
ft

ED 233 688

. .AUTHOR . POwell, Patricia'B.; Ed.
,TITLE Software Validation, Verification, and Testing

Technique and Tool Reference Guide. Final Report.
INSTITUTION Boeing Computer Services; Inc., Seattle, Wash.
SPONS AGENCY NationalBureau Of,'Standards (DOC), Washington, D.C.

Inst. for Computer Sciences and'Technology.
REPORT NO 1iBS-SP-500-93
PUB DATE . Sep 82 = '1

CONTRACT NB79SBCA0102
NOTE 140p. .

.
. ,

AVAILiBLE FROM Superintendent ol Documents, U.S.. Government Printing
,Office, Washtngton, DC 20402 (1982-360-997/2244,
$6.00).

PUB''TYpE g Reference Materials -. Directories /Catalogs (132)
.

.

EDRS PRICE , :1F01/PC06 Plus Postage.
DESCRIPTORS *Computer Programs; Computer Science; Glossaries;

. Program DescriptiOns; *Program Development; *Program
Validation; *Selection,

IDENTIFIERS *Software Evaluation; Software Tools; *Validation
'Verification and Testing Techniques

..-

PABSTRACT 1.

intended as an aid in the selection of sOftware
techniques and tools, this document contains three sections: (1) a
suggested methodology for the selection of validation, verification,
and testing (VW) techniques and tools ;. (2) summarymatrices by
development. phase usage, a table of techniques and toolswith
associates keywords,, and an alphabetized.table.of keywords with
associated techniques and tools; and (.3) descriptions of 30

.individual VVT techniques and tools. Each descriptive entry includes'
an accepted or invented title;:a shokt description of the basic,
features of the technique or tool; a description of the input ---
required for use; a description of the results of the technique or
the output"Of the tool; a brief list of the actions that a user is
expected to perform or an outline'ofmethod;-an.example to illustrate
the inputs, outputs, -and the_method; a ;.brief assessment of the
effectiveness and-usability'of the technique or tool, including
underlying assumptions and difficulties that can be expected in
practice; an indication of the situation in which' the technique or
tool is.likely to be useful; an.estimate of the learning time and
training-needed .to use the technique or tool successfully; a cost
estimate; and a list of additional references. A 35-item glossary
defines terminology used in the documer (ESR)

,

>

IR 010 778

Reproductions supplied by EDRS are the best that can be made -*

from the original document. *

'*

b

U.S. DEPARTMENT OF EDUCATION
NATIONAL...INSTITUTE OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

4; This document has been reproduced as
received from the person or organization
originating it.

Ei Minor changes have been made to improve
reproduction quality.

Points of

:loetwnelssaX7rest:are7sedni:'offthiscida=
position or policy.

)

k

Computer Science
and Technology

KIS Special Puyication 500-93,

Software Validation,
'Verification, and Testing
Technique and"Tool
Reference Guide
Patricia B. Powell; Editor

Center for Programming Science and Technology
Institute for Computer Sciences and Technology.
National Bureau of Standards
Washington, DC 20234

a.

%

11/4 10
to

U.S DEPARTMENT OF COMMERCE
Malcolm Baldric's, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued September 1982

G. PT)

NATIONAL BUREAU OF STANDARDS

The National 'Bureau of Standards' was established by an act of Congress on March 3, 1901.
The Bureau's overall goal is to strengthen and advance the Nation's science and technology
and facilitate their effective application for public benefit. To this end, the Bureau conducts
research and provides: (1) a basis for the Nation'sphysical measurement sylton, (2) scientific
and technological services for industry and government, (3) a technical basis for equity in
trade, and (4) technical services to promote public safety': The'Bureau's technical work is per-
formed.by the National Measurement Laboratory, the National Engineering Laboratory, and
the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of
'physical and chemical and materials measurement; coordinates the system with measurement
systems of other nations and furnishes essential services leadinglo accurate and uniform
physical and chemical measurement throughout the Nation's scientific community, industry,
and commerce; conducts materials research leading to improved methods of measurement,
standards, and data on the properties ofmaterialsneeded.by industry, commerce, educational
institutions, and e.tovernment; provides advisory and research services to other Government
agencies; develops, produces, and distributes Standard Reference Material and provides
calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities2 Radiation Research Chemical Physics
Analytical Chemistry Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-
vices to the public and private sectors to address national needs and to solve national
problems; conducts research in engineering and applied science in support of these efforts;
builds and maintains competence in the necessary disciplines required to carry out this
research and technical service; develops engineering data and measurement capabilities;
provides engineering measurement traceability services; develops test' methods and proposes
engineering standards and code changes; develops and proposes new engineering practices;
and develops and improves mechanisms to transfer results of its research to the ultimate user.
The Laboratory consists of the following centers:

Applied Mathematics -- Electronics and Electrical Engineering2 Manufacturing
Engineering a. Building Technology Fire Research Chemical Engineering2

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts.
research and provides scientific and technical aervices to aid Federal agencies in the selection,
acquisition, application, and use of complier technology., to improve effectiveness and
economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 'Z59),
relevant Executive Orders, and other directives; carries out this mission by managing the
Federal Information Processing Standards Program, developing Federal ADP standards
guidelines, and managing Federal participation in ADP voluntary standardization activities;
provides scientific and technological advisory services and assistance to Federal agenciei; and
provides the technical foundatiolin for computer-related policies of the Federal Government.
The Institute consists of the following centers:

Programming Science and Technology Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg. MD, unless otherwise noted;
mailing address Washington. DC 20234.
Some divisions within the center are located at Boulder, CO 80303.

09,

Reports on Computer.Sclence and Technology
_.,

The National Bureau,of Standards has a special responsibility within the Federal
4ovemment for computer science and technology activities. The programs of the
NBS Institule for Computer. Sciences and Technology are designed to provide ADP
standards. guidelines, and technical advisory services to improve the effectiveness
of computer utilization in the Federal sector, and to perform appropriate research
and -development efforts as fgundation for such activities and mograms. This
publication series will report these NBS efforts to the Federaltomputer community as
well as to interested specialists in the academic and private sectors. Those wishing

receive notices of publications in this series should complete and retuth the form
at the-end of this publication.

Library of Congress Catalog-Card Number: 82- 600589

National Bureau of Standards Specia(Publication 500-93
Natl.- Bur. Stand. (U.S.), Spec. Publ. 500-93, 138 pages (Sept. 1982)

.CODEN: XNBSAV t

>

U.S. GOVERNMENT PRINT' FFICE,

WASHINGTON: 191:12

For sate by the Superintendent Of Documents, U.& Government Printing Office, Washington, D.C. 20402
Price $6.00

(Add 25 percent for other -than U.S. mailing)

,

ABSTRACT and Kr/WEDS

ACKNOWLEDGFAN'th

'PREFACE

Section .1

1.1 Introduction.

Section 2
2.1 A Suggested Methbdology for the Selection. of V.,V86

Techhiques and. Tools . .

2.2 Selection Aids

.Section 3
.

S3.1 Selection Matrices'and Keyword Tables

Section 4
4.1 Introduction tojechnique and Tool Descriptions
4.2 Algorithm analysis
4.3 Analytic modeling of system designs
4.4 Assertion generation.
4.5 Asse tion processing
4.6. Cau feet graphing
4.7. Code auditor
4.8 Comparator

Control structure analyzer
4. Cross-reference generator
4.11 Data flosfanalyzer
4.12 Execution time estimator/analyzer

. .

4.13 Formal review
4.14 Formal verification,, .

.

4.15 Global, round off'analy-sis_of algebraic processes
4.16 Inspections
4.17 Ihteractive.testaids
4.18 Interface checker '.

