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Abstract

Two order theoretic techniques v-re presented and compared.

Ordering theory of Krus and Bart (1974) and an extended Takeya's item

relational structure analysis (IRS) by Tatsuoka and Tatsuoka (1981) were

used to extract the hierarchical item structure from three datasets.

Directed graphs were constructed and both omethods were assessed as to,

how well they reproduced the theoretical structure of the data. It was

discovered that the Krus and Bart (1974) procedure more adequately

represented the complex interrelationships among test data than did the

extended IRS method. Simulated data was found to present many problems

and to be inappropriate for research in this area.



(
l975)--and ,Loevinger's (1947) analysis of -item homogeneity. More

.

recently however, methodologies have been developed to extract the best

Introduction

In order to correctly .sequence blocks of instruction it is

necessary to discover the underlying relationships between components of

the instructional unit. Often it is important to uncover the

hierarchical relationships of procedural tasks and to sequence

instruction to facilitate learning. Tests can be used to discover this

relationship. By assessing the relationships of test items, which

reflect components of the instructional unit, educators can design and

modify curricula. We can also check the extent to which we have

succeeded in constYJcting problems that require a hierarchy of skills to

be solved.

Methods for analyzing the relationships among items have existed

for years. include scalogram analysis (Guttman, 1950; Shevell,
These

fitting hierarchy from test data.

The purpose of this study is to compare and assess two of these

procedures, order analysis (Krus...& Bart, 1974; Airasian & Bart, 1973)

and item relation structure analysis (IRS) (Takeya, 1981). Both methods

will he used to reconstruct a theoretical relationship among fraction

addition test items.

Drawing fromA. combination of psychological measurement theory,

formal logic theory, information theory, and graph theory concepts,

order analysis and IRS present a general method of ordering two or more

items. Both theories of discovering-the hierarchical relationshps among
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items can be divided into two components; 1) defining the order

relation, and 2) extracting the item hierarchies.

Ordering theory has been developed to study hierarchical tesL

structure. The hierarchical structure of a test is defined by a network

of prerequisite relations among binary items (Bart, 1978). Binary data

matrices are analyzed with respect to this relationship. The converse

of the prerequisite relation is the dominance relation. If item i is a

prerequisite to item j then item j dominates item i. The prerequisite

or dominance relationhip is of primary interest in ordering theory.

Briefly, a student is said to dominate an item if he/she passes that

item, if he/She fails however, he/she is dominated by it. In the same

manner, item i is a prerequisite to item j if for that student he/she

answers item i correctly and item j incorrectly. In general, item i is

said to be a prerequisite to item j if the percentage of students who

answer item i correctly and item j incorrectly is greater than some

constant.

Ordering analysis (Airasian & Bart, 1973; Bart & Krus, 1973) is a

deterministic measurement model which expands scalogram techniques to

assess nonlinear task networks. This model utilizes item response

patterns to extract both linear and nonlinear prerequisite relations

among tasks (Airasian, Madaus & Woods, 1975). Order analysis uses a set

of primitive logic to isolate logical order's among variables in a

hyperspace (Krus, 1978). The basis of an order relation, as defined by

order analysis, is the characteristic of strong simple orders. Wise

(1981) explains how strong simple orders have three properties:
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asymmetry, connectedness, and transitivity. With regard to dominance,

asymmetry implies that elements i and j cannot simultaneously dominat

each other. Only one item can dominate the other. Connectedness, on

the other hand, states that there must be a dominance relationship

between two items i and j. The definition of transitivity allows

implied itemitem relationships. For elements i, j, and k within an

order, if i dominates j, and j dominates k, then i domLnat-.s k.

In ordering theory all items must be dichotomously scored. If

subject k answers item i correctly he/she is given a score of 1, while

item i is scored 0 if subject k answers it incorrectly. Item i is then

defined as a prerequisite to item j if the occurence of the response

pattern (01) for items i and j is not found. Response patterns (00),

(10), and (11), are refevred to as confirmatory patterns and the pattern

(01) is called a disconfirmatory response pattern (Bart & Krus, 1973;

Airasian & Bart, 1975). Clearly the (00) and (11) responsejtpatters do

not provide any information as to whether item i is a prerequisite to

item j.

Theoretically, there should be no inconsistencies of dominance.

There should he no ij dominances for some students and ji dominances for

others. However, even with unidimeasional items such conflicting

relations occur in practice due to measurement error. The manner in

which ftem hierarchies are extracted and error in the data is delt with

differs between the two order theoretic methods.

