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ABSTRACT .

: -Discussed is one "quite general" attribute that can
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included -- the cognitive objects that the system can reason about in
a relatively direct way, and that are included continuously in the

representation, The ontology of a aomain is significant for four
reasons. First, ontolegy is a significant facter in forming analogies
between domains, described in terms of two examples involving -
problem-solving procedures between domains: geometric proofs and
subtraction procedures. Second, these entities provide arguments on
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explored through physics problems; distance, time, and velocity; and
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isomorphic to the Tower of Hanoi problem, Finally, the ‘ontology of a
problem domain has important effects on goal definition and planning,
“illustrated by studies of binomial probability. (MNS)
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Representations of -a problem can differ in several ways. In this essay, [ discuss )

-one quite general attribute that can differentiate problem representations: the

kinds of entities that are included. By the entities in a representation, | refer to
the c~gnitive objects that the system cdn reason about in a relatively direct way,
and that are included continuously in the representation. ]

A system reasons directly about an object if it has procedures that take the
object as an argument. In this regard, entities can be distinguished from attributes
and relations, which have to be retrieved or computed using the entities as cues
or arguments,

Continous inclusion is ; often achieved by creating an entity in the mmal

'mterpretalmn of a situation, and revising it whenever the situation is changed.

Inclusion in the initial representation is not required; entities can be created in the

“course of working on a problem as well. The important feature is that an entity is

maintained once it is created; this distinguishes entities from intermediate results
that are removed from the representation after they have been used.
It seems appropriate m use the term ontology to refer to the entities that a;;

Vavaﬂable for representing problem situations. Therefore. by :h: ontology of a
. domain (for a representational syst:m) Irefertoa chsract:nzatmn of terms used

in describing situations and problems in the domain. The ontclogy of the domain
says which terms can refer to entities, and which only refer to atributes or
I hypothesize that the ontology of a domain is s:gmﬁcm.t for ﬁ:ur reasons.,
- The first hypothesis is that ontology is a srgmﬁcan: factor in forming analo-
gies between domains. An analogy is a mapping between objects and relations in

[3
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two domains. If the domains arc represented with entities that have relations that
are similar the analogy might be found easily. but if either domain's representa-
tion lacks those entities. the analdgy might be difficult or impossible to find.

A corollary of the first hypothesis is that an analogy can be used in facilitating
the acquisition of representational knowledge in a domain. If an instructional -
goal is the learning of a representation that includes a specified set of conceptual
entities, then that may be facilitated by providing an analogy with a domain for
which a natural representation includes entities that correspond to those that are”
to be acquired in the target domain.

“The second hypothesis is that ontology determines the kinds of infdithation

_ that are available for reasoning using. general methods. 1t seems reasonable to

suppose that human problem solvers have soms very general reasoning pro-
cedures that can be used when appropriate information is available. Examples
include reasoning about combinations of quantities that are related as parts and
wholes, or comparisons of quantities in ordered sets. The ontology of a domain
determines the kinds of information that will '« available in the representation,

~ and therefore will be available for use in genc. ' reasoning methods. = =

Third. the, ontology of a domain has an " zioms consequence for compuia-
tional efficiency 4Ontology determines which : i ds of information will be avail-
able directly whelever they are needed, and which kinds of information will
have to be computed. It clearly is an advaniage to keep those items of informa-
ticn available that will be needed frequently, and this is achieved by creating
entities corresponding to those items of information. o o

The fourth hypoihesis is an extension of the third. It seems likely that ontol-
ogy should be a significant factor in planning. A reasonable conjecture is that.
procedures of planning operate primarily on the entities that are formed in the
initial representation of a problem. Thus, representational knowledge that in-
cludes an appropriate set of conceptual entities should enable a problem solv. rto
evaluate problem information and choose among alternative goals and plans
=fficientiy. . »

The fourth hypothesis applies especially to problem solving.in domains where
formulas are used to solve problems presented in text, such as physics problems
and word problems in mathematics. Problem solving should be facilitated if
represéntational knowledge that is applied to problem texts forms conceptual

- entities that correspond directly to variables in formulas. One way for this-to

occur would be for knowledge of formulas to include schemata that can be
instantiated on the information in problem texts. Schemata that enable an inte-
grated representation of problen: information will facilitate judgments about the
sufficienty and consistency of problem information and choice of problem goals.

In the femainder of this chapter. 1 discuss examples’in which empirical find-
ings are interpretable in termis of these four hypotheses about cor.ceptual eniities -
:n problem solving. ’ v :
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I will discuss two =i - pg mapping of problem-solving procedures
between domair~- "7 . irst =xt.up. . -om high-school geometry, and provides
an analysis of b.oe sle = s :context of-one domain of problems that
can provide - - »+ w - ather domain of problems. The second
example is f*-  prw yg - vith-oorie, and provides an analysis of instruc-
tion that use: .. al 2y Mel- 4 pree dures in two domains in order to facilitate
acquisition el nde. - nding of multidigit subtraction.
Geometr; . "oofs .
The analys~~ .. .4~ ssfi~ g concerned with an issue in the psychology of
learning. - . -«f - rtheimer (1945/1959). The issue is whether when
students- % 1o - © ~-weens their knowledge enables them to understand the
problems or - -~ | cagn out rote, mechanical solutions. 1
Anexamglet . Verthe mer discussed is in Fig. 10.1. Wertheimer contrasted
two ways irfi .- . tweorem of vertical angles can be proved. One method.

which Wartheun. . - chascterized as mechanical. uses an algebraic representation.
Quantites im the problem, the sizes of angles, aré translated into algebraic terms
and a proof is (&rived using equations. The algebraic steps are indicated in
solution (a) in Fig. 10.1. =

The second method, which Wertheimer characterized as a solution with va-
derstanding, uses a geometric represeniation to a greater extent. The representa- |
tion includes part-whole relations ‘betwrzen anglgs as indicated in solution (b) of
Figure [. The two whole structures, x with w and x with z. are equal becaise they
are both angles formed by sr:ralght: lines. Furthermore, they share a common part,
X The proof rests on the principle that if the same thing is r:moved from two
qual qusnmxes then the femamders are equal
geom:mcventm:s that are not mclud;d in Lhe more algebfaic saluuan is the
more geometric solution, the straight-line angles are eniities: that is, they are’
cognitive objects whose relationships are used in the solution. The only geo-
metric 2ntities that are needed in the algebraic snlunaﬁ are the labeled angles w,