4.19 Mutatioh analysis.
4.20 Peer review
.4.21 Physical units checking

4.23 Requirements analyzer.
4.22 Regression testing

4.24 Requirements tracing'
4.25 Software monitor
4.26 Specification-based functional testing
4.27 Symbolic execution
4.28 Test coverage analysis
4.29_ Test data generators
4.30 Test-support faNilities

.

Page iii.

.04

1

2

,11-

12.

18

24

35
38
41.

4 3

46.

.. 50
53

. 55
60
64
68
73
.76

.84

93
96
98
101

104
107
111

115
118

121

Walkthroughs

Glossaiy

iISI%0F.TABLESAND FIGURES

/,
Page iv

Zug
124.

1.

129'

Table 3.1 -1 Requirements Specification Selection Matrix
Table'3.1 -2 -'. Design Specification Selection Matrix
Table 3.1-3 Code Selection. Matrix .

Table 341-4 Alphabetized Keywords with AssociatedTechniques
or Tool

Table 3.1-5 . AlphabetiZed Techniques and Tools with Keywords
Table 4.1-1 Technique and'Tool.Description Entries
Table 4.3.6-1 Resource Requirements fol.- Optimization Example
Table 4:3.6-2 -Resource Requirements for Revised Optimization

Example 21
.

-

Figure 4.2.6-1 QUICKSORT , '15

3
4

6
8

11

20 .

,.
Figure 4.2.6-2 -. MERGESORT and QUrCKSORT Comparison
Figure 4.3.6-1 Resource Requirements for Optimization Example
Figure 4.3.6-2 Revised Opginization Example .

Figure 4.4.6-1 Soi-t Specification .

16

20
*

22
25

'Figure 4.4.6-2 Sort Routine with Assertions 26
4gure 4.4.6-3 Sort Routine with an Intermediate Assertion 26
Figure 4;5.6-1 Source Program with Untranslated Assertion 30'
Figure 4.5:6-2 Source Program with Translated Assertions 31
Figure 4.6.6-1 Boolean Graph 35
Figure 4.6.6-2 Decision. Table . 36
Figure 4.6.6-3 Test Cases 36
Figure-4.9.6-1 MIS Flow Chart 44
Figure 4.9-.6-2 Goto Violation 45
Figure 4.10.6-1 SampleCross-Reference Examples

.,

Figure 4.15.6-1 'Triangular,Mtrix Inversion
47
65

Figure 4.19.6-1 Subroutine Count
L

80
Figure 4.20.5-1 A Program Structure 87
Figure 4.23.6-1 Requirements Specification Statements . 100

'Figure 4.27.6-1 Symbolic Execution Example i

112

C

ABSTRACT

. Page V.

Thirty- techniques. and tools, fey, validation,; Niertification; and testing
(V;V&T) are described., Each .the--"basic features of the
techn-kque or tool, .t1i-iniiiit;.-72ffie output, an ,example, an assessment of he
effectiveness and' usability, applicability, all estimate of the learning time
and training, an estimate of needed resources, and iefeiences.

ReyWords: automated' sciftware tools"; dynama.c analysis; formal
'software testing; software verification; static analysis; test
validation; V,V&T techniques; V,V&T tools.

'ACKNOWLEDGMENTS

Thii-report was funded: by_ the Nation
Computer Sciences and Technology under
NB79SBCA0102. The contributors to the

analysis;'
coverage;

Bureau of Standards' InstitUte for.
.S. DepartMeat of ComMerce Contrast

re ort, as submitted by Boeihg Com-
puter Services Co.,''were Randy L. Merilatt, Mark R. Smith, and Leonard L.
Tripp, .assisted by Alan R.- Bennett, John R. Brown, S'usan C. Chew, Linda S.
Hammond, William E. Bowden, Leon Osterweil, and Richard 'N. Taylor. Con-
sultation. was proNfidecrby' Leon "G. Stucki. The views and conclusions ex-
pressed are those of the authors and do not necessarily represent-the offi-
cial policies Of the Department of Commerce or the United States Government.

go

1

7

,41

PREFACE'

Page vi

The following document was originally included as part of a documerit titled
"Computer Software Validation, and Verification: A General Guideline". Thechapter on techniques and .tools was extracted to be published as a referencemanual; explanatory material was agded at the beginning; reviewers' canmepts
were incorporated, into the final doctinept. The document, being prepared under
caratract to 'the Institute foi Cluter.Sciences and Technology, is in the
public domain and is, therefore,. not subject to copyright. Acknowledgementand thanks areappropriate for the-following reviewers who donated their timeand energy to critiquing the document:

John B. Bowen
Martha A. Branstad
Lorraine M. Duvall

- Carolyn Gannon
Herbert -Hecht

Raymond C.-Houghton, Jr.
Sukhanay Kundu
Melba Hye-Knudsen
Frank LaMonica
David Markham
Gerald-Peterson
Ed Senn
Harlan K. Seyfer
Jim Skilei
Marilyn J. Stewart
Al Sorkowitz,
Susan J. Voight
Natalie C. Yopconka
Saul Zayeler

a

Comments_pertaining to the technical, content are solicited and
directed to:

Systems and Software Technology Division
\Zoom B266 Bldg." 225
National Bureau of Standards
Washingtorit, D.C. 20234

t

page 1

. Introduction

The Institute for CompuEer_Sciences and Technology (ICST) carries out the
responsibilities under P.L. 89-306 (Brooks Act) tcrimprove the

Federal Government's management and use-of-ADP:

blievelbpsTederal automatic data processing standards;

o provides agencies with.. scientific, and technological advisory services
relating to ADP;

o undertaked necessary research in computer sciences and technOiogy.
°

Impartial fulfillmen t of Brooks-Act responsibilities,_ ICST issues Special
Publications (S.P.). ThiS document is a reference guide for techniques and
tools which may be used in conjunction with a validation, verification, and
testing (V,V &T) methology.

The document consists of Wee sections:

o A suggested methodology for the selection, of V,V &T techniques and tools.

o Summary matrices by developoent phase usage, a table .of techniques and tools
with associated keywords, and an alphabetized table of keywords ,with
associAed techniques and tools.

o DescriptiOn of 30 V,V &T techniques and tools.

This document can be used independentlk as a reference or can be used in
conjunction with "Guidelines -on- Planning for Software Validation,
Verification,- and Testing" (to be published, as a FIPS PUB in 1982).

A glossaryincluded as Appendix A, defines-terminologyused in this document.

2.1 A Suggested Methodology for the Selection of V1V&T Techniques and Tools

The FIPS,PUB 1Guideiines on Planning for Software Validation, 'Verification,
and Testing" (to be :published) explains= the role ,of VOW 1n,s6ftware
development, stressing an integrated approach. V,V &T planning by identifying

_goals, .detennining factors which influence the V,V &T activity, selecting V,V&T
techniques and tools, and developing a detailed V1V&T plan are explained in
detail. This'document is particularily helpfUl'in the selection of techniques
and tools.

.

. A

Selecting techniques and tools begins with the determination of a goal - a
:specific, 'measurable outcome. Zgr eXample1.90 percent statement execution is
a goal. Once a goal is determiniti, the selection. matrices (section 3') are
utilized to see if a technique or tool is applicable to the selected goal.
For the example above, statement coverage 'is checked during code' execution.
Referencing the code 'selection matrix, one finds statement coverage. Next,
the alphabetized' keyword table (section 3)' is searched for the appropriate'
keyword(s): ,For -the example, the'tcca for statement coverage is found to be

A

5

test coverage analyzers. The last step is to reference the technique and tool
`descriptions_- 4) and\ donfirm:,that the technique or _tool- does
accomplish the desired goal: Forthe_example under test coverage analyzers,gae statement "Completeness,is measure:Lin terms of the branches, statements

'5r-other elementary constructs which are,used: .during the execution of the
prograh over the tests"; confirms theta stitement coverage analyzer measures
the completeness of statement execution.'

