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A Derivation of the Sample Multiple Corrélation Formula

for Raw Scores *

Francis J. O'Brien, Jr., Ph.D:

P National Opinion Research Center, New York
Increduction
This paper is the fourth in a series of publications. The purpose

of these papers is to-ptOVide supplementary reading for students of

applied statistics. (See O'Brien, 1982a, 1982b, 1982c). My intended

audience 1s social science graduate and advanced undergraduate students
familiar with applied statistics:. The minimum background for most of '
the existing and forthcoming papers is knowledgé of applied statistics throus'
rudimentary analysis.of variance, and multiple corretation and regression
anéiysié.

The unique feature of this set of papers is detailed proofs and
derivations of imbortant formulas and derivations which are not readilv
available in textbooks, journal articles, and other 51m11ar sources.

Each proof or derivation is presented in a clear, detalled and consistent
fashion. When necessarv, a review of,relevant élgebré ié providéd.
Calculus is not used or assumed: -

As a éormér inétrUctor Sf éppiiéd étatiéticé on the graduate
level, I know that many students are very capable of understanding the
proofé and derivations preéentéd in tBese papers. My experience has been
that manv students desire to see a full, comprehen51ble statement of
2 mathematical argument. This series seeks to address such needs; )

The present paper is a companion work to an eariiér paper (6'§riée,
1982c). Each is a derivation of the muitiﬁié corretation formuta for
the linear model. The first paper formulated a detailed derivation of tﬁe
multiple correlation formuia for standard (z) Scéfes.l The present paper
is a derivation of the multiple correlation -formula for unstandardized
(raw) scores. Readers shouvld find each paper ingeresting and informative.

. : AN

y
1Tvpograph1cal errors appeared in this paper:. For the readers

convenierce,, corrections are summarized in Appendix B of the present paper.
The author would be grateful if other errors in that paper or the
present paper were communicated to him.
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ThHe two papers taken togcthét arc meant to be preparatory reading

for a related paper.

Overview of Derivation

In this paper we will present a derivation of the linear multiple
correlation formula for raw scores. The basic objective is to derive
this formula for one raw score criterion (dependent variable) and
jany finite number of raw Score prédictors (indépendéht variables):

Let us first state the formula we will derive and introduce the v
notation used. The 1Lnear mlltlple correlation between one crlterlon

and p predictors can be expressed as

K{'xl’xé"”’xj’”"}?p = b 1§ Sl+b2ry9s 82 eeo
b’.rn.rs S. + ...+ b-r--g
PityiSeSy T T PpTypSy S,
N -
y

Writing the right hand side in summation notation:

Ry .
R 3K ee-3X.aeea,X = EE:”b.r ;S 8.
"2 i D Jviy]
' j=3
s
Yy
-where:
RY.AI;K7;...;X;,...,kp = muttiple correlation of taw Scores,
< J
Y = the observed raw score criterion to be predicted,
xl,xv,...,xj,...,xp : raw score predictoré of the criterion,
lForthcomlng with tﬁgiggpgcted title: "A Derlvatlon of the Unblased i
Sample Standard Lrmor of Estimate: the General Case." It will appear in ERIC.

ERIC o
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slope coefficients or regression weights;

b ih‘.)a yb;) ’b =
2 J P
Fo,T ., T r = product moment cri.erion/predictor corre¢lations,
v’ y2 i , Vp
RERE SIEERRTE =  Standard deviations of theé predictor§,
S = the standard deviation of the criterion.
v
This is the formula that is derived in this paper. We will ™\

[

- . B - - - B B B 1 .
first present a derivation for the simplest multivariate case: one’ critarion
and two predictors. A derivation is then rresented for three predictors.
The latter derivation is & useful exercise because it allows a review

of the logic and procedures used in the derivation. 1In addition, it

- will motivate the use of summation when ths algebra becomes compiex.
The derivation is then presented for the general case of p (finite)
predictors. An integral part of this paper is Appendix A. TIn that
apﬁéhdik, a méthod is préééntéd for finding the ''mormal equations' in
regression analvsis for raw score linear models. -

Prior to starting the derivation for two predictors; let us
outline the plan which will be followed in the derivations. The steps Wwe
will use are:

1. state the regression model

2. derive the normal equations (see Appendix A)

3. define tHé muitipie correlation

4. apply rules of covariarce and variance algebra
to simplify the definitional form of the multiple
correlation formula :

5. substitute the normal equations into the multiple

, correlation formula

6. simplify.
We will refine thase steps to suit a particuiar appiicatiOn;
!
: )
f )
4’/’ d —
Q ¢
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Brief Overview of Regression Analvsis and

Devrivation for Two Predicrors .

In this section we will review the basic concepts, logic and
‘our notation for regression analvsis. Introductory applied statistics
textbooks can be consulted for more détailed information on regression
analvsis theorv. See, for example, Lindeman , et al., 1982. The intention
in this Section iS to review the rationale of regression analysis:
The primary use of statistical regression analysis is controlled
. prediction and éxplanation of: quantatative data: The basic principle .
that-lay behind regression analysis involves selecting a general
mathematical functicn that best matches the underlying form of
variables over whichk one desires to exercige péédittéﬁiiity; Assume one i3 attempting
"to predict oné réw Score criterion By use oF two raw score predictors.
Assume further that the relationship between each predictor and the
criterion is linear in form: The mathematical function most 7

Gften selacted to obtain the best linear "fit" for‘theée conditions is

A . . ~. ,
) ¥ = a+ b.%x. + b,x
byxy T.by%
where:
~ . L L S
Y = the predicted (not actual or observed) criterion,
a, by by = constants to be seléected by the ''least -squares'. procedure;
a = the slopeé intercept, and b. and b, = slope coefficient
terms, , St
'l,kq = prédictor variables in deviation score form.
o -
v
o 3
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[t is conventional to express the predictor variables in deviation Score
form. That is5, for éach predictor' first flnd its mean and then subtract
the mean from each predictor. For example,

-

Here, for either variable; '"cap X" is EEE actual (or groSé) raw score ‘and
¥ is its'arithmetic meéan. Tt ié not necéssary for any mathematical

reason to re—express the predxctors in deviation score form. This 15 dome
simply to force the élgébré to be more tractable. As such, it is a matter
of conveniénéé;l Note that we do not re-express 7 (or ¥) as dgviatiohs.‘Wé
re-express ' each type of criterion. However, we have chosen not to

do this since most authors follow this convention. '

Using deviation scores for the predictors, we can now write

the two predictor raw score modet as follows:

Nl

A o - , o
Y a + bi(xi - X.) + bZ(X - %2)
a + b1Xi -+ Pz 2

As stated, we will use the second form in this paper. o

The regression model statéd above is an ideatized mathematical model.
If a varidble set consisting of one criterion afid two predictors can be
assumed to be linmear, then the model is a reasonable one to apply
for prediction of actual or observed critérion scores. It is i&ééliied
in the sense that it aSsumes no error is made in the prediction of Y -In

practice, when an actual criterion Score is compared to the criterion .

1 . Lo N - . o PR
Readers of the 1982c papggimay wonder - why on page 2 thereof the
raw:g¢dre regression model was stated in terms of gFfoss raw score (and
not dev;atlon score) predlctors. As stated, it is not necessary math-

ematically to re-express: In any case, the major result we are seeking in
this paper is unaffected by the initial form of the predictors. The
derivation could be made witnout the translation of predictors into
deviation score form, but the result_-would involve unnecessary and unwanted
complexItIes. Practlcaliy speaklng,‘ukif paper would have been very much

longer if re-expression was not done.

ST

could
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vcore generated by model, some error is likely to OCCUrl;thé "Eit" dis
less than perfect. If we call the actual sample raw score criterion Y,

we can scate another model (an observ;d Taw score mndel)

A
Y = Y + e
where:
e = the amount of numerlcal eérror {ebultlng from using the
idealized mathematlcal model (Y) to predlct the actual
criterion score (Y). AN

-That is, an actual criterion consists of a predicted quantity plus an

Y

error component.
The error made in predicting the observed criterion Score by the

idealized mathematicai model is:

This is the quantity we want to be as small as possible in order to
minimiZe tHé &rror in ptédictibn. It can be Seen’thaE_if e=Q;EHé A
1ctual criterion is perfectly predicted by  the idealized quéi (YEYj.

