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Abstract

Two order thepretic techniques w-~re presented and compared.
Ordering theory of Krus énd Bart (1974) and an extended Takeya’s item
relatiddal structure analysis (IRS) by Tatsuoka and Tatsﬁoka (1981) were
used to exﬁ;acg the hieraéﬁﬁical item structure from three datasets.
Directed graphs were constructed and both,mgfhods were assessed as to,
how welllthey reproduced‘the thebrétlcal structure of'che data. It was
»discove;ed that the Krgs and Bart (L974) procedure nore adequately
represented the complex Lnterrelationships among test data than did the
_extendedFIRS method, Simulated data was found to present maﬁ& problems

and to be inappropriaté for research in this area.




“Introduction

In érder to correctly .sequence blocks of 1iastruction it] is
necessary to discover the underlying relatiouships bethen components of
the instructional unit. Often it. is 1mportanﬁ to uncover tne

j

hierarchical relétionships of procedural tasks and to sequence
instruction to Ffactlitate learning. Tests can pe used to discover this
relationship. - By asséééing the relationships of test 1items, which
reflect components of the instructional unit, educators caa design and
modify curricula. We canv also cheék the exteant to which we have
succeeded in coustracting problems that require a hiérarchy of skills to
be solved. -

Methods _ for analyziﬁg_the relationships among items ‘have existed
for years. These include scalogram analysis»(Guttmaﬁ; 1950; Shevell,

' LQZS)/“and .Loevinger’s t1947) analysis of ‘item homogeneity. More
— : :
recently however, methodologies have been developed to extract the best
fitting hierarchy -from test daFa.

The purpose of this stgdy }s to compare and assess Ctwo of‘ these
procedures, order anzlysis (Ktu;¢§ Bart, 1974; Airasian & Bart, 1973)
and itéh relation étrﬁcture‘anaiysis (IRS) (Takeya, 19481). Both'méthods
will be used to recoﬁstruct a theoretical relationship among fraction
addition test items.

" Drawing from a combinatlon of psychological measurement théory,
formal logic theéry, informatfon theory, and‘graph theoryr concepts,

order analysis and IRS present a general wethod of ordering two or more

j:ems. Both theortes of discovering -the hierarchical relatlonshbs among




.iLems can be divided into two coumponents; 1) defining the order
relation, and 2) extracting the item hierarchies.

Ordering theory ha; been developed to study hierarchical' test
structure., The hierarchical sﬁruéture of a test 1is defined by a network
of prerequisite relations among binary items.(Bart, 1978). Binary data
matrices are analyzed with respect to this relationship. The converse
of tﬁe prerequisite relation i1s the dominance relation. If item i is a
prerequisite to item j then item j dominates item {i. ‘The prerequisite
or dominance relationhip is of primary interest 1in ordering theory.
Briefly, a student is said to doﬁinate an item -if he/she passes that
item, if he/she fails however, he/she 1is dominated by {it. fn the same
mauner, item 1 is'a prerequisite to item j 1f for that student he/she
answers Ltem 1 correctly and item j incorrectly. 1In genecal, item 1 is
said to be a prerquisite to item j if the percentage of students who
answer 1item 1 correctly and item j incorrectly is greater than some
constant.

Ordering analysis (Airasian & Bart, 1973; Bart & Krus,‘ 1973) 1s a
deterministic measurement model which expands scalogram techniques to
- assess nonlinear task netwo;ks. This model wutilizes 1item response
patterns to extract both 1linear and nonlinear prerequisite relations
among tasks (Airasian, Madaus & Woods, 1975). Order analysis uses a set
of primitivel Ibgic fo isolate iogical orders among variables 1in a
hypersbace (Krus, 1978). The basis of an order relation, as defined by
ordef-analysis, is the characteristic of stroug simple orders. ‘Wise

(1981) explains how strong simple orvders havg three pfoperties:

~I
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asymmetry, connectedness, and transitivity. With regard to dominance,

asymmetry implies that elements 1 and j cannot simultaneously dominatc:

each other. Only one itenm Acan dominate the other. Connectadness, on
the other hand, states that there uust be a dominance relationship
between two items 1 and J. The definition of transltivity allows
implied {item—item relationsh}ps. For elements L, j. aund k within an
order, if i dominates j, and j dominates k, then 1 dominat-:s k.

In ordering theory all items must be dichotomously scored. 1f
sub ject k answers item 1 correctly he/sﬁe 1s given a score of 1, while
{tem 1 1is scored 0 if subject k answers it incorrectly. i;ém i is then
defined as a prerequisite to item J 1f the occurence of the response
pattern (O0l) for items i and j is not.found.” Response patteruns (00),
(10), and (11), are referred to as confirmatory patterns and the pattern
(01) 1is called é disconfirmatory response pattern (Bart & KFus, 19;3;
Airaslan & Bart, 1975). Clearly the (00) and (1L)response‘batter%s do
not provide any information as to whether 1item 1 is a prerequisite to
item j. |

Theoretically, there should be no inconsistencies of dominance.
There should be no 1j dominances for some students and Jji dbminances for
others. However, even with unidimensional 1{items such cbnflicting
relations occur in practice due to measurement error. The mnmanner 1in
which item hierarchies are extracted and error in the data is delt with
differs between the two order theoretic methods.

