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10 Conceptual Entities

James G. Green°
University of Pittsburgh

Representations of a problem can differ in several ways. In this essay. I discuss
one quite general attribute that can differentiate problem represehtations: the
kinds.of entities that are included. By the entities in a representation. I refer` to
the crTnitive objects that the system can reason about in a relatively direct way,
and that are included continuously in the representation.

A system reasons directly about an object if it has procedures that take the
object as an argument. In this, regard, entities can be distinguished from attributes
and relations, which have to be retrieved or computed using the entities as cues
or arguments.

Continous inclusion is often achieved by creating an entity in the initial
interpretation of a situation, and revising it whenever the situation is changed.
inclusion in the initial representation is not required entities can be created in the
course of working on a problem as well. The important feature is that an entity is
maintained once it is created; this distinguishes entities from intermediate results
that are removed from the representation after they have been used.

It seems appropriate to use the term ontology to refer to the entities that are
available for representing problem situations. Therefore, by the onw/agy'of a
cfornain (for a representational system). I refer to a characterization of terms used
in describing-situations and problems in the domain. The ontology of the domain
says which terms can refer to entities, and which only refer to attributes or
relations.-

I hypothesize that the ontology of a domain is significma for four reasons.
The first hypothesis is that ontology is a significant factor in forming anal°-

gies between domains. An analogy is a mapping between objects and relations in
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two domains. If the domains are refftsented with entities that have relations that
are similar the analogy might be found easily, but if either dbmain's representa-
tion lacks those entities, the analdgy might be difficult or impossible to find.

A corollary of the first hypothesis is that an analogy can be used in facilitating
the acquisition of representational knowledge in, a domain. If an insmictional
goal is the learning of a representation that includes a specified set of conceptual
entities, then that may be facilitated by providing an analogy with a domain for
which a natural representation includes entities that correspond to those that are
to be acquired in the target domain.

The second hypothesis is that ontology determines the kinds of infoThiation
that are available for reasoning using. general methods. It seems reasonable to
suppose that human problem solvers have soma very general reasoning pro-
cedures that can be used when appropriate information is available. Examples
include reasoning about combinations of quantities that are related as parts and
wholes, or comparisons of quantities in ordered sets. The ontology of a domain
determines the kinds of information that will ' e available in the representation,
and therefore will be available for use in gene; reasoning methods. -A

Third. the ontology of a domain has an ' -.low consequence for computa-
tional efficiencyOntology'determines which of information will be avail-
able directly whaever they are needed. and which kinds of information will
have to be computed. It clearly is an advantage to keep those items of informa-
tion available that will be needed frequently, and this is achieved by creating
entities corresponding to those items of information;

The fourth hypothesis is an extension of the third_ It seems likely that ontol-
ogy should be a significant factor in planning. A reasonable conjecture is that
procedures of planning operate pfimarily on the entities that are formed in the
initial representation of a problem. Thus. representational knowledge that in-

cludes an appropriate set of conceptual entities should enable a problem soh r to

evaluate problem information and choose among alternative goals and plans

efficiently.
The fourth hypothesis applies especially to problem solving.,in domains where

formulas are used to solve problems presented in text. such as physics problems

and word problems in ,mathematics. Problem solving should be facilitated if
representational knowledge that is applied to problem texts forms conceptual
entities that correspond directly to variables in formulas. One way for this -to

occur would be for knowledge of formulas to include schemata that can be
instantiated on the information in problem texts. Schemata that enable an inte-
grated representation of problem information will facilitate judgments about the
sufficiency and consistency of problem information and choice of problem goals.

In the iernainder of this chapter. 1 discuss examples-in which empirical find-
ings are interpretable in terms of these four hypotheses about conceptual entities

n problem solving.
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BETWEEN DOMAINS

IlL mapping of problem-solving procedures
-om high-school geometry, and provides
context of-one domain of problems that

ether domain- of problems. The second
n-1 :ic. and provides an analysis of instmc-

I pa. lures in two domains in order to facilitate
ride aiding of multidigit subtraction.

Geontetr i rnof-s

The analyt!, m as concerned with an issue in the psychology of
learning ql-h-Amer (1945/1959). The issue is whether when
students- t -ns their knowledge enables them to understand the
problerm nr -1- out rote, mechanical solutions.

An exannt, ie .; Vertae,tmer discussed is in Fig. 10.1. Wertheither contrasted
two ways it il elveorem of vertical angles can be proved. One method.
which Werchenri. etrAilicterized as mechanical, uses an algebraic representation.
Qurunites the poThiQm, the sizes of angles, are translated into algebraic terms
and a proof- (11-Ived using equations. The algebraic steps are indicated in
solution (a) in Fig. 10.1. -

The second method, which Wertheimer' character=ized as a solution with Oil-
dersumding, uses a geometric representation to a greater extent. The representa-
tion includes part -whole relations betwcen angles, as indicated in solution (b) of
Figure 1. The two whole structures, x with w and x with :. are equal because they
are both angles formed by straight lines. Furthermore, they share a common part,
,r.ii_The proof rests on the Principle that if the same thing is removed from two
equal quantities. then the remainders are equal.

The solution that Wertheimer preferred uses a representation that includes
geometric entities that are not included in the more algebraic soldtion. In the
more geometric lolution, the straight -line angles are entities: that is they are
cognitive objects whose relationships are used in the solution. The only geo-
metric entities that are needed in the algebraic solution are the labeled angles w,
x.- and :.

In geometry courses in high school, problems about angles, like the vertical
angles theorem, are preceded by instruction in solving problems about line
segments. A model was developed that simulated learning from three example
problems about line segments. The model has been discussed previously, in
another context (Anderson, Green°. Kline, & Neves, 1981). The example, prob-
lems are shown in Fig. 10.2. Note that the third problem has the same structure
as the theorem of vertical angles. but is about lengths of line segments rather than
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Fig. 10.1. The vertical tvdiri with solutions, from Wertheimer (1945119591,

sizes of angles. The chew tickipl was -to develop a hypothesis about knowl-
edge structures that could he ?acquired in le=arning to solve the problems in Fig.
10.2 that would provide 8 binisfor transCer to the vertical- angles problem.