The téchniqué most often used in the social sciences to écééhﬁiiéh
thiis goal is the "least squares" procedure. Essentially,.this procedure
sdeks to maximize predictability by minimizing prediction error. The -least

R — . . . C- s . B PR
squares criterion or goal is summarized in the following expression:

1

n . n

: A B
PR 2 = E -2 .

Z:(Y. - Y.) = 2 e. = a minimum

e 1 4 1

i=1 i=1

A L ) , ,
If we substitute the quantityv for Y previously defined, we can rewrite the

least squarés criterion as:

'\

IIE it is understood that the summatlon 11m1ts range from the first

observation (i=1) to the last (1 n) then we can drop the summatIon timics¢

n refers te the total number'of obsprvatlons for the sriterion and predIctors.

This sample size is the same regardless of the number of predictors in the
regression model. Later in the paper when the algebra becomes more complex,

we use summation limits exténsively.
:
N

Yy



T X3

i and bZ

(As an aside, "'least squares' means we determine values for a,b

-

~ , . . o .
in Y such that the squared error term results in the least possible value).

Sofmél<ﬁquétiéh§

O
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Having stated the multiple regression model for two predictors,
wi now derivé the so-called "normal equations". A discussion of the pro-
cedures and results we will need is presented in Appendix A. The réader
may wish to read Appendix A at thiS‘point (or take the next step
on taith):

The normal ecquations are derived from the least squares criterion
using calculus. The basic idea that lav béhind the technique for
two predictors is to generate an equationm for each of the constants in

i
and b,, respectivelv are found to be:

the regression model (a,b. and bdj' For the two predictor model, the normal

equations for a, bl

2 v = na + h'}z:-;L + 17223‘12 ‘
SoEY o= oapx o+ B1§EX? + Bg§jx1x2
ZXZY = a sz + ,bl lexz + b, Z"z)_

In the first normal equation (for a), n is the sampie size:
Thess normal equations can be simplified by substituting various
descriptive statistics into terms of the equations. Other terms will
T o L
cdnceél in the process. For the readers convenience in following the
substitutions; some basic formulas for samplé descriptive statistics are

presented in Table 1.

15



Tabla | | B
ﬁe3cript100 Samplu Statistics .
Statistit Raw Score Form Deviation Score Form
Hean ii = Z Y
n same
=T =)
p >- Iy _ _
Variance §° = Lo 52 = Xl
P e 1 e
n-1
Standard Deviation S} = o ' ¢z xi
\ ol _ l \-r—l*_—l“—“— |
LgrrelaElon of . E}XI_XI),QX—Y ) :iﬁly (where y = Y-Y)
tand £y s (n-1)3,8
R, M
Bl Y
_Yﬁ-i)S'S', e
SN Yo
(n-l)SIS2 (n-I)SiSQ
S o= S —— { 3
15

For "mean" (t is inderstood that the summation extends across all n values of Y (and ¥

for "correlation”). This applies equally fo ofher stabistics defined in the tabls,



1. In the first normal equation, we recognize that, on the right hand side:
A
SEUE

\\
<l
-4
it
o

<

to

[n the second normal equation,; we can see that:

0

A
¥

- 2 : ’ : ; 2 R
Z (Xi - X,) ) but the sample variance , S1 , 1s:

.= )
Z(x1 X))

n-1

N R
or (n-DS] = 23x1 X))

: - 2
This may be substituted for le.

As for z:<1:'<,) , Weé can use the definition of the sample c(correiation

between x; and x; to simplify this term. By definition, for samples:

1
Ej*i 2
= or.

(niljsis2 (n:1)éié2

o TNl
ifx1'X1)(X2'X2)

(n:i)rizéiéz = Z}{ixz—. This may be substituted:

16




2

b))
[

—_—

Finaiiy, EXIY may be simpiifiéd as foiiowé: /

le = ZCXI—Xi)Y . Now,

10.

XIY is idénticél t:o1 Z (XI—T-EI)(,Y—?) or
kiYA = Z\:lv (\é}iéfé v = Y-Y) . This is recognized to be the’

numerator of the corretation betyeen X, and Y (r , or r; ). Hence,
Yy Yy

S W : L

vl —m ) or Z xiY = (n—l)ryISySl. -This

may be substituted into the second normal equation.

1

PROOF:

Now , Z<Xi—$(-i) (Y-Y)

il
N
<
—
<
J
5
e
<
1
>
o
-
+
|
H
=<
p—a

Théréfoté, }E(xjiii)Y = 2:(X15§1)(Y—?3

End of proof.
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-

3. For the: equation §:x2Y we can write down immédfatély the following
éimpiificatioﬁs: )
EigrY translates into’ & x.Y = (n-1)r S-S, . In addition,
y2'y 2 -

2 2

§£§1x2 = (n—l)rlzsisz

)
(ni-l)S2

Making all these substitutions, we arrive at a simplified set of the originally

_stated normal equations.

ZY = na + bi(O) + b2(0)
(n=Dr_ .S S. - ! ' a2 , DI
vyl v'1 a(0) + bl(n })Sl + bz(n l)rlzsls2
: - ] L o 7 5
py .S = Y — --G-G- = 3
(n l)ry25y~2 a(0) + bl(n I)rlzsls2 + b2(n l)S2 B

To further simplify; eliminate zero terms, and for the last two. normal

equations; divide éach term by (n—l); This gives us:

E:Y ' = na

, . ' .

15,1 biSy + byT12515;
77\ C —_— L 7- ~ - _ G L 772’

58,8, - biT,5;8, ¥ b,S5




12.

As a Tinal simplification, we can divide through the first equation by n:

LY = a
52 + S.S
r 85 = b5 P3T12°1%2
vy 1
Ss, = S, + :
y32y°s b1T155:5; b3S,

These are the normal equations we want to work with in the derivation
el o 7 R o S
for two predictors. For the readers convenience 1n working through the

derivation, we will restate them prior to the derivation.

Multiple Correlation

We are now ready to define thé multiple correlation for one criterion

and two predictors. By definition:
R? _ A B .
XX, = corr(¥,Y) = corr(Y,a + bixi -+ béxé)
PN
= cov(Y,Y)

\var(¥) var(®

= cov(Y,a + bixi + b2x2)

var (Y var(a + b.x; + b.x;
d ( )‘\J ( 171 272
where: o
corr medans correlation ,
cov means covariance and,
- var means variance.

1 L
Alternative

notation systems use RY-xi+x2 or RY'*ixz , among others.

o 19 .
ERIC
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13.

