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o= ~ The problem of détérmining the "underlying structure" of a set of

Ly interrelatéd variableés, in Some data reduction sense, is. eXtreme]y diffi-

cult, quite subjective, and has no unique solution. This formidable task

becomes complicated:even further when the var1ab1es of 1nterest happen to

ber scored dichotomously. However, Jjust such a s1tuat1on confronts the
researcher when analyzing data collected from a se371e of examinees

responding to mu1t1p1e choice, achievement test items

~ In the past typical reasons for attempting to determine the dimension-
ality of a test have included the desires to obtain scores for persons on
each of-its separaue subscales or to provide evidence for the construct

va11d1ty of the test: More recently, another motive has been the desire

to form un1d1mens1qna1 subsets of items so that each subsat may be sub- . X
jected separately to latent trait item calibration (parameter
estimation). The .latter procedure is necessary to meet theé basic assump=-
tion of item response models that only a single trait is being measured by
the set of items that comprise a test.

Trad1t1ona11y, factor ana]ys1s has been the preferred method for
attempting to determine the underlying structure of a test. However,

artificidally dichotomized item response data present some prob]ems for

the linear factor-ana]yt1c model: For examp]e the model assumes that the

variables have continuous distributions and that the variables have line-

.

ar re]at1onsh1ps both with each other and with the derived factors.

Furthermore, the coefficients used to ferm the input item intercorre-

lation matr1x are typically either p1i coefficients or tetrachoric

cSefficients: The former lead to artifactual item difficulty factors
(McDonald & Ahlawat, 1974), while the latter present other prob]ems such
as non-Gramian matr1ces (Chr1stoffersong 1975).

Another comp11cat1on is that éxaminees have some probability of cor-

rectly answering mu1t1p1e choice test items s1mp1y by chance; with the

incidence of guessing increasing for very d1ff1cu1t 1*ems and/or for exam-

- - - - = 5= - _—

inees w1th lTow achievement levels. As a result; guessing is usually con-

sidéred to be a nonlinear function of achievement level; a situation that

carinot easily be accommodated by the 11near factor anc1yt1c model. Final-

ly, the resu]ts of factor ana]ys1s are presented in terms of composite
linear vectors (factors) at various angles ta each other in space which--

are labeled subjectively for interpretation.
e
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Compared to factor analysis, the assumpt1ons about the iapuf data made
by nonmetric multidimensional scﬁ11ng (MDS) are much less strict.. MDS
requires only that order information be pr®sent in the data and that the
variables be related to each other at least:morotonically. A large varie?
ty of coefficients is available to measure the proximities, or associ=
ations, of each var1ab1e with every.other variable, the only requ1rement
being that the values of the proximities may be ordered in magn1tude No

distributional assumptions are made about the variables.

The goa1 of the MDS a]gor1thm is to approx1mate a one-to-one monotonic

relationship betweeh the ordinal proximity information extracted from the

irput data and the’ rankings of the corresponding distances among the items .

Tocated as points in the final spatial configuratin. -Specifically, the
rule to be met is the fo]]ow1ng if the similarity between stimulus i and

stimulus j is greater than the similarity between stimulus k and stimulus

T, then the distance between points i and j in _the solution space should

be less than or equal to the distance between-points k and 1: In the case
of multiple-choice data; the stjmuli are items and the 1tem§ are posi-

tioned as points in the so]ut1on Apace.
'S . _ . . o _ ~ . . . . 7\0
Similar to factor analysis,; the MDS solution is représented using a set

of linear dimensions. However, the dimensions serve simply as arbitrary-

coordinate axes to locate ‘the variables in space and usually -have no
intrinsic meaning in and of themselves. Rather seveval methods may .be

used for interpretation of the results, such as discovering meaningful
regions of the space, identifying c]usters of the’ variables,; and finding
directions (linear or non11near) of stimulus variation in the space.

These techn1ques will be d1scussed later in the paper. -

when app11ed to d1chotomous item response data. F1rst “the data in the1r‘

or]g1na1 form are:arranged in a rectangular array_of 0,1 responses from n
examinees to.k<“items. 1In ordér to be appropriate for c]ass1ca1 MDS input,
these data must be transformed into a (k x k) prox1m1ty matrix by means of
some chosen coefficient of_association. Also, in order to minimize the
effect of item difficulty. Ievels on the d1menS1ona11ty of the solution,
the coefficient used must be re]at1ve]y unaffected by. variations 1ﬁ>1tem

difficulty. Furthermoré, to thée extent that guessing on items introduces

substantial random error into the data, the fit of the MDS model to the

data is jeopardized. Despite these prob]ems one would “still expect

dichotomous item response data, prcperly transformed, to meet the minimal

assumptions of the MDS model.