Page 2

2.2 Selection Aids

Tables 3.1- 1,3.1 -2, and .3.1- 3- separate techniques and tools into the
defined softyare development.phadeS4 requirements, design, and code.

broadly

The purpose of a selection matrix is to suggest possible techniques or toolsfor a; iscal in,a development phase. -the goal is stated. (directly or
indirectly-) in terms -of the form or content of a development product
(requirements, design, code),' The matrices list V,V &T techniques and tools
applicable to analyzingw-the.form or content of a product. Specifically,

- manual and.4aacmated statid:analysis techhiques and tools aid in analyzing-the
form_of.each of the three products. Dynamic and formal techniques and tools
aid-`in analyzing the-semantic content of each. of the products.

Table 3.1-4 lists, alphabetically, the keywords and the associated technique
or tool. ..It. may be used to identify characteristics of the technique or tool
from one of the three-matrices in Tables 3.1-1, 3.1-2 or 3.1-3.

Table 3.1-5 lists each technique or tool described in section 4 with
applicable keywords. It may also be used to identify.the 'characteristics of a
'technique or tool.

The reader with sufficient knowledge may skip Tables 3.1-1 through 3.1-5 and
go directly to the technique and tools section.

3.1 Selected Matrices and Keyword Tables

The pages
Table
Table

. Table
and

Table
-Table

that follow contain three seleCtion matrices:
3.1-1 Requirement Specifications
3.1-2 - Design Specifications
3.1-3 - Code.

3.1-4 -, VIV&T Techniques and Tool Keywords
3.1-5 - VIII&T.Techniques and Tool with Keywords

A.*

at
J.

o

ANALYSIS -TYPE AUTOMATED TOOLS

. .

MANUAL TECHNIQUES

Page 3

REVIEWS.

Itatic

, .

Requirements
tracing aids
(Note

CrOsi-reference-
Data.flowanalyzer

Requirements
analysis
Cause-effect

graphing
Assertion generation
Data flow analyzer

Requirements
tracing aids
(Notes 1&2)
Inspections
-.Selected manual
application of-
techniques listed
in column one
(Note 3)

Inspections
Peer review
Formal reviews

'Assertion generation .Walkthroughs
(Note 4)

Specification-based
functional. testing
(Note 5)

Cause- effect- graphing
(Note 5)

Walkthroughs-

, Formal .Assertion generation Formal verification
(Note 6)

. Formal reviews

NOTES
, ,

1) The requirements indexing and cross-referericing schemes are established 'and
documented aspart of the. requirements specification.

2) Requirements tracing may be performed through.a totally, manual process.
3} Certain techniques may be.manuall, applied to small applications or on

selected. Aortione of a given specification. This requires planning.and
and preparation. The larger the amount of information being analyzed,
the greater the probability-Of error.

4) ssertion-geheratiOh is performed either for later analysis using an
assertion processing tool, or-for manual analysis as an adjunct to testing.

5) This is a-test data generation technique /tool.
6) Axiomatic specification is necessary to support analysis.

TABLE 3.1-1
SELECTION MATRIX I : REQUIREMENT SPECIFICATION

4

Satic

Dynamic

Formal,

*Requirements lequireients
tracing aids tracing (Note-1)

Cross-reference-= Inspections
Data. flow analIzer,

Cause-effect
graphing

-Analytic modeling of
,software designs
(Note 6)

Global roiindoff
analysis' of
'algebraic processes

, (Note 5)
Formal verification.
(Note 8)

- Selected manual
er.iplication

teehniClues listed in
column on@
(Note 2)

Assertion generation
(Note 3)

Specification-based
functional testing
.(iote.4)"
Sause-effect graPhing
(\Note 4)

Walkthroughs

InspectiOnt q75,1

Peer review-
Formal reviews

Algorithm analysis
Formal verification

(Note's 7&8)

:',Walktkaroughs

.!Formal reviews

c

NOTES ,

- . .

1) Requirements tracing may be performed through a totally manual process.
2) Certain techniques may be manually applied to small applications or 'an-:-

selected -portionPof agiven specificatidn. This requiges planning and
preparation..the larger the amount of information being analyzed,: -.

the-greater the probability (lc:error. :-

,;.

3) Assertion generation is performed either for later analysis using. an
assertion processing tool, or for manual analysis as an adjunct,to testing. 1

4).This is a test data generation technique/tool.
5) Analyzes an algebraic algorithm, .independent of a given-. level. of" ..

therefore is'apOlicable to a design or code,leiel,
-

.

.

specification an
specification.

6) Requires .the man
7) AxibMatie specif
8) Formql verificat

have, been,,deielo

Wvelopment of a.19904, 'which is then .run.
tionds!necessary.,Ito supp-Ort analysis.

nit-a piimarily'manual exercisethough supporting tools

TABLE 3.1-2
SELECTION' MATRIX II ' DESIGN SPECIFICATIONS

12

ANALYSIS -TYPE

Static

Page 5

AUTOMATED TOOLS.,

.. Requirements
tracing.

Crossrefe.reride
,analgeer

MANUAL }TECHNIQUES

Control st.ructur,e

ianalyzer.

Interface checker-,
-Physical units-
.-cheoking
Code auditor
Comparator-
Test data generator

Assertion- processing
Test data. generators
Test -support
facilities
Test coverage
ahalysts,
Mutation analysis
:(Note >)'.

.Inter.active test aids

Execntiontime
estimator/analyzer(Note 5)

Softare monitor(Note 5)
Statement coverage .

Symbolic eveluatiiPri

-,_Requirements

-tracing aids, (Note 1
Inspections--

Selebtetrmanu-al
application of '

techniques 'listed in*
colizon one :

(Note 2)

.issertion generation
= "(Note 3)

Regression testing
l(Note
Walkthrsaleis

Vialktfinoughs

Forma reviews-
"-

- -
Formal verificatioil

.
NOTES
1)' Requirements tracing -may be performed through a totally manual proms's.
2) Certain techniques may be manually applied to small- applications or on

selected-portions of --a: given. specification. This requires planning and

and preparation. _ The= larger the amount of information being analyzed,
the greater the probability .of error.

3)- Assertion generation is performed either for later. analysis using an
assertion processing toolr or for manual analysis:: as an adjunct to testing.

4),, The 'objective or-mutati.On-analysis is to help.assess the sufficiency of the

test : _

-5) Assist in -testing Me satisfaction of performance related requirements.
6), Testing after modification of tested software,- i.e;;- retesting:. :

-7) Formal-verification primarily manual exercise though supporting tools
have-been developed.

(Note 7)

Fortin]: verification

-(Note 7)-

accuracy analysis
-algorithm effitiency,
amount of -Space (memory; disk;- etc.) used
anfoune of:work (CPU operations)` done
assolatiors
bottlenecks _

boundaiy- teat cases.'

Technic:me/T ool

algorithm analysiS
algorithmsanaiysii
algorithm analysis.
algorithm analysis

assertion,processing
analytic modeling of
software designs

specification-based functional
testing.
control structure analyzer.
test coverage. analyzers

control,strUcture analyzer
inspections
peer review
mutation analysis
algorithm analysis
-physical units testing
interface checker

assertion generations
assertion. processing
test support-facilities
symbolic' execution
software monitors
software.mmitOrs
test support facilities
assertion. -generation

comparator
data-flow analyzer
assertion generation
-requiredents.analYzer
interface cheeker
formal previews
control structure. analyzer
requirements. analyzer.
peer :review
cross-reference .generitors
assertion aeneration
walkthroughs
control- stracture analyzer
global rouridoff.analysis of
algebraic processes'

brahchand path identification
brarrch tesurig. . .
gall graph a

check.)list
code" teadflig

ocmPleteness ,of. test :data
tiona.1 upper bound;.. how fast

cons tenCy: in. canputations
correspondence betWeen actual and formai

- parameters=
-

data ,:charac:te.r.istios

dynamic testing Orissertions
environment simulation
evalUation along prograM paths
execution monitoring
execution sampling
-execution suPport
eipected OutputSr and
intermediate results.

