate the sorts of transformations involved.



FORMAL ANALYSIS OF COMPUTER PROGRAMS 191

1. Mouitig constant computations ott of looks. Consider the pro-
gram "segment: , \

read(Z)

while X 0 Y do:i

begin

Y: = sin (X) + square-roat(Z)I

X: = .

Assuming that Z is not assigned a new value elsewhere within the
loop, then the,computation of

Is repeated on each execution of the loop, and yet its value is, .

always the same. If, as is often the case in large programst the loop
is executed many thousands or millions of times, the repetition of
this "constant" computation may use a substantial amount of exe-
cution. time. Such a computation may be moved outside of the loop
and computed only once, thus decreasing the execution time of the
program. An equivalent optimized program segment would be:

square-root(Z)I5

read(Z)

T: = square root(i)I5

while X 0 Y do



A formal proof that the transformed program is.functionally equiv-
-

alent to the original program reguirEs a formal definition of the
programming language. Even informally there are a number of
subtleties that must ,be comidered before onermay determine exact-
ly the conditions under .71lch the transformation above is valid.
Most notably, the functumiiguare-root may change. the values of
variables in,the program indirectly, through so-called "side effects";
In such a case, even though the value returned by the function. is
constant, the transformation may, not produce a functionally equfv-
alent program.

2. Eliminating computation of repeated subexpressions, Consider
the program segment: $

A[2*I + J]:='R'+ B[K,2*I +

R: = (24.1 + J)/W

The expression 2*/ .3' appears in three places in Um segment. If
this segment is within a loop-which is exetuted-many thousands-of--
times, then much execution time would be saved if the ialue of
2*/ +J could be computed only once each time through the loop
and this value saved and used in each of the three occurrences /
instead of being recomputed at each occurrence. The more efficient /,
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rem would then EC'

--\?1'EMP:'=-: + J
ALT EM11: = R + B[K,TEMP]

Under what conditions is this transformation valid? Again a pre-
cise definition of the meaning of the programming language is
needed. It must be proved that the value of the expression is the
same at each occurrence when .computed as in the original pro-
gram: Obviou'sly the values of variable I nd J must be known to
be the same when execution reaches each of the three occurrences
of the expression. Thus determining the validity of application of
this transformatam requires tracing the flow. of the computation
and the possible changes in values of the variables that may occur.

Many other optimizing transformations have been studied. Aho
and Ullman [1] provide a survey of these results..

. - .,

Transformations That Imj%ve Program Structure., A second
classaof transformations of intdrest 'are those that make the struc-
ture of a program more intelligible. Much of this work has been
motivate& by the problem of changing "unstructured" programs,
containing,many statement labels and goto statements transfeiring
control to these labels, into "structured" progr ins that have no

(T
labels and goto statements. The formal foundati s for such trans-
formations are Well established., Some of the earliest work was that
of Bohm and. Jacopini rt, who were able to show, that for ,every
programiin a simple,programming Panguage there was a function-
ally equivalent program_ that required only_siniple statement_se-___
quences and while. statement loops. In particular goto statements
and statement labelywere not necessary. Later work.has clarified
the situations in which such transformations ace poslible without
the introduction of new variables and condition I branching.
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.Kputh's :survey [1] provides_ a thorough introduction to

woik. 4 . ' I li
7. SUGGESTIONS-FDR FURTHER READING

this

Mariy methods for the formal degnittOrt of programming
languages have been developed: The iiapers in Engeler Id) and .
Bustin {-21], particurarly the survey by` Wegner [24], arOjaguseful
starting point. See also the earlier survey by DeBakk't [4]. An
integrated treatment of various formal approached is fobnd in a
paper bY Hoare and Lauer [9]. The Vienna Definition Language is
described in Wegner [23] and Lee [16]. The original -work. by the
IBM yiemia Laboratory is sumMarized in 'Lucas afid;;Walk [17].
Other approaches that ucgize abstract machines are/fOund in -the
directed graph models of the author [20] and Landh0,work based
on the lambda.calculus [14]° Tennent [22] provideS4 survey of the

;,,Scott-Strachey approach; see Milne and Strachey. [19] for a more
complete discussion. The axiomatic apprOach to Ilung defi9i-
tion is described by Hoare in a seties of papers [8)-11411.,:.,-,=-4IL

Much of the work on, proving correctness of "prokrarimc
?is

based
on the inductive assertions method suggested by Floyd [7]. Manna
[18]eprovides a good,surrey .of this and other approaches, together

a further bibliography: The survey by Elspas et al. [5] is also a
useful. starting point .

Optimization transforfnations for programs are surveyed in the
second of the two voluines by Aho and. Ullman [1].°L,edgard [15]
providesAan introduction to "structure- improving" -transformations
on progilms. Knuth's more informal survey [13] is also useful...

All of these topics are the focus for much current work aimed at
providing solid formal mathematical foundations for improving the
practice of computing. The newness of the field and the complexity
and ad hoc' nature of much of the current practice make such
mathematics botlia considerable intellectual challenge and an ex-
citing endeavor in which the results may haveimmediate and strik-
ing impact.
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COMUTATI0141AL COMPLEXITY*

Franco P. Prepai.ala

1. INTRODUCTION: OBJECTIVES AND MODELS

As noted by several authors, computational complexity is one of
the most rapidly developing areas of research in the- theory of
computation; in some enthusiast's words, it is at the heart of com-
puter science. Naturally; The phrase cOmputational complexity
means different things to different people,' and a rather sophis-
ticated taxonomy has emerged in the literature,,both according to
the research objectives and according to the specific problem areas.
Although the discussion of a classification scheme of the various
brands and facets of computationAl complexity is not the main
theme of this article, we shall now and then touch upon this aspect
in order to place in the appropriate context the notions to be
presented.

Sinceoancient Mimes people have tried to devise pCcedures for the
- solution of- specific °problems. Once a way to -solve- a-problem-is --

* This article; was originally written for this collection in 76. Only minimal
changes have been made to the original version, which reflects the state-of-the-art at
the time o writing. (Note added in proof.)
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. found, the difficulty of the task of obtaining a solution to an. in- . .
stance of the problem is assessed- on the basis of the tfforts it
involves, such as solyer's ;time, use of specific instruments, etc. The
desire to' give a. precise qntification of the difficult-y of a pro-
cedure,' or algorithm, betame particularly felt with the advent' of

,

gital computers, leading to, a discipline called "computational
complexity." As an incidenta -remark, the phrase "degrses.of diM-
culty" was the technical,- xecursor of tketfortunate expression

- "computational complexity,"introduced byllartmanis and Sterns
in 1965 [1].

Complexity is ctearly a measure of effort, that is, of cost. Cost, on
,the other" hand, is precisely quantified in the context of the model

, which is selected for carrying out computation. The ....0oice of the
computing model essentially reflects the viewpoint and the flavor of
the analysis, as we shall see below. In all models, however, com-
plexity is measured by the usage of "resources" required by a speci-
fic computation. These resources are,. broadly speaking, time and
space. Time is frequently expressed as the number of conventionally
defined steps required by, the computing deVice in order to com-
plete the computation. Space may assume different connotations,
such as the n mber of required memory locations in a somewhat
idealized com er, the required length of the tape(s) of a Turing
machine, or, as is The case in models of parallel computation, the
number of individual processors simultaneously cooperating for the

Nq
completion of a computing task. -

:-The most abstract approach, known indeed as abstract compu-
tational complexitY [2], [3], aims at a theory of complexity which is
,machine-independent. It concerns essentially the complexity of all-
possible computations, that is, the computation of all partial recur-
sive functions frotri the integers to the integers. Its results, which
hold' essentially for any measure -bf complexity and for any com-
puting device, are inathematically very sophisticated' and some,
times sure sing,. but are not particularly, relevant to the applied

worker--wlit is seeking -a- solution of a_specific .problem_on_a con-______
ventional computer. .

All the other approaches constitute what is known as concrete
computational complexity. Since we shall not deal with. the\ abstract
approach, we-shall hereafter omit for brevity the attribute "con-
crete." in this brand of complexity, which is by far the one which

214
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has attracted the greatest 'research interest, specific models, of com-
putation are selected for a definition of measures of complexity.
Without analyzing the various interesting shades which have been

. considered, the two most' prominent models are the Turing ma- ,

chine and a suitably idealized version of the. digital .computer
(Random access machine (RAM), Randoin access storea program
machine (RASP), etc., discussed in [4, Chapter- 1]).

The., advantages of the Turing' machine model 'are the simplicity
of its instruction set, the well-definedness of its computation "step,"
and the reasonable assumption that all steps have identical dura
tion; these facts greatly simplify the assessment; for example, of the
amount of time taken by a Turing machine to complete a given.
task. On the other Aand, real (or, realistically idealized) computers
have a muchpore complex instruction set than a Turing machine,
and, although simulation of any computer by a Turing Machine is
possible, very -complicated Turing machine programsi may be
needed to simulate single. computer instruction*,Thus analyses for
the Turing machine may' lie-scarcely, signifie0 forOrie applied

nanalyst, except for problems whose know Ration- algernhms re-
quire such an inordinate amount of time that replacing a Turing
machine with an actual computer does not change the order of
magnitude of the complexity; we shall reconsider this class of pro-
blems later in this section.

A great part of the curreneyesults, and particularly dime which
are of interest to the computer practitioner, make reference to
models whose repertoire of elementary operations resemble those
of conventional computers. One immediate difficulty is that, he
order to be as realistic as possible, each instruction should be
assigned a specific execution time. One could, of course, follpw this
approach and develop on paper, in a very detaileii fashion, a
"pedagogical computer," such as the well-known \MIX used
throughout Knuth's work [5]; and there are instances, as we shall
shortly see, in which such detailed analysis is the only reasonable
approach. In most cases, however, one contents oneself with an
analysis that gives as a measure of complexity the number of times
some selected key operations are performed. when running an algo-
rithm, the justification being that the tiTe actually required by the
algorithm is proportional to that numBer. The choice of the key
operations greatly varies from application to application. For ex- ,

Y-24
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ample, for sorting, merging, and pattern-Matching algorithms, it is
natural to use the number of two-element comparisons as a meas-
ure of complexity; in numeric or algebraic applications, one consi-
ders the nu p.ers of arithmetic operations, such as.addition, multi-
plication, d division; and so on. requently, however, since the
execution of a program consists of concatenation of two types of
processingstraight-line sequences d loops of instructionsand
the bulk of the time is customaril iattributable to thy-loops, one
may ignore the time taken by stra kht-line sequences and simply
count the number of times loops are executed.

A simple example may clarify this point. Suppose we Want to
design an algorithm to test whether a given positive integer n is

prime or not. For simplicity, assume that the word size of our
computer is sufficiently large to contain the, representation of n. A
naive solution involves testing tbe divisibility of n by any integer j
such that 1 < j < n; n is a prime if and only if n is not divisible by

any such j. This approach gives the following algorithin:

1. If n = 1, 2, then n is prime; halt.
2. Set j 2.
3. Whileij < n do:

J.4. Hirt is divisible by j, then n is composite; halt.
15. Let j j + 1.

6. n is prime; halt.

Clearly if n is mime, the loop consisting of steps4 and 5 is executed

(n 2) times, Atereas steps 1, 2, and 6 are executed exactly once.
Notice that either step 4 or step 5 may involve several computer
instructions, although a fixed sequence in both cases. Thus the total
running time is proportional to the number of times the loop is
executed: A less trivial approach to this problem is based on the
consideration that a composite integer n is the product of two
integers j1 j2, the smaller of which cannot exceed the value \frt.
this leads to a variant of the preceding algorithm, where step 3 is
replaced by_ "while j2 < n do." Notice that, in this formulation,
N.ven n is prime the loop is executed approximately times,
although the test "j2 < n" involves squaring the index j and is
therefore somewhat more complicated than the test 1 <.n." We
clkbserve that, without referring to a specific computer, we are
ub.le to quantify upper-bounds to the times taken by the two
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.
algorithms for a specific n; we can say, however, that the variant
ruris fdster than the original procedure, and, specifically, that the
running times "grow like n and .," respectively. This-determi-°
nation of a. "rate -of- growth" or "order of magnitude" of measures
Of complexity of an algorithm,. ether time or space, as functkons
of the input, is a central featur f computational- complexity and

n,
deserves some additional attention..

A compleXity measure(or analgorithm is normally expressed by
a, function 0( ) of some significant indicators, which specify the
"problem size." No general definitioh of problem size is possible,
since the latter essentially depends upon specific characteristics of
the mathematical objects constituting the problem input. For ex-
ample, we have seen that, in a.test for primality of n, n itself is
taken as the problem size; in graph problems one may take the
number v of vertices or the number e of edges .of the graph, or the ,

41 pair (v, e); in matrix problems, one usually takes the order of the-
matrix, and so on. The only characterization of probleni size which
has a vague appearance of generality is the number of items in the
input set (called the input size), since this choice is natural for a

Viarge number of prOblems. In some cases, the input size is given by
the number of bits required to express the input set. With 'these
precautions, we now assume that a single natural integer n specifies
the problem size. Then, according to a recent proposal by Knuth
[6], we say that some complexity measure 4)(n) of an algorithm is
O(f(n)) (read "of order (at most) f(n)," for some function f( )j, if

LAhere exist positive constants C and no such that I 4)(n)1 5 C f(n) for'
n > no.* The, "0" notation (also called "big-oh") refers to an
upper-bound to the complexity measure; thus, when we want.to,
refei to a lower-bound, we shall use the notation fi(f(n)) (read of
order at least f(n)") if there exist positive constants C and no such
that 4)(n) ,... C(f(n)) for n _. no . Obviously, these definitions apply
when n--, co and are therefore called "asymptotic measures."

') The consideration of the order of magnitude not only allows one '.

to ignore the particular, value of the constant of proportionality
between th actual running time and the function f(n), but, more

* According to current jargon, sometimes the phrase "an 0(1(n)) algorithm" is
used with the meaning of "an algorithm whose complexity is O(f(n)).7
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important, allows the comparative evaluation of the asymptotic
performances of several algorithms devised for a given problem.
The asymptotic behavior of algorithms is very significant because it
determines the choice of the algorithm when the input size becomes
very large. For rather small 'values of n, however, this approach
must be taken with some discretion, since in such cases- itis the
actual running time and nlit its order of magnitude which deter-,
minesoThe choice of the algorithm.

When discussing the algorithms for testing primality, we esti-
mated the largest value of the running time, whiclioccurs when the
integer in, is prime; however, shorter tithes occur when n is com-
posite. Our simple analysis of those algorithms obtained a "worst-
case" measure of complexity. The performance of an algorithm can
be evaluated either on a worst-case input or on an average-case
input, assuming some distribution over the set of possible inputs.
Both types of analyses are significant; 'a large majority of -the
known results, however, are worst-case analyses both because'sup
analyses are normally simpler and because, but for a few case
there is little agreement on the choice of the probabilistic model.

The preceding discussion merely sketches thtmain features of a
important aspect of concrete computational comAxity, known as

algorithm which
bound to the

which may be
nalysil- is the

'dctive is the

analysis of algorithms. The performance of
solves a given problem implicitly provides an
performance, or complexity, of the set of al
devised for that problem. Closely related
research effort known as design of algorithms,
development of procedures for the solution of a gi 'problem, so
that their performance is provably superior to that of previously-
known algorithms. A complementary aspect of computational com-
plexity is the determination of lower-bounds to the performance of
any possible algorithm for a given problem. Clearly, when the two
bounds come close or, better, coincide, one has discovered an opti-
mal algorithm, i.e., one has obtained a characterization of the in-
herent difficulty of a aoblem. One must readily add, however, that
this fortunate event occurs only for a small minority of the pro-
blems considered and that researchers in this area are much more
skillful in designing and analyzing algorithms for a specific problem
than in proving their optimality.

Finally, to provide an appreciation of the great development of

2 1 d
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this research area, we simply list die following facts, which hold at
the time of this writing: four specific tgxtbooks [4]; [7], [8], [9] are
available and more are announced as forthcoming; not to mention
Knuth's monumental work [5], which can be appropriately con-
sidered as an encyclopedia of computational complexity; journals
of theoreticat computer science devote increasing attention to corn,
putational complexity, and so do several prestigious symposia. In
consideration of these extensive developments, even a survey of the
field would be a project largely exceeding`the scope of this article.
Therefore, in order to concretely illustrate some of the approaches
and techniques used in this field, we shall confine ourselves to, thp,,,
case-study format and describe in some detail some significant re.'
sults in several problem areas.

None of the case studies planned for discussion concerns the
so-called NP-complete problems, mainly because of the very exten-.
sive and rapidly growing literature on this subject (see, for example,
[4], [9] and the excellent textbook by. M. Garey and D. S: Johnson
[23]). However;due to the central im.portance of'this topic in the
theory of computational complexity, we cannot clo,se this introducr
tory section without rnentiiiig some of its salient aspect-S.
several years computer scientists and practitioners have been con-
fronted with very -difficult problems, mainly arising in combi-
natorics, operations research, and graph theory, such as problems
of scheduling, aSsignment, sequencing, etc. All these problems
appear to require an inordinate amount of time for their solution,
specifically a number of comptilational steps exponential in the
input size. More recntly, through the combined efforts of S. A.
Cook [10] (who pioneered the topic), of R. M. Karp [11], [12],
and of several other workers, it was shown that Ihnost all the
classical combinatorial problems reputed to be intractable. are
equivalent in the sense that, if one of ,them is solvable by a
polynbmial-time-bounded algorithm, all of "them are The equival-
ence is based on the fact that any problem in that class can be
reformuiated as any other problem in the class by means of a
transformation which requires at most a polynoinial time Thus,
since the transformation; albeit complex; can be carried out in
polynomial time, it is ensured that the distinction between an
exponential-time effort and a polynomial-time effort is preserved
through the transformation. This justifies our earlier, remark, that
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the Turing machine is an appropriate computation model for this
class of problem& The term "NP-complete" is an abbreviation of
"nondeterministic polynomial-time complete," where noneetermi
rustic polynomial-tinje means that there exists a nondeterministic
Turing machine' fdr solving the problem (or, equivalently, a back-
track search algorithm of polynomial-bounded depth for that
problem), and complete refers to the mentioned problem transfor
mability. The interested reader should consult the cited references

to familiarize himself with this fascinating topic.

2. A COLLECTION OF CASE STUDIES

In this section we shall examine' in some detail some
.reselitative problems from different areas. Although the, coin
objective is' the design of algorithms which are .either optimal or
Whose complexity measures impiove over previous resultsii none-
'theless in each particular problem area conventions, measures of
complexity, and techniques have 'a distinguishing flavor. Hopefully,
the common features as well as the dissimilarities will emergefrom
the following presentation.

2.1. Multiplication of Integers

2. 1. 1. GenCralities. The problem of multiplying two integers falls
in the area of arithmetic' or numeric computation. The two oper-
ands area assumed to be given as two sequences of n digits each,
and, without loss of generality, we shall assume the digits are
binary. Since ''n may be arbitrarily' large, the operands cannot be
stored in the memory of the computing device. Therefore the natu-
ral model for thilype of problem is -a tape machine with a bound-
ed memory, which, for that matter, could be a Turing machine. The
computational steps, to be counted are conveniently chosen as op,.
erations with operands consisting of one bit each This choice may

appear a little, artificial at first sight, since the arithmetic instruc-
--,tion&-of any practical computer act an strings of several'bits; how-
, ever, when the operand size is much larger than the computer word

size, our siniVification will only change the computation time by a
multiplicative constant. These elementary operations are usually

referred to as "bit operations," to, contrast them against "arithmetic
operations" which act on word size operands.
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The simplest and best-known procedure for integer multipli-
cation is the so-called "schoolboy method," which consists of the
addition of appropriately shifted partial products: Thenumber of
bit operations is clearly 0(n2) .for operands of length n, since there
are n partial products, each of which consists of n bits. This method
can be speeded up by the following modification. Let

A E.' an_ a._ 2 . ao and B bin - bn - 2 bo

be the two operands and assume, for simplicity, that n is even. We
split the sequence an _1 ... ac, into two halves a._ ... an/2 A 1
and a (1/2) 1 . ao Ao so that A = Al2"/2 + Ao and do likewise
for the operand B. Then we have

AB = A11312" +.(A1130 + A0131)2"/.2 + A0 Bo. (I)

This expression indicateis that the multiplication of two n-bit oper-
ands is reduced to four -multiplications of two (n/2)-bit operands,
with no apparent computational advantage. Suppose now we com-
pute the functions

C = 1A B , Co = Ao B and = (A0 + Al)(B + B1);0

next we 'note that A1130 + Ao B1 = C2 Cl Co, i.e., the three
terms of the expression (1) can be computed with three multipli-
cations and four additions of (n /2) -bit operand& It is easily realized
that addition can be done in a number of bit operations which is
proportional to the operand length. It follows that, denoting by
M(n) the numbei of operation,s or, briefly, the, time to multiply two
n-bit operands, we obtain a recurrence equation

M(n) = 3M(n/2) + 00),

which definesoM(n). The solution of this equation is obtained 'by
standard methbds and is found to be M(n) = 0(eg23), which
shows a substantial improvement over, the naive schoolboy
method. Incidentally, we have just seen an instance of the "divide-
and-conquer" technique. This technique, which is widely used in
the design of algorithms, consists in reducing the original problem
to a .collection of simpler problems.-

Before trying to push further the previous approach, let us take a
critical look at what we did. If we replace the number 211/2 by an
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indeterminate x in the expressions (Al2"/2 + Ao) and (B12"/2 + Bo),
we map the Integers A and B to two polynomials (Aix + Ao) and
(B1x + Bo), respectively. Thus the terms A1B1, A1B0 + Ao B1, and
Ao Bo are the coefficients of the polynomial C(x). A(x)B(x). Each
of these coefficients is an n-bit binary number, and, when 2n/2 is
substituted bafjc ,for! x, the relative alignment of their represen-
tations is as shown in Figure Thus, the product AB is obtained
by, adding these three numbers as shown in Figure 1, and this
operation is normally referr d to as "releasing the carries."

We have therefore transf Lined an integer multiplication oper-
ation into the followingl,seg1 nce of operations:

1. Multiplication, of two polynomials.
2. Release of the carries.

As we shall later see, the carry release is a simple operation
which can be done in time proportional to the number of bits of
the result. Therefore, we shall-concentrate on polynomial multipli-
cation.

2.1.2. Multiplication of two polynomials (evaluation and inter-
polation). A straightforward method for polynomial multiplication
involves distributing one polynomial into the other and collecting
terms with identical powers of x. But there is a more subtle method.
SuPpo'se A(X) = A, xi and B(x) = E1:1) Bi'xi; then their prod-
uct C(x) has degree 2p 2, i.e, it his (2p -21) coefficient& Select
now (2p 1) distinct real values xi, , x2p_i, called "points," and
evaluate A(x) and B(x) at each of these points, thereby obtaining
two sets of values {A(xi)} and {BOO}. Then clearly, for any i in the

n bits
AoBi+ AlBo

6+1 bits
Bi

n bits
FIG. 1. Relative alignment of Ao Ro, Ao B1 + AIX, and AIB
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'range [1, 2p 1], C(70 = A(x1) . B(xi). From the set of values
{C(x,)}\ 'we can now interpolate the polynomial C(x) of degree
(2p 2). Thus we have the following algorithm:

Polynomial multiplication
a.

Input:,1 A(x) and. B(x), both of degree (p 1), and distinct real
values xi, ... , x2p_ i.

Output: C(x) = A(x) . B(x).
Step Vf Evalute {A(x1)} and {B(xO).
Step 2, For i = 1, ... , 2p 1, compute C(x,) = A(x1)B(x1).
Step 3. Interpolate C(x) of degree (2p 1) from {C(x1)}.

Evaluation and interpolation are mutually inverse and can be given
a very compact description. Notice in fact that

[
ip - 2 ip - 2

X 2v.1

----..'-- ---

2p-2
[Co, ..:;C20_2) 1.

1

Xi X2

Xi X2 ... X2,_ 1

= [CO( 1), ... , C(X 2,3_1

Letting C A [CO3 ..., C2p_2] an C(x) A [C(xi), ..
and denoting by V the above matrix, we have r"'"

CV = C(x) (evaluation),

and, since V, a Vandermonde matrix, is nonsingular,
3

C = C(IC)V 1 finterpOlitionl.

We see that both evaluation and interpolation are equivalent to
/

multiplying a vector by a matrix. It is now possible to develop an
integer multiplication algorithm baseaOlithe/outlined polynomial
multiplication method. We choose the integer p sufficiently large,
select (2p 1) integer values xl, ... , x2p_i and construct two fixed

:-(2p 1) x (2p 1) matrices r and V-1. Next, we split, the n-bit
sequence representing the operand A into p segments:of n/p bits`
each; each of these segments can be viewed as the binary rep-
resentation of an integer. Next we regard these integers as coef-
ficienis of a polynomial A(x) of degree (2p -- 2) (notice that the
(p 1) higher degree coefficients of A(x) are 0). We do likewise for
the other operand It.ye now evaluate {A(xj)} and {B(x1)}. Notice

J1
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that multiplication of s-bit integers by a constant with a fixed
number of, bits requires time proportional to s; it follows that the
p(2p 1) multiplications of n/p-bit integers by constants, as speci-
fied by the evaltultion step, collectively _require time 0(n), and the
same can be said for interpolation. We also observe that the num
bars A(xi) and B(xi) are (n/p + k)-bit integers, where k is a constant
depending upon the values x1, , x2p.i. It follows that the compu-
tation of each C(x1) is a multiplication of two (n/p + k)-bit integers.
With the usual meaning of the function M( ), we have
M(n/p .+ k) = M(n/p) + 0(n/p), and we can establish the following
recurrence equation which defines M(n):

M(n) = (2p -- 1)M(I1 + 0(n);
P

the solution of this equatiodis

M(n) = 0(nl04(2P 1)) = 0(n1 + inog2p).

Thus by choosing p sufficiently large the integer multiplication time
can be bounded from above by 0(11 ÷e) for any e > 0. 1Rcurrence
equation (2) has a somewhat undesirable feature: its right member,
consists of two terms, the first of which dominates the other, and
determines the form of the solution. In similar cases one .seekS a
modification of the algorithm which tends to equalize the two
terms; we recognize that the functional form of M(n) is due to the
fact that p is fixed, which, on the other hand, is exactly why we
were able to estimate as 0(n) the evaluation and interpolation
times. Thus possible improvements can arise by making p a func-
tion of n; this is one of the key ideas of .the remarkable integer
multiplication algorithmdueTto 'Schonhage and Strassen [13],
based on the Discrete Fonder Transform.

2.1.3: The Discrete FoUrier.Transform and the FTT. Of course, if
p is no longer fixed, the Vandermonde matrix V and its inverse
V-1 cannot be precomputed as auxiliary devices, but are deter-
mined by the operand sizes. Therefore, one must look for a pair
(V, V-1) which can be.easily computed in each case.Wnder rather
general hypotheses (i.e., that we deal with a commutative ring S), a
surprising solution is obtained by choosing xi = _ for
i'= 1 q, where co is a primitive root of unity of order
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q 2p 1 in S. With this choice V becomes

1 co CO2 COq

and is known as a q x q Fourier matrix. Notice that
coo-')(J -1). A remarkable property. of this matrix is that.

1 q s' mod q 0,
=

i=o 0 otherWise.

It follows that if we take the square of this matrix, the entry (V )1., is

given by

(V2)ii E(v)it(v)t, E coo 1)0 - 1) + _ 1,

t=1 e t=1

CI if (i +j 2) m

=o 0 otherwise.

We conclude that V2 has the form

(V),

V2
t

1 0 0 ... 0 0
0 0 ... 0 1

0 0 ... 1 o
. .
. .

6 0 i .2. o
o, 1 0 0 0

,

i.e., V is its own inverse except for a row and column permutation.
But a most attractive property of the Fourier matrix is the ease
with which it can be/multiplied by a (2p 1)-dimensional vector,
by resorting to a technique known as the Fast-Fourier-Transform ,
(FFT), due to Cooley'; and Tukey [14], which we shall now outline.

SuppoSe,-forsimPlicity, that q = 2r and a = [a0, ..., a2,...:1]. We
must compute aV, /the- Discrete Fourier Transform (D of-a. Let
us compare the components (aV)., 4. i and (aV)., +1+,.. he former is
given by the expression:

/ 2r-1 r -1 r-1
(aV)i÷ 1.-.-- E a, cou E a2ic°21 + Ea2i+ic021J+J/ 1=0 '1=0

rr-1 1
/= E a2,40 P + co' E a21+ 1002)

i=o 1=0
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Similarly, the component (aV)j +I+, is given by the expression:
2r-1 r

(aV)j+ I+, = E 6,030+01 E a21(032)u (co2f)i

1- o

r -1

+ °Ad E a21+ i(c02)1J(
o

r - 1

= E a21(032)u co' E a21+1(02)"
1=0

209

(4)

since c.)2' = + 1 and co' = 1 (co is the primitive root of unity of
order 2r). Notice now that Ea21(co2)0 is the (j + 1)-st component of,
the discrete Fouriek transform of the r-component vector formed
by the even-indexed coefficients of a (this Fourier transform obvi-
ously uses the root rof unity co2, which is of order r)._ Similarly,
Ea21+1(032)" is the (j + 1)-st component of the discrete Fourier
-transform of the odd-indexed coefficient sequence. Thus, we find
that (aV)J.4.1 and (aV)j 4.14.1. are computable by the arrangement
shown in Figure 2. We see that the DFT of a 2r-component vector
is obtained with r multiplications, r additions, and r subtractions
from the DFT's of two r-component vectors. "Assuming that q is a
power of 2, the same analysis can be carried out for each of the two
FFT-computers for r inputs, and we reach the conclusion that the
FFT calculation requires 0(q log q) arithmetic operation& A simi-
lar result holds when q is a highly composite number, although) we
a_ re explicitly interested in the power of 2 case.

The use of the Fourier matrix certainly Simplifies the operations
of interpolation and evaluation; however, there is still the difficulty

Even
Coefficient,

Odd
Coefficients

FFT
Computer

for r Inputs
(j+1)-st

Component

FFT
Computer

for `r Inputs
(j+1)-st

Component

FIG. 2. A scheme for computing (aV)j + and (a

(ay)i+,1

loVI-1+1+r
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that it requires 0(q log q) complex multiplications if co is the qth
primitive root of unity in, the complex field. Schonhage and Stras-
sen avoided this difficulty by the following extremely brilliant so-
lution. Suppose that the two operands A and B are integers rep-
resentable with at most n = 2m' bits. Then, the product AB <.
2' < 22" + 1, The integer 22" + 1, denoted by Fm, is called the
Fermat number of order m and the set Z. of integers modulo F. is
known as the Fermat ring of order m. Notice that as long as
A B e Zm, we can assume that arithmetic be done in Zm. A cru-
cial property of Z. is that 2 is a primitive root of unity of order
2"1+ 1; in fact 2' 1 in Z.. It follows that multiplications of an
integer by powers of the root reduce to shifts of the representation
of this integer, provide4 we use 2'1 bits for representing the
operands. We now have develoiaad all the preliminaries to the de-
scription of the integer multiplication algorithm

2A.4. The Schonhage-Strassen integer multiplication algo-
rithm. In Figure 3 we skefch the relative length -of the nonzero
portions of the representations of the operands and of the product.
Letting m = 2s -- 1 (the case of even m is analogously handled), we
chop the bit sequence of each operand into 2'1 segments of 21-1
bits each and let Ai_1(13,_ I) be the integer represented by the ith
segment in A (in B), for i = 1, ..., 1. Thus we have

201_ I 2'" I
A = E Al2 , B = E

i=0 J=0

Next, we compute
2"' I 2'" I

AB = C = E . E A,B)21/42 ' A Eck2k2.-'. (5)
k=0 i+j=k k=0

modr

2m+1

00...
00, ..
00... ...00

...00

...00

FIG. 3. Alignment of operands and result.

A

A B
B



COMPUTATIONAL COMPIAPCITY

It is convenient to split the last summation into two parts, i.e.,
- I 2%.2.L.- I

C E ck2k2- + r"ck2k2
k 0 k,_2..
2. - I 2' -
E cola- + Ck + 2'

I

ale k40 k 0

Recalling that 22- = 1 we have
- I

C = E (ck - Ck + 2)2 kr"
k

211;

(6)

Notice now that (Ck Ck +2.) could be a negative integer. How-
ever, Cj < 2" 22' for j = 0, 1, ..., 1 (since, by (5), it is the
sum. of 23+ products whose moduli are bounded by 22, whence
(Ck Ck + 2.) > 25+ " ; since it will be convenient to deal with
positive coefficients, if we add and subtract the same quantity from
the right member of (6), we obtain

2' -1
C = E= (Ck Ck + r 2'4'1 r)2k2"'

- ' -1
E2,+i+ 22kT"' E zk 2k21-1k.. lm.0

where each zk satisfies the inequalities

0 < zk + 2+r ..... 25+2(2 4. 1) 26 +

(Notice that 23+2 and F are relatively priine.) At this point, the
original multiplication is reduced to the problem of releasing the
carries when adding the appropriately shifted, numbers zo, z1,
which are shown pictorially in Figure 4. We must still find an

s+2
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efficient way for computing the coefficients zk . A most unexpected
method for effecting this computation is provided by the following
algorithm:

Computation of zk

1. Compute ek A zk'mod 21+2;
2. Compute 4 A zk mod F, ;
3. Reconstruct zk from z;, and 4..

The correctness of this procedure is supplied by the Chinese Re-*
mainder theorem, since z;, and 4 are the, remainders. modulo two
relatively prime integers. We shall now discuss hoW steps, 1, 2, and
3 can be implemented and analyze their complexities.

Letting ai = A, mod 28+2 and fli = Bj mod 2'2 (for i, j = 0,
28+1 1), we obtajn

z'k --- [ E (a'

i+J.k +2:

fi) + E cal Ad
1+frk 1+,1.4+24"

[ E (a, Ai) +
i+

E
-k +3.2'

(al fid (mod 2' 2);
j

The terms of the form Ei.i.j.k (al Pi) mod 26+2 are easily computed
by forming two integers A'and B' whose representation are shown
below.

A' 0 ... 0 a 2..1_ 0 ... 0 ... 0 ai 0 ... 0 ao

B' 0 ... 0 #2,+1_10 ... 0 ... 0 fli 0 ... 0 /Jo .

where the number of the zeros separating ai and ai +1 is chosen as
the minimum required for avoiding any propagation between two
consecutive columns when performing the multiplication A' B'.

Since each column is the sum of at most 21+1 terms upper-bounded
by the values (28+2)2 we see that (3s + 5) bits suffice to hold tech
sum: It follows that A' and B' can be formed as integers with
28+1(3s + 5) bits each, which can be multiplied in time at most
0([2s+ 1(3s + 5)]10 .1) < 0(22'), i.e., in time less than linear in the
length of the original operands.

Next, we shall consider step 3, i.e., the reconstruction of zk from
z;, and 4. Notice at first that 4 = zk jF for some unknown
integer j < 28+2. If we can determine j from 4 and z; we obtain

229
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zk Now we have:

= zk jF, zk j2.4 J,
whence 4 mod 21+2 = zk mod 21+2 j, that is,

zk mod 2.+ 2 j.

213

We conclude that j = 4 4 mod 21+2. Thus the computation of j
requires time Op +.2) and the computation of zk from 4 and j
requires time 0(2'"). We conclude that the reconstruction of all
zk's from the corresponding pairs (4, 4) requires time which is
linear in the length of the original operands.

Finally, we consider the computation of 4', which turns out to
,dominate with its complexity the operations leading to the compu-
tation of zk. Since 4 e Z,, it is natural to carry out the operations
in Z i;e., we must compute .

4 = [(Ck ck+r)mod F, + 2' + +, 2e]mod F,.

The term (Ck Ck+2.)MOd F, is expediently computed by using the
FFT algorithm. Specifically we have

1. Compute the forward FFT in Z,-of the sequences (A0, Ai, .:.,
A ), (Bo, B1, ..., B71_ );

2. Multiply corresponding terms of the transforms (this is done
by recursive calls of the multiplication algorithm in Z).

3. Compute the inverse FFT. '
I -

To analyze the complexity of the overall multiplication algo-
rithm, let N(m) be the number of operations required to multiply
two integers of lair', = 22'1. Steps 1 and 3 have global com-
plexity 3 x (arithmetic operations for FFT of 28 terms) x (length of
the operands) = yo[2":1(s + o]2. for some Constant yo; Step 2
involves 2.+1 thultiplications in Z., i.e., it has complexity 2'1N(s).
Thus we obtain

N(m) S yo 221+1(s + 1) + 2' "I' 1N(s) + 0(22').

If we solved this equation, we would obtain the result N(m) =,--
0(2rnm2); however, there is a further simplification that, almost
magically, allows another reduction in complexity. In fact, we need
not compute the 2,+1 terths Ck mod F but only 2' differences of
the form (Ck Ck + Amod F. It is easily, shown from the proper-
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tics of the FFT that these differences arc completely. determined
from the odd-indexed terms of the transform product; hence step 2,
in this revised form, requires only 21 multiplications in Z It fol.'
lows that

N(m) 5 yo 22**1(s + 1) + 2"N(s) + 0(22').

If we assume now for simplicity That m = 2s 1 = 2(2si 1)

1 = , we obtain after one step

N(m) 5.yo 221+I(s + 1) + 2'[yo +1(se + 1)

+ 2s1N(s1) + 0(221 )] + 0(212:) + 0(2")

22 "} + 1) + 22i+ge '34'3

+ 2' "IN(si) + 0(221) + 0(2").

Thus, each time that we approximately halve the number of bits of.
The operands, we add' a tcrm of the forth 0(2min); this process will
be repeated 0(log m) = 0(log log n) times, whenc,e we obtain the
upper-bound expressed by the following theorem:

THEOREM. Two n digit operands can be multiplied with at most
0(n log n log log n) bit operations.

2.2. Sorting by Merging. The problem of sorting n elements of a
totally ordered set A (typically, n numbers) is one of the most
celebrated and thoroughly studied examples in the area, commonly
called combinatorial or nonnumerical computation. The fact that the
elements dealt with are numbers is basically accidental,,since the
key operation used is "comparison," i.e., a test by which we can
detect the ordering relationship between two elements of the set A,
and, the algorithms specify the strategy of execution of the compari-
sons to obtain the desired sorting.

There is a voluminous literature on sorting (see, e.g., [4], pi
[15]), concerning both practical algorithms and some deep theo
retical questions, some of which are only partially answered; the
interested reader is encouraged to refer 'to it. Our objective in this
section is to discuss a' specific and very important sorting tech
nique,.called sorting by merging (or, briefly, merge-sort), in different
processing environments: the single conventional processor, the
network of comparators, and the parallel processing system.