However, MDS has rare]y been applied in the context of ana]yz1ng d1cho-

tomous item response data. Consequent]y, very little is known about the’

prqpert1es or value of MBS methodology in such situations. The present

research was intended to contribute to the knowledge base and éxpérience
in"this area:

Dimensionality

-~

The novel task confronting the investigators in this symposium was to
undertake a "blind" analysis of some real test“-data in an attempt to

determine :its underlying dimensionality, or structure. The moderator

}




constructed a matrix of item re>ponse data from a samp]e of 2,794 exami-
nees to 59 .assorted items. The ijtems were chosen de11berate1y from
diverse subtests and aggregated to form a realistic, inherently multidi-
mensional test. The motivatiors behind these procedures were to seek a
fair, rigorous challenge for the analytic techn1ques being compared and to
provide a known cr¥tgrion againsi which solutions could be evaluated. The
analyses were "blind" in the sens: that only the moderator and the discus-
sant knew the actual source and c)ntent of: the items and, therefore, the
"true" dimensionality of thé tést. > :

Dimensionality is a particularly slippery concept, and it becomes a
technical term oh15 in specific convaxts. For eXamp]e in the variance

decomposition framework of factor aralysis, it is common to think of the

derived factors as the dimensicns of the multivariate Space This noticn
i¢ réasonable in-the sense that the retained linear composite variables

(factors) are the number of orthogona1 d1mens1ons necessary to represent

adequately or to "account for" the common variance present in the original
set of variables.

ln the context of MDS, d1mens1ona11ty is frequent]y thought of as be1ng

the minimum number of orthogona] coordinate axes necessary to accommodate
the order relations present among the input variables by means of their

1nterpo1nt distances in Euclidean space. Others refer to d1mens1ona11ty
when interpreting and labeling directions through the solutiorn space.

Finally, in the context of 1atent tra1t theory, Lord (1980) Suggests an

empirical definition of Unidimensionality to provide ev1dence that the
basic asSumpt1on of thé itém response models is met:

A rough procedure is to compute the 1atentrroots of the tetrachoric
1tem<:tercorre1at1on matrix with est1mated communalities placed in

the diagonal If (1) the first root is ldrge compared to the second
and (2Y.the second root is not much larger than any of the others,
then theitems are approximately unidimensional (p. 21).

Thué, we have another factor analytic definition of diminsionality.

- In light of the brief discussion above, it seems reasonable to recon-
sider the rationale__behind the research beirg coaducted for this

sympos1um Specifically; three methods for analyzing multidimensional

item response data are being compared~w1th respect to their abilities to
recover the undérlying dimensionality of some systemat1ca11y constructed

real test data. geing real test data, their true dimensionality cannot_ be
known w1th certa1nty even by the moderator or discussant: For _example,

the subtests from which the items were drawn may not have themselves been

purely un1d1mens1ona1 or the Subtests may have been intercorrelated to

some degree. Because the ‘content areas measured by the items are unknown

to the investigators, subject matter cannot serve as a subjective guide
for interpreting the results (often a self-fulfilling prophecy).

 However; these objections in no way negate the merit of the present
research. They simply help to clarify what is méant by the underlying

dimensionality of the dichotomous item résponse ddata being analyzed. A
reascnable operational definition of dimensionality recovery might be

[ 3



stated as the degree to which a techn1que is ab?e to. c]ass1fy accurate]y

each of the items as belonging to the subtest from which it was drawn ori-
ginally:

Choice of Proximity Coeff1r1 nts

Typ1ca1]y, the data that serve as 1nput to MDS procedures are scored on
at least the level of a so-called ordinal scale. Also, in the classical

MDS situation, the data are ar-anged as a square, symmetric matrix con-
taining the prox1m1t1es of éach variable with every other var1ab1e simi-
lar to an intércorrélation matrix. Normally on]y the set of Tlower

off-«iagonal elements is used as input because the upper off- diagonal ele-

ments are redundant and the ‘proximities of var1ab1es with themse]ves along
the diagonal are not of interest. However, with an array of dichotomous

. ¢« data, norie of the above cond1t1ons hold: Because the items are

scored as e1ther 0 or 1, the data existyat the level of a so-called numinal
scale, _there being Just two' categor1es of responses From an extrinsic

point of view, order 1nformat1on is present in the binary response data in

the sense that achievement~level has been mapped into two elemerits of an
ordered set. The element 1 is "better than" the element 0 in that it

denotes a L1gher tevel of achievement. But intrinsicaily, becausé thereé
are only two elements in the set,; we may just as well call it an unordered

set: Certa1n1y the assignment of the numbers {(0,1) is arbitrary. More-
over, measures of associaticn _between any given pair of items are
insensitive to the ordering (1>0). So wé have a situation in which the
raw data do not contain the order information we require for MDS.

+
Another d1ff1cu1ty is that the b1nary data arranged ir the rectangu]ar

matrix are more proper]y chardacterized as dom1nance data rather than prox-

imity data. That is, the data values represent the dominance relations of
persons versus 1tems persons versus persons, and jtems .versus items.