Two simulations of ItArningifie impLernented. In one version, called stim
ulus-response learning. nev_. phDiltrn-solving procedures were acquired by asso-,
elating actions from the eubilloltrroblern. with a representation of the problem
situations in Which the 41CliranS paned. 7-1-ie knowledge acquired in this simula-
tion was very limited irk its a plicability; however if mechanisms of stimulus
generalization and dtscrittttnnt orke rho e discussed by Anderson et al. (1981)
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were providm-cl. they probably would give a fairly accurate simulation of the
knowledge ti-ant many students acquire from examples like these.

The secoira4,1 version. called meaningful learning. simulated learning with
structural urticlerstanding. in meaningful learning, new problem - solving pro-
cedures wer associated with schematic knowledge about part-whole relation-
ships. The rrzAzttlers initial knowledge included a schema'for representing situa-
tions involvirmg whole quantities made up of parts. and making inferences about
one of tic cmaaritities when the othen were given.

5
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AB AC

3. AR AC 8C

1. Ropey

2. RN OY
a RN F10 *

.COY- ON* NY
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RO NY

GPoen: AC * 8, 3C * 3

Find: AEI

Solution: AB 8 5

ohten, ABC
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Ronson

I. Wean

2. Sprint edition (1)
1 Subtraction property (2)
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3. Si mare addition (1)

4. Sagrint addition (1)

8. Subrthution (2. 1 4)

8. Subtrwtiun property (5)

Fig U.2 Example problems used for simulations of Warming.
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From Problem 1. the meaningful - learning model acquired a production for
applying its whole-parts schema in situations involving line segments. This
knowledge enabled the model to repre8ent problems about lengths of lino seg-
ments in tetras of their pan -whole relations, and to use its general procedtecs for
making quantitative inferences about parts and wholes in solving these problems.

From Problem 2. ry7:w proiArm-solving procIdures were acquired, with ac-
tions of writing lines of proof corresponding to the steps in the example solu-
tions. In meaningful learning, these were acquired as procedural attachments (in
the sense of KRL, Bobrow & Winograd, 1977) associated with the whole-parts
schema. The arguments of the acquired procedures are objetts that occupy slots
in the schema; for example, the procedure for wilting a line with "5egment
Addition" as the reason finds the segments that are the parts and the segment that
is the whole, and writes <parti > + <part2 > -`h- <whole>.

From Problem 3, the meaningful-learning model acquired a new schema,
which it composed using its previously existing whole-pans schema. The now
schema has two whole-parts structures as subschemata, with the provision that
one of their pans is shared. The system had access to procedures attached to the
subschernata; for example. the procedure for writing' lines of proof stating that
the whole is e9ual to the sum of the parts did- not have to be acciuired from
Problem 3. sine it was attached to ti- 2 whole-pans schema previously_ . -.

The knowledge acquired in meaningful learning could provide a basii for
transfer to problems about other kinds of objects, such as the vertical-angles
problem in Fi . 10.1. There is evidence that some students acquire knowledge of
that generality in studying problems like those in Fig. 10.2. In one study, six
students were interviewed approximately once per week during the year that they
were studying geometry. One interview-included the problem shown in Fig. 10.3
and the vertical-angles problem. This interview was conducted just after the
students had finished a unit on proof about line segments, which included Prob-
lem 2 and Problem 3 from Fig. 10.,2 as example problems. The students had

begun to study angles, -and had learned some concepts such as supplementary
angles and adjacent angles. but they had not yet done proofs about angles.

Three of the six students gave quite clear evidence in their protocols of
conceptualizing the problem in Fig. 10.3 as a structure involving pans and

wholes. Their protocols included comments such as "these are the same," and
1 have to subtract," applied to appropriate quantities and combinations. Two of
the students gave proofs that were conceptually sound, but that were technically
incorrect. The errors made the proofs correspond more closely to the overlapping
whole-pans structure than does a correct proof. The third of these studentsfailed
to prove Fig.' 10.3, apparently because of weak knowledge of procedures.

The other three students did not show evidence for representing Fig. 10.3 as
overlapping whole-pans structures. One student solved the problem easily using
a theorem about supplementary angles. Another student worked out a proof that
was technically correct.' and appeared to involve applying a procedure for sub-
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Fig. 10.3. Transfer problem given co students.
'nt

stitution in an equation. The sixth student was unable to make progress on Fig.
10.3, and in further questioning it seemed that this student had not learned how
to solve the segment problems.

A similar variety of responses was obtained when the vertical-angles problem
was presented. One of the students who solved Fig. 10.3 with the schema said

This is the same problem again. You know something? I'm getting sort of tired
of solving this problem." The student who appeared to apply the substitution
procedure for Figure 3 failed to prove the vertical- angles theorem; this student
got'caught in a perceptual difficulty in vertical-angles problem, where w and
x are considered as a pair. and y and a are considered as the other pair.

The knowledge acquired in meaningful learning illustrates the role that con-
ceptual entities can play in a problem representation. With the representational
knowledge that enables line segments to be represented, as parts and wholes, the
model's general procedure for making inferences about parts and wholes earl
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pperate directly on the quantities presented in problem situations. 1-1-.;s

also shows a 'way in which procedures that are acquired in one kind of problem

situation can be applied in another kind of problem, if the proceduwes take

arguments that are specified as the slots of a schema that can be appliet to both

problem domains.