It is important to remember that a, b1 and 52 function as constants.
Vlemtntarv covariance and variance operations performed on the

above correlation formula yield 1in the first step:

RY.ii,x7 - cov(Y,a) f, cov (Y, b1 Pt COV(Y,bZYZ)

|var(?) var(é) + var(blxl) + var(bz;xzj +
+ ' 2 2)

2cov(a b ) + 2cov(a,b2x7) 2cov(bixi,b X

y

Applving rules of covariance and variance for variables and constants,

. 3 D , 1 oo L o
we can achieve further simplification. This is done on the next Ppage.
L.

variance of a prodﬁct term containing a constant yields the squared

To briefly review: the variance of any constant is zero; the

constant times the variance of the variables——for example ;

2 ]
- var(blwl) = b1 var(xl)

When a covariance term contains constants, factor the constants outside
the covariance operator (sometimes this reduces the covariauce to zéro)—-
for example,
cov(a,b,x;) = ab.cov(l,x ) =6
( b 1 1 1 ( 9 l)
but

Cov(bixi’bZXZ) = bibzcov(xi,xz)

By aéfiﬁiﬁiéﬁiﬁﬁé covariance is related to the simple correlation-~for example,

covlxpsxy) = 11,55,
This should appear correct éincé, by deéinition,

cov(kr,xgj
i VA

12

ERIC
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14.
hY o ) o 0+ bICOV(?,XI) + bzcov(Y;xi)
. xl ’ .‘(2 - . - - T T T T _ .
s. |0+ blvar(x,) + bivar(x,) +
v v %) yvar(x,
0O +0+ 2bib2cov(xi,x2)
As mentioned; by definition: -
cov(Y;xi) = ryisy i
cov(Y;xz) = rVZSyS2 . .
B B R ¢
cov(xiixz) = riﬁsiSQ . \\\

One further observation should bé made with respect to the variance
of the predictors. For example; the variance of x; 1is:

var(xi) = var(Xi - Xi) e

/

By definition, the variance of this différence is:
_ ) :F 7_,7 - ,,7 —_—
var(Xl) var(Xl) 2cov(X1,X1)

Since ii is a constant,

var(xi) var(xl) +0-0

-2
_Si

Simitar results obtain for vér(xz). fﬁerefore)whén all substitutions are

made:

Ry . o - 17y1°%y71 25527972 .
.Kl,xz ——— - = — S R ,

This is the form of the multiplé R we will use in the derivation. It will

- - . - - .
be restated for the readers convenience.
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Derivation

The following formula for one criterion and two predictors
appears in manv applied statistics textbooks:

\}blrvlsysl b5T525,57

- RY X 5{,) = N L A

Tr

We are now able to show its derivaticn.

B ] i L - R
For the readers co>nvenience, a restatement of the simplified

set of normal equations and the multiple R formula is given in Table 2.

into the numerator of the multiple R formula and b)simplify algebraically.

See the page following Table 2.

.

1!



Table 2 " H
Normal ﬁQuatiOQSMWﬁaﬂdmﬁuitipie Corretation Formula for Two Raw Score Predictors—— —— —— —._
T . "
(\
Normal Equatiogs ”
N\,
1
FS5s = bs +  b,r.S.S
J1%y°1 °] 2"12°1°2
T S X S S
y2°y°9 1112°1°2 S .
Multiple Correlation
TS ¥ 5.S
RY . ok = blryi vsi b2r 2y 2
1’2 — — T
22 L 22 S
s |t o+ + 2b.br S8,
S \Jb151 525 B15,719°1°
l..- - = termis opitred Pecause it plays no role in the derivation (other than zero),

NOTE :

The a= Y

Proof involves the sobstitation of the normal equations lnto the numerator of
the multiple R formala and simplifying. See text for details.



17.
Notice that the numeratd>r of the multiple R formula contains
the terms %0isvsi and EyOSyS@. These terms are functionally related
to the nérmﬁi EQuétibné. If we substitute néfmai equations for
each term into R and rearrange terms, we obtain the following results:
: bo(b.82 + bor. S.8F + bilbirios.s &b g2 s
Ry L= 1717t 27127422 2°°17125¢5, + b,55 )
X X, = O e A a—
5 'bzsz + Bééé + 2b.b.r..S:S
. "y NP1%1 2°2 “P1P5712°1%2
8262 % b.b.r..SS. + b.b S.S. + b2’2
1°1 1°2712°1°2 1°2712°1°2 252
S 2.2 2.2 -
r - B -+ 4 2 o
voeist t BeS, biPyTi5515;
2.2 2.2 o . e
£ 4+ 2 g
[;131 toby5, b1boT125:5; ]
S 25?4 1252 ¥ 2b:b S-S
y 171 ’273 1725127172
(Hence b.r §$S.+ b.r .SS. = 52é2 + b%8% + 2b.b.r,.S.5. )
rencss 1791°%y 2 25y2%y72 11 2°2 “P1P2%12%172

Now, the bracketed term of the dénominator can be simplified algebraicalty if

we remember radicals and taws of exponents.

Het the denominator (inside the brackets) be called A. Thus, the
structure of the Multiple R is: :

.
A

s, Vi
wecall the following permissible operation (rationalizing the dénominator):

R

; B §§ JfZ’J?f‘ 7

1

fll

sy;,A

y
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éimpiifying: :,L

on
— P
wn
— PO
+
=)

RY.I\']'-,XZ‘

Therefore,

L - 1Ty1y
RY'Xl’xz S

lror readers familiar with the 1982c paper, it is possible to

obtain a "cheap'" proof in the analogous standard score regression model:

are in standard score form, then the standard deviations become unity;

1. Thus, in the notation of

W
N
it
vl
N
et
Il
wn
N
19
It

the 1982c paper ,

R - -
zy;zi,Zé ; Iyl 2

ih
os]
~
+-
os]
~
N

END OF PROOF

If variables
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Derivation for Three Predictors

-
Let us mow work .out the derivation for a three predictor
raw score linear regression model: This will allow us to review
the iogic ahd procedures of the derivation. We wiii aiéd introduce
the usc of sumﬁéﬁién'which]béééﬁéé necessary for the ééﬁéfal case of
p prédictoré. - s . :
The First step is to state the regression model. For three predictors:
/\ - . __
Y =a + bixi + b2x2 + b3x3 e

We have simplv added an independent variable to our prediction (idealized)

b

- - R - - -~ - R
mathematical model to form a four dimensional nodel (Y and three
predictors with their associated slope terms’).

As.in the two prédictor modél, we make use of the least squares

criterion to estabtish our doal of minimizing the prediction error: <=

~ N o
\ ; “ = . - - 2 = 3 i
E:(Y - Y) -—;:(Y a blx1 b9x2 b x ) E; a minimum

The next step 1is the application of partial differentiation to find
derivatives of each of the térms in thé prédiCtidh model ('a,b'l;b2 and b3).
This procedure prodhtés the set of normal equatiOns. Appendix A shows

the procedures irvoilved: Omitting the cumbersome algebra inVvolved

in simplifving the original set of normal equations, we can state the

firnal and simplified set of normal equations as follows:

26




Y = @
r §§ = b"S2 ¥ bor..S.S. + b.r..S.S
y1%°1 1°1 2'12°1 : 3137173
r.$S. = b:r:.S:S: + b-é2 + b.r..S.S
‘927372 1127172 579 | 31237273
C S5 = brSS. 4 birSS, Y,
y3y 3 113713 27237273 3°3

Recall that the value of a  is determined in practice but it piayé no role in the
derivation since it "drops out'" in covariance and variance operations of the multiple
R derivation. <
The above normal equations are the omes we will make use of in the derivation
- of the multiple R formula for three prédictoré. A restatement of them is presented
in fhbie 3 for easy reference;
" ‘The third step is to define the multiple correlation of one crit: ‘om
and three raw score predictors: Rules of covariance and variance éigébra will allow
us to simpiify the definitional form of R. ,
The multiple R is defined on the following Paﬂeil

Lo o mom o e : o
The term a is om;ttEQ - F?F,J?Stifica?ioni the reader me. wuat to include 1t in
the definition of R and ascertain the result.

oo
~
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R ) ) ) . 3 N - ) L. .
KX, X, = ) = ¢ X, X, t b = cov(Y,Y
Y SEERES corr(Y,Y) Lorr(Y,beI + b2x2 b3x3) _Eiygﬂ__{_..
o A
< var(Y) var(Y)
= Wééﬁ(Y;Biii + B§k5 + 5&%@) - )

J var(Y) JVar(blx1 + b2x2 + b3x3)

All of the abuve forms state equivatent ways to defime the multiple R. The last is amenable

to operations of covariance and variance. Applying rules of covariance and variance algebra:

S Cov(¥,b %) + cov(¥,by) + cou(¥,byx,)
-x]’qun\} - L

g N mox) F v
) var(blxl) + var(bzxz) var(b3x3) +

x2) + 2cov(bix-,b_x_) + 2cov(b2x5,b3x3)

\ 2eovibyx)sby 1% j
= bhr SS. + bor.SS + bor.SS.
Jiliﬁl_)fiL._A berzS' 77774~§35y3<yﬁ377f
22 2.2, 22
Sy blsl t b, 52 + b3 53 ¥

b1 8.8 F 2b:bri 8.8, F 2bibar,sS.S,
hblbzrlzslsg + 2b1b3r135183 + ~b2b3r235253

This is  as far as we can simplify the multiple R at this point. We will retain this for

25

Eég Q*E". e: '..,‘ ';
IERJ}: rence, See Table 3
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Table 3 ,
%

Napm&LWﬁQﬂathnvsjgﬁ{)ﬁﬂtipic_éprreiation Formula for Threé Raw Score - Predictors -

Normal‘EquatiOnS1

§ 5. = g + 1§ ¥ r-§.5.°
LT T I Ot b
5S = biro8S 4 bl b ob,r,8.8
yly 2 112712 22 323273
eSS = brSS. 4 brSS 4 bl
vy 3 1137173 27237273 3

Multiple Correlation

S “br $SS: ¥ br SS F b.or SS.
RY'Xl’xz’X3 ) "”’fi‘f“,l ,}'f,, Tyiy 2 =S 6 R R —
29 2.2 .

