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The _problem of determining the "underlying structure" of a set of
irrterrelated variables; in some data reduction sense, is extremely diffi-
cult; quite subjective, and has no unique solution. This formidable task
becomes complicated even further when the variables of interest happen to
be scored dichotomously. However, just such a situation confronts the
researcher when analyzing data collected from a sample of examinees
responding to multiple-choice, achievement test items.

In the past, typical reasons for attempting to determine the dimension-
ality of a test have included the desires to obtain scores for persons on
each of-its separate subscales or to provide evidence for the construct
validity of the test: More recently, another motive haS been the deSire
to form unidimensiQnal subsets of items so that each subat may be sub-
jected separately to latent trait item calibratIon (parameter

estimation). The latter procedure is necessary to meet the basic ass'ump-
tion of item response models that only a Single trait is being peasured by
the set of items that comprise a test.

Traditionally, factor analysis has been the preferred method for

attempting to determine the underlying structure of a test: However;
artificially dichotomized item response data present some problems for
the linear factor-analytic model. For example; the model assumes that the
variables have continuous distributions and that the variables have line-
ar relationships both with each other and with the derived factors.
Furthermore; the coefficients used to form the input item intercorre-
lation matrix are typically either pii coefficients or tetrathbrit

coefficients: The former lead to artifactUal item difficulty factors
(McDonald & Ahlawat, 1974), while -the latter present other prOblems such
as non-Gramian matrites.(ChriStofferSbni 1975).

Another complication is that examinees have some probability of cor-
rectly answering multiple- choice test items simply by th.ance, with the
incidence of guessing increasing for very difficult items and/or for exam-
inees with low achievement levels. As a result; guessing is usually con-
sidered to be a nonlinear function of achievement level; a situation that
cannot easily be accommodated by the linear factor analytic model. Final=

ly, the results of factor analysis are presented in terms of composite
linear vectors (factors) at various angles to each other in space which-J.'''.

are labeled subjectively for interpretation.
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Compared to factor analysis, the_assumptions about the input data made
by nonmetrip multidimensional scpling (MDS) are much less strict.- MDS

requires only that order information be prtsent in the data and that the
variableS be related_to each other at least monotonically. A large varies
ty of tbeffitiehtt is available to measure the proximities,- or assbti:
atiOnt, of each variable with every.other variable, the only requirement
being_that the values of the proximities may be ordered'in magnitude. No

distributional assumptions are made about the variables.

The goal of the MDS algorithm is to approximate a one-to-one monotonic
relationship between the ordinal proximity information extracted from the
input data and the rankings of the corresponding distances among the items
located as points in the final spatial configuratifon. .Specifically; the
rule to be met is the following: if the similarity between stimulus i and
stimulus j is greater than the similarity between stimulus k and stitulut
1, then the distance between points i and j inthe solution space thbUld
be less than or equal to the distance between;-points k and 1: In the case

of multiple-choice data; the stimuli are items and the items are posi-
tioned as points in the solution space.

Similar to factor analysis; the MDS_tblutibn is represented using a set
of linear dimensiOns._ HoweVer, the dimensions serve simply as arbitrary
coordinate axes to locate 'the variables in space and usually-haye: no
intrinsic meaning and of themselves.. Rather, several methods may,be

used for interpretation of the results, such as discovering meaningful
regibht of the soace, identifying clusters of the'variables; and-finding
directions (linear or nonlinear) of stimulus variation in the space.
These techniques will be discussed later in the paper.

Unfortunately, MDS methodology has its on set of,potential problems;
when applied to -dichotomous item response datg. First,_the data in_their-
original form are:arranged in a rectangular array_bf 0,1 resporiset from n
examinees tokitems. In order to be:appropriate for classical. MDS input,
these data must be transformed into a (k x k) proximity matrix by means of

some chosen coefficient bf_attociation. Alto; in order to minimize the
effect of item, difficulty 16Velt on the dimensionality of the solution,
thecoefficieit used must be relatively unaffected by. variations irk item

difficulty. Furthermore, to the extent that guessing on items introduces
substantial random error into the data, the fit of the MDS model to the
data is jeopardized. Despite these problems; one would-still expect
dichotomous item response data, properly transformed, to meet the minimal
a <sumptions of the MDS model:

However, MDS has rarely been applied in the context of analYZihg dichb-
tomous item response dati. Consequently, very little is known abbut the'
properties or value of MDS methodology in such situations. The present
research was intended to contribute to the knowledge base and experiente
in. this area.