Therefore, the data must be transformed -into a square matrix of proximi-
ties that ‘reflect the associations among the items:

Fortunate]y, a lar ge number of well known measures of a550t1at1on have
been developed for the case of two nominal variables crossed in a 2 x 2
table. Unfortunately, we seek proximity measures that are reTat1ve]y
unaffected by variations in item difficulty levels and itam guessing lev-
els if we are to avoid artifacts in the MDS sclutions.

On]y one study waé found 1n the literature (Retkase, 1982) which
addressed the choice of & prox1m1ty coefficient and its effect on MDS ana-

iyses of dichotomous tést data. Alsc 1nvest1gated in the study were the

effects of such variables as item difficulty, discrimination, and guess-

ing leveéls and the factor structure of the item response data Thirteen

coefficients were studied using simulated 58 item data-sets (1,000 exami~

nees) with one, two, three, or nine factors present; both with and without

random guessing effeqtsflqithe data. A real data-set with two factors was
also investigated. The coefficients included the phi, ph1/ph1 max; tetra-
choris, agreement; approval, eta, kappa, koppa, Yule's Q,. Yu]e s Y,

Goodman and Kruskal's gamma; Kenda]] s tau B, and the L1Jphart index.

~ With the simulated data-sets, the membership of the items to each of
the factors was known, so MDS was evaluated in terms of its ability to



classify correctly the items onto their proper factors. In all of the MDS
runs, the solutions were restricted to two-dimensional Euclidean spaces.

Stress values (Kruskal, 1964) reflecting the goodness of fit of the MDS

model to the data ~efe also observed:

In general; the study showed that the MDS results were in large parta
function of the particular coefficient used to measure item proximities.
Also, coefficients were identified which were sensitive to the effects of
item difficulty and guessing Tevels relative to those which were not so
affected. In particular, Yule's Y coefficient (to be described later)
performed quite well for the simulated datz sets in classifying the items
correztly. However, none of the coefficients wevre able to classify prop-
erly the real data items without prior kniwledge of their content areas.
In addition; it was found that items with low discrimination or high dif-
ficulty levels were so dissimilar from the other items that they tended to
compréss the locations of the remaining items together,; thereby distort-
ing clear pattérns that might othérwisé have béén révéaléd in thé space.
The presence of guessing in the data tended to reduce thé sizes of the
proximity coefficients among the items, further clouding the structure.

A frequently recommended procedure to transform rectangular data into
prox1m1ty data has been to calculate the set of’ squared Euclidean dis-
tances from each variable to every other variable (Kruskal & Wish, 1978;

Schiffman, Reynolds, & Young, 1981). In”the case of dichotomous item

response data th s procedure amounts to summing the squared differences
petween two co]umh vectors at a time; each of which contains only 8's or
1's. If the patterns of response to the two items were identical, this
distance would be equal to_zerc. If the patterns were exactly opposite,
the distance would be equal to the sample. size. _Also, it *s easy to see
that this distance would be quite sensitive (inflated) by large differ-
ences in the item difficulty levels of the two items.

Working within the framéwork of partial order analysis to address the
issue of dimensionality of dichotomous data, Wise (1982) has proposed mak-
irng modifications to the sguared Euc11dean distance. The sample size is
used as a scaling constant and the” item difficulty levels are taken into

account by this new measure, called the Relative Proximity Index (RPI):

This index will be described in detail Tlater:

Prox1m1ty measures are commonly ciassified into two basic types,; name-
iy similarity data and dissimilarity data. Similarity data are defined
such that high positive values indicate that wwo variables are very simi-
lar; while low values indicate dissimilarity. Dissimilarity data are
defined such that high positive values indicate a high degree of dissimi-
larity, while low values indicate similarity. Thé popular MDS computer
routines réguire that the user specify the input data as belonging to
gither one typé or the other.

This requirement presents a dilemma for pro:.imity measures that range
in value from +1.0 to -1.0, such as phi, tetrachoric, Yule's Y, and many
other well known coeff1c1ents of association. If we spec1fyrthe data as

be1ng s1m11ar1t1es we force the procedure to view a zZero relat1onsh1p

between two variables as having greater proximity or assoc1at1on than a

negative re]at1bnsh1p between the variables. Yet most would agree that a

Do
5
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h1gh negative correlation, for iﬁSEancé W6U1d provide as much ah indi-

corre]at1pn pos1t1ve in sign, and both would indicate an association
stronger than zero:

Fortunately, the item intercorrelations for most test data; including
achievement tests; tend to contain predominantly non-negative values; a
phenomenon so pervasive as to have been canonized as the First lLaw of
Intelligence (Guttman, 1965). However, {n situations where sizable nega-
tive values are encountered, even after revérsing the values for var1ab1es
scored in opposite directions, the MDS model will have serious problems ir
fitting the data; and the stréss of the solution will be high. A remedy
for the situation would be to use a coefficient of proximity having a low-
er 1imit of 0.0 and a pos1t1ve valued upper Timit.