6T 4+ Bo ST F
sy bls1 b282 ¥ b353

lAgéiﬁ)wé note that the term a (=Y) is omitted from normal equations and the multiple R.
NOTE: ferivation involves substituting the normal equations into the multiple R and simplifying. See

the text for details.

29
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.

We have stated the multiple regression model and least squares criterfon; and presented

the normal equations and the multiple R Tormula. The fourth step is to substitute

the normat equations into the muttiple R:

If we substitate eiach of the normal equations for appropriate térmé/iﬁffﬁﬁ‘humgrﬁfGr

y
/

of R we ohtain (sec Table 3):

Now,

;
ov(Y,Y) = bor oS8 4 S, + byr .S S,
cov(¥,¥) lryl 071 b ryzsy 2 b3ry17y%3

= (1 S
hl(h] + bzrl S s + b3r138183) +b (b1r175182 + b S + b3r238293)

o o2

7 .2
q + S
(h] | b b r12 182 + blb r138183) + (blb2r128182 + b2 82 + b2b3r238283 )

_____ 22
(bl 37158155 F bobyTysSySy ¥ 538))

let us write cach parentihesised term on a separate 1ine to form a covariance matrix:
- 25¢ ; bhr,,$ S £ bbrSS
cov(t,¥) = S o755, BERERR
bbr. .S S + b5 + b.h.1..S.S.
D1PaT12%1% 22 2"323°2°3
h b r..S.S. + h.b.r..8.§ + 2 :
3713713 2737237273 3 3

r



At this point wé will introduce summation to simplify the algebra: Consider the three
squared terms along the northwest to southeast diagonal of the covariance matrix. It is clear

that we might express these terms in summétiéﬁ as fotlows:

2
}:b

‘._l

The remaining six terms in the matrix constst of three pairs of quantities:

212172 131313 23237273

['\.,

2blb[r 5. S + 2bb.r..SS. + 2b b r..SS

One common way to cxpress tils in summatior is as follows:

302
501 ¢ 4 ; :Z: Ei;b b.r. S-S,
. (btb?_rus1 5 blb3rl3SIS + b2b3r238283) o & i'jij 1]

]- . - Ce e e e . o S . e e
One of several ‘orms often seen inm muoltivariate statistics textbooks 1s as follows:

zbbr S.S, , i#]
1§ 151

31




The total number of terms to be summed is determined by multiplying
the uppér limits (3%256). In thé double summation operation, the inside

summation operator is set to 1; then-increment the outer operator
(352,3) giving i j=12 + 13. Now incrément i to 2 and completée the limits of j
(with the side condition that i#j —- e:.g:, i j=22 1is not permitted):

%ﬁe suBscripts that result from all of the SUmmatiOh operations are:

12 ¥ 13 ¥ 23. Each value ,of course, is taken twice.

ERIC
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Thus, the nine covariance terms of the multiple R numerator can be written in all of
the foﬁuwin;’; ways: '
"\ . . . . -
cou(f,¥) = bZS% + bOSL 4 biSE 4 2bbr S5, 4 bb.r 55, + 2bb.r.5.S,
' 171 272 373 121212 1313173 2323273
] 2
= } bist 4 22_ X b, r,,SiS
o 4 3 4 AT |
(; 3 -
= bor SS. + s, + 5 S = Z 5
UL T Ny ERERE - SRIRE
This last equation is simply a restatement of muitiple R mumerator from Table 3. The second
squation was just derived from the first equation.
Turning to the denominator of the multiple R in Table 3, it is readily apparent that
it is similar to the covariance term above. That is:
Jurfar® = s [b5? elsl 4 b%] + eSS 4 2mbr S 4 2bbor S8
v 2 MR 1”27 12°172 T 2173713717 2°3723°2°3
_3_2.__2. | 32
.. ‘st ¥ 2Z Eb..b-,.r 58,
= S — [-biiiyd
: \ j:]_ j::2 i=]

34




If we now form the ratio of covariance and variance terms for the multiple R, we

can complete the derivation for three predictors: o
3
;ETLZSZ + 2:2:?:55; b.r,
- - ij i
L T _
1'72'73
3 3 2
) 2 \
S EE:; SR 2:2:.jz;pib r Si
Y\j_lJJ it

Notite that the namerator and denominator (under the radical) are identical in form. If we
make the same algebraic simplification we made for the two predictor derivation, we obtain:-

— ., 3 2
biST o+ 2] ’ber S8,
R-Y =1 .] J = i=1 J
) ] ]
.X1;X X3 7
S
y L]
3
Egjg;f";S.S; o |
- IERELSE END OF PROOF :
s
y

This completes the derivation for three predictors. We now derive the multiple R for any

O

Nible (Finite) number of predicrors in the linear regression model; 4
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Derivation for p Predictors

The derivation of thé multiplé corrélation formula for any number
of predictors will be presented,as a generalization of the two and three
predictor cases. A rigorous mathematical proof that the generaiization
holds for p predictors éodld be provided by "mathematical induction'". Our
approach in this séction is a straightforward multivariate generalization.
For reference; the following is a listing of the general

steps for the p predictor variable case:

1. state the regression model for P prédictOrs
2. derive the no'mal equations (see Apperndix A)
3. defire the multiple R

substitute normal equations into numerator ot R
exprass the covariance term in summation

express the variance term in sSummation

~N O

simpiify

Thée linear régression model is:

<>

e a4+ b.x, Fbox, * ...t b.x, + ..o+ b %
a blx1 + b2x2 bjxj bpxp

The least squares criterion is:

2(Y = Y)" = ié = a minimum
‘bstituting for f
i;(Y - a - Bixi - bzxz:...:bjkj:.‘.lr— b 25 E:e = a minimum
Néxt we derive the normal equattons:. In unsimplified form we have:

1Note that the normal equatlons for terms 2 x,Y }:x Y etc. are written
such that the first subscript is .alwayc less that the” second one. Since these

products are symmetric (E:le Zﬁbc etc.) this method simplifies the algébra.

Appendix A for more detail.