- expected. versus' actual results
. file (or Other .event) sequenCe errors
formal specifications
furictional interrelationships
global information flow
go/no- go decisions- -:

'hierarchical interrelationships of modules
information- flow consistency-
inspections
-inter=module.structure
loop invariants
manual siVation
module, invocation.
numerical stability

Keywords

'path testing'

performance. analysis
physiCal units
portability analyzer
program-execution-characteriStics-'-_:,

.

proof:of cOrreetness:.
',regression-testing.-
requirements:indexing-

..requirements apecification.ahalysis.
requirements to design correlation
-requirements walkthrough
retesting after changes.
round -robin revievis

.

- rounding errorPrOagation

selective program execution
:standards-checker
statement.coverage
tatement't4:34ng
tus reviews: 7-

stem performance prediction

.1

technicalrevieW.
:test.caSe:preparation (definition
specification)_

test data generation-.

an

test harness__
testing. thoroughness 4.;,

type checkitig
uninitialized-variablei -

unused vaciahles"

-variable.refer4hces
variable.snapshotOtracing
verificationqf'algebraic computation '
walkthroughs

. TABLE 3.1-.4 (Continued) .

V IV&T TECHNIQUE AND TOOL 'KEYWORDS

Technique/Tool

test Coverage analyzers
,requirements analyzer

'.assertion generation
-T'code auditor--':

executiom-titheeStimatOr/
analyzer

software monitors_
formal. verification'
comparator ,

requirements ,tracing
cause-effect graphing
requirements tracing
requirements analyzer
regrestion,testing
peer reviews
global rouhdoff analysis of
algebraic processes
interactive test aids -

code_auditor
test coverage analyzers
test coverage analyzers
forMal reviews
analytic modeling cd'
software designs
peer reviea
test data generators

mutation analysis
specification-baied functional
testing '

test support_facilitiep
test coverage anal57e*
interface checker, ,

'data.1144 analyzer .

dataiflow analyzer
cross-referencegeherators
interactive test aids
symbolic execution
peer reviews

lechnIgiteama Keywords

Algoritm Analysis algorithm efficiency
amount of work (CPU operations)'done
computational upper bound, how fast
amount of space (memory4 disk, etc.) used-

Page()

accuracy .analysis

. Analytic. Modeling" of system performance prediction
Software Designs bottlenecks

Assertion Generation

Assertion Processing

formal specifications
data characteristics
physical units
loop invariants

. expected inputs,
outputs and intermediate resulti

assertion iolations
dynamic' ting of assertions

CauseTEffect Graphing test case design_using-fornml specification

requirements.specification analysis

Code iilaitor standards checker
portability analyzer

Comparator regression testing

expected versus actual results

Control Structime Analyzer' call graph.

hierarchical interrelittenships o.
modules
module invocation
branch and path identification'

-
Cross-Reference Generators

Data Fl Analyzer

inter-module structure
variable references .

uninitialized-variables .

unused variables-
file (or other event) sequence 'errors

Execution Time Estimatoranalyzer program execution charaCteristics

Formal Reviews go/nO go decisions
status reviews

Formal Verification proof of correctness

TABLE 3.1L5
VIM TECHNIQUE/TOCL wrni KEYWORDS

16

iStE14446111

Global Roundoff Analysis of
. Algebraic Processes

Inspections

Interactive Test Aids

Interface Checker

numericel..stability
rounding error. propagation

:checklist
:

selective program execution.
.variable snapshots/tricing

correspondence between actual and formed. ..

paraMetere
type checking
global Vii_nformation' flow

-Mutation Analysii test'data\generation
completeness of test data

.

Peer Review technical iew
code reading
round-robin revik.ws
walkthroughs
in

'Physical Units Testing consistency in canput4.4atibns

-Regression Testing retesting after changes

ReqUirelents Analyter functional interrelationships
information flow consistency
performance analysis.

. requirements-walkthrough-

Requiremehts Tracing requirethehtS4ndexing
requirements.to design correlation

Software Monitors execution; sampling

execution monitoring
' program execution characteristics

, .

Specificatiourbased Functional test data generation
,

Testing' 'boun -teif-cases

toimbolic Execution

Test Support Facilities

valuation-along program paths
verifiCation of algebraic coputation

test harness
execution support
environment simulation

TABLE 3.1-5 (Coniniued)
V,V&T TECHNIQUE/TOCL WITH KEYWORDS

Technioue/Tool

Test Coverage.Ana/yzers

Test Data Generators

Walkthroughs

'rewords

branch testing
statement testing
statement coverage
path- testing
testing thouroughness

Page 10

test-Case preparation (definition
and specification)

mdnua/.simulation

TABLE 3.1-5 (Continued)
VOW TECHNIQUE/TOOL WITH KEYWORDS

Page 1

4.1 INTRdDUCTION TO fEcHNico AND TOOL DESCRIPTIONS

Each technique and tool description is alphabetically presented in a standard
format. The following table describes the entries for each where unit is the
sectionmumber. . °

. Name
This is the accepted title, or when an appropriate one does not exist, an
- invented title.

4.n.2. Basic Features
A short description of the technique'or tool.

4.n.3. Information Input .

A description of the inplat required for use.

4.n.4. Information Output
.

A description of the results of the'technique or the- output of the tool.
,

.

4.n.5. Outline of Method
A,brief list of the actioa that a user is-expected to perform.

. ..

4.n.6. Example
An example to illustrate the inputs, outputs, and the method.

. .

4.n.7. Effectiveness ,
A brief assessment-of the effectiveness and usability; including underlying'
assiuptions and difficulties that can be expected in practice. .

4.n.8. Applicability
An indication of the situationin whiCh the tedhnique is likely to be useful.

Learning-
An estimate of the learning time -.and iraining.needed to'use the- technique, or
tool successfully.

4.n.10. .Cost.
An estimate of the. resources: needed.

4.n.11. References
Sources of additional information.

TABLE C1-1
TECHNIQUE AND TOOL- DESCRIPTION ENTRIES-

.

IL

4..2.2.% Basic feattres. ..TWo phases of -algorithm analysis can bedistinguihed: "a. priori- analysis" ana_na-posteriori testing:":In ariori
analysis a function (of some relevant parameters) is deviaed which bound& thealgorithm's use of time and' space to canpute an acceptable solutionThe_

-----analysivassmesa-moderbr canputation such as: a Ibring machine, RAM
(random access ,machine), general purpose machine- etc, Dm general kiLds!-of
problems are usually treated: (1) analysis of a ;articular algorithm, and
(2),4 analysis of a class of algorithms. In a posteriori testing actual
statistics are collected about the algorithm's consumption Of time and spacewhile it is executing.

4.2.3. Information'input.

a. Specification of algorithm

b. Program. representingthe algorithm

4.2.4. Information output..

a. A priori analysis

Confidence of algorithms' validity.
Upper and lcwer computational bounds
Prediction of apace usage
Assessment of optimality

b. A posteriori testing

_Performance profile

4.2.5. Outline of method.

a. A priori analysis

Algorithms are analyzed with the intention of improving them, if possible andfor choosing .among several available for a problem. The following criteria .may, be used: 'N

Correctnesa4
Amount of w . done
Amount of space used
SimpIiCity
Optimality
Accuracy analysis

.

Correctness. There are three major stepso involved "establishing the
correctness of an algorithm.

(1) Understand,that an algorithm iicorrect.if, when given a valid input,:
it computes for a finite amount of time and produces the'rik,ht answer.

'(2) Verify that the thematical properties of the meilod'and/or formulas..
used by the algorfthm are 'correct. ',

(3) Verify: by =kb ematical argument that the instructions' of the algorithm
do produce the right_ answer and do terminate.