Cx ‘and = -3

angles th;ﬂr:m are preceded by mst.rucnorl in so!vmg pmblf:ms abaut lm:
segments. A model was developed that simulated learning from three example
problems about line segments. The model has been discussed previously, in
another context (Anderson, Greeno. Kline, & Neves, 1981). The example prob-
lems are shown in Fig. 10.2. Note that the third problem has the same structure
as the theorem of vertical angles, “but is about lengths of line segments rather thaﬂ
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Prove: Lw=>~Ll1z1

2a) wr o= “I20%
11z = “X80°

g = = =+ Z

e — —_— e —

Fig. 10.1. The venical angles ph;dlm with tv=~o solutions, from Wertheimer (1945/1959).

sizes of angles. The theorBticy; #lwas xo develop a hypothesis about km:\wl-
edge structures that could be agied in Aearning to solve the problems in Fig.
10.2 that would providé 2 basihranser to the vertical-angles problem.
Two simulations of legming it impEemented. In one version, called stim-
ulus*nﬁpﬂnse learning. nev: prginsolvang procedures were acquired by asso-
ciating actions from the eﬁgﬂ’lblepmblc-nz with a representation of the problem
situations in Which the acfiops oured. T e knowledge acquired in this simula-
tion was very limited in jts a phtablln}',. however. if mechanisms of stimulus
generalization and dzscnm!ngleanlke thosse discussed by Anderson et al. (1981)

—
rs
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' were p!’mvidgd‘ they probably would give a fairly accurate simulation of the

The secoemd version. called méaningful learning, simulated leamning with
structural uresdderstanding. In meaninful learning. new problem-solving pro-
cedures were= associated with schemtic knowledge about pan-whole relation- =
ships. The rreodel’s initial knowledge icluded a schema for representing situa-
tions involvizag whole quantities madeup of parts, and making inferences about
one of tjiz gquaantities when the others were given.

Statement ’ Reason
1. ABC ' 1, Given s
2. AB+ BC= AC 2, Segment addition (1)
3.A8= AC-BC 3. Subtraction property (2)

M |

3 o " " 'Given: RONY, RN = OY
- I Prove: RO = NY o
-

- St Rexson
1. RONY 1. Given_

t 2. AN = OY 2. Given
I AN=RO+ COH - ) 3, Segroent addition (1)
4. 0Y= QN+ NY 4. Segrment addition (1}
5. A0+ ON= ON+ HY S, Substitution (2, 3, 4)
6. RO = NY 8. Subtraction property (5)

Fig. 10.2. Example ﬁrﬁb!sms used for simulations of leaming.

\ﬂj i



232 GREENO -
me Prablem 1. the meaningful-learning model acquired a ‘production for
applying its whole-pans schiema in situations involving line segments. This
knowledge enabled the model to represent problems about lengths of line seg-
ments in terms of their part-whole relations, anc to us¢ its general procedu:<s for
making quantitative inferences about parts and wholes in solving these problems.
From Problem 2, na2w prnblf‘m-scl]vmg prm:‘Edares were acquired, with ac-
tions of writing lines of proof cotresponding to the steps in the exampie solu-
. tions. In meaningful learning, these were acquired as procedural attachments (in
the sense of KRL, Bobrow & Winograd, 1977) associated with the whole-parts
schema. The arguments of the acquired procedures are objetts that occupy slots
in the schema: for example, the procedure for writing a line with *'Segment
Addition™" as the reason finds the segments thaj are the parts and the segment that
is the whole, and writes **<partl> + <part2>"%= <whole=." 7
From Problem 3, the meaningful-learnitg model a"qu:red a new schema,
witich it composed using its previously existing whole-parts schema. The new
schema has two whole-parts structures as subschemata, with the provision that
one of their parts is shared. The system had access to procedures attiched fo the
subschemata: for example. the procedure for writing lines of proof stating that
the whole is equal to the sum of the parts did-not have to be acqimn:d from
Problem 3, smg: it was attached to tt : whole-parts schema previously. -

The knowledge acquired in meaningful leaming could provide a basis for

transfer to problems about other kinds of objects, such as the vertical-angles
~ problem in Fig. 10.1. There is evidence that some students acquire knowledge of
~ that generality in studying problems like those in Fig. 10.2. In one study, six
students were interviewed approximately once per week during the year that they
were studying geometry. One interview'included the problem shown i in Fig. 10.3
and tlie vertical-angles problem. This interview was conducted just after the
students had finished a unit on proof about line segments, which included Prob-
lem 2 and Problem 3 from Fig. 10.2 as zxample problems. The students had -
begun to s:udy angles, and had learned some concepts such as supplementary .
angles and adjacent angles. but they had not yet done pm@fs about angles.

Three of the six students gave quiie clear evidence in their protocols of
conczptualizing the problem in Fig. 10.3 as a structure involving paﬂs and
wholes. Their pmmcols included comments such as “*these are the same,’ * and

*‘I have to subtract,’ appl;ed to appropriate quantities and combinations. Two of
the students gave proofs that were concepiually sound, but that were technically
incorrect. The errors made the proofs correspond more closely to the overlapping
whole-parts structure than does a correct proof.- The third of these students failed
to prove Fig."10.3. apparently because of weak knowledge of procedures.

The other three students did not show evidence for representing Fig. 10.3 as
overlapping whole-parts structures. One student solved the problem easily using
a theorem about supplementary angles. Another student worked out a proof-that -
was technically correct.’ and appeared to involve applying a procedure for sub-
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3

Given: £ AOB, ¢ COD ar# fight angles.
Prove: L ADC = L BOD

Fig. 10.3. Transfer problem given to students.
3
stitution in an equation. The sixth student was unable to make pogess on Fig.
10.3, and in further questioning it seemed that this student had not Icnmed how

. to solve the segment pmb!ems

A similar variety of responses was ohtained when the vertical- -angles problem
was pr:semc:d One of the students who solved Fig. 10,3 with the sciema said,
**This is the same problem again. You know something? I'm getting sort of tired
of solving this problem.™’ The student who appeared to apply ihe substitution
procedure for Figure 3 failed to prove the vertical- sngles theorem; this student
gotcaught in a perceptual dlfﬁc:ulty in “ae vertical-angles problem, where w and

. Xx are considered as a pair, and ¥ and i are considered as the other pair.