Bart and Krus (1973) originally attacked this problem in the

following manner. For aay set of items, a matrix which indicates. the
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percentage of disconfirmatory response patterns for every pair of items

can be produced. Every cell entry will be the percentage of times that

a 0 for the ith item and 'a L for the jth Item occurred. This table of

percentages can he used to identify item pairs related by a prerequisite

relationship. If the percentage of disconfirmatory patterns is less

than a given tolerance level for any lj pair, then item i can be said to

be a prerequisite to item j (Bart and Krus, 1973). The tolerence level

sets the amount of disconfirmatory response patterns which will be

allowed in defining the prerequisite relation. Finally, when the

various prequisite relations have been defined, a hierarchy among the

0
items can be constructed by applying the transitivity property. The

hierarchical relationships among the items can be graphically

represented by use of directed graphs.

More recently, however, Mcilemar's,(1947) z statistic for comparing

two correlated frequencies has been applied to analyze the prerequisite

relations (Bart & Krus, 1973). As before, every element of a matrix is

assigned a corresponding zij value where,

c
7

-d

ij
(c+d)1/2

where c is the frequency of (10)' patterns, and d is the

frequency of (01) patterns. Again, a prerequisite relation is asserted

if the percentage of disconfirmatory cases is less than the percentage

of confirmatory cases. This translates into the condition that the

corresponding z values exceed a predetermined alpha level. This removes

chance prerequisite relationships due to measurement error.
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The Japanese researcher. Takeya, starting from the logic of Krus,

Bart, and Airasian, has presented a different method oL ordering called

IRS. As with the Krus and Bart procedure, a binary data matrix is

analyzed is terms of prerequisite relationships. Once again, the

prerequisite relationship between items i and j is defined as success on

item i is a prerequisite to success on item j. That is the response

pattern (01) for items t and j respectively, does not occur. As before,

the problem of the discc,nfirmatory pattern arises. Here Takeya's

ordering approach departs from the Krus and Bart procedure.

Takeya (1980a, 1981) considers the statistical independence or

dependence of scores obtained by two items. We denote a column vector

of a data matrix Xkj by ej and it complement by 0j, where

by

and

5J = 1 -
^iJ-

If the proportion of correct and incorrect responses is expressed

N

P(9.) = (1/N) E K.

-J k=1
KJ

P(9.) = 1 - P(9.)

2

then the proportion ofsubjects getting both items i and j correct is

N

P(0.20.) = (1/N) E X. X
k

.

ki
k=1

The proportion of subjects getting item i incorrect and item j correct

is
Pq41.29y= (1/N)E (1 - Xki)Xki

k=1

10
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Takeya thus defines his, coeftLcient of ordinality, r*jj

r
ij

1 - 9 )/P6i )P(0 )

Table 1 reflects this relatLoa.

Insert Table 1 about here

An IRS matrix is formed by calculating r*jj for all pairs i and

J. If r* Li Is larger than a constant, the (ij)-cell is replaced by 1,

otherwise 0.

However, unlike order analysis, Takeya's dominance relation does

not satisfy the transitivity law. For example, if item i dominates item

j, and item j dominates item k, item i does not dominate item k unless

r ik > C. By his definition of an order relation; implied item

domLnances are not allowed. Moreover, Takeya has not discussed an exact

procedure for extracting the hierarchical relationships among items from

the IRS matrix. So, Tatsuoka and Tatsuoka (1981) have proposed a

procedure to extract directed graphs from the IRS matrix which uphold

the transivity law. It is this modified IRS procedure which will be

studied in this paper.

It should be noted that r*ij has a direct relationship to

Loevinger's Hid. Horst (1953) states that Hy is an average OAmax

Thus if we define a fourfold contingency table as
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Talde 1

Table of Ltema 1---------------------------------
1 0

and j

iota!

1

0

total

P(0 ,0 )

P(- ,A)-1'-j

P(0, )
-J

P(0 ,6 )

1 -j

P(5 ,5 )

-j

P(5.)
-J

P(0 )

-1

P((]( )

1
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.7



a i

Ltoevin

b+d
N

c+d
N

- P.

er's H--ij can be shown to reduce to

ad - bc,
(a+c)(c+d)

43.

max

Moreover, by defining r* in a similiar manner

J

a+c

a a +b =

c +d = P($91.)N

= P(6.)N b+c = P(a)N
-J . -J

C

with b > c

and P =
P(i+i) d

i/j P. c+d
.1

for b. <c .

1);

Tatsuoka (1981) and Sato (1981) show that r*i- also reduces to
J

Thus

ad - bc
(a+b)(b+d) (I) max''

r* =H - (I)

ij ij Amax

Although Loevenger's work appeared\first, Hij wasideveloped in another

context'and not applied_to extracting hierarchical relationships among

1
nonlinear task networks. For this reason the Measure will be referred

----.
.