Bart and Krus (1973) originally attacked this problem 1in the

following manner. For any set of items, a matrix which indicates. the



percentage of disconfirmatory response patterns for every palr of {tems
can be produced. Every cell entry will be the percentage of tlmes that
a 0 for the 1th item and 'a L for the 4t jtem occurred. This table of
percentages cau be used to identify item pairs related by a prerequisite
rela;tonship. 1f the percentage 'of disconfirmatory patterns 1s less
than a pgiven tolerance level for any Lj palr, then item 1 can be sald to
be a prerequisite to item j (Bart and Krus, 1973). The tolerence level
sets the amount of disconfirmatory response patteras which will be
allowed 1in defining the prerequisite relattion. Finally, when the
varlous prequisite relations have been defined, a hierarchy amonyg the
{tems can be constructed by applying the trausitivity property. The
hierarchical relationsunips among the items can be graphically
represented by use of directed. graphs. |

More recently, however, McNemar’é,(1947) z statistic for compariug
two correlated frequencles has been applied to analyze the prerequisite
relations (Bart & Krus, 1973). As before, every element of a matrix 1is

assigned a corresponding 24 j value where,

Z.'=_C_—'d_ ’ !

13 (c+d)Li
where ¢ 1s the frequency of (10) patterns, and d is the
frequency of (OL) patterns. Again, a prerequisite relation is asserted
1f the percentage of disconfirmatory cases is less than the percentage
of confirmatory cases. This translates into the condition that the
corresponding z values exceed a predetermined alpha level. This removes

_chance prerequisite relationships due to measurement error.

m
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The Japanese researcher Takeya, starting from the logic of Krus,
Bart, and Alrasian, has prescated 5 different method of ordering called
IRS., As with the Krus and Bart procedure, a blnary data matrix 1s
analyzed 1ia terms of prerequisite relatioaships. Onca agaln, the
prerequisite relationship between items 1 and J is defined as success on
ltem | Is a prerequisite to success OL ltem Jj. That is the response
pattern (Ol) for items 1 and ] respectively, doqs not ocecur. As before,
the problem of the disconfirmatory pattern arises. Here Takeya’s
ordering approach departs from the Krus and Bart procedure.

Takeya (l980a, 198L) consliders the statlistical Lndependence or
dependence of scores obtained by two items. ' We denote a column vector

of a data matrlx Xk j by gj and its complement by §j’ where

If the proportlon of correct and incorrect responses 1s expressed

by
- N
P(6.) = (1/N) ¥ X . s
(~J) (A/ )k=1 ki
and
P(B,) = 1 - P(O, ,
(~J) ‘ (J)

then the proportion of [subjects getting both items 1 and j correct ls
N : .
P(6.,06.) = (1/N X .
(928 = (/M E Xy X

The proportion of subjects getting item 1 incorrect "and item j correct

is _ N
P(8.,0.)= (1/W)E
~1 o~ k=1

a- xki)xkj_ }

im

\.



Takeya thus defines hté coefticient of ordinality, r*lj , 83

* - -
R CRCRVLICIRLI I

Table 1 reflects this relatlon.

Insert Table 1 about here

An IRS matrix ls formed by calculating r*lj for all pairs <. 1 and

jo 1F r*ij ls larger than a |constant, the (1j)-cell is replaced by 1,

otherwise O. \

" However, unlike ovder a&alysis, Takeya’§ dominance relation does
not satisfy the transitivity law. Tor example, if item i dominates Lte&
j, and item J dominates item k; itém L does not dominate item k unless
r*ik > C. Byl his definition  of an order relattonJ implied itenm
dowlnances are not allowed. Moreover, Takeya has not diséussed an exact

procedure for extracting the hierarchical relationships among items from
. i

\ \
the IRS matrix. So, Tatsuoka and Tatsuoka (1981) have proposed a

procedure to extract directed graphs frpm the IRS matrix which uphold
the transivity lﬁw. It is this modified 1IR3 procedure which will be
studied in this paper.

It should be noted that r*ij has a direct gelatfonship- to

Loevinger?’s Hij; Horst (1953) states that H}a is an average $/d ax-

Thus if we define a fourfold contlngency table as

\
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Table 1

Continpency Table of Ltems toand |

b
R,\_\ 0 lotal
) V(e i )
' ‘ P99, P00 P,
i
"o : o a "o
, 0 l(gi,gj) '(9i’93) 1(91)
|
[ ——
total | P(Qi) P(Qi) : 1
AN




i - - o, ‘with b > ¢ -
h| - o . .
-9 a b ct+d , : P(i+i) a.
. — = P, dP = =
, N ant *4/4 P ‘
c | J i/] 1 ct+d .
b+ ” - ’
B N = Pl - .. - \ . \
ﬂoeVinTer’s Hjj can be shown to reduce to R ) )/ ' |
i . - . o .
L ad = be _ . ¢ -
i : _ (ate)(etd) ¢ max
/ Moreover, by defining r* in a similiar‘mgnner . o . o ' T
/ ‘
o o fam-r@on ey o
1 e | d | ctd=2(O)N \
‘ T A !
atc = P(8.)N bt+c = P(8,)N
~1 . -oo~d Yo
. Tagsuoka"(1981) and Sato:(1981) show that F*ij also reduceé to
N ' N . \
ad —be _ ¢ L - V.
(at+b) (b+d) ¢ max "~ ° : it
L -
Thus N
) N
ok N\ =H, =2 .
ij ij ¢ max