Dimensionality

The novel task confronting the investigators -in this symposium was to
Undertake a "blind" analysis of some real test'-data in an attempt to
determine its underlying dimensionality, or structure: The moderator



constructed a matrix of item re4onse data from a sample of 2,794 exami-

nees to 58 assorted items. The items were chosen_ deliberately from
diverse subtests and aggregated to form a realistic; 1 nherentlY multidi-

mensional test. The motivations behind these_ procedures were to seek a
fair; rigorous challenge for the analytic techniques being compared and to
provide a known criterion again,,,L which solutions could be evaluated. The

analyses were "blind" in the sense thit only the moderator and the discus-
sant knew the actual source and L)ntent of:the items and, therefore; the

"true" dimensionality of the test.

Dimensionality is_a particularly slippery concept, and it becomes a
technical term only in specific contexts, For example; in the variance
decoMpOS4tiOn framework of factor analysis, it is common to think of the
deriVed factors as the dimensions of the multivariate space. This noticn

is reasonable jnthe sense that the retained linear composite variables

(factors) are the number of orthogonal'dimensions necessary to represent
adequately or to "account for" the common variance present in the original
Set of variables.

In the context of MDS; dimensionality is frequentlY thOught bf as being
the minimum number of orthogonal coordinate axes necessary to accommodate

the order relations present among the input variables by means of their

interpoint distances in Euclidean space. Others refer to dimensionality
when interpreting and labeling directiOnS through the solutiorlspate.

Finally; in' he context of latent trait theory, Lord (1980) suggests an
empirical. definition of OnidiMensionality to provide evidence that the
basic assumption of the item response models is met:

A rough procedure is to compute the latent roots of the tetrachoric
item :Aercorrelation matrix with estimated communalities placed in

the d:agonal. If (1) the first root is large compared to the second
and (2 the second root is not much larger than any_of the otherS,

then the items are approximately unidimensional (p. 21).

Thus,
/ we have another factor analytic definition Of dWnsionality.

In light of the brief discussion above, it seems reasonable to recon-.
sider the rationale-- behind the research. being conducted for this

symposium. SpetifitallYi_ three methods for analyzingmultidimen'sional
item response data are being compared with respect to their abilities to

recover the underlying dimensionality of some systematically constructed

real test data. ieing real test data, their true diMensionality cannot_be
knOWn with certainty even by the moderator or discussant: For example,

the subtests from which the items were drawn may not have themselves been

purely unidimensional, or the subtests May have been intercorrelated to
some degree. Because the 'content areas measured by the items are unknown
to the investigators, subject matter cannot serve as a sUbjettive guide

-
for interpreting the results (often a self-fulfilling prophecy).

However; these objections in no way negate the merit of the present
research. They simply help to clarify what is meant by the underlying
dimensionality of the dichotomous item response data being analyzed. A

reasonable Operational definition of dimensionality recovery might be
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stated as the degree to which a technique is-able to_classify accurately
each of the items as belonging to the subtest from which it was drawn ori-
ginally.

Choice of Proximity Coefficients

Typically;_the_data that serve as input to MDS procedures are scored on
least the le.Vel of a so-called ordinal scale. Also, in the classical

MDS situation, the data are ar-anood as a square, symmetric matrix con-
taining the proximities of each variable with every other variable, simi-
lar to an inter-correlation matrix. Normally only the set of lower

off-cjagonal elements is used as input because the upper off-diagonal ele-
mentsare redundant and the proximities of variables with themselves along
the diagonal are not of interest. However, with an array of dichotomous

data, none of the above conditions hold: Because the items are

scored as either 0 or 1, the data existiat the level of a so-called nominal
scalethere being just two'categories of responses: From an extrinsic
point of view, order information is present in the binary response data in
the sense that achievement level has been mapped into two elements of an
ordered set: The element 1 is "better than" the element 0 in that it
(4.enotes a '-.igher level of achievement. But intrinsically,_ because there
are only two elements in the set; we may just as well call it an unordered

set: Certainly the assignment of the nimberS (0i1) is arbitrary. More-

over, measures of associatien __between any given pair of items are

insensitive to the ordering (1>0). So we have a situation in which the
raw data do not contain the Order information we require for MDS.

Another diffitulty is that the binary data arranged it the rectangular
matrix are more properly characterized as dominance data rather than prox-

imity data That is, the data values represent the dominance relations of

persons versus items, persons versus persons; and items.versus items.
Therefore, the data must be transformed.into a square matrix of proximi-
ties that reflect the associations among the itms.