-------------..to,as Takeya's coefficient of ordinality.
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The purpose of tnis paper is to compare these two'order theoretic

methods and to assess which method more accurately -extracts a

theoretical hierarchical structure from binary data. More precisely,

the -order relation defined by Ordering theory, and the method of

extracting item hierarchies 'utilizing a given tolerance level of

disconfirmatorTresponses (Bart x Krus, 1973) will b _compared -to the

order relation defined by IRS and the chain extraction method developed.

by Tatsuoka aneTatsuoka (1981) which upholds transitivity. Graphs

obtained bye the Krus and Bart procedure and the extended IRS will be

compared to the procedural network for fraction addition (Tatsuoka &

Chevalaz, 1983) to see which best reproduces the theoretical hierarchy

of fraction addition skills.

Method

Test and Subjects

Klein, et al. (1981) described the construction of a 48-item

fraction - addition test for diagnosing erroneous rules resulting from

misconceptions occurring at one or more levels of the procedural

network. Klein and her. associates constructed the test to consist of

two-parallelsubtests. Each pair of items was constructed in terms. of

having identical procedural steps. The items reflect a variety of

skills which are required to corr/ctly add two fractions of varying

types. Figure 1 is the procedurial network for fraction addition as

presented in Tatsuoka and Chevalaz (1983).

Insert Figure 1 about-here

In an effort to assess-and compare'the Krus and Bart procedure and

the modified IRS, the 48-item fraction test was administered to 148
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FIGURE 1: A Procedural Network for Fraction Addition
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seventh and -eighth grade students. After extensive, logical error

analysis (Klein, et al., 1981), and extraction of a-undimensional subset

of items by GETAB (Baillie, 1980), 36 items were retained for study.

The estimated a's and b's of,the two-parameter logistic model for the 36

items were calculated by GETAB (Baillie, 1982) along with the means and

variances and are presented in Tables 2 and 3.

-Insert Tables 2 & 3 about here

Datasets

Three different datasets, REAL, CLEAN, and 81M1, were employed in

this study. Dataset REAL contains the binary responses for 148 student,s

on 36 items. To avoid contamination by reducing task erors, the

students' first nonreduced answer was chosen as his/her response. Each

open-ended - -Tonse was then converted into a decimal number and ,

compared to a decimal number answer key. Items were given a value of 1

if the response and answer key matched and 0 otherwise. With.this

.scoring procedure, choice of various common denominators or failure] to

reduce answers would not affect scoring.

Klein, et al., (1981) stated that there are two methods of solving

fraction addition problems. The procedural. network presented /here,

however,', only reflects Method A\of solving fraction addition pro lems.

this more commonly used method students add the who }lumber,
\ -1

denominator, and numerator parts separately. On the othsrl hand,

students who employ Method B first convert: all mixed fractions to an

improper fraction, then add and reduce. Dataset CLEAN is a ubset of

REAL which consists of only those 119 students who used Method A when

adding fractions.

1G
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Table 2
Estimated a and b Values for 36 Fraction Addition Items

From REAL (N = 148)

(7-77-1.7.777-77,'

Item a b

1 .387 -.267

2 1.156 -.098

3 4.924 .368

4 2.756 .547

5 .523 -.968
6 1.656 -.419
7 2.972 .295

8 .738 -.490
9 1.561 -.734

1 0 2.562 .236

11 1.287 -.503
12 3.646 .406

13 1.166 -.402
14 8.637 .374

15 1.525 -.444
16 1.523 -.801
17 2.914 .398

18 1.996 -.302
19 1.100 -.391
20 1.336 -.386
21 4.819 .419

22 3.920 .554

23 1.493 -.195

24 1.591 -.431
25 4.287 .317

26 1.439 -.329

27 2.568 -.478
28 7.694 .428

29 2.206 -.348
30 3.579 .494

31 1.036 -.483
32 5.560 .399

33 1.221 -.523
34 1.500 -.637
35 4.579 .527

36 .927 -.532
/



Table 3
Means and Variances for 36'' raction Addition Items (N'= 148)

Item u a2

1 .459 .520

2 486 .252

3 .419 .245

4 .318 .218

5 .574 .246

6 .581 .245

7 .426 .246

8 .534 .251

9 .635 .233

10 .439 .248

11 .581 .245

12 .392 .240

13 .554 .249

14 .432' .247

15 .581 .245

16 .642 .231

17 .384 .238

18 .568 ..247

19 .457 .249

20 .561 .248

21 .399 .241

22 .324 .221

23 .527 .251
,4

24 .581 .245
25 .432 .247

26 .554 .249

27 .608 .240

28 .412 .244

29 .581 .245

30 .351 .229

31 .561 .248

32 .412 .244

33 .581 .245

34 .615 .238

35 .345. .227

36 .561 .248

18

14
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A' simulated"dataset, SIM1, was generated following a commonly used

simulation procedure. FArat a pseudorandom number generator yielding a

normally distributed set with mean 0 and variance 1 was used to simulate

ability levels for 5 0 simulees. The probability that a given simulee

would pass a specific item was given by

) (9)

