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LONGITUDINAL NETWORK | ANALYSIS USING MULTIDIMENSIONAL SCALING
. RBSTRACT S

This paper proposes that a varlant of metric multldlmen81ona1
scaling, the Galileo System (tm) be wused to analyze -over-time
changes in social networks. The paper discusses the theoretical
necessity for the use of these procedures and the methodologlcal
problems associated with  their;/ use.  Next, it examines the air
" traffic network among 31 major American cities over - the 14 year
period, 1968-1981. 1t demonstrates how the proposed.method provides
insights into ' activitiese “within the network and how exogenous .
.factors such as, the pnysical distances among the nodes, changes
within the airline industry and economlc conditions 1mpact upon the
changing network structure. v , :
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LONGITUDINAL NETWORK ANALYSIS USING MULTIDIMENSIONAL SCALING 1

INTRODUCTION

A social network may be precisely defined by a N x N matrix s,

where N equals the number of nodes or interacting units in the
network. 2 - The value in each cell (sij) is some measured attribute

“of the relationship or 11nk ‘between nodes i and j. In communication

research, the value . generally  the frequency of communication

"often weighted by the percelved 1mportance. While -there exist a

variety of techniques for analyzing-this matrix, sociometry (Moreno,
1934), matrix manipulations (Forsyth & Katz, 1946; Festinger, 1949),
network analysis (Pitts, 1979; Richards [NEGOPY], 1974; Breiger, et
al. [CONCOR], :1975; Bernard & K111worth [CATIJ], 1973; Alba [COMPTL],

1973) and. multldlmenslonal scaling (Goldstein, et al., 1966; Jones &

.Young, 1972; Lankford, 1974), none of these methods is clearly

superior for the analysis of  sociometric .data and all are incapable

of precisely describing changes in networks over time. A variant of

- metric multidimensional . scaling, the Galileo ‘System(tm) (Woelfel &

Fink, 1980), ‘however, may be used ‘to precisely analyze over-time
changes in social networks (Gillham & Woelfel, 1977), and to provide

.insights into  the: nature of networks (Barhett, - 1979). This paper

will discuss the theoretical necess1ty for using these procedures
for ‘the analysis of -network data and certain methodological problems

-associated with: this approach. - These problems include the

spec1f1catlon of a mathematical transformation ' to’ change . network

data 1nto the proper form for multldlmenslonal scaling and under

" which conditions to apply one of many alternative ‘rotational

algorithms.which describe how networks change. It will then examine
the  Bmerican air traffic network to demonstrate the .utility of the
method for 1ongltudlna1 network analysis.. '

, Although var1ants of network analys1s have been appiled to

~ study social and organlzatlonal structure for nearly fifty years,

r,_\\

little progress has been-made in developing procedures to-‘ study
change - in networks. - Changes in. social networks may be caused by
external factors such- as’technologlcal 1nnovatlons or iinformation
made  available to the members of the system, or internal factors,
such as the growth of an organlzatlon or the departure of ' a ~member
from the system. The cr1t1ca1 p01nt is that social networks do

' change over time. - | , | //

Rogers and. K1ncaxd (1980) report few over time studles in their

frev1ew of network: -analysis. Pg the reported studies were,

Lloyd-Kolkin's 1nvestlgatlon the evolution of ‘11 R & D

.~ .organizations into " an 1ntercounected system 'over 'a nine month

7'_perlod- Stern s -(1979)' historical .study of the NCAR; Freeman and

'fFreeman s (1979)" 'stuay of. computer—based teleconferencing among

network - scholars; and,g'Morett—Lopez 5 (1979) research on network

'?‘stab111ty in Monterrey, Hex1co s slums.
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Burt and Lin (1977) developed a structural equation model ‘to.
- describe change’ in network structure over a 95 year period in the
‘United States. Performing a content analysis of archival records
(the. front page of the New York Times), thev formed sociomatrices
based on the structural equivalence of .actor: categories averaged
over a four: year period. They reported that over time greater

attention was paid to membérs of government agencies and less to
1nd1v1dua1s connencted to polltlcal part1es or business leaders.

Roberts and O'Reilly (1978) examlned the communlcatlon networks
within three 1nterre1ated high-technology Navy organlzatlons at two
points in.time. The first was three. months after the unit was
established and the second was a year later. Using Richards's
*(1974) procedures, they found that the ratio of participants to
.isolates was roughly consistant, the limited" change which .occurred
was in the direction from isolate to part1c1pant, rather than in
reverse, and that network integration increased over time. The
number of group membaers and groups were greater at time two. = While
group size remained - relatively stable, the interconnections among
the groupsvincreased. : , . : '

The dynamic nature of soc1a1 networks h_s not been studies for
two. major - reasons. -One, the data generally gathered by social
scientists has predominately been cross-sectional ' rather thar
longitudinal (Rogers. .& Kincaid, 1980). . And, two, there have not
been- procedures to analyze over time network data. - - This paper
presents -such a nethodology, “the Galileo "System (tm) of metr1c
multldlmen51ona1 scaling. It was designed to study the changeS‘ in

distance = matrices (11ke S) under a variety of theoret1ca1

constraints. | . ‘ _ ‘ , } /

B

This change from analyzlng networks as static structures to
dynamic ent1t1es is’ theoretlcally 1mportant for: communlcatlon.
- Perhaps : slngle var1ab1e - more. central . to the study of
’ communxcatlon than  time : (Barnett,. :1982a) .- Communlcatlon- is-
un1versa11y defined ‘as_a process whereby  information 'is. exchanged

', among systems. = However, while there has ‘been considerablé verbal

theorlzlng about the communication process, little has been done to
empirically ‘demonstrate these processes.v1 This may ‘be ‘due to the
lack of precise procedures to measure the structural’ change ~which
‘results from the exchange of ‘information among social networks. As
a “result, there "has * been little advancement in theory ‘about
communlcatlon rnetworks. . The proposed ‘procedures will. ‘make ‘it
-possible . identify descrepanc1es between verbal ~theory * and
empirical‘ obervatlons.;f Thus, ~theories can be adjusted ‘to account

for these: descrpanc1es. Thus, adoption  of these procedures  will
allow for rap1d growth of communlcatlon theory. R : I

’

. - . K . [
T i
~, . . .



. THEORY

Implicit to any theory of networks is the notion of
"betweenness" That is, cne node (a) lies between two others (b &
c) such that information passed between nodes b and c almost always
goes through node a. B and c Trarely . communicate 'directly. This
would . be the case: if node &a were-a central switching facility
(Schwartz, 1977) or a liaison in &  social organization (Rogers &
Agarwala-Rogers, 1976). In terms .0f tha communication distances
among the nodes, a is very close-to b and c, but b and ¢ are qulte,
—far from one another.-—These-distances mav be considered the inverse
or re01proca1 of the fr°quency of tne use of 11nk between the nodes.

The distance .among the nodes may. be represented by a matrix
.like the one below: ' o o ‘ o

\

abec
adll
b1l09 »
c'l 9.0

‘ghg/dlagonal containg zeros beCause the d1stance between any - node
any itself is zero by. deflnltlon., _ R

If matrix S were converted to a spatlal model by finding the
eigenvector of its scalar products matrix S Ts, 3 one would f1nd that
the eigenroots (elgenvalues) or characteristic xoots of §8TS 'would
include one negative root. - The reason for this is thatthe triangle
formed from the 1links “of the abc triad cannot exist in a
two-dimensional Euclidean space. 4 The abc tr1angle has two very.
short legs (ab & ac) and one very long one (bc).. As a result, the

. sum of the triangle's angles exceeds 180° Thus, thlS triad cannot
-be’ accurately described .‘without a. complex dimension (one with a
negative root) to foreshorten the bc leg. 5

-

' Network data need not be Euclidean, i.e., at least one of the
characteristic roots of STS may be imaginary. The reason for this
is that if- any three nodes .vary .in  centrality, the points must
.violate the ‘rule  of triangular 1nequa11t1es. The - exceptlon is a
completely and approxlmently eq01va1ent interconnected network. Any
“three points (nodes) may be said ‘to. form an Euclidean . ‘triangle if
“and. only .if the sum of the square of any two of .the distances among'
them does not exceed the thiré squared (Tversky, 1879). : In the
example ,.above, bc- must be less than or equal to 2 , if this triad

\ ' ‘ | kh_vh
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: is to exist in an Euclidean space. For any set of ‘N nodes in matrix

S, those nodes will be represented in Euclidean configuration if and
only if the triangluar inequalities rule is not: violated for. any:
triple of points. The result-is.a Riemann manifcld-represented by a
coordinate system  in ‘which some of the dimensions‘'are imaginary.
They have. negative eigenroots. The locations of _the non-Euclidean

relations among the points may be determined by equation 1.