The knowledge acquired in meaningful learning illustrates the role that con-
ceptual entitiés can play in a problem representation. With the representational
kﬂGWlEdgE thst :nables li’ne s&gm&nts to be r’:presemed as parts and whnlgs, i;he

¥
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-

- operate directly o the quantities presented in problem situations. This zanaiyss

also shows a 'way in which procedures that are acquired in one kind of goroblem
situation ‘can be applied in another kind of problem, .if the proceduares take
arguments that are specified as the slots of a schem that can be applied 1o both
problem domains. :

.

) e
Subtraction Procedure

=7 * The analysis of learning in geometry discussed :a:lierinciudes models that leam . -

- with and without unde,standing. but there is no analysis there of conditmons lhgg;\ o

facilitate leaming with understanding. In the domain of subtfaction, mawve have -

analyzed a method of instruction that seems to make understanding tike=ly. The
method was developed by Resnick (in press): she calisit instruction by ncxapping, 2,
' . The instruction has been successful in correcting sysiematic errors.in chxildren's
performance on subtraction problems: Children’s explanations indicate ®hat they
* also gain undérstanding of principles of place valuefin numeration and - the sub-. . .
traction procedure. We have developed'a hypothetical analysis of learcaing that”
this instruction produces, in which representational knowledge of subtr=action is
acquired, including new conceptual entities. . A
The instructional method uses blocks to facilitate stidents’ ynderstaending of
principles involved in addition and subtraction of multidigit numbers. Place--
values of ones, tens, hundreds, and thousands are represented by twlacks of
different sizes and shapes. Representations of numbers are férmed -wwith the
blocks. and procedures for addition and subtraction are defined, A cOwrrespon-
dence can be formed between the procedures that use blocks and the praocedures
that use ordinary written numerals. For example, camying and borrowring with
numerals correspond to trading with blocks. where one block of a,certadin size is
traded for ten blocks of the next smaller size. Use of blocks in the teaaching of
arithmetic is quite common. The distinctive feature of Resnick’s instewction is
that the correspondence between procédures in the wo domains is spelled outin
detail, and steps are taken to ensuré that the studen! realizes which coEmponents
of each procedure correspond to components of the other. e

In Resnick's empirical research, the recipients of instruction have been chil-

dren who needed remedial work on subtraction. The work has been @one with
fourth grade students who pérformed subtraction with bugs, according 2o Brown
and Burton's (1978) analysis. Figure 10.4 shows two examples. The Erst prob-
lem is solved with a procedure called the smaller-from-larger bug: the sanswerin
each column is found by subtracting the srmaller from the larger dipsit in that,
coluinn. regardiess of which is on the top. The second and third yproblems -
* iliustrate another bug, called don't-decrement-zero. When borrowing iss required -

and a zero is encountered, a one is added where itis needed, but mothing is
decremented to compensatg for that. ‘

H
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b

| 327 502 705 |
-184 -306 -237 1
263. gge_‘_yy_sf

L g

b JET
:ﬁ-s N

= 5,

=

Fig. 10.4. Subtraction. problems solved with buggy- glgorithms. a

) [
In E:smck s mstfuc:tmn, chlldreﬁ are Lﬂugh: a pm:c:dure for subtrac mg wmh

" one nf I;h: tapznumb:r pllES a block fmm Lhe next p11= 1o the left is traded fnr ten
blocks .of the size m;eded If there are no blocks in the next pile to the left
(m(ﬁ:qugéﬂ‘rg‘ to a zerg jg the top numbeﬁ a block is taken from the nex.

' mpty pile, traded for ten of the size to its right, one of those is traded for ten
&E lhe Text smailer size, and 50 on, untll the pile IS rgached ahere the extra
blﬁcks were needed. . »

- Aﬁ:ﬁ the child has learned to subtract with blocks, the cnrrespond:nee be-
twgs:n blnclvcs and numerals is taught. For each action performed with blocks, a
cﬂm:sp-andmg. action is performed with the-written numerals. An example is

shgﬁrn .in Fig. 10 5. When a block is rEmaved in borrowing, thf: cc:m:spondmgi

i =
t4¥]

&1
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Proplem 300 - 139 Blocks ASTon or Whiting Acstion

— - T £hilg
3 D C) 1. Diziays larger number in blocks
— _1 3 :5 2. Writes probiem mn Column-stigred format

SD D 3. Trage 1 hundred block for 10 v biocks

ii;g 4, Notstes the Ireds.

1
1

k
L

| — | e —— AE——
—

110 =]
=]
=1 [=]
L =]
=13 - = -
g =] Eﬁﬂ §. Trades 1 ten block for 10 unms blocks,
— LU g i1 3 E &. Moistes the Irxde.
aOAR o -
Lo E L]
= A 3 a 7. in aach SenoemEEER fEnowes 16 e
g of blocks ppesifed in the botion DB,
Ly LU i1 3 g H. kA e#ch eolumn RoLETES The RumBEr

/1 &f

Fig. 10.5. An vutline of mapping instruction for borrowing.

numeral is decremented. When ten blocks of the next size are put into the

* display, the digit for that column is increased by ten. When the number of blocks

in a bottom digit are taken away from a pile. the n:mammg nuraber of blocks is
written as the answer for that column.

This instructional sequence can ‘be quite effective. Resnick has recorded sev-
eral successful cases in whlch children with bugs like those illustrated in Fig.