1

1+e
1.7a(9b)

where, a and b are the estimated a and b based on REAL and

presented earlier (Lord, 1980). Next a random number between 0 add

was generated from a uniform distribution and compared to Pi(9). If the

probability of passing the item was greater than the random number, the

simulated response was given a value of 1; conversely, if the

probability of passing the item was less than the random number the

simulated response was 0. In this manner 500 simulated response vectors

of 36 items were generated.

To test the adequacy of SIM1 reproducing the qUalities of REAL,,

GETAB was used to reestimate the item parameters. It was found,

however, that the twoparamater logistic model would not:converge for'

the simulated data. Furthermore, tradition 1 item analysis showed that

SIM1 differed greatly from,REAL. To further ook at the plausibility of

using simulated data, four more simulated datasets, .SIM2, SIK3i SIM4,

. .

and, SIM5, were generated using different random number seeds. /Again,

the twoparameter logistic model would not converge for these datasets.

The means, variances, and closest estimates of a and b for the 36 items

and all five datasets are presented in Tables 4 and 5.

Insert Tables 4 & 5 about here



Table 4

Mean and Variance of 36 Items for Five Simulated Datasets

Item Sim 1 Sim 2 Sim 3 Sim 4' Sim 5

P. P

,

P P P a

1 .553 .247 .524 .250 .524 .250 .544 :249 .528 .250

2 .554 .248 .570 .246 .554 :248 .533 .249 .558 .247

3 082 .237 .378 .236 .336 .224 .324 .219 .364 .232

4 .320 .218 .326 .220 .308 ,214 .284 .204 .302 .211

5 .674 .220 -.688 .215 .666 .223 ,684 .217 .684 .217

6 .642 .230 .674 .220 .636 .232 .650 .228 .626 .235

7 .416 .243 .404 .241 .390 .238 .384 .237 .412 .243

8 .642 .230 .646 .229 .658 .1225 .646 .229 .658 .225

9 .728 .198 .714 .205 .682 .217 .696 .212 .754 .186

10 .454 r .248 .454 .248 ,406 .242 .410 .242 .452 .248

11 .670 .222 .692. .214 .646 .229 .646 .229 .674 .220

12 .354 .229 .378 .236 .346 , .227 .312 .215 .368 .233

13, .650 .228 .630 .234 .622 .236 .603 .239 .636 .232

14 .376 .235 .378 .236 A48 .227 .238 .221 .372. ..234

15 .620 .236 .642 .230 .616.: .237 .616 .237 .638 .231

16 .752 .187 .762 .182 .738 .194 .752 .187 .734 .196

17 .362 .231 .372 .234 .334 -.226 .318 .217 .372 ;234

L8 .626 .235 .638 .231 .604 .240 .590 .242 .602 .240

19 .608 '.239 .642 .230 .616 .237 .616 .237 .626 .235

10 .632 .233 .646 .229 .618 .237 .606 .239 .642 .230

11 .376 .235 .37.0 .234 .336 .224 .326 .220 .354 .229

12 .336 .224 .328 .221 .308 .214 .276 .200 .302 .211

13 :580 .244 .578 .244 .572 .245 .544 .248 .580 .244

14 .654 .227 .670 ;222 .652 .227 .650 .228 .674 .220

15 .398 !.240 .388 .238 .392 .239 .364 .232 .404 .241

16. .638 .231 .630 .234 .591 .241 .624 .235 .636 .232

Y.7 .662 .224 .683 .215 .648 -.229 .664 .224 .712 .205

18 .376 .235 .358 .230 .322 .219. .316 .217 .340 .225

19 ..626 .235' .654 .227 .616 .237 .590 .242 .614 .237

30 .340 .225 .346 .227 .324 .219 .284 .204 .318 .217

31 .664. .224 .672 .221 .648 .229 ..616 .237 .654 .227

12 .392 :239 .374 .235 .352 .229 .336 .224 .354 .229

33 .6831, .215 .632 '.217 .654 .227 .654 .227 .696 .212