2_ 22 2_ 2a &, _
djk‘ §1j+ dik 261jdikcos (5] 1

'in the case where, cos © 1.0 , the relations may be considered

Euclidean. ' Where, cos 6 >1.0 , the relations among the three nodes

may be considered non-Euclidean or RKiemannian. It is from this . .

latter case that complex eigenroots result (Woelfel & Barnett,
1982). > : L : o ,

'lwﬁile' multidimehsional scaling has frequenfly been applied:to {
analyze social networks (Goldstein, et al., 1966; dJones & Young,
1972; Lankford, 1974; Breiger, et al., 1975; Gillham & Woelfel,

"1977; Freeman & Freeman, 1979; Romney & ‘Faust, 1982), 1less than

satisfactory results have been reported (Lankford, 1974; Breiger, et:
al., 1975). One reason for this may be the failure to take into
account the imaginary dimensions. : o ‘

Histozically{ psychometricians have treated the variance on

‘these dimensions as error variance tu be removed through the

addition of an - additiye constant (Messick & Abelson, 1956) or
adjusted away by some non-metric algorthim ' (Shepard, 1962a,b;.

- - Kruskal, 1964a,b). . They assumed . that  social “and  psychological.

structures .were  Euclidean . and that any departure from a positive
semi-definate scalar products matrix (STS), one with only positive
values - in its eigenvector, was caused exclusively by measurement
error. -Thus, these ~dimensions were ignored = and  iradequate
descriptions of sociometric data resulted. Additionally, the stated

_ purposé for. using multidimensional scaling was to identify some

underlying structure, such as, the dimensions by which a group  was

differentiated. This resulted in the removal of true variance. -The -

imaginary . variance went first. However, since the underlying"
dimensions are only orthonormal reference vectors -upon -which "no
meaning - may be ‘directly ~attributed, all -‘dimensions should be

‘retained for any-further ahalysis,. including. those’ with negative
~ eigenroots (Barnett & Woelfel, 1979). "Attribution of meaning to the

‘dimensions. may be made only by regressing an attribute vector
" through the multidimensional space. - : o

o
-\,
- 2
’ ETA
; M)

 “Recently, however,. psychometriciante have become interested in

‘multidimensional . scaling in Riemann space (Pieszko, 1975; Lindman &

Caell, 1978). One @lgorithm exists which allows for the analysis of

" all the dimensions in._an multidimensional manifold including those

e;;T?fff_f
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‘with negative:roots. It is known as Galileo (tm) (Woelfel, et al.,
1976). .The computer . program takes ratio  level measurements of

, discrepancles (distance or dass1m11ar1t1es), such ‘as matrix S, and -
converts it to an,-adjusted scalar . products matrix. following
Torgerson (1958), (s S) .1t then finds that matrix's elgenroots and
Cartesian coordinates: (S ) for ali dlmenslons, real and 1maglnary,
through Jacobi's method (Van de Geer, 197])

_ One reason for performing network analysis has been c11que or
group identification. Two procedures may be perform this function,
cluster analysis oy multlple discriminant analysis. (MDA). Once the
Riemann space (S°) has been obtalned, the researcher may perform a
cluster "analysis to 1deut1fy groupings  within: the space. An
alternative technique, when groups identification ‘is known or:
. hypothesized, is MDA {(jones & Young,  1972). In this case, group
membership may be.  considered the . dependent variable and the
.dimensions (real and 1maglnary) the predlctor var1ab1es. -

/.1-.
,

Change in network structure may be examined by repeat1ng the
. measurement ' phase and. transformlng the data for each point in .time

into mu1t1d1mens1ona1 spaces. TO compare- several points in time (or

several different. .groups~at ‘the same time), the . spaces must be
translated to 'a} common origin and rotated to a least squares bést
fit which m1n1mlzes the departure from' congruence among the spaces.
Change in the position of the nodes may be calculated by subtractlng
the coordinate wvalues across time. From these - change, scores
trajectories of motion can be determined to describe = the /relative
.'changes in the structure. With these measured velocities 4the rate
~ of change over time) and accelerations future network structure can
‘be predicted- accurately (Barnett, 1979; Barnett & Kincaid, 1983).

When no. addltlonal 1nformat10n about the relat1ve St?blllty of
‘the nodes . exists, the ordinary least square .procedure may be.
applied. When knowledge about the nodes - stab111ty_or that the
position -of certain ones have changed. is - known, {alterative

‘grotatlonal algorlthms .exist. (Woelfel, et al., 1979). ¢ The ord1nary

least squares procedures has  the: effect -of overest1mat1ng some
. changes .while .underestimating others. This may lead ‘to erroneous
"'concluS1ons.. The_alternatlve rotational schemes use theoret1ca1 or
. "extra" - information -which simplifies’ the apparent motion. Since. 1t
‘is 1ndependent of the .coordinate ~values, -it may. be. - treated as
,1nvar1ant under rotatlon and translatlon of fhe coordlnates..‘ A
One alternatlve ”scheme‘ rotates only 'the theoret1ca1 stable
points to a least squares best fit and then incorporates the dynami.c

. ones into the - new coordinate system. ~This is similar- to the""

. procedure used in vastronomy ‘where: the position of fixed stars are -
~used to ' measure - the mmotronk of . other stellar.‘bodles.‘ Annther
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procedure weights the individual points; and then rotates to a:
- weighted solution. One: of these schemes should be used when
manipulating the. relational patterns of_a nodes toward a subset of
nodes. In that case, the manipulated nodes are considered dynamic
and the  unmanipulated ones are treated as theoret1ca11y stable
reference points:- (Woelfel, et al., 1980; Barnett, 1980). - The
‘algorthims necessary . to perform the rotations described here are
~unique to the Galileo (tm) .computer program and make it possible to
" precisely study change in networks.

Previous' research with Ga111eo has shown .that the load1ngs on
the imaginary dimensions are reliable both across groups and over
time (Woelfel & Barnett, .1982). Also, theoretically valid
pred1ctlons have been made using the 1mag1nary dimensions. Woelfel

" and Barnett . (1982) have shown that the dimensioris with negative
roots result when pair "comparisons among three or more stimuli
‘concepts are made from two or more semantic domains or when the-
stimuli -are incongruent or produca a psychological state of
" inbalance. Krumhansl (1978) examined psychological non-Euclieanisms
in, geometric -models. She found that violations of trlangular_
‘inequalities resulted in similarity data when the scaled/ points
varied greatly  in their relative density. In spaces/where the
points were distributed homogenously, there was a .dreater tendency
for the space to be Euclidean. R

. -
!

Barnett . (1979) found that imaginary dimensions resulted in the
analysis of social networks.- Using the frequency of -air trafflo for
the year ending?.June 30, 1978, among 16 Qmerlcan cities, -he " found
that 40.2% of the total variarnice in S° was accounted for by those
characteristic roots of sTs wh1ch were negative. A warp factor of
3.04 was obtained. Warp s the .ratio of the " sum of all the
eigenroots (positive and nega--ve) to the sum of the positive roots.
-Thus, it provides a convenient measure.of the degree to which the
space is non-Euclidean. A warp of 1.0 indicates an Euclidean -space.
An examination - of the three. dimensions (2 real and 1 imaginary)
which accounted for the greatest proportlon of the variance (70. 8%)
and  would have beern 'retained by a scree test (Barnett & Woelfel,
1979), suggested that the frequency of - amr traffic may be - described

- as _a| star-type. ; network with \tenden01es toward a- tree—type
v.~conflgurat10n, although among the nodes, at .the’ center (hub) )
- mesh-type. network ' 'was the best de,cr1pt1ve label (Schwartz, 1977)
-In order to travel by a1rplane . from .New Orleans to Phoenix or
Seattle, -the 'nodes.at the periphery or the points of the star, one,w~‘
had to go through one of ‘the -central switching nodes, such asj -
"~ Chicago.' Also, the results suggested that Atlanta served as a tree -
node or an ‘intermediate switching facility, taking passengers  from
New ‘Orleans _and'Miami and rerouting their travel prior to reaching-
the more central nodes. Among the central  nodes (Chicago,
‘Cleveland, Qallas, Denver, New York, Los Angeles,: San Franc1sco and
Washlngton), each node had a direct 11nk to each other. o

-
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: This study clearly demonstrated -the utility of wusing a.

‘s mult1d1menslonal scaling - algor1thm which is not restricted to an
Euclldean solution.  That study prov1ded only a .static description
and did not demonstrate change over time.in social networks. | This
“paper will focus on the longitudinal nature of the air traffic
network ' ' ~

T : .

a The utility of -any SLlentlflc methodology is ult1mately its
ability to precisely describe attributes of phenomena and - to  make
accurate predictions~of the values of these attributes at future
points.in time. These. predlctlons are based upon and evaluated
against the prevajlng theor1es -about the phenomena for which the

- methodology - was = developed. ~These descr1ptlons should 1lead to
-parsimonious "law-like" relations. between measured attr1butes of the
Phénomena and other variables. which are theoretically related.