]0 4 hsve l:amed 10 subtfa:t :arrectly R:search on the mslrm:tmnsl :ffecuvc-

prin 1ples asa result gf mappmg instruction. Tl'uq eﬂdence is pﬁ:v:ded in paﬁ by
Exp anations that :hxldren are able to give after the instruction. One Ehlld whom
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pm;e:clurz., gnd thr:: w:;}k:{. later she aull r:mr;mbgn;d haw o 5ubu’ac, :szc;[!y:
She was asked whether she rememberad how she used to subtract. and what the
difference was. Her answer was. ~'I used to take the numbers apart. Now I keep
them together. and take them apart.”” This remark seems 10 indicate that Laura
zame to understand an important principle: that the set of digits that are on a line

collectively represent a single number. T
Another wise explanation was given by a student who started with a bug
involving borrowing when a zero is encountered. This student, whom we call
Molly, learned to subtract correctly. and in a posttest solved the problem 403 —
275. correctly decrementing the four, replacing the zere with a nine. and placing
a small one next to the rhree in the top number. She mentioned that she changed
the four to a three “'because 1 traded it for 10 rens.”” Then she was asked. “'Do
you know where the nirte came from?"’ Molly answered. “It's 9 7ens and the
other ren is right here.™ pﬂmtmg to the one near the three. Molly's remark seems
1o indicate that she appn:zxatg(ﬂhe requirement of keeping the value of a number
the same during borrowing. ‘
In theoretical research in which I have collaborated with Lauren Resnick,

Rabeﬂ Nezhes :md James Rcwland we have med o (‘:hEIEEfEﬁIE: Lhe knawledge

u:leas, one c::f whu:h has b-e:en 1mplemented asa sxmu!atmn of | lemmg, base,d on
the protocol given by Molly. A simulation of the otner idea is still being
developed.

In both of these ideas. we assume that the effect of mapping is to elicit 2
generalization across the two procedures that are learmed by the student. The
generalization involves entitites that are abstractions over the domains in which
the procedures are defined. In the case of blocks and numeral subtraction. the
éntitiés that are ac:quired in our simulatian are quamit;’xtive EDﬁEEpIS for which

The main structires mw:plvsd n thg sxmulangn are shcwn in Fig. 10.6. We
assume that mmallv th kncwledge structure. mcludzs the wlmle paﬂs schgma.

) QUISIUD?I cf a pfmedure called Trade, where a "n:x:k of one size is femavgd and

ten blocks of the next smaller size are put back in its place. The amounts that are
taken away and p;.t back are undzrstced to be equal, since there is a.ten-to-one
ratic of the sizes of the blocks.

In mapping instruction, a procedure of borrowing is taught, and explicit
connections are made between the components of Trade, and the components of
Borrow: that is. Take-Away corresponds to Decrement. and Put-In corresponds
to Add. We hypothesize that this correspondence influences the acquisition of
Borrow, through the mediation of a third structure which we call Exchange.

fareis

‘£
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Siat Procedures
Part 1 Cambine - Calculste
Part 2
Whale Adjust - Parts (N)

Decrease Part 1 (N)

incresss Part 2 (N)

Exchange i+ 1, 1 T T

Walue {i+ 1) = 10 = Value (i)

Decrease {i+1, 1} **'Efa&;""g
e 1 =
Increass (i, 10) Tt -
- = - =

A 1 T -

R \
T {
Teade (i+ 1. i) B = ;7 Borrow i+ 1, 1) i
fi+1) = 10= size (i}~ S valueli+1) = 10x vawe @
Take - away - bleck (i + 1, nl~ Decrement {top i+ 1, 1) s‘f"
Put-in-black (i, D Add {opi. 10} j

_ . - -
Fig. 10.6. Structures in simulation of learning from mapping instruction.

Exchange is a generalization across Trade and Borrow. and its components are
propagated into the Borrow procedure. Decrease (i+1) and Increase (i) are
generalizations of the surface-level actions Take-Away. Put-In. Decrement, and
Add. The whole-parts schema provides a constraint that the amounts of increase
and decrease should be equal. This is satisfied in Trade by the property of block
size. We assume that a generalization of block size-is included in Exchange as
the property of Value, and that this is propagated into the Borrow procedure as a
Value associated with the piace of each digit. =

The structures that our simulation acquires were designed to provide informa-

1
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One important component is the concept of value. included in th: Borrow pro-
cedure. This is an imporant general principle of numeration. Another important
principle is that when borrowing occurs. the value of the number should remain
the same. in our simulation. this principle is represented by the procedure’s
connection to the whole-parts scheme. and the constraint of its Adjust-Pars
procedure. We provided our system with some primitive question-answering
capabiiity. and it can answer the question. ~“Where did the nine come from?™
after it has borrowed through zero in a problem like 403 — 275. It finds the value
of the block that it ook away from the hundreds column. idzntifies the value of
the nine rens as heing part of the ten rens that it put back, and locates the other ten
ones that it exchanged for one of the rens. Laura’s answer about keeping the
numbers together involves a more subtle use of information. which we have not
simulated. However, we conjecture that the answer depends on conceprualizing
the value of the numeral as a whole quantity, made up of parts corresponding to
the values of the digits. and the concepts needed for this concepsualization are all
included in our simulation.

The conceptual entities in this analysis are similar to those acquired in mean-
ingful learning of geometry. In both cases. representations of problem-sitations
include conceptual units that are interpreted as elements with part-whole relation-
ships. In geometry, a conceptual entity represents a structure composed of two
segments or angles that are combined in a whole segment or angle. In subtrac-
tion. there is a conceptual entity that represents the value corresponding (o two
adjacent digits, the sum of the values of the separate digits.

Il. REASONING WITH GENERAL METHODS

The second function of conceptual entities that 1 propose is that they provide
arguments on which general reasoning procedures can operate directly. In this
section. | discuss findings that can be interpreted with this idea. First. analyses of
processes In solving physics text problerns suggest that experts’ representations
include entities that provide arguments to general procedures for reasoning about
parts and wholes. Then. two experiments involving instruction provide further
information about conditions that facilitate acquisition of representational know-
ledge that includes conceptual entities.

Physics Problems

In physics text problems. experienced problem solvers use representations in
which forces, energies. momenta, and other abstractions are treated as entities.
An example is in force diagrams. in which the collection of forces acting on an
object in the problem is shown as a set of labeled arrows. The diagram shows
various relations among these entities, such as opposition between pairs of forces
acting in opposite directions. Chi. Feltovich, and Glaser (1981) have shown that
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abstract concepts such as conversion of momentum are salient for expert physi-
cists when they are asked to classify problems into groups and when they are
deciding on a method for solving a problem. McDermott and Larkin (1978) have
simulated the process of forming representations based on abstract conceprual
entities, such as forces.