Although Loeveﬁger’s work-appeared\{irst, Hij;waSuQevelbped in  another

. . s ‘. / Y

context and . not applied. to éxtracti;;\\hierarchicﬁl relationships amony  1..
nonlinuar task networks._l For this reason the ﬁqg%ure will be referred

-

to.as Takeya’s coefficient qg_grdinality. L
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The putéose dfltnis Daper is to comparz these two(orderltheoret{e
methods aud \to assess | ‘;hich me thod more aceurdtely .~ektracte. a
theoreticel hierarchicali\sttdctufe from binary data.. More ptecisely,
the -order 'relatton‘;deftned bﬁ_ ordering theory,‘and the method of
exttacttng "item. hierarthies ~utilizing a given tolerance level of
disconflrmatory rebponees (Bart & Krub, 1973) will be. wvompared -tdlthe
order relation defined by IRS aand the chain extractton metuod developed.
by Tatsuoka and/%atSuoka (1?81) which’ upholds transitivity. "Graphs
_obteined bx/ the Krus ahd‘ Bart procedure and the extended IRS will be
cdmpared te the procedufal network for fraction addition (Tatsuoka &
Chevalaz, 1983) to see thch'best reprdduceé the theOrethal hierarehy
of fractton addition skills. | e

.. Method

Test and Subjects

Klein, et gl} (1981) described the constructton of a 48-item

t

P

fraction-addition test for diagnosing erronegus rules resulting from
8 S _

misconceptions occurring at one or more levels of the procedural

network. Klein and her. associates constructed the test to consist of

N N

two"parallel‘subtests. Each pair of items was constructed in terms' of

haviag tdehtigal‘ procedural steps. The items refiect a variety of

!

skills which are requirad to corr/ctly add two fractions of varying

types. Figure 1 1is the proeeduﬂpl network for fraction addition as
v - : -

préééﬁted in Tatsuoka and Chevalaz (1983).

Insert Figure 1 about-here

In an effort to assess and rompare the Krus and Bart procedure and

[

the modified IRS, the 48—item frattton test was administered to 1438
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seventh and elghth grade studeats. After extensive~ logicai error/

analysis (Klein, et al., 1981), and extraction of a- undimen51ona1 subset

~

of items by GETAB (Baillie, 1980), 36 items were retained for study.

The estimaLed a’s and b’s of ,the two-parameter 1ogistic model for the 36
— /

items were calculated by GETAB (Baillie, 1982) along with the means and

‘variances and are presented in Tables 2 and 3.

“Insert Tables 2 & 3 about here

Datasets - ' S

— .. Three different datasets, REAL, CLEAN, and SIML, were employed in
. this study. Dataset REAL contains tne binary responses for 148,student5
on 36 items. To avoid contamination by reducing task erors, the

students’ first nonreduced answer was chosen as his/her response. Each

open—ended . -ponse was then converted into a decimal number aund

compared to a decimal number answer key. TItems were given a vaine of 1
- : ‘

if the response and answer key matched and O otherwise. With-this

_scoring procedure, choice of various common denominators or failure| to

|
[

reduce answers would not affect scoring. _ ' |

‘Klein, et al., (1981) stated that there are two methods of solving
. /

fraction addition problems. = The’ procedural. network presented ;here,

however, - only reflects Method A\ of solving fraction additinn praLlems.

i

' .
In this more commonly used method students add the wholc ﬁumber,
' N -/

denominator,'vand nuneratnrj parts' separately. On the othéﬁ\ hand,
.students who-emnloy Method - . B firet convert all mixed fractiqns to an
improper fraction‘tnen add and reduce. Dataset CLEAN 1is a gubset of
b REAL which consists of only those 119 students who used Method A when

adding fractions. /

16
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Estimated a and b Values for 36 Fraction Addition Items

Table 2

From REAL (N = 148)

- Ltem _a_ b
1 .387 -.267
2 1.156 ~.098
J 3 4,924 .368"
: 4 2.756 547
5 .523 ~.968
. 6 1.656 ~.419
7 2.972 .295
- 8 .738, ~.490°
9 1.561 ~.734
10 2.562 - .236
11 - 1.287 ~.503 «
12 3.646 406
13 1.166 ~.402
B L 14 8.637 374
15 1.525 ~. 444
16 1.523 -.801
17 2.914 .398
18 1.996 ~-.302
19 1.100 ~.391.
20 1.336 ~.386
21 4.819 419
22 3.920 .554
23 1.493 -.195
24 1.591 -.431
- 25 4,287 317 ¢
26 1.439 -.329
27 2.568 -i478
28 7.694 428
29 2,206 -.348
30 3.579 494
31 1.036 -.483
- 32 5.560 .399
33 1.221 -.523
34 1.500 ~.637
35 4.579 .527
36 .927 -.532
17

13
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| Table 3 B
Means znd Variances for 36 ~ raction Addition Items N = 148)