Subtraction Procedure

The analysis of learning in geometry discusSed earlier inctudes models ttiat learn .

with and without unck.standing. but there is no analysis there of conditions tbk

facilitate learning with understanding. In the domain of subttaction.fiove have

analyzed a method of instruction that seems to make understanding lik=ly. The

method was developed by Resnick (in press): she calls it instnaction by naappink

The instruction has been successful in correcting systematic errors in cEaildren's

performance on subtraction problems: Children's explanations intricate Chat they

also gain understanding of pfinciples of place valuetin numeration and the sub-

traction procedure. We have developed -a hypothetical analysis of homing that

this instruction produces, in which re_ presentationalknowledge of stibtctioais

acquired, including new conceptual entities.
The instructional method uses blocks to facilitate ancients' understamding of

principles involved in addition and subtraction of multidigit number-s. Place-

values of ones, tens, hundreds, and thousands are represented by llidoeks of

different sizes and shapes. Representations of numbers are famed with the

blocks, and procedures for addition and subtraction are defined. A emrrespon-

dence can be formed between the procedures that use blocks and the prlocedures

that use ordinary written numerals. For example, carrying and bonowoing with

numerals correspond to trading with blocks, where one block of acertacin size is

traded for ten blocks of the next smaller size. Use of blocks in the Reaching of

arithmetic is quite common. The distinctive feature of Resnick's instmiction is

that the correspondence between procedures in the two domains is spelled out in

detail, and steps are taken to ensure that the student realizes which coeinponents

of each procedure correspond to components of the other.

In Resnick's empirical reseerch, the recipients of instruction have been chil-

dren who needed remedial work on subtraction. The work has been 01L6one with

fourth grade students who performed subtraction with bugs, according z-.6 Brown

and Burton's (1978) analysis. Figure 10.4 shows two examples. The first prob-

lem is solved with a procedure called the smaller-from-larger bur. the mnswerin

each column is found by subtracting the smaller from the larger digit in that

colufnn, regardless of which is on the top. The. second and third problems

illustrate another bug, called don't-decrement-zero. When borrowing required

and a zero is encountered. a one is added where it is needed, but mottling is

decremented to compensate« for that.
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327 502 410'5
7184 306 237

-3 c,-2 97c

Fig, 10.4. Subtraction_ proble solved ath buggy 41garichrns.

In Resnick's instruction, children are taught a procedure for subtracting with
bloclss. In this procedure, the top number in the subtraction problem is repre-
sented with bloCks, and the number of blocks indicated by the bottom number of
the problem is taken away, column by column. When there are too few blocks in _
one of the top-number piles, a block from thenext pile to the left is traded for ten
blocks .of the size needed. If there are no blocks in the next pile to the left
(coirespooding to a zerci the top number) a block is taken from the nex.

-n pty pile, traded for ten of the size to its right, one of those is traded for ten
of the smaller size, and so on until the pile is reached where the extra
blocks were needed.

'After. the child has_ learned to Subtract with blocks, the correspondence be-
tween blocks and numerals is taue,ht. For h'or each action performed wit 'blocks, .a
corresponding action is performed with the-written numerals. An example is
shotyn;in Fig. I0.5.' When a block is removed in borrowing, the corresponding



236 GREEN()

Probiwn WC 179 a loot I /law, o Wrlt.Rg _Ion

The triiid

300 1. Dmcgsys igivr- Min-0er in blOckl-

-139 2. Writ Ortibifffl In miumn-..ifignrzi formal,

1 1 11

Jill
00 J. firearm 1 hkiride-tni tifock for TO ttins Di

-139 4 Names Ma tftrafr,

1----
0

a
[1

i0 000 -. Tv t,0 for

a -139 C Notate.; the Ind*.
a

....1 ti

-
2100 7- on block:

uEt'rnh
boric; adere, r

-139 B. hi ftcr. miumn names. Int rmmbvt- .....,
/

rtrrammg,
4

Fig. 10.5. An juiline at mapping instruction

numeral is decremented. When ten blocks of the next size are put into the
display, the digit for that column is increased by ten. When the number of blocks
in a bottom digit are taken away from a pile. the remaining number of blocks is
written as the answer for that column.

This instructional sequence can be quite effective. Resnick has recorded sev-
eral successful cases in which children with bugs like those illustrated in Fig.
10.4 have learned to subtract correctly. Research on the instructional effective-
ness of the method is continuing. but the data in hand are sufficient to establish
that The instruction can provide effective remediation of subtraction bugs.

There also is evidence that children acquire a better understanding of general
prinf4iples as a result of mapping instruction. This evidence is provided in part by
explanations that children are able to give after the instruction. One child. whom
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we call Laura, started with the smaller-from-larger bug. She learned the comet
procedure. and three weeks later she still remembered how to subtract correctly.
She was asked whether she remembered how she used to subtract, and what the
difference was- answer was, used to take the numbers apart. Now I keep
them together, and take them apart. This remark seems to indicate that Laura
zame to understand an important pthiciple; that the set of digits that are on a line
collectively represent a single number.

Another wise explanation was given by a student who started with a bug
involving borrowing when a zero is encountered. This student, whom we call
Molly, learned to subtract correctly. and in a posttest solved the problem 403
275, correctly decrementine the four, replacing the :ere with a nine, and placing
a small one next to the three in the top number. She mentioned that she changed
the four to a three "because I traded it for 10 rens. Then she was asked, "Do
you know where the nine came from ?" Molly answered, "It's 9 tens and the
other ten is right here. pointing to the one near the three. Molly's remark seems
to indicate that she appreciatedkhe requirement of keeping the value of a number
the same during borrowing.

In theoretical research in which I have collaborated with Lauren Resnick,
Robert Neches. and James Rowland_ we have tried to characterize the knowledge
that is acquired in mapping insmiction, and some of the learning processes that
occur when students receive this instruction. We are working with two general
ideas. one of which has been implemented as a simulation of learning, based on
the protocol given by Molly. A simulation of the °trier idea is still
developed.

In both of these ideas. we assume that the effect of mapping is to elicit a
generalization across the two procedures that are learned by the student. The
generalization involves entitites that are abstractions over the domains in which
the procedures are defined. In the case of blocks and numeral subtraction, the
entities that are acquired in our simulation are quantitative concepts for which
both the numerals and the blocks provide symbolic representations.