I will discuss two specific examples in which representation using conceptual
entities enable general reasoning procedvres to be used. In both of these exam-
ples, the general procedures involve relationships between quantities that can be
considered as parts of a whole. Tables 10.1 and 10.2 show partial protocols that
were kindly made available by D. P. Simon and H. A. Simon. They were among
the protocols obtained from a novice and an expert subject working on problems
from a high school text (Simon & Simon, 1978). The problem for these protocols
was the following: **An object is dropped from a balloon that is descending at a
rate of four melers per sec. If it takes 10 sec for the object 1o reach the ground.
how high was the b'allc’n':n at lh:: moment thé ije.:t was dmppﬁdﬁ"

gulded by a fcsrmula. annmxes in I;hg pmbh:m text were mt:rprt:tt:d as thg \aluzs
of variables. The subject applied some general constraints. such as a requirement
that distances have positive values, but the protocol lacks evidence that velocities
and accelerations functioned z= conceptual entities.

In the expert’s protocol. Table 10.2. there is a rather clear example of a
conceptual entity, the “‘rotal additional velocity.”” The expert apparently repre-
sented the velocity that would be achieved at the end of a 10-sec fall as the sum
and the amount :hst wauld b:: addéd

QI two c:c;nmpénams the mmai vz)cx;ni

o Lhe tirmne. Then the VEl(}E!I} at th%‘ c:nd of Ih: fan was fnund b} cﬁmbmmg its
two components. The average velocity during the fall. needed to compute the
distance, was found by averaging the initial and terminal velocities. Finally, the
distance was found by multiplving the average velocity by the given duration.

A reasonable interpratation of this solution is that three general procedures for
making quantitative inferences were used. One is a procedure for finding a whole
quamm by adding its pan\ ms‘fcthgr Th: st:r:cmd isa pmcadure Lhat Fmds I:he

(o] phvsn:s f@fﬁiulasi but tht:rg is no t:\fldEﬂEE in the pmmcal that ﬁ:)rmulas were
used in the solution. A plausible hypothesis is that the solution was obtained by
forming representations of quantities that served as arguments for general in-
ferential procedures. That inference seems particularly well justified in the case
of the *‘total additional velocity,”" a quantity for which there is no specific
variable in the formulas that are usually given.

Another example from physics is in the discussion in this volume by Larkin.
regarding the loop-the-loop problem that deKleer (1975) discussed earlier.

T =y
4y



TABLE 10.1

Novice FFEZE

“*An object dropped from a balloon Jdescending at 4 meters per sscond. ™’

4 rm=ters per second is v zero.

“lunds on the ground 10 secends later.™

t equals 10 seconds.

“What v~ the alutude of the balloon at the moment the -biect was dropped?”

Now we want s equals v zero times the time plus one half of . . .
. 2 equals g equals in this case. minus 32, . ..

Oh, minus 9 point ¥ meters a second.

It's descending at the rate of 4 meters per second. -

. One haif g t squared.

. that equals v zero.

. which is 4,

. umss 10,

14. plus one half of minus 9 poirt 3,

15. equals minus 4 point 9 times,

16. . . .. Ch, we're going to come oul with a minus number?

17. It was descending at 3 meters per second.

18. Oh. great.

19. **How high was the balloon?""

20. **An object dropped from a balloon descending at 4 meters per sevond”

1. “*lands on the ground 4 seconds later. ™

22, [t was already going. . . .

23. The initial velocity was 4 and not zero. that's if.

24. minus 4 point 9 times 100,

25, Bue this is its absolute . . . um . . .

26. We want its absolute vz'ue. don't we?

27

23

2

30

31

U-wlx []m M il 5,1 [

CRC-Beox

7. That equals 40 minus 49 hundred. that, vbviously. . . .
.4, . .4 hundred and 90 . . .
. ‘cause it drops. . . .
0. lts initial velocity was 4., . .
31. and starting from zero,
32. MNow we've got something we really don’t know how to handle.
33. Now we really don’t know how o handle this.
34. Becausc it doesn't start from zeto:
35, it started from 4 meters per second.
36. and the first second accelerates . . . so eachone . . .
37. that initial velocity . . . starts at 4 and not zero.
38, So. [ think it’s 40 plus, because although iC's a negadve . . .
39. po. no. it's increasing. ’
30. Oh o, it's increasing. it's not slowing down.
41. Okay. 5o the distance equals 40 plus 4 hundred and 90
42. equals 5 hundred and 30 meters.
43. That's my answer.
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TABL .
zpert Protocol

| ‘m

*An objeet dropped from 3 balloan descending af 4 meters per second.
. lands on the ground 10 seconds later,
What was the altude of balioon at the moment the objeet was dropped?”
So it’s aiready g@i a \,:h:u:m :\f- MEleTs pe,f E d

sa s :mal vslcx:,,; ID gcfmds lgL:r,
well, let's say its total addiional velogity 10 seconds later

. wouid be 98 meters per second per second

and that . . . ah . . . plus the 4 that it cad 16 starf with

. would be 102 meters per second per recond

. s0 its averrse velocity during that p:_s:x;l

. would be 106 over 3 or 53 .. . ah _ . . 53 meters per second
- and at 10 seconds that would mean it had dropped 330 meters.

:ﬂ L R P At A

[T} = ‘.-J

dESEnbEd and analyf experts rre;;u«:mjy prrES{:ﬁt the pmb‘e;:n usmg :h; con- |

servation of energy. Ini thxs representation. there is a quantity, the total energy,
that remains comsiant. The total energy is made up of rwo components: the
potential energy {(associated with height) and the kinetic energy (associated with
speed). As the ball moves dewnward, potential energy is converted to kinetic
energy. which is then reconverted to potential energy as the ball moves up the
other side. The requirement of the problem is sausfied if the amounts invoived in
the two phases are equal.

A reasonable interpretation of this solution includes another ge:neral inferen-
tial procedure involving additive combinations. If a whole quantity is constrained
1o be a constant. then one of its pzrts can be increased by a transfer fi%m the other
part. The use of a general procedvre for inferming quantitaiive changes based on
that principle in the loop-the-loop problem seems a reasonable conjecture.

Distance, Time, and Veiacit’y’

The interpretation that 1 prcposed in the last section regarding expert problem
solving in physics includes conceptual entities that are available as arguments for
general methods of reasoning. A question that arises is how representational

knowledge of that kind is acquired. Some suggestive findings were obtained in
an instructional study, conducted at Indiana University in 1967 (Greeno. 1976).
The suggestion is that new conceptual entities can be acquired when procedures
are learned that use those entities as arguments.