Fortunately; a large number of well known measures of association have
been developed for the case of two nominal variables crossed in a 2 x 2

table: Unfortunately, we seek proximity measures that are relatively
unaffected by variations in item_ difficulty levels and item guessing lev-
els if we are to avoid artifacts the MDS solutions.

Only one study was found in the literature (Reckase, 1982) which
addreSsed the choice of 4 proximity coefficient and its effect on MDS ana-
lyses of dichotomous test data. Also investigated in the study were the
effectS of such variable's as item difficulty, discrimination; and guess-
ing levels and the factor structure of the item response data: Thirteen
coefficients were studied using simulated 50 item data-sets (1;000 exami.-
nees) with one, two, three, or nine factors present; both with and without
random guessing effects in the data. A real, data-set with two factors was

also investigated: The coefficients included the phi,. phi/phi max, tetra

choric, agreement; approval, eta, kappa;_ koppa, Yule's Oi, Yule's Y,
Goodman and Kruskal's gamma; Kendall's tau B, and the Lijphart index.

With the simulated data-sets, the meMberShip of the items to each of

the factors was known, so MDS was evaluated in terms of its ability to
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classify correctly the items onto their proper factors. In all of the MDS
runs; the solutions were restricted to two-dimensional Euclidean spaces.
Stress values (Kruskal, 1964) reflecting the goodness of fit of the MDS
model to the data aefe also observed:

In general; the study showed that the MDS results were in large part 'a
function of the particular coefficient used to measure item proximities:
Also, coefficients were identified which were sensitive to the effects of
item difficulty and guessing levels relative to those which were not so
affected, In particular, Yule's Y coefficient (to be described later)
performed quite well for the simulated data sets in classifying the items
correctly. HOwever, none of the coefficients we're able to claSsifY prop=
erly the real data items without prior knLwledge of their content areas.
In addition; it was found that items with loW discriMinatibh or high dif-
ficulty levels were so di_ssimilar from the other items that they tended to
compress the locations of the remaining items together; thereby diStort-
itig clear patterns that might otherwise have been revealed in the space.
The presence of guessing in the data tended to reduce the sizes of the
proximity coefficients among the items, further clouding the structure.

A frequently recommended procedure to transform rectangular data into
proximity data has been to calculate the set of-squared Euclidean dis-
tances from each variable to every other variable (Kruskal & Wish, 1978;
Schiffman, Reynolds; & Young; 1981). In-the case of dichotomous item
response data; th ; procedure amounts to summing the squared differences
uetween two column vectors at a time; each of which contains only 0's or
l's: If the patterns of response to the two items were identical, this
distance would be equal tb-zero. If the patterns -were exactly opposite,
the distance would be equal to the sample size, AlSo, it -Fs easy to see
that this diStance would be Ouite sensitive (inflated) by large differ-
ences in the item difficulty levels of the two items.

Working within the framework of partial order analysis to address the
issue of dimensionality of dichotomous data, Wise (1982)'has proposed mak-
ing modifications to the squared Euclidean distance. The sample size is
used as a scaling constant and the' item difficulty levels are taken into
account by this new measure, called the Relative Proximity Index (RPI).
This index will be described in detail later:

Proximity measures are commonly classified into two basic types; name-
ly similarity data and dissimilarity data: Similarity data are defined
such that high positive values indicate that cwo variables are very simi
lar; while low values indicate dissiMilaritY. DisSiMildritY__dtd_are
defined such that high positive valUeS ihdiCate a high degree of diStimi-
laritY; While_lOw values- indicate similarity, The popular MDS computer
routines require that the user specify the input data as belonging to
either one type or the other.

This requirement presents a dilemma for proximity measures that range
invaluefrOm +1.0 to -1.0, such as phi, tetrachoric, Yule's Y, and many
other well known coefficients of association: If we specify the data as
being similaHties, we force the procedure to view a zero relationship
between two variables as having greater proximity or association than a
negative relationship between the variables. Yet most would agree that a
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high negative correlation, for instance; would provide as much an indi-
cation of the strength of association between two variables as the same
correlation positive in sign, and both would indicate an association
stronger than zero.

Fortunately; the item intercorrelations for most test data, inclUdirig
achievement tests, tend to contain predominantly non negative values, a
phenomenon so pervasive as to have been canonized as the First Law of
Intelligence (Guttman, 1965). However, in situations where sizable nega-
tive values are encountered, even after reversing the values for variables
scored in opposite directions, the MDS model will have serious problems in
fittihg the data, and the stress of the solution will be high. A remedy
for the situation would be to use a coefficient of proximity having a loW-
er limit of 0.0 and a positive valued upper limit.