Amount of Rork done.:1 4 priori. ,.analysis ignores all of the factors which
are machine or prograimaing language dependent and concentrates. on

.determining the'order of magnitUde of the frequency of execution of
statements. For denoting the upper bound On an algorithni, the 0-notation.
is used. The following notational symbols are used in the -following
description: ..**=exponeritiation []=subscription..

Definition, f(n) = 0(i(n)) if and only if there. exist two positive
constants C and n[o] such _that f(n)SC g(n) for all 11N1[0].

The most casnori canputing times for algorithms are: 0(1)<0(log
n)<O(h)<O(nlog n)<0(n**2n0(n**3) ancl,..02**n), 0(1) means that the number
of executions of basic operationsfixed- and hence the total time is
bounded,by a constant. The first six orders of magnitude are bounded by a.
polynomial. However, there is no integer such that n**m bounds 2**n. An
algorithm whose computing time has this property _.is said to require
exponential time. There are notations for lower bounds and asymptotic
bounds (see ieference (4) for details). The term ndomplexityn is the
formal termfor the amount of work' done, measured by scthe complexity %(or
cost) measure. -

In general the amount of work -done by an algorithm depends on the size of
in at. In sane cases, the- number of operations may depend on the
pa ieular input. Sane examples of size. are:

Problem
Find X in a' list of 'names

Multiply two matrices

Size input
timber of names in the

dimensions of the
rites .

e number_. of equations and
sOlUtiOn 'vectors

3. Save- a system of linear equations

TO handle.the.sitUatibriOf the input-- affecting-- .the performance an
algorithm, two approaches (average and worst=caselandlYsis) are used. The .-

average approgeh assumes a- diStribution of _inputs...and-then calculates the
number of operatiOns' ;performed for each type of .,input = in the distribUtion
and then compute& a weighted-average. The worst -case approach- calculates

, -the maximum...furter of basic .operations performed on any input of a fixed ..

Amaunt.af _apace Used. The nurnber of memory cells used by .a program; : like--
the number '.-of seconds required ...to- execute .:a program,. depends on the

-particular implementation. However, sane conclusions about space usage
can . made the 'algorithm. -.. A program.will require storage
space for -the: nstructionSli. the,. constants, and variables...:used. by the

..

. .,. ,
program, and the ..input ,data.- It may also use some work space for 2,

:manipulating the data and storing information needed to carry out its::computations.: The' input data itself may be repregentable in several,..,.

forms, sane which require more space than others. If the input data has... ,one natural form - for example, an array,of numbers or a matrix - then we
analyze the extra spice used aside fran the_programand_the-__inputIf_the
amount of extra space isa. constant with respect to the -input size, the
algorithm is said to work nin-place".

Page. VI

,

It.is often, though not always, the case that the simplest
and most ,straightforward __way of solving 'a problem is not the most
efficient: -Yet simplicity in an algorithm is a desirable feature. It may...
make verifying the correctness of- the algorithm easier, and it makea
writing, debugging and modifying.a program for the algorithm easier. Thetime needed to produce a debugged program should be 'considered when
choosing ..an algorithm, 'but, if the program is to be used veil/ often, its -
efficiency will probably be the determining factor in the choice.

Optimality. Two tasks must be carried out to determine how much work is
necessary and sufficient to solve a problem.

(1) Devise_ what seems to be an efficient algorithm; call it A. Analyze Aand find a function such that, for inputs of size n, A does at most g(n)
basic operations.

(2) For sane .function f, prove a theorem that for any algorithm in theclass under consideration there 'is some input of 'size n for "which the
algorithm must perform at least ftn) basic operations:

.

If the functions g and f are equal, thin the ilgOrittini A is-optimal,
Accuracy analysis. The computational stability of,an algorithm is
verified by .determining that the. integrity of roUnd off accuracy is
maintained.- It is done manually at the requirements or specification
levelL

b. A Posteriori' Testing

Once an algorithm has been analyied,- the next step -is usually. the _ConfirMationof the analysis. The confirmation process consists first of devising a
program for the algorithm on a particUlar canputer.... After the program is
operational, the.- next "step' is producing a "performance profile".; that is,
determining the precise.amounts of -time, and storage .the, program will consume.
To determine time, consmption,: the computer clock Is used. SeverAl data sets
of varying size. are executed sand a peiforniance_ profile is developed and .

Compared with the.predicted cUrVe.

A second way to use the ,canputer's timing capability is to take two programs
which :perform the same task- whose-,,forders.,- of magnitude are identical and
aware thenr_as theydprocess-data. The resulting times' will shad which, if
ither,, program is faster. Changes to a program which do not alter the order

of magnitude but which purport to speed up the prcgram also can be tested in '°

Page 15.

this war.

Example. QUICK.tORT is a recursive sorting 'algcirithi (5). Roughlyspeaking, it rearranges the keys and splits the file* into, two' subsections, orsubfiles, such that all keys in the first section are smaller than all keys in- the second. section. Then QUICKSORT_sorts_t.h "eLtwo-sybfiles-recursively-t-i-e--7--by the slime method), with the result that ,the entire file is -sorted.
Let A be the array of .keys and letlast entries respectively, in
sorting. Initially,,m 1. and n
frau the subfile and rearranges
for nISi<j, A(i)41C; A(j) = K; . and
correct position and. is ignored in

m and n be the indices of the first -,and
the subfile which QUICKS9RT,is currentlyk. The' PARTITION a/gorithrf *chooses a key Kthe entries, finding an integer j such thatfor j<i.Krzi A(1).2.K. lc is then in its
the subsequent sorting.

QUICKSORT...can be described by the following..recuriive algorithin'
.QUICKSORT

m<rt then .C12 PARTITION (A,m;zili,j)
-QUICKSORT (A,m,j) -

QUICKSORT (Align)
Ind

- QUICKSORT,,
The. PARTITION routine may choose as K any key in the file between A(m) andA(n); for, simplicity, let-K A(m). An- efficient partitioning algorithm uses.twopointers, i and j, 'initializedto m and n+1., respectively, and "beginscopying K eliewhere so that the position'A(i)- isiavailable., fon. Sane other,entry. The location AC i): is, filled by decrementing A(j)SK, and thencopying A(j) into A(i).. Now A(j) is filled by inprementing i until A(1).2K,and then. copying A(i) into A(j). s. procedure -.continues until. the values ofi `and. j meet;:, then K is in the lase.pli0e: Observe that' PARTITIONcompares: each key except, th "original in. A(M)1 to K, so it does n-'41comparisons.- See (5) : for furthercletails. :*

. . . .

Worst Case_)naliftis.lf when 'PARTITIOf is executed d-A(m) is the largest -key :inthe current subfile (that is, A(M).2,A(-i) fora n), then PARTITION Will moveit to 'the bo,tt.cm to 'position, A(n)_ and partition...the file into one section withzi.:m entries (all- but the bottom one) and -one section with no 'Ali. .that has been . ad4cmplished is moving the Maximum entry to the bottaa.iSimilarly, f the smallest ,entry . file Is in=;potition A(m), PARTITIONwill simply separate it frixo the ;est of the-list; leaving .6-m items still,: to;.-be sorted. Thus if 4:the input, is arranged so that'.eacb.:time-PARTMON isexecuted, A(m). is the largest (or the sznallest)t entry --in the section. beingsorted, then let p = n-m+1, the nuMber of 'keys'in the unsorted _section, thenthe number of compa.risbns. done is

2 2-

'

Page 1.6.

Average Behavior Anfilvsis. If a .-sorting algorithm removes at most oneinversion frcm the permutation of the keys after each ccmparison then it mustdo at least -(n**2-n)/4 .comparisons on the average. QUICKSORT," llowever, doesnot have this restriction., The PARTITION algorithm can move keys- across .alarge section of the entire file, eliminating up to n-2 inversions at one
time.__QUICKSORT de.serves_its,name-because-.ofitslaverage-behavior.