In the experiment. seventh-grade students were given instruction in. solving
problems about simple motion using the formula: distance = speed X lime.

Different groups received differing pretraining prior 0 the instruction. The pre-

1)
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observational: students were shown examples of simple Linear motion and were
viven procedures for mznipulating distance and velocity and for measuring dis-
tance and time. The other procedures were computational: students had practice
in calculating one of the three quantities given the other two. Results of the study
suggest that from these sxperiences students acquired representationai knowl-
edge in which distance, duration. and velocity were conceptual entities about
which the students could reason in a direct. flexible manner.

The experiment took place in three consecutive daily sessions. In the first
session a pretest was given. The second session was an instructional treatment
that varied among groups of students. In the third session all of the students
received some instruction in solving problems about motion and a posttest was
given.

motion in a setup shown in Fig. 10.7. Model railroad tracks were marked at one-
foot intervals. A timer, visible to the students, ran as an engine moved along the
track. Velocity was variable from .5 to 3 feet per sec. A regulator was available
to the students for one of the tracks.

students. In each problem, two of the three quantities—distance, velocity, and
duration—were given, and students calculated the third. When the unknown was
distance or velocity, students performed the operations that determined the quan-
tity, either by adjusting the transformer or by placing the photocell that stopped
tha timer. Each result was tested by running an engine. The correspondence
berween distance and time was noted as the engine moved along the track, a

Photo Recsptor-btops Timer
{can ba placed snywhars alang treck)

Timar Aslavs
T 7
. W | L) — |/ |
N = ) —

—_—

SIS

3
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record of results on ail tiie problems was Kept. and resuits of di
tions of guantities were d'scuasad A few problems with two
simultaneously at differsut velocities were given at the end of the sessien.

The effect of this experisnce was compared with two other instructional
eroups and a contol group. The other two instructional groups received experi-
ence of a more mathemarical kird, involving the inverse relation of multiplica-
tion and division or use of ratios in solving p-oblems. The fourth group wentto a
study hall.

The instruction that ail students received on the third day was a streightfor-
ward presentation of th:+ formula, distance = speed x time, with examples of its
use in solving simple problems.

The tests that were giver before and after instuction consisted of seven
problems. Three were easy. requiring calculation of one of the three quantities
‘rom the other two, for example, **A man drove at a speed of 60 mile per hour
for 4 hours. How far did he drive?"" The other four problems were mere compli-
cated, requiring analysis of motions into components, either of durations or of
distances. An example is, **The distarce between Bloomington and Chicago is
240 miles. and there are two airline flights between the two cities. One flight is
nonstop and takes 1'% hours. The other flight stops for 2 hour in Terre Haute,
but also takes 1% hours. How fast does each plane fly?"" Pretzst and postest
problems were variants of each other, involving different kinds of moving ob-

jects and different numbers.
The best pusftsst periormance was given by the group with =xperience with

erenl combina-

“the mode! trains. On the four complicated test problems. that group improvad by

an average of 1.21 problems between pretest and postiest, the conol group
improved by .57 problems. and the orther instructional groups i.nproved by .21
problems. »

An interpretation that seems reasonable is that students who reczived expeéri-
ence with model trains acquired representaticnal knowledge in which distance.
velocity. and duration were concepreal eniites. The complicated problems on
which they excelled required combining parts of a trip. The students” ability to
solve these problems suggest that their representations of quantities in problems
were in a form that enabled them to be used by general reasening procedures
associated with a whole parts schema or other similar structures. A plausible
conjecture is that entites may have resulted from the students’ acquisition of

observational and computational procedures that Qperstgd directly on tiie quan-
tities of distance, duration, and velociry. - =

Sound Transmission

The last example I discuss in this section also involves an instructional experi-
ment. This study was motivated by discussions of mental models as mechanisms
of reasoning. In analyses such as Stevens and Collins’ (1978) discussion of
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pal [temzd .;lter the gﬁual lextb@uk
cv of 5Dund WAVES. \V; r:rer o this

Eaiiﬁg EGFHFFESSIDHS .'md ':ar:fa«;[mns x;u}mg in arﬂplitudﬁ and frequénr:;}‘. We
gave a simpler discussion than is often used in texts. We made no atempt ©
discuss longitudinal waves, restricting our discussion to ransverse waves con-
sisting of alternaring compressions are rarefactions. We also related the proper-
ties of waves to concrete phenomena. using 2 guitar to produce tones varying in

loudness and pitch. The mechanism of ransmission was discussed. mainly in the
context of these properties. A Slinky toyv was used to shew fransmission of a
transverse wave, and a piece of plastic foam with dots painted on it was used to .
model compressions and rarefactions. Waves with varying amplitudes and fre-
quencies were illustrated with both of these mcdels and related to differing
sounids made with a guitar.
We refer to the other mstructmnal unit that we design é a Transmiszion
unit. It focused on the causal mechanisin of sound transmission. The idex of 2
pulse was modeled using a row of dominoes and was r;:mfcf,ed using a tube
covered on bozh ends with ballcnzn rubber. so that préssing on one eﬁd s:m;sgd th =

medmmi ::md fuam ﬁ.lbbér W;Lh pamtgd da{s was L,lszd to model campressngn of
molecules. Finally, a shallow round dish contzining water was used to show that
a pulse moving from the center is distributed over a greater area and therefore
becmmes Wéakéf at any fingle paint After shgwing all [héSé aspects af trfmsmitx—

pressure cagsgd b}' a vxbrm g ource, and 1llusrfuted the effects nf that thh e;;ch
of the models.

Our two instructional units can bf: LDnaxdgre.d as containing a commen core of
information, elaborated in different ways. The common information was about ~
the components of sound transmission: the requirements of a source. a medium,
and 1 detector. and some basic causal relations involving vibrations. corapres-
sions, and rarefactions: In the Steady-State unit. this information was elaborated
by discussing artributes of sounds. identitying properties of pitch and loudness
that vary between different sounds and relating these to variables of frequency -
and amplitude in the theoretical system of sound transmission.
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STmation was als

in the Transmission unil. in ed b
detaiied discussion of the causal mechanism of . using the simpler case of 2
pulse to make the causal system easier to understand. This instruction was
designed to teach the microstructure of the causal system. We anticipated that
this might enable students with Transmission instruction 10 reason MOTE SUCCESS-
fully about situations involving transmission of sound than their counterparts.
whose instruction focused more on atiributes and less on the causal stucture.
This anticipation was not borme out in the results.