METHOD

Rmanfaty_Mea_s_ures

Three coefficients were chosen to transform the rectangular item

response data into three separate squara, symmetric_ matrices of proximi-
ties for input to the MDS analyses. These coefficients were the phi,
Yule's Y, and the Relative ProxiMity Index (RPI), which are described
below using the following 2 x 2 table.

Item i

Item

a

a+C

a+b

d c+d

b+d N=a+b+c+d

Note: a,b,c, and d are cell frequencies and N is the sample size.



Phi Coefficient

The phi coefficient is the well known special ease of the Pearson prod-
uct moment correlation coefficient between two dichotomous variables.
Its formula is given by

Phi = (ad be) / [(a + c)(b d)(a b)(c d)] (1)

The phi coefficient was included as a proximity measure for two_main rea-
sons -7 it -is known to be sensitive to variations in _the respective diffi7
culty levels of the two items being compared and, being so widely used it

was -to serve as a benehMark against which the other two proximity measures
could be conpared. It was treated as similarity data.

Yule's '( Coefficient

Yule's Y, also known as the coefficient of colligation, is formulated
specifically to be independent of the marginals of the 2 x 2 table:
Indeed, the Reckase (1982) study found Yule's Y to be relatively:unaf-
fected by item difficulty variations.

,

Yule's Y = [(ad)- (bc)- ]/[(ad) + (bc) ] (2)

Yule's Y is jointly monotonic with Yule's Q; is a transformation of the
tetrachoric. coefficient, and is a special case of Goodman and Kruskars
gamma: Because ofthese properties; MDS_results would be expected to he
virtually . identical for all four coefficients. Thus, YUle's Y was
included because it represents a class of coefficientS and because it per7
formed very well with Simulated data in the Reckase study. It was treated
as similarity data alSo.

RPI

The RPI (Wise, 1982) is basically' the squared Euclidean distance
between the responses to two dichotomous items corrected for sample size
and item difficulty:

RPI = (b+c)/N[(( 4-d)/N)(1-((b+d)/N))+((b+d)/N)(H(cd)/N))] (3)

The sample size is used simply as a scaling con_stant; while_ the other
terms in the denciminator equal the expected squared Euclidean distance for
independent items-with the same__ difficUlty levels ( marginals) as the val-
ues foind in the 2 x 2 table. Small values of the RPI (its lower bound is
0.0)_indicate close proximity between two items, so the RPI was treated as
ditSimilarity data It was included because the squared Euclidean dis-
tance is ofteri recoidmended for the transformation to proximity data;
because it does not take on negative values, and because dissimilarity
data are usually preferred to similarity data in MDS applications.

MDS-Compute_n Programs

A wide variety of progr=s is available to perform MDS analyses. For

an excellent review; see Schiffman; Reynolds, & YOung_(1982). Both ALSCAL
(Takane, Young, & deLeeuw, 1977) and MINISSA (Roskam & Lingoes, 1970) were
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chosen for use in the present reseaTch. Through proper choice of program
options, both_perforM tlaSsital nonmetric MDS,_ but there are several
important differences.- The ALSCAL program employs an iterative least
squares monotonic transformation between the input data and their_tOrre-
SpOnding Edtlidean distances in space; while attempting_ to minimize
squared stress. The MINISSA programuses an iterative rank image monoton-
ic_ tria_nSfortation procedure, minimizes Guttmar'S coefficient of

alienation; and rotates the final solution space along principal axes,
although numerous other options are available,

Procedure

The ALSCAL program was run separately for the three forms of proximity
data, specifying a range of solutions from one dimension to stx dimensions
for each. The objective was to obtain stress values as a function of
increasing dimensionality for each of the three coefficients. Scree-like
plots of stress versus number of dimensions were used to assist in the
determination of the "true" dimensionality of the data Comparisons of
the plots were also made with published Monte Carla results from MDS
data-sets containing various levels of random error. In additioft, rough
comparisons of stress values were made_with the expected valueS of stress
both for random data and for data that fit the model (MatCalldm, 1981).