1

3_

See



Y o= \ + b:Ix: 4+ b Ix 0% +...+ b: Ix. ...+ b Ix
na | % b2 Ex2 + b,3 x3 bJ xJ +...+ 0 pr
xY = anx, + boix;, ¥ b, ixx, ¥ X Fo.. %X, F... 8 b Ix
)xl a Exl b1 Fxl b2 kxIXZ b3 lex3 +...+ bj Fxli bp )xlxp
_ ) N , . ! 2 N , . o I )
ix,Y = al ¥ ob,oixx, + + Fot )
zxz ; a )xz b1 )xlx2 b2 sz b3 Zx2x3 | bj Zx2xJ bp ngxp
L o o o o v R
xY = aix X%, + ; Ix. +..oF b, XX, +...+ b IX.X
}x3 a Lh3 4 b1 Tx1x3 b2 Zx2x3 + b3 Zx3 + bj Yxaxj +...+ bp Ex3xP
XY= aux 4 b ikx 4 b fxx  F b fxx F.Fb, fxx F..¥b Ix
p p 1 "I 2 " 2p 373D i 73y p P

e e o e . o —

If we apply the same ]Oglc and make the same substitutions we made for 2 and 3 predlctors we |
obtain a simptified set of normal equations:

_ .
Y = 3 “
rytsysi = blsf + b2r1 S 32 + b3r13sls3 oot bJrIJ 1SJ bt b pSlsp
ry23y32 = blrl Sls + b2S§ + b3r235283 +iiit bjréjsésj +...4 Tpr°p828p
: |
ry3éyé3 BHERE: byTy5,5, + b383 b bry S8 bk bor S8

o

. )
r-Ss b.r: $:8 + byr s s tbir; 8.8 F...Fb;r; 5.8 F...Fb S
ypy P L'lplp 2°2p 33p3p iirdop pp

restatement of the normal equationé is given in Table 4.

36




Miltiple Correlition for pPredictors and Derivation

We are now ready to derive the multiple correlation formula for p.prEdictors; See Table &

for a statement of the definition Of the multiple R.

The covariance term is:

-COV(Y’,él + bi)'{i t b?_r.\'c2 + i33k3;+...+ b]x] toot bpxp)

—brSS +brSS +hr SS 4, +brSS t..4br S8
393y INARAN PPy D
Now, substitute the normal equations (line for line--see Table 4):
Y A‘ y {h 52 + 5§ P 5.5 (b S S 82 .. $ S
cov(Y,Y) = bl(bl | b2r12 B +...f bpflp | p) + b2 1r 515 + b 2 4 bplz ) p)

- R A
(bir: S8 +hr, S8 4. 4b 8 :
bp(blrIp ’y bzr2p St bp ; ) :

Multiply each of the bj terms inside the parentheses and write each parenthesized sum on a separate line:

A ) ,
cov(Y,¥) =br S5 +h 5§ 4 b rV S S +,.4br §8

Pyl vyl o 3 PYPYP
---232‘ #b-brsw bS8 Hitbbr 85 4
"y ERIBE, 13’7313 BT,
. S +..4hbr, 88, 4
h1b2r128182 + b289 +, b3r2332 ] bzbjr2j s
bhr.§S 4 b.b T §S+b: 52 +iot boro S8 + 'l
13137172 3230y 3 R B NI &\
N
' S __“.2'52
t+h; b r S S+br: 85 fitbbr S8 .ot h:
hlbrslsp Pl 3D ipiip P
bror reasons presented earlier, the tern a i¢ onitted in the derivation. | 38

l:lz\v(: | - 3'?
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Table 4
Normal Equatlons-and Miltiple Correlacion Formula for p Rau Score Predictors

fotsal Bquatlons
r §§. = - 5t 8.5 4 b, took b T 88, bbb SS
TR I R B ST b R T LA P T S P
§ = - b 4 58 0 S T SO P DG TR 30 I S
ry2sy2 hlr]ZblS2 1 bZSZ b3r232 ] +.04 bjr2j P bprQPSZSp
T ' K b A BTLSS, bt b S
55 blrUS S, b?r238233 b383 bjr3j83j bpr3pS3Sp
r.SS = br:SS 4+ bor. SS + br:§:S +.+br: S5 +.4b S
ypyp Plplp 2% 2p 3Py iipip PP
Miltiple Correlation _‘
RY ‘ A
. .'... .l..' . = _Y = + X + +
'XI’XZ’X]’ ’Xj’ ,xp‘ corr(Y,: ) corr(Y; blx1 b2 ) +b; X3 b, XJ +iot bpxp)
N 4%
- lty) _ cov(Y bix +h x2 + b3x3 ., :bl)i] bPXP)
= —
Cyvar(Y) var(l) Jvar )Jvar(b R R T +b X )
yrar() var(t) (] ey fbyx, £y
- —brSS+brSS+ +brSS+ .15
" = dylyl 2yly2 " jylyi R DA L
: 2 2.9 . .2 '
{ Sy I S1 + bZS 2 +...+ b Sp + 2b1b2r1281 ) + b, b3rl3S1 3
|
- )
2b b r S8 4+ bt 5§ S
\ 151517 p-1 plprl

lie 37 tem is onitted from the normal equations and muitipte R;
NOTE:: ﬁﬁﬁﬂ&é&&&éﬁsﬁnnmmgmmrﬂ%% nowmal equation térm into the 5

o~ covariance term Of the multiple R, See text for details | 40




To facilitaté working with Sich & complex matrix, we will intro-
duce summation at this point. &As the first step, we count the
total number of te€rms to be Summed. An inspection of the covariance matrix (page 30)
above makes it evident that each row consists of p terms. Since there
ié a tOtéi of P éucﬁ rows, the entire covariance matrix consists of
pXPpPS= 52 terms. For example, in the derivation for three
predictors, we worked with three rows, each of which contained three
terms or a total of 3 x 3 =32=9 terms. In the p predictor model,

2 2.2 X L - .
[ to bpsp ) and off diagonal terms. It is evident that
there are p such diagonal terms. A little algebra will tell us

terms (B%S

how many off diagonal terms are in the covariance matrix. Let X

represent the total number of off diagonal terms. Then:

TOTAL MATRIX = p~

=p + X
-’ er - v
X = p°-p
X = p(p-1)

fﬁﬁs, the entire covariance matrix consists of p diagonal terms and p(p=1)
off .» diagonal terms for a total of p2 terms. '

We can view the strictire of the covariance matrix in another way.
‘ This view is the "trick' 1in understanding the expression of the matrix

in sunmation notation. Notice that the off diagonal terms exhibit

a pattern (as we saw in the two and three predictor cases). Each

b.b;r;:S.S.
i73713°173

b;r corresponds to one other term in the matrix that is identical

,

to it: For example, the first off diagonal term in row one is bib2riééis2’
and the first term in row two is idenitical to it. In généréi, ‘

any off diagonal term in row 1;colummn j is identical to the term

in row j, coiumn i (é.g., row é, column 5 = row 5, column 2). Thus ,

the of“ diagonal terms consist of a number of identical pairs of terms.

There are pfp;i) stich pairé of off diagonai terms. SuppOse we
o o o R R R R o . - o . . . o - - _ o 77("
halve the total p2 matrix and consider the upper half only that makes o
T T ' S o 2.2
d right triangle. In this halved matrix, we are considering the p bij
diagonal terms and p(p-1)/2 off diagonal terms . That is, the upper
triangle dons%sts ofp xr E(Q%i) terms. fo represent tﬁe ertire covariance
. . 2

| i
ERIC
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matrix (p° terms), simply double the number of off diagonal terms
_ . . 2 . . i IR _ . . — -
in the half matrix: »p = p + 2 E(E_l)j] = p + p(p~1) total terms.
2

Examine the matiix of covariance terms for thée three predictor case
for further clarification:

o ] ] AL . . :
ts éxplained, the cov{(Y¥,Y) matrix consists of p x p = pz terms;

Lo . 2.9 L L < .

tt 7ST and -I)b:b:r::S:.S: or 2 p-1 ) er i
iere are p bj F and p(p )bl jrij lsj {or ZE)(p 1)/22’ terms in

the totat matrix:

Expressing the total number of diagonai terms in summation notation:

9 . 9.9 9 P 5 9
b‘s2 + b“sf +...+ bTS% +.0+ bzsz = £ b8
11 272 3 PP j=1 33

The off diagonal terms can be expreSééd in summation notation as follows:

p-gr -
Zb,b,r .S.S,

2 4= D3 EIED

It o

2(h . S.3. b-r--S-S- =
_(blbarlzsla2 +...+bjLnrjijSp) 2j

igor those readers familiar with combinatorics; the following may assist

in clarifying the logic.