The main structures involved in the simulation are shown in Fig. 10.6. We
assume that initially, the knowledge structure includes the whole-parts schema,
including a procedure for adjusting the sizes of the parts while keeping the whole
quantity constant. Instruction in the procedure with blocks has resulted in ac-
quisition of a procedure called Trade. where a 'llock of one size is removed and
ten blocks of the next smaller size are put back in its place. The amounts that are
taken away and plat back are understood to be equal. since there is aten-to-one
ratio of the sizes of the blocks.

In mapping instruction, a procedure of borrowing is taught, and explicit
connections are made between the components of Trade, and the components of
Boffow: that is. Take-Away corresponds to Decrement, and Put-In corresponds
to Add. We hypothesize that this correspondence influences the acquisition of
Borrow, through the mediation of a third structure which we call Exchange.

it
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Fig, 10.6. Structures in simulation of ming from mapping instruction.

Exchange is a generalization across Trade and Borrow, and its components are
propagated into the Borrow procedure. Decrease (i+ 1) and Increase (i) are
generalizations of the surface-level actions Take-Away. Put-In. Decrement, and
Add. The whole-parts schema provides a constraint that the-amounts of increase

and decrease should be equal. This is satisfied in Trade by the property of block
size. We assume that a generalization of block size-is included in Exchange as
the property of Value, and that this is propagated into the Borrow procedure as a
Value associated with the place of each digit.

The structures that our simulation acquires were designed to provide informa-

tion of the kind needed for explanations like those given by Laura and Molly.
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One important component is the concept of value. included in the Borrow pro-
cedure. This is an important general principle of numeration. Another important
principle is that when borrowing occurs. the value of the number should remain
the same. in our simulation. this principle is represented by the procedure's
connection to the whole-parts scheme. and the constraint of its Adjust-Parts
procedure_ We provided our system with some primitive question-answering
capability. and it can answer the question. "Where did the nine corrie from?"
after it has borrowed through :era in a problem like 403 275. It finds he value
of the block that it took away from the hundreds column. identities the value of
the nine rens as being part of the ten rens that it put back. and locates the other ten

ones that it exchanged for one of the rens Laura's answer about keeping the
numbers together involves a more subtle use of information, which we have not
simulated. However, we conjecture that the answer depends on conceptualizing
the value of the numeral as a whole quantity, made up of parts corresponding to
the values of the digits. and the concepts needed for this concepwalization are all

included in our simulation.
The conceptual entities in this analysis are similar to those acquired in mean-

ingful learning of geometry, In both cases, representations of probleM-'situations
include conceptual units that are interpreted as elements withpart-whole relation-
ships. In geometry, a conceptual entity represents a structure composed of two
segments or angles that ue combined in a whole segment or angle. In subtrac-
tion, there is a conceptual entity that represents the value corresponding to two
adjacent digits, the sum of the values of the separate digits.

II. REASONING WITH GENERAL METHODS

The second function of conceptual entities that I propose is that they provide
arguments on which general reasoning procedures can operate directly. In this
section. I discuss findings that can be interpreted with this idea. First. analyses of
processes in solving physics text problems suggest that experts' representations
include entities that provide arguments to general procedures for reasoning about

parts and wholes_ Then, two experiments involving instruction provide further
information about conditions that facilitate acquisition of representational know-

ledge that includes conceptual entities.

Physics Problems

In physics text problems. experiencedproblem solvers use representations in
which forces, energies, momenta. and other abstractions are treated as entities.

An example is in force diagrams. in which the collection of forces acting on an
object in the problem is shown as a set of labeled arrows. The diagram shows
various relations among these entities, such as opposition between pairs of forces

acting in opposite directions. Chi. Feltovich. and Glaser (1981) have shown that
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abstract concepts such as conversion of momentum are salient for expert physi-
cists when they are asked to classify problems into groups and when they are
deciding on a method for solving a problem. McDermott and Larkin (1978) have
simulated the process of forming representations based on abstract conceptual
entities, such as forces.

1 will discuss two specific examples in which representation using conceptual
entities enable general reasoning procedures to be used. In both of these exam-
ples, the general procedures involve relationships between quantities that can be
considered as parts of a whole_ Tables 10.1 and 10.2 show partial protocols that
were kindly made available by D. P. Simon and H. A. Simon. They were among
the protocols obtained from a novice and an expert subject working on problems
from a high school text (Simon & Simon. 1978). The problem for these protocols
was the following: An object is dropped from a balloon that is descending at a
rate of four meters per sec. If it takes 10 sec for the object to reach the ground.
how high was the balloon at the moment the object was dropped ?"

In the novice's protocal. shown in Table 10.1, the process was one of search
euided by a formula. Quantities in the problem text were interpreted as the values
of variables. The subject applied some general constraints, such as a requirement
that distances have positive values, but the protocol lacks evidence that velocities
and accelerations functioned as conceptual entities.

In the expert's protocol. Table 10.2, there is a rather clear example of a
conceptual entity, the "total additional velocity." The expert apparently repre-
sented the velocity that would be achieved at the end of a 10-sec fall as the sum
of two components: the initial velocity, and the amount that would be added
during the fall. The added amount can be found easily, because it is proportional
to the time. Then the velocity at the end of the fall was found by combining its
two components. The average velocity dufing the fall, needed to compute the
distance, was found by averaging the initial and terminal velocities. Finally, the
distance was found by multiplying the average velocity by the given duration.

A reasonable interpretation of this solution is that three general procedures for
making quantitative inferences were used. One is a procedure for finding a whole
quantity by adding its parts together. The second is a procedure that finds the
average value-of a quantity that undergoes linear change. The third is a procedure
that finds the total amount of a quantity by multiplying its average rate during a
time interval by the duration of the interval. All of these procedures correspond
to physics formulas. but there is no evidence in the protocol that formulas were
used in the solution. A plausible hypothesis is that the solution was obtained by
forming representations of quantities that served as arguments for general in-
ferential procedures. That inference seems particularly well justified in the case
of the "total additional velocity," a quantity for which there is no specific
variable in the formulas that are usually given.