" Generally, these are in the form of mathematical functlons.
e = |
Since Lhe proposed procedures are deslgned for the study of
change in nciworks, it is necessary to demonstrate that they provide
a description .of the changel in simple "law like" functions. They
should covary w1th those exogephous factors which predict . change in
network structure. Such facto_s might be the physical relations and:
-8imilarity - among "the nodes;|'economic conditions, the diffusion of
. new communication technologieg populat’on growth and mob111ty ~ and
- changes within the network itself. . - '

Up to .this point, this paper has d1scussed the theoret1cal
necessity of wusing- a non-Euclidean “multidimensional scaling
. algorithm to .describe .social or,.communication networks. It has been
-suggested . that any . new methodology 5 ut111ty should be evaluated
- against theoretical criteria. .  This" ‘paper = will emp1r1ca11y
. demonstrate these procedures wusing data on the freguency of air
 traffic between 1968 and 1981. -Change 'in this network will be
- described by simple law like functions which will be analyzed with
respect to - certain . theoretical' criteria. In this manner the
adoption of this methodology for the study of network change will be
jUStlfled R ‘ » N :

3

| o T
AN EMPIRICAL EXAMPLE - - ‘

THE DATA _ L
1 , _

. To. demonstrate - the. utility of these procedures, data from the"
”fannual "Domestic: Orlgln-Destlnatlon Survey: of : Airline Passenger
Traffic® conducted by ¢£he U.S. Civil. Aeronautlcs Board (CAB), in.
cooperatlon wrth the' certified route ‘air carrlers and the Air

L |

3
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ngransport Assoc1at10n of America, were analyzed. 6 A s1ng1e survey

is conducted cont1nuously on the basis of a 10% sample. Flight
coupons errendered//by passengers upon boarding are the source of

.the survey data. he universe consists of all coupéns lifted by

part1c1pat1ng ,a/ carriers. Coupons are selected for analysis with

‘ticket serial numbers ending in zero. ‘These data -are compiled by
the CAB. . 'They edit the data, remove inconsistancies, such as.

duplication of the same flight by different- carrlers, ‘itineraries in

which no dest1nat10n is reported, single coupons in which the origin .

and destination are the same, and itineraries where the carrieri(s)

~into and out of an intermediate point do not serve the city. Also

removed from the data base are records which fail ‘compute editing

PR . 8

tests. In all, less than two per cent of the total reported number’

~of fllghts are dropped from the survey. o i

V.

Thlrty-one C1t1es (SMSA) with-a population greater than one-

‘million were selected as|the nodes. 7 .They are listed in. table 1.

In 1980, these 31 cities had a cumulative population of 94,092,000
or 43.5% of the total U. S population. The links in soc1omatr1x,

¥ €, were the  number of passengers outbound ° plus . inbouhd

(nondirectional) between | the .citjes. 8 ‘Since nondirectional

- relations were used, S was symmetrucal (sij=sji). The diagonal

contained zeros. Fourteen\separate sociomatrices were created, one

for each year 1968 to '1981. \Thxs mace it pOSSlblF ‘to -examine the
change in the a1r traffic neﬁwork for this t1me frame. . '

,’
TABLF 1 ABOUT HERE

- - \

These data were obta1 ed on m1crof11m and were f1rst converted

to hard copy. To, insure a m1n1mum of coding error, both sij and sji .
‘were ‘recorded. . Then, they were checked for equivalence. Complete

sociomatrices’ were entered 1nto the computer for analysis. Again,

'sij and sji.were compared and corrections made.| In summary, the
data con51sted of 14 symmetr1ca1 soc1omatr1ces containing the
. frequency of nond1rect10na1 passenger air trafﬁlc among 31 U.s.

R c1t1es. : S

\
LR

\ .
\‘.

These data. are -not subject to the criticism of self reportd

network data (Bernard & Killworth, 1977) . .Rather thiﬁ*belng reports

of travel by “individuals, they _are objetive, 'coming from used
~airline tickets. ~ Further, ' they 'are aggregate. data- (Rogers &
" Kincaid, 1980). The nodes (unit: of’\ana1y51s) in- 'thls study are
cities, not 1nd1v1dua1s. ~ Thus, the interaction among aggregates’'
 'were examined. -Danowski (1980) and Barnett: (1982a). have argued thatur
" the process .of aggregatlng to - the\ group level filters out -

significant amount ‘of measurement error - ‘because random’ 1nd1v1dua1
variation and _the effects -of other\ communication ‘channels are

-~

" randomized. . The result- is  stable \estimates of the ‘state of the
 system  which improves the ab111ty to describe the underlying



-equals zero. This function is presented 55 equation 2, o

o . "\- : - / T T ,. \ . . S
mathematical relations among the variables of interest. In this
case, a 10% sample of air traffic is sufficientiy" larce- to assume

that random perturbations contribute little to the-GQSCriptiOn.of,'
.the netwogk. ) v . .

S e A

TRANSFORMING MATRICES OF FREQUENCY TO COMMUNICATION DISTANCES

The first step\in the analysis of these data is ‘to' transform
the matrices of frequency of interaction to (S) to matrices of
communication distance’ (S') to." confirm with the ‘Galileo ' (tm)
framework.: The goal of ‘this operation is to assign the smallest

~valu: to the greatest ‘frequency. The logic is that the greater the .

interactioh between- two nodes, ~the closer they are in a spatial
networki /The problem is what functional transformation to apply.
Two candidates are the inverse and ‘the reciprocal. )
~ The' frequencies: may be subtracted from an arbitrarily lérde L
constant, k, where k is greater than the largest value of sij. s'ii
) _ |

S'=K_S/ ’ 2 b

e

. : /

_ In this case, S' is a lipear function of S. It has the

advantage of simplicity. One problem is what Vvalue to assign to k.
‘According to Woelfel (personal correspondence), k - should have
‘theoretical significance. For example, k could be set egual. to the"

maximum possible number of passengers flying among the nodes. If a
"convenient™ .value, ' rather - than a theoretical one, is chosen; the.
rank|of matrix S becomes arbitrary and therefore no meaning can be-
attributed to ‘the warp of the network space.  This is not a major
problem if network spaces are - compared relative to  one another

rather "than  tc some - external. criterion. - Bowever, as k becomes

larger, the transformation has the effect of adding an *additive |

“constant®, which. alters the ‘dimensionality’(rqu) of the network

space. This problem may be exasperated when the same constant -is
applied "to several different socicmatrices.  What may be the "most.-
qonveniéntf»constant.for,one point in time mey not. be appropriate

~ “for another. - , B

San Fﬂancisco'in‘1981. ‘This is Summarized in 2.1.

To analyze the air, traffic network, X was set equal to the"

~ maximum frequency in the déta‘pIQS-one. That value was 318,673 or

one = greater than the frequency of traffic hetween Los Angeles and

\

s' = 318,673 - § 2l

t

-

An alternative transformation function is the reciprocal, .-

\
o
x
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T-presented'in equation 3. , '
o s'= 571k o3 .
Tk xfs- a scaling,constant. This functlon is non11near (hyperbolic)’.
As sij--> 0, s'ij=->>, and sij-=>= ," s'ij-->0. -sij- -may. obtain the
value~ of .0 when there is no - link between i ‘and j. - ‘Thus, this
unction has- the d1sadvantage of placing too much emphasis on very
eak | links. For example, in 1968, the frequency of traffic between
San-Diego and Ft. Lauderdale was only two. Where two nodes are not
11nked S' is undeflned - Therefore, this. transformation -cannot be
applled in those instances, In this data set, all nodes are
completely 1nterconnected and only the weakly linked ones. merit
concern. : : :

. -
rd

.' . v‘"—/ .
ER

: / There is also the problem of what value to asslgn to k. In
S thls case, an external theoretical cr1terlon, the physical distances
/. among the cities, was. selected. k. was set egual to the value
/. required to set the trace .of the timé:one.(1968) network space equal -
J .to “the . trace of the space. of the~ great circle;distances (in
kllometers) among the c1t1es. This makes it poss1b1e to directly
compare the network -space to the physlcal. ' S

.,\

' Because of the weak ‘1ink problem, a third a1ternat1ve functlon
" was selected for analysls. It is. the log of the' rec1procaJ and . i
:"1s presented as equatlon 4.

i

' L ' K .8 = 1.0"9 ’..s-l (k) : 3 \ o é ) " =

.

f*ff Th1 transformatlon foreshortens extreme - values and 11nearlzes

,,the -function., ‘' Prior = research: “has- shown'v that. " logarithmic

,/ transformatlons alter the rank of spat1a1 man1folds (Woelfel &
Barnett,~ 1982L,‘ producing essent1ally Euclldean “spaces. - This
requ1res “that the network space be compared. relat1ve to one. another
‘rather-than. agalnst some absolute criterion. 'k: was set- equal to .the
~value req01red for~equivalent: traces betweéen the spaceés produced, by
_‘the. physlcal ‘distances between'the cities and air traffic networks..
That - value ~was 14, 638 The ~fipal- transformatlon functlon is
presented in 4. 1 .‘ *

' "ht'if;.pr - L log s (14 638) ',‘ 41

. /_\' S -/
ey RE
,4 A

e All analyses d1scussed ~in>-this pdper w1ll . be based upon_'

L communlcatlons -distances generated\\w1th equation. 4.1. It was

 selected- because the coefficient 1\\\hichx,resulted from—its___
appllcatlon were w1th1n '_u”convenl - or| middle range (Stevens,,
- 1951). .The _values were easy to/ ork wi h and\thus, accessable or
1nterpretable “to .network ..scholars. AScess1b111€§\\\fac111tates,‘
communlcatlon among sc1ent1sts (Barnett,v 82b) ' & o

"