We tested our sixth-grads student subjects by asking a set of 12 questions.
Their answers were tape recorded and transcribed. and we evaluated them using
an analysis of propositions that would constitute correct knowledge and under-
standing. We were particularly interested in four questions that required in-
ferences about sound transmission. One involved a simple application of knowl-
edge that sound will be softer at a greater distance. A second question required
the inference that sound will not be transmitted through a vacuum, but that it will
be transmitted through water. The other two questions required conjectures about
rates of transmission: one that sound could travel faster through one medium than
another. and the other that one form of energy might travel faster than another.

To our surprise. scores on these inferential questions were not significantly
different araong students who had different units of instruction. Indeed, students
who received either or both units did not differ from students in a control
condition who received neither unit. The trend favored the students in the
Steady-State condition, in oppoesition 1o our expectation of an advantage due to
the Transmission unit.

This finding was reinforced by a more detailed analysis of evidence for
knowledge of specific propositions. We divided proposiuons into four sets,
judging whether each proposition was included explicitly in the Transmission
unit. the Steady-State unit, both units, or neither unit. On propositions that were
in both units. there was a nearly significan: difference favoring the Steady-5tate
unit. On propositions that were in only ths Transmission unit, students with only
Steady-State instruction did as well as students with Transmission instruction.
This was not a symmetric finding: on propositions that were only in the Steady-
State unit. Steady-State students were much better than Transmission students.

The students’ responser to questions suggested that most of them leamned
about the requirsments for sound transmission: a source. a medium, and a recep-
tor. All except four of the 20 students correctly said that sound would not be
transmitied through a vacuum when air was pumped out of a jar with a bell in it.
Thirteen of the 20 students correctly said that sound would be transmitted if the
jar ‘were filled with water. The number of correct answers about either the
vacuum or the water did not depend on the instruction that students received.

On the two questions requiring conjectures about velocities of transmission,
-orrect answers were given by only six. and four of the 20 students. and there

was no relationship between the answers and the instruction that smdents had
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contact wuih Lhexr ﬂ:m;r,,
dents gave answers indicating that :he: concepts of source, mgdxum and r:r;ep[ijr
wers apphed n stw&nng zh;, quesuans Dne questu:m asl\ed wh'J hzl"lmmty 15

lier. Thé other quzsnan zsl-:éﬂ wh
the railroad track: 15 students s.DnJE:E[Llréij that Lh: rall bwz
sound, being caused to vibrate by the wheels of the train.
The cc‘mﬂusisn that we fe:u:h is that thh of our insrmc:ticnal umnits pmbablv
S{mnd transmission: S‘SDUIES. a médlumi and a reu:epn:ir. T'hxa at:qulsumn dld not
seem to be strengthened substantially by expianation of the detailed causal struc-
ture of the system. Of course, we may have chosen poor questions in trying fo tap
that knowledge. The main opportunity to show improved performance require
conjectures about speed of ransmission. a global property. The difficulty could
have been in children’s making contact between their knowledge of sound and
their general knowledge sbout motions with differing speeds, rather than a lack
of representational knowledge about sound. Even so, we are led to conclude that
!:nawlgdgé nf th: detailed caus:il structire i)f a méﬁhaﬁsm may not be as useﬁll

qu;sngn answsnng and other t;lrgit ta:sk,.

11l COMPUTATIONAL EFFICIENCY

The hypothesis that appropriate conceptual entities can enable more efficient
computation is probably ebvious. | present a single example in which the point is
illustrated with unusual clarity.

Monster Problems

An exampie in which aiternative represen: itions of probiems have been anaiyzed
iﬁ deiail is a set c»f' puzzl:s ab-nut monsters aﬁd glob:s'that are isnmnmhs of the

are mvnlved in thls Examplt: are sets Df DbJEELS and the pn‘xedur&s for whu:h th;
entities are arguments are operations on sets. suchas finding the largest member
of a sel.

’ Simén and Haves classiﬁed pfcblems into two éatezaﬁes c:ailed T’T’msﬁ:r aﬂd

Cha.nge pmblcms were abnut twice as dnfﬁcult Transfef pﬁ:)blzfﬁs
To illustrate the problem categories. consider two problems in which there are
three monsters each holding a globe. The monsters and globes both vary in size:

W,
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the sizec are small. medium. and iarge. Initialiy. the small monster holds the
large globe. the medium monster holds the smali globe. and the large monsters
holds the medium globe. The goal is a situation in which the size of each mcnster
matches the size of the globe that it is holding.

In the Transfer problem, globes are moved from monster to monster. Only
one globe can be moved at a time. = monster can only give away its largest giobe.
and the transferred globe mus: be larger than any the receiving monster is holding
prior to the transfer.

In the Change problem the sizes of globes are changed by shrinking and
expanding. To change a globe from its initial size to some terminal size, the
rmonster holding the globe must be the largest monster currently holding 2 globe
of its inizial size, and no lacger monster may be holding a globe of its terminal
size,

To explain the greater difficulty of Change problems. Simon and Hayes
In the representation of a state: (1) there i: a list of the monsters: (2) each
monster's size is an atiribute: (3) a list of the globes held by each monster is a _
second anribute; and (4) each globe’s size is an atrribute of the globe. The
means “*Move the globe of size GS from the monster of size MS1 to thg monster
of size MS52."" The operator for the Change problems has the form Change(MS,
GS1. GS2). which means, **Change the globe held by the monster of size M5
from its present size GS1 o size G§2." -

The problems differ in a way that involves conceprual entities. The list of
globes held by cach monsier i1s an eniity in tha ‘representaton: the lists are
included in the initial representation of the problem. and are modified after each
change in the problem state. These entities are used directly in the Transfer
problems. To test whether move(GS. MS1, MS2) can be applied, the solver
retrieves the lists of globes held by monsters MSI and MS2 and determines ,
whether globe size GS is the largest of both sets. The corresponding test in the
change problems does not use entities in the representation. and requires con-
struction of iists that are to be tested. Testing applicability of change(MS, GS1,
GS2) involves retrieving the monsters holding globes of size GS1 and GS2, and
testing whether monster size MS is the largest of both of these sets. The sels have
to be constructed, since the lists of monsters holding globes of the three sizes are
not entities in the representation. =