Another example from physics is in the discussion in this volume by Lukin,
regarding the loop-the-loop problem that deKleer (1975) discussed earlier.



TABLE 10.1
Novice Prot

An object dropped from a balloon descending at 4 meters per _.-cond.-
Z 4 tiers per second is v zero,
3. "lands on the mound 10 seconds lacer.-
4. t equals 10 seconds
5, "What v =-s the altirude of the balloon at the moment the -hiect was d.`op

6. Now we want s equals v zero times the time plus one half of ,
7, . a equals g equals in this case. minus 32, .

8. Oh. minus 9 point 8 meters a second.
9_ It's descending at the rate of 4 meters per second.

10. One half g t squared.
11= that equals v zero.
12. which is 4.
13. tuns 10,
14, phis one half of minus 9 poit 8.
15. equals minus 4 point 9 times.
16. Oh. we're going to come out with a minus number?
17. It was descending at 4 meters per second.
18. Oh. great.
19. "How high was the balloon?"
20. "An object dropped from 3 balloon descending a 4 meters per s end'
21. "lamts on the ground 4 seconds later.-
22. It was already going..
23. The initial velocity was 4 and not zero= that's it.
24. minus 4 point 9 times 100.
25, But this is its absolute urn .

26. We want its absolute va'ue. don't we?
27. That equals 40 minus 49 hundred. that. obviously..
28. . 4 , 4 hundred and 90
29. . "cause it drops..
30. Its initial velocity was 4...
31. and starting from zem.
32. Now we've got something we really don't know how to handle.
33. Now we really don't know how to handle this.
34. Because it doesn't start from zero:
35. is started from 4 meters per second.
36. and the first second accelerates . . so each one
37. that initial velocity starts at 4 and not zero=
38. So. I think it's 40 plus. because although it's a negative .
39. no. no. it's increasing.
40. Oh no. it's increasing. it's not slowing down.
41. Okay. So the distance equals 40 plus 4 hundred and 90
42. equals 5 hundred and 30 meters.
43. That's my answer.

241
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TABLE 1CL2

Expert Protocol

I. object dropped from a balloon descending al 4 meters per second

2. lands on the ground 10 seconds later.
3. What was the altitude of the balloon 31 the moment the object u as dropped?
4 So it's already got a velocity of 4 mete -rS per secoLd
5. and it accelerates at 9.8 meters per second per second
b. so Its rmal velocity 10 seconds later.
7. well. let's say its total additional velocity 10 seconds later
b. ssuuid he 98 meters per second per world
9. and that _ . ah plus the 4 that it had to st-iff with

10. would be 102 meters per second per ceond
I I. so its aven!e velocity during that period
I2. would be 106 over 3 or 53 . ah 53 meters per se=cmd

13. and at 10 seconds that would mean It had drop,:

Larkin notes that in place of the sequential envisionment procedure that deKleer
described and analyzed. experts frequently represent the problem using, the con-
servation of energy In this representation. there is a quantity, the total energy,
that remains CoTiStikOl. The total energy is made up of two components: the
potential energy (associated with height) and the kinetic energy (associated with
speed). As the ball moves downward, potential energy is converted to kinetic
energy. which is then reconvened to potential energy as the ball moves up the
other side. The requirement of the problem is satisfied if the amounts involved in

the two phases are equal.
A reasonable interpretation of this solution includes another general inferen-

tial procedure involving additive combinations. If a whole quantity is constrained
to be a constant. then one of its pans can be increased by a transfer film the other
part. The use of a general procedere for inferring quantitative changes based on
that principle in the loop-the-loop pioblem seems a reasonable conjecture.

Distance, Time, and Velocity
The interpretation that 1 proposed in the last section mg:I-ding expert problem
solving in physics includes conceptual entities that are available as arguments for
general methods of reasoning. A question that -arises is how repregentational
knowledge of that kind is acquired. Some suggestive findings were obtained in

an instructional study conducted at Indiana University in 1967 (Greeno. 1976).
The suggestion is that new conceptual entities can be acquired when procedures
are learned that use those entities as arguments.

In the experiment. seventh -grade students were given instruction in. solving
problems about simple motion using the formula; distance a speed x time.
Different groups received differing pretraining prior to the instruction. Tne pre -

1 3
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tra nine that was effective included training in two kinds of procedures. One was
observational: students were show n examples of simple linear motion and were
liven procedures for manipulating distance and velocity and for measuring dis-
tance and time. The other procedures were computational: students had practice
in calculating one of the three quantities given the other two. Results of the study
suggest that from these experiences students acquired representational knowl-
edge hi which distance, duration, and velocity were conceptual entities about
which the students could reason in a direct. flexible mariner.

The experiment took place in three consecutive daily sessions. In the first
session a pretest was given. The second session was an instructional treatment
that varied among groups of students. In the third session all of the students
received some instruction in solving problems about motion and a posttest was
given.

The instructional group of greatest interest was given experience with simple
motion in a setup shown in Fig. 10.7. Model railroad tracks were marked at one-
foot intervals. A timer, visible to the students, ran as an engine moved along the
track. Velocity was variable from .5 to 3 feet per sec. A regulator was available
to the students for one of the tracks.

In the instruction. a series of problems was presented to groups of four or five
students. In each problem, two of the three quantitiesdistance, velocity, and
durationwere given. and students calculated the third. When the unknown was
distance or velocity, students performed the operations that determined the quan-
tity. either by adjusting the transformer or by placing the photocell that stop
the timer. Each result was tested by running an engine. The correspondence
between distance and time was noted as the engine moved along the track, a

Moto FleogruteStops Miler
Icon WI ploced anywhere along track)

Fig. 10.7. Apparatus for u- tion-veloci nstnauons (from Greene, 19761
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record of results on all nie problems v.-a; lc. and results of date ant combina-
tions of quantities were discussed. A few problems with two engines moving
simultaneously at differ:lit veloc.".ties were given at the end of the session.