Consider a 'situation in which QUICICSORT works quite well. .Suppose that each itime PARTITION is executed, it splits the file into two roughly equalsubfiies.' To simplify the ccmputation, assone.that n = 2**p -1 for sane p..The number of comparisons done by QUICKSORT on a file with n entries underthese assumptions- is described by the recurrence relation
R(p) = (2**p)-2+2R(p-1)
R(1) = 0

The first two terms in R(p), (2**p)-2, are n-1, the number of compari.sons done.by PARTITION the first time. The second term is the number of ccmparisons
done by QUICKSORT to.sort.the two subfiles, each 'of which has (n-:1)`°12, or
"(24.14(13-1)) entries. Expand the recurrence relation to -get

-R(p) = (2**p)-2+211(p-_,1) =.(2**p)-2+2(2**(p-1)-2)+11 R(p-2)
= (2**p)-24-(2**p)-44-(2**p)-84-8R(p.;3)-

p-i
R(p) **p-1*) **P E 2i=1 **i

i=1

thus

((p-1)2**p)-((2**p'),-2) = log n (n171) -rw-1

Taus if A(n) were close-tothe-metlian- each time. the_file is. split, the numberof- .sione ,by . QUICKSORT would - be of the-drcler (niog If allpermutations of the input dataare assumed equally likely; thenQUICKSQRT..does
. approximately 2r2lOg n ccmparisons.

ti. .

Space Usage. At first glance di may seem that QUICKSORT is- an in-place sort.It is not. While-the algOrithm is working on one subfile, "the beginning andending indices (call them-the borders) of all the other subfiles yet to "besorted must be saved on a stack, and the size of the stack depprnds on-theminter -into.which:the file be split. This; of course,depends on n. In the worst case, PARTITION may split toff one entry at a.timin, such a way that n.pairs of borders are stared:. on the stack. Thus; theamount of space used, by the-stack is ProPortional to-n.

MERGESORT.
QUICKSORT.

1.000 2000 3000 4000 5000
506 1050 1650 2250 2900
400.. 850 1300 1800 2300
(Time is in milli.secOnds)

ti

Page 17

lading. The results of =sparing QUICKSORT and MERGESORT are reported in
reference (4) and are sunmarized in _figure 4.2.6-2.

4.2.7. Efrectiveness.- Algorithm analysis has beccme
cceputer* science. The only issue that limits its
particular analysis depends on a particular 'model of

an important part of
effectiveness is that a, .>

assumptions of the model are inappropriate then the analysis. suffers.'

4.2.8. Applicability. An analysis of an algorithm, can'be limited by the
currentstate of theart and the ingenuity of the analyst.

4.2.9. Learning. Algorithm analysis ',requires significant training in _

mathematics and computer science. Generally, it will be done by a specialist.

4.2.10. Costs. The cost to analyze an algorithm is dependent on the
complexity of' the algorithm and the amount of understanding. about algorithms
of the same class.

4.2.11. Referenees..1.--

= ' - (1 I, -BENTLT, J.L. nAn Introchiction to Algoritbm Design 2: Canputer,Feb.
1979.

-(2) WEIDE, B. , "A Survey of Analysis Techniques for -Discrete
Algorithms, " fall/1=i Surveys,Vol. 9, No. 4, Dec. 1977.

(3) -AHO,' 93PCROFT, and, ULLMAN, J.D., !IThe Design and .

-Analysis of AlgOrithms;" Addison7Wasley;Reading,A4ass., 1974.

(4). HORCWITZ, E., and SAHNI, s., "Fungamental! of Ccmputer-
Algorithms, Ccmputer Science Preas,Potanac, Maryland,

(5) HOARE, C.A:R., "Partition. (Algorithm 63) and5;QUICKSORT (Algorithm
64)", .kimbigatigna ,9f the Agti,Vol.4, No.7,pp.321,July 1961::

'(6)' HOARE C.A.R "QUILXSORT", Ccmputer Journal,Vol .5 I No . 1,1963.

-.4.3.2.-''-Basic features: The purpose:is' to -pr bvide per.fcirmilnc-e-6aluation.--and-:t
capacity' planning information on a system design. * The process- follows -the top'
down approach to-desi0 through hierarchical. leiels of-resolution': It.'can..be.

____applied___at=earlydesign-stages:-when-tlinetional-modules-are-relatiirely-large---and where knowledge of their execution behavior may be imprecise. As thedesign-- proceeds the modules are further resolved, the estimates of theirbehavior and- execution resource characterization becane more precise. The..approach. is predicated on two.representational bases: on extended -execution
graph models of programs and systems end Dn. .extencled queueing network models
of computer' system hardware resources and workloads: .

4.3.3. Information ,input. The information which is needed fords techniqueconsists of functional design and performance specifications ay'ollows:
. -

a. Identification of the functional canpOnents of ''thee software designto be modeled.
- . t

b, Identification of the execution characteristics% -(peimarily,
execution,'time-eitimite3 of:each fUnctional component.

c. Afi execUtionflow graPh which'givei the definition of the, order of,
execution of the various funaWeonal cixiponents. '

4.. .

d: Execution environment specifications which can includeinformationsuch as operating *stem overhead and the wori4oad on the System that couldpotentially- impact the particular softwarOundefr,,development.
4,

e. System execution :scenarios whirl prOvide the- definitions of the
external inputs to the model needed for each simulation of the model.

f.. Performance ioals for the .total:syst*and components .Can exampleupPer bound for the Mean- and variance of the ireiponse time for aspecified execution environmentand scenario).

4.3.4. Information .output.
following:

Output 'from the teiChnique consist of the

.

a. ,.Alower bound on the performance'Of the sAtem.

b. A comParidon- of the -performance-- goals 'with 7 the perforthancereidts. =

4'
c. Identification of the functional which had the greatest

effect on system performance.

4.3.5.:..Outline-Of,pethod., Much of the effoit in using this: technique ` comes-
-:the; preparation of the necessary . input information; Once. this; has been

.,-done, it. isiten ".erally Sutmi ttect!. to a:computeY`whIch-performs the simulation-or.the execution the-Model and reports the:results; which are then' analyzed..
and th6'model revised as..necessary; The_ specific steps'in the technique:4.

Page: 19

'

a. `The structure of the software design is characterized terms ofitsfunctionalcmpone.nts. thert....softwaredesigns are. generally..;;hierarchical in structure, .a. model be modified to represent the systole, at-different° 'leveld of detail, each being analyzed atdifferent stages in_theprocess. .

- b. The order of .execution of_ the. components is determined and theexecution graph is constructed.
e

c. Resource requirements (e:g., hardware or operating Systemresources) of the functional ccmponents are identified -and a.- possibleenvironment-is studied with the specific resource workloads being determined.These workloads consist -of.,the average vat and usage times for the resources
controlled by the environment and used by the software (such as average. diska9cess' time).

is The workloadsare then mapped into the model (as represented by
ie execution grait) :based upon the identified- environment resource_requirements of the individual flinctional -components.

.

e; Next, the system execution scenarios are constructed. Theexternal- inputs" comprising each scenario may be formulated, for-example,
terms of th,e number of disk accesses required to find a .needed data itemwithin..a particular ccroponent..

f.` Upon canpletion of the above steps, the model is driven, producing
System and component' periormance results. (The -"driving" of the model isusually done using a_system simulation tool such as GPSS, General _PurposeSystemS Simulator, on a coded--specification of the odel.).

g. i.Me:performance results are now -Compared with the performance
goals :',of the syste. If the goals are not met, performance critical'conponents are then analyzed in order to determine where improvements_ican
made:. The design is modified and the technique repeated. ThiS processcontinues until the performance-i6 acceptable or until it can be determined
that the goal's are _unreasonable.