<
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. Eguation/ 4.1 represents a compromise betwegﬁ‘the reciprocal and
the inverse/ functions. | The 1968 data were usgd~tP test the three
function discussed above. The inverse was vieﬁed_/as “unacceptable
because it resulted in an almost Euclidean solution (warp = 1.02).
The "‘San Diego, Ft. . Lauderdale, New York City. triad. was clearly
non-Euclidean. " There -were only 2 trips between. San Diego and-Ft. .-
Lauderdale and 8,396 and 24,662 between New York and the other two .
nodes respectively. 9-  This result occurred because k -acted as an
additive constant. - Also, the values which resulted from this
analysis - wérelonot. easily-used. The trace of the 1968 sociomatrix
was 1.323 x 10 '. Additionally, the first two dimensions accounted
for only 8.0% and - 6.1% of the variance, with diménsions three to
twenty—-seven -accounting for between 4.4% and 2:2%. If all the .links
among the nodes-yerg/of equal strength each dimension) would account
for 3.2% of the yariance. -While a large number of dimensions would
.be expected beceu%e all the )| nodes ‘'are interconnected, there was
~little  differentiation .among the - eigenroots. - This raised some
' concern about Ahe utility of this function. The first dimensjion
separated the’peripherial nodes, San Diego and Ft. Lauderdale, from
the more central nodes... There was little differentation among the
remaining 29 nodes. Finally, an examination of the difference
scores among all 14 .spaces failed to reveal any apparent pattern.:

\

The first dimension of the simple reciprocal transformation had
the two nodes with the 1least contacts as.bipolar, and the other
nodes at the center,.rather than differentiating them from the other
nodes as with the inverse. While this result was desirable, others
were not. All variance in the space occurred on the first and last-
(largest imaginary) dimension. They accounted for 1460:0%  .and
-1360.5%  of ' the . variance respeptively} ¢« The second dimension
accounted for only 15%. Due to the extentYQf interconnection = among
the nodes, this result”seems inappropriate, as did the warp which
was 14.6. : T . _ - o

' For the theoretical reasons discussed above and these empirical
results, the decision was made to base the description of the change
in the air-traffic network on equation 4.1, Its warp was  2.48,
There . was some- differentation among the dimensions. Dimension 1
accounted: for-123.1% of .the variance, dimension 2, 31.5%, dimension
30, =-28.3% and dimension 31, -79/77%. The resultant values were a

' convenient .size. Finally, Ft. Lauderdale and San Diego were at ‘the
extremés and the other nodes were7near the origin.

- :
/  RESULTS

.~ " CBANGE IN CONNECTEDNESS OVER TIME
'1  Thé 14 sociomatrices of airline -traffic were transformed into

Sy
-
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multidimensional spaces .and comparisons made using a rotation to.a
least squares best ‘fit which minimized overall departure from
congruence, In thls\way, global changes in the air traffic network:
were examined. Rather\than presenting all 14 sets of . coordinates
and 13 comparisons among the coordinates, only summary indicators of
the changing relatlons will be reported. One such indicator is the
trace of the coordinates matrlx. The trace or sum of the eigenroots
may be taken to be a measure of the network's size. It may be used
as an indicator of the network's connectedness. The smaller the
value, the greater the connectedness. The traces' values for the 14
years are presented in table 2. : - =

To describe.the ehange in\bbhnectedneSSﬁ over time; -these 14
values were plotted against time. - A visual examination of the data

‘revealed that the trace decreased rapifiy during the first few' data-—
““points, levelled off and increased siightly for the last two p01nts.

In other words, connectedness increased rapidly during the first-few
years, levelled off during the later years and decreased slightly at
the end..fThls examination also suggested that the pattern of change

could be descrlbed by a simple exponent1a1 decay function, e
' veasbe s
whe re : : | | - ‘hf T [N *N— L ’, i _,_— : I
'a = asymptote
b =Y at. time zero -

k coefficient“of decay

- -

- {) since the 1last two values of the trace were greater than the
_ones which immediately preceeded them, an alternative' function was

suggested .It was a polynomial with an 1ntercept, a negative linear
component .and a p051t1ve quadratic term. The later term would
account for the reversal in the trend. S :

f=a—bt+bt , 6

L T L . ' 1
The ' data’ were fit to- both functions. In thes case of

_exponential decay, a = 43,838 b = 51,919 and, k'= -.82, R = .864,
. ’/' N - ° . R

For /the polynomial, a = 63,041, bj= 3,806 and b= 169, K =

'[f,véz. Both the 11near and quadratic terms were stat}stlcally

-

signiflpant. 13 18 (p< 004) and F'= 6.19. (p«<. 03) r88pnct1ve1y.

I
{

These—results—indlcate that.the~proposed methods .can-be-— used—tom-
prov1de parsimonious, = "law-like" ‘descriptions of the change in
soc1a1 networks. They are summarlzed in table 2 and flgure 1.

/ TABLE 2 AND FIGURE 1 ABOUT BERE ’

15'}
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, . While Dboth. functions account. for a 51zab1e prooortlon of the
variance in- the trace over time, they provide ‘different information.
The exponential decay function does not account for the sign
reversal of at - the last two points. 1t treats them as deviations.
from the asymptote; as it fits the entire data set. While the
polynomial accounts for 1less variance, it - does account for the
reversal. The quadratic term is. significant Thus, while the
overall pattern of connectedness in the air traffic network has
increase exponentlally, this’ pattern may be changing. Connectedness
may be decreasing. Two polnts are two few to make any definitive
statements about ‘this trend; The curve may be oscillating about the
 eventual asymptote. -:It should be examined in the future to verify
the trend. Additional insiglts may be gained by examining the
magnltude of change between the soclomatrlces. . '

| S
A;/,/f/*)THE‘CHANGEQSCOBEssfr~w*~~w
. . L L
' The overall change scores (dlfferences between time i and time
i+l) from Galileo (tm) reveals a consistant pattern. 10 They are

presented in table 3 and are graphically displayed in figure 2. The
data suggest two distinct epoches, an early period, 1968- -1974,
- characterized by a high rate of change and, a stable later period, -
1974-1981. The wagnitude of difference between averages of these
sets of points indicates that the rate of change was 7 51 times -
greater for the early epoch. The airline network 1n1t1a11yfchanged
"rapidly and then slowed to- a stable pattern’ with a slow rate of
change. ' As will be discussed 1later, this .difference may. be
attributable to the opening of the Dallas-Ft. Worth airport !which
~acts as'a central hub or switching facility. These results’ suggest
.that the exponential decay may provide a better description of the
pattern of change :’n connectedness than the polynomial because the
rate of change at the end is so small., = . , i

. * TABLE 3 AND FIGURE 2 ABOUT HERE ° -~ /.

. . . - . . H

THE CHANGE OF: INDIVIDUAL NO?ES T : /

\ . 5 . . 1 )

Insights into-'the" changlng pattern of the nodes' re1 élonshlps_
may be gained by: exam1n1ng -specific nodes. In the early years, Ft.
Lauderdale and San D1ego changed more than: twice the overalﬁ average
for each of these seven years. During the: later period, Tampa -and
Dallas changed more \than the average. But, these changes ere qU1te
small when the overall -magnitude of change durlng the early epoch is

———considered.. S0 S W
, E , ; . j

Specifically, how did the p051tlon of these nodes/change over
btime? Ft. Lauderdale moved from the perlphery toward the centers of

;-




the  network. Through hierarchical cluster analysis, it . was hN
determined that -it was the least central node in 1968. 11, By 1976,
it was the fourth least central. 1In 1981, it was the seventh least
central node. - San Diego, likewise moved from the periphery - to the
center of the network. In 1968, it was the second least central
node. ~Within two years, it stabilized as the tenth least central
node. © These nodes were feplaced at the periphery by the smaller
cities in tpgfgigyest,-Columbus, Cincinnati and Indianapolis.

L

. Tamﬁ% E1us£eredv§;th Atlanta during the early years. Between
1975 and 1977, it moved from being a "branch"™ of Atlanta to become
directlyointerponnect?? with the other nodes at a national 1level.