There is a tctal of p b§S§ which are combimed with all such terms

! L . B B - — . B T S
“an at a time. In combinatorial notation, this means that p bij terms are com-

bineAd one at a time—-that is:
,,,,, R . 4 - 1 — p(p-1) (p-2)::.1 :
total number of = (p) = TieDt T 1?;5;)’(;51—)232) i
1482  terms . 1 P ) T )

7D\ . .
For the off diagonal terms; we construct 2(‘2) terms (pairs

of identical terms; each combinéd with all other 1like terms two at a time).

Thus :
Total number of {p ) -~ ,
5.5 i - =2 -3)...1
bib:c.:8:8; terms g 9 ST Zf;(p 1) (p=2) (p-3)
R R ] - 2 21 (p-2)! té (p;z)(p;j);;;i

+
88}
il
ko N
+
9
~
o
i
-
~
]
o)
-
1]

1 \ AP

p fp - .




For example, in the three prédictor model, the first off diagonal
[ _ - . L . R - é
term was seen to be blb r12 1 57 and the last was seen to be b2 3 2382 35
In the case of a 10 predictor model, first and
last terms, respectively, would be: b1b2r12 1 and bgb10 9 10 9 1o
We can now express thé full covariance matrix in Summation

notation as:

T T P p-l
cov(Y,Y) = z h.SsT + 2 I L b;b;r;;S;S
3=t 33 j=2 1=1 1 3HE
Equivaiéntjy,
AL . L o o
cov(Y,Y) = b.r .SS. +b.,r .S S, =:.:+4b.r .5 5;
l'yly'1l 27y27y 2 Jyiy 3
p
= 2 b;‘[‘ S S
j=p Y3V
Thus, g
A 2 5, pp-1 P
cov(Y,Y) = £ b3S + I L b.b.r,. = 7§Vbir,;S,Sj
j=1 J j=21_1 1 J 1J 1 J J=i yj y

The latter equation is very important in the final steps.

If thHe variance terms of the multiple R are examined, we see that

{var(Y) is simply Sy by definition. The te$h§"var<Y§ can be manipuiated

by covariance and variance rules to produce the following (See Table 4):




3.

s - )

A L _
var(Y) = ‘var(blxl + b2x2 tot bjxj+"'+ bﬁxb)
N b282+ +b282+ +b282 +
1] 22 j pp
br § S S $.S 4.t '
\ 2b1 r12 132 + 2b1b3r13 33 ¥ 2b b4r ; 184 + + 2b bJriJ iSJ 2beP P,P'l p p

In summation notation:

var(t) = PbS. F 2L ber $ g
1 RO
\
THEREFORE, AFTER MUCH LABOR, WE CAN STATE THE MULTIPLE CORRELATION : 9
P25 pop-l _
Ib§: )L Ibbr§s, <
RY.X-,X SIS SRR B =137 + L =2 i= i,”,ﬁwij,w,j
12 ] P === L
“ P9y Pyt
S | IbsS, + 273 Ebbrisls
AR EFERRRIRE
p T p p-l
= Ibvs, + 77 T b b T, sls
REE WESIREE R
S
y .
|
o /
= P
“Lb
44 LS S
m———————-c= END OF PROOF FOR p PREDICTORS
g
y

(S~ N

S < 5
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Appendix A

Normal Equations in Régréééion Anaiysié
r

introduction

In this appendix, we outiine a set of procedures to apply in
regression analysis for finding normal eQuationS. The procedures
are appropriate when: ’
a) the regression model is linear, and
b) the measures are in raw score.
_ . t . S . Ll i
If variables are transformed to a tnonlinear form prior to
regression analysis procedures; the prdcéauréé described in this appendix
would not apply. Examples of nonlinear transformations include

logarithmic, exponential and square root re-expression, or, in

general, whenever the exponents of the variables in the regression model

are not équéi to unity. For éxampie,

A o2

Y = a -+ bix1 + b2x2
This is a nonlinear mathematical model since the exponent of
xz is not equal to 1.

To derive normal equations for a given regression model re-
quires RhoWiéagé of éiéméntary différehtiai calculus which makes
use of partial differentiation. Students who are familiar with
calculus may read any textbook of mathematical calculus for the

details ( for example; Hoel, Port and Stoné, 1971 ).

?Forjséu&éﬁgérﬁﬁé need to review this procedure, or who know
some calculus and want tQ learn the technique, see Goodman,1977, for

a good introduction.

T

36.
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To refider a coriceptual understanding of normal equations as they are
employed in the least squares procedure, let us take an example of a two
predictor model. The mathematical model applied to a distribution assumed
iinéar in éacﬁ prédiqtor iéAthé one given in the text, nameiy:

A o o
Y = a+bx +byx,

The raw score model includes an error component, and the error
made in prediction of the criterion (Y) with the above model may be

negative, zero or positive. The raw score model is;

This represents the amount of numerical error made on a score-by-score
basis when we prédict Y with the idealized modei, ?. To obtain
ann overall indication of the amount of prediction error for the
entire raw score distribution, we might be tempted to define ¢
PN . )

£(Y-Y) = Ze . (over all n observations)
The problem with this approach is that the resulting sim on the left
side turns out to be exactly zerod; Z(¥-¥) = e = 0. That is,

positiveé errors cancel out negative errors leaving zero as the overall

sum: This is obviously problematical because no matter how good or
Béd a pérticuiar mathematical model (iinear'or nonlinear) 1is for
empirical score prediction; we would have no way of determining 1its

utility (using the sensible criterion of minimizing prediction error).

léroof. ?or two predictors:
= I(Y-Y- blxl—bzx2

?(Y—Y) —-blExl - béEXé = 0

Z (Y-a-b lx l-bzxz

The generalization of this for p predictors is obvious. -

FRIC= e R
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For these reasons, the most widely used and accepted procedure
for finding normal equations is based on the least squares criterion; i.e.,
52 , 2

- _ : o 2
Y -Y) = Z(Y-a -b,x. - b, k,) = Ze” = minimum
11 272

(The sﬁmmationAtahgésfrdm i=1 to i=n or. over the entire Set‘of observations).
In words; least squares states: find numerical values for a, bi and 52
which will make the prediction error the smallest possible numerical
amount upon Substitution.

The reader is already aware of ene least squares
type of résult from eiementary statistics. A kind of least squares
criterion (and procedure) is used in defining the sample variance

of.a distribution; i.e.,

2 = i 1(t-D?
’ n-1

The arithmetic mean, Y, is used in variance formulas (instead

of medians or other numbers ) because the resulting variance is

the smallest possible value when the mean is used rather than any
other number (or combination of numbers) in that giver distribution. '
This is derived through the same calculus procedure used in deriving
fiofmal~ equations, and is based on the same principle: optimization

or minimization.

Take an exémpié:

a-n? e’ @en? @m0’ @en? @’

.
,
4
8
10
11 -
Yy = 7
Find each squared sum and compare it against . (Y—?)Z {The n-1

can be ignored sirnce it is a constant and has no material bearing on

the result).. It will be seea that only
(¥-7)%  gives the smallest squared deviation sum.

\ iy
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Our task in regressionm analysis is to find numerical
valiés corresponding to terms in thé Mmodél to Satisfy the least
squares criterion of minimum error of prediction: The resulting
vaiues, wﬁen SUBSETtuted into the regreSéion equation, Satiéfiéé
the criterion of minimization. In essence, we solve p+l equations
(?= the number of predictors, and 1 correSponds to the siope ihterCept
term), or one equation for one term in the model. Each equation is
chen solved simultaneously to determine computing formulas to
obtiin thé numerical values for the pFl terms in the model. Finally,
each predictor (and the slope intercept term) is passed through
the resulting prédiction equation to find a unique predicted criterion
for each observation in the data set. The rest is statist cal theory

(see Lindéman, et al. for an excellent digeussion of regression theory).
To take the two predictor exampleé once again,

- S 2 .20 oL
oY - a -~ blxl —b2x2) = Ze minimum. ‘

We are not interested in finding a comnutational formula for
; by and by. Our goal is to stop oné step short of

doing that. We are interested in finding the normal equations,

-~

and simplifying them to substitute into the muitiple R,

Pian

We will now set down a plan for finding the normal equations.