Item u g
1 . 459 .520
2 486 .252
‘ 3 419 .245
- \\\\ , 4+ .318 .218 -
5 574 .246 \
6 J581 .245 '
7 426 .246 /
. 8 534 .251
v , 9 .635 .233
\ , 10 .439 .248
\ o 11 .581 245
N\ - 12 .392 .240
> - 13 .554 .249
14 432 L247
© 15 .581 ° .245
16 .642 .231
17 .384 .238
18 .568 247
19 L4577 .249
20 .561 .248
21 L399 - .24l
22 ¢ .324 O .221 :
23 .527 251 -
24 .581 . .245
25 432 247
26 .554 .249
27 .608 .240
28 . 412 244
29 . .581 .245
30 .351 .229 .
31 .561  .248
32 L412 244
33 .581 .245
34 .615 .238
35 L3450 .227

36 .561 .248
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A‘simulated\dataset, SIMl, was generated following a comuonly used

e , A - : v
simulation procedure. ﬁirét a pseudorandom number generator yielding a

normally distributed set with mean O and variance 1 was used to simulate

ability levels for 5Q0 simulees. ‘The probébility that a given simulee

would pass a specific)|item was given by

L 4
. 1 N

P .(8) = — — \

|1 " lte 1.7a(® b) ) . )

where a and b are the, estimated a and b based on REAL \gnq
' k!

presented earlier (Lord, 1980). _ Next a random number between 0 aud\L\g
was generated from a uniform distribution and compared to Piee); I1f the

probability of passing the item waeﬂgreater than the random number, the
: ) ]

simulated response was given a value of 1; conversely, -1f_ the
: probability of passiné the item was less than the 'raudom number the

simulated response was 0. 1In this manner 500 simulated respoase vectors
: / - . .
. J
. j
of 36 items were generated.
’ / \ '
To test the adequacy of SIMLl reproducing the qﬂalities ‘of REAL,.

GETAB was used to reestimate the item parameters. It was found,

however, that the two—-paramater logistics model wou]d not'converge for’

i

the simulated data. Furthermore,'traditioni; item analysis showed that

t o

SIML differed greatly from REAL. To further ook at the plausibility of
using simulated data, four wore simulated d;%asets, SIM2, SIM3, SIM4,
and. SIM5, were generated using differeﬁt\random number seeds. jkgain,

| ‘ . } . . -
the two-parameter logistic model would not converge for these datasets.

The means, variances, and closest estimates of a and b for the 36 items

~

and all five datasets are presented in Tables 4 and 5. N\ o

- Insert Tables 4 & 5 about here ;

\)A ' | . 19 ‘ . \‘\\




Table 4

Mean apd Variance of 36 items for Five Simulated Datasets

\ Sim 1

[tem Sim 2 Sim 3 Sim 4 Sim 5
N g2 ' o " g o 2 I g2
1 558 047 | .524 .250 | .524  .250 | J544  .249 | .528 ,250
2 554 248 | .570  .246 ¢ J554 248 | .538  ,249 | .558 247
3 382 .37 | L3780 .236 | .336 L2246 | 326 L2109 | .364 0 .232
4 320 .218 | 326 .220 | .308 214 | (284 204 | .302 .21
5 674 .220 | 4688 .215 | .666  .223 | .684 .217 | .684 217
6 642,230 | L6764 .220 | .636  .232 | .650 .228 | .626 235
7 416 243 | L4606 L2401 | L3900 L2386 | 384 (237 | L4120 242
8 642,230 | L646  .229 | .658  ,225 | 646 .229 | .658 225
9 728,198 | L7146 .205 | 682 L2017 | 696 212 | .754 186
10 454 048 | 454 248 | L406 L2462 | L4100 242 | L4520 248
11 670 222 | .692 214 | Lo4b L229 | 646,229 | 674 .220
12 354,229 | L378 .236 ¢ L346 ...227 | W312 .215 | .368  .233
13 650 - .228 | 630 .23 | .622  .236 | L6038 239 | .636 .232
14 376,235 1 .378 0 .236 ¢ L3680 227 | .238 L2201 | 372 L234
15 620 .236 | .64 .z | L6168 .237 | J6i6  .237 | .638 .23l
16 752 187 | L762 182 | L7387 194 | .72 187 | L7346 196
17 362 L2310 | L3720 L% | 336 w226 | L3180 L217 | L3720 o234
18 626 . .235 | .638  ,231 | 604 .240 | .590 " .242 | .602 240
19 608 .239 | .642  .230 | .616 .237 | .616 .237 | .626 .235
20 632 .233 | .646  .229 | .618 .237 | .606 .239 | 642 230
21 376 .235 | 370 L2346 | .336 L2264 | L3260 220 | .354 229
22 336 L2246 | .328 L2201 | .308  L2l4 | L276 .200 | .302 211
23 580 L2446 | J578  L244 | .572  L245 | (544,248 | .580 - .244
o 654 .227 | L6700 222 | .652 L2217 | .650 .228 | .674 .220
25 . .398 240 | .388 238 | 392 .239 | .364 - 232 | 404 241
26 638 L2301 | .630 .234 | .591 L2401 | 624,235 | .636 232
277 662 L2024 | J683  L215 | .648 2229 | .664 224 | .T12  .205
28 376 .235 | .358  .230 | .322 .219 | .3l6 L2170 | W34 225
29 626 235 | .56 .207 | .616 L2371 | 590 262 | .614 .237
30 340 .225 | J346 227 | W324 0 219 | L84 .204 | ,318  .217
31 664 L2246 | .672 221 | .648  ,229 | 4616 237 | .654 .227
32 3920 0239 | L3740 235 | .352. .229 | .336  .224 | .354  .229
33 6881 215 | .682 1217 | .654 .227 | .654 .227 | .696 .212
34 .690 \ 914 | .702 L2100 | .662 L2246 | .678  .219 .| 694,213
35 332 4,222 | L3200 218 | .290 .206 | .262 .194 | ,304 212
36 672 221 | o.612 .238 bo.6l4 ,237 1,648 229

620 1,236

-—
"~

o

ST .