Simon and Hayes® suggested explanation has not been confirmed empirically,
and they are continuing their experimental research on the problem (H. A.
Simon. personal communication). There probably are several factors that con-
tribute 7o the difference in difficulty between the two kinds of problems. Evgn
so. their hvpothesis is plausible and provides an especially clear example of the
importance of conceptual entities in problem representation. ’
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I :,qun::mﬁgl u(iléi

Aaver. Dennis Egun. and | conducted a series of
ID*’E ‘\{1\5“ ‘EF‘; ,\!zvsr :f'\: Gr

bm@mml pmbab:lx
P(RIN) = cg)p (l-p V=R, 2

tion w;th the mngmxsl mrmula The ather sequ«:me emphasxzed meanings of
cencepts, providing definitions of variables in relation 1o general experience and
giving explanations about how the concepts combine to form componenis of the
formula. The conceptual instruction discussed outcomes of trials and sequences of

mals wuh dxfferent outcomes. ;md defined the prﬂbabxlm of R successes as [hE

Emph&és

Our interpretation of thess sradies was that ;Dn:sptu;ﬂ gxpository instruction
and instruction by discovery led to knowledge that was more strongly connected
to the students™ general knowledge than the knowledge that was acquired in
expository instruction that émpglasxzed the formula. That still seems a correct
interpretation. but a more specific hypothesis may be warranted. It seems likel®
that conceptual instruction and discovery learming may have facilitated rormation
of conceptual entities corresponding to the variables and that these were less
likely to be acquired by students whose instruction emphasized Lal:ulam;m with
the formula.

Several of the findings of our =xperiments are consistent with this interpreta-
tion. First, students with Lan:gpmal or discovery instruction were able to solve
story problems nearly as easily as they could solve problems with information
presented in terms of the variables of the formula, whereas for students with
formula instruction story problems were considerably more d:fr‘igglt This is

consistent with the idea that conceptual entities far:nh:ate interpretation of pn::b—

lem information in novel contexts. b s
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Three further findings can be interpreted as indications that conceptual entities
facilitate planning. First. some of the problems that we presented had inconsis-
tent or incomplete information afid hence were unsolvable. For example, one.
problem gave R = 3. N = 2, and p = "4 and asked for P(R|N). The information is
iriconsistent, because there cannot be more successes than trials. The students
~ith conceptual instruction identified these as unsolvable problems more fre-
quently than students with formula instruction. Students with conceptual instruc-
tion also were better at solving problems in which the probability of a specific
sequence of outcomes was requested. rather than the probability of a number of
success outcomes. We called a third kind of problgm Luchins problems, because
Luchms (194“’) smt:hed peffgm@cé on sm‘ular pmhlgrﬂs Extf:nswely ﬁi:se:

fruu!gss calculations. An gxamplf,: was the follgwmﬁ, “Yau pﬂy a game five
timss in which the pmbsbility of wiﬁﬁiﬁg each time is 17 aﬁd Lh; prﬁbsbiliry of

plus ths total number Df fallures"’" Luch Tublems were almc ° as casy as
urdmafy problems about binomial probability for students who had discovery
leamning. but they wzre much harder than ordinary problems for students with
expository leamning.

All three of these findings are consistent with the idea that a representation
with conceptual entities corresponding to the variables-enables a problem solver

to reason directly about the quantities rather than simply through the medium of

the formula. The conceptual instruction gave more emphasis to discussion of
sequences of their outcomes and their:properties. Thus, it seems likely that in
conceptual instruction, students gained representational knowledge enabling
them to interpret problems and questions in terms of irdividual sequences when
that was appmpnatE Thls wc:uld pmwde: mf’crmstmn t.hat ::ould be used dlfec:ly

mdwxdual ssqugﬁzes rather than the quanm} ngn b} the: bmumlal faﬁnula and

1o find dlrect sglum:n TI’lEtthS

- 5

V. CONCLUSIONS

In this essay 1 have explored hypotheses about ways in which representaticnal
knowledge can inﬂugnce 'pmblem solving. Thg discussian has been fcn:used on

tions of problem situations. I have presented interpretations of several empirical
findings and theoretical analyses that indicale four ways in which ontology can
influence problem solving: by facilitating the formation of ‘analogies between

prnblem dumsln the kmd-: i:!f :onteptusl en.ities thal are mcluded in rspresema—

s

_ BLS B
e L=



O

ERIC

Aruitoxt provided by Eic:

_instruction for arithmetic, the procedure of multidi

10. CONCEPTUAL ENTITIES 251
domains, by enabling use of general reasoning procedures. by providing efficien-
cy. and bv f?.’;ilizafmﬂ pl:mniﬁw

ues r:lz:»am m mstm;ni)n

pmhl:rrs in the dn'ﬂam as well as quulﬁﬁL’ the pro édures needed o mah:f [hc:
calculations and inferences required for solving problems. Three studies de-
scribed in this essay provided evidence of successful instruction that can be

interpreted as acquisition of conceptual entities. In each of these the procedures
that were tauzht were reiated to other information of various kinds. In mapping

iction f igit subtraction with numerals
was related to an analogous procedure of subtraction with piace- -value blocks. In
ins'tfuttiﬂn i’br snlviﬂg pmblcms :\bout s;mpl: mmmn. the z:mcsdures fgr cal=

mampglatmg and mgasunng values af thc,: ‘i.ﬂ'la,blES, A,nc;l n mstm;tmn fDr salv:
ing problems using the binomial formula, the instruction that led to better under-

standing provided relationships between the computational formula and general
can:epts uf trials, Dutr:ﬁmes and Séquences ThESE ﬁndmgs sgggest 1 Een:ral

-

¥

thg c;stht:r handi wa rt:annm éxpect, eveﬁvthmg to wurk, as e.\flden:ed by Eht‘: results
of our experiment on sound transmission. A detailed theory of learning will be
required to characterize the favorable conditicns specificaily, but it seems rea-
sonable to propose that the acquisition of the entology of a domain is one of the
significant issues to be aadressed in our study of learning processes.
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