A four phase plan is used throughout this appendix for finding

ERIC
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normal equations. This will help structure the presentation.
7 - "
A. state the regression model, Y
B. state the mathematical function of the
least squares criterion, _ A9
Z(Y-Y)
. derive the normal equétions for each of

terms in the model

D. summarize the normal equations
Finding Normal Eduations for the Two Predictor Model

Let us apply the four phase pién first to the two predictor case.
A. the regression function is
A
=777"77’+7'7
Y a + blx1 b2x2

B. the least squares criterion is

A )
- 2 — R -
(Y - Y) = (Y - a —bix1 - b2x2) = TIe

C. the procedures for deriving the normal equations

are:

1. Tor the slope intercept term; a; wé neééed to:
a) drop the exponent 2  and set function equal to O
b) distribute the summation operator
c) apply rules of summation for constants

d) solve in terms of thée criterion variable, Y
e) substitute descriptive statistics and 51mp11fy

Appinng each step in a) through e) produces

3). T(Y - a - blx2 - b X ) = 0

B) vy IY - Ia - Ibx; = Ibyx, = g

) I¥ - na - b;I x5 - byl xy = 0
. . d} zg - na + byI x; + bl X

e) LY = na + b, (0) + b, (0)

Recall that ZLx. = <Ix, = 0, Dividing through by

n gives us the normal &quation for afﬁln simplified form)

a=Y

50
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The procedureg for finding the normal squation for bi are:

N

a) drop the exponent and set function equal to 0O:

b) multiply the function by x1

c) distribute the x, term

d) distribute the summation operator

e) apply rules of summation for canstants

f) solve in terms of the criterion variable, Y

z) substitute descrlptive statistics and aimpllfy

Applying each step in turn produces:

a) "(Y - a- b1 1~ b2x ) =0

b) (Y = a = byx; T byxo)xg

o oo . 2 : B

C) Z(Yxl - axi - bl 1 7 b2X1X2 )

3 ~v. = Ta - 2 -z Ty §

. d) 1,YX1 - uaxi Zb Ixi Zb2X1X2

s) $¥YX: - a £x; — b sz - b: Ix:x

€ *1 1~ 71 5" 2 “*1%2

f) TY3 = a7 + b Zx? + b, Zx;x%
“rRy a ¥ 1 “*1 1%2

--g) 312ce ,ZYgi,Z (n—%)?yisysirﬁ }nd ) -
le = (n—l)S1 and ixixi = (n—l)rléSiSZ ,

we can substitute these quantities, and obtain:

. 2
= + - +
. (n- l)r SyS1 0 bl(n 1)S1 b (n- l)r12 i 2
o N
\ (recall that Ix; =40). |
\ If we divide the last équation By (n:i); we obtzin:
§ ,
‘ 5SS, = .82 + bor.S.5.
Ty1oy71 171 2712°1°2
- Tis is the normal equation in simplified form

wé used in the derivation (see Table 2.
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1

The steps for finding the normal equation for 52
parallel those for blf

4) drop the exponent 2 and set function equait to ©
b) muitipiy the function By X5
¢) distribute the x, term

d) distribute the sGmmation operator

e) apply rules of summation for constants

£) soiVé in terms of the criterion variable, Y

%) substitute descriptive statistics and simplify
Applying edch step in order:

a) (Y —a - bixi - PéXé) = 0

- . ) - i B . 72’
c) Z(Yx2 - axé - bixix2 —.02x2 )
4 Y . e S Ceh 2
d) LYi_ Za}r2 Z;)ixlx2 Zb2x2 7
L o L o oL 2
é) Zsz asz - Rifxlxz - bZZx2
i o N ae Y o o e2
f) Zsz = aZ‘x2 bli}lxz bzix2
| : ; '« = (n=1)r..S.S. and
g) 51nc§ Zsz (n l)ryQSy 5 and
, . . a4 a o -2 a2
Zx1x2 rigsisé and Zx2 = (n l)Sl
we can substitute these qdantitips and obtain:
L
: o L L o S 2o
- = S b: - s
(n 1)ryzsys2 =0+ by(n-1r,,8,8, + by(n bHs,

If we divide through by (n-1) we have:

- - - - 2
= birisS8; + byS,

Ty2®y72 T
This was the simplified form of the normal equation for

52 that was used in the derivation (see Table éx

o
ol
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D. We now recapitulate. As noted, a normal equation is
derived at the point when we Solve ifi terms of the criterion
variable; Y! Subsequent steps are used to simplify.

) The norméi équétiOns for a, b, and b, were:

1 2
For a: ) v o s + P ':, ; :. .
For a o, LY na DIZX% + b22x2
For b.:  I¥x, = a + b, +
‘For bi z x1 ale b12x1 | bZlex2
For b : ; el ; B i
IYx = g + . b -
2 sz a2¥2 blixlxl + Ebzixz

When we simplified the normal equations, we obtaihéd the

foliowing set used in the derivation for two predIctors

_ R 2 R . - R _

. . = - + Q-
T,1%y51 b5y b,712515;

Ss, = b,r,S.5, -+ b,82
Fy2°y°2 B 17127172 272

»

Readers of the 1982¢c paper should recognize the remarkable

T ' 51m11ar1ty betweenh raw score and standard score normal

equations, ,If the above variables were standardized,

each term SJ = 0 and a=0 making each mormat equation set equal.

IWe actually disregarded the térm_a in the deflvation because
it was seen to '"drop out'" when it was includéd in the/ algebra.
Tt is included here because the Slope intercept term is included
in the regression equation for criterion score calculation. The formula

used is: )
N S i
Y = Y Hbix Fbyx,

See Lirndeman, et al: for additional methods of writing this

~equation:

o
Q)
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Flnding Normal Equations for p Predictors

¥

-

The rulés and method for deriving a set of normal equations
when the number of predictors ts greater than two are

generalizatlons for the two (or one) predictor case. L We will -

sliow two metliods for the general case: The first method will
use the four phase plan. The 'second is a short-cut techhique; But *

the shorter method depends on first showing the 1onger‘one.

. What are the normai equations Ebr,tﬁé one preaictCr m@dei?,
" The reader may find it inStructive to derive thé normal equations for
this linear model. This can be done using the above procedures as guidelines.

ANSWER: o
Y = a )
r:}'iSySi blsl
The ' multlple" R in this case is the simpte Pearsongpzqdnct correlation;
ry1 which is equal to b Sl : ' This is obtained from the second equation.,
i e . :
y

. Thus, the regression (prediction equatioﬁ upon substitution is:

~N B -
Y = a + bixl : ~
= Y + . 7 b
: fyl—— %, . ‘.
: S ‘
1



Applying the four phase plan gives the following results for the general case.

A. Thé regression model fs:
A o L L L

Y = 3 4+ b.x. + bx. +...+b.x. ..+ Db.x.
a bixl ng? bjxj bpxp

B. The function to be minimized accoring to the least squares criterion is:
. o o Lo 2
Y - @ - bix - bhixs -o- bix, = mbox )

11 272 . i p P

|. In deriving the normal equation for a, regardless of the number of predictors,
the result is always the same-- a =Y .

| 1N

Finding the normal equation for any bj term can be done in seven Steps:

&) drop the exponent 2.and set thé function &qual to 0
b) multiply the Function by i,

¢) distribute the Xi term

d) distribute the summation operator

¢) pply rules of summation for constants

) solve i+ terms of the criterion variable; Y

2) substit e descriptive statistics and simplify

ERIC 55




6.