METHOD

Proximity Measures

Three coefficients were chosen to transform the rectangular item
response data into three separate square, symmetric matrices of proximi-
ties for input to the MDS analyses. These coefficients were the phi,
Yule's Y, and the Relative Proximity Index (RPI), which'are d85cr1bed

below using the following 2 x 2 table.

Item j
0 ]
o T
0 | a ] b | a+b
o | ! |
Item i | | ]
o l I
1] ¢ | d | c+d
l l I
[ | l
a+c b+d N=a+b+c+d

Note: a,b,c, and d are cell frequencies and N is the sample size.




Phi Cuefficient

The phi coefficient is the well known special case of the Pearsor prod-
uct moment correlation coefficient between two dichotomous variables.
Its formula is given by

1

phi = (ad - be) / [(a + c)(b * d)(a * b)(c + d)] T (1)

The phi coefficient was included as a proximity measure for two main rea-
sons == it_is known to be sensitive to variations in the respective diffi-
culty levels of the two items being compared and, being so widely used, it
was_to serve as a benchmark against which the othér two proximity méasurés
could be conpared. It was treated as similarity data.

Yule's '/ Coefficient

Yule's Y, also known as the coeff1c1ent of colligation, is formulated
sper1f1ca11y to be independent of the marg1na1s of the 2 x 2 table.
Indeed, the Reckase (1982) study found Yule's Y to be re]at1veTy unaf-
fected by item d1ff1cu1ty var1at1ons

1

Yuie's ¥ = [(ad)" - (be)" ]/[(ad) + (be)” ] (2)

Yale's Y is jointly monotonic with Yu]e s Q; is a transformation of ihé
tetrachoric. coefficient, and is a special case of Goodman and Kruskal's
gamma: Because of. Lhese properties; MDS results would be expected to he
virtually - identical for all four coefficients. Thus, VYule's Y was
included because it represents a class of coefficients and because it per-
formed. very well with simulated data in the Reckasé study. It was treated
as similarity data also. . '
RPI

The RPI (Wise, 1982) is basically* the squared Euclidean distance

between the responses to two dichotomous items corrected for sample size
and item difficulty.

RPI = (b+c)/N[((c+d)/N)(1- (<b+d)/N))+<(b+d)/N)<1 ((c d)/N))] (3)

The sample size is used s1mp1y as a sca11ng constant; while the other
terms in the denominator equal the expected squared. Euc]ldean distance for
independent items with the same difficulty levels (marginals) as the val-
Ues found in the 2 x 2 table. Small values of the RPI (its lower bound is
0.0) indicate close proximity. between two items, so the RPI was treated as
dissimilarity data. It was 1nc1uded because the squared Euc11dean dis-
tance is often reco.mended for the transformation to proximity data,

because it does not take on negat1ve values, and because d1ss1m11ar1ty
data are usually preferred to similarity data in MDS applications.

MDS_Computer Programs
A wide variety of proqra=s is available to perform MDS ana]yses For

an excellent review; see Schiffman, Reynolds, & Young (1982). Both ALSCAL
(Takane, Young, & deteeuw 1977) and MINISSA (Roskam & Lingoés, 1970) were




chosen for use in the present research. fﬁrough,propek choice of program -
options, both perform classical nonmetric MDS, but there are several

important differences. . The ALSCAL program emp]oys an iterative least
squares monotonic transformation betwean the input data and their corre-
sponding Euclidean dfistarces in spacé; while attempting to minimizeé
squared stress. The MINISSA program uses an iterative rank image monotor-
ic transformét1on procedure, minimizes Guttman's coefficient of
alienation, and rotates the final solution  space a]ong principal axes,
although numerous other options are available,

Procedure

The ALSCAL program was run separately for the three forms of proximity

data, specifying a range of solutions from one dimension to stx dimensions

for each. The obdect1ve was to obtain stress values as a functicn of

increasing d1mens1ona11ty forreach of the three coeff1c1ents Scree Tike

plots of stress versus number of dimensions were used to assist in the
determination of the "true" dimensionality of the data: Eomparisons of
the plots were also made with published Monte Carlo results from MDS
data-sets containing various levels of random error. In addition, rough
comparisons of stress values were made with the expected values of stress
both for random data and for data that fit the model {MacCallum, 1981).