23.E
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Lct us first consider the asic idea of mergesort. Assume. that
the elements to be sorted are placed in a unidimensional array A
and let A[i] denote the 4th clement of this array; also, let A[j: j]
denote the segment A[i], A[i + 1], A[j]. Suppose now we have
an algorithm called MERGE (A1, A2), which accepts two ordered
sequences A1 and A2 and combines them into a single ordered
sequence. We then have the following algorithm:

Algorithm SORT (A[1: n])

Step I. Set A[1 :1n/2]] 4'" SORT(A[1:rn/21]) and
A[In/21 + 1:n] 4* SORT(A[rn/21 + 1:n]).

,Step 2. Set A[1: n] MERGE(A[1:rn/21], A + 1: n])
and 11,It.

Notice, incidentally, that this is a recursive algorithm w con-
tains among, its steps "calls" to itself for operating on, nputs of

-Increasingly smaller size (in this case, geometrically deer asing). In
words, we split the original array into two segments approxi-
mately the same size, sort them separately, and finall se the
MERGE operation to combine them. Thus, we can have as niany
distinct algorithms which comply with the description given above
as we have ways of specifying the MERGE operation.

A simple merge algorithm constructs the combined sequence
term by term. The first terni is the smaller of the respective smallest
terms of the two sequences to be ,merged; this term is removed
from the input sequence to which it belongs and transmitted to the
output sequence, and exactly this process is repeated until the
input sequences are exhausted. Less descriptively, let A[1: n] and
B[1 : m] be two input sequences with A[1] 5. .5 A[n] and B[1]

5 B[m], and C[1: n + m] = MERGE(A[1:n], B[1: m]). The se-
quence C[1: n + m] is constructed as follows:

Algorithm MERGE (A[1:n], B[1: in))

Step I. Set i+- 1, j 1, k 1.
1

Step 2. If i > n, set C[k:m + n] 4-.B[j :m] and halt.
Step 3. If j > m, set C[k:m + n] 4-- A[i: n] and halt.
Step 4. If A[i] 5 B[j], set C[k] 4-- A[i] and i + 1;

else set C[k] -- B[j], and j j + 1.
Step 5. Set k -- k.+ 1 and go to step 2.

2 3
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We now analyze the time corpplekity of the given algorithms.
Since, in our scheme, sorting depends critically on merging, we
begin from the latter. Notice that each comparison between A[i]
and' B[j] is accompanied by a fixed amount of work in the loop
consisting of steps 2, 3, 4, and 5. Since this loop is executed at most
(n + m 1) times-, we conclude . that the running time' M(n, m)
required to merge two sequences of respective Mgths n and m is at
most 0(n + m).' With this result, denoting by S(n) the time required
to sort n numbers, a straightforward analysis of our sorting algo,
rithm shoWs that step 1 runs in time 2S(n/2) ancrstep 2 runs in time
M(n/2, n/2).Thus we have the recurrence equation

S(n) = 2S(n/2) + M(n/2, n/2) = 2S(n/2) + 0(n)

which is solved by standard methods as S(n) = 0(rt log n). It can be

shown that this order of complexity is optimal (see Section 13);
moreover, if one exclusively counts comparisons, merge-sort re-
quires .a number of comparisons which differs from the optimal
only by additive terms which are asymptotically negligible with
respect to n log n. . 1

The merge algorithm we have just descEibed is of the sequential
tYpe, Le., the operations are executed in sequence. Such is the pro
cessing environment of a conventional computer, also referred to as
the sequential processor. We n9w want to investigate whether sort-
,ing by merging lends itself to ithplementation by a computing
system in which several operations can be performed. concurrently,
or, equivalently, in which several sequential procesiors can simul-
taneously operate on the same data set. Any such system is nor-
mally referred to as a parallel system.

The advantage that one expects in going from a sequential algo-
rithm to a parallel algorithm is a speed -up of the comiStitation;
other words, one trades time with equip:tient. More specifically,

assuming that all processors considered are constructed with the
same technology (ix., nave the .s'ame operational speed) and as-

ming that T1 is the running time. of the best-known algorithm to
s lve a given -problem on a single prdcessor, the most that one can
ho e for in employing k processors for the same problem is to
achie nning time Tk = TI/k; normally, however, except .for
some very particular problems, Tk > TI/k, that is, there is some
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loss with respect to the optimum speed-up. It is also appropriate to
mention that the case in which k is fixed is referred to as bounded
parallelism, whereas unbounded parallelism denotes the case in
which is many processors are available as one sees fit.

In connection with the sorting by merging ,problem, we shall
consider two instances of Parallel computing; the network of com-
parators and the fully parallel system (sharethmemory-machine).

The network of comparators is an interconnection of modules
called comparators A comparator is a .two-iriput, two-output
device which receives two numbers on its input lines anaktlaces the
larger number on a specified output line and.:,the smaller on the
other. A network of comparators has an arbitrary interconnection,
except for the constraints that there is do feedback and that each
comparator output line it either connected to exactly one compara-
tor input line or is a network output line; moreover, each network
input line is connected to exactly one comparator input line (fan
out. restriction). It is easy to realize that a network of comparators
is a parallel system. In fact it may be convenient to think of it as a
cascade of stages, which form a partition of the network modules,
with the fgroperty that the modules of a kagecan operate in paral-
lel. A partition of a network into stages can be obtained very
simply; think of the network as a directed graph, whose vertices are
the comparators and the network input lines and whose arcs are
the conne.ctions, directed toward comparator input line& With each
comparitor<We associate ad integer i, called the level, which is the
length of the longest path from the input lines to that comparatiir.
Defining as a time unit the time required for a -comparator to
operate, it is clear that a comparator at level i will not have its
operands available before the (i *it time unit; therefore, if all
the omparatofs at level i,are placed in the ith stage, it is clear that
they an operate in parallel. Notice alSo that, since at any given
level e operand can be at most on one comparator input line,
each stage tains at most In/2.1 comparator& This indicates that
a comparator ne ork with, n input lines and with the stated fan-
out restriction is equivalent to a system of [n /2J processors oper
ating iparallel and accessing an n-cell memory. At each time unit,
or step, each processor reads two operands from memory, com-
pares them, and stores into memory the two results. The read-store
scheme at the ith time unit Is completely specified by the wiring of

234
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the ith stage of ale equivalent network,; it follows that thiS scheme
is fixed and is-not influenced. by the outcomes of previous
comparisonsthat is, the algorithm emSodid by thenetwork. is
nonadaptive. ,

We shall now analyze the/number of stages, i.e., the time re-
quired by a network that sorts n numbers by repeated merging.
For simplicity we shall assume that n is a power of 2, that is,
n = 21`. A .T`fEnumber sorting network can be constructed as shown
in Figure 5, i.e., it consist& of two 2k-1-number sorting networks
operating in parallel followed by a.2k-number merging network.
Clearly the structure of this network entirely reflects the or-
ganization of the algorithm SORT previously illustrated, and our

-problem is reduced to the analysis of the merging network. The
latter can be constructed as follows. (This very interesting construc-
tion is due to K. E. Batcher [16].) Let A =(ao, a 2-. _1 ) and
B (b0, ; ) be the two sorted sequences to be merged

with a0 S ai 5 5 a2 -, _ 1 , and 60 5 bi 5. 5 b _1. The
merging scheme is also" of a recursive type (Figure 6); that is, we
separately merge the even-indexed terms and the odd-indexed
terms by means of two 21'7.1-number merging networks operating
in parallel, and combine the outputs of the latter. This combination
is very simple to implement. In fact, referring to Figure 6, assume
inductively that the elements on the output lines of the merging

2k-1.
Inputs

2k71- Num Per
Sorting- -
Network..

It

2k-1-Number
Sorting
Network

2k-Number
Merging
Network

FIG. 5. A merge-sort sorting network.
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Even

2k-1-Nurriber
Merging
Network

Odd

2k- 1- Number
Merging
Network.

Fic. 6. Batcher's merging network.

networks appear in increasing order' from top to bottom. Consider
the element ci which appearS on the ith output line of the EVEN
merging network and suppose, without loss of generality, that it
coincides with b2, (for some, S s S 2k-2 + Clearly on the first
(i 41) lines of this EVEN network there are s elements of sequence
B and (i 1 s) elements of sequence A; this implies that the first
(i s 2) odd-indexed terms of sequence A are no larger than
ci b23. It follows that the elements appearing on the (i s 2) +
s (i 2) top lines of the ODD merging network are known to be
no larger than c By a similar argument one can show that the
elements appearing on the -bottom (2k-1 i + 1)-lines of the ODD
merging network are known to be not smaller than ci, so that we
conclude that ci must b&compared only with the element on the
(i -- 1)-st line of the ODD merging network. Thus the merging
process is completed by a single stage consisting of (2' 1) com-
parators following the EVEN and ODD merging networks; hence
a, 2k-number merging network can be constructed which consists of
log2 2k = lOg2 n stages of comparator& This result can be used to
evaluate the number of stages of the sorting network, which is

log2 2k +.1og2 2k- + '+ log2 2 = log2 2k(log 2k + 1)

= i log2 n(log2 n + 1).
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Thus we-see that this parallel sorting algorithm does not achieve an
optimal speed-up with respect to the best-known sequential sorting
algorithm, the loss being a factor approximately equal to log2 n.

A most surprising fact, however, is that the order of time re-
. quired by merging with a network of comparators cannot be im-

proved upon, as the following argument, due to Floyd (see [15, vol.
3, p. 230]) shovis. Let C(2t, 2t) be the minimum number of com-
parators of a network that sorts an input sequence al, a4t,
consisting of two 'interleaved sorted sequences al a3 5 5
a41_1 and a2 S a4 S - .5 a4t. Each cOmparator is characterized
by a pair of indices (i, j), if it compares ai and al; Divide the
comparators into three clisses: Class 1: i 5 2t, j 5 2t; Class 2:
i z 2t + 1, j 2t 1; Class 3: i 5 2t, j z 2t + 1. Clearly Class 1

must form a merging network for 2t inputs, since a2t4.1, a4t

may already be in their fins arrangement; so does Class 2. Finally,
the input sequence for which a25 > a2,...1 for s, r = 1, , 2t re-
quires at least t exchanges betWeen the first half and the second half
of the input sequence, so that Class 3 must contain at least t
comparators. We conclude that

t.

C(2t, 2t) Z 2C(t, t) + t

i.e., C(2t, .2t)z t log2 t. §ince each stage can contain at most 2t
comparators, the number of stages,is at least log2 t, thus proving
the original claim.

It is now natural to ask the question whether additional speed-
ups can be obtained by employing 0(n) processors, without the
restrictions embodied by the.network constraints. In other words,
we assume that a given element can be simultaneously compared
with more than another element, and we et the algorithm be
adaptive. No better answer was available until very recently, when
Valiant [16] proposed the following interesting parallel merging
algorithm.

Let A[1 : n] and B[1 : m] be two sequences sorted in ascending
order, with m n Z.4, and assume that [/J processors are
available. We partition sequence A into segments, the first elements
of. which are + 1'] for i = 0, 1, ..., 1; similarly, B

is partitioned into segments whose first elements are B[irjrni +I].
Let + 1] n A'[i] and B[jf j-n] + 1] li B',[j] for
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, I, .... We now perform the following operations:

Algorithm PARALLEL-MERGE

Step 1. Compare in parallel each element of A' with each ele-
ment of B'. -

Comment: The total number of processors required is
kirn_l i.e., there are enough processors to carry out this
step in one unit of time

Step 2. For each A'[i] (i = 0, 1, ..., WTI] 1) decide the
segment of B into which it must be inserted.

Comment: Let Pii be the processor assigned to compare A'Iil and
B'[j] for i, j = OZ 1, . Since %'[O] 5 5 BILAJ 1] the se -'
quence,consists of two not simultaneously void segments Pio, ...,
Pik and Pi, k +1, , Pi. ivri_ 1, such that for j 5 k we have
A'[i] B'[j] and for j > k we have A'[i] < B'[ j]. Thus k is deter-
mined in fixed time by letting each Pij compare the outcome of its
comparison with those of Pi, j_1 and Pi, j +1 (ignoring for simplicity
the end-effect). °

Step 3. Insert each A'ti] into the segment of B determined in
.Step 2/, by comparing it simultaneously with each ele-
ment of the latter except the first.

Comment:, There are (ron-1 1) comparisons for each A'[i]; thus

litil(Rirn1 -7 1) < lfini processors are sufficient. The insertion
can be done in unit time, by an argument analogous to the one in
the Comment to Step 2. This insertion induces a new segmentation
of. B into B[ki + 1 : ki+ 1], where I3[ki] ATi] < B[ki + 1] for
i 1;2, ..., LA..

Step 4. For i = 0, ..., kfid 1 simultaneously merge in

parallel Au[ J] + 1 + 1)1,/iTo and Btki + 1 :

Comment.. -This step specifies the simultaneous execution of kin]
parallel merges of -sequence pairs. The ith merge operation in-
volves two sequences of respective lengths xi and -yi , where, xi 5

1. and yi is the number Of elements in B[ki +1: ki+1]. We
now assume inductively that this merge can be donee in parallel
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with f. 1Ci-yll processors. The total number of required processors
is given by EL )1:-;37_1. By Cauchy inequality we have

,AExiXEYi);

recalling.that Ex; n kg; J and Eyi = m Nye obtain:

EL NrSLI S E xi 7 ; S N/(ExiXEyi) = i(n kfii)m

.0.Fn LiEmj,

where the latter inequality holds for m Z n. 4. Thus there is a
sufficient number of processdrs to be distributed to execute the
simultaneous merge operation&

We can now evaluate the running time of the described algo-
rithm. Steps 1, 2, and 3 each require a fixed amount of time; the
recursive call represented by Step 4 involves sequence pairs whose
smaller member has size at most rjii - 1. Thus the problem size
has been reduced according to the 'square root. It followi that the
merge is completed with a recursion of depth at most log2 log2 n,
i.e., the running time of the parallel-merging algorithm is

0(log log n).
This merging algorithmsan now be used to pbtain a fist parallel

algorithm for sorting n numbers, with n/2 processors. Assume for
simplicity that n = 2k. We begin by forming sequences of length 2
and at each subsequent step we merge sequence pairs whose
common length doubles at each step. At the ith step we merge 2k-1
sequericed pairs, of common length 21- by the preceding dis-
cussion this can be done by the described merging algorithM with
2k- (LN/21- 1 21- 1 j) 2k -1 processors, which are available by
hypothesis. Thus in log2 n merging steps sorting is completed;
since each merging step runs in time at most 0(log log n), song'
can be done in parallel with n/2 processors in time at most (*log
n log log n).

Thus we see that the speed-up loss with respect to the best
known sequential algorithm hak been reduced. a factor 0(log
log n), a substantial improvement brought about by removing the
fan-out restriction and by devisi an adaptive scheme.Notice,
however, that the preceding analyse of Valiant's algorithm is re-

23i
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stricte
id to the so-called "data dependence" of sorting and ignores

the complexity of another important facet of the algorithm, called
"data movements." In fact, the adopted computation model con-
sists of a set of identical processors, each capable of random access-
ing/a common memory; of course, an additional devicecalled an
interconnection network, or, briefly, a switch--is needed for aligning-
each processor with the memory cell accessed by it. The work done
by this network is referred to as "data movements."
/ Finally, we mention that more recent resultSi[17], [18] exhibit,
for the same computation model, enumeration - sorting parallel al-

/gorithms, which have better time' perforthance than the known
merge-sorting parallel algorithms deicribed above.

. 23. Convex Hulls of Finite Sets of Points. Increasing attention is
being currently devoted to the computational solution of problems
of a geometric nature, for they occur in a number of fields, such as
operations research, pattern recognition, design automation, and
statistics. This interest has coalesced into a new .branch of cornpu-
tational complexity, adeptly called computational geometry by
Shamos [W]. The objective of computational geometry is to recast
geometric problems, some of which are classical, into a framework
which makes them amenable to efficient computer solution. The
techniques used in connection with geometric problems are essen
tially those employed in other area's of concrete computational
complexity, with the additional feattire that one must, discover
properties of the geometric objects involved which will simplify the
computational task.

An interesting problem in this area is the determination of the
convex hull of a finite set of points in Euclidean space. As is well
known, the convex hull of a finite set of points S is the intersection

_of all convex sets which contain S. Clearly, this definition is totally
useless from a computational standpoint. In this respect, a more
useful definition regards the convex hull H(S) of S as a subset of S
with the prOperty that any point of S is obtainable as a convex

'linear combination of the points of H(S).* In general, the convex

* A linear combination is said to be convex if its coefficients are nonnegative and

add to 1.



224 Franco P.. Preparata

hull H(S) of a d-dimensional set. Sii a convex polytope in d-space,
which becomes a convex polyhedr and a convex polygon in
three and two dimensions, respectivel . A d-dimensional polytope .

c:r

K is bounded by (d 1)-dimensional polytopes, called facets or
faces,-each of which lies in a ,hyperplane: in two dimensions the
faces are line segments and in three. dimensions they are convex
polygons.

With this nomenclature, it is relatively easy to understand a
general convex hull algorithm, due to Chand and Kapuq/20]. This
algorithm is based on an idea,-which is commonly referred to as the
"gift-wrapping principle." Let K be a d-dimensional convex poly-

° tope and assume that a facf f of K is given. This face is delimited
by (d 2)-climensional .polytopes, called hyperedgesi(line segments
or points in three and two dimentions, respectively), and let e be a
hyperedge of f. The edge e and every vertex of K determine a
hyperplane. For any such hyperplane we compute the inner prod-
uct of the orthogonal unit vector with the unit vector orthogbnal to
the hyperplane containing f. The hyperplane for which this inner
product has largest absolute value contains a new face of. K. Thus,
by going from face, to face, one can identify all the faces of the
convex polytopes, and the choice of the phrase "gift-wrapping prin
ciple" is entirely justified in its intuitive three-dimensional interpre-
tation. The preceding inforMal discussion also shows that, given a
set of n point in 3-space, application of the gift-wrapping principle
will identify the vertices of the convex hull. To analyze the compu:
tational effort, notice that the determination of each new vertex of
the hull involves work 0(n); since all n points could belong to the
hull, the total resulting work is 0(n2) in the worst case.

The question has been raised whether. faster algorithms can be
designed in cases of low dimensionality. The answer is affirmative
both for two and for three dimensions, where algorithms are

.
known-with running time at most 0(n log n) for sets of n points.
Since the three-dimensional algorithni is quite involved [21], it will
not he discussed here; rather, we, shall discuss two two-dimensional
procedures involving quite different techniques and yet achieving
the same order of time complexity. In this manner, it is possible to
gain- considerable insight into the techniques of computational
geometry without the burden of complicated. details.



.COMPUTATIONAL COMPLEXITY 225

Before discu sing the specific algorithms, which obtain the so-
.,

called ordered convex the sequence of the vertices of the
convex hull polygon, it is worthfininting out that the order of their
time performance is optimal. To showthat e Must first specify
the computation model. We-shall adopt a random acc ss-machine_
(RAM) with the variant that integer arithmetic is replaced by real
number arithmetic. Of course this does not entail infinite length
operands; it Only means that finite length operands are approxi-
mations of real numbers, as it normally happens in floating-point
arithmetic.

A common method to: 'establish a lower bound for the compu-
tation time of a problem P1 is a suitable reduction to P1 of some
problem P2 for which a lower bound is known. By "suitable re-
duct)on" we mean that P2 may be reformulated as P1 with an effort
whOSecomplexity is not greater than the lower bound. In our case,
the following argumentdue to Stan Eisenstat [19]shows that
the problem of sorting n numbers can be reduced to finding the
convex hull of n points in the plane. This transformation is doable
in time 0(n), as follows. Let U = {x1, ..., xn} be a set of ,n num-
bers; corresponding to each xi constructwith:, ;a:single
multiplicationthe point (x1, x?):,:The set, of points S:= {(x1, x?)
xi e 1j} lie on the parabola y = x2 (a convex curve); so that the
ordered convex4hull of S gives the sorting of S. Since sorting is
known to reciiiireS1(n log n) operations, the argument is complete.
We shall now illustrate in.some.detail two convex hull algorithms
for the plane .-"

The first proceduie we shall consider, which was also one of the
first to appear, is due 'to R, L. Graham [22]. Let S be a set of n
points in the plane. The points of S are assumed to1be expressed in, A.

polar coordinates (p, 0) twith. respect to some point P internal Ito
H(S) and some arbitrary reference half-line. (Should: the .points be
expressed in a different coordinate systein, the conversion can be
effected in time 0(n): .in fact, P can be found as the of S in
time 0(n) and the coordinate transformation .requires :.a fixed
amount of work per point.) The points (pk, Qk) are then sorted in
order of increasing 0 and let .(r1, (bi)i (r2i 'OA :; (rn, On) be the
resulting sequence with 0 5 01 < < 2n. This sorting oper-
ation requires work 0(n log n). Next the algorithm scans the se-

24;
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quence, each step consisting of the application of the following rule
to the three-point configuration illustrated in Figure 7:

If a + n, delete (rk+1, (Pk+ i) ati/c substitute the index triplet
(k 1, k, k + 2) for the triplet (k, k + 1, k, + 2); else, set k k + 1
and proceed.

. .

P

,S6k)

FIG. 7. Illustration of key feature of Graham's algorithm.

Clearly, each application of, this rule either eliminates one pre-
viously examined point (rk+ 1, 4k +1) or it examines a new point
(rk+ 3 , (Pk+ 3). It follows tlAthe rule can be applied at most twice
per point, for a total of 2n applications. Thus,. the initial 'sorting
pass determines the ty.of the algorithm.

The following cony'll AI,. ithm is due to Shamos [19] and11 so
involves an entirely. di toque. It is based on finding the
hull of the union of two convex polygons. It can be shown .that the

_latter can be found' in time at most proportional to the total
number of vertices of the two polygons. To avoid inessential de-
tails, we assume for simplicity that n be a Multiple of 3. The points
of S are then arbitrarily partitioned into n/3, subsets, each contain-
ing 3 points. Each such subset determines a triangle, i.e., a convex
polygon (Figure 8(a)). We consider disjoint pairs of triangles and
replace them with the hull of their union, a convex polygon with at
most 6 edges; this can be achieved with work at most 0(kin/3) for
some constant k1 (Figure 8(b)). Next we pair these polygons and
again find the hulls of their unions: this stage also requires at most
0(2kin/6) =-- 0(k1n/3) operations. Therefore at each stage we use
0(kin/3) operations to halve the number of polygons: clearly, after
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(a) (b) (c)

FIG. 8. Illus tration of a convex hull algorithm by Shamos.-

Flog2 ni stages, i.e., with 0(n log n) operations, 1-1.(S) has been com-
fmted (Figure 8(c)).

Notice that both algorithms have optimal order of time com-
plexity. Only the former uses sorting explicitly, whereas the latter
mimics the general merge.zsort technique (see.Section 2.2) in the
construction of convex polygons with increasing numbers- of
vertices. ,

Other optimal convex-hull algorithms for planar sets are known,
but their presentation exceeds the scope of this chapter; the interes-
ted reader is referred to [19] for further details on this topic and for
further exposure to a variety of problems of computatiOnal
geometry.

Y.
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COMPUTER SCIENCE AND
ARTIFICIAL INTELLIGENCE

-----
James R. Slagle

This article examines the role of computers as intelligent ma-
chines. A pivotal point in this discussion is that these machines are
performing activities o en called intelligent when perforMed by

"humans. Included he in are machines that play games, prove
theorems, sob& calc lus problems, aid in the manipulation of
mathematical expres ions, discbrn and differentiate among chemi;
cal structures, and direct the activities of physical robots. These are
not hypothetiCal machines ;,virtually all of theSe projects have been
reduced to practice on properly operating digital computing sys-

tems.. Morgover,.each machine (or, at least, its crucial component)
appears extendable, so thht its operating characteristics can be ap-
plied to more difficult prbblems.

1. CHARACTERISTICS OF ARTIFICIAL INTELLIGENCE

A fundamental motivation in this field has been to 'devise infor-
mation processing systems (i.e., computing equipment executing apt-
propriate algorithms) whose behavior is considered to be intelli-
gent. That is, we are willing to ascribe that term to the same
activity when observed in a human. °

229
46



230 James R. Slagle

Because the term itself is so highly evocative, it will be helpful to
state some dictionary definitions of intelligence so that there is a
common reference Point. Webster's New Collegiate Dictionary
(1956 edition) defines inteilligince as

A. The Power-of meeting any situation, especially a novel situation, suc-
cessfully by proper behavior adjustment& B. The ability to apprehend inter-
relationships of pteented facts in such a way as to guide action toward a
d%siied goal. . =

9

While we, may resist the idea emotionally; it is not difficult to apply
these definitions to the behavior of it' machine as well as to that of a
human: Intelligence is multipurpoSe' in nature' and involves, the
ability tb,,learn. This characteristic (or,' a0east, an excellent irnita-

, fiat of it) is fundamental to heuristic algorithms and, programs, and
we shall: have:more to say about the d4imbility of incorporating it
into a wide' spectiuM of coniputipg activities

Almost all of the machines to be disCuSsed in this article :are
high-speed general-purpose stored-program electronic digital coin
puters. In theitmost important .aspects, they fall into the geieral
category of Von Neumann machines outlined in the first article of
this study.. Accordingly, for purposes of this article, we are con-
centrating" on activities that are implemented as sequential
processes.

1.1. Approaches to Artificial Intelligence. Researchers charac-
terize rtifiCial intelligence in one of three ways":

1. artificial networks
. 2. artificial eyolution

3. heuristic programming;

Sincc it is currently impossible to say anythingLConclusiYe about
the preferability of one approach over the others as being the
model that parallels (natural) intelligent activities moskelosely, re-
search toward and implementatiOn of intelligent machines contin.;

By permission from Webster'sNew Collegiate Dictionary, copyright 19160925, ,
1931, 1936, 1941, 1949, 1951, 1953, and 1956, G. and C. Merriam Compnny, Spring-
field, Massachusetts.
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ues to reflect the approaches most congruent with the perceptions
of the respective investigator& Accordingly, this article will empha.:
size the heuristic approach, with the others receiving .only brief
Mention. .

A network consists of an arbitrary number of simple elements'
along with the interconnections among them. A'n artificial 'network
may be a physical reality or it may be simulated on a computer.
Very often if is helpfultto perceive of each element as kn artificial
neuron. One advantage "O? this approach is that the network usu-
ally is, adpkte; that it can "learn" from experience. Researchers
who take AM artificial4letwork approach tend to perceive natural
intelligence as being based on (natural) neural networks alone. At
present, artificial networks have "learned" to recognize simple
visual and aural patternt, a level of perTormance considered to be

short of intelligent behaVior. One. difficulty with this approach is
that there is little prospect of producing an artificial network that
approximates the size and complexity of a brain (i.e.,.in 'the order of

magnitude of 10" neurons). Another deterring factor-is: Oudncom-
plete .understanding regarding the operating characteristics of and
interconnections among neurons:

Im , the artificial-evolution ?ipproach 'to artificial intelligence,
computer-simulated Systems are designed to evolve by "mutation".
and "selection." Using predefined criteria for determining such 41*

selections, systems have been devised which evolved into vehicles

for solving simple equations. Proponents of this approach point
out that many people think that human intelligence evolyed
through a proCess in which mutations and natural selection played
crucial roles. Here, again, natural evolution is not understood suf-
ficiently to enable close parallels to be drawn.. MoreoVer, the
analOgous process in computing systeMs,must proceed at an enor-
mously accelerated rate (in compari&on to natural evolution) in

order for its to have.substantial practical imliact.
The apprOach addressed here reyolves around the use of heuris-

tics. These are rules oflhumb, strategies, methods, or tricks aimed

at improving the efficiency of a system which tries to discover
solutions to coMpleX problems. Another trip to the same di5tionary
produces the following information for "heuristic": "Se-ying to dis-

cover." It is related/to the word "eureka" ( "I have found it," from
the Greek heuriskein, to discover, tofind). Heuristics, then, Om the
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centerpieces for many artificial intelligence systems. Some of the
heuristib programs to be discussed .Lan, play checkers and chess;
others can deduce answers to questions from a store of given facts;
still otheis 'solve calculus problems or prove theorems in math-
ematical logic and geometry. For example, there are heuristic ge-
qmetry programs that can prove the following rather difficult
theorein:

If the segment joining th% midpoints of the diagonals of a trap-
ezoid is extended to intersect the side of the trapezoid, it disseets'
that side.

Some other heuristic programs can "learn" from their experience. A
few are multiphrpose in the sense that they are useful in solving
several kinds of problems, i.e., they are applicable to several do-
mains. For example, a heuristic for "working backward" (in a sense,
"undoing" an activity that was found to be futile or unproductive)
is useful in many theorem-proving and pattern-matching domains.
Other heuristics are very specific, limited to one problem-solving
domain (such as theorem-proving in geometry).

1.2. Purposes of Heuristic Programming. When used in the con-
text of artificial intelligence, a heuristic program reflects the follow-
ing motivations:

1. an attempt to gain additional understanding o nattal intelli-
gence,'

2. development and use of machine intelligence to: acquire know-
ledge and solve intellectually difficult problems.

A researcher concerned with the first aspect, for example, may be a
psychologist interested in exploring some facet of human behavior
regarded as being intelligent. Based on 'Ypersonal observations,
available experimental data(and reports-in The literature, the inves-
tigator will define a logical structure intended to model the beha-
vioral aspect of interest. When implemented as a heuristic program,
that model can be run and its results compared against those ob-
served experimentally. This validation process is grepeated; with
each cycle serving 'to identify (and remove) discrepancies in the
model' so that it becomes a progressively, improving reflection of
the perceived reality. (Further discussion of this' validation process,

. ,
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in a more general context, is found, elsewhere in this study, in Mark
Franklin's article on computer siMulation.) Deficiencies in the
model revealed tiy this iterative process may prompt further experi-

mentation, and the process continues, until the modeled results are. ,
in stable agreement with those obtained over the observable
domain.;Once.that has been achieved to the investigator's satisfac-
tion, the behavioral aspect under scrutiny then can be "observed"

.simply by running the program on the computer.
A researcher motivated by . the second purpose is interested in

producing intelligent behavior, with less concern as to whether or
not the underlying process duplicates or parallels that employed by
humans. His hope is that the computer, driven by a heuristic pro-
gram, eventually will solve important Complex problems in the
physical, biological, and social sciences.

In this article we shall besoncerned primarily with the second of
these two purposes. While routine use of complex problem-solving
computing 'systems still lies" in the future, there are intelligent sys-
tems in current use' whose behavior attests to the fact that there has
been impressive progress toward that end. Some of these will be

examined and discussed in subsequent sections.

-2.' PROGRAMS THAT PLAY GAMES
`! 4 , A

An important conceptual operation in many heuristic programs
involves the selection.oflogical possiblilites whose respective \ conse-

quences are more desirable than others. The collection of these
possibilities can be specified quite effectively when represented in
the form of a tree. (As Figure 1 shows, this data structure is,
characterized more accurately as an upside-down tree, since the
"root" is at the top.) While tree4fructured data are useful in a wide

variety of information-processiontexts, we shall focus on two
types that are of particular interest 'n heuristic prograMs r game
trees and goal trees.

The branches in a game tree represent moves, replies, and coun-
t*terreplies. In a goal tree, some ultimate goal is sho to be achiev-

able if certain subgoals are achievable./A'subgoal, i turn, may be
shown to be achievable if certain of its 'subgoals are achievable, and

so on, to some arbitrary level. (As we \shall see later on, it is pos-
sible to establish equivalence between certain types of game trees
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loses a wins a loses
o loses o wins o loses

wins loses wins',

o

o wins
O wins

loses

a loses o wins
o loses o wins

wins loses

FIG. 1. An explicit game tree.

a loses
o wins

wins

...................

and goal trees.) Since trees have a tendency to become very large,
even when representing modest collections of logical possibilities, a
crucial component in many heuristic programs is a procedure for
searching these trees effectively: Consequently, a substantial
amount of associated work is concerned with finding ways to mini-
mize the search for relevant part&of the tree by "anticipating" (and,
therefore, avoidin6 ultimately fruitless searches.

Since our immediate concentration will be on game-playing p?b-
grams, we shall examiee game trees more closely.

2.1. Characterization of Game Trees. A game tree is either ex- 4
plicit or implicit. As the name implies, an explicit game tree is''
shown in its full structure (Figure 1). Each move, is depicted, along
with its consequence& An implicit game tree, on the other hand, is
described only, in terms of an initial position and a set of rules for
generating the tree. The game of checkers is an appropriate exam-
ple: By knowin' the characteristics of the board, the starting posi-
tions of the 24 pieces,., and the rules governing- their legal move-
ments, we can generate a tree that depicts completely the conse-
quences of each possible move under each possible set of circum-
stances.

4,
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Referring to the explicittree in Fitire 1; we see that the nodes
(squares, circles, and triangles) represent gaine positions, with the
top node representing the starting point: The connecting line seg-
ments, then, represent moves. A node's shape defines the player
whose turn it is to move. Thus, the square player makes the first
move from position P. If the square moves to position P3, then the
square loses while the circle and triangle both win. We shall say
that position P at level 0 and its successors (i.e., Pi, P2, -and P3)
are at level 1. The successors of P's successors are said to be at level
2, and so on. In Figure 1, assuming a good play on the part of the
other players, the sqtlare playercan force a win by selecting a move
to position P2; the only good move for the circle player, then, is to
the square-position from which the square (expectedly) will cause
himself (and the circle) to win. Note that an actual move transforms
a game tree into another gametree. For example, the move to
position P2 transforms the tree in Figure 1 into the tree in Figure 2.

An implicit tree consists of a top position together with rules__
which can be used to generate successors of many positions. Theie-
rules include termination, criteria so that no successors can be gen-
erated for a position meeting these criteria._A procedure which
starts at a particular position and follows the game's rules is

termed a generation procedure and, in effect,')such a procedure
converts an implicit tree into an explicit one.

Generation procedures vary in the order in whit they generate
positions of the tree. A rough but helpful categorization contrasts

o loses
o loses

wins

o loses
o loses

wins

o wins
o wins

loses

FIG. 2. Transformation of Figure 1 resulting from movement to position V, .,

252
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breadth-first procedures with depth-first procedures. Generally ;
speaking, the former type generates from the top. That is, it prd-
duces all the positions at level I, then all the positions at level 2,
and so on. For example, suppose that theNtop position of an im -.
plicit tree is the square-position P showti in Figure 3 and the
generatingrules are as follows: ,

1. A square-position generates two positions at the next lower
level: a circle-position to the right, and a triangle-position to
the left.

2. A circle-position generates two lower-level positions: a
triangle-position to the right and a.square-position to the left.

3. A triangle-position senerates two positions at the next lower
level: a circle-position to the right and a square-position to
the left.

Application of these rules in a breadth-first procedure, then, gen-
erates the explicit trees in the order shown in Figure 3.

A somewhat more complicated parallel can be cited using the
familiar game of checkers. The rules of the game, applied in a

(a) generation of positions at level 1

(b) generation of positions at level 2

(c) generation of positions at level 3

FIG. 3. Breadth-first generation procedure.
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breadth-first procedure to the front row (the only one that can
move when the system is at, the top position), generate seven.suc-
cessor positions. ,Completed application of the procedure to the
successors generates seven level 2 successors for each one, so that
we produce an explicit tree at level 2 with 49 positions.

A depth-first procedure generates a tree from left to right in the 0,
following sense: The procedure starts by generating the top posi-
tion's first successor and then, in turn, its first successor at the next
level, and so on. To illustrate, suppose that we, have an implicit, tree
with the same top position and generating rules as the one in
Figure 3. In addition, we shall define level 3 as the maximum
depth, thereby imposing a termination criterion. The square-
position at level 0 is labeled A in Figure 4 for convenience. Now, if
we apply the generating rules in a depth-first procedure, the posi-
tions will be generated in the order A, B, C, D, and E Since the
termination criteria have been met for that branch of the tree, the
procedure would then pick up the alternative branch, starting from
position F and working to complete that branch to the maximum
depth. This progression is shown in Figure 4(a) and 4(b). Implicit in
this progresston is the fact that a termination criterion always must
be given for a depth-first procedure.

When a depth-first procedure is applied to checkers, the 49 posi-
tions comprising the top two levels of the checker tree would be

A 0
131 0 El

A ICI ©o o CI
(a) (b)

FIG. 4. Depth-first generation procedure. The positions are generated in al-
phabetical order.
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generated as before, However, the sequence in which they are gen-
erated is different: After generating the first successor position, its
seven reply positions will be generated, Only then will the depth-
first procedure return joclevel 0 to generate the second successor
position, and so on ufitil each group of 7 reply positions has been
generated from its respective leve1.1 position.

2.2. Purposes for Programming Gatni-Playing Computers. Aside C
from the obvious recreational interests in producing game-playing
computing systems, these games are useful vehicles because, despite
their relative simplicity, they resemble many important real prob-
lems. In many cases, the complexity of the real problems makes
them highly resistant to dire& attack, so that the researcher hopes
that the methods developed' to handle simple problems can be
extended systematically to encompass'a Wider range of complexity.
The resemblance between games and real 'problems certainly is not
farfetched: The intelligent participant chooses actions based on his
search of the tree of future possiblilites, on his rough evaluation of
possible future situations,.and on expectations about what others
will do. Business games, medical games, and war games are in=
tended to serve as models for real problems.

Games tend to tie relatively simple because their rules are well
defined and relatively straightforward. The selection of games as
arenas for developing and improving heuristic programs reflects a
conscious decision on the part ofresearchers to the effect that the
advantages of simplicity outweighed those associated with closer
approximations to reality: (The implication is that a working heu-
ristic for a well-defined system can ultimately be extended to ac-
Commodate a more realistic situation that is less well-defined.)
Moreover, there are systems that dre both realistic and well-defined
on which heuristics can be made to work quite. nicely. Theorem
proving and assembly-line balancing are two such examples.

23. General Description of Game-Playing Programs. Most of
the games implemented by the programs described in these sections
can be characterized as two-person strictly competitive games. The
first of these characterizations is self-explanatory; "strictly competi-
tive" (or zero sum) refers to the fact that whatever one player wins
the other player may be considered to lose. Thus, the outcome of
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such a game may be defined by describing 'what happens to just
one of the playeg. (By implication, then, cooperation in a zero sum
game is never worthwhile.) Very ofteb such programs 'Play against
other programs but, for interest, we shall frame. our - discussion
around a machine player and a human opponent:

Clearly, the ability to follow rules, and generate positions is only
a small part of the overall 'game-playing structure. Another impor-
tant ingredient is the ability to evaluate how good a position is for
the machine (i.e., how bad it is fo`r the opponent). The program
evaluateswell to the extent thatrit assigns high (positive) values to
good positions and low (negative) values to bad ones. Since the
game is strictly competitive, the negation of a particular value
serves as an estimate of how good that position is for the human
opponent. Using the perspective established by the foregoing dis-
cussion; we can turn to a general description of the consecutive
steps followed by game-playinprograms. Exceptions will be noted
as necessary. (For purposes of calibration, a "step" in this context
corresponds to a sequence of program instructions numbering in
the hundreds.)