The ALSCAL program also provides values for the squared correlation
between theEuclidean distances based on the final solution and the corre-
sponding disparities obtained during the monotonic transformation.
Roughly speaking, the squared correlation indicates the proportion of
variance in the original input data that is accounted for by the MDS
model. The R-squared values were also plotted as a function of:the number
of dimensions in the solution,

Taking into consideration the magnitude of the stress values and the
R-squared values; as well as the shape of the plots and Monte Carlo guide-
lines; the dimensionality of the optimal solution was determined. Once
decided, this solution Was pre-specified and submitted toi4INTSSA fbr rep-
lication_ purposes_ and to obtain a rotation of the configuration along
principal a_XeS. GuttMan haS _found the latter procedure to facilitate
interpretations ih numerous empirical StudieS (1982).

Being derived from proximity information, the locations of the ,terns in
the final spatial configuration provide information about the similari-
ties of all the items to each other. Therefore, cluster analysis of the
item coordinates was performed to identify homogeneous groupings of items
in the space. The goal was to classify each of the items into categories
and/or regions of the space that could be surmised to represent subtest
membership: The CLUSTER procedure in the SAS computer package was used to
perform the cluster analyses, using hierarchical clustering based on
Euclidean distances among the items:

Finally; in an attempt to ascertain the effects of traditional item

discrimination And item_ difficulty levels (from item analySiS) on the
final Spatial configuration; each was correlated with the Set of coordi-
nateS locating each item on each of the dimensions.



RESULTS

Dimensionality

The results from running the ALSCAL program for each of the three types
of proximity data are presented in Table 1 in terms of both stress and
R-squared and are shown graphically in Figure 1. As expected; with
increasing dimensionality of the solution; the stress values decreased
and the R-squared values increased. The RPI coefficients consistently
yielded the lowest stress and Highest R-squared values; while Yule's Y
always had the highest stress and lowest R-squared values for any partic-
ular number of dimensions: However, the general patterns were the Same
for all three coefficients.

InSert Table 1 about here.

USing the equations -given by MaCCallum (1981), the expected values for
stress using randOm data Were computed to be .354, .294, and .255
for solutions with dimensionality equal to 2, 3, 4, and 5, respectively:
Therefore; it appeared safe to conclude than the ALSCAL analyses in,the
present study did not capitalize on chance unduly. Based on MacCallum's
tabled stress values for data that fit the MDS model; the present dichoto--.
mous item response data would best be described as having moderate levels

of random error rather than low random error. For the RPI solution in
three dimensions; stress was about ;15 and R-squared was about .90, indi-
cating a reasonably good fit of-the MDS model to the data.

InSert Figure 1 about here.

The scree -like plots of stress and R-squared versus number of dimen-
.SionS are illustrated in Figure 1. Two fairly obvious "elbows" appeared
in the plots, one at the two diMensional solution and one at the three
dimensional solution. For solutions' of four dimensions and higher, the
rate of change in both stress and R-squared was constant, implying that
the "true" elbow in the plots was at the three dimensional solution.
Also, the stress value for RPI in two dimensions was_an unacceptably high
value of about 20: Therefore, the three dimensional solution_was_deemed
to be optimal for the data. Based on the RPI input matrix, the ALSCAL pro-
gram yielded the coordinates that lOcated the 50 items in

three-dimensinnal space. These cdOrdinateS, along with the traditional
item difficulty_and item diScrimination values from item analySis, are
Presented in Table 2.

Insert Table 2 about here

The results of running MINISSA,on the three coefficients, specifying
solutions it three dimensions; paralleled the ALSCAL results. Kruskal'S



stress values were slightly lOwer than for the ALSCAL results, being .151i
.160, and_,137 fbr phi, Ydle'S Y, and RPI, respectively. The MINISSA pro-
gram provides_a measure of fit called the coeffiCient of alienatiOn (K),
sometimes preferred as a measure of fit _because, unlike stress, it has
both an upper and lower bound (stress has no upper bound). The K is
defined as the square root of the quantity; one minus the coefficient of
determination (R-_squared) Guttman; insisting that "no coefficient
has anything to do with choosing dimensionality," still suggests a "rule
of thumb" :;hat K should be .15 or. less (1-982). Because K-squared plus
R-squared equals 1.0, a value' of .15 for K corresponds to a correlation
coefficient of about .99. The K for the RPI data in three dimensions was
.144, again suggesting that reasonable fit was attained in three dimen-
sions.

Descriptive Correlations

The correlationsbetween-the traditional item difficulty and item dis-
crimination leVels from .item analysis and the coordinates of the three
dimensional MDS solutions are presented in Table 3; The main purpose of
these analyses Was to determine the degree to which the MDS_ cOnfigurations
based on the Ohi,_Yules and the RPI proximities were affected by vari-_
ations in item difficulty and.item discriminatibn levels. It was expected
that the item diffiCulty levels would correlate highly with one of the
dimensions of the MDS solution based. on phi coefficients and that the
dimensionS of the solutions based on Yule's Y and the RPI would be less
highly correlated with item difficulty.