34 .690 \ .214 .702 .210 .662 .224 .678 .219 . .694 .213

15 .332 .222 .320 .218 .290 .206 .262 .194 .304 .212

1.6 .620 .236 .672 .221 .612 .238 .614 .237 .648 .229



Table 5

a and b Values of 36 Items for Five Simulated Datasets

Item Sim 1 Sim 2 Sim 3 Sim 4 Sim 5

a b a b a b a b a

1 .237 -.226 .272 .087 ' .122 .350 .165 -.270 .069 .580

2 1.257 -.017 1.198 -.093 1.067 -.027 1.019 -.205 1.623 -.056

3 7.284 .504 8.035 .491 7.052 .535 6.073 .615 7.516 .404

4 3.172 .681 3.634 .635 3.583 .625 2.627 .759 3.511 .580

5 ,288 -1.359 .336 -1.337 .410 -.925 .296 -1.514 .333 -1.294

6 1.47.0 -.313 1.618 -.424 1.496 -.268 1.548 -.384 1.590 -.259

7 2.857 .416 3.608 .430 4.384 .435 3.583 .469 3.304 .315

8 .551 -.585 .592 -.594 .533 -.674 .428 -.813 .637 -.616

9 1.408 -.653 1.492 -..590 1.723 -.401 1.437 -.565 1,889 -.651

10 2.687 .310 2.895 .297 3.504 .400 2.437 -.397 3.321 .221

11 1.086 -.481 1.110 -.576 1.271 -.330 1.159 -.419 1.281 -.454

12 3.921 .576 4.907 .494 5.820 .520 3.597 .656 6.306 .398

13 1.381 -.352 1.119 -.325 1.318 -.240 1.138 -.273 1.052 -.359

14 19.276 .523 15.287 .490 11.039 .512 2.004 .597 1.958 .383

15 1.629 -.220 1.388 -.332 1.675 -.189 1.097 -.309 1.510 -.303

16 1.875 -.689 1.336 -.822 1.851 -.587 1.556 -.771 2.150 -.557

17 3.672 .557 3.750 .512 5.079 .527 3.024 .648 3.945 .401

18 2.154 -7.221 1.601 -.298 2.157 -.129 1.600 -.173 1.865 -.172

19 1.142 -.224 .930 -.415 1.192 -.235 ..919 -.342 1.276 -.289

20 1.155 -.315 1.293 -.359 1.146 -.248 1.084 -.273 1.305 -.339

\22\22

5.200
4.117

.517

.621

7.621
3.979

.511

.626

13.158
6.280

.529

.592

5.035
4.018

.612

.748

7.416

4.836

.423

.554

23 1,360 -.103 1.122 -.128 1.552 -.059 1.392 -.061 1.671 -.118

24 1.558 -.348 1.541 -.417 1.402 -.333 1.395 -.399 1.552 -.415

25 5.735 .465 4.433 .470 5.284 .431 4.126 .521 5.129 .329

26 1.419 -.304 1.354 -.293 1.634 -.129 1.505 -.296 1.648 -.285

27 2.190 -.339 2.296 -.433 2.564 -.248 1.840 -.415 2.831 -.454

28 13.009 .521 10.033 .540 2.004 .541 7.197 .631 10.408 .443

29 2.057 -.224 1.746 -.343 1.914 -.175 '1.617 -.173 2.137 -.195

30 3.803 .614 6.250 .571 5.173 .567 3.901 .727 4.382 .521

31 1.035 -.468 .920 -.549 1.016 -.386 .865 -.354 .908 -.467

32 11.555 .487 6.235 .502 7.911 .506 6.094 .587 12.117 .416

33 1.044 -.569 1.083 -.541 1.220 -.367 .887 -.573 1.504 -.56'

34 1.656 -.470 1.480 -.544 1.831 -.325 1.257 -.523 1.530 .48;

35 5.833 .620 6.047 .636 11.861 .606 4.874 .776 5.687 .539

36 .979 -.298 .911 -.552 1.267 -.229 .973 -.322 .990 -.420

21
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Clearly the choice of the random number generator seed or the

"randomness" has.a great effect on the results of the simulation. This

counterintuitive result warrants caution in the use of simulated -data

in quantitative research. However, SIM1, was arbitrarily' chosen for

inclusion in this study to determine if simulated.data will reflect the

hierarchical item patterns in real data.

Order Analytic Procedures .

To determine the capability of the Krus and Bart'(1974) and the

Tatsuoka and Tatsuoka (1981) procedures for extracting item hierarchies,

all three datasets were analyzed and compared to the procedural network.