A. The human submits an arbitrary position in the game. Pro-
ceed to step B or step E according to whether it is the
human's or tlt computer's turn to move.

B. Theeihuman submits his move.
C. Generate the new position.
D.' If the termination criteria are met (i.e., the game is over),..)

print the result and stop; otherwise go to step E.
Generate some or all successors to the (top). computer
position.
Evaluate each successor. (Note that this step may be arbi-
trarily complex, involving elaborate searching of future pos-

' sibilities and their respective consequences.)
G. Move to the successor with the highest value..
H. Print the computer's move.
I. If the game is over, print the result and stop; otherwise, go to

step B.
r

The success of these heuristics, even with surprisingly complicdted
games, is manifested in the proliferation of amusing, challenging
(and even ego-debilitating) computer-based competitive'gaints.,

E.

F.

25t
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Before looking more closely at checkers and chess (the tradi-
tional paradigms in artificial intelligence for examining heuristics
potentially useful in othei problems), it will be helpful to redefine
the major ingredients in a heuristic search procedure:

1. A generation procedure.
2. A (static) evaluation function.
3. A backing-up procedure.

The first of these has been discussed before and needs no further
elaboration for our current purposes. The property of an evalu-
ation function that makes it static is, the fact that it assigns a value
to a given position without generating any of its.successors. In
contrast, a backing-up procedure assigns a value 4(0 d.pilsition
based on the values of that position's successors. I'

2.4. Evaluating a Position in Checkers and Chess. The Most com-
monly used backing-up procedure is the minimax procedure: Since
the program's static evaluation function assigns a numerical value
to each game position such that the greater the value of the func-
tion, the better the position tends to be, we can think of the ma-
chine as being.. the maximizing player (or, simply, Max). Corre-
spondingly, its opponent can be considered the minimizing player
.(or Min). A position 'in which it is Max's turn to move is called. a
Max-position. For example, in Figure 5, square (i.e., the computer

©a0 0 am 0 p0 0 0
121

Ft°. 5. The minimax backing-up procedure.

212
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Or maximizing player) uses its given termination criteria to deter-
mine not to generate any positions below level 3. Having es-

, tablished these terminal nodes, let us suppose that the static evalu-
,ation function assigns the value v:111 = 40 for position P111. Simi-
larly, the value .v :112 = 10 is assigned to position 30
for position P121, and so on, for all 8 positions as shown in the
figure. We shall not dwell here on hovii these static evaluations arc
assigned: It should be said, however, that much of the exploratory
work man artificial intelligence system centers around the determi-
nation of a meaningful evaluation function. Having obtained these
values, the minimax procedure will back up the value of the best
successor of. the Max position, i.e., the one with the maximum
value. In the case of Figure 5, the maximum successors for each of
the four level 2 Max-positions are P111 (value = ,40), P121 (value
= 30), P212 (value = 29) and P222 (value = 80). Since the positions

at level 2 are Max-positions (i.e., successors to their respective Min-
positions), procedure will back up the value of the best successor of
the Min-position. By definition, this is the one with a minimum
value. Hence the procedure backs up the value of 30 (at position
P12) to position P1, and the value of 29 (at postion P21) to position
P2 . As a result, then, the backing-up procedure would lead square
to select a move to. position P1 over P2. This minimizes the
"damage" that the opponent can do by making his best moves. If
square moves to P1, circle's best move is to' position P12, in reply
to which square's best move is to pi2 1, with a terminal value of 30.
The alternative (i.e., an, initial move to position P2) prompts a reply
on circle's part to position P21 from whence square's best move (to
P212) produces a terminal value of only 29.

2.5. Elaborations on Search, Procedures. Having established the
roles of a. static evaluation function, a backing-up procedure, and a
generation procedure in an overall search sys&m, we shall look at
some possible improvements in these processes.

One version of the basic search procedure combines a static
evaluation function and a minimax backing-up procedure with a
depth-first generation procedure. This approach has been employed,
successfully in a number of game-playing programs and will serve
as a helpful precursor to the more effective alpha-beta search. To
illustrate its nature, let us suppose that the tree of Figure 5 had

256
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been given implicitly and we start again at the top levet, i.c,, posi-

tion P in Figure 5: This ha's been relabeled A in Figure 6(a) in order
to emphasize a sense of sequence. As. Figure 6(a) indicates, the
depth-first procedUrc generates positions 11, C, and D; Since the
termination criteria arc met at that level, the procedure uses its
static evaluation function on position D, producing a value, say, of
40. It then generates positiOn E and 'computes a value for that
poition (namely, 10). The better-of these two values, namelY, 40,.is

backed up to position C. The .procedure then generates F, the
alternative Max-position at level 2, from which it generates and

FIG, 6. Depth-first minimax procedure.

25j



COMPUTER SCIENCE AND ARTIFICIAL, INTELLIGENCE 243

evaluates positions G and FI, This is shown diagrammatically in
Figure, 6(b) where the two terminal nodes are shown to have
assigned values of 30 and 20, respectively. The better of these two,
namely, 30, is backed up to F, at which point it can select thoMettir
value bctwccn C and F and back it up to 13.(Recit II that "better" in
this ins,tance is the minimum value, Le, 30.) Now, the procedure can
generate I and J, followed by generation and'evaluation of K and L
(Figure 6(c)). The backing-up and generation process continues
until the procedure obtains the result show,n'iit Figure 6(d). Conk-
qucntly, the choice will be a move to p6Sition B, since it has it
higher value than the alternative position,k., I.

Prom the foregoing discussion, it is seen that the generation of
successor positions is separate from their evaluation. That is, a
series of successors is prepared before any evaluation is undertaken.
Although this proccdurc works (limited, of course, by the efficacy
and reality of the evaluation function), it is inherently.inefficient
since it generates a number of ultimately inferior positions. The
"alpha-beta" \procidure overcomes this deficiency to a,considerable
degrec. It is equivalent to the depth-first minimax procedure in that
it will always choose the same move as the other, given the same
top position, termination criteria, and evaluation function. How-
evcr, the primary difference lies in the fact that generation and
evaluation are intcrleaved rather than sequenced. Thus the alpha-
beta procedure almost always chooscs its move after generating
only a very small fraction of the tree produced by the equivalent
depth-first minimax procedure. The strategy pivots around the
computation of two limiting values at a given Max - position,: Alpha
is a backed-up valuc for a position that is computed after.a depth-
first procedure followed the generating rules until termination cri-
teria were et. This is not necessarily a final valuc; rather, it is an
interim ev !nation, serving as a minimum limit. In'this capacity, it
regulates t e generation of other parts of the search tree. If the
procedure nds that the value of another Max-position at that level
does not e cd alpha, then there is no reason to continue gener-
ating succors from that position. Similarly, a maximum limit,
beta, ism fished for a Min-position.

Additional insights into the alpha-beta procedure can be gained
by considefing these simple-exercises: In Figure 7, we see part of a
tree in which an-interim backed-up value v:1 = 3,already has been
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Flo. 7. The alpha-beta procedure Ends as alpha cutoff.

established fOr iipostoreP1. Consequently, it uses that as a limit
(alpha) to be impOsedi:on position P2. Now, suppose that the pro...:
cedure, through evaluation, assigns a value.of 2 to ,POsitionF,:i101`,
this :value Were to be backed up to its predecessor (position P2),

e would fall .below the limiting value (alpha) established fOrltihat
position.. Consequently, the procedure reaches what is ternied. an
alpha cutoff: We see that there is no point in generating any other
successors to P2 (i.e., .P2222) P23, and all of their successors). The
procedure can "conclude" that Max' will not choose the move to

i pOsition P2 because it is 'already better off (at least so far) by
2

moving to ,P1.. Having elinlinated this. Move from contention, there.
is no need to generate its successors, and: the alpha-beta procedure,
4ristead, can go on to generate. another position at Pi's. lever,-i.e.,

A similar example is seen in Figure 8: after obtaining v:1;1 = 4
from position P11, the alpha-beta procedure sets a limit ofbeta = 4
at-P12. NOw, suppose that the evaluatOr assigns v:121 = 8 to posi-

: tiOri P1'2i. If this value 'were to be 'backed Up to position P12, it
'would: exceed the proyisi a limit of,4 established at that.position:
This,: then, would be a eta cutoff. From Max's point of view, a

._,-.
move from position Pi is less desirable in comparison to a move
from position P11. There re, there is no need,,to generate any other
successors of P12 Ouch as P122) P123, and so on). Instead, ihe
alpha-beta proe ure; can drop back to P1 and generate another
successor (i.e., P 3) from there and repeat the proCess of compari-

nagams beta.
is evident, then, that the savingsireafitted with the alpha-beta

Ocedure increased drthrialicallys withli he number of levels that
etrto be generated biefqe the termination criteria are, mei; This

.

opus the basis for further improvements in the search, procedure:

1
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Flo. 8. The alpha-heta procedure firtitgeta cutoff.

SP

ClearlY, there are tkrithehgains to be realized if the number of alpha
and beta cutoffs can 6'6'4i-1-Creased: Moreover, thoSe gains would' be
intensified if such cutoffs could. ,be made as early (i.e., as high in the

:tree) as possible. Accordingly, additional 'variations can be intro-
duced, to reduce the' somewhat arbitrary nature of the depth-first
alphi;-beta procedures. Inevitably, these enhancements complicate
the overall search procedure, soihat there always is a necessity to
Consider the tradeoff between-the increased efficiency and attendant
Complexity. : . .

Many of :these enhancements are centered around the idea of
.shalloW searching. That is,,instead of following a depth-first search
down tt its' terminating nodes, a depth-first minimax, procedure cor
an alpha-beta procedure may be interjected across several positions
at a given (relatiVely high) level. Intermediate results. can
then be used to 'prejudice subsequent behavior. of the deeper
searches. One wax -of exploiting the Shallow search's resnits is to
order subsequent searches so that the first one in a series is likely to
be the best one (i.e, the one producing high.alplia/low beta values),
thereby resulting in early cutoffs for subsequent searches. This
approach is called plausibility ordering.

In another; related approach, called forward pruning, not all
successors of .a giVertt. position are searched. ..The time saved by
avoiding (presumably) unproMising branches may be used in
searching mote, fruitful'ones to a deeper level. This adyantagel must
be linlariceclIngainsi ;i110-;;risk of failing: to searchteleAnt branches -

On;;Method of .fori,vardicpruning,.. called n-best forWard. pruning,;

. 1,
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allows the search to proceed below only the small n seemingly best

successors of a position.

2.6. The Evaluation Function. It was mentioned earlier that the
determination, of the static evaluation function for a given game-
playing system is itself the subject of considerable inquiry. For the

sake of simplicity, many evaluation functions often are chosen to be
linear. That is of the form ciyi + c2 y2 + + c yn. This may be
represented as the scalar product of 2 vectors, i.e., C Y. Each yj is
some real-valued ,unction called a feature of the position. For ex-
ample, such a feature might be a piece advantage, relative mobility,
etc. Each coefficient cj is the Weight of the corresponding yi . A
miniature evaluation function in chebkers, for instance, is

6k + 4m + u, where k is the king advantage, small m is the (plain)

man advantage, and u is the undenied mobility advantage. The
coefficients for these features are 6, 4, and 1, respectively. Suppose,
then, in a position to be evaluated, the computer has two more
kings, two fewer men, and one more unit of undenied mobility than
does its opponent. The evaluation function would assign a value of
6(2) + 4( 2) + 1 or 5 to that position.

2.7. A F'rogram That Plays Chess. There are numerous chess-
playing programs at various levels of, proficiency that embody the

types of procedures outlined earlier. An example is a program writ-
ten by Richard Greenblatt, Donald Eastlake HI, an Stephen
Crocker. (1967) at the Massachusetts Institute .of Techn6logy. This
programused the alpha-beta procedure combined with plausibility
ordering and n-best forward pruning' of moves. In addition, the
program is equipped.with book openings and other items of "chess
knowledge."1'ypically, the program makes its move (in a game) in
about a minute. A good playei (not to mention an expert or
master) usually beats this or any other chess,program, but the task,:
is becoming increasingly difficult as these program designs im-
prove. This particular program is an, honorary member of the
united States Chess Federation and la Massachusetts Chess'As.
sociation under the the name of Mac Hack Six. The program pl4s
in tournaments and 'is operated via telephone lines from a teletype
at the touKnament sight. In an April 1967 tournament, the program
won the Class D trophy. Over the past few years computer-based
chess tournaments .have become a staple feature of most national

26 J.°



Move No.
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TABLE 1(a)
A Tournament Game Lost by the Mac Hack Six Prograin.

Black is Mac Hack Six; White is ,a human rated 2190.

White Black

P-KN3 P-K4
N-KB3 P-K5
N-Q4. 13-B4

N7.143/ 'B-N3
8-N21 N-KB3
P-Q84 )-Q3

8 1

N-413)11-K3
P(43 PxP

9 .1 EX.P:,:',.' QN-Q2
10 .'\ PxP R-QNl
11

V

7B-N2 0-0
12' 0-0 'B-N5
13 Q-B2 'R -K1

14 1,' P-Q4 P-84
15 B-K3 PxP
16 NxP N-K4
17 P-KR3 3-Q2
18 l'-N3. . B7QB4,,

19, \I:lit-,Q1 Q-B1''
20 \K -R2 N-N3 '.

21 B-N5, R-K4
22 3c.N Px8 -:
23 K4 P.44
24 N KB6ch- K-N2
25 NX QxN
26 N- 6 QR-Kl
27 jixR ..- RxN .

28 Q-B ' P-83

BxP: Bishop t kep Pawn
Castling: 0-0 .36ing side';

p-o queen side.
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Move No. White Black

29 R-Q3 R-K7 ,

30 R-Q2 RxR
31 QxR N-K4
32 R -Q1 Q-02
t3 B-Q5 K-N3
34 , P-QN4 B-N3
35 Q-B2 N-B3
36 B-K6 N-Q5
37 RxN BxR
38 QxPch K-N2
39 Q-N4ch K-R3
40 QxB Q-K2
41 Q-R4ch K-N3
42 8-8Sch K-N2
43 QxRPch K -B1

44 Q-R8ch K-82
45 Q-R8 Q-82
46 Q-QSch K-N2
47 K-N2 Q-K2
48 P-KR4 K-R3
49 P-N4 K-N2
50 P-R5 Q-K7
51 P -R6ch. K -B1

52 P -Ri QxKBPch
53 KxQ K-(2
54 P-R8Qun. e-R3
SS Q-K6mate

computer confere ces, with programs playing other programs. As a
matter of general interest, Tables 1(a) and 1(b) reproduce two tour-
nament games payed by Mac Hack Six. These are of particular
interest because e former (a loss) was the, first tournament game
ever played by a c puter (January 21, 1967), and the latter was

_the first tournament game ever won by a computer (a rating of
2190 represents th of: an expert, almost a master).*

2.8..Conclusip to Be Drawh from Checkers and. Chess-Playing
Programs, Ty progiams described in this section typically require

.

-.*. In 1 , Hans Berliner's backgammon program defeated a world Champion in a
.

.-:-,'tournarne t.
.

------,,
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in the order of one minute per move, whereas tournament rules in
chess and checkers allow four or five minutes per move. Checker
programs play an excellent game (by, human standards), whereas
chess programs are not quite so adept. In checkers, the successful

player is able to,perform fast and accurate searches on rather large
trees. Iri chess, however, success is associated with the ability to
invent and use strategies. The successful chess player mixes abstract
thinking with move-by-move analysis. This selectivity enables him'.
to restrict his searches to relatively small trees. Accordingly, re-
searchers are working to mechanize these types of heuristics.

Id a sense, the heuristics embodied in these game-playing pro-
grams emulate a kind of learning.,The checker program, for exam
ple, uses a type of generalization in developing evaluation functions
that are more effective than their predecessors. This has led to
practical procedures for good (but not optimal) evaluation func-
tions in a variety of contexts. Many researchers in artificial intelli-
gence feel that these techniques will provide valuable insights into
human learning processes.-Such accomplishments, however, still lie
in the, future; it is safe to say that, at present, no program lwas
better than the checker program.

TABLE 1(b)

A Tournament Game Won by the Mac Hack Six Program.
White is Mac Hack Six; Black is a human rated ISIO.

Move No. White Black

I P-K4 P-QB4

2 P-Q4 PxP ./
/

3 ,QxP N-QB3 //

4 Q-Q3 N-B3 // ,

5 N-QB3 P -KN3 .,'

6 N-133 P-Q3'

7 B-B4 P-K4

8 B-N3 P-QR3 '

9 0-0-0 P-QN4

10 P-QR4 B-R3ch

11 K-NI P-N5

12 QxQP B-Q2

13 B-R4 B-N2

14 N-Q5 NxP

15 N-B7ch QxN

16 QxQ N-B4

17 Q-Q6 B-KB1

18 Q-Q5 R -B1

19 NxP B-K3

20 QxNch RxQ

21.'''',... R-Q8mate



COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE

3:PROGRAMS THAT SOLVE PROBLEMS IN CHESS,

GEOMETRY, AND CALCULUS
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A wide variety of intellectually difficult problems, including
many problems in chess, geometry, and indefinite integration, share
a certain common structure which can be represented in terms of
implicit tr es. Heuristic programs have been written to search such
trees, an experiments with working computer programs have
produce successful solutions to some fairly difficult problems. For
exatupi Bayloi and Simon (1966) performed such work with chess
ProbleMs; Gelernter and his co-workers (1959, 1960) did related
work with geometry problems, and this author (1963) performed
such experiments with problems in integration. The speed of these
programs compare( favorably with that 'of a skilled human
problem-solver. Accordingly, research continues toward machine
solutions for increasingly difficult and important problems.

3.1. Representation of a Problem as an Implicit. Tree. Geometry
and chess problems are good examples of a fairly general kind of
problem that can be represented by two kinds of implicit trees.
These two representations ultimately will be shown to be equiva-
lent. A chess problem, fob instance; iiiay be represented as an im-
pficit, two-person; gtrictiy competitive 'game tree. Recall that the
trees discussed in the previous section were conceptuallY similar,
with the exception that they were explicit, The tree in Figure 9

",
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\ 1 . ( ;
>ci: ' ,<
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a wins Tl a wins

FIG. 9. Top three levels of an implicit dame tre-C-7-
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illustrates this structure. We see that there are terminating nodes
which, if reached, guarantee a win for the computer (i.e., white, or
square). The problem, then, is to search (i.e., make explicit) enough
of a game tree to prove that the computer can force a win. Figure
10 shows the appropriate solution: The heavy solid lines represent
a proof that the computer indeed can forbe a win by selecting the
right-hand-move from the given starting position.

A geometry problem may be represented as an implicit and/or
goal tree. The top, three levels of such) a tree are illustrated in
Figure 11. In this context, the problem is to prove some geometric
conclusion, e.g., that two angles are equal, given certain hypotheses.
Looking for a proof corresponds to the /.search of an implicit goal
tree whose top goal (the node labeled G in Figure 11) is "to prove
the conclusion given originally." As implied in Figure 11, the top
goal G is achievable if the disjunction] (i.e., the inclusive OR) of
goals G1 and G2 is,achievable. This disjunction is represented by
the square shape of G. If G, say, is to prove two angles equal, the
goal GI might be to prove that the angles are corresponding parts
of congruent triangles; and the goal G/2 might be to prove that the
angles, are alternate interior angles of parallel lines. Referring again
to Figure 11, we see that the goal GZ is achievable if the conjunc-
tion (i.e., the logical AND) of G21/ and 022 is achievable. This
conjunction is represented by the circular shape of goal 02 . Figure

a wins a wins

FIG. 10. Explicit game tree and proof. Heavy solid lines represent the proof.

26
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%7<1

I.... .
%..
I G2

e-.r -1 rs_-1 r --I s_
1 1 I I I , I, 1 ,,. 1

I I I 1 I 4.21 I I '',22 1
L ,,J, L.7,-1 L7rJ L J
ee ' / \ / \ se?-731\

ef \
goal goal
ediately immediately '

achievable achievable

S. e:

FIG. 11. Top three levels of an implicit goal tree. _

12 shows the solution by making the apprppriate parts of the tree
explicit, Here again (as in Figure 10), the heav'y solid lines represent
the proof.

Comparison of Figure 9 with Figure 11, and Figure 10 with
Figtere 12, shows that the two representations are equivalent.
Specifically, the chess problem could have been represented just as
well by an implicit, and/or goal tree; and the geometry problem
could have been represented as art implicit, two-person, strictly
competitive game tree. We shall see that .a problem in indefinite
integration also can be represented in either way.

goal goal
immediately immediately
achievable achievable

FIG. 12. Explicit dial tree andrplb. of. Heavy solid lines represent the proof.
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3.2. Objectives in Developing Problem-Solving Program& The
motivations that promkt the study of programs for solving prob-
lems in chess, geometry, and indefinite integration are similar to
those underlying the development of heuristics for game-playing
programs. These problems, in effect, are simplified versions of real,
potentially important ones. Moreover, since many people are famil-
iar with tl1ese kinds of problems, they are in an excellent position
to evaluate the solutions given by a program,' comparing its per-
formance with that of humans. Thus these probrem types serve as
vehicles for the development of procedures to handle a more gener-
al range of problems, i.e., those problems representable by an im-
plicit, twornon, strictly competitive game tree or, equivalently,
by an implicit; and/or goal tree. Such procedures have the potential
of yielding valtilable insights into the problem-solving process.

)- As for purposes specific to each program, the geometry program
studiekthe use of models and the integration program is potentially
useful in itself. (The latter, for example, was eitended to a calculus
p ram capable of handling definite and multiple integration.) The
geo ry program, in using a diagram as a model, rejects subgoals
which do riot conform to this model. This is particularly interest-
ing, since humans use models to great advantage in successful
problem-solvihg.

3.3. General Description of the Procedure. While a detailed
examination of these problem solutions is'twell beyond the scope of
this introductory overview, we can characterize the general ap-
proach in terms of a sequence of steps designed to navigate
through the goal tree to a satisfactory arrival at the originally
stated goal or to a definite conclusion that the goal cannoybe
reached. At the start, the procedure "knows" what the original goal
is and has at its disposal a spectrum of defined resources: allowable
transformations-that it can perform when in a give state, and
knowledge (e.g., axioms, other already proved tbeore s) that it can
use to reduce the problem to a cornbination of su problems that
are handled more easily. Within this gener 1 framework, we can
enumerate the following basic sequence of,teps,:

A. If the program succeeds in its attempt for an immediate solu-
tion with the original goal, printthe answer and stop.

B. If the program cannot proceed-/because it has qxhausted its
available resources, print this Act and stop. 4

2.6
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C. If no untried goals remain, print this fact and stop.
D. Select an untried goal as a basis for generating additional

parts of the tree.
E. If no more (sub)goals can be generated from the selected

goal, go to step. B. 6

F. Generate the next untried goal from the selected goal.
G. If the ptogram fails in its attempt for an immediate solution

'with the newly generated goal, go to step E. On the other
hand, if the .try succeeds, prune4the goal tree with respect to
this goal. The pruning will have one of the following three
results:
1. If the original goal is met, pr ht the answer and stop.
2. If the original goal is not met but the selected one is met,

go to step B.
3. If neither the original goal nor the currently selected one is

met, go to step E.

Research in the improvement ot these problem-solving programs
continues, fueled by a 'growing conviction that the resulting
methodology constitutes the beginning of a general problem-
solving theory.

4. AUTOMATIC THEOREM - PROVING USING THE RESOLUTION PRINCIPLE

An alternative to proof-finding as an approach to automatic
theorem-proving is the idea of consequence-finding. Programs
using this latter approaCh, such as the one written by R. C. T. Lee
in 1967, start with a colleciion of axioms and try to deduce conse- .
quences from. these axioms and select those that are "interesting." It
turns out that both approaches use the resolution princfple, a natu-
ral and powerful rule of inference.

It is this use of deduction that provides a substantial part.of the
motivation for studying automatic theorem-proving. Of course the
basic activity itself is intrinsically interesting, nce proving: a non-
trivial theorem is an intellectually difficult problem. Interest is
heightened, moreover, by the application of first-order predicate
calculus to the design of such programs. In mathematical logic, one
can express fairly conveniently alMost all kinds of deductive argu-
ments. Thus writing a theorem-proving program that uses predi-
cate calculus allows the researcher to study deduction in its purest
form. This ability (on the part of a program) to make deductions

270
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from given facts has been characterized by Professor John Mc-
Carthy (1959) as common sense. .When exercised in humans, it is
considered an important part of patural intelligence. The obvious
extrapolation, then, is irresistible: A program that uses mathemat-
ical logic to find proofs can be extended to deduce answers to
questions. Such extensions have beem implemented successfully
using frameworks of knowledge ranging from a set of major league
baseball statistics to the text of a children's encyclopedia.

Clearly, the extension also can be taken in another direction: a
future program that proves new and interesting theorems would' be
useful in itself. It would be a tremendous achieVement, for instance,
if some undefined but imaginable program of the future proved or
disproved the famous Fermat or Goldbach conjecture. Providing
'additional motivation is the fact that mathematical logic is well
suited to computers. Since logicians have labored for decades to
make their rules of inference "mechanical," it is an attractive idea
to develop computerized algorithms based on mathematical logic,

since this is a well-formulated, well-studied branch of mathematics.
Thus, writing and ;using theorem-proving programs is a way to
study mathematical logic.

P. C. Gilmore (1960), H. Wang (1965), and M. Davis and H.
Putnam (1960) are among the' early investigators who used first-
order, predicate calculus in the design of theorem-proving, pro-
grams. Using formal inference rules, the programs progressively
substituted constant terms for variables in well-formed formulas,
checking at each step to see whether the theorem haOss:nproved.,
In 1965, J. A. Robinson developed an inference rulg'talled the
resolution principle, which served to unify many of theefelatively
fragmentary theorem-proving algorithms in use at that time. The
resolution principle seeks to draw the most general possible con-
clusion from two given statements, serving to delay (or even elimi-
nate) the need for progressive substitution of literals in place of
variables. The resolution principle is more natural, more intuitive,
and easier to use than are the formal inference rules it replaces.

4.1. Characteristics of the Resolution Principle. We shall examine
the basic use of the resolution principle by, charting its course
through some simple examples. This will provide background from
which we can establish some generalizations about it

2 "LL
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EXAMPLE 1. We are going to seek proof of a simple theorem
through use of the resolution principle. The statements given below
are understood to hold for all values of their variables., For in-
stance, the statement PI holds for all x, for all v, and for all y. This
is true in the same sense in which the identity x2 y2 = (x + y)
(x y) holds for all x and y.

THEOREM 1: Suppose

P1: If x is part of v, and if v is part of y, then x is part of y.
P2: A anger is part of a hand.
P3:. A hand is part of an/arm.
P4.: An arm is part pf a man.

From P1 through P4, we may conclude that a finger is part of a
man.

Proof of Theorem 1. A procedure that tries 'to- find proofs using
the resolution printiple first takes the denial of the conclusion and
then. tries to deduce a contradiction. In our current example, this
denial can be expressed as follows:.

P5: A finger is not part of a man. -

To reach this denial, and its accompanying contradiction, the pro-
cedure produces the following consequence:

P6: If hand is part of y, then finger is part of y.

This is called a resolvent of P1 and P2. (More about this later.) P6
is obtained by first "matching" (making identical) the clause P2 and
the first portion of clause P1 by letting x be "finger" and y
"hand." This substitution in PI gives the following intermediate
result, a logical consequence of P1:

Pi': If a finger is part of a hand and a. hand is part of y, then a
finger is part of y.

This is indeed a logical consequence of P1, since 131 is asserted to
be true for all x, v, and y, and therefore it must be true in the
special case when .x is "finger" and v is "hand." The clause P6 is an
immediate' consequence of P1'. and P2. Usually, the. resolvent P6
would be given directly without expressing the intermediate result
P1'.
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Each of the three portions of the clause P1 is called an atom. For
example, the second atom in PI is "v is part of y." Thps, each of the
clauses P2, P3, and P4 consists of one atom; clause P6 consists of 4.

two atoms. Returning to the proof, we match the clause P3 and the
first atom in 136 by letting y be "ann."- This yields the intermediate
.result

P6': If a hand is part of an arm, then a finger is part of an arm.

This, together with P3, yields the resolvent

P7: A finger is part of an arm.

Similarly, the resolvent obtained by matching P7 and the first atom
of P1 is:

P8: If an arm is part of y, then a finger is part ofy.

The resolvent of P4 and the first atom of P8 is:

P9: A finger is part of a man.

Matching this with P5 gives a contradiction of the denial, thereby
completing the proof of Theorem Ti. This proof is outlined in the
first and secood columns of Table 2. In this table the corresponding

TABLE 2

Proof of Theorem 1.

Clause
name Proof in wards

Proof in symbols

Clause Reason

PI -If x is part of. u and if v is pan of y, then
x is part ay: -

P2. A finger is part of a. hand.
P3 A hand is part of an arm. a.
P4 An arm is part of a man.
PS, 4 finger is not part of a man,

P6 If a hand is part ofy; then a finger is part ofy.

P7 ,A finger is part of an arm.
PS If an arm is pan ofy, then a finger is part ofy.

P9 A finger is part of a man.
PIO Contradiction.

Part (x,v) & Part (u.y)- .Given
Part (x.y) .

Part (finger, hand) Given
Part arm) Given
Part (arm, man)" Given
Pan (finger, man) Denial of

conclusion
Part (hand, y)-. r(Pla,P2)

Part (finger, y)
Part (finger, arm) r[133,P64
Part (arm, y)-. a,P7)

Pan ,(finger, y)
Part (finger, man) 4134,Pia)
Contradiction r(PS,P9)

7

ft
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proof in symbols is self-explanatory, except fdr the following: The
expression r[133, P6a] denotes the resolvent obtained by matching
the clause P3 with the first atom in P6. The symbol & means

s"and," the symbol-0 means "if ..., then ..." or "implies," and the
symbol -- means "cot."

EXAMPLE 2. The resolution principle consists of only factoring
and resolutidin. This example illustrates factoring; tisjunctive nota-
tion, and .the way in which the theorems are, formulated for appli-
cation of the resolution principle.

THEOREM 2. In any associative system which- has left and right
sotutioni's aid t for all equations,.s x = Oind x t = y, there is a
right identity element.

Proof. Application of the resolutign principle to produce a proof
5 /

for this theorem is outline(4 in Table 3. The .notes givefl below
elaborate on that proof:

Al: There exists a left solution. This means that for all x and y
there is an s such that s x = y. In other words, there exists
a function g(x, y) = s such that g(x,y) x = y.

A2: There exists a right solution. This means that for all x and y
there exists t such that x t = y. That is, there is a function
h(x, y) = t such that x h(x, y) = y.

TABLE 3

Proof of Theorem

Clouse
:ROM' Clause Reason

Al
x.h(x.Y) -y

A3 (Jr..Y &Cr: - Li&
(xD - w)-quz - w)

A4 k(x)x sek(x)
AS (x:y.- u)&(yz- y)-.(uz - u)

. A6 liTyz- u)
A7 y.:104ty,
At -, contradictitan

Given (existence of a left solution)
Given (e.iistence of a right solution)
Given (part of associativity)

Denial of conclusion
f[Al.a.c1
rEALA5a1
riA4.A6b1
r(A2,A7I
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A3z) Establishing associativity. Iyi t
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Symbolic logic (predicate calculus) proofs of Theorern 2..

lnsplIcation notolloit Ofsluncilre nototion'
e

AI .P(//(x.Y).x.i) PC81.v.)444)

rtx,h(x,y).yr

P(x.y.u)& P(yz;r)& P(x,v,w
P(u,z,)

A4 -P(k(x)..K.A(T))
P(.1.,y,u)&P(.)*:za)-.P(14;01

R.r.z.Y)-*P(ia.u) ..;
LP(.P..za) 7-
contradietion

ti

%a

Reason

-p(x,y,tt)V4(y,z,v).V
-P(x,r,w)VP(Ur.)

7P(k(x) ik(x))

'V P(u,z,u) .

-P(ra,y) V P(y.z,u)
-P(y,z.y)

'Contradiction

Given (existence of
left solutisin)

Given (ex4tiiiiCe ors
[right solution)

Givel,(part orals- .
*jativity)

lietiO of cOnclpsion
fiA3,a.cj

riAl ,A5a]
riA4,A613]
rfAZA7)

We try simply to match-the two atoms frOm left to right: The first
.

required substitution is f(w) for y. (Of course, :the reverse, i.e., substi
tution of y for f(w), would, not be valid.)' §Obstituting 1(w) for y
throtighOut the*clause yields .

P(f(w), w) V P(f(w), g(x)) V P(w, kaw))).

The next required stibstOtion is one-in which .g(x) w.-Note
that the nonMiliimal substitution of h(z) for x and g(h(z)) for wilso.
leads to a match, butthe,"factor'i thus obtained woilliii0e a special
case of (and,' therefore, worse than) 'the factorAhat we shall .o>

this way. Substituting g(x) for w Sields

P(f(g(x)), g(x)) V P(f(g(x)), g(x)).'y P(g(x), f(f(g(x)))).

Thus, the Obstitiktion of g(x)' for W and> small f(g(Z)) for y in the*
original.clauSe is minimal. The fa tor,Obtained by deletinmue-of
the two redundant atoms; is 1,

' P(f(g(x)), g(x)) Q

If the above-mentioned nonmi
qactor" would ,be- as indicated

:substituted for x throughout the
no otherCactors Olthe original c
be matched' the first or's

P(g(x), f(f(i(x)))). ea

final substitution "re used, the
except that,h(i) would be

ctOr. It hallpens that there are
la e, since the'third atom cannot

con4 atoms. ;

Vt.
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EXAMPLE 3. This examplewhoseproof is given in Table 5, illus.
lntrates the minimal-siibstitO, t '' aspect of resoldtion. The list of

arguments for B1 and B2 can e made to match witheach other, by
implementing minimal substitutions. Accordingly, ey104list of argu-
ments becomes

g(s),

m(g(s)),
h(s, m(g(s))),
n(g(s):' h(s, m(g(s)))), 4
kcs' m(g(s)), n(g(s), h(s, m(g(s))))).

'0**,
Definition of tlie.Resolution Principle. A more precise defini-

tion of resolution::, and factoring now can be considered. Using
disjunctive notation,.the resolution principle combines the follow-
ing two basic ideas:

1.' The syllogism principle of propositional calculus, i.e., from

'an

'one may -infer

a V1)

V c

, b V c.
rPfiit2. The instantiation principle of predicate calculus: from the for:7

mula

F(ti; y2, .

Illustrattari of the mininial-substitutiOn aspect of,resolution.

Clcuise
name Clause Reason

Bl P(ss(s),t,h(s.t),u,k(s,r.u)) Given
`132 -1.(r,w,rn(w),.v Mr,x),y) Denial of con.clusicin-
B3 Contradictierf,.. A131.F52]
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4.1111de! Si0Od to holdrfoi' all valuft va, v2
infer the.forrnula

stn)

rIS
obtained .by, substituting' tlibi/S,!se,rms t1, t2, for the variables.
VI, v2; , v., respeo,tiVely:1041efinition, a term` is either:

(a)' an individual constani,Sai exampte, "finger
(b) an,;ndiVidual,variaP10,.:04.0c
(c) 'function Of othdhteritid,b.4.1g(x, y) and h(s, ni(g, (s))).

General reSolution 'part of the, overall res.plipon princiRle: A
clause cOnsists,"Of the disjurictiow-offliterals. By defini.;

don, a literalis;:an atbn i f the 'negatiOn*(denial).of an atOni.. The

resolyent, if al4;;Jof x.litetal in lane 'clime and a, literal irranOtriei-
c14use is iMplifd..byt thiji;v0,,4claus-ps taksS; together. Such a Kesol7
vent is obtainOdas follo}6:,*1

. 4; 4;1;,,' .

A. Renarne,:.va'iiable qs01
claus4 Aee,.diStink
clause.; ,

Find thelMn401sUOtitigiouiir an
IdentiFag:IWOppOSitct in

*0sti
D. ..IfbVUalk'the'Safile literal0

a ft er.tfie , g"4
that clause Y r

.

all individul:;VariableSin, one
Jindividuall4i,i'ableildthe,dther

Podte air sign

in the fihtan isedon

Genftal
factOr, if atv,3df tWo
c ause tai 6'and

5

'a p'$ the'liteKaf§

tpr,ougli614"4.1cbt.h 'clauses.
're Illan once th a clause

topy of that literal in

rq.iiinade identical' but op-

nation Of the literals remaining

3.

A. Find .thq4rit Ubs ltutiOn, if any, whichtlakes,the;:ljterals,
identibafa/kt4 ..ealild itisI0).14 ;

Perfonififie" 'it,itatecf stibsiitUtiep throUghout ihe clause
Cancel 11140nie copy ,of th iteials which were made iden-14.

..'' ' of t-p'eol.*4..4'_g_t:o e s tution.' '''''';ig,-;/: ,,./ 7
or' I ; 27

/
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.

tD: The factOr, tlien,As the disjunction, ainitis literals.

J .A. Robinson (1965) proved that utron principle is
effectiye,".sound, and complete for proo s ng. Subsequently; R.

.

1,xe (1967) showed that resolution is complete for consequence find-,
'ing4S 'well. Its effee0eness means that One can write a computer.

'program, which, in a finite number, of steps, ,willifindthe.factors of
any :clause- and the resolvents of any two' clauses. The principle's'

.soundness Means that a clause logically implies each of its facto
, an that twia.slaules, taken ,together, lOgically,,implY each of their
. resol

THEOREM. If a finite set of clauses is unsatisfiable, then a 'finite
nuinber of applicatiqns of the resolution principle will find a con- -
tra.diction.

TilEOREM. If a .elauSe C is a con'iequence of a finite fionenipty iet
of 'clanses, thena.finite number of applicatibris of the resolution

iprinciple will find.aesesclau T 'Such that C, is an immediate conse-
quence of T alone. .0 -

Several researchers \have strengthened these theorems by show-
ing thaf certain restricted forms of the resolution:principle ark-sti
complete. ThiS is of practical importance to -automatic theorem.,
proving because research result§ have indicated that rO:stricted-(yet
still 'complete) resolution tends .to be more efficieni_ ttian.41fre=

.

stricted resolution.