Insert Table 3 about here

Surprisingly, it was found that the first dimension of the RPI-based
solution correlated quite highly (+;97) with item difficulty. A similar
result wasobserved for the MDS solutions based on both phi and Yble's Y,
but not to .such an extent. Also; traditional item discrimination corre-
lated moderately withseveral of the dimensions in each of the solutiOnS.
Thus, the attempt made_in the present study to-Utilize proximity coeffi-
cients that were relatively insensitive to the effects of item difficulty
(in particular) and item discrimination was not successful.

Cluster Analys-is

The cluster analysis procedure used to interpret the MDS results and to
classify items was restricted to the spatial configuration resulting from
the RPI input matrix, mainly due to the fact that the MOS model had the
best fit to the RPI proximity data. Also, the three-dimensional config-
urations were roughly the same for all three types of proximity data.
However, because_the proportion of variance in common between item_diffi=
culty and the RPI coordinates on the first dimension was roughly .94, the
decision was made to perform the cluster analysis only on dimensions_ two
and three from the ALSCAL solution. In effecti this_procedure _removed the
effect of item difficulty'from the clustering of items into homogeneous
subsets. The plot of the items in two-dimensional space is shown in Fig-
ure 2.
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Insert Figure 2 about here.

Because hierarchical clustering was performed, it was possible to fol-
low the progress of the formation of item clusters one step at a time
This progression of clustering provided a great deal more information than
simply picking_a stage of the hierarchical clustering results with some
fixed number of clusters and attempting to classify the items by their
cluster membership at that stage. In particular; the patterns of interre-
lations among the items' could be more accurately discerned by observing
items that clustered together at one stage and then either did or did not
cluster with other items at subsequent stages Figure 3 presents:the
results when 19 clusters remained, with previous clusterings indicated.

Insert Figure 3 about here.

Facet Theory / Regional Analysis

Because Df the distinctive pattern of clusters, the decision was made
to use the Guttman facet'theory/regional analysis method of interpreting
the space .of the MDS solution (see Lev;;,' 1981; for an excellent
treatment). However, strict regional hypotheses expressed in the _form of
mapping sentences could not be formulated due to the absence of knowledge
about the content of the :items: Even so; extrapolating from the results
of Guttman in the area of intelligence testing (1965), it was believed
that two basic facets would partition_and describe the regibnality of the
space; one facet playing a polar role and the other playing a modular
role.

The polar facet was expected_to divide the items into separate regions
of the space_ in terms of subjett Matter or content area Because no
implied ordering is present, in the sense that no content-area is better
or ranked higher than another, this facet would simply divide the space
using axes emanating from a pole or origin, much like slicing up a pie:
Based on the cluster patterns, it appeared that four content areas (sub-
tests of items) were present in the original item response data.j.igure 4
illustrates the polar axes and shows the items classified into each con-

tent area.

Insert Figure 4 about here.

_ Achievement tests typically are constructed in consideration of the
fact that_teSt items measure performance at different cognitive levels.
Fbr examplei :items are sometimes written deliberately to measure perform-
ante jet the knowledge, comprehension, and application levels of Bloom's
taxonomy. In sug11cases there a fairly clear hierarchy that orders the
items. When rank order information is present, the facet. corresponding to

11



this aspect of the variables tends to play a modular role rather than a
polar role, where the modular role can be represented as a series of con-
centric circles spreadiog out from the origin. The items that grouped
together' in the innermost circle would be expectedto measure quite basic
knowledge or general information; perhaps including fundamental rules.

Moving outward; successive circles would contain'items that were increas-
ingly..specific and that might require applications of basic information,
up to problem solving and decision making.

Insert Figure 5 atout here.

The modular regions derived from the present data are represented in
Figure 5, with the polar facet still present in the Space. Depending on
the :ontent of the items, these three circles might represent the know-
164a, comprehension, and application levels of cognitive performance, or
perhaps some other taxonomic combinations. At any rate, the general hier-
archy of_ Mcivinq from general to specific would be expected in terms of the
Actual iter0:-colFtent and the level' of task performance requi.red of the
examinee. The results of the regional analysis are summarized in Table 4:

Insert Table 4 about here.