Pt
Appiying thééé steps in tumn produces:
a) irf —a - bk - boXomiaimboXimiii-h x ) =
a) I a blx1 bzx2 bjxj bpxp) 0
b) B(Y - a-b%, - b X< . .~b.x,--bx)x =0
't 12 74 pp ] ,
| o i
o) {Yx. = ax, - b.X.X,~ b,X,X, =...- b ;X3 - -bx.x) = 0
] I U U B AR i % R P) '
~ = e S R
4 i¥x, - fax, - bxix: - BboXX: —...- IbX, - -boxxo =0
) ] ' 272 i pip
e) ‘ij aaxj blixlxj bzlxzxj . bjbc5 bk =0
P Jp
. o N
) i¥x; = alx, + b ixx, +b Ixox, +oob b Ixch T b Ty,
[T T T e S IR ke N
) (h-1r .88, = 0 + bo(n-lr, 8.8+ by(n-l)r, S5 *...4 b, (n=1)S, +...t+ (n-1)r.-S-S-
g vy T 15717 2 277275 ] j " )rjp jsp

Dividing through by (i-1)

o . o o . )
r-.5-8: = bh.r .58, + b-r:.5:8. +...4b. 8. ...+ b 1, 5.5
yi vy 11371 ] 27257274 i pipiop

Thas; the normal equations for any number of predictors in the regression model

consist of a=Y and p normal equations of the general form ryjéysj defined above: y
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AlterndtL Procedure

;ﬁlc abovo normal equation for any b, term (rISVSJ) is a peneral result. Now a
much simpier procedure uhich makes use of this fact will be préééntéd.

Recall that the simple correlation of any variable with itself is equal to 1. That is

ST 1. Also recall that the covariance of any variable with itself
i equal o the 73t £ that variahle® that i ilv v ) = ”é Couly ) e o
variance of that variable; that is cov(xl,xl) =S , COV(XZ’XZ) =3,
' ]
L ,' SN o . o oo
or, in gencral cuv(xi,xj) = bj . Another way to denote cov(xiixl) is sil ; 1n general
o 2 ' 2
We can write @ ocov(x.,x. ) = S, or S..% S
] ] 1) J

From these facts; it {s possible to write dowm af eiitire set of riormal equations for an rumber

of predictors, If 36853 oids for any bj term, then it holds for j=1, j=2; j=3;...,
j=p.  For example,assume j=2 predictors. We know that the set of normal equations will consist
of jx j 2 22972 4 temg, Thua, fitst wrlte out the general result for r S S, twice as follows:

AR

[0 BN}
[0 B}
1

r- 5SS, = b I. 5 S + D,
iy 1] 12321

[22Y
.
(

$S8 = bS8 4 horoS:S:
yiy ] 11513 22579

Now, substitute the appropriate j value: j=1 for line i; and j=2 for line 2

F";{
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o S o o
: : = v r. 5. + T. -§ 6 = -S- +bhr..5.8S.
ity EU TR LA To5™1 b5 byT91555
68 = br.SS 4 br.S $S = b S8, 4hs
Fi3°5 braS Sy T DT LT ST
OR
£ 88 = b & borsS:S
J1°y°1 I°1 2"12°1%2 )
T g
y2'y 2 27127172 272

The last st shows thié subscripts of the correlations between predictors and criterion; and
the predictor standard deviations written so that the first subscript is less than the second
subscript. As mentioned in the text, this ciavention makes it easierto read the matrix ( and

see the symmetry of off diagonal terms).

Examgﬁyibrgﬁiw;ihﬁdictors

T exem 1ify the procedures for p predictors; we will work through the solution of normal

cquations for five predictors. We will show the solution by the short-cut method.

59



the shorter method gives identical reéuits, we will not work through the longer method. p

We begin by writing out the 522 35 terms for the general rijyéj normal equition., That is,
urite out 1§ S on five separate lines.
55« hr 88, 4 bS5 + b S5+ bE S5 + b8
fiy ] birySy FobyTySeSy b by BTS T bsTss
- $S. = b.r. 8.8 F b.r:SS. + b.r.-8.8; + bS5, + b.r.S.S
TR I BT SR BT B s B A U B
S8 - b 88 4+ bESsS 4 brnSS § Br S5 F obor S
iy B UL T I i A A B
A
- 5SS = br.SS + b.r.-SS. + b.r..S.S, + b,r, .88+ b.r.S.S8
L U T o B T I T K B T A M TR
r §S = b.or SS. v S8 F o S 4+ br SS. + b.r..S.S,
85 T BT S Sy b byry S8 ¥ barySeS F byr S5y T bty
Substitute the appropriate j value (j=1 for line 1, j=2 for line 2, etc.)$ set r11=1,r22=2,8U1
and set Sll—Sl, 822 = 82 ete.
é - , S 777,,-,77,,,
Cca . gl o6 b B 88 oSS, + bir..S.S,
T T S T A WL Rk o B L/ R SR ) o6
$S = br.SS. 4+ b ¥ b S.S, S5 4 br.SS.
LI LT BN biTiS%y * BT T 05T’
8§ = +..8.8. . Q.q. Kol r..SS. + b.r..S.
5,55 T BiESS F b ES 4 b, b bS8, b5r53/?§3
S5 = br S5 4 b SS 4 b 85+ S+ BeSs
L L T L L LV WS S 5754°5%
© @i = rs 88 4 v e 88 4 br 4+ br.SS FBS
FRIC 7,555 = bifisiSs * byfasys * bafy s ¥ BTsSs b
by ERIC. - - F‘
ol L




If one desires, the subscripts may be reversed for variables in the upper right hand
triangle to render the first less than the second. The resuit is the same set of
normal equations that would be obtained if the 1ongér méthod were used to derive the

no.mal equations.

1 .
The authior would be pleased to receive comment and reactions by readers of thls paper
and others that appear in this series. My intention is to prepare a textbook  of
proofs and derivations for social scicnce students. I have long felt the -
need to bridge the gap between the standard applied statistics (and psychometri s) textbooks
currently on the market and mathematical statistics. The mathematical sophlstication
of students entering college and university is rising steadily, and a textbook such T am
contemplating would make a contribution, I feel While it is trie that a "real”
understanding of statistical (and probab111ty) theory fequlres substantlal mathematical
coursework, it is nonetheless true that more in the way of explanation and ]ustifIcation
of results in probability and btathtlcs is possible. It is my belief that a textbook
showing detailed presentations of proofs/derlvatlons would be a welcome addition to the market.
I would like to hear from readers (students, pru ‘essors and others) regarding these
papers. For example, are they clear7 Are there proofs that you would like to
sée (statistics or psycliometrics) in this format? Please remember, at this time I
am llmltlng my selections to those which can be presented with algebra

[ welcome comments on any level from readers of these papers. My mailing address is:

Francis J O Brlen Jt.
106 Mornlng51de Drive , Apmdnent##ﬁ
New York, New York 10027

i
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Appendix B

ERRATA for " A derivation of the sample multiple Correlation fornula for standard scores” ED 223 429

. L %
Page - _Now_Reads- . Correct to
2, beiivatian.fonfﬁmiiﬁﬁdictqgg Let Us revie@ gpmg het us teview some of the
concepts; notatton ; concepts ; nﬁztmn
3; footmote | e Lo
If it is wderstood thet the ait If it 1§ understood that &ll the
sumations rangé from 1“1 to summations range from 1=1 to
i=n,then we can drop the summation 1=, then we can drop the summatim
1nits.all together linits altoggther,
21, first fornla 3 B.0osiis,s I.; +
irst formula cov(Z J21,8222, 323, B,Z,, cov ZX BIZ B%Z2 +, B3Z3 +t
B Z B, Z ...+
PP 3 PP
79 .
. cort(Zy By By Bilgse B Ly " corr(L Bz HB F B
B7)
B.Z, +..+B 1)
| PP SRR I AR
27, statement under Plan D . add period, D,
27, two lines under previous demomstrate | demonstrate
erratom X ‘ ‘
31, line 2 "consisdered / - considered
3, & sontences {rom botton lrst first st

ko
Cortected prose 1s underlined; bot formoias are rewritten with applied corrections only.

NOTE: "Page" refers to original numbers in upper right hand corner.
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