4.3.6. Example. Finite.element analysii is . a techniqUe determini ng-characteristics- such as deflections and Stresses in a structure (Le.building, airplane, etc.) otherwise too. complex for closed form. mathematicalanalysis. The structure fs broken into a network of simple elements- (beams,:
shells, or cubes, depending on the gecmetry of the:sirtiCtUre) y each which.hat stress and deflection characteristics defined by clasiiaali theory.

. , .

Determining the behavior of the 'entire structure then ,beccmes a- task_ of
solving the resulting det- of. Simuiltaneous equations for 'all elements.

The example developed below ~is -a portion,of..a system which does a finite .element analisis. Consider the software execution' -graph in Figure 4.3,6-1.
Only the . top level of the processing is illustrated here.. The -. CPU time and

1/
0.

re
ilu

ir
ei

ne
.n

ts

fo
r

ea
ch

ca
np

ci
ne

n

' : I

: .

sh !i
n"

T
ab

le

4.
3.

6-
1.

iin
n) - '

F
O

B

ne
as

um

su
m

. '

B
E

A
K

D
U , 26
00

Q
U

A
LI

F
Y

_

A
m

m
dn

m

S
E

A
M

D
E

P

'B
O

D
E

LO
C

.

tr
.

I -
t-

,

I.X
2R

IE
B

Z

N
O

D

1/
5I - _

1 I

S
V

ID

iiA
T

A

.
1 II I -I

It .4
"

.F
un

ct
io

n

Fi
nd

,b
ez

ie
-d

e.
fi

ni
tiO

n -

So
rt

on 1p
et

in
i-

ri
un

be
r

R
et

ri
eV

e

be
am

s;

de
fi

ni
tio

n

Fi
nd

no
de

lo
ca

tio
ns

R
et

ri
ev

e

no
de

.I
.o

ba
tio

ns

Se
nd

da
ta

.*

T
ot

al

0

Ir
26

00

7 F
R

O
M

M

N
U

N
.

A

(1
10

0E v se
nt 2)

2

Q
O

A
LI

F
2

,

D
ia

k

A
cc

es
se

s

72

-

21
36

-
0

Fi
gu

re

4.
3.

6-
1

O
pt

im
iz

at
io

n

E
xa

m
pl

e

(r
ef

er
en

ce
?(

1)
)

.2
11

T
im

e(
m

s)

.,' 1.
11 .

:3
46

44
.7

:

18
,8

32
.3

;0
18

,7
26

"

-

'1
77

40
16

2;
60

0 .

-

3,
31

9,
92

9

,m
s.

A
B

L
E

11
;3

.6
-1

-R
E

SO
U

R
C

E

R
E

Q
U

IR
E

M
E

N
T

S

.O
D

R

sO
P7

M
IZ

A
T

IO
N

E
X

A
M

PL
E

'-o
!

Pa
ge 20

- -

The elapsed time to canplete-an I/O: operation is ,assumed to be 30specifications are unimportant in this example.

Page 21

'Other

The
averageiresponse._time-for-tivis-scenario--i-s--3326---seconds--(55-.1i minute-6). .This is clearly unacoeptable -for an interactive transaction.. The bottleneckatialysis indicates that the CPU is the-critical resource since it.has a higher-ratio to the elapsed time than the I/O ratib. Furthermore, the "find nodelocation" .component is the critical canponent.

The.processing detailS of this. collapsed model:are not sham howeVer, closecianination, of the details - indicates that a "find"Sdati base commandinvoked= for each of =the three. search keys, 'and:then takes: the intersection ofthe records that'qualify. -AlSe., it is found that the resat. of "findlitortheiproblen nunbe,r search key is invariant throughout the loop and need not berepeated;.; kncidedge of the nature of the problem leaciS to. the observation.tha-;v:4000-.fq.t4e,fipe...(85pithe "find" on the ngsk 1 ;Uzi: yields the same.',result the 2.-Rex.,fran the preiious,iiissthrOugh theloop,. and need .not be repeated: ''The results of this analysis indicate changeswhich optimize the .

. -

These optimizations:.are-reflected in the 'execution ,graphi. in .F eThis graph is :mire Canpleic; -.however, the.ftotai,-processing requrements arereduced, as\sliown in ,Table

,The response time -.has been reduced by 3025 seconds, , a. substantial savings!The response time (303' seconds)- is still unacceptable -fOr'mostapplications* Another optimization, storing the "bean def" data in beam'.number- sequence, precludes- the sort. _Me; resulting response time is' 269seconds. This optimization 'process continues tAnfil a resulting yesponse- timeof 82,Seconds is obtained.
c

'Function
--Find bean definition,

Sort-bean number
Find node -location
R i.eve beam--definition

j.13-t.ree I/O 7
';Find 2 nodes
-letriese 2 nodes
Firiti 1 node

- Retrieve 1. node
Record I/O

Send data . --

Total

Disk Accesses
7

. 72

72
17

TABLE 243.6=2 'RESOURCE REQUIREMENTS

CPU Time(ms)
111

32,6114
1,075'

88,832

102
44,000 !i
27,200
26,000
711800

216 -

2,60b

297,580.

FOR REVISED OPTIMIZATION EXAMPLE.

. The :performance is_still only marginally acceptable, abut it is a drathatic
improvement over the original design. The,- bottlenecks are detected 'and
corrected, prior to actual' coding and, therefore,.. the..modifications require
minimal- effort.

. .
Figure..11.3.6-2. Revised Optimization_ExamPle (reference (1))

tfrectiveneiii---:.The.'aecuracy of the performance prediction is only as
good as the quality: --of the performance 'specifications, The quality Of the
specifications.usuallyimprOves dtiring the 'design procesi; A simplified

approach is used to analyze queueing network models. This reatts inapproximation of the relationships between contending resources. Severalcompensating features are used to.offset the approximations used.

4.3.8. Applicability. The technique is generally applicable --. tonondistributed

. . .

4.3.9. -Learning. The user:of this approach needs fsti be familiar with. theintricacies of the modeling techniques used:

11.3.10. Costs. The preparation, analysis, and solution of the model costsapproximately 5% to 15% of the total design costs.

4,3.11.- References.

,

(1) SMITM, C.0 "The Prediction and Evaluation of the Performance ofSoftware Fran Extended Design Specification"; Ph.D. Dissertation, University'of Texas, at Austin, "-August_ 1980.
-

(2) C.U.--;.'and,BRCWNE, J.C., "Petformance Specifications andAnalysis of Software DeSigns";Proceedings .of the Conference n. Simulation,Measurement, And Modeling oteccaputer. .ystems,Boulder, CO., Augtist
'

Pag424

4.4.1. Name. Assertion Generation.

4.4.2. Basic features. -AsSertion generation is not so niuch a verificationtechniqueitself.---asit 'is foundationalto-a-variety of other ch-f2.1ques.Assertion generation is the process of capturing the intended functional
- properties, of a. program in-a special notation (called the assertion language)

for insertion into the various levels of program specification, including, theprogram source code. , Other verification technique& utilize.the eMbedded
assertions in the process of comparing the actual-functional.sroperties of the"program with the intended properties. ,..