Dallas ocgntinued to;/ become more central in the network throughout
the 1ate§\g3;iqd. » . . SR - : , -

a

R =%

. _ o 'f,' o
CHANGE IN THE AIR TRAFFIC NETWORK- STRUCTURE /

AN @f’ a0

, How did the overall network st:chUre change over time? Groups
" within the network were identifiedfﬁy-hierarchical cluster analysis.
In the early. years, there were two regional groups .or ‘clusters. .One
was centered about Chicago and New York and included all the eastern
and midwestern cities from Miamirto Minneapolis. The other cluster - -
~~.__was centered on the west coast around Los Angeles.and San Francisco.
\\1t\inéluded‘anothezhcluster which contained’'New Orleans, Dallas and.
Houston. Hierarchical- clustering combines all nodes into .a single
cluster: These two regional groups were combined at  iteration ' 22,
in 1968, and iteration 17, in '1969. Worth noting were the positions
of Kansas City and St. h Louis. While the later was part of the
eastern cluster, the. former was grouped with the west. The break in
the air traffic network in 1968-69 appeared to go’through the middle _
of Missouri north to the west of Minneapolis and south to th east
of New Orleans. - o L S LT

Analysis of the later years, /fails to find as profound regional
variation in the network structure.. The cluster analysis shows that
New York,- ‘'Chicago, Los Angeles; San Francisco, .Dallas and Houston: -
are combined into a single cluster immediately, at iteration 4. The =
other individual nodes were then added to this hub with little prior
regional clustering. . o -

. This conclusion was confirmed through regreséion:analysis. ,127.
'‘The coordinate values of an. early year”/1969,;and a later year,
.- 1980, were regresscd on laditude andylongitpdq, the dimensions of

physical' space.. In the early year, the first dimension accounted

for 70.4% of the variance in longitude.and the first four, _83.6%;.'?
: Thg;ffirstj‘dimension accounted.for 25.1% of the variance in network .
~structure and the four together, 34.3%%- In the later  year, the

T N N R Y




.15

first dimension accounted for only 63.7% of the east-west variation.
It ‘took six dimensions to account for an equivalent 83.3%. The
first dimension accounted for only 13.4% of the .network structure
and -the six, 41.1%. The variation attributable to longitude is more
homogeneously distributed during the. later years, ‘indicating a
breakdown of the regional grouping. .

The regression analysis also revealed a change in north-south
variation. In. 1969, there was no ‘clear relation between laditude

and the network dimensions. The largest proportion of variance. in -

laditude accounted for by a single dimension was 25.5% and it
_accounted for only 0.5% of network structure.  The second largest
was 1%&&:. It accounted for only 0.6%. It took 11 dimensions of
the network.to account for 86.7%. of the variance in- laditude. The
variation attributable to laditude was homogeneously distributed at
‘that point in time. In 1980, it took only six dimensions to account
- for 88.5% of the variance in laditude. The first two accounted for
-19.9% of the network. This indicates there was greater north-south

adiffe;entigtion during the later .year than in the early one. . Thus,
while ' the\network in the early years was characterized by east-west
differentiation, the later years seem to be characterized Qy
north-south differentiation. ~ This suggests .that the fundamental
change in the network differentation occurred from coast-to-coast to
frost belt-sunbelt. e - ’ '

NETWORK DENSITY .

. The air traffic network's density increased. As in/the case of
connectedness, the distance at which the least central node was

- clustered to the air traffic..network decreased over-time with a
slight--reversal in 1980 «nd 1981. The.correlation-between‘thegtrgpe
(connectedness) and the distance at which-the least central node was
Clustered was .952. This fact coupled with the breakdown of the

" regional «clusters suggests that the distribution of air traffic in -

‘the United States has become more - homogeneous. .

e

P

This may be supported by. examining the distribution of variance
among the dimensioris (eigenvalues) and the warp in the network's
spaces over .time. - If the network became homogeneous, that is, the
links became egually strong, then the space would ‘become :Euclidean
(warp = 1.0)  and-" the - variance explained by the largest single
'~ dimension would decrease -over time.  In 1968, it was 330.8s.
Percentages greater than 100 are due to .the warp. 1In 1969; it was
~ 43.0%, and by 1981, 14.0%. If all dimensions were equivalent, ~ then
- each’ would - account for 3.2% of the variance.. The variance in the

size of the eigenvalues also decreased.  In 1968, the standard =

deviation - was .77.73;, in -1969, 9.37. After 1971, it stabilizes
~between 2.89 and 4.52. ) ~ S . e
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The warp, likewise, suggests that the 1links become more
‘homogeneous, - In 1968, it was 3.97, :in 1969, 1.25, and by 1978,
1.04. Warpf however, has a distinct reversal durlng the 1last. two
years. It rises to 1.09 (1980) and 1.10 (1981). ' This suggests that
.the distribution of air traffic is becoming less homogeneous. - This
is consistant with\the findings that the network is 1less connected
and dense.. The alue of the distance req01red to add the least
central node to the \network, the per cent variance of the first
dimension, standard\, deviation of the elgenroots‘ per cent vanlance
and the warp for each year are presented in table 4. :

-

T  TABLE 4 ABOUT HERE | ST
GRAPHIC'RESRESENTATIONS OF NETWORK STRUCTURE

3

One of the advantages of metric mult1d1mensrona1 scaling ig its
ability to graphically represent the relationships among the nodes.
Plots have not yet been presented because of the low , rcentage\of
variance attributable to any two dimensions. However, since one
goal of this paper is to demonstrate the ut111ty ‘0of this method,
three plots will be presented. 'They are 1970 - (figure 3)/,: 1975

~(figure 4) and 1980 (figure 5). The two plotted d1menslons (the two
-largest real d1menslons) account for 37.7% of the variance 1n 1970,
26.5% in 1975 and 23. 0% in 1980. The later percentages .are .smaller -
due to the increased. ~density. of - the network. .'The :1970 plot is
presented with longithde regressed on: the first’ d1menS1on. The 1980r

plot includes the “/cluster analysis. . . There is conS1derab1e
distortion . in all /three cases due to low percentages of explalned .
-4~ t-'variance. - DN .

s E K T \‘ ‘/'/;“ J . {m. - j
These three plots were chosen to demonstrate the change 1n‘ the
. . . network over time. The 1970 plot-shows ‘a m1dwest—eastern cluster‘;
~?Nﬂvw1th Ft. Lauderdale. and Portland:at: the per1phery.5 ‘Also, . there .is
- prominent east-west d1mens1on.smBy exam1n1ng ‘the 'scale ‘across’ a11 -
Vthree spaces, it is clear  that dens1ty-\and connectedness ’became~-
' greater. By 1975, the regional clusterlng Tis 1ess prom1nent. Also,
‘the distribution:‘of - the nodes Vwithih: the® space became ~more
homogeneous. - The 1980 plot shows.f‘ ther breakdown of the " reglonal
: clustering ‘an . increase . in % hom genelty, denslty - and
interconnectedness. If these: two dimensiohs: accounted for, all: the
.variance in the. network, centralrty coulds be represented as:a’ node g1
,d1stance from the origin. - In. a1l three: plots, Ch1cago, is~ closest
., to'the origin. It is the most’ central* node}\ Th1s ‘conclusion’ Lis:
. consistant with the results of -the cluster analys1s 1n wh1ch Ch1cago
.has the. shortest distance for 1nCIUS1on. B
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STABILITY WITHIN THE NETWORK

~uUp to th1s p01nt, this paper has concentrated only on changes‘
in the network The issue of stability . has not been addressed.
Stability may be inferread through an examination of  the correlations
of the nodesf locations on the dimensions at adjacent’ points in
time. The mean correlation for the first dimension was ..981. It
was -.986 for the second. This indicates that the network is h1gh1y «

‘Early in th1s paper "an argument was made supportlng those use

- of the. dimensions with negative eigenroots in the analysis of social

networks. The  mean correlation among the- largest ‘(absoluite value)
of these dimensions across adjacent points in time was .67. For the
last ten points it was .82 and. .99 for the final four. . This

-indicates ‘that the var1ance _on ‘the imaginary eigenvector is not

random error and that change in the size of this dimension and the,
arrangement of the nodes on it should be examined.
: : | -
. One reason - for stability within the network is the f1xed
physical dlstances among the nodes, ~Physical proximity is one
determinant of network structure- (Olsson,71965 Rogers & Kincaid,

©1980). To determlne how phys1ca1 structure impacts on network

structure, two multiple regressions were performed with the 14 sets
of network coordlnates as the andependent variables :and the 31

1c1t1es' 1ad1tude and longitude 3§ ‘the dependent var1ab1es. 3

i |

| The zero-order -correlations- with - ladltude were.' .45  for
dimension 3, .25 for dimension 4, .22 for dimension 31 and ,.18 .for

4d1menslon 2,;R =,35 for those dimensions accounting for 2% or more

?ﬂ;of the var1ance in laditude.- The correlations with lgpgltude were

83 for dlmEDSIOD 1, and .38 for d1mension ‘2, .84, The':

' multlple correlatlons were mu1t1p11ed «by - the  mean proportlon “of .
_”varlance accounted for by the’ respect1ve dimensions across the 14
f data’ sets. 13 Since’ ladltude and longitude are’ orthogonal, these two

~values . were | summed. The results indicate that: approxlmently 18.3%

o of the variance in network: ‘structure-may be :accounted for- by - the
,‘Cphyslcal relatlons among. - the .nodes, Thus, one source of network_-
‘sta 111ty may be attrlbuted to phys1ca1 prOlelty.'

|'-
~

nother factor contr1but1ng to the stab111ty w1th1n the network

f1s th populatlons cE ‘the .nodes. P0pulatlon is a major- determlnant .

frequency of interaction among cities (Olsson,/1965; “Bamblin,
The correlation between the ‘cities? populatlons in 1970 and
.99. Those nodes which/moved greater than. the ‘average = (Ft.

h;Lauderdale, San Diego, - Dallas. -and Tampa) ‘all grew at least 24.7%
" between 1970 and *1980. Ft. Laude:dale, the ‘node whose ‘position -

changed \t..e greatest,p grew . 568.2%., These nodes along others with

':fiﬁ comparable growth rates (Houston, Denver and Phoenlx) all moved from

the pexlphery to- the center of ~the " network Th1s ~suggests that
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Tpopulatlon stab111ty\may contrlbute to the overall network stability
and that change in the- network may be due to populatlon dynamlcs.