The effect of this experience w.:* compared with two other instructional
groups and a control croup. The other two instructional groups received experi-
ence of a more mathematical kird, involving the inverse relation of multiplica-
tion and envision or use of ratios in solving -.-oblems. The fourth group went to a
study hall.

Tne instruction that all students received on the third day was Jrzightfor
ward presentation of 11° formula, distance = speed x time, with examples of its
use in solving simple problems.

The tests that were giver before and after instruction consisted of seven
problems. Three were easy, requiring calculation of one of the three quantities
`rom the other two, for example, A man drove at a speed of 50 mile per hour
for 4 hours. How far did he drive?" The other our problems were more compli-
cated. requiring analysis of motions into components, either of duo.; ions or of
distances. An example is. "The distance between Bloomington and Chicago is
240 miles. and there are two airline flights between the two cities. One flight is
nonstop and takes 11/2 hours. The other flight stops fo: 1/2 hour in Terre Haute.
but also takes 11/2 hours. How fast does each plane fly?" Pretest and posttest
problems were variants of each other. involving different kinds of moving ob-
jects and different numbers.

The best posttest performance was given by the group with experience with
the model =ins. On the four complicated test problems. that group improved by
an average of 1.21 problems between pretest and posttest, the control group
improved by .57 problems. and the other instructional groups i.nproved by .21
problems.

An interpretation that seems reasonable is that students who received experi-
ence with model trains acquired representational knowledge in which distance.
velocity. and duration were conceptual entites. The complicated problems on
which they excelled required combining parts of a trip. The students' ability to
solve these problems suggest that their representations of quantities in problems
were in a form that enabled them to be used by general reasoning procedures
associated with a whole parts schema or other similar structures. A plausible
conjecture is that entites may have resulted from the students' acquisition of
observational and computational procedures that operated directly on toe quan-
tities of distance, duration, and velocity

Sound Transmission
The last example I discuss in this section also involves an instructional experi-
ment. This study was motivated by discussions of menial models as mechanisms
of reasoning. In analyses such as Stevens and Collins- (19781 discussion of
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a:DO LIC.:.:4,1;ed I nic.T.r zszrm:-

tun: of processes enables individuals to generate conj-Ntures a6out the behaviors
of the processes in nenv cenditions In a study in which I collaborated with Gregg
T Vesonder and Amv K. Nlajetic, we Livestigated the question whether in-
struction regarding the detailed causr!! structure of sound transmission woaid
snhance students' ability to reason abou: properties of tha.: process. A full report
of this experiment is aNailable in another study (G.,,,:rso. Vesonder. Malefic, in
prep.

We designed two instructional units about transmission of sound. One was
patterned after the usual textbook s,:quences focusing on amplitude and frequen-
cy of sound waves. We refer to this instruction as a Steady-State unit. since it
focused on temporal properties- of sound w-oves at 5 s;nele point in space: alter-
nating compressions and rarefactions varying in amplitude and frequency. Ws;
gave a simpler discussion than is often used in texts. We made no attempt to
discuss longitudinal waves. restricting our discussion to transverse waves con-
sisting of alternating compressions are rarefactions. We also related the proper-
ties of waves to concrete phenomena. using a guitar_ to produce tones variing in
loudness and pitch. The mechanism of rransmission was discussed, mainly in the
context of these propemes. A Slinky toy was used to show transmission of a
transverse wave. and a piece of plastic foam with dots painted on it was used to
model compressions and rarefactions. Waves with varying amplitudes and fre-
quencies were illustrated with both of these models and related to differing
sounds made with a guitar.

We refer to the other instructional unit that we designed as a Transmission
unit. It focused on the causal mechanisin of sound transmission. The idea of a
pulse was modeled tiSine a row of dominoes and was reinforced using a tube
covered on both ends with balloon rubber. so that pressing on one end caused the
other end to bulge. A Slinky toy was used to show a pulse moving through a
medium, and foam rubber with painted dots was used to model compression of
molecules. Finally, a shallow round dish containing water was used to show Mat
a pulse moving from the center is distributed over a greater area and therefore
becomes weaker at any single point. After showing all these aspects of transmit-
ting a pulse, we discussed sound waves as alternating increases and decreases in
pressure caused by a vibrating source. and illusmated the effects of that with each
of the models.

Our two instructional units can be considered as containing a common eore of
information. elaborated in different ways. The common information was about
the components of sound transmission: the requirements of a source. a medium.
and a detector, and some basic causal relations involving vibratiorm compres-
sions, and rarefactions. In the Steady-State unit, this information was elaborated
by discussing attributes of sounds, identifying properties of pitch and loudness
that vary between different sounds and relating these to variables of frequency
and amplitude in the theoretical system of sound transmission.
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in the Transmission the elqhc,rrted by- a more

detailed discu5sion of the causal mechanism of sound, using the simpler case of a

pulse to make the causal system easier to understand. This instruction was
designed to teach the microstructure of the causal system. We anticipated that
this might enable students with Transmission instruction to reason more success-

fully about situations involving transmission of sound than their counterparts,
whose instruction focused more on attributes and less on the causal structure,
This anticipation was not borne out in the results.

We tested our sixthgrade student subjects by asking a set of 12 questions,
Their answers were tape recorded and transcribed. and we evaluated them using

an analysis of propositions that would constitute correct knowledge and under-
standing. We were particularly interested in four questions that required in-
ferences about sound transmission. One involved a simple application of knowl=

edge that sound will be softer at a greater distance. A second question required
the inference that sound will not be transmitted through a vacuum. but that it will
be transmitted through water. The other two questions required conjectures about
rates of transmission: one that sound could travel faster through one medium than
another, and the other that one form of energy might travel faster than another.