5. OTHER. PROGRAMS FOR MATHEMATICS;

In'

os:"

addiiiOtitb- integrAti.on and thepfern-yrOxing in calculus and
georne464,00Fhqrs.,haVe written::ay V rie t y of heiiristie4rograms

'.f6r-Maffitiffitt01.PrOcessing. These include a Successful. regression
analysis; rogra. i.p-nd a pr,ograthf manip.ulatin-arbittarily Com-
plicated syrnboltelmathematital expressions.,rpesq- are excellent Ve-
hicles for trying out Iltificial intelligence algOrithins' and techniques
since the rebetems' arkwell formulated.. 1n:7addition, many re-.
searchers 'a intereste n eventually obtaiping a practical program
suitable for 'developing desired sottitiOnS to ,tipalistic m matical
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,

'problems. The additional examples 'outlined in this section are iii&

tWited by boih of these Major forces.

5.1. A Programmed Aid for Manipulating Mathematical . Ex
.p.

pressions. Several researchers have written programs to help people
manipulate mathematical: expressions. William Martin (1967) and
Joel Moses (1967) have written .one such program for the time-
shared-Cbmptrier system at MIT. Among other things, the program
can simplify, differentiate, and integrate mathematical expressions,
and it' can solve some simple differential equations:- In a typical
episode; the huMan user 'submits some...iaitial,Jdathmatical ex-

...pression's, along with directions for their manipulation. In response,
the program 'produces intermediate expresiiOns resulting from the
claslified -Operations, Then, the user describes the way.in whicp he
Warits,thoSe intermediate expressions iiiiiiipulated. This interactive
dta"l$igue may go through an arbitrary number. of; cycles until the
:tiserlObtains 'a get of olitput expressions that he considers to be in
final forin. In this way, for example, the program c4n be used to
simplify and diffgrentiate.very large expressions quickly and accu-
.rately. Its operating capabilities "reniove it from 'thealass of being

pmerely a replacement or ''work that had beenisl epnanually;t
rather, it can handle routinely expressions whogek he and' Com.
plexity place theth beyond contemplation for maniiall3TOZetSitig....,

As such programs are' augmented with improved al ettifhiiNter;::.
°suiting from more retent research, they become mo'''' 1!1 1

r-

assistants, thereby enhancing their usefulness. For
pose stpieone wants to, write a heuristic program T9
some specified task. Instead of trying todolhis dire

.possible to describe the task formally to a "task-11:...11,
%ant," whith; in response, einsttuctions,. yvou C the
requiied task dieectior Cii.;,bapabilities still are nnited,
they. certainly are no ,rcg1;:. that generate exact
sequences of detailed,;, b industrial robots

Already are in uses -1.33
by

languages are-.4''' rte( :
being develoPed tolit 1X-"a 1"'1=-Okrams.4101ding.,,p.

5.2 A Heuristic liegiession Program floyd . Miller
(1967) wrote a practical heuristic regression analysis program that
leardept Input to.the program consists` of a set of (n +1)-tuples (i.e.,
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x x ' X' Where n is no greater than 40. The independent19 29 9 n9 9

variables xi ar the firedictors, and thc dependent variable y
response. 'The other,input, item is k, .which is either 3, 4, or 5 and
subject to thc constrkaint that it CloeSpot exceed n 2..The pro:-
gram computes the model assOciatd.ith each of the 2n distinct
sets of k predictors. By definition0Oriodel associated with ihe
predictors, (i.e.; xi ,, xid iS.thtY. function 'Irving the foim

y = + +'a2 xl2 + + lak xik,

which provias4 the "bdt .fit" fot the sets of (n + The ai, qf
course, represents the multiple regression coefficientSiOutpnt gen-
crated by...the program consists of the three best Models thgPip-
ducecl. The user often isjiniterested primarily in the three good-Sets
of k predictors vvhich he obt,ains as part:of the models. Once a sdt
of k predictors is chosen, the program,: apPlies standard leastfi.
squares procedures to compute the multipleregression coefficiehts

Thiisiatter aspect is of secondary interest since it does not
depart seriously front traditionartnethOdology: Of greater rele-
vance in our. present' context, however, the 'procedure whereby
the hetgistic regression SS,stom learnsio select good 'predictors:

A, Initialization of the run includes input ,of the observed data.
(i.e., dtbset'of (n + 1)-tuples). Asstiming no prior knowledge
about the relative afulness of evh .the n, prediCiors, the
initialilation' process assitns :equal yrobabiliticv;pf usage.
Thus, each Pi,: 1/ni4vhere. pi. is, the. probability o'f Choosing
predietor xj in step; C.. . tt:

B. Initialize the trial proCeSsing:bitting; each trial,-a set 611c:i..
predictors is chosen.

C.Choose a predictor in aCcdidajt kith the rOlative.Pr6a.-
bilities P

D. If the selected. predictor ,Already "Been chosen during ..this
trial, discard:41* choiCe fand,go to

E. If a set of k predictori has Ifol yet dh or; go to step
F. If the current set of k predictors is ihe;same as theeset lased: in

some previous trial, discatd the set ana,go to C.
. G:. Oie regression analYSIS ttifind,..t he model associated with the

set of k predictors. '40 441

.iSavelhis model if it is -one ofihe::three best models
-:ti;.Aso fart' during the run:, ;,
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Reward 'and punish each of the predictors, That is, adjust the
probability Pj of chOosing predictor xj, (Space prohibits de-
tailed discussion of these techniques.)
If fewer than two n models have, been generated; gd to step.
B; otherwise, print the three best models and stOp.

The performance of this type of program is excellent. since its
inception in 1964, it has solved well over a thousand differetit------
practical problems at various industrial companies. (Examples are
described in articles by Blackmore et al. (1966) and Drattell.(1190).)
Applications have ranged from prbduction planning in the paint
industry to the analysis of traffic fatalities in Florida.

5.3. Implications, of Mathematics Problem-Solvers. PrOgrel in
this area of artificial intelligence is s ciently strilcing,to.Ftlice the,
efficacy of mathematical problem-sOlvers well,beipe4OUbt;),,Since
these systems produce useful solutions to probletnablitiklOa in-
tellectually nontrivial in human terms, there are:grounds for a
strong arguMent that programs meet most triaitional Criteria'
for intelligent behavior.

6. A PROGRAM THAT FINDSOHEMICAL STRUCTURES
^

Heuristic bendral is a program designed- by Edward Feigen-
,

.-baurn,-(1968) and,;:qthers at Stanford University. Input consists of
the empirical formula and the mass spectrum of some acycliC or-
ganic molecule. In response, the program produces a list of...strUc-

tural formulas (i.e., molecular.graphs) that explain the :given. iliPut

: in the light of the program's model of the masS:SpectronietrY and
stability of. Organic molecules. The is orderM:starting ith' t

, most satisfactory explanation. Comparisons alwAys are in esti-

In thii%tanee, for certain classes:of organic niO e sothe pro-
.,,:gram's performance (i.e., its speed and ,accuracy) approaches or .

`exceeds that of postdoctoral laboratory workers in mass spec-
trometry.

Heuristic pendial consists of four basic' processes: the prelim-
----nary-inferenteiriaker, the hypothesis generator, the predictor, and \

"e5741,41-Of:4he first of these components embodies a set of °
tion heuristic rules: It makes '--4:ic;itreliMinary in-
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terpretation of the data in terms' of the. 15i094)ce of key functional
groups, absence of ollier indicator groups, weights of radicals at7,_,
taehed to key functional groups, and so on.

These activities pave the way of the hypothesis generator, a com-
ponent that "knows" the valences Of atoms and capable of genet.:
ating, all of the , topologically possibte isomers or the empirical
formula submitted as input. In a very real c nse, then, the
hypothesis generathor and the empirical formula etermine an im-
plicit tree. At the top node, we havelll the atom but no structure.
At the terminal nodes, then, there arc complete structures but no
unallocated atoms, The search, within this tree is guided by various
heuristic rules and chemical rho &Is such as the output from the
preliminary inference maker, the 11 priori model, and tc'zero-order
theory of mass spectrometry. The a priorkmodel is ieMOdel of the
chemical stability of organic mblecules bilk/a On^-t-liC;$resence of
certain denied and preferred subgraphs of the chemical graphs.
Zero-order theory is a relativSly crude but rather 'efficient expla-
nation of the behavior of molecules. in mass spectrometry. It
.screens out entire classes of structures because they are not valid
with respeetto the data, even witbin the latitude tolerated by a
crude approximation. Output from the preliminary inference maker
and hypothesis generator consists of a list of molecular structures'
that our candidate hypothesizes for explaining the empirilal spec-
trum.This generation process embodies a rather compleetheory of
mam. spectrometry. The evaluator is a heuristic algotithm which--
matches tbdpredicted spectrum for each candidate with the empiri:

'stibmitted previously. After, discarding some candi-
dates, 4rlkplaykt4 remainder as mentioned earlier. More recent
enhancemerrts-to this program include nuclear magnetic resonance
data.as part of the criteria for identifying candidates and evaluating

. their suitability.

7. DATABASE MANAGFOENT SYSTEMS AND ARTIFICIAL INTELLIGENCE

A typical database managernent sygtem consists of one or more
large comiiuter prograrins that can make additions,
trieyaNipnd modifications in a large collectibmof data Such a
system .can answer a 'qttest19n submitted to it.by _displaying facts

1,extracted fro t e data'aillection. More sophistieatk systems can

1;.
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ppraPS 1 pe_
tion ly quite compp)carg,ciiiideprtia y stra g
.gianifirOfinindrphig;,8veletd liken such searches to the,

father dull-witted; lazy,, anecompletely literal-minded reference ;.'.librarian. 7

One of the most active areas"in cniquter science concerns itselfwith the development of concept and methodologid that will im-
prove the quality and responsiveness of-searches on databaseAsys-

.tems, A considerable part of that, actiyjty is relevant here itseeks to apply artificial ,intelligepCeAeChniques to the speiificatinn,
analysis, and processing drsearch requests. Anthropomorphizing
again, the objective is to make the system more like an industrious
librariin who exercises some initiative to helpthe user. OneArect
of this work seeks to ,replace the highly. strubhired category sensi-
tive search reqUeits:itli'a_more natural syntax. for examplej Wil-,
liam Woods (1978)'at Toll, Beranekaiia.evVinait wrote, a program
called the: Lunar Syem,;,a natu-rallaiiguage system for retrieving

:information from :a datsbar of cheliiicat analyses of moon rock'.fainples. The interfactietiftfei,the'uSet-'ititl the system is equippedto handle inquiries such a How many samples contain more than
Objpercent.iion?" Improvement suchlsyStems often itirianifested
in their ability to .accept,les and .less..precise inquiries. `'David
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ech Understanding Systems. The idea .,13( being able to

speak to a computer is tantalizing. Speech is man's-most natural

communication system. People can speak faster th cark.type

or Write; iheypn slpeak, when they are moving when

their hands are bUsy. Consegu4V, s_microgho hone

would make a trernendouSly Convenient terminal to a corn er

that understands speech.
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Under the sponsorship of the Advanced Research PrOjects

Agency (AR PA), Alan. Newell_ et al,41973)..(Ortmilated a five,;year
.plan whose objective WaS..to,produce a prOtotype system Capable'of
nnderstaliding. sPeeeli:Within the context of a limited doniaik of `

"`.

cliScourse, the system would be able to understand an AmeriOn
uttering .an ordinary (though Somewhat sitnple)scntence construct-.

ted from. .a one-thousand7word vocabulary. the speaker. would
enunciate in a natural manner, with no extreme regional 'dialect.

Two e'five original participants (Carnegie;Mellon UniVersityof.tli.
and Bolt,' Beranek and 'Newman) still,.are in active 'pursuit- Of these-

.

objectives..
These prototype systems _base. theic:processing on acoustical ,

clues.,,'syntacticcontext, and semantic c(4itext.:-A microphone trans-,
forms the. spoken input sentence 16to-:- Iwaveforrn of amplitude,
versus time: This, in turn, is converted into -a spectrum of fre

.quencies versus time and the amount of energy' in a given frequency
ba'nd ultimately is represented by a gray level;. Embedded in this
spectrum are bands called. formants. that can, be tt'acked through
the signal. These forintintSkcorrespond to vocal track resonances

,whose.trajectOries repfesent movements of thei/Ocal track.,Certain
Vowels and diphthongs often ,can be :detected by incanof.,the
formats. Urffortunittely,' a formant's shape. also is s'ubjec.Cto the
influence of vowel "context, i.e., the sounds that precede and 'follow
the vowel: Consequently, the determinatidn of 'spoken phonemes
(elemental, speech' components) is highly context - sensitive. BecaUse

of this, these speech understanding sYstems take advantage. of the
small size of their .vocabularies and usecontextheavily in identi-

' fying phonemes.
In fact, this is not fundamentally different from the'lype;of pro-.

cessing performed in human speech-recognitiorr. dnisolated.pho:-
nemes, experienced speech scientists choose the correct ones leSS
than 75 percent of the time However, when given entire-Sentences,.

their accuracy exceeds 99 percent

269

8.2. Nat*- Language Proem:ling Systems.- Speech, recognizing .

systems arelSralleled by a muchilarger effort 'aimed at developing
processes that enable a computer to understand natural language:

written form. Roger Cchank et al (;197,5)` constructed a system
( Memory. Analyis -ResiiOnse Generation and In-
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ferened\n English), The system consists 'of a set Of three pro

(1) A conceptual analyzer accepts sentences in restricted-.
and mapS them into a conceptual representation of their Van
(2) The Memory and inference program stores, new inpliti.0010
establishes reference, a ci ritake:s inferences about the input Yt4f
received. (3) Finally, tl Igencrator program encodes conceptual
representations into s tucti structures. which are then ,mapped
into English sentences,

MARGIE operates° in two &es; paraphrase and inference,' In
Paraphrase mode, sentences are analyzed into' a rcprcscntation of
their meanings, and then those meaaings are written in as mans%
ways as are available to the gcnerator for cxpressing them in En-
glish. Since this,internal rcpresentation of meaning uses constlucts
that are not part of natural English, the problem, basically, isone
of coding ideas into language. In inference `mode, the Input sen-'
tences are analyzed into their,,meaning representation and then
processed to find out what other information might be true, or
might arise as a consequence of the input. Inferences_are used to
motivate further infcrences. These, in turn,' are transformed into '
English and printed for display.

The processingis rather massive, so that the response is slow in
human terms. For:example, when the system executes on a milli-On-
instructiOn-per-second machine at Stanford's Artificial Intelligence
Laboratory, the response time in paraphrase mode is a few se-
conds; when operating' in. inference mode, the response is measured
in minutes.

We can develop an inkling of the system's operating level by
looking at a processing example in each mode. In these illuStra-
tions, the human communicant,was familiar' with the contents and
extent of the program's vocabulary..

Inference Mode

f=4nput: John told Mary that Bill wants a book.
;42

Output 1: kk book about what?
Output 2: Mary knows that Bill wants a book; .

Output 3: Bill wants to come to have a b&ok.
',Output 4: -Bill wants someone to cease to have a book.
Output 5: Bill wants to read a book. ,,,;4
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Input: John gave Mary an aspirin,

Output A2ohn believes that Mary wants ap aspirin.
Output 2: 'Mary is sidlc.
Output 3: Mary vonti to feet better.
Output 4: Mary will ingest the aspirin.

Paraphrase Mode
.4.::,,,

OUtOOhn'advised Mary to drink the wine...

output: John told Wary that drinking the wine. would benefit
her.'

W; byIdput: John prevented Biil from giving 710 Mary
selling a banana to Rita. : . ,

,...

Ouiput 1,',' ,Bill was Unable . to give a banana to Mary becauie
'-., Rita traded John some money, for a banana.

Output 2: Because Rita bought:: a banana from JOhn, Mary
could not get 'a banana from Bill.

MARGIE is` particular significance because it represents 'a
fundamental departure from earlier natural Jangtiage processing
systems .which were based on a stored inventory 'of. wok's and.
grammatical rules. The basis of this system is ,,.

dependency theory. Iri' essence, this theory contends that natur
language has an underlyihg meaning structure which should be

wed for all pertinent processjng. The claim is that people think by.
using this meaning structure which is independent of'a. language's
SpeCific words. SchankiNI. haye propOsed such a structure and '
used it in MARGIE-for representing the output of a meaningiana
lyzer. It also 'serves as the basis olinferenteaand Memory programs
The structure requires that,;:anylwo sentences having the same.
Meaning should have only one representation: An important comt
ponent of such a structure is a set of primitive semantic'elements.
into which yrofds with complicated meanings' tan' be 'mapped. At
this fundamental level of meaning, concepts combine into concep- '
tualizations. A conceptualizatiOnjs a Statement about an' actor
performing an act; an actor, in thiS context, is either an animate
object or ,a natural force. Correspondingly, a ph)thical act_is per-
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formedion a physical object while a-mental act is perfortnedtonia
mental object, 1.e., a conceptualization. In this context, for example,
!`hurt" iS:not considered an act. Rattier, it makes reference to an
Unknown .act 'that results' in a "hurt" state for the object acted
'llpon. By theiime reasoning, "provent"-is not an act either: In
stead, it is relational between two acts

This formulation of the Mature ofini9uning structures allows the
creation of a set of basic .primitive acts, each of which is defined by
the infereneds that are true when it is present. A giveh verb is
`represented by a co .1 ,ination of primitive acts. The current system
uses eleven such aVO (e.g,. propel; move, grasp, ,expel). A/not ler
primitive act is ``atrans" ("give' is an instance of atrarris). This

.
primitive actrequires an actor, an object, and a rec. ient consisting
of a source and a goal. The source and goal inust animant and
the object must be physical. x .

Even from this superficial
that MARGIE is, attempt to simulate the proces s involved in
understanding natural language in a nOnartificial concept-
based) environment. Here again,

of the bask 's, it Is clear

in, as we have seen in the case of
garrie-playing and theOrem-proving programs; thepehicle itself pro-
vides a Stitriulus for further study about the way we interpret and
process ideas.

9. CONCLUDING REMARKS

Based on earlier discussions of a number of heuriStic programs,
w,we no. are in a 'position to examine such programs more alzoL

straCtly and ask'general questions-abou 'them: Into, what catego-
ries or aspects Can heuristic .program ing be divided? What are

4the Kithre'aPplications of heuristic ogranitnin What are the
philosophicali'and social implicatio of the° advent of intelligent
machines? /

9.1. Aspects of the Heuristic Pi.ogramming Problem. The basic
issues ofleuristic programming/an. be categorized conveniently in
terms c4 the following six aspects: .

(1) generality
(2) searching
(3) functions that make e aluations and recognize patterns

2 8 j
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(4). the matching of datecstructures .tp: determine appropriate
spbstitutions for\ variables

(5) learning
(6) planning

A heuristic program is to mut ipucpose (i.e., general or'
broad) if it can solve a.wid vart4.f 4t problems or enswer a vide
variety of questions. Since thee inielligence of a human is multi-
purpose, there is niotivation in the-artificial intelligence community
toward getting hegristic programs to be multipurrvose, eventif this I

'means-sacrificing the solution of some difficult problems The hope
is ithat once multipurpose prOgranis can be written to soNe
relatively simple problems, these irograins Will be extendable to
more difficult ones. There is serious speculation that such programs
ultimately will.be equniped fo solve their on problems Kor exam- ---
ple, a' prOgram that needs to perform a search will include an
operational component that will define how the searcIP will be
conducted. . .

,

The idea of heuristic searching is' applicable to prOblems that .
cannot,be solved directly. under such circumstances, there are in
stances (Sl'agle,. J970) in 'which programs have been written. to
search for a solution. If the-number of possibilities to be searehed is
sufficiently small, the problem is trivial since thff program.Ckp cori-
sider all, possibilities. For an intellectually 'diffieult problem,:how-
ever,- the number of yossibilitieS is sufficiently large so, that an
dxhaustive procedureHs not feasible. In most kiods of theorem
proving,-including, those of predicate calculus, the number of pos-
sibilities to be searched is potentially ipfinite. ConsequeAtly, it is
Much better ttvonsiller alternative waysbf defirling'and modifying
the search. In fact it often is desirable (and 'even necessary) to,
replace a search' procedurd guaranteed t work in principle with an
alternative procedure that is no suaranteed but, is good in practice.

o This happens;fo? eXample, whe a search procedure examines only
the top two levels ,of a game t ee rather than.Ihe complete one
After-being modified. in this way, a ..search-'can sometimes be re-
placed* by a more efficient equivalent search. Thui, a depth-first
minimax search may be replaced by an alpha-beta search. Wher-
ever they.can.be identified, itis desirabli to search the most prom-

,
isingpOssibilities-first, thereby allowinfalphbeta cutoffs to occur.
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In genenAl, then; it IS sale to predict that itnproV6ments
Ware perfer ari90;-dramatie as they maybe, will not bring exliatis-
tiVe searches ofd other brute-force aPproaches into the ;realm' of

.

practicnlity. consequently., thssix aspects of henristic programMing
° listed abOve:'yill. play significant: roles in4he formuption and

'provernent, of methods for reducing the 'number of possibilities :to
be examined in the pltSui(of a desirable solution.

.-r . '
.9.2. Future Applifeationi Hkuristie Programming. The ithpact.

oG heuristic programming is growing rapidly. Pertinent algorithms
a,nd techniques hve been;refined.to A sufficient extent so that there
already is a trend away from gathe playing anthe solution of,toY
problems toward the soltitiOn. of4roblems real economic
apd social .value. ManY..softitian methods; which were techniCitlly.
feasible but not cost effective, in the past now find everyday usesin
business, induitry, and government because of the rapid, decline in
computing costs. , t

'Robots already are a reality,':and .many of thsm are driven by
,heAristic programs. Originally designed for use in hostile environ-,
ments (e.g., no oxygen, high radioactivity, or inhospitable temper.
atures and pressures), improved heuristics' have helped make them':
profitable in °wider variety of contexts. ,COnsequehily, such robots
are,,perfortning coMplex assemblies and .installations iri.the aircraft ,
and automotive industries;

'Continuing miniaturization of computOs has made it poslible
sever the physical connection betweert.rapt.and computer; so that
'pro vts oLA mobile robot' (with the; coinputer as an intrinsic
co ponint) are realistic.. For example., kohni McCarthy, and his
colleagues at -Stanfoid: University are doing: resear.ch on a self-*
guided cars. designed (ultiniately)'to travel unaided on existing
roads..The"Beast, designed by George Cl t-on, Jqhn dhubbtick,
and OthersKat the Applied Physics Libbratory of JOIrs Hopkins
University; is equiPpedIvith hardware logic and steering, and it has
tactile, sonar, and optical apparatus as with This combination of
facilities, stivated byheuristia program: enables the BeaSt to find
its way down the center of a,hall; n its battery _becomes suf7
ficiently run-down, leAlooks"ibr. (i.e., optically locates) an $lectric
outlet .and3flugS itself in to recharge its hattery. ThF.,h4tristicIs for
locating sucliontlett haVe been developed to a stiftlyien't extent so'
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that` the systeth Was able to "survive in a _building of halls and
,Offices for periods exceeding 40. hours before- it "etarVed" 'as the

inabilityof its inability to find another outlet.
An assembly' robot developed by Ambler et al, (1.975) offers some

interesting insights regarding future develoPments in robotics. This
particular system, using connected; overhead television cameras, is
able to, assemble objects', such as. toy cars and boat's using part
deScriptions developed ft °In he input signals supplied by the
cameras. Production robots start with such predefined ,desaiptions
as part of their 'Inowledge." With part descriptions thus devef-
oped,' in conjunctionwith predefined assembly instructions, this

-robot is able to.select and assemble the appropriate parts from a
larger heap, containing a mixture of required and unnecessary
parts

An area of artihcial,intelligence in which research rgsults:have'...
been disappointing is that of automatic language translation. Thus
far, the idiomatic nature of natural languages and'their great sensi-.
tivity to geographical, historical, and other cultural contexts have
been serious obstacles to the design and iMplernentation of suc-
cessful (accurate and natural-sounding) general translators. How-
ever, this work has produced innumerable NAuable hAights with
regard to the Underlying structure of natural language, and these
discoveries have been instrumental in the developMent of highly
irnproyed programming languages and language processors. Man, (-
of to heuristics that drive today's natural language database query
systems, stem from the. work in automatic language translation.

-White the opinion is not universally.shared, many computer scien- "'
tists wOrking in artificial intelligence are convinced that continuing
progrqss in heuristic programming and in our understanding of
meaning will lead eventually to an effective natural language trans
latinf system.

Earlier in this article, mention was made of the power of heuris-
tic programs as evaluative' vehicles. Instead of merely embodying
the operational chatacterisilics of a particular model, such heuristic
systems.inqlude a description.of the model itself. Coniequently, it is
possible -to simulate a .particular system much, more -real4tically;
moreover, much more realistic systems can be simulated. Accord-
ingly, it will be much more helpful to use such systems as aids to
defining plans and sIrategies in a widening variety of endeavors. Ino
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addition, these systems already are Proving to be effectiVeteadhing
Vehicles, One of the reasons' for this effectiveness lies' in the fa& that
the student in the model, as plaS,'er. Or problem
solver:.py learning° the,ontent: of' the model, the Atudent gains a,
deeper understanding of the 6ornplex systemundef itudy.

f ,,

9a. Implicitions of Intelligent Mitchinei. The prospect of really. . ,
intelligent machines , alread$ ha& tremendous philosophical and
socialoiraplications. In PhilbsoPhy, the presence, of su6h machines
will shed light on mevhanisin, the perennial "mind-body problem,"

' an perhaps even; the role of man in the universe. Ih7,itself, the
(existen aF .wintt'lligent 'Imachines would bolster the clairns of me-it
chanistS hat man is nothing but a machine and that theanswerto
.the mint! -body probiern, igthif there is only a body and nothing
that'can be called "mind. However, in the process of developing
intelligent machines, certain intrinsic,differences,between mah and
machines nay-or may not reveal thenselves, and this will consti-
tute evidence for":or against Mechanism Many people clairncthat
such differences already are apparent': They argue, for example, that
a comPuter,tan do only what it is told to do and,that people can
do more A Mechanisewould counter this contention by saying
that people can do- only what they are told to do in the same sense
that they, too; are operating under, a seil,of imposed restrictions.
That is, man's 'heredity "jells: him what to do, inclnding how to'
learn from his environment. Arguments,that "show" til'at a Machine.
cannot in principle te.as intelligent as a mad ale equal debatable.
The question is awaiting final proof or refutatibn. Presence of intel-
ligent machines will coMpel man to face the idea that he is not the
only intelligent creatuie. The effect on man's image of himself will

- be every greater thanthe effect of the realization that man.inhabits'
a minor planet revolving around a minor star in a minbr galfxy.
Perhaps most cherished claim to" his uniqueness 4 that his
intelligence cannot be matched by a mere machine.

What are the social implications of intelligent Machines? Will,
eVen our rhost skilled workers be displaced by the new auto-

, mation? What will be the impact of intelligent machines, on the
right to privacy? Wkat d_oeS,4this atithor beeve lies in the distaqt
future? ,.

The computer will our slave and, in a sense, our, brother. It is
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up to us to guarantee this by taking; proper.Preciutions. Without
such precautions there is some ,danger ; that ;,intelligent 'Machines I

-eventually Will "take aver." Nature builds into each human' a set of
.primary, goali or desires. If the, imalogy holds, then we arc in a ;
position, ta 'build such goats into a highly intelligent ' machine.
Hence we must be'cdreful that these objectives are congruent with
the, welfare of(Kfmanity Similarly; we must b4 sure-that no private
indivi4ual (or group)ronn';"subVert" intelligent 'machines toward
purposes that are to the\ detritneilt of society as a whole. It will be
relative,lysy 64a)% these precaUtions if enlightened people learn
the capabilities ,and limliatiqns of highly intelligent machines. A
computer will beour Rothe'. he selse that human and machin
will wprk,.togethat to solvep tide s.

The computer- -motivated o privacy is well known and
well documentedr:regtiting o further discussion here. However,
isworthk,/hile 'to point out th t intelligent machines using powerful
heuristiei have intensified th. at: instead of merely extracting,
summarizing, and displaying ata about an alividual, such
systems are purfectlY capable+ of deducing "new" facts from existing
ones. This danger, once ;recog zed, can readily be met by taking
precautions`' similar to those already mentioned.

As is' usual with/technological change; the' development of intelli-
: gent machines will lead to, a mixture of benefits and dislocations.

St);Tar,..atitomation haS tdIcen aWay jobs at 'the unskilled and semi-
skilled levels; causing particular problems for certain segment's of
the labor fOrce. With the deyelopment of very intelligent machines,
even highly skilled; workers willbe displaced. There will ee need,
then, to reexamine the "Protestant ethic".that hard wor is good in
itself. Many people will be able:to transfer. their ener les to soda!
Service work; others \will need to adjust their lives to 'a much wider
spectrum of leisure ativities. ,

Of course, no individual can predict the futuke. However, I am
motiVated.to make the foltowingpredictions: Before the end of
century,,cdniputer-based slutions, ifitellectually, difficult ..prob-
lems will plAy a dominant role. in brinAng enormous material Pros
perity lathe world. In less than dcentury, cornpUter systems will be
making ;substantial progress on the solittion of soCiai problems,
including the OVerriding problem of war and peace. Then, at last,
th world may be able to live'in peace and prosperity.
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THE IMPACT. OF COMPUTERS ON
\NUMERICAL ANALYSIS

,

E\ R. Buley and R. H. Pennington

1. INTROD T1ON
\
\ .

Numer al Analysis 4\ concerned with determining specific nu-
merical v lues for the variety of mathematical entities which arise
as solutions of real physi 1 problems. It began with techniques
directed-toward hand comp tationand has assumed ever increas-
ing importance with the 4st inpreased computational capability
offered by modern compu rs.

Classical Nunierical Analysi \ is often subdivided into the pro-
blem areas associated with interii lation and curve fitting'; solution
of equations, with simultaneous li ear equations and atrix opera-
tions forming a separate category, numerical differe tiation; /nu-

-merical integration or quadrature, a d the solution of ordinary/and
partial differential eqpations. Overlaing most of these areas are
the techniques associated with the eval6ation of functions. 1

Depending upon onsets point of view tie computer has.had little
effect on the field of numerical analysis or jt has had an overvIthelm-
ing'imp9ct. One can argue thaethe effist has 'been minor in that
many of the numerical methods in use today originated ,several
hundred years ago. These methods still bear the names ofthe great
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k
men of mathematics-- Newton, Euler, 1 egendr, dauss. The me-
thods were devised for pencil-and-paper ipplica ion; and the actual
steps involved were addition, subtractio , mult plication, and divi-
sion. These are precisely the same open tions that kitin the basic
arithmetic instruction repertoire of toda 's di tal computer. Thus

, intcrOblation by Newton's method or G 'ussia integration can be
Performed on the digital computer toda in manner accurately
paralleling the hand computation that m ght aye been performed
a hundred years ago.,In this age of comp ter., the core of numeri-
cal analysis is still the set,:(' methods dcvi cd .y the great minds of
an earlier era. The computer has not c a gcd' the fundamental
basis of numerical analysis.

On the other hand, there are several yes 'cts in which the digital
computer has had a profound influence the flbld of numerical
analysis. The most conspicuous of these is hat numerical method
arc now being used on a scale unthinkabt in the days of nd
computation. For example, the numerical methods for solyi6g a set
of twenty linear equations in twenty unknowns, or forlinding' the
eigenvalues of a ten by ten matrix, have been' kpow'n for centuries.'
One shudders at the thought of actuallerting out to solve a
problem of flit size using hand computation, and it is probable
that such massive computations _were seldom, if 'over, attempted.
With today's computer, howeyercproblems of this agnitude and
of much larger magnitude 7-6,solved routinely.

So widespad is th se numerical methods in c mputers that
in many .cases )h person using. the computer call upon some
sophisticate -numerical method without even being a are of doing
so. A p,r, gramming language such as FORTRAN all ws the user
to,askfor sin(x) or 'exp(x) by name, and causes the com uter to use'.

.4"Chebychev expansion or Pade approximation to c mpute the
value when needed. All that is required of the user is a blind faith
that when sin(x) is requested, the computer will produce he correct
result. . -,

One consequence of the massive application of num
thods has been the developntent of an enormous library
on the traditional methods of numerical analysis. If one
tify any special attributes of the numbers involved in a
problem, he can frequently tailor the numerical solution

' combine some steps to improve efficiency or to improve
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Because computt.:r, time is a commodity of value, the discovery of a
more efficient computational approach can have a' positive payoff.
Thus a considerable amounrof useful work in the field of numeri-

o cal analysis has gone into the discovcry of special tricks that arc
effective only for limited subclasses of problems. These tricks might
well have fallen into the category of tricks not worth ktiowing in
the days of hand computation, mainly because the problem solver
might never find the time to address such problems anyhow. Now'
that massive numerical problems arc being solved-routinely, such
special tricks or limited application methods have a Useful role.

The attribute ,of the computer that has had the greatost impact
on numerical analysis is its speed ,of comptitation, The computers
of today allow more computation to be dbne in a single day than
could have becn accomplished in the days of Gauss by the entire
human race computing day and night for a generation. It is this
speed, of course, that has allowed the massive applicatioa of nu-
merical methods, with thc attendant growthln variety of method
mentioned above. ,This *speed of computation has.,,alsb had some
other effects on the field of numerical analysis. One, which may be
temporary and which may change as computer hardWare changes
with time, is a. shift in relative emphasis on mcthods of numerical
analysis. In thc days of hand computation; the, use of tables to
obtain 'values for functions was an important activity, and conse-
quently methods of interpolation were heavily used. With current-
generation'coMputers it is 'generally cheaper and, quicker to com-
pute function valties from a series approximation, than to store,a
table and look it up. Thus the relative emphasis between inter-
polation and series approximations has tended to shift in favor of
series approxiMations.
- It is quite possible, however, that future technological advances
in the area of high-speed, high-density memories would reverse this
trend. It may once More become cheaper to store tabulated values
and utilize interpolation more extensively..

There is a more pervasive, and probably more ,enduring, by-
product of the speed,of computation, one which is 'of central im-
portance in the application of computers to numerical analysis.

From its earliegt}4ays;the field of numerical analysis has concerned
itself with questions of error propagation. So long as computations
were being done by hand, however, not enough' computational

2v



IMPACT OP COMPUTERS ON NUMERICAL AN,AINSpl 283

steps could be performed in most practical problems to allow error
propagation to become a serious consideration. With computer
spccd, howoVer, it Is not at all difficult or timcconSuming to come
binc thousands of numbers, or to take an iterative computation ,
through thousands of steps. In such situations the presence of even
small errors with small growth rates can b quite destructive. ,For'
this reason the 'considcrations associated with error 'propagation
must reccivAclose attention in 'computerized numerical analysis. In
ordcr to address this, it is necessary to consider in more detail the
computer representation of nunibcrs and the ways in which crror .

accumulation occurs.

2. COMPUTER REPRESENTATION OF NUMBERS

4

A number is usually stored in computer memory in the form of
electrical or magnetic representation of binary bits. The 'memory is
subdivided into 611s, or words, each cell being able to store all thc

eachof a single number. A fixed',numbcr of bit positions is used for
ach word of storage. About 32 is the usual number, although some
machines use as few as 12 or as many as 64. 139pausc of the ease of
reprcsentipg binary numbers by electrical or magnetic statc, it is
natural and, efficient to .represent numbers in tarns of some radix
that is a power of 2, such as 8 (octal) or 16 (hexadccimal). Arith-
metic circuitry for any particular computer is constructed to match
the, number representation used in that computer. Ordinarily the
arithmetic circuitry will allow for two different types of number
representation, integer and floating point. In rcprcscnting intcgirs
as 32 bit binary numbers, it is only - possible to remsent numbers
having absolute value from 0 ato 2.to the 31st power, or about 2
billion. Therefore, floating-point representation is usually used for
general computation. In floating-point rcprcscntation, the number
is represented by a mantissa, f, and an exponent e. The number is
interpreted by the arithmctic,circuitry of the machine as

f x

'where yis' the radix used in the representation. In order to stay on
familiar ground in discussing accuracy problcms, let us assume, a
radix of 10, althoughas already mentioned, a radix of 8 or 16 is
more common in practice.Tor a radix of 10, the standard floating-
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P point number is of the form

f x 10'.

The number of .digits used to represept f is fixed by, the word length
of the computer. Let t stand. for the number' of digit positions
allowed. Then,every floating-point number stored in the .michine
will contain "t digits. The number t. is termed the "prOision" of the
floating'point number,

Precision is closely related the relative error achievable in
representing a number within the computer. Customarily the com-

. -puter will normal&e floatintrpoint /linber§, so that; -there are no
leading zeros. This is done by ,shifting the marktiisa and adjusting
the exponent accoidingly. Thus, on a machine haYing
cision, a number Whose computed value Was *-

J303154724 x 104

Would in represented as*

rather than

315472

003155

if the machine rounds while storm

0031

if the machine does not round.
For a normalized floating-point number, on a machine with pre-.

cision t, the best that can be assumed generally about relative error
is that it is 5 or less in the t + 1st digit position. (We will talk in
terms of a machine that rounds rather than truncates to get rid of

* In this representation, the 315472 is the mantissa, assumed to have a decimal
point in fro of the 3, and the 2 is the exponent, the power of 10 by which the
mantissa is to be multiplied. A computer will ordinarily carry these internally as a
single number, with anyffset added to the exponent so it will not be negative. If an
offset of 50 we e -used, allowing a number range from 10' to 10", the number
would appear: Internally as 52315472, the first two digits representing the offset
exponent, and the remainder the mantissa. / 4
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extra digits.) This implies a relative crror on the order of

.51(.5 x 10% Or 16-1 .

This assumes, of course,. thh't all kligit§ in the stored .nuinherare
significant If the number represents some measured or estimated
physical error, or if it is the result of a. series of computations using
stored numbers, it 'nay have less accuracy than the precision of the
machine would indicate.'

For exaniple, if the relative error were actually 1 percent, only
two /of the stored digits would be, significant, and the remainder
would be 'garbage. Unfortunately, the computer itself provides no
warning or indication this fact; so it is :tip to the user to protect
himself from- aecepti g Maccurate data

3. ERROR ACCUMULATION

In the standard arithmetic \Operations of addition, subtraction,
multiplication, and division, people generally assume that they
start with two known operands and that the operation produces a
number'i.vhfch* is the desired result In fact, they usually start with
two operands which represent only approximately the true, but
unknown, numbers that are of interest to them. Thus they deal
with "approximate " . numbers as. representation of "true" numbers,
and the goodness of the &proximation is changed by-arithmetic
operations.

To illustrate how this haiipens,- consider the results of performing
additions on two such approximate num-terS ui and u2. Assume

errors in The two numbers are hounded in absolute valUe by
Alit and Aug, respectively. It is easy to. see that the error in the sum
due' to the error in the operands is no larger than (Atli + Au2).
Round-off introduces an additional contribution as desciibed
viously;, so that the total error from the operation of addition (or
subtraction) can be as large as

Aui + Au2 + (1 x 10)-11 + u21.