] Table 5
a and b Values of 36 Items for Five Simulated Datasets

Item Sim 1 Sim 2 Sim 3 Sim 4 Sim 5
a - b a b. : a b a . b a b
1 .237 -.228 .272 . .087 ° .122 .350 .165 -.270 .069 .580
2 1.257 -.017 1.198 -.093 1.067 , -.027 1.019 -.205 1.623 -.056
3 7.284 . «5C4 8.035 491 7.052 .535 6.073 .615 7.516 404
4 3.172 .681 3.634 " .635 3.583 .625 2.627 .759 3.511 .580
5 .288 -1.359 .336 -1.337 .410 -.925 .296 -1.514 .333 -1.294
6 1.470 -.313 1.618 =-.424 1.496 -.268 1.548 -.384 1.590 -.259
7 2.857 416 3.608 .430 4.384 .435 3.583 .469 3.304 .315
8 .551 -.585 .592 -.594 .533 -.674 .428 -.813 .637 -.616
9 1.408 -.653 1.492 =-.590 1,723 -.401 1.437 -.565 1.889 ~.651
10 2.687 .310 2.895 .297 3.504 .400 2.437 -.397 3.321 .221
11 - 1.086 -.481 1.110 -.576 1.271 -.330 1.159 -.419 1.281- =~.454
12 3.921 .576 4.907 494 5.820 .520 3.597 .656 6.306 .398
13 - 1.381 -.352 | 1.119 ~-.325 1.318 -.240 1.138 -.273 1.052 -.359
14 .19.276 .523 “|15.287 .490 11.039 .512 2.004  .597 1.958 .383
15 1.629 -.220 1.388 -.332 1.675 -.189 1.097 -.309 1.510 -.303
16 1.875  -.689 | 1.336 -.822 1 1.851 ~-.587 | 1.556 =.771 2,150 =.557:
17 .. 3.672 .557 3.750 512 5.079 .527 3.024 .648 3.945 401
18 "7 2.154 =.221 1.601 -.298 ' 2,157 -.129 1.600 -.173 1.865 -.172
19 1.142 . -.224 ~ 930 -.415 1.192 -.235 919 -.342 1.276 -.289
20 " 1.155 -.315 1.293 -.359 1.146  -.248 1.084 -.273 1.305 -.339
21 5.200 , .517 7.621  .511 13.158 .529 5.035 .612 7.416 423
\22 4.117 .621 3.979 .626 6.280 .592 4,018 - .748 | -4.836 ~ .554.
23 1,360- -.103 1.122 -.128 1.562 -.059 1.392 -.061 1.671 -.118
24 1.558 -=.348 1.541 -.417 1.402 -.333 1.395 -.399 . 1.552 -.415
25 5.735 465 4.433 470 5.284  .431 4,126 .521 5.129 .329
26 1.419 -.304 1.354 -.293 1.634 ~.129 1.505 -.296 1.648 -.285
27 2.190 -.339 2.296 -.433 2,564 -,248 1.840 -.415 2.831 -.454
28 13,009 .521 |10.033 .540 2.004 . 541 7.197 .631 10.408 443
29 2.057 -.224 1.746 ~-.343 1.914 -.175 .617 -.175 2,137 -.195
30 3.803 .614 6.250 .571 ' 5.173 .567 3.901 . 727 4.382 .521
31 1.035 -.468 .920 -.549 1.016 -.386 .865 -.354 .908  -.4G7
32 11.555 487 6.235 .502 7.911 .506 6.094" .587 12,117 Jalh
33 1.044 -.569 '1.083 -.541 1.220 -.367 .887 -.573 1.504 -.564
34 . 1.656 -.470 1.480 -.544 1.831 -.325 -] 1.257 -.523 1.530 L485
35 5.833 .620 6.047 .636 11.861 . 606 4,874 .776 5.687 - .539
36 .979 -.298. .911 -.552 1.267 -.229 .973 -.322 .990 -.420
’ 21
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Clearly the qhoice ‘of the random nﬁmber generator seed or the
“randomness” has.awgpgat effect on the results of the simulation. This
counter—intuitive result warrants c;ution in the use of simulated -data
in quantitative research. However, SIMl, was érbitrarily'qﬁosen fox
inclusion in this study to Qetermine if simulated‘daﬁa will  reflect the

hierarchical item patterns in real data.

t4

Order Analytic Procedures .

| To determine the’ capability of the Krus and Bart (1974) and the
Tatsuoka and Tatsuoka (1981) procedures for extractiqg item hierarchies,
all three datasets were analyzed and compared to the procedural network:
However, only the £first Subtést of 18 iteﬁs will be inclpded iﬁ Ehe
analysis. This will aid in the interpretation as the éraphs will be
less complex. The prdgram ORDER?, written by Antonak, Bart, and Lele
(1979), extracted prerequisite relationships " by the Krué and Bart
procedure, while the mddified Takeya analysis was .carried out Dby IRé
(Baillie & Tatsuoka, 198l1). A tolerance level of 5% was chosen for the
Krus and Bart procedure based on récommenﬂations in the literature
(Airaslan and Bart, 1975; Airasian, et -al., 1975). Baséd on Takeya’s

|

guidelines (Takeya, 1980b) the cutoff for r*;, was set at .5.
1]