~ The ALSCAL program also provides values for the squared correlation
between the Euclidean distances based on the final solution and the corre-
Spording disparitiés obtainéd during thé monotonic transformatiorn.
Roughly speaking, the squared correlation indicates the proportion of
variance in the original input data that is accounted for by the MDS
model. The R-squared values were also plotted as a function of. the number
of dimensions in the solution:

Tak1ng into cons1derat1on the magnitude of the stress values and the

R- Squared values; as well as the shape of the plots and Monte €arlo guide-
lines; the d1mens1ona11ty of the optimal solution was determined. Once
decided, this solution was pre-specified and submitted to MINISSA for rep-
1icationﬁ purposes_ and to obtain a rctation of the configuration along
principal axes. Guttman has found the latter procedure to facilitate
interpretations in numerous empirical studies {1982).

) Be1ng der1ved from prox1m1ty information, the 1ocat1ons of the items in
the final spat1a1 configuration provice information about the similari-

ties of all the items to each other Therefore, cluster ana]ys1s of the

item coordinates was pnrformed to 1dent1fy homogeneous groupings of items

in the space. The goa] was to classify each of the items into categories

and/or regions of the space that could be surmised to represent subtest

membership: The CLUSTER:procedure in the SAS computer package was used to
perform the cluster analyses, using hierarchical clustering based on

Euclidean distances among the items:

Finally, Sn ah,attempt,to,ascerta1n the effec*s of trad1t1o Al itém
discrimination and item difficulty levels (from Jtem,anq1ys1s) on the
final spatial configuration; each was correlated with the set of coordi-

nates locating each item on éach of thé .diménsions.

@



RESULTS .

Dimensionality

The results from running the ALSCAL program for each of the three types

of proximity data are presented in Table 1 in terms of both stress and

R-squared and are shown graphically in Figure 1: As expected, with
increasing dimensionality of the solution, the stre¥s values decreased
and the R-squared values increased. The RPI coefficients con51stent1y

yielded the lowest stress and highest R-squared values; while Yule's Y
always had the highest stress and lowest R-squared va]ues for any partic-
ular number of dimensions:. However, the general patterns were the same

for all three coefficients:

inSert fébie i about here.

Using the equations givéh by MacCatlum (1981), the expec%ed values for
stress using random data were computéd to be .460, .354, .294, and .255

for so]ut1ons with d1mens1ona11ty equal to 2, 3, 4, and 5, respect1ve1y

Therefore, it appeared safe to conclude than the ALSCAL analyses in.the

present study did not capitalize orn chance unduly: Based on MacCallum's

tabled stress values for data that fit the MDS model; the present dichoto- -
mous item response data would best be described as hav1ng moderate levels

of random error rather than low random error. For the RPI solution in
three dimensions, stress was about :15 and R-squared was about .90, indi-

cating a reasonab]y goocl fit of the MDS model to the data.

Insert ﬁiguré 1 about hare.

 The scree-like p]ots of stress and R-squared versus number of dimen-
Sions aré illustrated in Figure 1. Two fairly obvicus "elbows" appeared

in thHe plots, one at' the two dimensional solution and one at the three

dimensional solution. Fcr so]ut1ons of four dimensions and higher, the
rate of change in both stress and R-squared was constant, implying that

the "true" eibow in the  plots was at the three dimensional solution.

Also, the stress vaiue for RPI in two dimensions was_an unacceptably high
a]ue of about .20: Therefore, the three dimensional solution was deemed
to be optimal for the data: Based on the RPL input matrix, the ALSCAL pro-
gram yielded the coordinates that located the 50 items in
+hree-dimensional space. These ccordinates, along with the traditional
item cifficulty and item discrimination values from item analysis, are
presented in Table 2. s '

Insert Table 2 about here.

-

The results of running MINISSA on the three coefficients, Specifyjné

solutions ir three dimensions, para]]e]ed the ALSCAL results. Kruskal's

10



stress values were s11aht1y lower than for the ALSCAL resu]ts beihg,.151;

.160, and..137 for phi, Yule's Y, and RPI, respectively. ,The,MINISSA pro-
gram provides a measure of fit cé]]éd,ﬁhe,coeffiCient,of alienation (KJ,
sometimes preferred as a measure of fit because, unlike stress; it has
both ar uppér and lower bourd (stress has no upper bound). The K is
defined as the square root of the quantity; one minus the coefficient of
determination (R-squared). Guttman, whil® insisting that "no coefficient
has anything to do with choosing dimensionality,” still suggésts a 'rule
of thumb" that K should be .15 or. less (1982). Because K-squared plus
R-squared equals 1.0, a va]ue of .15 for K corresponds to a correlation
coefficient of abput .99. The K for the RPI data in three d1mens1ons was

144, again suggest1ng that reasonable fit was attained in three dimen-

sions

Descriptive Correlations .,

The correlations between-the traditional item difficulty and item dis-—
crimination levels from-.item analysis and the coordinates of the three
dimensional MDS solutions are presented in Table 3. The main purpose of
these analyses was to determine the degree to which the MDS configurations
" based on the phi, Yule's Y, and the RPI proximities were affected by vari-
ations in item difficulty and item discrimination levels. It was expected
that the item difficulty Jlevels would correlaté highly with one of the
dimensions of, the MDS soluticn based on phi coefficients and that the
dimensions of the so]ut1ons based on Yule's Y and the RPI wou]d be less
highly correlated with item d1ff1cu11y