DETERMINANTS OF CHANGE IN NETWORK STRUCTURE\
‘ : . o ‘/ ' . . :.‘,
N The -network structure appears to change in an orderly manner
*  which:can be described by S1mp1e mathematical functions. However,
. ¢ those variables which faC111tate or inhibit this change must be
' identified before an explanatory theory about social networks can be
" developed.’. A number of var1ab1es may be suggested to account for
the ‘change in” the  air traffic network. Among them are.economic
factors (GNP, ‘GNP ‘servica 1nf1atlon as represented by producer and
consumer pr1ces, personaJ 1ncome,,unemployment, automobile sales and

.fuel pr1ces),‘ the diffusion of new communications technologies,

. population’ growth and mobility, -‘and@ changes within the :airline
industry (deregulation) /and the network itself (the openlng of the
Dallas- Ft. Worth and Atlanta airports: and. the shifting operations
to " these nodes). . In order to determine the impact of these factors

- annual data on these variables must be available on a national level

-, or for each individual /node. It was not available for this time
‘ period for the populatlon . or communication technologies. It was
available for the economic factors and those internal to - the
industry. // . o B S

/

The 14 annual/values for the. variables vere correlated w1th the
trace.. and ‘13 difference scores. (t1me i+l - time i) with the change
in the trace and/the .overall change in the. network: between adjacent
points in t1me.‘ Due to the limited number of p01nts in tlme, only

. bivariate" 11near relations were examined. They -are ‘presented -

- table 5. .Worth not1ng is the conslstantly high relation betwzen the
trace and all the variables with the exception: of annual automoblle
sales. Th1s/'1s due to - the variables!® autocorrelatlon (Box &
Jenkins; " 1976). .As a result, the linear trend was removed by taklng
first-order’ dlfferences.;' Thus,‘ the ‘'change in the variables were

-'correlated/wlth the change in the trace and the overall. mean change
between adjacent p01nts in t1me. o - P :

e L -
: / ~
, .

- ' : o, . T

, The' opening of the Dallas-Ft., Worth a1rpogt correldtes -.89
= “with’ the mean change. Prior to its opening, there is..a ‘consistant
S h1gh ‘rate of ‘change (See flgure 2, ).w'Afterward, the rate of - changeA

- -is lower. ‘The network becomes - stable. - Both change ~in -personal’”
income: and GNP ‘correlate . ‘s1gn1f1 cantly ‘with the overali- .rate of.

\ change Wh11e none: of these ' three’ variables have " a  significant .

',;relatlon with - the  change - 1nffthe trace, ' they-do -have among the .

,_" highest correlations. - “Although not - significant,: change in - fuel

7;,pr1ces ‘has ' the highest correlation with the- change in trace (. 53)
and a strong relatlon w1th the overall change (r =, 31).-

7 '“‘ABLE 5 ABOUT HERE




Descr1pt1ve1y, how do these var1ab1es relate to the critical
points in time that have been identified through the analys1s of the
network structure? ‘In 1974, there was a slight reversal in the trend
towards greater connectedness. 1In 1974, Fuel prices had their first
large increase due to the Arab embargo. ' The later may account for
the trend reversal. Jet fuel pr1ces caused an increase in ticket

. prices which may have resulted in fewer trips among - the nodes and
', thus lower .connectedness in this network.  Between 1974 and 1975 the
network stabilized. 1In 1974, the Dallas-Ft. Worth airport opened.
Its use as ia central hub seems to have stablllzed air traffic., -

1980 began a trend towards 1ower connectedness. That same year.
.Atlanta's Hartsfield airport opened. - One ;nterpretation may be that
there “was no ‘longer a need to travel through a more central node
since Atlanta's traffic expanded as it beCame a regional hub. Thus, -

-the network decentralized. 1980 also began an 1ncrease in

_‘unemployment and a"smaller increase in personal income than in
previous years. Thus, the change in the trend may -be due to
economic factors, the current recession., ' P

k4 ’ { # : o e ) " /;5
i The a1r11ne industry was deregulated in 1979. After that many,
o flights . and routes were abandoned because they were not prof1tab1e./
L The <change in trend-may be due to dereguation of 'the- 1ndustry. It/
may have taken a vear for its 1mpact of "show up.in the state of . the.'
"network. Determ1n1ng the -precise 1lag between’ deregulatlon and
network'character1st1cs would require more . than the 13’ changes :
~scores available. Thus, this 1nterpretatlon may only be suggested.-,

o

L In summary, change in the air. trafflc network appears to /be
.~ related to the ‘changés in econom1c condltlons and the changEs W1th1n.
 the airline 1ndustry. : R Sl -/“]-

. ' ) . T ;"./

"'DISCUSSION AND. SUMMARY . " SN

L ThlS' paper has demonstrated ‘the ut111ty of a variant. of metr1c
multidimensional scaling to describe’ changes in social networks over .

“. time. It uses a Riemannlan _manifold, rather.. than an’ Euc11dean

- .- spacey .. to. represent ‘the. relative p081tlons of- -the nodeg.‘ The
..results suggest, that. change in America's air. traffic network  has.

.. 'been. orderly -and that it can be. ‘described precisely by simple
rfymathematlcal functlons that can‘ be - reaﬂlly be. 1nterpreted ‘when
.-exogenous . factors = are exam1ned.;w ‘The . trace of the/ spatial’

-».... coordinates matrix, a negat1ve indicator of network connectedness,
©.. " 'decreased rapidly between 1968 and. 1974, remained stable until 1980,«-
SV whenvva .reversal began. The on1y exceptlon to thlS trend was 1974, ;
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when fuel prices rose greatly for the first time and the Dallas-Ft.
Worth airport opened. Change in,the trace may be described by two
I functions, an expoaential decay, R =.864, and a polynomial to the
second degree, ' R“°=,752. 1In the later case, the quadratic term was
significant, indicating true change . in the direction of
connectedness ' during the 1last- two. years.. .This reversal may be .
attributed to . a number of factors. = Among them, the economic
recession during that period which was characterized by high
' unemployment and slow growth in the GNP and the opening of Atlanta's
airport. -Consistant with this pattern ' was one  independently
obtained through a cluster analysis of the frequencies of
interaction among the nodes (r=.95). _ o

: The rate of change in network structure may be described by two
.epoches. The first epoch (1968-1974) was characterized by a -high

rate of change, while the second (1974-1981) was relatively stable.
-During-the first - epoch, . the network was "differentiated by an

east-west dimension. The second was differentiated by a north-south

dimension. .These changes may be attributable to the. opening of the

Dallas—-Ft. Worth airport and the increased use of its facilities as

a central hub for air traffic. S L

The network also exhibited a high dégree of . stability. The
mean correlation between the first two dimensions at adjacent points
in time were .981 and .986. For the largest dimaginary dimension, it
was .67 and .82 for the last ten points in time. This demonstrates
the necessity of using a Riemannian manifold to describe social
networks. ' , : - S s

Future research with .this data- cet is pPlanned using alternative .
rotational. algorithms rather than the ordinary least squares
. procedures reported here. During the period examined in this paper
- ~the . critical event in the air traffic network's history appeared to
. be the opening of the Dallas-Ft. - Worth airport. ° To - examine its
_impact on- the network and the node's changing position within the -
?“-ﬁéﬁworRTLa-rotational;sgggmgF!§§ch hold the other’ cities  in .the
»network'constapt~relative;tq a7grEefmovinngallas_shgglg:be,appliedgx '
~ This ‘analysis has not- been ‘performed due. to  the high cost—of———
- computing and restrictions on‘computer’limitatipns-ativSUNYeBuffa;o;
Plans - have 'been made to perform these-analyses,at*SUNthlbany with

‘,the;assiStance"pngoseph'Woelfel and Richard Holmes. °

- . -There 'is a 'familﬁ ‘of :modelsm*developed‘;by"geographers to

~describe . the ' frequency of - interaction- among collectives such as

' cities. They are known_as_cxavityfnodelsf~+uamblin7—f19777*—01§§6ﬁ?—“——
1965).  Originally proposed 'by Z2ipf (1949), ‘they  predict the

- frequency of interaction as a function of .the product of two nodes''

~-population . divided - ‘by: the diStancef~between'gthem'raisedlto,sbme '

.
LI
o B




power, It is‘presented ¢ - #0uation 7.{

i= clppy)/a™ 7

Test of this model have resulted in explained variances in the
range, .592-.774 (Howrey, 1969; Long, 1970). The exponent ranges
~from .14 to less. than 3.0 (Olsson, 1965), depending-on the type of
'network examined.. Tests' with the .1980 data have resulted in

exp1a1ned variances between .46 and .58. 14 .The- ~“exponent ranged
from .11 to .40, depending on the restrictions placed on the model .-
These results suggest another analysis, a rotation - in which the
nodes are weighted by their population. While Woelfel, et al. (1975,
- 1979) describe the algorithm for a weighted rotational procedure,
the ‘software necessary to perform this analysis is not operational.