A more meaningful description of the impact of the error is given
by the "relative error," which gives the size of the error as a fraction
of the magnitude of the error-free result. ThiS is particularly re-
vealing in the case where we subtract-the two posilive numbers u1
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and u2 where the relativeerror is given by

Aur.0- Aul
. (1.0 x, 10') =4

ru u21 , lui*-7 uzit.
. ,

112 -r1 + r2 '
((u1 + u2) (u1 + u2)

+ 1 x 10
r.

with r1 = Audui and r2 = Aug /u2 being the relative errors of the
two irguments.,The expression in the bracked is no larger than the
maxiMum, of the incoming relative errors r1 and r2. However, the*
expression in front of the brackets is greater than one and can
become very large-if u1 and u2 are nearly equal, greatly Magnifying
the original errors.

It is an unfortunate fqct of life that subtraction of two similar
numbers in the fixed word length computer is the, greatest single
cause of loss' of significance- in typical talculations: Multiplication
and divfsion are much more benign, producing relative errN.s that
are bounded by the sum of the relative errors in the operand& The-,
existence of floating-point- arithmetic does nothing to alleviate the
problem. It is incumbent on the modern-nutrierical analyst/to be
aware of the problem and to attempt to minim-rte it.

Fortunately, there are often steps which can be taken in the
formulation and implementation of algorithnis which can signifi-
cantly reduce error growth. In Many cases a careful rearrangement
of the order in which individual operations are performed will
reduce the potential error. For example, if a and b are approxi-
mately the same, it is better to compute a2 = b2 as (a + b) (a b)

s as opposed to (a2) (b2). Tracing the error caused by round-off
throtAgh more complex operations involving many Operands re-
veals that it is generally better to begin evaluations with the smal-
lest term and evaluate the arithmetic operations with the largest
operands last. For example, tracing the evaluation of

(al* (b + (c + d)))

with no errors assumed initially in a, b, c, or d gives a relative error
due to round-off alone of

(a + 2b + 3c + 3d)
(a + b + c + d)

(1 x 10-`).
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Therefore, elte error. is smaller if c and 4 are the smallest numbers
of the original set: ° '

1,16,7mOKsasesit is difficult to trace -the error growth thtiough
complex ceinibuteralgorithm. In these vi4Cumstancesihe computei
itself Can ge`itsed to help estimate the error growth by carrying out
the., estimates for'each individual arithmetic operation, just as was
done. above? This can be done with competing algorithms, forex-

,..

ample, in order td select the one -having the best error character,
Mos.

The -error estimates that have been described so far are usually
over-pessimistic. This is becauSe they do not account for the fact
that errors are often of opposite sign. This is particularly,true of the
errors introduced by round-off 4hich can be expected to be
randOp in direction and magnitude. If this is taken into account, it
can be shown that the. cumulative error due to round-off in N
operations is less than 12I-V1 x 10-' with yery high probability as
contrasted with the estimate of N x 10-`? which' would result from
the- techniques- described earlier. A similar approach can be taken
with respect to the propagation of errors through a sequence of

,arithmetic operations, but the assumption of randcenness becomes
much:harder to justify and it is safer to rely on more conserva,
tive approach in determiyiag error bounds. ' -

The errors. described so far are fundaniental to_ the basic arith-
metic operations of the coMputer. In addition to 'these, there are
the errors introduced by the technique chosen to evaluate a parti=
eular mathematical entity on the computer. These are the errors
that would be introduced even if there were no error in the oper-
ands and if the computer had infinite precision. As such, they are
the type of errors which have been the object .of study under

numerical analysis. These, too, are introduced and propagated
through the ongoing stream of calculations typical of the large-

. scale problems solved on modern computers. Since such errors. are
peculiar to thefunction being performed;- We will point them out in
the context of summarizing the major areas of Nuinerical Analysis
after a brief discussion of function evaluation techniques.

As we briefly describe each of the classical analysis areas, we
will limit ourselves to examples in one dimension. Extension1 to
multiple dimension are often straightforward, although with an
attendant penalty in ternis of computer resources needed for iin-.

304
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plementation. VAith° few exceptions, there. area vanetrof algo-
rithms available to solve any numerical analysis 'problem on thF
modern cdfinmter. For normal applications. it may be -difficult to

J justify selection of one over another. The best advice to prospective
problem-solvers identify arta at least tr kechniques that are
already available on their computers before resorting to the -devel-

opnient of new ones,

4. EVALUATION OF FUNCTIONS

Although not considered a major research area of classical Nu-
. merical Analysis, the evaluation of functions is inherent in every

application of the computer. These ''range from the comrfion
trigonometric and exponential furictions_to the less frequently used
Bessel and Elliptic functions. Often there are several eva
techniques to be considered for implementation on the computer.
For many functions, tables of values are available which could be
read into the cOmputer memory and used just as an individual
would look up and interpolate to derive the value at the point of
interest However, entering the tables is often a nontrivial task and
the speed of modern computers' generally Makes direct evaluation
of the function a more efficient approach. In most cases the time;
tion is to 'be evaluated for values of the argument in some interval.
Direct evaluatilin of functions in the computer is usually &aged on
approximatiorrby a.polynomial or a-rational function. The proto-
type of the polynomial expression is given by the standard Taylor
series expression for a function

-1-'ffi(x1)(x

4

+

,
where xo is

.
some point in the interval. The error introduced by this

approximation depends on the number of terms retained in the
series and can be estimated by the remainder term derived in any.

3 Advanced Calculus text. In the Taylor series this "truncation error"
is small near the point xo and takes on its extreme values at the end
points of the interval over which the function is to be evaluated.

A better approximation, from the viewpoint of utility on the

30 ...-
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Computer, is given by expandingthe function f(x) as
'4, , r: N

la. f(x) = bo .4. E bn'T.Oci' 1 5 x 5 1

where T (x)),is a TChebyshev Polynomial of order n. Such an, ex-
. .

pansion tends,- to give a uniform error bound over the entire inter-
val and generally' allows* an expansion to a lower order than the
Taylor series for equivalent accuracy. ' ,--.N,

. For functions that are to be evaludted a large number of times, a
greater approximation accuracy (for a given order in the poly-
nomial) can be achieved throng'', the use of rational functioni of
the form

Ep._ ai xi
Rnk(x)

a=-1.bjxi

-There exist sophiSticated' procedures which evaluate the coef-
ficients, al , bj so as to minimize the maximum error in the approxi-
mation°. over the interval of interest. To save computational time,
such, techniques are frequently used for the standard library func7
tions provided with thecomputer such as the sine, cosine, etc. The
coefficient evaluation is too complex, however, to be justified in
mcfst computer function evaluation& t

The errors introduced by the truncation of the polynomials used
-either directly or in the rational approximations are the first source
of error to be considered in implementing a particular function
evaluation. This error can generally be made as small as one likes
depending on'the number of terms which are retained. With single-
word-length computer calculations there is obyibusly no point in
carrying a greater relative accuracy than 10 -`.

Overlaying the error inherent in the approximating function
itself is the accumulated effect of the .errors propapted through the
arithmetic operations required. These can be estimated through the
techniques introduced earlier. Polynomial evaluation, in particular,
is susceptible to the growth in relative error caused by subtraction
of similar numbers.

Even when care has been taken to minimize the magnification of
errors in each required arithmetic operation, the function being
evaluated may have characteristics which tend to magnify existing
error in the argument. This can be estimated using the first terms of
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the TaylOY series. If We are evaluating f at thq approximate argut
," meat% + Au, then 1,4e can say ,

f(a + Au) f(u) + f'(u)Au + 0(Au2).

'For arguments where r(u) I is much largel- than one, the error
ogtained in'the:argument can beroirespondingly magnified.

5. NUMERICAL QUADRATURE

/
- . Quadratu,re, the evaluation of definite inlegrals, is one of the

areas of classical numerical analysis where the Computer has had a,
major effect. Prior to the advent of computeritechnology, the acct4-;
rate evaluation of I

r

.

I -- f f(x)dx

posed, a formidable problem, impractical in all but a numberuf
simple cases or where the indefinite integral would be evalaide4
explicitly. Today such evaluations are performed routinely,..aV;?
though there are still' problems involVing quadrature in multiple,.
dimensions'which require unavailable amounts of time even Wan'
the fastest computers. /it

The trapezoidal rule provides one of the 'simplest quadrature
techniques on the computer tl is almost a direct extension of the'
definition of the integral. The interval from a to b is subdivided by
a number of ports x, separated by equal steps of length Ax and the''
integral I is, evaluated as

tit
1 (Ax/2)[f(a) + 2f(xj,) + 2f(x2) + + 2f(x.4.1)'+ f(b)]

It can be shown that the error from this approximation alone is
proportional to (Ax)3. This algorithm has the benefit of simplicity,
but requires the evaluation of the integrand f(x) a total of (n + 1)
times. If f(x) is expensive (in terms of computer time) to evaluate, it
follOws that the same-will-be-true for the trapezoidal ..

In order to reduce the evalaations required f(x) without re
ducing,the accuracy of the evalaation, a large number of other
quadrature formulas have been deriVed.:,The trapezoidal. rule is
based on approximating the integrand f(x) between xi and, xi+ with
a straight line: If a higher-order polynomial approximation is' died,

3 04--
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then the ,power pf (Ax) appwriig in the error term also inereases...
The, most'comMon foiniuld,bf this type, known as Sinipson's" Rule,

uses a quadratic estimate,',Ifor f(x) and has an error Proportional to
(Ax)4 / .--' , -1/*

mayor
14, '0,1.2

The third ; approach usually .goes ,under. the' `name of',
Gaussian 'quadrature'fformutas. In this case the equal in'teprali tix

t
are r ilaced,,brA ,,trilequally Spaced se' quence of points so as. to

,

min' ize the errpl The detetrnination ofthe points and the, associ-
at ,cocffiCiefits0 be used in the, approximation for I is difficUlt so'
t t tablet' ,f',P defined tabular' values are normally used.

rroirs drattire are likely toarise from a number of sources
her than emainder associated with the integration interval x
r equiv ly, with the nUmber, of points in the interval at which
x), s- gated). Obviously, there may be error terms associated

t aluation of,f(x) itself as discUssed previously. The error
,,

,
,A,

all of the quadrature techniques involve the value of a
t

i
erivative of f as well as a power of x. For many functions,

4'54."'.
/

41.? tribution can significantly increase the; size of the error term
l.. 'eyUluatiOn of I unless the integration interval is feduced

4 iatelyi.i'a i=l ,

4, +to /
26:- P,SOLYTION-OF-EQU-kTIONS-'

We have already discussed the common problem of evaluating y
when-

y =' f(x):

Frequently one is faced with the converse problem of evaluating x
given y. When the equation can be solved explicitly for x, this offers

no difficulty; however, one is generally not so fortunate.
In summarizing the numerical techniques for finding x, we; may

assume that y 0 since the problem is easily reforniulated so that
this is the case. Thus ourProblem is one of finding the roots of the
function f(x).

Almost without exception, the first steps consist of localizing the
-roots so that iterative procedures,- which work only in the neigh-
borhood of the solution, can then be used to find the precise value.

If nothing is known about the function \\) initially, the first step is

G
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fa=often the generation of a' gra phior table of values which will give a
gross estimate of where the roots might

Isor general equations, one of 'the 'ntoSt straightforward tech=
niques for finding a root is the bisection' niethodAn this._ case we
Must start with an -interval [a, b] where, for eicainple, f(a) is nega.:
tive and f(b) is posiede, and f(x) is known Ito. be continuous between
a and b. The function 'il.theri,,yalnatetd at x = (a + b)/2 and the
original endpoint.(a. or b).-for 'wiiichqhas the same sign as 'f(x) is
discarded. The root` is' now known to be, in the interval which is
half the size of the original..; This prOcedure can be repeated to
specify the root td any desired accuracy and therefore actually
solve the equatiOn., Hoiveyer; if f(x) isdifficult to evaluate (or if the
variable x is a miltidimensional vector), it often becomes more
efficient to apply other. techniques once the interval' containing the
root is suffiCiently small;

The most commonly applied procedure is knOwn as the N-ewton-_:
Raphson algorithniland is based, on approximating f(x) with a firSt-:.:
order. Taylor series, expansion about the most recent estimate, for
the root. The solution fdr the root of the resulting equation is taken
as the revised estimate and the procedure is repeated until the
values converge. The speed Of convergence depends on the ratio

f(X)f (X) I /(f '(x))
,

near the root-and-the-r-ratio-niust7be-lessttitan-Onelpr.converkencer:
td occur at ail: , ; .

For someequatiOns, f(x) can be rewritten as

. 7-7"g(z) =,f(x).

Then under certain circunistances; the iterative formula xn ----.-
.

g(xn-1)-Wili-converge to "the root if x,1 is sufficiently. close to begin
with .1.; I,- .,-

If f(x) is a, real-polynornial-oforder greater-than 'four, there are
no explicit formulas for 'the roots in nkeneral.- However, there is a

, .

wide body ,-pf classical algebraic -theory-that canhe'applied, to hell)
localize or ;define' the' roots': These range froni-Welf:;knoWni tech- ,
niques of factdrization to'reduce the order of the polynomial once a
single root, is-, found to procedures for identifying the number of
such :roofs in An interval based. on: -the changes in size of the cOef,.
ficients. 6en in these Cases; however; ;there as no single :'method;
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which is completely -satisfactory' for 'finding.,all of the roots of a
of normal. i;P y: :

The errors Whieli arise in the solutioit of equationkby the
piques incVated.,are relatiyely easily ,controlled. If the iter ive
teelinitiudar'conmirge at all, the clifference,between sucCeSSiye values

bbund. c,error from .'this source: A more serious proplem is .

likely to-fari from the: numerical error infraluating the f4Ction.
T its may r It in shifting or even elimina some roots:$1.

'7. NtATItt* EQUATIONS

While :the techniques of the previous paragraphs are $adily ex-
,

tended tc4findinS .Solutions or roots Of simUltaneous,equations, of
.,Several variables, .systems of linear equations are siyen their own:,

category among the claSsicallirOblems of Numerical Analy-
sis-. This 'is i-beCause of the.,, freqtiency With whieh such 'equations
arise in'eSolyilig. real-world problemi and because of the vasCbOdy,

:of- relevant matheMatical theory: ComPulers have made Major
contribution in extending the scope-of numerical problemi iii this
ar&that,can be practically solved today.

.Jn'finditig the so. lutioitof a set of equations of the form
.

b

+ a12x2 a13x + + al.x. =

422 x2 4- x + + a 2. x.= b2

, , a.15c1 a.2 x2 + a.3 x3 + + a x. = b.

the most coinmowtechpiquea,are based on Gaussian elimination.
Successive multiplication of ,the eqUationS. by a' constant and, sub-
traction of one from another leayeS'either a diagonal or upper

,

triangular form for the equations _which, are then easily solved.-
Unfortunately, because of the number - of spbtractionk involved,

theSe techniques frequently introduCe a great...deal of error'
Another approach (Gauss-Seidel) is reminiscent of the successive

Substitutions used to find the roots of x = (x). The linear equa-
tions are rewritten so that the kth equatiOn has akk xk isolated on
the left side. Starting with an initial eStitnate, the xi are introduced
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on the right side of the- resulting equations to produce a new hti-
.

Mate: When the matrix A satisfies a nominal-set df conditions, this,
sequence of opeiations can be Shown to.converge to the solution.

A related problem which arises frequently in physical, appli-
cations involves solving the equations

Ate...AN

both for 31 and the so7called scalar eigenvaluei, A. An entire reper-
toire of specialized techniques 'has been develdPed for solving this
problem but is beyond the scope.of what can be disctissed.here.:: :

In general, matrix operatiOn0-are characterized byilarge numbers
of additions, often of terms-of attprOxImatelYlthe same magnittide.
This makes them particularly susceptible to lossPf significance and.
resulting error. If the matrices involved are laige,lt is alWays wise
for the analyst to confirm the. results of solving: any matrix equa7
tion by evaluating.the original equation with the solution found: In
some pathological Cases, eYelvthis is not enough to expose the
existence,of large errors.

8. INTERPOLATION, CURVE FITTIN G, AND
NUMERICAL DIFFERENTIATION

. ,

During the,days ofhand,calculationSi the use of tables was the
predominantlform of evaluation of funCtions. As a resnit, inter-,
polailon techniques re'ceived :intensive stud)", in claisical .Nutherical

'Analysis. As'iriclicated.tarlier; high-sixed ciimputers.have;tended to
reduce this application, but it is still used often enough to be.si
nificant. In any Casey changing.`comPtiter technOlOgy offering lovir
cost and high-density memories may reverse the trend in the future:

Classical interpolation techniques 'are based_ On polynomial ap-.

praximationS to the given tabular function-4'11e coefticientsi:are,
detefipined by the 'requirements that 'the polynomial, pass through.
the tabular. Values. surrounding the-point when the new value is
desire& The classical formulas, _Newton, Stirling, ete4 differ .esseii

; tially,in the ,grouping, of thetermsin'the resulting pillypomial or in
the tquiimqnts, oft tabalar spacing. Errors inherent in the poly-
nomial techniques,depend' primarily, on the distance between tabu

,, lat values and on the magnitude the higher-order detivatives
the function beingevaluated. Only if it is a polynozniatOf thesatpe

311 ,
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or lesser degree as that used for the interpolation will the results be

exact.
As in the other aspects of. Numerical Analysis, the arithmetic

operations in the interpolation formula may also introduce signifi-..

cant errors.
The computer has made possible significant advances in a more

complex but desirable type of interpolation procedure known as
spline fitting. Although polynomials are used to estimate the tabu--
lar function in this case also, a smooth fit is ensured: by forcing the
derivatives of the polynomieis to be continuous from one interval

to the next. The resulting conditions on the coefficients of the
estimating polynomials are matrix equations and are too complex

for solution except on modern computers. t,

The polynomial formula used for interpolation is also genet-1111y

used when numerical differentiation of the underlying tabular func-
tion is d6ired. Each derivative, which lowers the degree of the
interpolating polynomial by one, is a less accurate approximation
than the previous. As a result, numerical differentiation should be
used cautiously and only where absolutelynecessary.

Often the tabular values represent physical measurements which
contain varying amounts of error. In this case it is more reasonable'
to evaluate the associated function using a fitted functional form,
either known or-assumed. The functional forms have coefficients or
other parameters to be determined according to some fitting cri-
terion, often to minimize the sum of the squares of the differences
between tabular and corresponding, fitted values. In most cases,
these problems reduce to matrix manipulation problems of the type
described previously with all of the associated problems., As a

result, it is only with high-speed computers that any but the sim-
plest problems in curve fitting can be attempted.

9. SOLUTION OF ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

The behaviotof most physical systems is described in terms .pf a
-differential equdtion, ordinary or partial. With the use of the cdm-
puter,it has become possible to extend the evaluation of such equa-s

fions beyond the small subset which can be solved explicitly. This

potentiail
has made this aspect of numerical analysis probably the

_Most intensively studied over the past fei,v, decades. Even so,- there

3 1.
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reniain innumerable- differential equations arising in' the physical
sciences which cannot currently be eCaluated.

Most of the problems associated with the numerical evaluation
'of. solutions of differenlial equations can be discussed'in terms of
thesingle ordinary.differential equation

.dy/dx = f(x, y); y(x0) =' yo .

Under rather mild conditions on f, each initial condition yo deter-
mines'a tinique solution or trajectory y(x)r'However, in some cases
such trajeotbries tend to diverge from each other very rapidly even
if the initial conditions are close together, Under these circum-
stances, the small errors that are unavoidably introduced, for

'example in evaluating f, can rapidly grow to the point of invalidat-
ing the result. Such differential equations are said to be unstable
and cause majol- difficulty in evaluation.

Almost all numerical integration techniques proceed one step at
a time in the dependent variable, of letigth h. The simplest
approach, known as Euler's formula, is given by `

y(x + h) = y(x) h f(x, y(x)). 6

This is really equivalent to a first-order Taylor series expression
and the error.at each step is proportional to h2 and the first deriva-
tive off at some point in the interval from x to x + h:

In practice, the Euler formula is not sufficiently accurate for
reasonable itslues of h. By considering higher-order terms in the
ones expansibn and combining the results, one can derive the
so- called Runge-Kutta formulas, which give greater accuracy at the
expense of additional function evaluations in the interval. However,
even the higher-order formulas reflect the inherent instability in the
differential equation if it exists.

A second major category of numerical integration formulas are,
the so-called predictor-corrector methods. These utilize a poly.=
nomial extrapolation for y(x) based on a number of previously

evaluated points: The_ predictor-corrector algorithms _tend _teo_ be ._

somewhat more stable than the Runge-Kutta methods, although
'not, necessarily more accurate.

The resources of the computer make it practical to determine the
step size h adaptively, as the integration -progresses so as to use
almost the largest value compatible with maintaining a given accu-
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-
racy. This is doze by comparing the error terms from two integra-
tion schemes of the same order (e.g., a' fourthaorder Rune -Kutta
and Sinipson's' quadrature rule). Underpthe assumption that the
error is no gIeater than the sum of both remainder terms, the value
for the size of the next step 'can be deriVedSuch adaptive tech-

niqUes are basi§ for most numerical integrations performed on
coMputers today.

The solution of partial differential equations (PDE), while draw-.

,ing on the results from Ordinary differential equations, is an im-
mense area of study beyond description here. Specialized ap-
proaches are required for thEmajor categories of partial differential
equations and entire texts are devoted to the study of each cate-
sory.. The numerical solution of the PDE shottld not be attempted
without a basic understanding of the body of mathematical theory
developed in this area.

10, NEW PROBLEMS IN NUMERICAL ANALYSIS

While the classical subdivisions of Numerical Analysisoare still

very active with many unsolved problems remAiding foitthe
researcher, the use of,the computer has expanded interest new

areas as well. In most cases, these have arisen through at its to
optimize the behavior of real systems through,computer,
"Fpr example, one of the early problems dealt with

mization of a linear and nonlinear function of many va
which were themselves subject to constraints of the tform

aklxi + ak2x2 + - + aknxn Ck .

The use of additional variables zr, called slack variables, can be
used to express the inequality as

akixi + ak2:(2 + + aknxn + zi! = Ck

and reduce the problem to the solutions of simultaneous equations.
Similar _approaches work for nonlinear optimization with in-
equality ,Constraints.

Attempt§ to optimize complex functions of variables taking on
discreteyalues and complex combinatorial problems similar to the

"traveling salesman" problem (which attempts to minimize the
traveling-distance required to visit all points in a complex network)

34 4



298 -E. R. Raley and R. H. Pennington

are still unsolved in general. Current research addressing the
measurement of problem complexity suggests that success in these
areas will always be limited. "

The use of the. computer in the real-time control of complex
systems is forcing the reexamination of manyitechniques from
Numerical Analysis with a view toward making their ''operation
faster. Outgrowths of such studies have resulted in the so-called
Fast Fourier Transform and the Kalman Filter, the latter essen-
tially a recursive scheme for doing least squares estimation.,

it seems clear that man's pursuit of insight into incfeasingly
complex physical, processes, from atomic interactions to weather

'prediction, will require bo.th 'faster and larger computing capacity
and innovative algorithms in numerical analysis.
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COMPUTER SIMULATION

Mark Franklin

1. SIMULATION: MODELS AND METHODOLOGY

1.1. Introduction. Digital computer based simulation is rapidly
becoming the predominant technique used in the analysis of com-
plex systems. The systems and problems tackled by computer simu

lation span the range from traditional engineering based, systems

[1], [2]-td biological, environmental,-urban, and social systems [3],
[4]. There are a number of reasons for the wide and increasing use

of computer based
First of all, models of the complex systems with which we are

currently`' concerned' are rarely amenable' to analytic solution by
traditional mathematical methods. Computer based approximation
and numerical analysis techniques which lie at the heart of digital
simulation, .however, can usually be used to "solve" such models.
Second, coMputer, _simulatibn languages and facilities have deve&
oped to d point where it has become intellectually easier to formu-
late, progrim, and obtain solutions to these models. Third, the
decreasing cost a computers, due to technological advances, and of

computing; due; higher-level languages, have made the simu-
lation approach more economically reasonable.
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Finally, over the past few years our society has become increas-
ingly aware of the difficult problems it faces in almost every sphere
of activity. Such problems as energy, environmental quality, and
industrial productivity are complex and interrelated. Engineers,
natural scientists, social scientists, and social planners are now
coming together in interdisciplinary groups to try to solve these
problems. The training of the individuals in such groups often has a.
quantitative component and their commitment is usually to a
quantitative analysis of the problem at hand. This, added to the
complexity of the systems they're attempting to deal with, leads
directly to the use of simulation methods. The common language of
such groups is becoming the language of siinulation with the
system model being the core to which individuals contribute, on
which, individuals test itypotheses and argue, and from which policy
recommendations arelinade. This trend will undoubtedly continue.:
since it offers such problem - solving groups a common communi-
cations format, a common problem-solving discipline, and a model
soluitioR procedure.

The discussion so far has used the terms system, model and simu-
lation in a general, intuitive manner, avoiding the problems of at
tempting precise. definitions. The termsare used in such diverse
ways that deciding on reasonable, useful, and yet concise defini-
tions is difficult Nevertheless, let us proceed.

A SYSTEM may be defined as a set of interdependent elements
acting to achieve some implicitly or explicitly defined gdal Thusl
for instance, a computer, can be considered to be a system whose
interacting elements include logical gates and memory units. In thls,,,
case the goal is gxplicitly defined by the known properties of theL
elements and the manner in which they hive been orgfinized. On
the other hand, in the case of biological processes (e.g., evolution}
the goals are often implicitly rather than explicitly defined.

OnCe a Collection of ekments is recognized as constituting a
system, then the process; of describing the system begins. The de-
scription itself is referred to as a MODEL of the system. There are
clearly; vastly different ways of describing or modeling systems and
a'number of approaches have been taken [5] to classifying these
different descriptive modes. Development of such a classification,
or taxonomy, of models, clarifies how the digital computer can aid
in model formulation and solution and also clarifies what types of
models are appropriate for investigating different systems.

3 1
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1.2. Model Classification. The classification scheme presented
here follows that of Mihianri [6] and is summariked in Table 1.
One of the main distinctions to be made is between material models
and symbolic models. A material model' represents a spatial trans--
formation from the original physical system of interest (the "real"
system) to some other physical system which in some s nse is sim-

`pier, more easily understood, or more easily manipula ed. One type
of, material model' is a direct replication of the systi in question
but on an altered dimensional scale (e.g., a model Airplane). An-
other type of material model is a quasi-replica of the real system.
Like the replication, it is a physicahmodel in which a spatial trans-
forination of the real system has occurred; however, in this case
one or more dimensions have been omitted (e.g., q road map). The
final type of material model in Mihram's classification scheme is
referred to as an analogue model. In this type' of model no attempt
is made at preserving the physical di efisions of the real system.
The primary objective is to preserve ehavioral or performance
characteristics: Analog computers hav been used extensively in
this way to model systems governed by sets of differential equa-
tions. The analog computer consists of electronic components
whose behavior (i.e., variation in voltages and currents with time)

corresponds to simple mathematical operations such as addition,
multiplication, and integration. These components may be inter-
connected so that overall behavior of the system represents, for
example, the solution to a set of differential equations The com-

. puter, interconnected in a particular manner, repiesents an ana-
logue model if this set of equations is the same as .the set governing
the physical system of interest

While material models attempt to maintain a physical link be-
tween the model and the real system, with symbolic models this
link is broken. Descriptive models are one type of symbolic model
in which natural language (e:g., English) is used to represent a
system. The symbols in thi case are elements of the language, and
manipulation of symbols f lows the allowed grammatical rules of

, the language. A botanist' written description, of a plant is a, de-
scriptive model. Formal models, or formaliiations, are another type
of symbolit model. This type,, however, is one in which symbol
operations-fall within a highly developed mathematical discipline,
such as integral calculus or numerical analysis. A differential equa-
tion model of a system is representative of this category.

31.8
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Falling between descriptive and formalization models; and often
.containing elements of both, are simular models. Higher-level pro-
gramming languages, for instance, allow users to represent Aystems
very much as descriptive models; fiowever, internal to the language
processor where formal numerical methods are utilized, the models
are more of the formalization type: This is one of the reasons that
simtilir models and simulation languages have achieved such wide-
spread use and popularity. That is, on,the one hand, the language
features available allow individuals to describe systems in a com-
forthble manner often closely related to 'natural language descrip-
tions, while, on thcother hand, the built-in formal numerical analy-
sis constructs assure, under proper opnditions, model solution. In
addition, the users of such shnulatio 'languages often need not be
too deeply concerned with understan ing the details of the numeri-
cal methods utilized,- since these are built into the language pro-
cessor. 'Thsis allows users to nonce trate on the .structure and
properties of the system of interest. Finally, due to the symbol-
processing capabilities of digital computers, such computers have
become the primary tool used for the development and solutipn of
simular models. ....a

The models thus far have been classifiea in terms of the level of
abstraction used to describe the system. Material models of the
replication type are the least abstract, while symbolic models of the,
formalization type are the most abstract. Another dimension of):
model classification deals With whether the model is Static or
Dynamic, Deterministic or Stochastic. A static model is one .whose
behavior does not change with time:Thtafor instance, ohm's Law
is a simple static model of electrical behavior of a circuit,in
rium. If the circuit is disturbed by, say, introducing time-varying
voltage, then a set of differential equations incorporating cohm?s1,
Lac* would be a more accurate model; and this would, be a dyna-
mic model. If the models described above contain no nonrandom
elements, then they would be deterministic models. If, however,
there were random eleMents, then they would be stochastic models.
Thus, for instance, if the voltage on the circuit varied: in a random
fashion, the appropriate model of- the system would be a set of
stochastic differential equations. Such a set" of equations would
consititute a formalizafion model of the stochastic, dynamic vari-
ety.
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This completes our review of model taxonomy. The ,remaining
discussion centers around simular models:, since these are most
closely connected with digital computer simulation.

13. Simulation Methodology.' Consider now the term "simu-
lation" itself. Although.it is, often used interchangeably' with "mad-;
eling," "simulation" imPlies a good deal more Simulation is a pro-!
cess containing a number of components, one of which is modeling
or describing the system of interest. The, process can be discuss'ed in
terms of a sequence of stages as illuslived.in'Figuie 1..

The first stage is problem formulation and study planning. Defer.:i
mination of simulation study goals, and plan of attack, is often the:
most important and difficult Part of a simufation. The difficulty
arises because there is a. close.,connection 'between what are es -:.

_Systan"parinition:

Model implementation'

Model Viiificatioteg
ana

Model Validation

Flo. 1. The simulation process.
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tablished as study goals and procedures and, how well the system to ,

be studied is itself understood. Indeed, one study goal will often be
to obtain a deeper understandini of the system of interesteven
here, though an attempt should be made at quantifying what is,
meant by the goal of achieving a deeper understanding before the
simulation study gets 'under way. Initially, this may entail
deterniining. whether certain narrowly de ned input/output re-
lationships exist. For instance, if the syste to be considered is a
hospital outpatient clinic, one might be i rested in how patient
waiting time varies with the arrival rate of the patients. Once this
has been,achieved, the problem may be reformulated and expanded
to include nvestigation of various design alternatives. For instance,
it might be preferable, from a mean-patient-waiting-time point of
view,, to schedule patients in different ways depending on their
expected' resource requirements (i.e., some patients require long
physician consultations; others short; some require x-rays, etc.).

Determining the schedule is one aspect of system design and
control. The final problem formulation will often relate to "opti-

mizing the system desiin. Optimization requires that a'measure of
system performance be accepted by those individuals einvolved in
the simulation study. Once this measure of performance is decided
upon, 'then system design alternatives can be examined in terms of
maximizing or minimizing this performance measure. Preliminary
decisions on what this measure should be are part of the problem
formulation stage. This can be a nontrivial task, ,especially when

Individuals with conflicting personal goals and backgrounds are
,connected with the study. Often a realistic performance measure
can be formulated only later in the simulation process when greater
understanding of syStem operation has been achieved. The out=
patient clinic example illustrates how such performance measure
differences may occur. The exaniple used outpatient waiting time as
-the measure of interest. Note, however, that this might not be
consistent with a dollar profit measure on clinic operation, or. per-
haps with a measure based on clinic resource utilization.

Closely connected with establishing study goals is the questiOn of
the study plan. A clear plan for achieving the study goals will
include time and dollar estimates for the various stages in the
study. Stating, in written form, both the goals of the simulation
study and the resources required for successful completion is ,es-

. `i
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pecially important-whon-the-study-isinidertaken-under-the-atisPices-7
of a large organization. FOr inStance,irfralarge corporate environ-I

ment numerous individuals and-grotips-may .haVe.an interestinthe
development of a corporate These. individuals will ...
often be needed to provide data, to-aid, in model development, and'
to provide financial support for.thesttidy, Agreement. on, the rgbals
of the study and a commitment to the gineral study plan is there
fore vital.

The . Second. stage in ;the: sfinulation, process relateS to ,.'sjIstern",-
'definiiiiin. The entities or primary objects:orinterest in the
must' first be identified.. In'he hospital -outpatient clinic, for exam
pre, the entities might .be the. Otients, doetorss, -nurses, and:-ray .
units in the clinic. A.ssociatethwith,:the'Se ,entities are attributes'
which denote VariOus.,entity,:prOpertielS...ThuS,- associated: With: the
entity physicians rnighp.bethe:staticzattribuies "quantity':' and.. "spe-
cialty,!' and the 'dynamielittribtite litiSy:!? The attributes '-
nSiociatedwith a partieular.,entit particular physician) at aN
point 'in time, represent' the state of the entity,1011e the ..collected'`:

states Of. .all, critical: en titiei systein;represent-thstene of the'
System,,NOtice that the 4inainie attribute ".bni/nOihuSY" indicateS,
that an activity is in piocess.tuch"%atiyities and their; interrelatiOn!.'::

ships. deterfiiine, -partilav .the,system
Static:or class relationShipsbetWecrt'entitiesitaY itso be specified

(e.g.,'associated, with each X.rapunitnare,the.tWo narks required to
operate the unit) when needed for system definition,.

In addition tO, entities, attributes; activities; and states, the flyitern.

n boundaries must'-,be defined,:gflie systeiii of concern is said to exist::
enuiranment.,iThe ,systetn boundaries,' determine thOse entities.,

in the :environment, (i.:4_outsiace of the bOundaries)-:whichl:atfecf-
SyStenl'actiVities but -Oti the!,systenLitsell
turning; to the oUtpatiatjclinie'eXaniple; the Weather;'foryiStance;.
represents an entity eiWionmeiit'whiCh, Will :Effect iist0419
operation*altering the arriVallate of patients. .::;;;

Arother.aSpec(. of...systeM, definitiod, concerns' dividing,"up. the
system of interest into...lubsySterns SUchsubOstepis eachtrepresent
an entitY..<rd'f: collection of entities. whiCh; in'SCrile sense, ads:4i a
unit in relationships:Avithothetsubsystems.:The objective in
ink 'SrubsY4temSi.lJef "simplify specification 'ofSYstetir'interictiptis
and activities. Fewer:siibsysteMs present generally means that fewer,
attributes; states, and 'activities 'ate needed indeicribing the system.
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The question of What constitutes a subsystem is closely related to
the dettelopment of hierarchies of system .definitions. Such hier-
archies usually represent differing levels of detail which may be
used in defining subsystem's. An example of this is giVen in Figure

Say 'that, the system of interest is a computer system. At the
"highest" level, a very low detail representation of a computer may
view the computer as a simple server with given statistical exeeu-
fion, properties ,which acts on incoming customer programs to
,produce certain program execution results as output. Given a sta-
tistical description of ,the proiram arrival process, the length as-
sociated with, the queue of incoming programs, the discipline as-
sociated with selecting jobs from the queue (e.g., first come, first
served) and a statistical description of the service process, the 'goal
of a simulation study might be to find out what the waiting time is
for "customer' progrims (i.e., response time of the system). Such a-

low detail-leVel systALdescription could not by itself be used to
.4,

An ut

nti;ollbillrograma..
input

program execution results
output

. Level 1:''Computer,SVatem Ai A Simple Server

1 =I
ore

Memory 12511
ntra

Processor

Computer. System As A Collection of Functional
Servers.

Level-3: Cen[ril Processor:as A CollectiOn of Registers and
Logics/ Cities ."
Regilteis and .Logical Cates As A Collection of
Electronic CoInponent .

Level Si ".Electronic Components In Teris of The Basic
Physical Lave governing Their Operation

k1$3.

9

output
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det&mitie ,the ircct of the speed ofisay;:thetnasi-stOrage device on,.
respOnse time. Tq get at pis, Alower4level 1:Presentation is needed. ';

lAyel 2 thus conSiders, the dOmputer systerrt-as rrlade tip of Ante
;.primary subsystems: Central plocessor, centrarmentory, Find mass

',.storage, Notice that othet subsystettli,Isuch as. the sygteml)rinteli,.
might Also be!addcd at:this level: The question or vhittIubsystpm
.;lhould' be. included' -at each repiesentatiOn levil is clearly, a Mager -,
Of;judgrnen,t. lit it 'ivas felt Ahat the system printerjepresented ,a
popible bottleneck resource in system Operation,..then it
waulti.hAve to,,be inchided.1While it will :sometimes be:necessary to
include,a subsystem in the modell'description in-order to detefinine
its relevance to.systemOpersition; the tendency to ,consttuct ,overly

'complekaiodels-'Should. be avoided2Added subsystems mean added
.,complexity and cost in programining,: validating, Verifying, And
generally Understanding what's going on in, the model."Initially.; it is
usually beat* to err:on the side of.siMPlicity rather than com-

PursUing this example a bit ,,further, one can identify at least

,,~`three -more levels of ddtail. The :central\,processor subsystem, for
instaneeean be represented in terms of the registers, logical gates,
and,infointation transfers between:them. This would be an appro-

,,ptiate representational level if the objectiveS of the simulation study
4-. concern how. gate failures affected processor performance. Indeed

such s dies 7a,11.6 often undettAken with a view ,toward designing

'faith ectionand diagnostic capabilitiOs for computer systems.
A le of belowihe register and gate level would be the circuit and

electroni,&compOnent leVelnwhile One level below this would view
thC'compOtients interms of the basic physical laws governing their
operation,.

the system definition stage discussed above is very much an
analysis, stage that the basic components which make up the

,..model and the bounds on these components and the system are
defined. The third stage, the model formulation stage, is a synthesis

stage, in that the concern here is with the. oVerall structure and
interrelationships between the model components. In tfie model
formulation stage, just how, the various subsystems and activities
affect each other must be defined. Choices must be made, for in-
stance, as to whether a deterministic or stochastic model should be
used. Indeed, at this stage the general question of model type (e.g.,
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material, symbolic, etc.) must be resolved. Of course often the
model type will be dictated by decisions made in the stages already
discussed. Given, say, a dynamic model, these dynamics must be
specified. Sometimes this is most easily done by means of logical
flow diagrams, while sometimes it is convenie(t to write down sets
of equations which govern these interactions; If a simulation
language is available, it may be possible to conveniently describe
these relationships directly in the language.