However, only the first subtest of 18 items will be included in the

analysis. This will aid in the interpretation as the graphs will be

less complex. The program ORDER2, written by Antonak, Bart, and Lele

(1979), extracted prerequisite relationshipsby the Krus and Bart

procedure, while the modified Takeya analysis was carried out by IRS

(Baillie & Tatsuoka, 1981). A tolerance level of 5% was chosen for the

Krus and Bart procedure based on recommendations in the literature

(Airasian and Bart, 1975; Airasian, et al,, 1975). Based on Takeya's

guidelines (Takeya, 1980b) the cutoff for r*. was set at .5.

Regression Analysis

Finally, a multiple regression analysis was performed to assess

which, and to what extent, item characteristics influenced item

difficulty, i.e., students' performance. Each item was dichotomously

scored on 16 charactersitic variables, such as (1) fraction is of F+F

type or (3) the denominators are the same. The variables were coded 1
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if the item possessed that quality and 0 otherwise. Item difficulty, Pi,

was selected as the criterion , and the 16 characteristic variables were

selected as predictors. The 16 characteristic variables are presented

in Table 6.

Insert Table 6 about here

Results

The outcome of the multiple regression analysis indicates that the

linear combination of only five item characteristic variables account

for 87% of the variance in item difficultly. Variables 3, 1, 10, 16,

and 6, had a significant effect on students' performance. Table 7

presents these results.

Insert Table 7 about here

Only these five significant item characteristics will be

represented in the directed graphs. By following the relationships

reflected in the graphs between items with slmiliar and dissimiliar

characteristics, we can determine the adequacy of the two procedures.

The directed graphs resulting from ORDER2 and IRS for dataset REAL

are presented in Figures 2 and 3, respectively. Figures 4 and 5 are the

resulting directed graphs.for CLEAN.

Insert Figures 2, 3, 4 & 5 about here

Examination of the directed graphs leads to several observations.

First, graphs obtained by ORDER2 for the two datasets are considerably

more complex than those obtained by IRS. ORDER2 shows more intricate

interrelationships among items on the test. Earlier it was shown that

the two - parameter logistic model converged for dataset REAL satisfying
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Table 6
Item Characteristic with Respect to Procedural Skills

Variable

1

2

Description

S S, S
I

S

L

2I 4
F+F -E-- + 1-- or

L
I 2

Mixed w
+

l L w2 L

S
2

wl L

S
1

S
2

I 2 1 2

S S
2

L w2 L
2

3 Denominators are same

4 One of the denominators is a multiple of the other

5 Two denominators are relative prime

6 Two denominators have a common divisor larger than one

7 S1 + S
2

< L (L is common denominator)

8 S
I
+ S

2
= L

9 S
I
+ S

2
is a multiple of L

10 (S1 + S
2
)/L is a real number larger than 1

11 The answer needs reducing

12 the answer is a whole number

13 The answer is a mixed number

14 The fractions in a questi8n can be reduced.

15 One of the numerators is larger than L (common denominator)

16 Does second fraction need to be reduced?

/
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Table 7
Regression of P

i
on Five Item Characteristics

with Respect to Procedural Skills

Multiple
R R

2
BETA Weights

.937 .878

Item Characteristic Number

3 1 10 16 6

.873 .243 -.315 -.335 -.114
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FIGURE 5: A Directed Graph of Clean Data
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the assumption of unidimensiOnality. One would expect items of a

unidimensional test to be highly interrelated. Comparason of Figures 2

and 3 reveal that by this criterion, ORDER2 more accurately expresses

the data than IRS.

Both methods do a similiar-job in separating out those items which

have noncommon denominators from those which have common denominators.

All graphs show that the procedural skills required to successfully

complete common denominator problems are a prerequisite to the skills

needed to correctly answer noncommon denominator problems. It is

interesting to note that the common-noncommon attribute of an 'item

appears to be the most influential aspect in determining students'

performance. Noncommon denominator problems are not only more

,difficult; by both methods they appear to not be closely interrelated
L

(connected in the directed graphs) with common demonidator problems.

This, moreover, is a reiteration of the results- of the Multiple

regression analysis and lends further--credence to order analytic

analysis.

The multiple regression analysis also demonstrated that the mixed

Fraction (M+M) vs. pure fraction (F+F) distinction was not significant

in determining item difficulty. One would, a pr_Lori, have assumed that

this would be a significant predictor. However, it must be kept in mind

that the procedural network reflects only'method A of solving fraction

addition items. Since all parts of the fraction are added separately,

conversion to an improper fraction is not required, and added procedural

skills are not needed. In this sense M+M problems would dot be much

wore difficult than F+F problems. Again, graphs from both ORDER2 and IRS
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reflect that fact. As discussed earlier, one would"thenassume if items

of M+M and F+F type are similiar in nature then there would be many

relationships or connections 'between and among these items. Again,

ORDER2 appears to display this more fully.