Rogers, and R1nca1d (1980) propose two determinants of network
structure, phys1ca1 proximity and homophily or similarity among the
nodes. This paper . discusses only the  former. To evaluate tihe
latter causal mechanlsm, data on the similarity among . the nodes must
be collected. This ‘paper has indicated that economic variables .may
‘predict change in.the network. Thus, ‘a logical starting. point would
"be to gather economic data on the cities. Other variables such as
ethnic makeap, . mob111ty patrerns, cultural, educational and
political factors could be -examined. From these data, an index of
similarity among the nodes may be .developed. This would allow . the
construction of. a.-soclomatrlx "based - on ‘the nodes' structural
‘equivalence.  Structural.equivalénce occures when two ‘nodes occupy
eguivalent positions in a network due to the pattern of relations
(Burt, 1982).v This assumes that if two  nodes - are similar, their
posltlon in the network should be equ1valent desplte not necessarily
being in -direct communication. contact. For example, both the

5; Florida nodes and Phoenix and San Diego have ,eq01va1ent positions

~.based upon tourism. -However, then/have little direct interaction.
‘Thus, a structural .equivalence approach may: ‘reveal - many insights
into. ' the changlng nature of the air traffic network. ~ A matrix of
-structural eq01va1ence could be - directly - compared to  the

, soclomatrlces ~of “air traffic mn much the same manner as any two~

sociomatrices. In this way, the éxtent of 1nfluence of homoph11y on..
: the structure of the network_canlbe determlned

!

, Thls paper has_focused upon the network _among Amerlcan c1t1es
which “resulted from. the frequenc1es of . their interaction. via
va1rp1ane.~ ‘These results could be applied to those innovations which
are- dlffused_» primarily /by . this  network . .and =~ to . the
commun1catlon-transportatlon tradeoff issue ‘(Barnett7‘1979), The

..‘reversal in trend-. 1n connectedness could be the beginning of the
. discontinuance - of ~ the use ‘of air travel -which. coincides with the.
“development of - alternatlve communlcatlons -technologies which  may
make travel unnecessary. IR v N
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Future research should apply the methods described here to
other communication networks. " One such application would be to the
communication networks. of formal orgarnizations us suggested by

' Goldhaber, et'al.(1983). 1In that case, the unit of analysis (nodec)
‘were branches or functions of. an organization. At that level, the
system was highly interconnected and the information on the strength

. of link among .the  nodes ' could have been treated. as distances in-
Y matrix S. Such research on .a formal organization is currently
v underway.  These pProcedures are ~directly. .dpplicable’ to

- Computer-Mediated Communication: -Systems- (Danowski, .1982; Rice,
1982). In|those cases, the data are error-free, time sensitive and
may include a quantitative measure of interaction which could 'be
converted to communication distances. ) . ' '

There are a number of drawbacks with this method that should be
discussed. One is that it can only be applied to those systems that
are completely interconnected. -, The reason is that in those cases
where the frequency of interaction between two nodes is zero, - the
reciprocal  becomes ‘infinity. . To apply the proposed procedures to
those situations, rules must “be ‘established to deal with links with
‘a value of zero.- One simple solution is to assign. an arbitrarily
large value. 1In that case, the value of the trace, the indicator of -
connectedness discussed in this paper, would also be’ arbitrary and
no ‘inferences about it could be drawn. IO

] L ; \ - - ’ L R
Another problem with these procedures ‘is that their application®
is to relatively small networks. - The Galileo (tm) software is
limited to 40 nodes. Also, it is limited to 40 points " in time.
This 1limits . the - 'potential ‘application. of classical time-series
analysis (Box & Jenkins, 1976; Jenkins.& Watts, 1968) for analyzing
the periodicity of  ‘changing network .parameters™ as - proposed by
Barnett and Woelfel. (1979). Vplthough,there are. procedures . to _work

around: the points in time limitation. It should be noted, however,—
that the software muay not-be  the ultimate-—limitation. ~ As pointed
1out. above, the time required-to perform these operations may exceed
-+ the.limitations—of university computers because the " algorithms are .
... —iterative solutions. R : A T
% . A final complication: concerns those cases where the research is
'V interested in directignal or nonreciprocated links. In that “case,
sij # sji. _Currently, Galileo (tm) has no: procedures . to directly
analyze assymetrical- matrices. . Although plans to calculate both the
left and- right .handed eigenroots ~have  'been discussed, (Woelfel,
personal correspondence), a simpler method, currently “available, -
would be to create two matrices S(send) and S(receive), and then
", compare as if they were separate_points in time. 1In this 'way, one
.7+ can -determine the differences between ‘the incoming and outgoing
‘links. .. oo R : RS-~ * : S

- -




~In summary, this pager has proposed that a variant of metric
multidimensional . scallng, the Galileo System (tm) be used to analyze
- over-time : changes in social networks. The paper discussed the
theoretical necess1ty of using these procedureés and certain
methodological . problems associated with this approach. Next, .it

‘examined the air traffic network among 31 major American cities over

- the 14 year pericd, 1968-198l1. It demonstrated how 'the proposed

ft;nethod can provide insights into the activity within the network-and

the impact of exogenous factors upon the structure of the network.

. \ . l L " - / - WVM.W: o
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: Mlller, Nlcholas Illlch,.and Mark Feldman. This research was- made
possible""in n part by a grant from the Faculty of the Social Sciences
—~at the State University pf New York .at Buffalo.

. 2. " This assumes that the relationship among the nodes is
relat1vely _stable over time. 1In the case where the relations among
~the nodes are dynamic,-this process of change. can be precisely
described by gathering matrix S at a number of p01nts in t1me and
.calculating the changes between S 'and S

, 1 2,

3. Th1s matr1x is typ1cally “double centered”. That - is " the
grand mean of the- d1stan9e matr1x is subtracted from all values,
- giving the matrix a grand mean of zero. Thus, the matrix is
- centered about zero. As a’ result, the centrality of any individual
~node, i, may be found on the diagonal of the scalar products matrix’
" (s 8). the wvalue on the diagonal, sii, represents ‘the d1stance bf
. node—i from the center of the network, such that the greater the
value of sii, the less central the node is to the network. -

] P

“owo4y--Matrix 8 “in T the ‘example would produce a two-dimensional
space because any matr1x of N points may be described without the
loss of .any information by a manifold -of N-1 dimensions. :For -

' example, any two points may be precisely described by a ‘line. Three
po1nts may be described by a plane (two dimensions) and four points

by - cube (three dimensions). N p01nts by a space of N-1
d1mens10ns. , L .
°5;.~ In this example,k one ‘aSsumed' that: there was ° some

- communication between b and c. " If all communiction between b and c¢
occurred through a, one must identify .a .maximum value for the
‘frequency (discrepancy) " of the bc link. Without such a value, be

’ would be equal and the calculations could not be performed

6. These'data may be obtained from,
' The Economics and Finance Council
“Air Transport Assoc1at10n of America -
,' 1709 New York Avenue, N.W.
Washington, D.C. 20006

1
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: 7. Not included were San Antonio and Sacramento. Oakland, San
Jose and San Francisco’were combined into a single node. SCSA Ft.
Lauderdale was treated - separately from Miami because of the great
frequency of air traffic 1nto its airport.

;
J

8. The data were extracted from table - 11 "Domestic
0r1g1n—Dest1natlon Survey of Airline Passenger Trafflc.

9. When equatlon l was applied to the San D1ego—Ft.
Lauderdale -New'York tr1ad cos ¥ = 16,011.24, indicating a violation'
of the rule of: tr1angular 1nequa11t1es. However,. when the same
equation was 'applied to the triad after the inverse transformation
was performed, cos e.=5.56;'an Euclidean'solution. :

10. Root mean’ squares (E x2/n ) of the changes were I, examined

‘rather than simple means because many of the distances moved were

negative. That is the differences occurred on those d1menslons w1th
- negative e1genroots. y

s . ~.

- =

‘ll. BMDP's P2M hierarchical cluster analysls program was used
“to identify subgroups with the network (Dixon, 1981). It forms
clusters of cases based on-a measure of association or similarity
- between the cases. Here, the distances separating the nodes (cases)
vwere the measure of.association. Initially,-each mode is considered
1a separate .group or - cluster. Cases and/or clusters of cases are
jolned in a stepwise process until all cases are combined into one
cluster. Hence, the label, H1erarch1cal Cluster Analy81s. - The
- algorithm begins by. comput1ng a matrix ‘of distances- between . each
'.pa1r,'of cases- (nodes). In this case, 'a distance matrix; S, was
provided. Then, disks are. placed about each point and their radii
expanded untll the intersection  of two disks or until one covers
«~ another: point. The1r distance is the length of the -radius. A
matrix of -these’ pseudo—d1stances is then stored. The" two cases with
- the | smallest distances.are joined f1rst. ‘The " process is repeated.
. During- the amalgamatlng process, (a case w1th another -.case, a ‘case
. with a cluster or two clusters), distances are read from the initial
" .distance matrix. The results include a- ‘distance or: den51ty measure
‘1nd1cat1ng the distance at which the n-th’case was clustered and - a
- tree’/-diagram’ wh1ch reveals the sequence of cluster formation. . The
- distance. measure ‘may-be ‘'used as a measure of centrality. = The ‘more
central .nodes ' are: clustered first and have a lower distance value..
The more; per1pher1al ones “are - added later and have a greater
'd1stance value. . T T '

le | ~To check the va11d1ty of these procedures, the phys1cal.