Bfgreséigg_ﬁnalxgig

Finally, a multiple regression analysis was perforﬁed to assess
which, and to what extent, item characteristics 1influenced item
difficulty, 1l.e., students’ performance. Eaeh item waé(dichotomously
scored on 16 charactersitic variables, such as (1) fraction is of ¥+F

type or (3) the denominators are the same. The variables were coded 1

22
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if the item possessed that quality and O otherwise. TItenm difficulty, Pi,
was selected as the criterion , and the 16.characteristic variables were
" selected as predictors. The 16 characteristic variables are presented

in Téble 6.

Insert Table 6 about here

Results
The outcome of the mulﬁiple regression'analysis indicates thaﬁ the
linear combination of only five itenm characteristiclvariables account
for 877 of the variance‘in item difficultly. Vargables 3, 1, 10, 16,
and 6, had a significant effect on Students’ ﬁg;formance. Table 7 

presents these results.

Insert Table 7 about here

0§1y these five significant item/ characteristics wili be
represented in the directed graphs. By followingt;the relationships
reflected in the graéhs between items with Similfér and dissimiiiar
characteristics, we can determine the adequacy’oflche two prbcedures.

The directed graphs resulting from ORDER2 and 1IRS for dataset REAL
are preséﬁted in Figures 2 and 3, respectively. Figures 4 and 5 are the

resulting directed graphs.fdr CLEAN.

Insert Figures 2, 3, 4 & 5 about here

Examination of the dirécted graphs leads to several observations.
First, graphs obtained by ORDEK2 for the two datasets are considerably
more compléx than 'those obtained by IRS. . ORDER2 shows moré intricate
interrelationships among items oﬁ the test. Earlier it was sthn that

the two-parameter logistic model converged for dataset REAL satisfying

23




Table 6
Item Characteristic with Respect to Procedural Skills

Variable ' Description
S S S S
1 2 1 2
1 F+F L + I or i + I
1 2
S S S S
2 Mixed w1 - + w2 Eg , wl-EL + Eg s
1 2 1 ‘2
51,2
L1 2 L2

3 Denominators are same

4 One of the denominators is a multiple of the other
5 Two denominators are relative prime

6 Two denominators have a common divisor larger than one
7 S1 + 52 <L (L is common denominator)

8 S1 + 82 =L

9 S1 + 82 is a multiple of L
10 (S1 + Sz)/L is a real number larger than 1
11 The answer needs reducing /
12 the answer is a whole number
13 -~ "The answer is a miXed number
14 The fractions in a questién can be reduced
15 One of the numerators is/larger than L (common denominator)
16 Does second fraction need to be reduced?

/

/




21

Table 7 o .
Regression of Pi on Five Item Characteristics

with Respect to Procedural Skills

Multiple 2
R R "~ BETA Weights
. Item Characteristic Number
3 01 10 16 6
.937 .878 .873 243 =.315 -.335 -.1l14

Do
¢
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the assumption of unidimensionality. One would expect Ltems of a
unidtmensiopal test to be highly interrelated. Comparason of lklgures 2
and 3 reQeal that by this criterion, ORDER2 more accurately expresses
the data than IRS. v : | N

Both methods do a simiiiar-job-fd“éeparatlng out those items which
-héve noncommon denoﬁinatoré from thosé which have common denoﬁinators.
All graphs show that thé procedural skills required ;o successfuily
complete common denominator problems are a érerequisite to‘the skills
needed to correctly answer“nohcommon ‘denominator;‘probléms. It s
interesting to note that the common-noncommon attribute of an "item
appears to be the most 1influential aspect in‘detérmining stqdents’
perfo;manée. Noncommon denominaéor ‘ problems afe not only more
difficult; by bo;h méthods they appear to not be closely interrglated

(_/__ {

(connected 1in the directed graphs) with common demoninator problems.
. / .~ .

4
/

This, moreover, 1is a reiteration of the results - of the multiple

regression analysis and lends furthe;mucre&ence to order analytic

analysis. M

.

) S ) A ' B
The multiple regression analysis also demons;rated that the nixed

fraction (M#M) vs. pure fraction (F+F) distinction was mot significant

~

in determining itevaifftcultyJ“ Oﬁé“ﬁdﬁldf”ﬁ“ptiori}ihave'assumed that
this Qould be a sigqiftcant‘ptedictori However, 1t must be_kept in{mind
that the procedurélanetwork reflects oniyjmethod A of solving'fractton
addition items. ‘Since all parts of ‘the f;actton are added .3eparately,
converslon to an i@prbper fraction is not requi;ed, énd_added procédﬁfal
skillé'are .not needed; In this sense- ﬁ+M proBléms Qould not be much

more difficult than F+F problems. Again, graphs frowm both ORDER2 and IRS

r

3¢

~
\“
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reflect that fact. As discussed earlier, one would then assume 1f items
of M¥M and F+F type are similié} in nature then there would be wany

relationships or connections ‘between and amoné these items. Again,

ORDER2 appears to display this more fully.