Finally; if Dimension i of the three-dimensional MDS solution were
brought back into the analysis, we might say that a third_ facet Of the
item response data were present, namely_item diffiCultY. This facet would
be expected to play_an _axial role, being perpendicular to the other two
facets on the circular base. Thus_; we would think 'of the MDS space as
being in the basic shape of a cylinder, as shown in Figure 6. In other
words, it:6MS cbUldjoe located at various heights above the two-dimensional
surface previbuSly described, depending on their difficulty levels: This

Shape has beer described as a cylindrex (Levy, 1981):

Insert Figure 6 about here.
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DISCUSSION

One major objective_of the present research was to attempt to find a
proximity coefficient_ for dichotomous -variables that was relatively unaf-
fetied by VariatiOnS-in item difficulty. The rationale was that item dif-
fitUlty would otherWise lead to the presence of an artifactual pr nuisance
diMetiSibh107the MDS results. Two coefficients that attempted to correct
for item difficulty, Yule's .Y and the RPI, were compared to phi, a coeffi-
cient that is known to be sensitive to item difficulty. The results
showed that item difficulty effects were present in the MD3v.solutions
regardless of the particular coefficient used. In fact, the RPI proximity
measure, ostensibly including an adjustment to take item difficulty into
account, produced coordinates on Dimension I that correlatedf=almost per-
fectly with -14-ern difficulty:

These results suggest that the search for proximity measures-that are _

insensitive to item difficulty may be misguided_and futile.,_and that a
shift in thinking is required; Perhaps it should be- acknowledged that
item difficulty is indeed a legitimate and reason_able,dimension albng
which items should be expected to vary. Item difficulty may have to be
regarded as one important aspect of dichotomous data that -characterizes
the similarities or dissimildritieS of items to each other In other
words; frOM an -MDS perspective, item difficulty may be a real dimension
and not an artifact.

The use Of MDS_ to perform the classification of items into subtests was
largely an exercise in subjectivity. Lingoes (1981) has argued that MDS
analysis in the absence of content is bound to be sterile; and some would
claim that it is anti-scientific to pet-'form a "blind" analysis that is
devoid of a theoretical or conceptual base. However, such methods as fac-
tor analysis and MDS have frequently been criticized as being used in -ways
to prove whatever it is that the researcher wishes to prove. Therefbre,
the present research paradigm could_be argued to comprise a relatively
objective and fair test of three analytic ProcedureS; albeit an extremely
frustrating one to the investigators.

In the abSerice of knowledge of item content, some popular methods of
interpreting MDS results had to be ruled out These methods included
regression Or canonical correlation of external criteria on the MDS stimu7
1US coordinates, as well as the use of the magnitudes and signs of the
coordinates themselves to attempt to describe meaningful directions in
the space.

The Guttman approach using facet theory and regional analysis to Oarti=
tion the space could be applied; but not in standard fashion. ThiS was
because knowledge of the content of the_vartables was latkih. TharefOrei
no specific hypotheses could be formulated nor mapping sentences genet-7
aced: Despite_these limitations, sufficient results have been published
1pased on intelligence test data that the possibility existed to extrapo-
late to unknown achievement test data The degree to which the

generalization was successful can be determined only with knowledge of the
item contents and subject matter areas from which the original items were
draWn.

13
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Table 1

5?-ess and R-squared values from ALSCAL Analyses

Dimenions

Stress R-squared

Phi Yule's Y RPI Phi Yule's Y RPI

.374 .400 .334 .669 .626 .724

.222 .239 .195 .809 .780 .853

.163 .174 .146 .861 .836 .891

.136 .146 .125 .882 .859 .905

.114 .123 .103 .903 .883 .922

6 :096 .104 :089 .920 904 .933



Table 2
Traditional IteM Difficulty and DiStrimihatioll ValUeS

and ALSCALCoOrdinates based on RPI Coefficients

Item :Diff. Discrim. Dim. I Dim. II Dim. III

1 .929 .269 1.828 -1.443 1.112

2 .863 .250 ,1.528 1.450 1.309

3 .859 .292 .'.1.633 -0.810. 1.059,

4 .856 .424 1.252 0.373 -0.281
5 .832 .410 1.151 0.495 -0:102

6 .817 .235 0.424 -2.278 0.818

7 .79F .450 1.065 -0:003 0:469
8 .7S3 .487 0.860 0:244 -0:266
9 .792 .479 0:999 0./361 0:263

10 .788 :309 1:912 0/334 0:234
11 :772 :431 1:340 0.372 -0;101
12 :762 :455 0.844 E.437 0.687

13 :756 :421 1.018 -'0.264 0.162
14 :755 /:362 1.349 0.684 =0.463
15 .748 .410 15085 0.231 -0.498
16 :742 .362 0.491 =1.353 0.432
17 .733 .558 0.644 0.202 -0.118