This leads to the fourth stage; model implementation. Clearly,
implementation problems and capabilities affect, and are affected
by, decisions made in the previous stages. In terms of digital com-
puters, model implementation relates to how the model formulated
is mapped into a correct sequence of coraputer instructions.
Simply, how does ,one produce a computer proem corresponding
to a liven model? Two separate concepts should be identified here.
The first relates to the descriptive question of how the model
characteristics are represented in the computer's language. The
second relates to the numerical techniques used to "solve" the
model. This

k
latter question is treated in part in Chapter 7 on

Numerical Analysis' and is not dealt with here. References to some
of the standard works in this field are provided, and additional
references will b noted later. .

The descriptive problem has been eased considerably in recent
years by the wide availability of a host of simulation languages
which are often specialized to certain problem areas. For continu-
ous systems (i.e., the variables in the system are continuous func-
tions, usually of time) such languages as CSM,P, Continuous
System Modeling Program [7], [8], [9], and DYNAMO [10], [11]
may be conveniently used. For discrete piobabilistic systems (i.e.,
the variables in the system are stochastic in nature and Change in
discrete steps) such languages as GPSS, General Purpose Simula-
tion System [12] [13], GASP II [14], SIMSCRIPT [15], and
SIMULA [16], [17] may be used. The GASP IV [18] language is
available for those systems which are best represented by a mix of
continuous and discrete 'probabilistic variables. More specialized
languages are also available f6r modeling very specific types of
systems. For instance, ECAP, Electronic Circuit Analysis Program
[19], is a language which allows for direct modeling of electrical
circuits, while ICES STRUDL-II, Integrated Civil Engineering

326
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Systems Structured Design Language [20] may be used to model
elastic, statically and dynamically loaded, framed structures. Sev--
eral of these languages will be examined in some detail in the next
two sections of this chapter. It should be noted that while the
numerical techniques needed to solve thc system arc usually built
into the code produced by the simulation language compiler, some
individuals prefer to code these numerical algorithms directly in a
higher-level language such as PL/I or FORTRAN. This generally
gives one more control of the- detailed implementation questions
related to the numerical algorithms and often results in faster exe-
cuting simulations. On the.other hand, this approach typi5ally re-
quires more programming effort. In addition, while the,fresulting.
program will indeed be a fornimof model description,' the overall
structure and organization of the system will usually be obscured
by the detailed level at whiCh coding must proceed. By Program-,
ming in a simulation language the apping of the system-model
into the language commands is oftcn more straightforward, with
the program more obviously representing the system, of interest.
Model documentation and education problems arc therefore some-
what cased. This will become clearer in the sections to follow. ,

Once the model has been, programmed on the computer,
questions relating to its "correctness" and "goodness" must be dealt
,with. These questions have been separated into two parts. The first,
model verification, considers how well the model responses, as now
programmed on the computer, correspond to theoretically antici-
pated results. The questions here concern the basic soundness of
the model. Has the program been fully debugged? Is the random
number generator working properly? Do simple parameter sensiti-
vity tests-perform as expected? Perhaps certain model operating
conditions correspond to a system which can be solved analytically
(e.g., transform a nonlinek model, into a linear one, transform a
complex queueing model into a simple single server queue). Under
such conditions does the model output correspond to the analytic
solution? The objective here sis thus to gain confidence in the
model's inherent operational characteristics. Often errors will be
found at this stage which will cause one.to reformulate the model.
More often than not programming errors will be discovered which
will result in at least partial model reimplementation.

Model validation, the next part, is specifically concerned with
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how well the implemented model represents reality. Comparisons
hero arc comparisons of model outputs with real collected data.
Clearly, this cannot always be done, Often a simulatioli is used to
investigate conditions or systems which do not yet exist, and there-
fore for which no data is available. If these new situations represent
reasonable extensions or modifications of existing systems, then it.
may make sense to structure the model so that both the existing
system and new system arc modeled within the same framework.
Validation' of the submodel representing the existing system can
then provide some added credibility for the new system model.
When this can't be done", more effort should probably bc allocated
to model verification. References [21], [22], and [23] deal in part
with some of the. statistical questions relatingto model verification.
and validation.

Given the preceding stages the modeler is now in a position to
'begin experimenti4 with hig model, This stage consists of experi-
mental design, .execution, and analysis. Although the first stage,
problem foribulation and study planning, has dictated the type of
experiments to be performed, the details must now be set. The large
number of variables present in many simulations can lead to exces-
sive computer running times and costs unless some care is taken in
this experimental design. Optimization ,proble for example,
which require multiple runs with parameter aria ons can be
costly even when care is taken [24]. This is c cia true with
regard to stochastic models where multiple runs or extended runs
may be needed to resolve questions of stochastic convergence and
statistical validity. This latter problem is dealt with in part in
Chapter 8 on Computer knee and Statistics. More information
on experimental design can be found in [22], [23], and,[25]. Care-
ful experimental design is also necessary if the experimenter
learn about and be able to analyze the system in an orderly, uc-
tured fashion. It is very easy to become overwhelmed with reams of
simulation run outputs, each run having, for example, somewhat
different parameter settings, or initial conditions.

When the analysis has proceeded to the point that the goals ini-
tially established, have been satisified, the final stage of the simula-
tion process, documentation, is entered:Three typcs of documen-
tation can be distinguished. The first concentrates on the results of
the simulation study. That is: What has been learned about the.

326
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System of interest? What are the answers to the problems posed ig
the first stage? The second -relates to documenting the simulation
program itself so that it can be understOod and, if necessary,
fled by others:. The third concerns the use of the simulation by other
parties who perhapS would like to use the siMulation to run their

own set of experiments: This latter document, in effect, is a user's

This completes the introductory section of this chapti e re-
maining sections concentrate on the properties and use of several of
the more popular simulation languages.

2. CONTINUOUS SYSTEMS SIMULATION

2.1. Introduction. Continuous systems are those in which the
state variables change in a smooth or continuous manner. Most
continuous systems simulation is devoted to the solving of systems
described by sets of differential equations. Simple differential equa-
tion models, such' as ihOse with linear, constant coefficients, can be

solved without the. use of the numerical approximation techniques
central to continuous systems simulation. In these cases theluse of
simulation techniques may still be desirable, however, because of
the ease with ,which such problems cariCbe- represented and solved.
Once the nonlinearities 'associated with. most real world problems
are brought into the differential equation model; it is usually im-
possible to solve these models without using simulatiOn technique&
It his in this area of complex, nonlinear systems that simulation
methods are indispensable.

,The remainder of this section on Continuduftsystems simulation
contains three parts. The first presents two examples of continuous
systems. The second presents a block-oriented simulation language,
Block/CSMP; which is well suited foruse on a small computer:- The
third' present§ an equation-oriented simulation, ',language
360/CSMP, which is. Widely used on large IBM computers- These
languages are each used, to model and solve the, example systems.

;,1.

2.2. Contin ous Systems Examples. For the first example consider
the siMple.ine hanical system of Figure 3. The system consists of a

mass M, suspe ed from a rigid structure by a sking with stiffness
K(X). This is in turn connected to a rigid structure beloW through a



K(X)

FIG, 3. Simple mechanical system.

dashpot with damping constant D. The object of the simulation is
to find out bow the mass oscillates with time if the mass is initially
pulled down (i.e., the spring is extended) and then released. Such a
simple model might represent part of the suspension system of an
automobile with the spring' corresponding to a suspension spring
and the dashpot corresponding to a ihock absorber. The objective
of thesimulation might be to determine the spring/shock absorber ..
combination which produces the "smoothest" ride.

The differential equation which describes the system can be ob-
tained directly- by using Newton's Law& The force needed to accel-
prate the mass is °M(d2X/dt2), where d2X/dt2 represents the second
derivative of 'the space variable X with respect to time The force
exerted by the spring is K(X). The notation K(X) indicates that this
force is a function of the position X. For this problem the function
is a nonlinear one which has been empirically obtained and is
plotted in Figure The force exerted bylhe dashpot is; proportion-

s given by D(dx/dt); In this system, no other
; hence the nonlinear differential equation ,

al to velocity, and
forces act, on the m

_governing the system is:

d2X
m cIT1 + D dt + K(X)

O.

:Note that two initial conditions must be provided in order id solve 'r

ihe system.



FIG. 4. Spring force K(X) vs. distance X.

It is sometimes convenient to rewrite the system equations in a
somewhat different form. First solve for the highest ,derivative
d2X /dt2.

2 M dt
2

dt
X ,dX .(x))

Next let the =fist 'derivative of X with respect to t be equal to
X1DOT and the second derivative be equal to X2DOT. The system
described by (1) can now be described as:

X(t) = .14 X1DOT(t) dt + X(0) (2)
o:

X1DOT(t) = X2DOT(t) dt + X1DOT(0) (3)
Jo

X2DOT(t)<= ----(1/M) (X1DOT(t) D + K(X(t))) (4)

where ftc, indicates integration from time 0 to time t, and X(0) and
X1DOT(0) represent the initial `position and velocity conditions
present on the mass. Notice that these,equations are fairly obvious.
Equation (2), for eX'arnple;'merely says that X at time t is equal to
the integral of the deriVative of X. from 0 to t, plus the initial
condition on X Thus rewriting the equations in this form ernPha,
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sizes the integrations which govern system operation rather than-
..

the differentiation& The primary reason this has traditionally been
doge 64thatthe integration operation, both when Performed. elec .
tronically_on an analog computer, and when done numerically
digital computer, is a more stable procedure than the differen-
tiation operation. Note that any system of differential equations
can be redescribed in the manner given above.

The second continuous systems example is taken from the field
of population dynamics. Variations and extensions of, this, example
have been used to study the interactions of different populations
with each other and with the environment in which they exist [26].
To begin with consider a single population of size'N. On the one
hand population growth will be directly-related to population size

'(i.e., the larger the_ population, the more births and, On the
other hand, as the population grows it will exett an increasing
impact onits, environment.. Given a finite or restricted environ-
ment, at some..point demandi on the environment will limit further
population growth. Thus the larger the populationAhe, lower the
expected birth rate:These two ideas can be used to form a simple
model of popuStion growth. The resulting differentia.equation;
called the Verhulst-Pearl equiliOn, is given below

dN
=

tit
=-aN bN .

The first term, aN, repkesents the rate of increase of a population of
size N if there were A° resource limitations with ."a" being the
intrinsic` rate, of natural increase (i.e. , birth rate us death rate).

2The second term, bN , represents the inhibiting eff o a limited .
environment, And hence finite resouiVs. The parameters a and b
are referred to as the "logistic" paranaeters.

A simple extension of this model considers two species, with
populations N1 and N2 , competing with each other for the same
resource& The equations for this system would be
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In (6), al; 1411, and a2., b22 are the logistic parameters for each of
the two populations when living alone. The,bj2 and b22 parameters
indicate the effect of each population on the other. One interesting
aspect of this model relates .to relative population growth as pa-
rameters of the 'equations are varied. It can be shown [26] that
under certain conditions one population can grow while the other
becomes extinct, while under other conditions an equilibrium situ-
ation can occur with both populations remaining viable. Notice
that both of these models represent a continuous approximation to
a discrete system. That is, the values of N can only-be integer, and
can only change by integer amounts in tie "real" system while the
model allows for fractional values and changes.

To conclude this section let us rewrite equations (6) in the inte-
gral form similar to equations (2)(4).

N1(t) = f N1(t)(a1 bi INA° 1)12 N2(t)) dt + N1(0),
o

,N2(t) =.f N2(t)(a2 b21N1(t) b22 N2(t)) dt. + N;(0).
o

N1(0) and N2(0) represent the initial sizes of population 1 and 2.

2.3.Jhe Block. Continuous System Modeling Program
(Block/CSMP). The BLOCK/CSMP simulation Janguage presenv
ted here. is a successor of the 1130/CSMP language which was
originally available on the IBM 1130 computer [8]. Versions of
this simulation program have run on numerous minicomputers.
The. language is easy to use and interactive versions have been
developed. These interactive versions allOW the user to ''specify,
modify, and run the model while on-line to the computer. The
immediate feedback of model solutions from the computer to the
user not only speeds up the debugging process but allows the user
to experiment with the model in a natural manner letting the user'
follow interesting leads- and insights in a straightforward "hands
on" fashion

of B CK/CSMP can be divided into the four phases given
.

below: . .

1. Configuration Phase=The user defines a block diagram rep-
resentation of the problem.

(7)



COMPUTER SIMULATION 117

2. Parameter/Initial Condition PhaseThe user specifies model.
parameter, initial condition, and function generator values.

3. Timing/Output PhaseThe user specifies numerical integra-
, tion algorithm type and step size, output variables to be plotted,
and output time step size.

4. Run PhaseThe user runs the simulation, obtains the output,
and determines what to do next.

For phase 1, the configuration phase, the user must first specify
his problem in terms of a block diagram. There are about 30 blocks

-available to the user in 'defining his model. The blocks an be
broken down into five types: (1) Linear Continuous (e.g., Summer,
Integrator); (2) Nonlinear Continuous (e.g., Multiplier, Sine); (3)
Nonlinear Discontinuous (e.g., Absolute Value, Limiter); (4) Con-
trol and Timing (e.g., Relay, Unit Delay), and (5) Special -Functions
(e.g., Time, Jitter). A list of ten of these blocks is given in Table 2.

To draw a block diagram for a system initially described by a set
of differential equations, it is usually easiest to begin by transform-
ing the equations into an inte_gral form similar to that shown in
equations (2)(4) and (7). Corresponding to each integration oper-
ator, an integraiiir block will be required. For the nonlinear-spring
example the output of ea0 of the two integrators required will be
X(t) and X1DOT(t), respectively.rNow X(t) has X1DOT(t) is an
input; hence the two integrators are connected as shown below.:

X2DOT(t) XIDOT(4 X(t)

X2DOT(t) is the input to the integrator which is defined by equa-

tion (3) and produces X1DOT(t). X2DOT(t) itself, however, is equal

to X1D9T(t)- and X(t) multiplied by the appropriate piiiineters
and summed together -as indicated in equation (4). The function
generator and weighted summer blocks in the simulation language
can be used for the purpose of implementing equation (4) with the

b k diagram for the entire problem given in Figure 5.-This dia-
gram clearly and visually indicates the interactions and feedback
paths which are implicit in the system's differential equations. A
similar diagram for the population dynamics problem is also given

in Figure 5.
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TABLE 2

Block/CSMP Block types.

Block Type Language
Symbol

Flow Diagram
Symbol

Operation

Weighted
Summer

1.°14111:111111'
011

. X3 40

Y P1X1 + P2X2 + P3X3

Integrator

-------'---.N..,..

.)

I

0
y P, 4 f ( X, +P +P 3X3) dt

' o ' "

.

X

41)

Inverter . P. -X2

Gain
Y P1X1 . .

0

Constani K
1 P1

Multiplier y Xl...X2

*
Iiiitalt*

Sine
4.

S 7 . Sin(X1)
1::>"4".

/
unction/F

/Generator,
F 'Y.' f(xi)

P1 and P2' define upper and

lower bounds, sae text)

Xl p
.-7.

Limiter
IfX2:P Y°P

1 l'
P1

If. P1>X1>P2; Y." X1
If

,
X <P 7 P
1 2' P2

Given that a block diagram has been established, a unique in-
.teger must: be assigned 'to each block in the diagram. The block
diagram may now be entered into the computer. In some systems
this is done by means of punched cards. Figure 6 indicates how this
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X2DOT XIDOT

.
Nonlinear Spring Problem

319

N1DOT

Population Dynamics Problem

Fla. 5. Continuous systems examples (initial conditions omitted).

information_i ntered-in-an-interactive-system-where the- user-has
the option of h ving the system guide him. in entering the infor-
mation. User inp is follow the "T'.

The ,first set of user inputs consists of 1,W,4,2. This says that the -I
block assigned number 1 is a weighted summer, W, whose inputs
are the outputs of the blocks assigned numbers 4 and 2. The re-
maining three configuration specification inputs complete the de-
scription of the block diagram to the sitnulation program. Hitting
the carriage return key on the computer input device in response to
a ? alerts the program to enter the next phase.

The parameters and initial conditions phase, is also illustrated in
Figure 6. The first input 3, 10 relate.s to, integrator block 3 and
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CONFIGURATION sRict il,tckrz oNs

ENTER- BLOM:SPEC/ Ff-CATI 01.15),
, SEPARATE ENTLES VI TN CONN'AS . ., % .* .,: .

CARRIAGE RETURN ENDS THE-OPERATION . '''
. :- MOCK . NUMOLR:t BLOCH , TYPE. ,INPUTE A,INPUTio I NAGT3

:". T 2.* I RA . , 'r:

..., 13. I.V : f'

T4:E. 3

f?

' tNt:74a... daNDt onq -AN6"pARAtiritnir

ENTERS BLOCK. IIUMHER C/P4R1t.. PARR* PARS;'
SEPARATE' ENTRIES WL714 COVIHRS, '

..CARRI E RETURN RIDS :THE' oPERATT9R- -!tv.' A

'Tao i0

Tli 41,..2.... 0* 4

10. 0...
.

?

yFLNCTI ON G EN MAIMS' SPECI TI CATT ONS;; '

CSHP' il ALLOWS ONLY (3 EUH.STI QN GENERATOAS ; '
ENITIDT. THE FOLLOW Nds .;

-!1:11,01:25 NUMBER:I FUNGTI ON INTERCEPTS;EPTS; 4tt Tp 4
EUNCT/ ON INTERCEPTS 05 TO
FUNCTION INTERCEPTS *10 TO :11

;41r rAGE RETURN ENDS E PERATI ON
17S EPAR4iE ENTRIESI ES WI Tit- TrIVIAS

Tgle 100.* ;*64*,..*36*...*1
T. . **2`..0.i0 o'210.1.45

';TININ(iNre.R.ATioN 'CENTER DECit441.. POINTS)

NTEGRAYI ON INTERVAL

TOTAL' itt46125

FIG. 6. Block /CSMP input statements torihp nonlinear' sprang problem.,

.-spticifies the: initiatzconditiOns on the integrator The second input.
"defines,the values by. which.theAW:OinpUis, to the.Weighted-iumnier,
are- o be tnultiPlied. The thiid input deftneS the maxiintini and
mutimuni values Which`-are t`Ohe PrOilded by the_functio4,gener-
ator.The function generator is defined by AI-equally: spaced. points.

6 ` ,
-Jh1

e points vary from . -10 to
,

and: the Valiles-associated With
each,' pOirii are given, in-the function generator iPecifiCation.,The'se

.
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points correspond to the curve of Figure 4. A linear interpolation
'iliethOd is used so that for a particular X input the program pro-
vides a K(X) value output.

Timing information related to the integration step size and the
total running time for the simulation are now entered. Other infor-
mation, not shown in Figure 6, relating to the frequency of printing
the output, the specific variables to be plotted or recorded, and the
integration method to be used must also be entered as part of
iihaSe 3. The results of running the nonlinear spring model with the
set of conditions indicated n Figure 6 are shown in Figure 7.'The
left-hand. indicatei the time, while the next oolumn indi-
cates the value.--Of the-, oUtput of block 3, X, at that time The
remainder of the output is a plot of these values: The plot clearly
ShoWs. the damped' oScillatorY7response ,,Of the system with the
period of oscillation changing with time dile to the presence of the
nonlinear spring. Other plOti` with differingoparatileter values can
be easily obtain-44n addition the configuration statementscan be
saved on magnetic tapefor future use..

For completeness the inkut specifications for: the population
dynamics example are given in Figure 8. Instructional comments to
the user haVe been omitted in this case. The Output, though not
provided here, indicates that, with the given earameter'values, a
stable Population mix is obtained and the equilibrium sizes of the
two populations are about '52-and 1240,,, respectively.

°

2.4. The 360/Continuous !Systent. Modeling Prograni
(360/CSMK The 360/CSMP simulation language [9] is available
on many IBM computers. The language is a goOd deal more
powerful than -the Block/CSMP language just discussed. One can
for instance; write Fortran statements in as part of the simulation,
and provision is made for creation of user subroutines and special:
funCtiOns Thelanguage itselrprovides a wide variety of simulation
oriented funCtiOng (equivalent to _the blocks in Block/CSMP)
also . contains simple procedures for automatically controlling;
multiple model, runs under varying conditions. Many of,the- blOcic
Aypes explicitly available in Block/CSMP are automatically avail
-able simple Fortran constructs.. Note that some of these
language differencei are due to the fact that Block/CSM? is "inter-

preted while 360/CSMP rnust be compiled using the Fortran. coin-
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; RESULTS PRINT+OUT

TIME OUTPUTt 3 +0.16000;4.02
0.000 - 0.100006 +02'+
0.500 1678020E+ 01 I 0-... , ,.,
1.009 0.92697E +01 I - ....:
1.500 .0.10539E+01 ,I
2.000 0.447\78E41+ I
2.500 0.63310E+01 I
30 ewe .:5,11.60605E+64 I
3.500 0.42375E+01 I 4.-

4.000. I
4.50 - 0.19661E -00 I 1.

50 00 13". 15965P 01 I .M
41-

+
5.560 0.31522E401 I +
60.000 +0037349E401 I +

6.500 +0.35865E+01 I 4
7.000 +0.28861E431 I 4

''. 7.500 +0.19509E+01 I
8.000 +0.10647E+01 I - - -. +'
8.500 +0.29129E7,00 I
9.000 0.35501E -00 I

2.70000E+0

9.*00 04,86805E+00 I
19. 000; 41012488E+01 ,/
10. 500- '.0. 15042E +01 I
ll 000 . 0.16453E+01 I ....
11- 500 0.16866E4 +-I

- --.12.000 0.16442E+ 01 I
12.500 0.15353E+01 ''!,+m-
13.060 0.13768E+01
13.500 '0.11649E +01 I
14.000,;-0.97435E-00 I
14.500 0.75800E+00 I
15.000 0.54666E+00 I
15.500 0.34899E+00 I
16.000, 0.171415-e0 I
16.590 0.18306E+01 I
17.000 B. 10785E.* 00 1
17.500 +0.20626E+00 I
18.000 +0.27750E+210 I 4
18.500 +0.32330E+00 I 7 ' . I
19.000 +0034619E+00 I + I

+'^ 1 ,,,
19.500 +.0.34930E+00 I litrgye4;,4.

...... 'I
20.000 - 0.99608E-00 --I ......... I

20.500 .0.31008E-00 1 ° a z :7:0\ J. ' I
21.000 - 0.274005 -00 I I
21.500 - 0.29952E-00 ° I. I
22. 000 +0.18918E+00 I +
22.500 +0.14434E+00 I + I .

23.000 .+0.1011.2E+ 00 I +
23.500 - 0.61176E-01 'I +
,24 000 +0.25715E+01 A +

c, sta.sike 0.44753E+62 i + I
25.900 0.28987E+01 I ....... I

,.. /

FIG. 7. Block/CSMP output for nonlinear spring example.

1

-1 I
f.

piler..See Chapter-2 on Progiamming Languages,Vnd Systemi for
discussion of interpreters and ionapilers.

A model programmed in 360 /CSMP is conceived of as having
.three distinct sections: Initial, Dynamic, and Terminal. The-initial
section is used for any computations which should be performed
prior to solving the actual system of equations...Vahies of param-
eters and initial conditions may be computed' in terms of more
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r-

1 W 2 7 3
2 I 1 0 0 ri t-3 X 2 2 0

W 5 6 7
I 4 0 0

6 X 5 5 0
7 X 5 2 0

INITIAL common AND PARAMkIIRS,

1 0. 8000000 -0. 2000000E-03 -0;1060000E-01
2 300. 0000 1. 000000 0. 0000000
3 0, 0000000 0. 0000000
4 0.6000000 - 0.4000000E -03 0.2000000E-02
5 300. 0000 1.000000 0. 0000000
6 0.0000000 0.0000000
7 0.0000000 0. 0000000'

INTEGRATION INTERVAL.. 0. 10000 TOTAL TIME= 14.000
PRINT INTERVAL- 0.50000
OUTPUT BLOCK* 2. MIN. L MAX. 0:00000 X00.00

ts
FIG. 8. Block CSMP summary input for the population dynamics exaMple.

.' "..
,.. .7

tiasic parameters and data needed for the model may be read in
from a peripheral device at this time. Since preliminary calculations
may not be necessary for some simulations, this section is optional.
Fure 9 contains the 360/CSMP code for each of the two examples
presented. Notice that in the initial section variable names are
associated with the basic parameters (using the PARAMETER
statement) and, for the nonlinear spring problem, the nonlinear
function is defined (using the FUNCTION statement).

The dynamic section of the program contains a complete de-
' .scription of the system dynamics. In this section the block diagram

description ofothe problem is a mixture of 360/CSMP and Fortran
statements. For' instance, in the nonlinear problem the statement
X2DOT = (D*X1DOT + F) /M is an ordinary Fortran state-
ment and corresponds directly to equation (4). The other state-
ments in the dynamic section use the 360/CSMP functions
INTGRL and AFGEN. These correspond direalyto the integra-
tion'and function generator blocks in Block/CSMP. The large set
of such functions available to the _user is specified in [9]. These
include, for instance, various logical functions which allow the user
to alter the structure of the model dynamically. Note that unlike
the Block/CSMP language there is no need to specify block num-
bers. All interactions are defined by the use of common variable
names. These names may be selected by the user for their mne-,
monic value. Furthermore, the equation.fOrm of the input is much

1.

340
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'****CONTINUOUS 'SYSTEM MODELING'.

*PROBLEM INPUT STATEMENTS*

NONLINEAR SPRING PROBLEM
INITIAL *,.

PARAMETER M.S. ,D.4.
FUNCTION AA4-10..-10aw-21,-64 ,-36

-2.,-2., 0..00 2..2., 4. .16
6..36.. 11.:64... 10..100.

DYNAMIC'
X2DOTi.-(DXIDOT+F),M
XiDOT=INTGRL(0.,X2DOT)
X=INTURL(-10..XIDOT)'
F.AFGEN(AA.X)

"'METHOD' ADAMS .

TIMER DELT..I.FINTIM.2., OUTDEL=.5
PRTPLT X

':. ..PRINT X,XIDOT.X2DOT,F
FEND
STOP

**CONTINUOUS SYSTEM MODELING PROGRAM'*

*PROBL661VPUT STATEMENTS*

* POPULATION'OYNAMICS PROBLEM
INITIAL

PARAMETER A1..0, BI1 m.0106, B12..0002. WIC.300.
PARAMETER A2..6, 1322..0004, 821..0020, N2IC.300.

DYNAMIC
..NIDOT.N10(A1-811*NI-B1N2)
,44200T.N20(A2-8210N1-822*N2)
'N1=INTGRC(NIIC.N1007)
N2=INTGRLIN2IC,N200T4

TERMINAL

N2DIF.N2-N2IC
WRITE (6.100) N1olF,N2DIF

loo,FoRNAT NIOIF.',F8.4,' N2DIF.I.F0.3)
METHOD MILNE
TIMER DELT+.1, FINTIMi14., OUTDEL=z5
PRTPLT NI,N2"
END
STOP

FIG. 9. 360/CSMP programs for two examples.

clo,ser in appearance to t.4e form of the differential equations
making this code fairly easy to read and understand.

The terminal section of the program contains computations
which may be desired after completion of each run. For instance, in
optimization problems, the terminal section might indude the opti-
mization algorithm. This section can initiate rerunning the simula;
tion with altered parameter values. The section is not alwaYs
needed and has been omitted from the nonlinear spring problem:
In the population dynamic§ ptoblem it is used to calculate and
print the difference between initial and final sizes of the two popu-
lations.

3 4
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A number of.other control statementc will be noticed in the
programs. These have the generarfunctidns, of controlling integra-
tion type (eight integration algorithms are 'available, or the user can r.
supply his own) and step size, and variables. to be printed and
plotted. The specific functions can easily be inferred from the mne-
monic statement names.

3. DISCRETE PROBABILISTIC SYSTEMS SIMULATION

3.1. Introduciion. Discrete probabilistic systems are those in
which the state variables change at discrete'instants of time, and in
which some of these changes occur in a stochastic fashion. Queue-
inesystems are an example of this. Typically such systems contaip
the following elements:

1. Customers or items which arrive into the system. Associated
with arrival processes are statistical distributions which describe
the probability of different interarrival times and perhaps of
various customer types.

2. Resources which in some sense service the customers. Associ-
ated with these resources are statistical distributions which describe
the probability of different service times.

3. Queues which hold customers waiting to use a busy resource,
or waiting for some general system state to occur; Associated with
these queues is s-a capacity which determines how many customers
the queue can hold, and a queueing discipline which determines the
order in which customers are removed froin the queue.

4. System routing paths which determine how customers move
through the system, of queues and resources. Associated ,with theSe
paths may be statistical distributions OE logical conditions which
determine what path a customer will folloW.

Note that many of the elements. described above may be func-
tions of the system state. For instance, the statistical- distributions
or routing logic may change as the number of customers in the
system changes.

,

The general queueing system described can be used to represent
a wide variety of situations. Customers arriving at- a supermarket
checkout counter, products being fabricated' in a factory, airplanes
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arriving and departing from an airport, paperwork flowing through"
a corporatiOn, phone calls being proCesSed at a central switching
fricility, ana.-patients arriving at an emergenoy room are a feW

° SaMPle situations which can be modeled as a general queueing
system. Other sitUatiOns, such as military armed combat and the
stock market do .not fit-the queueing model very.; well They can

`often be modeled using other discrete event probabilistic ,,siinula-
tion"Methods. The lack of obViouS structure in Such systems, how-

.,

ever, ,requyei that a good deal of attention be devoted to their
description. Tterefore, given the limitatioriS of a single chapter, the.
exampleconsidered later is of a simple queueing system.' :

Once the queUeing system example has been presented, the fol-
?lowing two sections. will be deyoted to imPlementing the queueing
model in two popular dikrete event simulation languages. The first
language,,,GPSS, General Purpose Simulation System, is probably
the most 'widely used language of its type. It is easy to get simple:,
models implemented in the language and it is available on most

° IBM computers. The version considered is called GPSS/360 112).
The .secOnd language, SIM'SCRIPT, is extremely.flexible with the
simulation aspects of the langjge being. embedded in a full-blown
general purpose higher-level language. The language is harder to
learn intially-than GPSS;-however, that is perhaps to be expected
as thqPilce of flexibility.

A Major -difference between the languages relates. to their general
"world view." GPSS_isa transaction or particle-oriented language in
that the focus is on the entities (i.e., customers or items) which
move-hrough the-SyStem. The Simulation follows these entities as
they move, froM one activity (facility) to anothsr. SIMSCRIPT,.on
the other band, is an event-oriented language/in that the focus is on ..
theactivities"afild on the, events which deft ,,.the" starting and finiSh-,.
ing times of these activities. The simul ,K3sii in this Casef011ows,the
progress of the various activities deft ng the Model. This difference-
will ,become clearer-as the langua es themselves are discusied. Ref-
erences [27] and [28],disCuSS-other language differences.

An important: aspect bl-Cliscrete, probabilistic sinaulation concerns';
- thelgeneratiop of ,randOru nuMbers from various distributions, :the

fisting of such ge'rieratOi, and the general questions of stati§tical
convergence and experimental 'design: 'The numerical teChniques

..involved. here corresponds in iinportafice" to: the integration algo-
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rithm, step -size, and stability considerations which form the nu-
'mericaVcore of deterministic continuous system simulation. These
questions are examined in some depth in references [221 [231 and
[29].

3.2. Discrete Probabilistic System Example. The example con-
sidered here and illustrated in Figure 10(a) is that of a batch-

z, oriented computer center. Customers arrive, at the computer center
with mean rate A (customers/minuttikky the interarrival times of

I
g,

Customers ,

Arrive

Haan Arrival

YES
:Rate* A

Length

enerate
A,E

Test
'A,B,C

Customers,
Enter ,

Queue'
!

Queue
Capacity:
Discipline: FIFO_

Customirs
Leave
Queue

Customers.
UtOr

Seize

Depart

ranafar
A,E,C

.
'Computer

Service
Timis
°. Cleo. A.Tal..,

Class E.Tb..

Cuntomars:
Leave !

Syntsi

Advance

i

Advance
A,13

4

Release Iv

Tabulate

(b)

FIG. 10. Discrete probabilistic system example.
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customers is exponentially distributed. That is:

FT(t) .9' Pr(T 5 0 = 1 e -1' . t Z 0 (8)

where Pr(T 5 t) is the probability that the interarrival time T is less
' than some time t. This is equivalent to saying that the arrival

process is Poisson. Note that This assumes that an infinite pool of
customers is available. ..
.., Associate with each customer a class type so that all customers

that arrive are said to be in either class A or class B. This repre-
sents an attribute attached to each customer entity. Let XA percent
of the customers be of class A.

Each arriving customer is told how many jobs are ahead of him
in the queue. The customer, on 'hearing this, now decides whether
or' ot he.will join the queue. If the queue length (i.e., number in the
queue plus the number being served by the computer) is greater
than
queue_

value, the:.customer leaves, never to be heard from
ngain.- He thus engages in a form of queueing system behayior
`called."balkinelf the queue length is less than or equal to this
value, the customer joins the queue and once in the queue must
remain- in the system until his job has been run by the compater. ;-

That is, he may not engage in a form of queueing ,systeM SeliavicK,
called "reneging?' .

The queue. itself is taken to ;be infinite in length. Note, however;
that given the strict balking behayior described above, it need not
be infinite. Indeed, this type of balking behavior can be modeled by
assuming" a finite queue with .customers, lost to The system if they

, .. . ..arrive when the queue is filled t6 capacity. The queueing discipline
is taken as FIFO (First In First Out) with the first customer, in the

-queue proceeding to the computer wheneyer the computer becomes
..,free-

The computer in this model can only handle a sidgle,custorner-
:,job at a time Once that job. enters the compineWt thins to com-

pletion without interruption and leaves theeomkuter-pnmediately
on ending: The running time or service time associated. with the
jobs is taken t6.be uniformly distributed frpM T 20 to T -ll 20.'".
The mean is theyefore T(minittes/jOb) and intliis sititation is depeii-
dent on the class attribute of the job. Thus:

,`
T ----

T for Class A jolis,
c:-1

Tb for Class B jobs,

2 -4
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and the service time distribution is given by

0 for r < T
T 20)/40 for T -- 20 < r. < T + 20, (9)

kfor r 20.

Assume that- the'systern remains in operation for long periods of
time so that start npland shut down effects-can be ignored.

Given this system description a number of items might be inves-
tigated. From a custOmer service point of view, mean waiting time
(response time) in the is an important performance measure
and might be examined as a function of mean arrival rate, com
puter service rates, class distribution, and balking point. From a
computer-center manager's point of view, computer utilization (i.e.,
percentage of time the' ottiputer is busy) and job throughput (i.e.,
the rate at which jobs are processed) are iniportant measures which
are also functions of the -various system parameters. Changes in the
system involving the establishment of a priority discipline based on
class type rather than the' FIFO discipline might also be investi-
gated with a view toward Improving, for example, the meanwaiting
time: -

In the sections to follo* this system is repreiented and solved in
the GPSS and SIMSCRIPT languages.

3.3. The General Purpose Siniulation jratemAGPSS/360). GPSk.
is kblock-oriented language. The language contains over forty dif-,
ferent block types which perform .aCtivities .commonly found in
discrete probabilistic models (e.g., generate an arrival procesg, place
customer in a queue,.etc.). These blocks often allow for easy trans-
lation from a flow-chart representation of system into GPSS pro-
gram'. Thus a clear correspondence is seen from Figure 10(a), which
represents the example system, and Figure 10(b), which is the.
GPSS block diagram. Short definitions of a few of the more im-
portant blocks are given in Figure 11, and a complete definition of
all blocks can be found in [12] and [13].

Figure 12 presents a GPSS program which corresponds to, the
blocks of Figure 10 and solves the example problem. The program
begins with a number of comment cards. These are designated by
an asterisk in column 1. The first noncomment card is the GPSS
control card SIMULATE. This card indicates that an actual simu-



..

Block Type- Block Symbol. General Function .

'GENERATE. .

Create traneactione with mean interarrival
specified:given by A, and distribution speCifie'

A,B,'

coi,...
...

TERMINATE

111112

.Removes transactions from thevetem.
Transactions entering the block'are allot-
alied. '.A is subtracted from termination
count value (specified by START command).

SEIZE
4

If faCility A is not in use, a transaction,
entering the SEIZE block will cause ,it to
become 'bus ". Any other transaction now
.attempting enter this facility is halted.'A

RELEASE
Negates the eff ct.of the SEIZE block
causing facilit A to become "not busy".

17

QUEUE
Arriving transaction is placed in a queue.
A .1.7f unlimited size.4150

\SDEPART

A transaction is removed from queue A and
sent out of the block. A FIFO discipline;
ie used.4111

Advance '.

.

A transactiofi entering the block is delayed
for a period of' time before departing.
The mean deli), time is, A, and distribution
'is specAfied-by B.'

Transfer

-.'s 411,*

entering
'tiLle:cTiTbnefrillo;r2c;:d1;i) t block
labelled

CellrdhB1-71;b31,1=1.1.1:;d1A.

FIG. 11. Short definitions of some GPSS block types.

lation run is to be made. If this card is omitted, then the GPSS/360
compiler will only span the input for coding errors.

Following this is a function definition card. EXDIS is a label
which the user has associated ,with the function to be generated.
RN1 indicates that

in
output of randbm number generator 1 (one

of eight available in GPSS/360),is to be used as the independent
, . .

variable in The function evaluation. That is, every time this function
is used, a uniformly distributeerandom number from 0 to 1 is
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BLOCK
NUMBER 'LOC OPERATION

SIMULATION

SIMULATE

A,B.C,D.E.F.G COMMENTS,

OF A BATCHCOMPUTER SYSTEM

EXDIS FUNCTION. RNI.C24' NEG. EXPONDISTRIBUTION
o.o/i. 104/.2 ..222/. 3.6 31515/i.4 ..509/.5, 69/ 6 915'. 7.1 2/. 73.1, 38
.0.I. 6/.04 .I 03/. 00.212/.9.2.3/ I 92.2.52/.94.2,011496.2 99/. 96.3.2
.47.3.6/.48.3..4/.44.4.6/.995.5.3/.998.6..2/.999.4/9994.1
10

.
.

.
.