To our surptise, scores on these inferential questions were not significantly
different among students who had different units of instruction. Indeed, students
who received either or both units did not differ from students in a control
condition who received neither unit. The trend favored the students in the
Steady-State condition, in opposition to our expectation of an advantage due to

the Transmission unit.
This finding was reinforced by a more detailed analysis of evidence for

knowledge of specific propositions. We divided propositions into four sets,
judging whether each proposition was included explicitly in the Transmission
unit, the Steady-State unit, both units, or neither unit. On propositions that were
in both units. there was a nearly significant difference favoring the Steady-State
unit. On propositions that were in only the Transmission unit, students with only
Steady-State instruction did as well as students with Transmission instruction.

This was not a symmetric finding: on propositions that were only in the Steady-
State unit. Steady-State students were much better than Transmission students.

The students' responsen to questions suggested that most of them learned
about the requirements for sound transmission: a source. a medium, and a recep-

tor. All except our of the 20 students correctly said that sound would not be
transmitted through a vacuum when air was pumped out of a jar with a bell in it.

Thirteen of the 20 students correctly said that sound would be transmitted if the
jar 'were filled with water. The number of correct answers about either the
vacuum or the water did not depend on the instruction that students received.

On the two questions requiring conjectures about velocities of transmission.
correct answers were given by only six, and four of the 20 srudents, and there
was no relationship between the answers and the instruction that students had
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received_ Apparer, rhea -3colltred `thrItIr sound Awl nor

contact with their general concepts about faster or slower motion. Several stu-
dents gave answers indicating that the concepts of source, medium_ and receptor
were applied in answering the questions. One question asked why lightning is
seen before thunder is heard: six students conjectured that lightning occurs ear-
lier. The other question asked why a train is heard sooner if .'our ear is close to
the railroad track: 15 students conjectured that the rail becomes a source of
sound, being caused to vibrate by the wheels of the u-airr

The conclusion that we reach is that both of our instructional units probably
led to acquisition of conceptual entities corresponding to the components of
sound transmission: at source. a medium, and a receptor. This acquisition did not
seem to be strengthened substantially by explanation of the detailed causal struc-
ture of the system. Of course, we may have chosen poor questions in trying to tap
that knowledge. The main opportunity to show improved performance require
conjectures about speed of transmission, a global property. The difficulty could
have been in children's making contact between their knowledge of sound and
their general knowledge about motions with differing speeds, rather than a lack
of representational knowledge about sounr!. Even so, we are led to conclude that
knowledge of the detailed causal stnictu-e of a mechanism may not be as useful
an instructional target as knowledge of attributes that are directly relevant to
question-answering and other target tasks.

III. COMPUTATIONAL EFFICIENCY

The hypothesis that appropriate conceptual entities can enable more efficient
computation is probably obvious. I present a single example in which the point is
illustrated with unusual clarity.

Monster Problems
An example in which alternative represent zuons of problems have been analyzed
in detail is a set of puzzles about monsters and globes that are isomorphs of the
Tower of Hanoi problem. analyzed by Simon and Hayes (l976). The entities that
are involved in this example are sets of objects, and the procedures for which the
entities are arguments are operations on sets. such finding the largest member
of a set.

Simon and Hayes classified problems into two categories. called Transfer and
Change problems, which differ in the way that applicability of operators depends
on attributes and entities. The distinction was very significant empirically:
Change problems were about twice as difficult as Transfer problems.

To illustrate the problem categories. consider two problems in which there are
three monsters each holding a globe. The monsters and globes both vary in size:
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the sizes are small. medium_ and large. Initially. the small monster holds the
large globe. the medium monster holds the small globe, and the large monsters
holds the medium globe. The goal is a situation in which the size of each monster
matches the size of the globe that it is holding.

In the Transfer problem, globes are moved from monster to monster_ Only
one globe can be moved at a time. -:-_ monster can only give away its largest globe,
and the tranferred globe must be larger than any the receiving monster is holding
prior to the transfer.

In the Change problem the sizes of globes are changed by shrinking and
expanding. To change a globe from its initial size to some terminal size, the
monster holding the globe must be the largest monster currently holding a globe
of its initial size, and no larger monster may be holding a globe of its terminal
size.

To explain the greater difficulty of Change problems. Simon and Hayes
suggested a plausible hypothesis about the representation of states and operators_
In the representation of a state: (1) there i. a list of the monsters; (2) each
monster's size is an attribute: (3) a list of the globes held by each monster is a
second attribute: and (4) each globe's size is an attribute of the globe. The
operator for the Transfer problems has the form Move(GS. MSI. MS2). which
means "Move the globe of size GS from the monster of size MS I to th4 monster
of size MS2.- The operator for the Change problems has the form Change(MS,
GS I . GS2), which means. "Change the globe held by the monster of size MS
from its present size GS I so size GS2.-

The problems differ in a way that involves conceptual entities. The list of
globes held by each monster is an entity in the represent=on: the lists are
included in the initial representation of the problem. and are modified after each
change in the problem state These entities are used directly in the Transfer
problems. To test whether move(GS. MS1. MS2) can be applied, the solver
retrieves the lists of globes held by monsters MSI and MS2 and determines ,
whether globe size GS is the largest of both sets. The corresponding test in the
change problems does not use entities in the representation. and requires con-
struction of lists that are to be tested_ Testing applicability of change(MS. GS],
GS2) involves _retrieving the monsters holding globes of size GS! and GS2. and
testing whether monster size MS is the largest of both of these sets_ The sets have
to be constructed.'since the lists of monsters holding globes of the three sizes are
not entities in the representation. -

Simon and Hayes' suggested explanation has not been confirmed empirically,
and they are continuing their experimental research on the problem (H A
Simon. personal communication). There probably are several factors that con-
tribute to the difference in difficulty between the two kinds of problems. Evcn
so. their hypothesis is plausible and provides an especially clear example of the
importance of conceptual entities in problem representation.
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The final hypoth,:z.,s considered in this essay is that he ontologv of a problem
domain has important effects on oat definition and planning. T ltis point is
illustrated by results of another se: of instructional studies_