The relationship betWeen items of the type "(S1 +S2)/L is a real

number greater than 1" is assessed differently by ORDER2 and IRS. IRS

graphs for both REAL and CLEAN show a direct relationship between items

of this type. Items 18, 8, 2, and 10, are all connected in a hierarchy.

ORDER2 on the other hand, does not show this. Only in Figure 2, are

two.. items of this similiar type related. Clearly,. ORDER2 was not able

to pick up this relationship among the items while IRS was.

In Figures 2, 3, and 5, items appear that are related to no other

items by a prerequisite or dominance relation. IRS graphs for both REAL

and CLEAN show that item 5 is not clearly dominated by any items nor

does it dominate any other items: Furthermore, ORDER2 for REAL

separated out item 1 from the other items. Intuitively this does not

make sense; items 5 or 1 must be related to other items. 'Thus, these

items must be of a nature (one that is not reflected in the 'graphs) such

that students do not respond to-them in any consistent'manner. In this

respect the performance on any other item is totally, unrelated to

performance, on item 5 or 1. It is then a desirable .quality of order

analysis to separate out items of this nature.

In the Appendix is a copy of the 36 item test administered to the

148 students. Upon examining items 5 and 1, no salient characteristic

appears that would make at',A..vts respond in such amanner. IRT and

classical test ,theory analysis do not flag-.these items. Single item
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groups and their relationship to the hierarcMcal structure of the test

is an unanswered problem in order analysis.

Finally, the hierarchical relationhips between items in SIM1 are

depicted in Figures 6, and 7. By first looking at Figures 2, 3, 4, and

5, and then at Figures 6 and 7, it quickly becomes apparent that the

Insert Figures 6 & 7 about here

simulated dataset, SIM1, did not reproduce the hierarchical structure

among the 18 items. The graphical representation of this data further

exemplifies the inflated higher mean values presented in Table 4.

Neither the graph obtained by ORDER2 (Figure 6) nor that by IRS (Figure

7) are similiar to the graphs obtained by ORDER2 and IRS for REAL and

CLEAN. All the interelationships among similiar items extracted by

ORDER2 have been destroyed. IRS on the other hand, was able to extract

a structure that is somewhat related to the structure of REAL.

It was hypothesized that the extreme a values reflected in Table 2

had a great effect on the ability'of these two procedures to reproduce

the observed data. To test this theory estimated a and b values from

another dataset, REAL2, were calculated. REAL2 contains the binary

responses of the 148 students for 36 items scored by a stricter scoring

procedure. Each item was decoMposed into its numerator part,

denominator part, and whole number part. A response was scored 1 if

each part of the response matched the three parts of the answer;

otherwise it was scored O. It should be noted that this scoring ,

procedure necessitates that the student reduce his/her answer to form,

else his/her response is marked incorrect. Since the procedural network.
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does not account for reducing the resulting directed graphs of ttEAL2,

REAL2 will not reflect the procedUral network. Estimated a and b values

for REAL2 were calculated by GETAB (Baillie, 1982) and are presented in

Table 8. The means and variance of the 36 items are presented in Table 9.

Insert Tables 8 & 9 about here

These new estimated a and b values were then used to simulate 500

response vector. Once again, GETAB (Baillie, 1982) reestimated the item

parameter of NSIM. The twoparameter logistic model converged for this

data and the estimated a and b values are shown in Table 9.

Upon comparing Tables 8 and 10 it becomes quickly apparent that

NSIM closely replicates the items characteristic of REAL2. However, if

one compares Tables 9 and 11 again, great differences in the item means

appear. These differences in item difficulties are reflected in great

(differences in the directed graphs. As before, the hierarchical

structure of the original data is destroyed. Figures 8, 9, and and 11

display this result.

Insert Tables 10 & 11 about here

Insert Figures 8, 9, 10 & 11 about here

Clearly, this type of simulated data should he used with great

caution in quantitative research which assess merits and shortcomings of

various analyses. It was shown that not only can the choice of randon

number generator seeds affect the data, bUt the quality of the original

a and b values used in the simulation can have great affect on the

results. Also, simulation data was shown not tO maintain the

hierarchical structure of the original data. The great differences in
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Table 8
Estimated a and b Values for 36 Fraction Addition Items

From REAL2 (N = 148)