...,

GENERATE. eo.FNsEXDIS INTERARRIVALS EXP.DIST:
2 TEST L OsLOUEmamaUT IF QUEUE LENGTH LT 3 ENTER OU

3 '' QUEUE' LOU g .
PLACE JOB IN QUEUE

SEIZE' COMPU USE THE COMPUTER
8 . DEPART LQUE
6 TRANSFER .e.BBLK.ABLK eo x CLASS A.20 x CLASS B
7 ABLK.ADVANCE 0.20 CLASS'A JOBS. MEAN 4o SECS.
0 . TRANSFER .CEND
9'. BBLK ADVANCE 60.20 CLASS B JOBS,MEAN 60 SECS.

ao CEND RELEASE COMPU LEAVE COMPUTER SYSTEM
ti TABULATE

OUT TERMINATE
TRNTI
i

TABULATE TRANSIT. TIMES

TRNTI TABLE 141.0.20.40
TART 400 RUN 00 TERMINATIONS
END.

FIG. 12. GPSS/360 program for computer system example.

generated for use as the independent variable. Nbte that this inde-
pendent variable can be any one of a number of "Standard Nu-
merical Attributes" which are available in GPSS (e.g., queue length,
facility, utilization, clock time). The second operand C24 indicates
that the function is continuous, and 24 value pairs are to follow
which define the function. This particular function is the nega ive
exponential distribution as indicated in the comment the 11 ht
side of the statement. The 24 value pairs follow on the next three
lines. GPSS performs a linear interpdViri between the points
when generating a value for a particular RN1, This particular func-
tion, as defined, allows one to generate random variates from the
exponential distribution. This represents an implementation of the
inverse transform method for generating random variates [22],

The function is used in the GENERATE block statement 'which
follows. The GENERATE block creates the transactions which
move through the system. In this case these transactions corre-
spond to computer jobs. The first,operand indicates that the mean
time between creating a transaction is to be-60 time units (seconds
in this case). The second operand indicates that the function
EXDIS is to be used to determine the distribution associated with
this arrival process. This situation therefore results in the gener
ation ,of transactions with exponential interarrival times. Other

346
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capabilities of the GENERATE block include associating attribute
values with each generated transaction.

Transactions created by the GENERATE block next enter, the
TEST block. This block controls the flow of transactions on the
basis of an algebraic comparison of two attributes. In this example
the L in Test L specifies the Less Than condition. Equal (E), Not
Equal (NE), Greater Than (G), Greater Than or. Equal to (GE) and
Less Than or Equal to (LE) are also possible. Operand. A
(Q$LQUE) is compared with operand B (3) and, if the comparison
condition specified does not hold, then the entering transaction is
routed to the block specified in operand C (OUT). If the condition
does hold, then the entering transaction is passed through to the
next sequential block (QUEUE). In this example operand A speci-
fies the standard numerical attribute,,queue length for the queue
labeled LQUE. Operand B is the constant 3. Thus if the qtfeue
length is less than 3, the transaction passes to the next block;
otherwise it leaves the system. This, in effect, implements the
balking-customer characteristic discussed previously. ,

The QUEUE block which follows acts as a storage or waiting
line for transactions. Such a storage area is necessary if a facility, or
piece of equipment, is in use. Operand' .A (LQUE) specifies'a sym-
bolic name for this queue. This name can then be referenced as in
the TEST block to obtain various queue parameters. Thus the
generated transactions now enter the queue if its length is'less than
three.

In,order to simulate situations in which equipment is used, or in
which there exists a single server, GPSS provides, a facility entity.
Such an entity serves, a single transaction at a time and when
providing such service is busy occupied). Any transactions
which may desire to enter at this time are blocked. One way a
facility is defined is by the, presence of a symbolic name or number
in a SEIZE block. COMPU is a symbolic name difininghg facility
which in this case represents the computer. A transaction, on en-
tering a SEIZE, block, causes the facility (cbrirp Co" become
busy and prohibits other transactions from enteriftehntil the facili-
ty is RELEASEd. The RELEASE block moves the transaction
the defined facility to the nexj,:block and causes the facility to now
become not busy. Thus the transaction at the heard of the queue-
LQUE pntinually-ittempts to enter the,EIZE, block and even-

. .--tually succeeds when the COMPU facilitY is RELEiSa
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Once the transaction has SEIZEd the facility, it, must relinquish
its position in the queue., This is done with the DEPART block.
Operand A (LQUE) of this block specifies the queue from which
the transaction is departing. This causes the number in the queue
to decrease by 1 and may therefore affect the direction of subse
quent transactions which flow through-the TEST L.block.

In ordet' to simulate the presence of two classes of jobs, the
TRANSFER control block is used. Operand A of this block is.a
number from 0 to 1. An entering transaction will proceed to the
block named in operand C (ABLK) with probability A (8), and to
the block named in operand B (BELK) with probability 1-A That
is, operand A indicates the proportiOn of entering transactions
which go to the block named in operand C. In the example 80
percent of the jobs are taken to be in class A and 20 percent in
class B.

The TRANSFER block moves transactions to one of two AD -.
blocks. The ADVANCE is used to.simulate the passage of

time, in this case the execution time of a job. The transaction
entering the block is delayed an amount of time specified by oper-
ands A and B. The delay time here is a random variate whose value
is generated from a uniform distribution with mean A, and mini-
mum and maximum values A B and A + B, respectively. Class A
and class B jobs thus represent jobs with different mean execution
times, 40 time units for class A and 60 time units for class B.

When the transaction leaves the ABLK ADVANCE block, it
Enters an unconditional TRANSFER block which moves it to the
CEND RELEASE block. This is the same block 'which is entered
by the transactions leaving the BBLK ADVANCE block. The
RELEASE block releases the computer facility COMPU. At this
point if there is a transaction waiting in queue LQUE, it can
SEIZE the computer.

Af the RELEASE block, a TABULATE bloCk is entered. This
is used to gather certain statistics which are not automatically
collected by GPSS. Operand A (TRNTI) points to a TABLE defini-
tion statement which:must be examined to understand the TABU-
LATE block. The TABLE statement has four operands. The first
(MI) is a,code which indicates that GPSS should gatber statistics
:on the transit time of transactions entering the TABULATE block.
-Tbe transit time is.the time from transaction creation to entry into
the TABULATE block. In this case this represents the time that a

35
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job stays in the computer system. The'remaining.three operands (0,
20, 10) indicate the lowei limit; interval size, md' riurbber of -inter-
vals to be used in the statistics gathering.

The final block, the TERMINATE block, removes transactions
from the system, and thus simulates the departure of jobs. The
operand value is used in conjuction with a "teiinination count."
The termination count is specified in the operand of the START
control card which follows. This count is initialized to the START
operand value (400) and is decremented by the TERMINATE op-
erand value (1) every time a transaction enters the TERMINATE
block. When the count'is equal to' zero, the simulation run is ended.

In addition to specifying the terminationcount, the START con-
trol card indicates to GPSS that the set orinput cards necessary to
execute a simulation has been received and that the execution .
phase should proceed. The END control card is that `last card' of
the GPSS input deck. Note that, although this example has only a
single execution associated with it, multiple simulation runs can bk
accommodated with altered parameter values or model structure.

The next item to consider is the output produced by the GPSS
program discussed above. Although the output produced runs over
several pages, it hai-beell'Aidensed and presented in Figure 13.
Some of this output represents statistics automatically gathered by
GPSS, while some of it (TABLE TRNTI) represents statistics re-
quested by the program through use of the TABULATE block.
Not all of these statistics will be discussed here'. The first main set
of statistics represents a count of transctions which have gone,
through each block. The block numbers are).roduced by the GPSS
compiler and correspond to the numbers on the left side of Figure
13. Notice thht blocks 7 and 9-represent the different number of
class A (301) and class B (75) jobs which went through the system.
Also, the difference in totals represented by blocks 2 and 3 (403,
379) indicate the number of jobs which turned away-from the
system because the queue length was greater than two. Thus about
6 percent of the potential customers were lost. The remaining sta-
tistics are fairly clear. The computer (Facility COMPU) was busy
68 percent of the time and the average time each transaction used
the facility,was 44.75.time units. The queue has an average length
of .556 and the average transaction spent 36.329 time units in the
queue. The table TRNTI indicates the distribution of overall. wait-
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ing times of jobs which enter the computer sy"Slem,;with the mean
(80.845) and standard deviation (42.375) explicitly noted.

This concludes the discussion of GPSS.. The section to follow'
considers the SIMSCRIPT language which views the world of dig-
crete probabilistic simulation from anotherperspective.

3.4. The SIMSCRIPT Simulatiiin,System. SIMSCRIPT (15) is a
general-purpose, higher-level language which has most of the capa-
bilities of FORTRAN in addition to providing list processing and
'discrete, simulation facilities. The version considered here, SIM-
CRIPT ILL is documented in [30].

Before considering,,a SIMSCRIPT implementatidh of the exam,
ple problem, a nurnber`of concepts central to
word view* must be explained. Some of these are similar to ideas'i,
presented' in Seetion" 1.3. SIMSCRIPT considers St'slerns to be.;
composed of entities which have associated with them attributs.'
Entities may be defined -id number- of.'"Wais. Consider, :,fOr:fif,
stance, the entity Called JOB, ,which has attributes,..TI4EAN and

ICARTI (arrival time):. SIMSCRIPT proVisiori for defining the'
general Antity JOB. as follows

EVERYJOB HASA-I-MEAN AND: AN ARR.TI

EVER )6a 'a reserved word and has a specified staternent, rcirmat
associated with it

Two types of entities are Permitted. in. SIMSCRIPT.,. Temporary,
entities'are used for those entities whicli.,3re:creted'Or destroyed

-.during the. course of the simulatiOn.J.1013s may be thought of is
,

entering- (CREATE d'.10B) and leaving. (DESTROY, a JOB) the
system.By,,assoCiating them with temporary entities, storage can be
dynarnielly allocated to theskJOBs. Assigning JOB -as aleitiPor-'-

,..ary entity..With the TMEAlq and ARR.TI.D attributes- is done with
the following statements:

TEMPORARYENTLTIES
EVERY. JOB HASA TMEAN AND AN ARILTI

', The other entity.type, permanent entity, may be useAto'define.those ,
entities whiclv.wiri not be individually created or destrOyed during,

... .

,the simulation. Su,ch entities Oe stored by SIMSCRIPT collectively
, - ., .

and:are used to represent relatit'ely slide objects which. remain '.

,.. ,
,..
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present in the system for the duration of the simulation. For
example:

PERMANENT ENTITIES
EVERY SCI-IOOL"HAS AN ADDRESS

It is Usually important to be able to collect entities into groups
or sets and to provide a means for entering and removing cntitics
from such sets. SIMSCRIPT allows the user to define sets with the
DEFINE SET statement, and to enter and remove cntitics from
sets .with the FILE and REMOVE statement. For instance, defin-
ing the symbol JOB.Q as a set which is in fact a FIFO queue can
be done with the statement:

DEFINE JOB.Q AS FIFO SET

In order to link entities with sets, provisions are available for in-
dicating that an entity belongs to a set. If a JOB is to be able to
join the JOB.Q, then the following expanded definition of the JOB
entity is needed.

TEMPORARY ENTITIES
EVERY JOB HAS A TMEAN, AN ARR.TI

AND MAY BELONG TO A JOB.Q

Sets themselves must be associated with entities in the sense that
the set is OWNed by some entity. Forinstance:

,EVERY,SCHOOL HAS AN ADDRESS, OWNS SOME
TUDENTS, AND BELONGS TO A SCH.DISTRICT

ase the entity SCHOOL has an attribute ADDRESS., In
the' set STUDENis 'is owned by SCHOOL, and the

'S OOL itself is a member ofthe set SCH.DISTRICT. Clearly,
comPlicated set relationships can be, established'. These relation
sips, however, provide for great flexibility in modeling complex
situations.

One final point in this discussion has'to do with SYSTEM at-
. ,

tributes and set ownersliip. The term. SYSTEM refers to the overall
system being considered. This SYSTEM can itself haVe attributes
and own. ets.-By.,haVing ,attributes, these attributesfiow become
global variables (i.e., these. attributes can be referenced with the
same',name in differentsubigograms' or subroutines), In addition,
certain"global pointers-are now available for getting at elements of



338 Mark Franklin

system-owned sets. The set J013,Q will be owned .by the system
when defined by the following statements: .

THE SYSTEM OWNS A JOB.Q
,DEFINE JOB.Q AS A FIFO SET

The logic?' relationships as defined aboye are static in nature. To
model the dynamics-of the system EVENT' ROUTINES and a
process for SCHEDULING' such routipes must be Available.
Evants correspond to.. transition points between operations or ac-
tivities in the system modeled. They represent a change of state.
Part of the art' involskd in such simulations is determining the key
events which take place in a system. For each ofihese key events:a
program or event routine must be written. Evenkroutines have two,
general, functions. First., they perform whatever logical operations

.,,or calculations are associated with the event. Second, they deter-
mine:what future events arc to take place given;the Current system
itate, and then they schedule these future events.

Scheduling an event effectii,ely means that an event routine name
andassociated future time of occurrence are placed in a list or
stack. Events in this list are ordered by .tinte'of occurrence, with the
first event, being one .:whose time of occurrence is closest to the
current simulation time. Note that as simulation progresses a clock
mUst, be maintained bYSIMSCRIPT of the current simulation time.
(variable name TIME.V). Thus,:as One goe's4own the event list, the
events listed are scheduled to occur further and ftirther in the
ftiture.

1 ,

SIMSCRIPT And all other discrete event simulation languages
provide routines' for maintaining the eVent.list, determining which
event routine is to. be executed next, and transferring control to
that routine. A RETURN from an event returns control to
the "scheduler" which in turn passentroll to the routine for the
next event to mein.. In this Way by successively having event rou-
tines schedule future events, and by,baving a "scheduler" routine
pass, control to the su4ceeding evenliOutines, the dynamics of the
system are modeled.

The events themselves are defined initially by,using,the EVENT
NOTICE statement:Tor instance:

. EVENT NOTICES INCLUDE ISSUE'
EVERY END.SERXICE HAS k'JNAME,

350
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Two events art defined by the statement above, ISSUE and
END.SERV10E, Associated with ENb.SERVICE is an attribute
JNAME Which,., in Alm example to be diseusSed, is used to associate -

a particular JOB with the END.SERVICE;event,.
Notice that in the discussion above the event routines all oc-

curred due to event scheduling internal to the SIMSCRIPT pro-
gram (i.c., scheduled by event routines), Such evetit. routines arc ,
said to be endogenous routines. It is also pcissible4o schcduloevents
external to the system by reading in a list of events fromiiatatards
or other input, Such events are referred to ris external oilexogenoui .

events. t4
.

Consider next the computer example as. programmed in SIM-
SCRIPT 11.5 and presented in FigUre 14. The program, is divided
into. four sections. The 'first.: is the; PREAMBLE in which the
various entities, attributes, global variables, and set relationships,'

2 NORMALLY, MODE IS INTEGER
t MARBLE

3 . THE SYSTEM OWNS A J00.0
9 DEFINE J00.0 AS FIFO SET -

e TEMPORARY ENTITIES ,

9 EVERY JOB NA8-A-TmEAN,A ARR.TI AND MAY BELONG TO A J00.0
? EVENT MOTICES INCLUDE ISSUE

EVERY END.SERVICE HAS A JNAME
9 DEFINE TOT.JOBS.00NE. UTIL ANO JNAME AS VARIABLES
to DEFINE ARR.TI, SYS:TI AND TmEAN AS REAL VARIABLES
tt TALLY W AS THE AVG OF SYS.TI
:2 ACCUMULATE UZ AS THE AVG OF UTIL
:3 END

I MAIN
2 SCHEDULE AN ISSUE NOW
3 LET UTIL -0 LET TOT.JOBS.DONE.0
4 START SIMULATION
5 END

,

: EVENT ISSUE
2 SCHEDULE AN ISSUE AT TImE.VEXFONENTIAL.FI90.,
3 IF (N.J00.0 GT 2) RETURN
4 ELSE CREATE 400 -LET ARR.TI- TIME-.V
5 IF (UNIFORm.Fto..1..t) LT .e) LET TMEAN.90. GD
6 ELSE LET TMEAN...o.

. 1 'T.OUSY. IFCUTIL WILE JOB IN JOB.0 RETURN'
s ELSE LET UTIL 1

9 SCHEDULE AN AND.SERVICE000) AT TImE.V+UNIFORM
to RETURN END ..

"END PREAMBLE

"MAIN. ROUTINE
"INITIALIZATION
"START SIMULATION
..END MAIN ROUTINE .

'ARRIVAL OF JOBS
W.SET NEXT JOB ARRIVAL
,J00 BALKED
'ASSIGN ATTRIBUTES
TO TAUS?

'COMPUTER BUSY?
'MAKE COMPUTER BUSY
.FITMEAN-20.,TmEAN.20..1)
'END ISSUE EVENT

: EVENT END.SERVICE000) "END OF COMPUTER USE
2 LET SYS.TI.TIME.Y - ARR.TI "CAL.WAIT TIME
3 ^ LET TOT.JOBS.DONE.TOT.JOBS.DONE + 1 "CAL.NUMBER JOBS DONE

DESTROY JOB ..DESTROY JOB
6 - 'IF (TOT.JOBS.DONE GE 400) PAINT : LINE WITH W AND UZ AS FOLLOWS
MEAN WAIT TIME. ". * . UTILIZATION. .......

6 STOP - "STOP SIMULATION
1- ELSE IF J00.0 IS EMPTY LET UTILwo RETURN 00UEUE EMPTY? yES,RETURN
8- ELSE REMOVE FIRST JOB FROM JOB. t.NO. REMOVE JOB
9 SCHEDULE AN ENO.SERVICE(J00) AT TIME-.V+UNIFORM.FamEAN-20..TMiAN+2o.,11
10 RETURN END "END ENO.SERVICE EVENT

FIG. 14: SIMSCRIPT 11,5 program for computer example.
. .

q.t.)
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are defined. Most of the statement types have been considered
earlier in this section. Another fuction of the PREAMBLE is
request that certain statistics be gathered automatically by SIM-
SCRIPT In this example the TALLY statement is used to associ-
ate the variable name W with the average value of SYS.TI. SYS.TI.
is variable whose value is the total waiting time for a job. This W
is calculated as a:simple average of SYS.TI over all jobs which pass
thrduih the system. The:ACCUMULATE statement associates the ,
variable name 7-t7z with the average utilization of the ,computer:
Every time UTIL, is set to 1 (computer busy), 0 (computer not
busy) the appropriate statistics are gathered and a time average of
the UTIL busy parameter is maintained.

. The second section is the MAIN.program. This section schedules
the first event to occur (ISSUE) at time NOW Which icurrent,the current,

time.::'of the simulation. It then initializes several parameters
and then'tfahsfers control to the.event scheduling routine' with the
command. START SIMULATION..
'Since an ISSUE 'event has been schedtiled control will pass to

the .EyEN;f ISSUE, routineYEVENT ISSUE handles the event of
jOh arriYals. It first schedules itself4i.e.; another job arrival) for a
time in thtt future which is exponentially distributed. It then deter-
irtineS. if the -queue (JOB:Q) has too many jobs in it and, if so,

,.,returns control. to the Scheduler. If not, a JOB is CREATED and
its attiibutes:assigned: At this poinf a test is made to see if the
coriiputei-is.husy. If it is busy (UTIL = 1) the JOB is FILEdin.the
.101:4:Q. If it is not busy, it is made busy, thus modeling the action

:,6f the:.101:4 executing on the computer. The end of this execution
) tithe indicatedly the END.SERVICE event, is determined and the

END.SERVICE event scheduled. The scheduling is done in accord
:.ance with the class 'type for the JOB.

.The-final routine is the. END.SERV CE event -routine. The
fine first calculates the.wait time (SYS I) for the JOB that has jtist.
finished execution and the number of bs that have gone through
the CompUter (TO.T.JOBS.DO E). The job which has just finished
'service is DESTROYED at t is Point, releasing the storage space
associated with it On the b is of TOT.JOBS.DONE the simula
tion ma 4.Aerminated and the gathered statistics printed..1
he not terminated, anefthere is a JQB.available in

the JO en4his JOB begins to,tetite on the Computer. and

ray .7.
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an END.SERNICE event for the JOB is schednled, Othe/rwise con-
trol is returned to the 'scheduler._ In this example 400 jobs 'pass
tlfitugh the system befbre the simulation is terminated.:On terMin-
ation the mean wait time and the computer utilization is printed.

This chapter has considered the general \topic of simulation on
digital computers. The first section,eMphasized the.broad questions
of mOdefing and simulation methodology. The second section con
sidered two language sygtems Used for 'modeling of continuous:Sys-,,
tems, While the third section coniidered two language systeins Used
predotninantly,for modeling discreteprobabilistic systems. The ern-

phasis in these later two sections. has; been on preseilti4 some
typical, but Siinple, syStems and ilemolstrating the language system
capabilities by modeling these systei& Theleader is directed to tke

references.for details On numerical qtiestions related to, model solu= .

andfor4 wider view of these ands other siMUlation systems..
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Disetissinglhe impact of high-speed, .COMputing on Statistical
data analysis is'alitult. The issues involved.sOn ;virtyally-eye0,

"thing statisticians cii- and lidw they.T4Pit. rn part, general statistical
methodology is motivated by our _desire to improve bOth our ge::."

,.ciSion making and our ability tOderiveneW, knb)mledge orn ex-.
Since ..'" ; `- '' ea

,, t f ."perienpes, experiences, are genera e in a an o settings
gand 'are based on .a: number of. different substrates, 't ,S been
desirable to develop tools for..:deilingL.ith diversity aiTd heterp-,.
geneity..tin-ff" typical:exibennieht, a number of .substrates are ex-.
posed, to -a ;stimulUS and- outcomes are obskved. The outcomes
reflect the stimulus; the differences among substrates, or both One;'
taSk OfStitisties is- tb separate, tbat ,pa4 of the putOonie due,to the
stimulus from that due to;substrate. heterogeneity. This gentratlyl.
involves; studying the interaction between many sUbSirates and the

'Chas.: ' " ' ' 4' ' --"'.'. --' ' '.4stuu A.i. ' i, ,-,.Such studies,/ traditional producers of sizable amounts 'of data,
steadily have- been. increasing ;their size and scope in .responSerto
technological advanees that have data accfuisition: The.'.

30 ,..c.
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process is accelerated-even further by the'Availability of automated''
computational procedures, so that studies Currently, considered'
routine,were wells beyond contemplation two decades. -ago. I-low2.-

_ever, the desire to ,exploit this growth in an qffort to improve our. .

observational acuity brings with it a serious risk o(oyerstressing
: the, discriminatOryfacilities inherent in many-, statistical techniquesi:!

.., .

Thus, the introduction of automated large-scale statistical ::pro-,
cedures brings into quotion the wal we deSign obseryation-;
gathering ventures and the way we deal with the results. This effect
often is- obscured by the amount of sheer computational power at

, ,

the analyst's. disposal. - : ,c.

The approach to data analysis taken ipthis article is motivated
by just this availability. AsimPliedvabove, such a resource is helpflil

-""in extending the .bouridaries' associated. with .'-both the yolume of
,, data to be analyzed and the computational compleXity of` the

. analAs: In the east; computation was.difeCult, anth_thus the devel-
.., ,,

. opinerli-of statistical methodology frequently 'was associated-with
numerical tricks or shortcuts. There appeared statistical cocik.
books, comparable to the classic Joy of Cooking, that described
available computatiOnal forinulae ( "recipes ") and example prob-
leMS,' to which these formulae were suited. In current textbooks we

.- still find ehapters':on,such topies as linear regression, t tests, one-
'way analySis'W'Variance (anova), one-way anova ith a covariate,
two-waylanC,Witlioa interaction, two-way anova with interac-

_-,

tibn, et`b.,t'Ayittr accompanying deseriptionsof computational short-
cuts. The volume of material requiredto present th se methods and Y
ktheir associated examples__ is considerable. ili.a resu t there often is
on0-minimal discussion of the limitations and rests ctions for valid

4- iise of ekhrprocedtire. ,' . '. ,?,
,, Availability. . ., _

The Availability of ,,really inexpensive computp promises to
change all this-:: One,pan--Perceiye two distinct diintnsions of this:

, -
pote%ial. Oph&val.,first, thelfemoval of computAtional complexity

,,, as a deterrentIneahs'that the applicability of a particular statistical,
,i' .: can' p /

technique in ,a given context can' be testedutinely and automati
cally. SeCone'sthe desiin of an.,experiment ' need not be corn:
promised by computational' considerations. This metaMorphbsis,
,howe-Yer, is 'Occurring, Slowly; but it is in progress and we can
discuss it.s'iMPliCatiOns: ConseqUently,.now that accuratexecution
ofcomplei'comp4tational algorithms.is routine, the time has come
to change our perspective ofdata analmis.from the co putational
. - e i
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issues to those issues characterizing the data source itself. In this
article swe shall concentrate on various models of data sources and
we shall investigate how automatic computation can aid ip testing
hypothesized properties oithese model. We shall take as given the
notion that these computational facilities significantly extend both
the limits on the amount of data analyzed and the "permissible"

9,` scope of the analyses to be applied.

11),,,ATA SOURCES

Before investigating data models and computational methods, it
will be helpful to review data sources as viewed from basic physics
and biology. The physical and biological sciences have demonstra-
ted (to my satisfaction) that properties and derived functions reflect
iilternal structure. Properties are derived from the particular con-
figuration of atoms and bonds between them. As a simple example,

-, acetone and propionic aldehyde have the same chemical compo-
sition, C3H60, but different structures (Figure 1):.

0 H

H C. C C

H

H 0
I

Acetone

H H Propionic Aldehyde

FIG. 1. Two-dimensional representation of acetone and propionic aldehyde.

For these two different structures, the following properties are ob-
served:

Acetone.

colorless liquid
specific gravity = .72
melting point = 94.6
boiling point = 56.5
infinitely soluble in H2O

Propionic Aldehyde

colorless liquid
specific gravity = .81
melting point 81
boiling point = 49.5
not infirlileily soluble in H2O

13 to 2

-6
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Although the differences, are small,: this example clearly. demon-
strateS the dependence of properties on internal structure.

Heterbgeneity of function is depenrdent on both the diversity of,

available building .blocks and the diirersity of templates used to
define objects assembled from such building blocks. Man-made
structures seem tnenjoy greater homogeneity offunction than. do
living structures. This is die in part to the limited number of
templates _N;./.,e use in synthesizing complex objects, and also to the
structural uniformity of each building block. With carefully refined
materials, we are able to make many uniform copies .of complex

objects by applying the same template to these 'materials. For in-
stance, all copies of a particular pocket calculator or food .mixer
share a high degree of similarity.

In contrast, living objects are replicated by applying a highly
variable template to a 'set of primitive building blocks. The re-
sulting mixture of enzymes, substrates, and membranes form living

cells. Biological replication is based on building a new template for
each new copy, half of which is derived from each parent template.
Such a scheme results in considerable diversity of templates. As an

example of the variety of available templates, consider ourselves:
Humans hive 46 components in their templates, 23 derived from
each parent. Thus there are at least 246 possible templates. The
magnitude of this number can be contrasted with the current world

population of 232 (or 4 billion). In addition to the diversity.
achieved from nonuniform templates, environmental surroundings
contribute to diversity. Each new cell that is created evolves by
responding not only to the control that is resident in its internal
composition but also to the environment surrounding it Thui,

identical cells will evolve into different organisms when expOsed to,

different, environments. The growth of our bodies from a single cell

certainly exemplifies.
Outcomes of experiments are determined by both the nature of

the stimulus and the nature of the substrate. Thus we need to be

able to characterize accurately and+then select like stimuli and like

substrates. Because of deficiencies in measurement, however, our
accuracy of characterization is limited. Our sensory inputs limit the

degrees of characterization of cellular aggregates. We characterize

structure and associated functiOn of cellular aggregates by proper-
ties that can be seen, felt, heard, tasted, and smelled. We quantify
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these properties by applying yardsticks that are graduated in units
of temperature, length, color, sound intensity, pitch, etc. Our indi-

(.ces are limited in their precision. Therefore, we are only able to
differentiate among cellular aggreg'ites down to a certain size com-
mensurate with our level of perception: Beyond this level, we
cannot detect any further differences without running the risk of
classifying unlike substrates as like.

As stated earlier, much of science is "done" by observing the
interaction between substrates and stimuli. Presence of an interac-
tion will support one line of reasoning while its la will support its
converse. It is important, therefore, to be able .Wneasure proper-
ties accurately so that responses derived from different interactions
can be discriminated. The errors -associated with our inability to
discriminate among outcomes, i.e., classifying unlikes as likes, form
the justification for a statistical approach to data analysis.

To fix these ideas, consider a number of patients given' one of
two blood-pressurerlowering drugs.. Our task is to determine
whether the drugs are equivalent; hence, we use, blood pressure as
an indicator of the drug-patient interaction.. Measuring blood pres-
sure for each patient, we find a spectrum of pressures. This spec-'
trum arises from the fact that the patients are structurally different
from each other, and thus, for each patient, the drug has a-different
substrate with which to interact. Both the substrate and the drug
determine the observed pressures. Part of the spectrum of pressures
is due to the heterogeneity among substrates. This portion is us-
ually referred to as "error" or "noise." The rest of the spectrum of
presssures is due to the drug-substrate interaction: Our job is .to
determine, with some level a confidence, which of these two con:.
ditions is immediately. more significant, i.e., whether the spectrum
of pressures is predominantly due to substrate heterogeneity or to
the drug.

It is important to remember that, while dealing with collections
of data, three sources of variation are operational:, one comes fror'n
the interaction of an ideal stimulus with an ideal test unit (ideal
patient in the example above); another arises from the difference
between the ideal Stimulus and the. real'one; while the third sterns
from the,difference between the ideal and actual substrates:As long
as we are unable to define likeness or we persist it calling known
unlikes as likes, we shall be faced with sources of variation (stimu-
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lus and substrate) influencing what we measure. The goal -of sta-
tistics is to aid in separating outcomes due to differences among
substrates from outcomes elicited by the stimulus. Automatiei:Com:-
putation can aid significantly in meeting this goal.

urepomws AND TESTING

Suppose we take a sample of 100 patients who are represeritative
of aIm.rticular population, give half of them a new antihypertensive

. drug, and give the other half a water pill. We measure the blocid .
pressures of each group after one month of treatment and find the
spectrum of results shown.n Figdre 2. Now we repeat the experi-

a

a41

No.' of Patients
With Responsec,,

No. of Patients
With Response

(Treated)

'pressure,÷->

Pc

(Water)

pressure--->

FIG. 2. Hypothetical results of a drug test on 100irtients...T_

366



COMPUTATIONAL TOOLS FOR STATISTICAL DATA ANALYSIS 349

ment on another group of 100 patients and find the results shown
in Figure 3. Several observations can be made. At first sight, all the
histograms are different. We expect this since we did not study like
patients to begin' with. The second,observation is that the histo-
gram of the treated patients seems,to show, more patients below a
critical pressure, pc, than the histogram ornntreated palients..,We
would therefore conclude that the drug interaction with patients
results in a lowering of blood pressure:

We are worried, though, that there may be sufficient structural
differences between patients in the two treated group that our
conclusion is in error (i.e., simply wrong). In ordecto estimate the
variation in blood pressurq due to differences in bPients, models
are used to describe outcome variation as a function of. patient

No. of Patients
With Response

I ..

a. 1 1

I I I (Treated) ,

1 I 1 I

1 I 1

pressure

1.

II i '
t.41o. of Patient's L.
With Response - 1 :- I

I , -.I , (Wa-ter)
1 r:1

...II '--.....,,.. I , I I.

`I l .)
../...a ,T :.;.. .r. ,

..- ,:..t :!. preSsure> r`
Pc

e f F16. 3..Eiperiment,for Figure 2 eepe''atid. .1., .

.,., 36
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differences. These models form Part of the theoretiCal Underpinning
of estatistic4 data analysis ;and their understanding-leads to an
aWareness.of thelimatations'of vario4s procedures.

TO begin with, several terms must be definecaso that our
:language Parallels that of traditional statistics: A primitive "event"

is the.oincome of an experiment or some activity, and the "sample
spac0," , S, is the set of primitive events representing all , possible
outcomes of an experiMent or activity. A compound event is one
axpressed as the union, of primitive events. A "probability measure'',

then;is a real-valued function defined on a sample space S such
that:

0 = p(e) = 1 for every event e in the sample space;
P(S) 1;
p(ei e2 1 p(ei) + p(62)+ for every

sequence of disjoint events el, e2 , ;

two events, a and b, are:independent if
p(a ;and b) = p(a)p(b)

The probability; p(ei), of the event ei usually is perceived as the
expected frequency With which event, er, occurs. A function whose-
value is a real numbd associated with each primitive event in the
sample space is called a random variable. A discrete probability
distribution is 4a funetion associating each possible value that.
random Variable can take on ,with the corresponding probabilit7.

We 'shall siThplify:.'the blOod pressure experiMent omiek, to
demonStrate,how probabil4, used to assess :'the. uncertainty aisocil

, ated with our-calling unlikes as likesS applied in the analysigof-,

experimental resultsInstead'Of recording pressures after' taking the
ineclia,tion, we simply record whether or not the pressure droppedi

A-in a treated group of.10 patients: We find the following reSults:

no change
or increased

ThUs, the observed probabilities of a:Llciered pressure and an
- changed or' increased pressure,,was and .3, respectively: If th,
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study were repeated again, and again; we might find observed prob--
abilities of .80 and .20 or .60 and .40, etc Can We deVelop a model
that might indicate how much variation to, epece given a hypo-
thesis or model describing source signalS (bloOd pressure)? Our
model might describe various degrees of;expected blood pressure
change and we conld'Spend a long time evaltiatini each model. We
could circumvent-this,prolofiged evaluatioftby.'.assuming a model,
that 'states the drug did nothing andithaCtherefore any variation in
outcomes was due solely, to patient 4,4fefences. Since. _,there is only
one:hyipothesis to 'evaluate, i.e., no-o4rugeffect, the labor Spent in
testing MOdels is reduced dr4hatically. This model (rio change.
model), of.cOurse,is the familiar "Mill hfpothesis." 'Mathematically
stated it IS:

Which states that the probability cif a change in blood pressure
should be 1/2-. if the .drug had no - effect. On the: average, halt the
patients ,,should experience-4a tlecrease while the other .half should
experienceno change or an increase.,

Slade We are going jo-,deal with quantitative assessment of the
hypothesis, we have to assign,. a numerical value to the variouS-'..
outcome events. Let-I bean- ineliCator random Variable that has the
value 0, when the blood. pressure 'drops and 1 when the blood
pressure rises or remains, unchanged. Let us. define the expected

'valueof arandorn variable, d.r(X) ,W,e Clenote,st;y,x; the value of X
associated with the ith event in the sample space. The expected
-value of X is

I(X) E x, p(X1)-

'. where, p(Xi) is the probability associated with the, event represented
Eby the valiie Xi. We then define the expected variation of a randoth
variable, X, as

var00 = if0c 61,02 =l(Xi -.6'00)2p09-
= cf(X2) = cf!(X).

The expec,ted,value of a sum of random variables, Yi, is

S(E ai Y1) = E ai (81)(0.
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The variance of 4--sum of independent random-variables is

Var(E at Yi) F.- E. a? Var(Y1).

Let p be the probability when the indicator variable is I. The
expected value of our indicator function is then:

6/I) -= 1 + 0 0 -7 P.

and its variance is ;

Var(I) = p p2 = p(1 p).

Thus, for our experiment the ,null hypothesis would produce an
expected value of p or 1/2 and a varianceofi(1 1/2) = 1/4 = .25.
Since we are counting events; we define a new random variable, B,
as the number of patients experiencing a blood preskire drop; so

10

13 =
i=1

Therefore, 8(B) = (f(E.I) = np = 10(1/2) = 5.

Var(B) = Var(E I) = np(1 p) = 10(1/4) = 2.5

Var(B/n) = ,(1/n2) Var(B) = (1/n)p(1 - p) = pq/n = .25/10

= .025. ,

The deViation is defined as

Se= .v/Tar,

SO

'Sd ,025 =.16.

The issue,before us now whether the fraction of-patients experi-
.'"encing :a pressure drop is consistent with obsetiations
characterizing 10, patients from.a population of untreated patients
the population defined by the null hypothesis). For this we need to

4 know the likelihood of getting results as extreme. as the .7 we
observed, given a no effect model (an .untreated population)fThis
reduces to a problem in combinatorics: Assuming two equally
likely outcomes, what are the probabilities associated with all pos-
sible partitions of 10 outcomes (0 decrease, 10 no change or in\
crease; 1 decrease, 9 AO change or increase, ...). Let i be the number

36j'
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-of patients experiencing a decrease in pressure; then the probability
of finding i patients out of n, P(i), is

(
P(i) =

fl(nn Pi(1 P) "

The results are summarized in Table 1.

TABLE 1

Expected pressure drops for patients assuming no drug effect.

Number of
patients

with.
a reduced

.,ir`

'Number
of

pressure partitions Probability

i = 0
.Z

1 1/1024 .000977
1 10 .10/1024 .009765

2 45 45/1024 .043945

3 120 . 120/1024 .117188
4 210 210/1024 _.205078 -

5 252 252/1024 .246094
6 210 210/1024 .205078

7 120 120/1024 -.117188,

8 45 45/1024 .043945

9 '10 10/1024 .009765 .171875

10 1' 1/1024 .000977

From this discrete probability distribution we see that the likeli-
hood Of finding 7 or more patients out of a. group of 10 who
experienced a drop in blood pressure when untreated was .171875.

It is helpful to recognize that this observation is the result of
dealing with a theoretical population of,heterogeneous or unlike
patients. The model allows us to project the results of experi-
menting on the "null", or untreated population, and then to com-
pare these results 'with those obtained from an actual experiment:

1/4 For .,this particular example, we are left with, a final decision :"Did
the drug do something, or not ?. Therefore, we must draw .a line
somewhere sp that observations falling on one side of the line
suggest a drug -effec' t and oliservations falling on the other silggett
none. In so doing we lqtow we ,,shall make mistakes from time to
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f;c: q.v.:. .- *". ''' ; i- \ ..'." tinie;' calling drugs..effective twit,' are. not (type .1 eri*),,:apd -.0i tie.,,
.. effettive drugs inA6tive (type. 2 error). There: is no ity.194,:itylSjd4

. (Liis problem so long as we deal with
goup,!9f patients. Wishing to ininithizert

lectiCsetkthe threshold making an
00

(.4'be **itig.pq.,411,9y9:144ti 'I, 01.):jP.'2P',:4:1*...1lne.k0iIi#:t0430.
'.. the hyPotb6iiS,F7=that:019**is::inefre ti:Vet---AVe inti,stl'-'015§erve.,

.;;:.,....therefoi,e, we conclude (perhaps, inerfor) that ,ie.cif
at leRt: 8 .'paticiA'''qtb'.a`..,:liaitia:'iesAP4 ''.:Yil.6;1.:-

:.:;./..;!?!::17ti,7;;;

e'.,- 'Vet.
,,,..,

:$ ,,, t ,. .... t The. rgle 'pla'yed by sampling in the e-iample'c
eniphisified..AnyttiinFpne extracts ,'4',s ale: or , o . ,s3 . 0 1

tients from a heterogeneout,grounor popula pu,''4P.' !,,..ii,' scil'Piinslitlyi:.'4
of data. The.si:,-.6reatictfof)faiilty'interpreta.tidn'rnultane.,

'Presents atdileitirria. What r the obsiltr,
ofiletei.ogeneity air.fong bOth:t4 Patients and the ,trea :,'. Ut.g w*,

'40 "..*I.F:%

)10:')Either 'i,he .,heterogentity or the. treatment could 4'peptV4
There are only, tyo guaranteed ways to thjgqcj.:1ii :=

.:.,jo solve the heteiqgeneity problem by precise. matching *P4,, 1)etO'k
. : T hi ,-is. no attainable with y.. The e'r,,,::i itiii0ig,,

however, is attainable': DigPense.WitnatiPling .and ea1

;P ..Ct.
...