The relationship between items of the type "(S1+Sp)/L is a real
.number greater than 1" is assessed differently by ORDEK2 and IRSf IRS
graphs for both REAL and CLEAN show a direct relationship between items
of this type. Items 18, 8, 2,land 10, afé all counected inﬂa hierarchy.
ORDER2 on the other hénd, does not show tﬁis. Only iﬁ Figure 2, are
'two“Ltemé of this similiar type related. Clearly;\ ORDEﬁé ;as not able.

to pick dp this relagionship among the items while IRS was.
In Figufes 2, 3, and 5, items appear that are related to no other
Aﬁ;tems by é prerequisite or dominance relatioun. IRS graphs for both REAL
and CLEAN show that item 5‘ is not - clearly dominated by any items nor
does ié dominate any other itemss ’ Furphermoré, .QRDERZ for _REAL
separated out item 1 from the otheg items. Intdttiveiy ‘this does not
make sense; ite@s 5 or 1 wust ‘be rélatéd to bpher item§;l f£;é;v£Hesé
items must be of a natufe (oné that is not reflected in fﬁe'graphs) such
that students do not respond to them in any'consistent'manner. In this
respect the performance on any other ite& is '_;otailyj unrelated to
performance, on item 5 onf }} It 1s ﬁhen a desifablé« quélity of order
analysis to separate out items of this nature.
In the Appendix is a copy of the 36 item test administeredlto the
148 studgntsl Upon examining items S:andll, no salient characteriétic
appears that would make gtudenfé 'responq in such a’qanner. IRT .and

classical test . theory analysis do not flag- these items. 'Singie item
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... groups and their relationship to the hierarchlcal structure of the test
is an unanswered problem in order aualysis._ !
| Fiually, the hlerarchical relationhips between _items in SIM1 are
depicted in Figures 6 and 7. By first looking at Figures 2, 3, 4, and

5, and then at Figures 6 and 7, it quickly becomes apparent that the .

Insert Figures 6 & 7 about here

simulated dataset, SIMl, did not reproduce the hierarchical structure
smong‘the 18 iteus. The graphical representation of this data further
exemplifies the‘ inflated higher mean values presented 1in Table 4.
Neither the graph obtained by ORDER2 (Figure 6) nor thatbby IRS (Figure
7) are similiar to the graphs obtained by ORDER2 and IRS for REAL and
CLEAN. All the interelationshioS' among Similiar items extracted by
ORDER2 have been destroyed. IRS on the other hand, was able to extract
a structure that is somewhat related to the structure of REAL.

It was hypothesized that the extreme a values reflected in Table 2
had a great effect on the ability'of these two procedures to reproduce
the observed data. To test this theory.estimated a and b values from
another dataset, REAL2, were calculated. REAL2 contains the /binéry
.responses of the 148 students for 36 items scored by a stricter scoring
procedure. Each 1item was decomposed 1into its numerator part,
deuominator part;'and whole number part. A response was scored l‘:if
each oart of thev response 1matched the three. parts of the ansuer;
‘otherwise it was scored 0. It should be noted that this scoriug
procedure uecessitates that'the student reduce h}s/her answer to form,

else his/her respouse is marked incorrect. Sincelthe procedural uetwork:
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does not account for reducing the resultlng directed graphs of whaL2,
REAL2 will not reflect the procedural network. W®stlmated 2 and b values
for REAL2 were calculated by GETAB (Baillie, 1982) and nre'presented in
Table 8. The wmeans aﬁd.vgriance of the 36 items{are pres;nted in Table 9.

e

InsertiTables 8 & 9 about hera

i e s et o -

These new estlmated 4 and b values wére then"uued té slmulate 500
regponse vector. Once again, GETAB (Baillie, 1982) reestimatéd the item

parameter of NSIM. The two—parameter logistic wmodel couveryged for this
data and the estimated a and b valaes are shown in Table 9.

Upon comparing Table§ 8 and 10 it becoumes quickly apparent that
NSIM closely replicates the items ch;racteristic of REAL2. However, if
one compares Tables 9 and 11 agailn, great differences in the item méans
appear. These differences in 1item difficu¥ties are reflected in great
‘differences 1in the directed grapls. As Dbefore, thé hierarchical
structure‘of the original data is destroyed. Figufes 8, 9, and and 11

'

display this result.

Insert Tables 10 & 11 about here

Insert Figures 8, 9, 10 & 11 about here

Clearly, this type of‘ simulated data should be used with great
caution in q;antitattve research which assess merits and shortcomings of
various analyses. 1t wés shown that not only can the choice of randon
nunber generator seeds affect the data, bit ﬁhe quality of the original
a and b values used in the simulation can have great affect on the
results. Also, simulatinn data was shown not to maintain the

hieraréhical structure of the original data. The great differeunces in



Table 8
Estimated a and b Values for 36 Fraction Addition Ttems
. From REAL2 (N = 148)

ltem _a_ b
1 .848 .754
2 1.594 127
3 1.935 ~ .153
4 2.028 .708
5 1.227 .279
6 1.823 .083
7 2,118 .037
8 .962 .364
9 .950 -1.158
10 1.882 .239
11 1.079 .045
12 1.700 .135
13 .884 .161
14 2,234 .009
15 © 1,563 ~.275/
16 2.042 -.930
17 1.977 .156
18 1.426 .173
19 1.498 .210
20 1.365 .198
21 3.368 .219
22 2.065 .708
23 1.382 .348
24 1.828 -, 802
25 3.999 -.102
26 . 1.766 .201
27 .971 -1.240
28 2.879 . .428
29 1.440 .205
30 1.610 472
31 2.101 .686
32 2.490 122
33 1.573 -.310
34 1.510 -.644
35 1.685 422