Binomial Probability
In the -early 1970s. Richard -Nlayer. Dennis Fe-tn. and I conducted a series of

fronts (Eg.nn & Greer:0. 1972: Mayer. 19.74: Mayer & Greeno. !9'72:
Mayer. Stiehl. & Greene. 1975 in which we gave instruction in the formula for
binomial probability:

l'(.? 1-p ry

where N is a number of trails. R is a number of ess- outcomes. and p is the
probability of success on each trial_ The studies involved comparisons between
alternative instructional conditions._ In most of the experiments we compar ed two
sequences of expository instruction. One sequence focused attention on calcula-
tion with the binomial formula. The other sequence emphasized meanings of
concepts. providing definitions of variables in relation to general experience and
giving explanations about how the concepts combine to form components of the
formula. The conceptual instruction discussed outcomes of trials and sequences of
teals with different outcomes, and defined the probability of R successes as the
sum of probabilities of the different sequences that include R successes. We also
compared expository learning that emphasized the formula with discovery learn-
ing, and obtained similar results to those we found with formula and conceptual
emphases.

Our interpretation of these studies was that conceptual expository instruction
and instruction by discovery led to knowledge that was more strongly connected
to the students' general knowledge than the knowledge that was acquired in
expository instruction that emitasized the formula. That still seems a correct
interpretation, but a more specific hypothesis may be warranted. It seems likely
that conceptual instruction and discovery learning may have facilitated formation
of conceptual entities corresponding to the variables and that obese were less
likely to be acquired by students whose instruction emphasized calculation with
the formula.

Several of the findings of our t.xperiments are consistent with this interpreta-
tion. First, students with conceptual or discovery instruction were able to solve
story problems nearly as easily as they could solve problems with information
presented in terms of the variables of the formula, whereas for students with
formula instruction story problems were considerably more difgeillt. This is
consistent with the idea that conceptual entities facilitate interpretation oi.prob-
lem information in novel contexts. 3
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Three further findings can be interpreted as indications that conceptual entities
facilitate planning_ First. some of the problems that we presented had inconsis-
tent or incomplete information and hence were unsolvable. For example, one,
problem gave R 3. N e 2, and p V2 and asked for P(RIN). The information is
iiconsistent. because there cannot be more successes than trials. The students
Kith conceptual instruction identified these as unsolvable problems more fre-
quently than students with formula instruction. Students with conceptual instruc-
tion also were better at solving problems in which the probability of a specific
sequence of outcomes was requested. rather than the probability of a number of
success outcomes. We called a third kind of problem Luchins problems, because
Luchins (1942) studied performance on -similar problems extensively. These
were problems in which the answer could be found by simple dires:t means, but if
students tried to apply formulas they could be led into a complicE.ted sequence of
fruitless calculations. An example was the following: "You piy a game five
times in which the probability of winning each time is .17, and the probability of
winning three games out of five is .32. What is the total number if successes
plus the total number of failures ?" Luchins problems were aim( as easy as
ordinary problems about binomial probability for students who had discovery
learning, but they were much harder than ordinary problems for students with
expository learning.

All three of these fIndings are`consistent with the idea that a representation
with conceptual entities corresponding to the variables-enables a problem solver
to reason directly about the quantities rather than simply through the medium of
the formula. The conceptual instruction gave more emphasis to discussion of
sequences of their outcomes and their properties. Thus, it seems likely that in
conceptual instruction, students gained representational knowledge enabling
them to interpret problems and questions in terms of individual sequences when
that was appropriate. This would pp:Wide information that could be used directly
to determine the problems were incoherent, to-identify problem goals involving.
individual sequences rather than the quantity given by the binomial formula. and
to find dirrect solution ,methods.

V. CONCLUSIONS

In this essay I have explored hypothese:s abbut ways in which representational
knowledge can influence problem solving. The discussion has been focused on
effects of an aspect of 'representation that I have referred to as the ontology of a
problem domain, the kinds of conceptual en.ities that are included in representa-
tions of problem situations. I have .presented interpretations of several empirical
findings and theoretical analyses that indicate four ways in which ontology can
influence problem solving: by facilitating the formation of analogies between
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dorrtains, by enabling use of Qeneral reasoning procedures. by providing efficien-
cy . and by facilitating planning.

The idea of problem ontology raises significant issues relevant to instruction
and the acquisition of cognitive skill. It seems important to design instruction so
that students will acquire the conceptual entities that are needed for representing
problems in the domain. as well as acquiring the procedures needed to make the
calculations and inferences required for solving problems. Three studies de-
scbed in this essay provided evidence of successful instruction that can be
interpreted as acquisition of conceptual entities. In each of these the procedures
that were taught were reiated to other information of various kinds. In mapping
instruction for arithmetic. the procedure of multidigit subtraction with numerals
was related to an analogous procedure of subtraction with place-value blocks. In
instruction for solving problems about simple motion. the procedures for cal-
culadng answers were related to observational experience and procedures for
manipulating and measuring values of the variables. And in instruction for solv.
ing problems Using the binomial formula, the insmaction that led to better under-
guiding provided relationships between the computational formula and general
concepts of trials. outcomes, and sequences. These findings suggest a general
principle: perhaps the acquisition of cognitive entities is most effective when
variables in procedure:; are related to other entities in cognitivz s7ruct're. The
kinds of relationships that can be useful in this way arc clearly quite variable: on
the other hand, we cannot expect everything to work. as evidenced by the results
of our experiment on sound transmission. A detailed theory of learning will be
required to characterize the favorable conditions specifically, but it seems rea-
sonable to propose that the acquisition of the ontology of a domain is one of the
significant issues to be addressed in our study of learning processes.
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