Insert Tabje 3 about here:

Sorpr1s1ng1y, it was found that the first dimension of the RPI-based
solution corre1ated quite highly (+:97) with item difficulty: A similar
result was observed for the MDS solutions based on both phi and Yule's Y,
but not to .such an extent. Also; traditional item discrimination corre-
lated moderately with-several of the dimensions in each of the solutions.
Thus, the attempt made in the present study to utilize proximity coeffi-
cients that were relatively insensitive to the effects of item difficu]ty
{(in particular) and item discrimination was not successful. :

Cluster Analysis

The c]uster ana]ys1s procedure used to 1nterpret the MDS results and to

classify items was restricted to the spat1a1 CLnf1gurat1on resulting from

. the RPI input matrix, mainly due to the fact that the MBS model had the

best fit to the RPI proximity data. Also, the three-dimensional config- «
urations were roughly the same for all three types of proximity data.
However, because_the proportion of variance.in common between item diffi-
culty and the RPI coordinates on the first dimension was roughly .94, the
decision was made to perform the cluster_analysis only on dimensions two
and three from the ALSCAL sclution. In effect; this procedure removed the
effect of item difficulty from the clustering of items into homogenecus
subséts. The plot of thé itéms§ in two-diménsional space is shown in Fig-
ure 2. '
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Insert Figuré 2 about here.

Because Kierarchical clustering was performed it was possible to fol-
low the progress of the formation of item clusters one step at a time.

‘This progression of clustering prov1ded a great deal mocre itiformation than

simply picking a stage of the hierarchical clustering results with some

fixed number of clusters and attempt1ng to classify the items by their

cluster membersh1p at that stage. In part1cu1ar the patterns of interre-

1at1ons among the items could .be more accurately discerned by observ1ng

items that clustered together at one stage and then either did or did not

cluster with other items at subsequent stagess Figure 3 presents:the
results when 19 clusters remained, with previous clusterings indicated.

insert higure 3 about here.

Facet Theory / Regional Analysis

, Because 5f the d1st1nct1ve pattern of clusters, the decision was made
to use the Guttman facet theory/reg1ona1 analysis method of 1nterpret1ng

the space :of the MDS solution (see Levy, 1981, for an excellent

treatment). However, strict regional hypotheses expressed in the form of

mapping sentences cou]d not be formulated due to the absence of knowledge

about the content of the :items: Even so, extrapolating from the results

of Guttman in the area of intelligence testing (1965), it was believed -
that two basic facets would partition and describe the reg1ona11ty of the
space, cne facet playing a polar role and the other p1ay1ng a modular

role:

_ The polar facet was expected to divide the items into Separate regions
of the space in_ teérms of subject mattér or content area. Because rno
implied ordering i$ présent, in the Sense that no contert-drea is better
or ranked Higher than another, this facet would simply divide the space
us1ng axes emanating from a po]e or origin, much like slicing up a pie:

Based on the cluster patterns, it appeared that four content areas (sub-

tests of 1tems) were present in the or1g1na1 item response data:. Figure 4

‘ 111ustrates the polar axes and shows the items classified into each‘con-
tent area. :

Insertlﬁigure 4 about here.

Achievement tests typically are ccnstructed in consideration of the
fact that test items measire performance at different cognitive levels.
For éXémp]é Gtems are sometimes written de11berate1v to measure perrorm-
ance jat the knowjedge comprehens1on and application levels of Bloom's

taxoriomy. In sue€hzcases there is a fa1r1y clear h1erarchy that orders the

items. When rank order information is present, the facet correspond1ng to
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this aspect of the variables tends to play a modular role rather than a

polar role, where the modular role can be represented as a series of con-

centric c1rc1es spread1ng out from the origin. The items that grouped

together in the innermost circle would be expected-to measure quite basic

know]edge or genera] 1nformat1on perhaps 1nc1ud1ng fundamental rules.

Moving outward, successive c1rc1es would contain'items that were increas-

ingly. spec1f1c and that might require applications of basic information,
up to prohlem solving and decision making:

- Insert higure 5 about here.

The modular regions derived from the present data are represented in
Figure 5, with the polar facet still‘present in the space. Depending on
the -ontent of the items, these thréé circles might represent the know-
ledge; comprehension, and application levels of cognitive performance, or
perhaps somé other taxonomic combinations. At any rate, the general hier-
archy of moving from general to specific would be expected in terms of the
actual item- conptent and the level  of task performance requ1red of the

examinee. ‘The results of the regional analysis are summarized in Table 4.

Insert Table 4 about here.