-distances among the” c1t1es were transformed into spatial coordinates '

";and then the coord1nate values regressed on lad1tude and long1tude.
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Dimension one's correlation' with longitude was .993 jn?=?§§§7?\\\\
Dimension two's correlation with laditude was .982 (r*=.964).  These
dimensions accounted for 81% and 19% of the variance in the
distances among the cities respectively. Together, they account for-
98.7¢t of the variance in the distances among the cities. This was
‘determined by summing the proportions of explained variance
multiplied by the 'correlation squared. The remaining 1.3% may be
attributable to measurement and rounding error and the .curvature of

the earth.:’ Thus, regressing matrix S 's coordinate values upon .
laditude and longitude can be wused to determine the  impact of
physical location on network structure.

13. " The ‘decision to combine the 14 sets of coordinates was
based upon the high correlations among the respective dimensions at
adjacent points in time. Combining. the dimensions results in a’
conservative estimate of the variance attributed to physical
-proximity. If two dimensions are. not identical random error is
entered into the analysis ‘and the estimate . of - goodness-of-fit are

——Toweredi~—The reason for this is that dimension n at time k may not
be dimension n at time k+l1 due to change in the ' network which
- changes the order in which the dimensions are extracted. o

14. ’Only 26 nodes - (325 pairs) were included{ih testing'tbe
gravity model. Excluded were, Columbus, Ft. Lauderdale, Milwauke '
'San Diego and Tampa. The specific form of the model tested was, T' o

In(i) = 1n(c) + m In(p ) + n in(p.) - r 1n(d). o
The coefficients were, c¢=316, mn=.88, n=.83, r=-,11, R =.463.
Taking -the antilogs, the predictive model becomes, - -

. - _ y = 316 p gﬁngald 11. B -
Predicting interaction from the nodes' population alone, produced an
R =.458. This indicates that population alone is the best predictor
of interaction by air. ‘An examination of of the residuals revealed
that the greatest deviations (greater than 3.0 standard deviations) .
occurred between -nodes less:than 125 miles apart. Travel between -
them is most efficient ‘using ‘other modes. - of transportation
(automobile, -bus or train). For example, 4 of the 5 pairs with the
greatest residuals are on Amt:rack's New York to Washington  corridor
(New. York, Philadelphia, Baltimore and Washington). Here travel is
most efficient via rail. As a result of this' analysis, the model
was tested with only "those links whose distance was greater than 125

- miles. _ Seven'of 325 pairs were elLiminated. _The coefficients were, -
.. €= 242,m=.93, n=.85, r=-.397, R =.582. R with = the ' nodes!
" population only was .522. For the reasons why c¢ is only an

approximate ,value see-Hamblin (1974). = B
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TABLE ‘1

SELECTED CITIFS (SMSA) AND POPULATIONS (1980)

Atlanta
Baltlmore
Boston
-Buffalo
Chicago
Cincinnati
Cleveland
Columbus
:Dallas-Fort WOrth
~Denver =
Detroit

Fort Lauderdale-ﬂollywood (SCSA)

Houston
Ind1anapol:s
Ransas City

Los Angeles: g
)

Miami (wlthout Fort Lauderdal
Milwaukee i
Minneapolis-St. Paul

New York City

Phlladelphla L J oo

‘Phoenix ' _ O
Pittsburg /A
Portland & - /
'San Diego - - ' J/

. San’ Franc;sco-Oakland San Jose

Seattle : /
.St..Louis /
Tampa-St. Petersburg P
‘Wash1ngton S /,_
’ : //

TOTAL POPULATION'OF CITIES

" TOTAL POPULATION OF D.S. 1980
'Sample conta1ns 43. 5% of Total_fﬁ-"

2, 010 000--

| 2/466 ,000
3,443, 000
1)
7,697,000

1,651,000

/ 1,006,000
3,086,000

1,162,000

241,000

2,830,000 .
1,089,000
/2 1964,000 .

1,615,000 -
4,606,000

153221000 :

11,439,000
1,573,000

1,566,000.

2,109,000
. 1,184,000
16,065,000

‘5,530,000

1,612,000

2,261,000

1,236,000

1,860, oooAL

4,845,000

2,084,000
2,345,000 -
. 3,045,000

" 94,092,000
225,479,000 -




TABLE 2 o
" RESULTANT éQEFFICIENTS, OBSERVED TRACES, PREDICTED VALUES AND RESIDUALS
T OBSERVED TRACE*  EXPONENTIAL DECAY RESIDUAL  POLYNOMIAL RESIDUAL

| PREDICATED | | PREDICTED
1 67,730 . 66,729 . 1001 . 59,404 - 8325
2 50,699 *° - 53,931 . . =3232° . 56,105  -5407
.3 48,657 48,288 o 369 53,145  -4489
4 48,331 | 45,800 - . 2531 50,524 -2193
——5- 46,718 44,703 '\, 2015 48,2417 1523
6 45,817 44,220 1597 © . 46,296 .  -479.
ST . 47,987 44,007 3980 44,690 ° 3297 7 .
-8 45,157 . 43,913 - . 1244 | 43,422 1735
9 . 44,323 43,871 452 42,492 - 1831
100 -, 43,421 , 43,853 . -432. - 41,901 1520
1 41,587 43,845 . -2258 41,648 . . -6l
12 40,507 - 43,841 -~ =3334 41,733 -1226
713 . 41,567 , 43,840 < =-2273 - 42,156 = .-590
14 42,178 - '43,839. . -1661 42,919 -741

?QEXPONENTIAL DECAY- _y;e a’+ b (exp * kt)

‘a = 43,838
b = 51,919 | I
- k = -.82 - « T W ‘ .4_'.;..:}— ‘
‘R équaré = .864 . i
POLVNOMIAL ¥ =a+b (l)t + b(2)t **2 ,
;;fab(l) = 23'806 " F = 13.18 p = .004
o b(2) =" 169 F =.6.19 p= .03
- R ;s‘vq.l‘:é/rle, ;\'=..752 o - } . )




“TABLE 3
OVERALL CHANGE. BETWEEN ADJACENT POINTS IN TIME
YEARS DIFFERENCE
1968-1969 ~ 585.8
1969-1970 2,278.5
; 1970-1971 - .2,316.8
‘ 1971-1972 | 2,362.9 ' .
1972-1973 - ?//ﬁ 2,370.2 | ,
1973-1974 2,350.6 |
1974-1975 - '383.2
. . '1975-1976 | 259.8
L C | 1976-1977 . 216.1
v | S 1977-1978 . 253,5°
'1978-1979 _ 302.6 \
1979-1980 . . 248.0
1980-1981 S 241.9 :
TABLE 4 '

. HOHOGENEITY OF THE NETWORK OVER TIME
 YEAR MAXIMUM DISTANCE  PER CENT VARIANCE . - STANDARD DEVIATION  WARP

_ FOR CLUSTER - FIRST DIMENSION - OF EIGENROOTS ,
.1968 20,407 330.8 . - C77.73 3,97
*.'1969 6,529 43,0 . .. 9:37. 1.25
1970 4,380 o 28.4 5.22 1.13 -
1971 3,888 . 25,5 ~ 4.64 ©1,11
1972 3,244 . 21.9 3.98 - 1.07.
01973 3,045 20.7 - 3.97 1.07-
1974 4,472 - 23.8. : © 4,52 _ 1.09.
©.71975° 2,782 _ . 17.8. 3.33. 7 1.06 -
1976 | 2,768 o .~ 16.6 . 3.23° 7 . 1.06
pm 2,733 - 163 3,10, 1.04
©1978 2,723 . 15.0 . . : F 2,97 7 .1.05
11979 . 2,665 14.6 : - -2.89° 1.05
1980 - - 2,942 14.6 . : . 3.22 ) 1.09
1981 3,024 - 14.4 _ 3.30 ‘ .11
; ) TABLE 5 o ,
. CORREL TION or EXTERNAL VARIABLES WITH CBANGE IN NETWORK STRUCTURE
Lo i ‘ TRACE CBANGE N TRACE L HEAN OVERALL CBANGE L
DERE LATION S =.51 e26 . T =460
_ATLANTA'S OPENING . "-.31 | , 026 - =436
PERSONAL INCOME ,,_“ L69% .38 S  =.56%.
DALLAS'S. OPENING -.60* ,?: a2 L =a 89
GNP , _,; =U68% LAY R L
GNP SERVICE e 6L L 26 o =.38
- PRODUCER PRICES RS E1d AR -.24‘ AR o =e29

"CONSUMER"PRICES- ... .78% * - . = =002 &= .. . .12
= MENT — — =65+ 10— .03
_AUTOMOBILE SALES : .17 . = 100~ - "..0 . .00
FUEL PRICES ;g,~;_;w 280%: .53 0 L3l

sjmmncm’r A’I‘ 05 LEVEL38




Flgure i
Trace Over Tlme
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Fugure 2

\Overarll Change Over Tlme Ly
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