Item a

1 .848 .754

2 1.594 .127

3 1.935 .153

4 2.028 .708

5 1.227 .279

6 1.823 .083

7 2.118 .037

8 .962 .364

9 .950 -1.158

10 1.882 .239

11 1.079 .045

12 1.700 .135

13 .884 .161

14 2.234 .009

15 1.563 -.275

16 2.042 -.930
17 1.977 .156

18 1.426 .173

19 1.498 .210

20 1.365 .198

21 3.368 .219

22 2.065 .708

23 1.382 .348

24 1.828 -.302

25 3.999 -.102

26 1.766 .201

27 .971 -1.240

28 2.879 .428

29 1.440 .205

30 1.610 .472

31 2.101 .686

32 2.490 .122

33 1.573 -.310

34 1.510 -.644

35 1.685 .422

36 1.225 .155
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Means and Variallieeti
I Tom

Table 9
for it Ira i on AddlI t ion I t

REAL2 (N 48)

I

,

item __P_ V
1 .257 .192
2 .392 .240
3 .392 .240
4 .250 .189
5 .351 .229
6 .405
7 .419 :221/53

8 .331 .223
9 .608 .240

10 .372 .235
11 .399 .241
12 .392 .240
13
14

.372

.426
.235

15 .473 .251
16 .595 .243
17 .392 .240
18 .378 .237
19 .372 .235
20 .372 .235
21 .392 .240
22 .250 .189
23 .338 .225
24 .439 .248
25 .453 .249
26 .378 .237
27 .622 .237
28 .338 .225
29 .372 .235
30 .311 .216
.31 .257 .192
32 .405 .243
33 .480 .251
34 .541 .250
35 .324 .221
36 .378 .237
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a and b Values of 36

Table 10
Items Simulated Dataset NS1M (N = 500)

Item a b

1 .718 1.014

2 1.463 .086

3 2.128 .172

4 1.960 .878

5 1.041 .326

6 1.706 .134

7 2.042 .005

8 .711 .420

9 .553 -1.881
10 1.697 .226

11 .734 .044

12 1.773 .082

13 .611 .123

14 2.248 -.007

15 1.285 -.208

16 2.194 -.975
17 2.343 .199

18 1.223 .194

19 1.596 .183

20 1.042 .254

21 3.036 .212

22 1.785 .846

23 1.191 .262

24 1.560 -.188
25 3.406 -.141

26 1.742 .147

27 .877 -1.434

28 3.000 .392

29 1.030 .264

30 1.369 .586

31 1.394 .875

32 2.398 .138

33 1.349 -.472
34 1.337 -.701
35 1.727 .461

36 .963 .151
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Table 11
Mean and Variance for 36 Fraction Addition items

from NSIM (N = 500)

Item
___P___

.484

.308

.454

.256

.426

.508
..114::

.796

.500

.484

.486

.512

.568

.790

4516.

.454

.444

.438

.268

.438

.566

.558

.464

.802

.378

.442

.346

.276

.464

.642

.700

.370

.472

0'2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

-
. 1

.'12V5

.249

..2/311:/::

.163

.247

.251

.250

.250

.250

.246

.166

.247

.249

.248

.247

.247
1.970

.247

.246

.246

.249

.159

.236

.247

.227

.200

.249

.230

.210

.234

.250
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analysis of the properties o
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caused by the distribution} off). Close;

any simulated dataset s requiredhefpre

it is employed in any study.

Summary and Discussion

/

Two order analytic app7;oaches to the analysis of test stru ture
/

have been. presented and described. It was shown that fer_unidimens onal.

. data the Kills and liart procedure more closely reconstructed the

procedural network foy fractionadditlion than the procedure proposed by

Tatsuoka and Tatsuoka based on Takaya'a IRS matrix. Thus,. trying
/

to discover the relationships ;Of procedural skills and to sequence

instruction accordingly, this procedure supplies more infOrmation about

the hierarchicalstructure of tasks. Use of IRS though, appears to be

more appropriate when large amounts of error may be in the data This

is apparent from its ability to extract a structure from simulated data.

Clearly, caution is warranted in the use of simulated data in

quantitative research of the type carried out in this study. It was

shown that not only can the means, variances, a, and b. values, of

simulateZ datasets be greatly affected by the "random" nature of the

simulation procedure and tlie 'original a and b values used as input but

that. the' hierarchical structure of the data is also greatly altered.

The currently used simulation technique is inadequate in reproducing the

data when a set of a values which include exaggerated a's is usecCas the

basis of the simulation. Furthermore, it was shown that this simulation

technique can greatly alter the item difficulties. This may be due to

the fact that the distribution of ability is noLAccounted for in the.

population.
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Research in this area should--tnclude a large scale sampling

distribution study to determine the distribution pr6perttes of simulated

data. A more sophisticated method of generating binary responses which

accounts t6e the destribtuion of 9 needs to be :Aeveloped. a

significancle test and posdibly a test of the differences between two

item charaCteristic curves, should he investigated.
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