~Finally, if Dimension 1 of the three-dimensional MDS solution were
_ brought back into the analysis, we might say that a third facet of the
item response data were present, namely item difficulty. This facet would
be expected to play_an axial role, being perpendicular to the other two
facets on the circular base. Thus; we would think ‘of the MDS space as
being in the basic.shapé of a cy11nder as shown in Figure 6. In other
words, items could:be 1ocated at various he1ghts above the two-dimensional
surface prev1ous1y described, depend1ng on their difficulty levels:. This

shape has been described as a cy11ndrex (Levy, 1981):

Insert Figure 6 about here.
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DISCUSSION

One major objective of the présent research was to attempt to find a
proximity coefficient for dichotomous variablées that was relatively unaf-
fecied by variations in item difficulty. The rat1ona1e was that item d1f-
ficulty wou]d otherw1se lead to the presence of an artifactual 6r nu1sance

dimension jn"the MDS re&sults. Two coefficients that attempted to correct

for item d1ff1cu1ty, Yule's Y and the RPI, were compared to phi, a coeffi-
cient that s krown to be sensitive to 1tem d1ff1tu1ty The results

showed 'that item difficulty effects were present in the MDSwsolutions

regard]ess of the particular coefficient used. In fact, the RPI prox1m1ty

measure, osterisibly including an adJustment to take item diffjculty into

account, .produced coordinates on Dimension I that correlatedzalmost per-
fectly w1th item difficulty.

These resu]ts ‘suggest that the search for proximity measures’ that are

1nsens1t1ve to item difficalty may be misguided and fut11e, and that a

shift in thinking is required: Pérhaps it should be acknowledged that

item d1ff1co1ty is indeed a 1eg1t1mate and reasonable.dimension along

which items should be expected to vary. Item difficulty may have to be

regarded as one important aspect of d1chotomous data that characterizes
the similarities_or dissimilarities of items to éach other. In other
words; from an_MDS perspective, item difficulty may be a real dimension
and not an artifact. ,

The use of MDS to perform the clas<sification of items into subtests was

1arge1y an éxércise in subjectivity. L1ngoes (1981) has argued that MBS

analysis in the absence of. content 1s bound to be sterile, and some would

claim that it is anti-scientific to perform a "blind" ana1y51s that is

devoid of a theoretical or conceptual base: However, such methods as fac—

tor analysis and MDS have frequently been criticized as being used in_ways
to prove whatever it is that the researcher wishes to prcve. Therefore,

the present research paradigm could be argued to comprise a re]at1ve1y
obJect1ye and fair test of three analytic procedures; albeit an extremely
frustrating one to the investigators.

interpreting MDS results had to be ruled .out. These methods included

regression ar canonical correlation of external criteria on the MDS stimu-

1us coordinates, as well as the use of the magnitudes and signs of the

coordinates themse]ves to attempt to describe meaningful directions in
the space.

In the. abseﬁce of knowiedge of item contént some popu]ar methods of

The Guttman approach us1ng facet theory and regional ana]ys1s to parti-

tion the space could be applied, but not ir standard fashion._ This was
because knowledge of the content of the variables was lacking. Therefore,

no specific hypotheses could be formulated nor mapping sentences gener-
ated: Besp1te these limitations, sufficient results have been pub11shed
based on intelligence test data that the possibility éxisted to extrapo-
late to unkrown achievement test data. The degree to which the
generalization was successful can be determ1ned on]y with know]edge of the
jitem contents and sSubjéct mattér areas from which the original-items were

drawn.
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Table 1

Sgress and R-squared values from ALSCAL Analyses

s Stress R-squared
bimenéions Phi Yuie's Y RPf Phi Yule's Y RPi
1 374 400 .334 . .669 626 724
2 222 .239 .195 .809 .780 .353
3 163 ..174 146 .861 .836 .891
4 .136  .146 125 .882 .859 .905
5 J114 .123 .103 .903 .883 .922
6 ;096  .104 . 089 .920 904 .933




. Table

2

Trad1t1ona1 Item biff1cu1ty and D1scr1m1nat1an Va]ues

7 and ALSCAL :Loordinates based on RPI Coefficients
Item Diff. Discrim. Dim. I Dim. II Dim. III
1 .929 269 1.828 -1.443 1.112
2 863 250 ,1.528 1.450 1.309