36 1.225 .155




Table 9
Means and Variaoces for 36 Fraction Addition Ttems
! from REALZ2 (N = 148)

|
v ] e b o et b e S o et S e e

Leem o o
1 .257 .192
2 . 392 . 240
3 .392 . 240
4 .250 .189
5 . 351 229
6 .405 L2473
7 419 245
8 . 331 223
9 .608 . 240
10 372 .235
11 . 399 L2401
12 .392 . 240
13 .372 .235

14 426 . 246
15 473 .251
16 . 595 243
17 . 392 . 240
18 .378 .237
19 ° .372 .235
20 .372 .235
21 .392 .240
22 .250 . 189
23 .338 .225
2 .439 .248
25 +453 .249
26 *.378 .237
27 .622 .237
28 .338 .225
29 .372 .235
30 311 .216
31 .257 .192
32 . 405 . 243
33 .480 .251
> 34 .541 .250
35 . 324 221
36 .378 .237
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‘ Table 10
a and b Values of 36 Ltems Simulated Dataset NSIM (N = 500)

ltem A b
L .718 1.014
2 1.463 .086
3 2,128 172
4 1.960 .878
5 1.041 .326
6 1.706 134
7 2.042 .005
8 711 420
9 .553 -1.881

10 1.697 .226
11 . 734 044
12 1.773 .082
13 .611 .123
14 2.248 . -,007
15 1.285 -.208
16 2.194 -.975
17 2,343 .199
18 1.223 .194
19 1.596 .183
20 1.042 .254
21 3.036 .212
22 1.785 . 846
23 1.191 .262
24 1.560 -.188
25 3.406 -.141
26 1.742 147
27 .877 -1.434
28 3.000 .392
29 1.030 .264
30 1.369 .586
31 1.394 .875
32 2.398 .138
33 1.349 -.472
34 1.337 -.701
35 1,727 461
36 .963 .151




Table 11
Mean and Variance for 36 Fraction Additlon Ttems
‘ from NSIM (N = 500)

ftem e _11&
1 . 308 214
2 . 484 .250
3 LAU54 .248
4 .256 .191
5 426 . 245
6 LA68 .249
7 . 508 . 250
8 422 244
9 .796 .163

10 440 . 247
i1 . 500 .251
12 . 484 . 250
i3 486 .250
14 .512 .250
15 .568 . 246
16 .790 . 166
17 b « 247
18 .456 . 249
19 454 248 7
20 Lh44 247
21 .438 . 247
22 .268 1.970
23 .438 . 247
24 .566 . 246
25 .558 .246
26 464 .249
27 . 802 . 159
28 .378 .236
29 442 W 247
30 . 346 227
31 .276 .200
32 464 .249
33 .642 .230
34 . 700 .210
35 .370 .234
36 472 .250
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' item means may, however, Be' caused by the distributio of 6. Clrs

analysis of - the properties o% any simulated dataset is required before

1t 1is empioyed in any.study.

-

Summary and Discussion

Two order analytic appryoaches to"the/analysis of test stru ture

/ -
hiave been. presented and described. It was,éaown that for .unidimensional -
- / . . - -

. data the Krus and Bart procedure more closely reconstructed| the
procedural network foy‘fractiou_addigion than the procedure proposed by
- S / . L
s '

" Tatsuoka and Tarsuoka' based on Takaya’s IRS matrix. Thus, when trying
to discover the re1ationships',of proc;dural skills' and lto seﬁuehce“
instruction accordingly, this procedure supplies more information about
the hierarchical structure“;% tasks. “Use of IRS theugh, appears tolbe&
more appropriate yhen'ﬁlarge amounts of error may be in the data. ~ This
is apparent from its ability'rd extract a structure from's;mulated data.
Clearly, caution is warranted in ‘the use ‘of simulated data in

quantitative research of the type carried out in~ this study. It' was

shown that not only can the means, var;ances, a, and b values, - of

simulated datasets be greatly affected by the "random nature of the -
simulation brqcedure and‘the"origiual a and b values used as inﬁut but
that. the hierarchical structure of the data is also greafly altered.

" The currently used simulation technique is inadequate in reproducing the

" data when a set of a values which include exagberated a’s is used ias the

basis of the simulation. ' Furthermore, it was shown that this simu lation

S \

technique can greaqu alter the item difficulties. This may be due'to
the fact that the distribution of - ability 1is not.,accounted for fp the.
population. ' , ‘ \

§
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Research .-in this _area should ' -include a large scale sampliag
distribution Study to determine the distribution prbperties of simulated

data. A more sophisticated method of géderating binary reéponses which
o 1 . ' v . . :
accounts fBY¥™ the destribtuion of 8 needs to be ''developed. ‘Also, a
signiftcancp test aad possibly a test of the differences between two
] - » S . -

. H , ) " .
item characteristic curves should be investigated.
- /l\ . .
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