18 .723 .356 0.260 -0.969 -0.945

19 .721 .402 0.881 0.869 -0.814
20 .714 .285 1.163 -0.274 -1.542
21 .702 .472 0.740 0.166 -0.414
22 .700 .507 0.193 0.677 0:084
23 .700 .398 0.768 -0.565 0:362
24 .678 .361 0.755 0:263 -1:075
25 .672 .519 0:245 -0:147 0.209

26 .646 :483 0:274 0:364 -0.689
27 :645 :408 0:640 0:963 0.573
28 :634 :429 0.228 0.976 0.593
29 _627 .514 0.044 ' 0.474 0.340
30 :572 .297 =0.579 -1.527 -0.973
31 .563 .504 -0.270 0.666 -0.192

32 .561 .219 -0.568 -2.551 0.152

33 .540 .447 -0.315 0.118 0.281

34 .528 .412 -0.670 0.916 0.627
35 .515 .461 -0.642 0.441 -0.321
36 .463 .494 -0.550 0.124 0:225
37 .456 .267 -0.577 -2.259 -0:266
38 .445 .395 -0:914 0:173 -0:668
39 .442 :405 -0:420 1:025 -0;456
40 ..431 :429 -0:489 0:756 0.679

41 :373 :301 -1.279 1.460 -1.062
42 :373 .356 -1.481 0.548 0.870

43 :344 .353 -1.369 0.792 -0.767

44 :328 .282 =2.218 0.069 0.692

45 .294 .327 -1.631 1.332 0.349

46 .271 .207 -2.543 -0.422 \ 1.281

47 , .256 .333 -1.898 0.070 -0.341

48 .241 .262 -2.151 -0.852 -1.113

49 .226 .209 -2.389 -0.558 1:766

50 :146 .U86 --2.660 -2-1-48--- -2;162



Table 3

Correlations Among Traditional Item Parameters and
the ALSCAL Coordinates of the MDS Solution Spaces

Variable
Item_

Difficulty
IteM

Discrimination

Dimension I (phi) =.77 -.59

Dimension II_ (phi) .49 -.27

Dimension III (phi) .09 .01

Dimension I (YUle't Y) .70 .61

Dimension II (Yule's Y) :-.48 .26

Dimension III (Yule's Y) ' -.05 .06

Dimension I (RPI) .97 ;40

Dimension II (RPI) .03 :53

Dimension III (RPI) .16 .02

Table 4

Items Classified into Regions of the MDS Space

Level Subtest I Subtest II Subtest III Subtest IV

4;5,8,11; 7;9;10;29; 13,23,25
General 15;17;21; 33;36;44

35;47

24;19;22; 12;27;28, 1,3,1 6, 18,48

Applied 24;26;31, 34,40,42 46

38,39;43

Specific 20,41 2,45 6,32,37, 30,50
49

18



Figure 2

AkSCAL Corrdinates for on II vs. DIM. III Based on RPI Coefficients
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Figure 3

Hierarchical Cluter Analysis Of. the KIDS Spatial Configuration
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Figure 4

The Polar Facet, Dividing the'Space into Four Regions
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Figure 5

Thu Addition of the Nofilar Facet, Ordering Items from General to Specific
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Figure 6

Cylindrex of Achievement Testing
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t'IIE ANALYSIS OF DICOOTCNIOUS TEST DATA
USING NONMETRIC MULTIDIMENSIONAL SCALING

William Ri Koch
The University of Texas at Austin

ABSTRACT

The technique of nonrnetric multidimensional scaling (MDS) was applied to real
item response data obtained from_a multiple-et-mice achievement test of unknown di-
mensionality. The goal,was to classify the 50 _items into the- various subtests from which
they were drawn originally; the latter being unknown to the investigator. Issues addressed
in the research included dime_nsionality, choice of item proximity measures-, and appro-
priatness of 'the MDS model for analyzing dichotomous item response data. Three cOef:,
ficients were chosen to form proximity matrices_ that reflected. the associations of each
item with each of the other items. These matrices then served as input to both the
ALSCAL and MINISSA computer programs for MDS analysis. A three dimensional
solution was found to be optimal, based on stress, R2, and coefficient of alienation
values. Both cluster analysis and regional (facet theory) analysis of the spatial config-
urntion were used to nterpret the reSults.