3 .859 .292 ©1.633 -0.810. 1.059,
4 856 1424 1.252 0.373 -0.281
5 832 1410 1.151 0.495 -0.102
6  .817 . .235 0.424 -2.278 0.818
7 .79F .450 1.065 -0.003 0.469
8 .763 .487 0.860 0:244 -6:266
9 .792 .479 0.999 0.361 0:263
10 .788 .309 ~1:912 0334« 0.234
11 772 431 1:340 g.372 -0:.101
12 762 .455 0.844 0:437 0.687
13 ;756 (421 1.018 -0.264 0.162
14 :755 7.362 1.349 0.684 -0.463
15 .748 .410 1-085 0.231 -0.498
16 .742 .362 0.491 -1.353 - 0.432
17 .733 .558 0.644 0.202 . -0.118
18 .7123 .356. 0.260 -0.9869 -0.945
19 721 .402 0.881 0.869 -0.814
. 20 714 .285 1.163 -0.274 -1.542
21 702 - .472 0.740 0.166 -0.414
22 .700 .507 0.193 0.677 0.084
23 700 .398 0.768 -0.565 0.362
24 .678 .361 0.755 0:263 -1:075
25 .672 .519 0:245 - -6..147 0.209
26 .646 483 g:274 6:364 -0.689
27 645 .408 0:640 0:963 0.573
28 634 429 0.228 0.976 0.593
29 .627 514 0.044 0.474 0.340
30 572 .297 -0.579 -1.527 -0.973
31 .563 .504 -0.270 0.666 -0.192
32 .561 .219 -0.568 -2.551 0.152
33 .540 .447 -0.315 0.118 0.281
34 .528 . .412 -0.670 0.916 0.627
35 515 .461 -0.642 0.441 -0.321
36 .63 .494 -0.550 0.124 0.225
37 .456 267 -0.577 -2.259 ~0.266
38 .445 .395 -0:9:4 0:173 -0:668
39 .442 405 -0:.420 1:.825 -0.456
40 2431 429 -0:489% 0:756 0.679
41 - .373 13081 -1.279 1.460 -1.062
42 373 :356 -1.481 0.548 0.870

43 :344 .353 -1.369 0.792 -0.767 -
44 .328 .282 -2.218 0.069 0.692
45 .294 .327 -1.631 1.332 0.349
46 271 .207 -2.543 -0.42z ~,  1.281
47 - .256 .333 -1.898 0.070 -0.341
48 .241 262 -2.151 -0.852 -1.113
49 .226 .209 -2.389 -0.558 1.766
.50 .146 .086 -2.060 2. 18— -2.162

y-g{
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Table 3

Correlations Among Traditional Item Parameters and
the ALSCAL Coordinates of the MBS Solution Spaces

- Ttem. _ Item -

Variable Difficulty Discrimination
Dimension 1  (phi) ~.77 -.59

_ Bimension II. (phi) , .49 -.27
' Dimension II1 (phi) .09 .01
Dimension I (Yule's Y) ~ .70 61
Dimension II  (Yule's Y) - -.48 .26
Dimension III (Yule's Y)  ° -.05 - .06
Dimension I (RPI) . .97 :40
Dimerision IT (RPI) .03 .53
Dimension III (RPI) .16 .02
Table 4 4
. Items Classified into Regions of tfie MDS Space
- - —_— = = -/

Level .  Subtest I Subtest II Subtest III Subtest IV
L 4,5,8,11, 7,9,16,29, 13,23,25 .
General 15,17,21,  33,36,44 sszznzas

35,47
14.19,22,  12;27,28,  1,3,16, 18,48 /
Applied 24,26 ,31, 34,40,42 46 /
38,39,43
Specific 20,41 2,45 6,32,37, 30,50

49

18
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Fipure 2

ALSCAL Cnr%diﬁhtés for JIM. II vs. DIM. I1I Based on RPI Coefficients
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ALSCAL Stress and R—Squared vs. Number of Dimensions
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ﬁigure 3

Hierarchical Cluster Anaiysis of the MDS Spatial Configuration
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Figure 5

The Polar Facet, bividing the'épace into Four Regions e
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Figare 5

CThe Addition of the Modilar Facet, Ordering Items from General to Specific

SPECTFIC

30

SUDBTEST IV




Figure 6

Eytindrex of Achievement Testing
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THE ANALYSIS OF DICHOTCMOUS TEST DATA
USING NONMETRIC MULTIDIMENSIONAL SCALING

__ William R, Koch
The University of Texas at Austin

ABSTRACT

The technigue of nonmetric multidimensional scaling (MDS) was applied to real
itermn response data obtained from a multiplechoice achievement tést of unknown di-
m;ﬁsimmuty The goal ,was to clussify the 50 items into the various subtests from which
Imy were dmwn onvmdlly, thc latter belnu unknown to the 1nvest1°dtor Issues addressed
pn atness ot the MDS model for analyzmo du,hotomous item response data Three coef‘
ficients were chosen to form proximity matrices that reflected the dSSOCldtl,OﬂS, of each
item with cach of the other items. These matrices then served as input to both the
ALSCAL and MINISSA computer programs for MDS analysis. A three dimensional
solution was found to be optimal, based on stress; R-—, and coefficient of alienation
values. Both cluster analysis and regional (facet theory) analysis of the spatial config-
uration were uscd to intérpret the results.