,..,

h-ih
eritiOpulati'on,EffiienillOn collection, h S speed 6

7ineninexpensive nass:00ragi and h data 07i.
'

'.. techniques have 'rade this option a feas'tj JP one whe !',19 yet- -c, ti t 7.,.t ''...{fabgi:i6erintv:ee-f,i,aatios4..e4n7", 7lie
db

-tiiVp,i-ipplattOn,'Niii/sueh an apProach_;11 , 01.14,

....:, due
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i, COMPUTATIONAL TOOLS FOR STATISTICAL pAVA ANALYSIS-

resources t examine observed data in 'their full' riChne'ss to an I
exteht imp ssible heretofOre.- nibs, 'for example, generation aria:
scrutiny, of histograms derived from a 1`ri# treatmeur-population
kelpi set valuating guidelines for accepting or rejecting a hypothesis

HISTOGRAMS AND '1511Elli CHARACTERIZATION

(

ni our experiments, we observe a property othe.experimental
unit or.substrate and a sequence:of n observations 01, t2 ,
,recordeth Under appropriate conditions the spectrum of Observed,
.values may be thought of as n samples of a single random ;variable,

g a given probability distribigion. The variation' observed-
pling xi' arises from two sources:; the heterogenebus .nature

exkrimental substrates, and the interaction between- an in-
terVention or treatment and t substrates.

The essence bf hypothesis esting, as we 'saw earlier, lies in deter,
mining whether Or not two or more random..variablgs:display the
sane' behavior. This :behavior monitored by sampling the
random variable. A WstOgram; the cornerstone of many statistical
procedures, is one . way .of dispiating the random Varialile's-
behavior.

Histogranis are displays of tho frequencies of values'of"the
random variable. Thus, for our earlief exainple, .the- :histogram
would ,appear.as in Ffg oure 4. We havno difficulty in re -
membering.the features of this particular histogram. However, had"..

chosen-tb record intervals of changes' in. blood pressure instead,

x Ala

of 'th

FIG, 4. Histogram o(PreSsure effects (0 = pressure drop;
.

1 = pressure inert:Rise or nochange);_
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of simply the direction of change, oulkistograni might appear as in
Figure 5. . . g .. ' . ,2',t' c.. r...'

d Idt the. Clearly, as the number of 'observe va s. increases, e corn-,
plexity of thC, histogram becornes unmanageable. Thus, unless w0,`,"
find a convenient characterization. (equation)' that describes this
frequency-pressure relationship av acor he access to high-spded Corn

s ,
kuting, we shall haVe difficulty 'in:comparing this histogram with

.others, The amount of detail, in 'a hiStogram increases with the
.

4rdinality of the sample spice, ;thereby, Making manual treatment
'

difficult. Thereforei. histograms- have given rise to a number` of "de.:
scriptiVe" statistics; used` to represent certain features Orthe hifito-

..grant. Hypothesis ;testing, then, iSiapproached indirectly by com7
paring these deicriptivd statistic Stead of comparing the histo-.
giams from which:they were deriiied. -,,,

It is uidful to speculate about apprOaches'inhistograni compari-
son;. given high-speed' comphting..Information is, lost whe,lusing
desCriPtive statistics to characterize histograms. Means and Vari-,, u .

.,..24nces, the-most popular descriptive-itermsi- Characteriie, only the
::,triross:#1$pe of the histogram. Techniques for direct comparison of

histogOnisraVoid:the inforinationlost thrOugh use, of .these terms.
HOwe-4r, .Such comparison requires more computation such "as'
ortinOhe data,. and computing the cumulative.frequency.`funutiqn:
The Kolmogorov-Sinirnov two-sanriPle test S1)" ii an:rdxamPleof

one such test, This test compares thecumulativelfrequency distri-
n'bUtions arising trOm different 6ci)erimerital settings.) For late data

.. .

equency,

0 l 0 eV-, :.41

amount,of so& pressure change

FIG. 5. ,I-iistograrnAbl 8,4iressure changes..
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collectiOns,(in excess '4,50 data points);%.riaimai co Iputational
reqiired"i'licb to digcqpiage:dliect .techniques..HigbSpeed

computing removes this constraint
The, median, mode; ,skeiv,kurtosis, etc.,: area other indices, aSsoci-',i

ated:..With "various features of 7i1,..tOtogr,,i41';;NIO,Ch of hypothesis
testing is.based- coMparing these features. `Be

'cause '' all the. information captured in 'the'
ted in these ,abstractions4i'4tre; essentihily,)addliig49614er'poise
gource..to.the::data-,thetbb$ienhancing'IfiCvlik.elitiood, of making a,
type or type 2 Mistake, H,p*byei, t4'e fe0h#s-do.,ilaye interest
ing properties that' produce se,yetal!.fOiliVMstets of hYp6theses2
and all. v us .to estimate ParaMeters embedded in

rtributions that are asSodiated.wit4,matWegpeFtmehtal
Earlier;`iI.was. stated thiarlm'dxperirhObt .beviewed as

pliqg a.r andoni variable certain conditions :are ript. IFsynplink is
such

4
'.{tiF. X'if( . ),..:ti

is an itidepetident,.classo o
piobvbility, ditributioii'lfer,?ki .1

called a random sample of si4e,u;:rs
, --Iet X be the.Strfiele rheah.";y, ',HO.

.1-fieJ'Pfore, the xf?ectediNalt.:;'of t.
expected yalUe.of

:1.1e the szttriplO.:rnefin'to estimate
probability,distribution-of-x(r'

Recall that 'Var(iY--;
mate 0-2'00 with s' where

r- .
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"Again, ,s2' ince 5Z) Can be used :reliably to, estimate p
ratidorn Vaiiible (and; thus a hiStogram) independen
ability distribUtion.

To sunimarize, we assess the interactions between treat en r s or
ipuli and exPeriMerital substrates'',byobseiving a pro.Perfy. of the
bs,tratel,hislireperty is re,presented by a randOm variable' that,.

.3iiil4rOla:iiifferent Value for.each differeeexpetimental outcome.
properties of the random variable are monitored by collecting
eValuatini 4,raridorn saMplenand the feature's of the"sample are -

p4trtySd by a histogr.ani.41yrtOthesis te§ting is based on,Com
.

paring, randorp variables, suggested by competing views of
whetherperiMent. :comparison is carried dui \by--cleterinining' whether

the Competing random. Variables are 'equivalent: Because histo-
gr4ffig have more features than we can comfortably handle, they
are usually represCrited by means and Variances. Tliehull-hypothr,
eSii,.,therefore, is :reduced' to 69uivalence: of means and variances

''and the hypothesis test usually. is established by comparing these
' means and varianceS. It IS- not outlarldish -to. characterize this ap-

proaCh as being prompted by thb 'necessity of a; world..
without conaputers. The anachropiiih .

VVIieh estimatin&properti& of a random variable: from; a random
sample, Ais helpful to know. whether or not the estimator; biaged..:. .

-unbiased estimator,. t, ifs one for which its eicpered
equal to the pararheter; OrthatitestimateS.

-tli'sarUpletheari ester eat the .evectedoValue of q5raftdom-vari.:
able in an 110.1ased-.70 neriI110,weVeii- ' ohrAStiniate of 62
bias.ed: Insteall,of - °,:-!'
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for an, unbiased estimator of r9.2 we need to hee

E
ti E ti.

r I
n

This necessity;Of course, is well established and it is accommodated
routinely in computational procedures.

STANCIARbiZED

It is inteiestjtreto pots that histogramiresulting frOm sums of
experim0,*ar,bbservatiOtIS appear almoit the same when expressed
Rolfe appropriate units. Consider the sum of the points,of several
dice: An experiment 'On this context) consists of a number 'of throws
of n ice.,Aftei eackithrOW, the points on the faces aresunimed and

fr uencY.OF oddi#6ricti; f1, of each 'sum is tabulated. Plotting the
ativkiequenties oteiCh`sum gives the'results of Figure 6. As the

Pf 44 .

t I : I .:I I y

;.1.

2...- 4' 5 6r

e F.

I, I

4*;--; aft7 ; 8 ;:0 ;\ 12 14 16 18 .20
F.04: Histograms Of sum:* points fo'r n throw& dice, PI

r. ,;
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number of terms in the sum i creases, the histograms get wider and
the peak moves to the righ Let S e the sum of n dice. Thedits
expected value is . --777

ge(sn) = g s1 +

(s2)

e( so. E i pi =i °

7n
sf(S,,) =

2

The variance aSsociatea with S1 is

Sinceihe n dice are independent, the variance of S is

35n)
+ =

'12
,vy,tir(sr,),

. .- ft

and thestandard deviation, then;is..

d 35n:Sd(S
'12

From these relationships, we. see that (he,
the S. is dependen1 on the number of terms In the Sti

For putposes of histogram comparison, it,is belpf
grams are normalized such that the peak amplitude and Variance..
are independent of n. Two parameters. need adjusting: the mean'
and the variance: The mean can be shifted to th$,Rrigin by "sUb-
tracting from each, sun.? the expected value Of. tike7Sum,. while':thp
width of the hi O4ram'ean be normalized 2byldiliaing:t09.qUantity.
(sum dr(sum)r . the3':standard deviation of. the 'sum. Thus -we
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4.t
WA). aQecw. random variable, z, where .

e(s;,y--

.

Sd(Sji).

)113,61

The properties of can be established by cothputing its eip4led
'value and its variance: . ,

e(S) d(S(S,J)

Var(z) Var._ 1.
e(S,,)

Sd(S;,)'
,r- .

..This notmaligation vvoiki for any random variab e, not just sums
of random variables. Therefort,,a1i raniotir variabl ortheform

X
d. Sd(x).,

will :.-iave expected.,, value yariance Or standard devi
'='1, Without extensive high - speed' computational facilities; n'

;.th
.
esdidjustMents often wereconsidered,:sufficiently formidable to

preclude their'USe,.That deterrent is gone...
en dealing specifically .with sums .o' variablet, their

histograms-approach the form of a normal curve:as it increases..
This is generally observed regardless of the underlying probability

L./
'clistribUttotta 4-A;nOririal curve;'deseribing the behavior of a randoiri,

and variance a2, is defined (Figure 7) by:

1 (It /02
4 4" ' N(x; a2) =

. ./27tje4 2-70'2

The _Observation that sums of randotm .yariables product
-Stiapgd histograms is-itattcLexplicitly in ?he:central limit the 'rein:

ell

Let Xi, i = A, 2, ..., n, be independently distributed random 'vari-
ables with the same -probability distribution having an expected
valute(x) and a finite variance a . Then



Fla 7. Normal distribution.

,

is asymptotically normally distributed with mean of 0 and a vaftLY
ance of 1, N(0, 1).

The importance of thiltheOrem lies in the\fact that it provides a,
very robust (i.e., distribution-free) test for comparing histograms,,
when one considers 'only the centroid of the histogram as being
important. The mean, being a sum of random variables, will be
asymptotically normally distributed. A couple of examples here will
help dergOnstrate this point.

Ex/kiwi.? 1. We have twOydrugs we wish to evaluate: one is a
placebciand :thlbOther, 4an antihYpertensive drug for lowering,
blood preSr'interest is rip:observing whether the pressUre
obtained after adignilibiliethe drug is lower than it was prior: to

:administe'ring the diti....iiies7tilts'are displayed in Figure 8. l'4A
patients were studied-witti-dimg-A while Ng were studied-with-drug-

Lowered

a

Drug Ei;.

.

a o. -
'

N.. a+ b

e.;Ftd:g. Res s of a drug comparison experiment.
.



n

Because the drugs are independent, we have

-Var(PA lai3) -7-4-Yar(P,k) + Yar(lap)...

'"a3yuming the null hypothesis tO. bi true, We have



patfent,-Wt-s
response to 'drug- .

t,.(Aofihe two average response's,

anIti--7/74'1, frotri "-

IJ X

fd)

1/4

NA

kr

Ampute,

bably
Brent

hall

;

two
S actually

.45e-thb pressure in tlie'ith".;
response to drug

ati,. source model will be a. function
./4A and p We estimate p from
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The hypothesis we test Is that pA pu = 0, From the definition
ofthei test, we set

o
ocA

Sd(XA

The variance of (XA Xn) = Var(XA) + (Var(X8)."Since the null hy-
pothesis is assumed true,.:we ha*

Var(XA) Var(X9) = Var(X)(K
1

1X1)2
+ Er'''N'AN4.11

0
1

4.1,1A

2

Sd(XA X11) = [Var(X)(kA- +

The z statistic; derived in this Manner, is equivalent to the t statistic
used for comparing' the.. means of two populations. It is interesting
to note that the critical value of z for rejecting,thO hypothesis';
at the .05 level of significance is ± 1.96. This. is the asymptotic: value.
t approaches as the sample sizes increase.

From these Ciamples one can see'how to design a .test for many
hypotheses whn a mean or other linear function of thejlata rep-
resents the information content of a histogram..As, a first approxi-
mation' for cleyeloping hypothesis tests; the z' statistic is not a bad
choice.One is required to specify the underlying data model so that
expected:'ineans and variances can be, evaluated. Critical values for

:accepting cer rejecting the hypothesis are then derived from tablei4
of N(0, 1). The increased' analytical facilities provided by the pro-
tess of standardizing variables certainly are beyond dispute. How-
ever, they no .lodger_ are soniething to be wished forfora Rather, they
are something to be expected: 4

We:have neglected to-di s notions of power,.saniple size esti7
mation,;and type 2 errors. e,topics -relate directly to the obger-
vation that the variance of a mean deereasesi as: n, the number 'of
obsery 'tions; ficreases,`,Many useful exercises -exploring tlieie- con-
cePts rlIgkelopea around the asymptotid approich used
above, -.
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Althoiigh .z tests can be used in many common experimental
setting% there are matey other tests th t do not require the invOca-
tion of asymptotic properties. Rando ii2tatioti tests,'based on mill-
nieration of all possible partitions of eoutcoM6, constitute sttch
a class of tests. In particular, easy access, to computing casts ,a
different light on the:practicality of tests

the
were devel-

oped by Fisher [21 These tests assume that the Observed samples
are from a "null" population. By ignoring the iginal partition (by
treatment or intervention) of the observations, a irivestigating all
possible partitions Of _the data, it, is 'possible to cribe a "local"
probability,diStributi6Wattributed to a specific "null" data iener.!
ator: The original observed data partition is then compared to this
distribution and'an assessment, made as to whether 'the,data are
consistent with the "null" data These tests Were little used because
of the computational, loadrequired- to permute the data. High-,
speed cOmputirtg, however; makes a certain class of these: test§
feasible; thereby-- placing their power and versatility well within
reach. -:::" _,:. -\.:

Consider the case of.tWo drugs again. A study of two groups of 5
patients might appear,as shown in Figure 9. We assume thatthe,
null hypothesis,is true, i.e., Drug A responses are no different from

ri.. Drug B responi'es. Furthermore,vve assume that.the proportion of
() responses to (+) responses reflects the underlyirig heterogen-

-,
eity of the experimental substrates (patients) and that the number
of patients, subjected to each drug was 'predetermined. The "ntill"
probability distribution, then, is derived,by.pumerating. all data

kr
Drug, B

.,4: 6

Outeorftt.of a two-drug test.
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configurations possible fotifixed marginal' total. (5 hind 5 in this
case).-

The number of,ways of partitioning 10 patients 1 two groups.
of 5,is.(7) = 252, each grouping being equally likely. The number`'
of ways of partitioning the (+) responses into two groups, one of .

size a' is'(;) The numbcr of ways of partitioning the () responses
into two groups, one of size b is (c), Thus; the -number of ways to
get a (4- ) responsei haicl:r5. 5 L-41 (-.) responses' is

0)(6) (4\(,' \
a) b) )5 a)te-:Sincel.therre

.gc (15°).kossible
If partitions of Ike data, the pro

'of getting6(:)responses and a (-0 responses where b

For a general table as shown in Figure 10'.(where a the Smallest
integer among a, b, c, and d), we have

(a
bbd)a )

p(a)
(a + b -12c + d\

a + b

Tabulatio of the probability. distribution then requires adjusting
a, b, c, nd d Such that b = nA, c d = nn, a + c =11, and

Drug A
I

a I

Drug B I I n8
t c I d' I

Total 11 . 12
41

i

1

no, 10. Generalization of the tv)o.2dr test,
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117rb + d = I2', while 4 ranges from 0 to min(11, n;k). Thus,the'clist 1-
button associated with a 2 x 2 -table' having marginal totals of 5;
5 an:6,'4 is' given in. Table 2. ,,The prObability of observing or
feWer (+) responses with drug A is .0/381vit .23810 =1.26190. The

tion, i.e., no drug effect. ` (
lresults of our experiment; therek4e, are consistent with ,ta'ki g two

'samples of 5 from the same popuil
.

Evaluating the probability, di tyrbution can be simplified con-
siderably by expanding p(a) in ,.terms of factorials. This leads to an

., . /
efficient algorithm for assessing the probability of a single table.
The additional elements of the probability cfistributioniean then be
derived :iteratively by multiplying and dividing this/quantity by
functions of a, b, c, d;:,andAa variable x which is incremented or
decremerifed by one for each iteration L3]. A ain, thig is discour-

4 /,
aging 'for computational ,resources limited to manual means, but
eminently feaSihle for integration as part of ,a omputer-lmied ana-
lytical environment., .,

/
(4As a second example we wish to determin whether. diet A is

different from diet B. lke have two groups o, patients with-nA Qf.
them on diet . A, and nii- on diet B. The we ghtchange for each
patient is measured based on the weights beffire and after dibt.

The null hypothesis for this particular/study is that/ diet A is
equivalent to diet B-As reflected by the weight changes: If the diets
are/equivalent,;,then the nA + nu could be considered to
have come from the same population.if hus; the association of nA
weight changes with diet. A and nu weight changes with diet B is
totally arbitrary.. Following the last example,. we have (nAnA A n°) pos..-
sible partitions for "labeling" patie/n s with diet A or diet B.

For each paiiition.we compute he average weight changes for

,T BCE 2 ,

/Probability distrd2ution of a 2 x,2 table
with marginal 'totals of 5, 5 and 6,4..

m = 0
...."-----1-41- '

= 2 /
3;
d

I.s/

P(m)
' :02381

:23810
.:47619
.23809
'02381

,
4-

PO s in)
. .02381

.26.190

.73809

.97619
1.00'
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patients labeled' diet Ar. and diet 13.(,We ,order. the differences of
average weight chainges and construct ,a .histogram (Figure 11).
Fiorn this histogram, we deterniine whether the original, weight
difference associated with those. Ratients treated with diets A and B.
is consistent with the.null probability distribution.'

Actually the complete hisNrant need not be constructed. We
Only need the tails of the hislogNit..The portion requiredis depen-
dent on the amount of type 1 error.we are Willing to tolerate. Thus,
if we set the type 1 error rate,,to 5%, then only need compute
the .05 (bA:A".) most extreme data configuratic& .

By sorting the data thesegtonfiguratioht can easily be found. Let .
di be the ith observed weight change and r, the ith rank ordered
weight change.. '

f
natural order: d dr,,d,;., d °:\cliA

rank Order: rirz --rnjnA+,irne, rti,,+n;
Zri; rr p. +A".7,rB._

nA np

The ,most extreme data configuration leads to a weight change
difference of PA. fp. Less extreme configurations can be computed
by interchanging r r ,,A, , etc, In thisfutnanner the4xtrernes of
the histogram can be directly computed. This is a powerful yet 3
simple algorithin.Whole routine-use is Made,feasible by, high-speed
computers and techniques developed for,thern. 2

number. if
pattiticia0

1

I

1

1

mean

-
I I

I I

difgrence in weight change

111-1,istogramifor diet experiment.
. 0-a

38
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.:TheopSiknogoroy-Smirnov test represents another vehicle for
COrkiparing two random4varial)les.,The test is based on comparing
the observed cumulative frequency stributions associated with the
two r.andorli,..variables in question. AS such, ,the test is sensitive; to
anything that;,,modifies the distribution function, includinglchanges
in mean and Variance's. If two samples have been drawn from the
same pofulatiOn, then'one. would expect the Sample based Gil
lative distrithitions to be fairly close to each other, since the only

,differences would.arise from 'baseline heter6geneities. When the dis-
tance between the.tWo cumulative distributigns is top great at any
particular point: then the poSsibility.ofIlifterences between the two
random variables mh5t considered:. "

The Kolrnogoroy-§iriirridy test is based on the largest difference
between the cumulative distriffutions associated with two random
variables: Let C(xi) ,be llie observed cumulatiye frequency for the

. ith value of randon-r variable x and, let C(yi) be the observed cuinu-
lative frequency for ith value of randoiti variable y. Let nx be
the total number of observations of X and ny be the total amber
of y. Then let

=wan
(C(xI) C(y)

tlx .ny )
be the maximum 'difference ink the 'observed cumulative

utions and i
IC CD2 = max

n

be the absolute maximum difference petvyeen the two obServed
cuirtuiptive ¢istributions.

e thciffort required to
ribution 'foC large collections'

This test is "not *widely used b a
tabulate the.cumulatiye frequeitcy
of data. However,:high-speed coMputing minimizes the difficulty in
sorting the data and hence estimating the Cumitiative distribution.
LAI the randomization tests, this4lst makes it assumptions' about
underlying" prqbabilitS, distributions, and 'therefore provides an
unencumbered nView of" experimentally derived data. The op-
poNnity to remove such encumbrances constitites pirhaPs the
Most iirlifourid,effect of computer science on st#tistical work.

.0/
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MODEL S.OF DATA. SOURCES

Thus far we have looked at simple data source's where the -experi-
mental substrates, though heterogeneous; were considered equrval-

) .
ent. When we can characterize the heterogeneity, then the exists a
class of models that can be used to improve our ability to, test ?

hypotheses. Let Z(1 x m) be" a 11 x m) vector of tAtribute valtiei that
describes the properties of a single exPerimental substrate. Since.
most experiments compare two or more interventions, treattfients,
or stimuli; we include these in our. definition-of properties. The
response we observe as an outcome' of an experiment, thee, is some '1-
function of these. properties, i.e, .

,.

y = f(x).

To a first approximation, the response outcome y can be rep,
resented' by a. lindar function of the substrate properties and. inter
vention .

y =.xA

where A is an (m x l)' vector of model parameters. We rarely are
able to deal with all properties contributing to the heterogeneityrof
the' expeFiment; so we include a. noise source, 6. The observed
outcome, y, then is expressed as

y =,xA + E.

For an experiment involving nindependent substrates; we can rep-,
resent the data in matriX form as

y =X A +e
(n x 1) (n x m) (in x 1) (n x 1)

(where

a.
X

(n X m)

One method of estimating the, parameters, of the models, A, is to
choose the value. of .A that Tinfmizes the square\d difference be-

A-
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tween the predieted'responses, y, and-the obseryed'response;; Y, or

,min (4 --:Y)'(ii`

min (Y xAy(y --,XA).

, Thu rq can estirriate A by standard teefutique:

A =Arx)--.A xv, Y .

t. (m9) (mxm) (m);11) (nx I)

The expected'value of A is

e(A) = euxx)-1XT] = (X'X)"'X'd
9

4 (X'X)-1X'XA A

d its variance is

, ilar(A) = VarE(X'Xr;.'X'Sil = (iCA)-1X'X(FX)-1 Var(ii")

= Var(?).

For experithents where the variance is independent of the'stibstrate
used, we can let

Var(.i) = cr2

I
Note that the estimate of A;the modetyarameter vector, is based'
on a /linear combination of the outcome or response variables.
Thus, each model .parameter should hay; an asymptotic normal
distribution and we can 'test hypotheses using z statistics.

HYPOTHESIS TESTING

We frequently, test ideas about the al's With hypotheses of the
form al = O or ai = aj, i & j. A general class.of these hypotheses can
be described by a matrix product of the orm

. 1

C A L- 0
(sxm)(nix or (ix
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,,,,p+ A
,

where C is an arbitrary matrix of rank s 5 mi Suppose the experi-
mental model is 1 .o. ,

Ixi + a2x2
1'14

and the null hypothesis a2. Then,

C (1 1).
...'t

To test such 'a genera.l.chiss:bf hypothescts, we need to know what
contribution 'the l'estrkfids4 make to the fitsbetween the data and
the model. This can be.aseSsed by performing a constrained opti-
mization of . d''

xA...y(r XA)

A = 0.

F this,v,yefindAhe m nimum to be

r t (Y XA)'(Y X + 'CA,

where 'A = (VW X'Y, the nreS'tlicted estimate of the parameter
vector. The term , o'

,(Y XA)'(Y XA)

is the squ'ared error ',due to the unrestricted model while
Avfc(xixricT1 CA is the additional error due to the re-
strigtions.

Let

and

SE = (Y X4)'(Y XA) Y'Y Y'XA.

Then, a ratio of average errors can be formed for testing hylloo-

theses. Thus, to test the hypothesis 0,
ca nk (C)

F § %r

A'd[C(X'Xr 'C'] 'CA

where F is the variance ratio with rank (C) and n':-- m degrees of
freedom. Clearly, high values of F would suggest the null hypoth

o esis does not hold while' low values of 'F., (<4) are consistent with
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the null hypothesis;, Not that we have °made noi,serious distri-
bution askimptions gins= estimates of parfunereA, A, are linear
Combinations of identically distributed random variables.

Int PLEMENTATION
, f 0

/,

//
!Access to computing tonsiderably simplifies the management of

this general linear,model. We shall look at the eonipUtational- re-
,' qtiirements necevary for having such a general, model at out"

fingertips. 'Expanding the geNerai model 4 = XA, we obtain

22 vi

\ al \
° X X2m

XI I X12

Xni Xn2 Xnm) m

where, each row represents data associated with a single substrate.
aranieters of,tpe model are estimated from

-71(X1X)" 1X'Y
(m*.,) (n1)(1)

Expanding X'X,we fi

r,

(m x

Er: 1

2 Er- I

Er. i X11 'X12

n
I* Ell I

7rdid expanding X'Y.and Y'Y, we find

°t1-1 xnYi . .
-

X'Y = Z11-1 ).(I2 Yi Y = E- i 'Ye
I (m X t) '''. .4' /

Ell= 1 ;III Yi
/ - I .

17. These two matrices can be accumulated, incrementally. Starting
with X'X = of and ?CY = 0, each term, of each sum is computed

' based on an ith substrates characterization In, ?ill, in , ... , x,,).
Each element rof.the matricesii then updated. By exploiting these
data-structuring techniques, ine can analyze mddels independent

39.E

X11 X12 Eli-`I XII
X2

Xi2 Xim EnI xln
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of n, the number of substrates studied without rwiring additional
computer memory for the dat(l. The necessary computations for
hypothesis testing are simple ftinctio.ns of these three, matrices.

To 'minimize' the programming necessary to suppoit the general
linear model computationS, it is helpful to hit've processitig modules
for performing4 the following tasks:

1. inversion of an m x m) matrix A = 13-1,
2. pre/post multi iciition of a matrix with another matrix

ili

- (ix s) te X IIIHM X 111)(111 X 11) 4

C = A' B9 A .

3. matrix multiplication C = B A .
, . 1 '4'' in' . , , t X a) tin X IMP X II)

he following' sequence outlines .the computations necessary to
e luake a linear model:

1. Iiiitialize Y'Y, Y'X, X'X to zero.
. Adeumulate Y'Y, Y'X, X'X for n data vectors. ,

3. Estimate;model parameter from A .= (X'X)J1 X'Y .
an x 1) (nx na) (mu I)

4. For each hypothesis, get contrast matrix C and form

S .... ' A' c [C (x'Xj-1C. r 1 C Ail

(1 x mam xx) cx X main x noon x .) 4 x naxm x 1)

(note: twig applications of pre/post multiply)

-F =
SP/(n m).

The resulting significance level for. F(rank(C), n m) can be looked
up in tables or computed directly. Here again, standard computer
science techniques make these implementations relatively straight-
forward.

Y'Y Y'X A
(1x1) (I xm)(mx i)

SH/rank (C)

EXAMPLES

Consider the drug prol;lerm We have two groups of patients of
size nA and n0. Group A is treated with drug A ;troupi B is treated
with drug B. The null hypothesis states that drug A is equivalent to
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drug B. We measure the blood pressure to assess the drug-patient
'interaction. One model for this problem is , ./-

. it,
yi xilai + X12112

\ where the independent variables xi, and x12 are 0/1 variable, a1 Ls
the model pressure,associaled with drug A, 112 is the model pressure

'associated, with drug B, and y, is the blood pressure response of the
patient. het .

\\t.
x11'= .1 if patient is givI.n drug A,

else LI;

The data'f om an experiMent then will appear as

y 1 "0
1 0
1 0

x12 = 1 if patient is given drug 13:
else O. 14

io
0, 1
0 1

(a2)

0 1

To test the equivalcn of the two drugs as reflected by the average
respontes, let

C = (1 1).
The F(1, nA + nn 2) is c uivalent to the square of the t' statistic
obtained from a standard St derit's t test. Next, 14t us assume that
the blood pressure response to the drug is§ dependent on the orig-
inal blood pressure. (People with normal pressures will have a
small response while people with high pressures will have a larger
response.) Define a pew model, \

Sti = X12 a2 Xj3 Xi4a4
./1

wheye xil and x12 are 0/1 variables depending on the drug asyd, x13
is the initial blood pressure of patients'Irepted with rug ArInd

j 39j
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is the initial blood pressure of patients treated with drug B. Graph-
ically, this assumed behavior would appear as in Figure t2. The X
matrix now appears as

(11)1 0

1 0

0

00

Pt

0

1 0

0 1

01 1

0 1

1 '0

1 0

r

There are several ways of stadng null hypotheses for this study.
One way is to'state that the two lines are equivalent to

J1 1 0 0)
V) 0 1 1)

where row one tests equivalence of intercepts while row two tests
equiva$nce of the slopes.

.r

Obsprved
Pressure

Initial Pressure

Drug B

Drug A

l Treatment experiment with blood pressure response sensitive, to
initial blood pressure.
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As a final exampic consider simultaneous drugs, A and
we are;testing three different doses of drug. A' ttrul 'two
doses of drug B, A schematic vicw.would tippOr ast

Al A2 A3

r
01 I

I

02
II 4 I 5 I R

Thus, puticntArc trcatcd.with various combination doses of divas
A and B. An appropriate modcl hcrc,wbuld be

x11a1 + x12 u2 + X13 a, + x14 a4 + Xis a3 + X16 a6

whcrc a, is thc modcl paramctcr for a urticular dose combination.
Thus, al is theparamctcr for A1B1, a6 is the parameter for A; fia;

is 1 for treatment combination j and .0 (or other trattoctu
combinations, Graphically we can `visualize this experiment' (is
shown in Figure 13. Thcrc arc tit= hypothcscs of primary inkiest:

thcrc any intcraction bctwccn druguA and drug 9?
2. If thcrcis no; interaction; is there a dose effect with drug A?
3. If there is no. interaction, is there a dose effect with drug le'

. . .

The interaction .hypothesis. tests.Whether:the PrcSenee of one drug
affects thc response of another drug in a variable manner. Thus, We

a

,t
Pressure

Al A2

Flo. 13. Simultaneous dosage experiment.
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arc interested in Author the pose A profile is parallel to the Dose
B profile. The test for parallelism is

A101 A1132 "el A3 D, - A3 B2

A2 DI A202 .1 A3111 A3

therefore,
(1 0 1' 1 0 1\
V) I 1 ".0 1 1).

The "test of a dose effect with drug A is derived, by summing over
the B doses such that

dose 1 effect AIBI+ A1B2

dose 2 effect ;NI A2 B1 + A2 B2

dose 3 effect 4 A3 Bi + A3 112

The dose effect is assessed by testing

dose 1 eact dose 3 effect ---- 0

dose 2 effect dose 3 effect 0

Or

( 1 0 1* 0

\O 1 1 0 1

Similarly, for the dose effect with drug B,

(1 1. 1 1 1' =1).
These examples demonstrate the simplicity oaf hypothesis testing

when one starts with a datasouree model.. We have not been
rigorous in the developmcht of the probability distributions associ-
ated with testing these models. However, these tests arc quite
robust, and in practice with Moderate=sized samples, the central
limit theorem saves the day [4].

OTHER APPI,ICATION*. OF LINEAR MODELS
A'

Linear models have found very wide use in the analysis of expert.
mental data. The fact that a Taylor expansion can be used to
linearize a nonlinear model has been particularly useful' in dealing

396
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with biological data.. As stated'earlier, the assumption-of an experi-
mental error, e, that is independent of the dependent or response'
variable, ,is necessary for useful parameter estimation. However,
there are a number of settings. where the experimental error is not
independent of the response Variable.

One such -case arises' when dealing with frequency or counting
data.--Data obtained from radiation detectors has an undedying
Poisson distribution. Forthis distribution, the variance, e, is equal
to the mean, it. Thus, if one acquires a count of 10,000 over a
one-minute Reriod, the Variance is 10,000. and the standard devi-
ation is 100 counts/min.'However, if one acquires 1,000 counts over
the same period, the standard deviatiton is approximately .;32
counts /min:' Clearly, the lower the count, the greater the percentage
error. The percentage error for the 10,000 counts is only +1
while the percentage error for-the 1,000 counts is +3.2%.

Another case arises from the use of an algebraic transformation
to linearize a nonlinear model. For instance, the gamma function is
used frequently to characterize indiCator dilution data Let C(t) be
the concentration of an indicator at time t. The .time dependent
behavior of C. is expressed as

C(t) = Kt2e -.183

where k, a, and /3 are model parameters. By taking the natural
logarithm of both side$ of this equation we obtain

which is a linear model with independent variables 1, In t; and t,
andModel parameters k, a, and 1//3:

Taking logarithms, however, modifies the error term, e. Initially,
it is assumed that E is independent of C(t). The variance introduced
by the transformation is proportional to 1/C2(t), thereby violating.
the constant variance assumption. '

Estimation of model parameters from either of these two exam-
ples' y minimizing

(Y 7 XA)1(Y XA).

results In unreasonable estimates: Large deviations between the
data and the predicted data will be weighted more than small
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deviations-. To adjust for this effect, a weighted minimization of the
form

w
Each` individual weight, wi , is an estimate of thec noise level or
variance associated with the ith_data point. Thus, a large 'deviation
between the model and the data

Yi Xi

will be scaled appropriately. Parameters are estimated in the stan=
dard way. Thus,

A = (X'WX)-1X1WY.

ilypotheses of the form CA =_0 are tested by forming the statistic
7

F
SH/rank(C)
SE/(n m)

where

A"C"[C(X'WX)7....q]

and

= Y'WY Y'WXA.

Observe that the differences in A, SH and SE, between the weighted
model and the unweighted model are restricted to X'WX and
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X'WY. Thus, if X'WX and X'WY are accumulated instead of X'X
and X'Y, the computer program for supporting the unweighted
model becomes a program forssupporting a weighted'model.

The weighted modeh has. found considerable application when
dealing with categorical or d_ iscrete valued observations. Grizzle et
al. [5] showed that many problems in categorical data analysi's
were simply weighted regression problems: The Grizzle approach
has led to a unification of categorical data analysis procedures,just
as the unweighted linear model has unified the analysiscof continu-
ous data. These are major strides toward improved effectiveness of
statistical analyses, and their widespread introduction is linked in-°
exorably with the computerization of the associated algorithms.

DAta analysis is a context-sensitive activity. For the first time,
with high-speed computing and inexpensive bulk, storage,. we are
able 'realistically to match each experiment with an apPropriate
model. Therefore, in addition to carrying out an experimental pro-
tocol, the investigator can also develop a model' relating experi-
mental outcomes with the properties of each substrgte. Manual
computing resources limit the complexity of the investigator's
model; worse, it can force,inappropriate oversimplifications that
obscure important effects. High-speed computing hoyiever, re-
moves this constraint and allows the investigator to account for
more properties contributing to substrate heterogeneity. A -model
that accurately describes substrate properties improves our ability
to separate.treatment effects from substrate effects.

High-speed computing facilities and techniques also provide new
avenues for data analysis. Histograms, depicting the behavior of
random variables, can be readily created and displayed, providing
the investigator with a rich, graphical representation. Since histo-
gram generation is no longer difficult, comparison of random vari-
ables can be carried out-by-visual-inspection- of their histograms.
Procedures for histogram comparison (Kolmogorov-Smirnov) can
now be routinely -performed for large data sets, since the -sorting
required to generate the histogram is only a minor issue, treatable
as a single conceptual operation with which the analyst need not be
burdened.
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High-speed computing also -prOvides new life for *old methods
Randomization of permutation tests, first suggested by Fisher, re-'
quires the computation pfa probability distribution' for etch data
set that is derived from an experimental investigation. The prob-
ability distribution is derived by first assuming the null fiy,:thesis
true, and then computing .a measure of the treatment effect
permutation of \ the experimental data This poses, little difficulty
when only a few observations are the data set. However, manual
methods bog down fOr, say, 20 or more observations. High-speed
computipg provides a practical means for preparing" each permu-
tation. These randomization tests seem ideally suited for today's
computers and provide a class of "exact" tests that are free of
assumptions about underlying probability distributions.

Computing opens new options for data analysis. These options
suggest avenues for statistical -research which Will significantly aid
the scientific investigator. Similarly, statisticians and their col
leagues are taking on problems that develop larger and larger
amounts of data The resulting data-management activities provide
new difections for research in computing hardware and software.
Computing and statistics are irreversibly bound togethet. The evol-
ution of computing hatdware cam` no more ignore the area of data
analysis than can the evolution of statistical methodology ignore

*thelools that coniputer science provides.
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