'4.4.3. Information input. .A Specificatibn of the. -- desired functionalproperties of the program is the input required for assertion generation. For jindividual modules, this breaks edam, at a ;minimum,..to a specification of theconditions which are nassunedn,true on a module- entry_ apd a- specification- of
-..the .conditions-Adesired on module exit. If ,the.specificgtions fran -which theassertions are' to be derived include,,algorithmic detail, .the specif'icatiqns

will indicate4conditions which_ are to-hold Atintermediate points within themodule as well.' AdditionallY, assertions can state. data characteristics,-e.g.
lbop invariants, physira3.....units.or a variable, as inptit-.-only(dan not be set)
4.4.4. Information output. _ The assertions. .which 'are created frau thefunctional or _algorithmic specifications are expressed in a notation calledthe assertion. language. This notation cekitally includes' -higher level aexpressive constructs that are found, for example, in_. the programminglanguage. An example of such a construct is a set.- Kost etzmmOhly,_ "thyassertion language is equivalent in ekpressive 'power to the first-orderpredicate calculus. 'bus, expressions such as "foray. i In set S, A[i]A[J.+1]!! or nthere exists x such that f(x) = Ow are Postible.---; The assertions
which are generated, expressing the hinctional properties of the programv can-then be used as -input tO a dynamic. assertion prOcessor, a formal. verification,tool; walkthroughl, specification simUlitOrs,' and _inspections, among other:NW_ter.liniques. :f

4.4.5. Outline.4.or- method. ----:Osertion generation proceeds hand-in-hand with
the hierarchical elaboration of prOgram:functions. 'When, during-developnent,a function 1s-identified as being needed;.it is 'usna'9y, _first - specified by'what input ,it is- expected to take and what'the charabtKistics' of the_outputare (*outputs are often in_ terms .ofcthe -input quantities)::--,. =for- snph a 7.functionit is possible to generate input and output assertions without any knowledge --of how the function performs'its task. The input aSsertion:..; expresses therequirements." on the data he function is to use during its processing. -Thhoutput assertion expresses what is .to be true on function- termination.

Later; a& the function is elaborated, the .deSigner or coder: will. the-necessary steps, to:: be taken. in order to accomplish ,what is required of the.funation. After stepo.' it can be said ...that a-.7part" of the task has beerr.,_'accomplished. . That part necessary for the proper operation; of the nextstepi and so on, until .the entiretunction:hat been...realized. : .The characterof each part cad ,1?e:;i..;;raritured;;Iby as
-desothition -of' the "entire function: The - output a.iiiition=.- for. ode step':.. .represents (at least,' part .Of),' 'the input for the following step.

Such assertions- are called intermediate assertions-.

Each assertion,. input, outputl, and intermediate is expressed usingithe
assertion language and is placed thethe specification -of the function being
implemented at the appropriate' ts. Thus, the program sour-be text will
include in it a3.I the assertions developed -during the-requirements, design,
and coding phases.

Same programming- languages include facilities for expressing assertions in the
source -code but.. most dd not. i such se,s it is custcmary to include the
assertions within cahments, for indeed ar documentation expressink the
desired functional characteristics' of th Subsequent V&V tools, such
as dynathic- assertion processors; are cons cted- 'to utilize these special
canments- during- their . processing.- c assertion processors are able tocheck`the va3.idity;of the source, assertions during program. execution. Thus _ a-

method for dynamically verifying that the program is behaving.,A cording .to its
intended ipecifi.cati.on is possible:

For program which contain loops (which is just about all pr ams), it it
often- important to formulate assertions which are al tihae at specific
points within the loops. Such assertions are termed ,or -dnductive
assertions.

...6... Example. Since assertion generation is so closely entwined with
program development only' a ,brief example is presented here. For more thorough
examples sfe 'references (1-5). . . k7'

During program develocment...the requirement arises for sorting the elements of
an ay or table. -In-order to suPport flexible processing in the rest of the
sys the array is declared with_a'large, fixed, length. However, only a-
port n of the array has element .in it. The number of elements currently in
the array, when passed to the soet-routine, is contained' in tht: element
of the array. The array is always to be-sorted itr ascending'Ovder. The
artedarray is returned to the calling program through the same formal
parameter.

-I

. The 'first-specification ofthe tort rcaitine may appear as:

SUSIkilTINg:SORT, (A DIM)

.A, is the dray to be sorted
DIM is..the dimension. -of A

,O

The characteristics of the subroutine may be partially captured by the
following assertions. Not.ationally, 'v=norn and. &="andn.,

ASSERT--INPUTagAC0114),(Dnik2)
:ASSERT OUTPUT (A(1)4 v 11(1)=1 & true) v

(A{1)>1 & FORALLI -[a . AC1)] A(I) A(I+1))
o.

inpit'aisertionliclotes the required., characteristics of A(1) and DIM. Tlie
output . assertion indicates that if there *Were 0 or .1 elements in the array,
the array is sorted by-default. If ,there are at least 2. elements in the
array,. then the array -is in.ascending order..

:lbe next ieVel of the = Program may have the follOwing
intermediate assertion sham.

SUBROUTINE -son (AI DIM)

A is the arr ay to be sorted -.
DIM is the dimension. of A-

ASSERT INPUT 2(05,1K1)-- DIM), -(DIM>2)
IF (1(1) .LE. 1) GOTO 100
ASSERT (25.11(1)SD174)

C: . ,

C %Sort non-trivial-:array
C
100 ASSERT OUTPUT--A(1)=0 v 4(1)=1 & true) 'v .

(A(1).>1 & FDRALL I IN [2.-. A(.1)] ACI).SA(I+1))
RETURN
END

with Assertions

Suppose a straigkt &electIoif. sort algorithu is, chOsen for: the tior)-trivial case
the smallest: element and place it in ,.4(2);-findithe next MO/114st

---PlaCe it in 1(3)11.. and so forth, where the original contents or (i)
exc ed with the element that _belongs:. in the Ith -position, in : th Sorted:
array . An-.-:approp4 a e intermediate Assertion is included
loop.

sorting

.ERFOR.1_..STRAIGHT 'SELECTION SORT

'7C
C

-

find :smalleselement. in A(4(1)1-2)
C - let-that element be A(K)
C achange A(J) and 11(.1C)
C.

ASSERT (ag"sol))
(FORALL _I. IN f2 .
CONTINUE

A significant issue which- we have: -nOt dealt; with-,'ejet,, is -asSerting, on
termination, that sorted array. is a perMutatiori _of: the original array. In

,.

other words, we wish to assert that in the-process of sorting, no ,elementswere lost.--To---dolthit-at-.the-higiest.-7-leveli=our' 'tempi-V.atthe program
= . requires adiariced.asiertion' language facilities. The interested. reader .is

referred to .referenCes (1) and (5) :

4)4:74 Effectiveness.. generation -_particularly when used 'in
conjunction wit allied ;tecludques like dynamic assertion processing . or
functional testing, .Can .be, 'extremely- effective ,in-_-,aiding UV. , Such
effectiveness is only-- _poisible., . however, :idled the assertions: areused to
dapture the important functional'Trope .orthe :program: AsSertions such
as the...foIlowing are of,no use at all

depturing the - important properties Carif-be.a difficult Rrocess,knd is-prone to
error.

_,the

effort is well rewarded, though, by increased-underitanding -61
the problem to be solved. Indeed, assertion- generation is effestive. :because
the assertions are to be, parallel to :the program.sPecificatibis. ThisPa` elism enables the 'detection Of errors, but effort

.

A cost-effective= procedure, therefore;- Is to develop- in:J:ermediiate assertions
only . for particularly inVortant partS the.cciputi#on; "Input assertions
should always be .employedr and output assertions wheneVer possi.ble.

4.4.$. :Applicability, . The .. technique .1.4 applicable,'
development piiasei -and, ng languages.

. - .. _,

4.11:9; Learning. Training and eiperienceIn writing -iisertionS is the key to
their effeCtive use: Thoughtful: consideration of :_the material contained in
the references; should enable: a programmer to begin with useful assertions.
Experience will Sharpen ;.-the *:ability., especiallif a dynamic assertion
processor.or other allied technique is also used.
4.14.10. COSts. Assertion generation is generally a mariiia.l' .teehniqiie., i.e.,no maChine resources are reqUired... Effective. use ,requires,thoughtfUl .probleni
and solution consideration, :but no more than required in .

'-Professional task perforTiance. Tools,446-.exist.:that.lise,symbOlic execution tO.'
automatically generate-lobp',.invariant assertions. The cost then bedcmes thatof symbolic execution,

References.`,

(1): -TAXL0R,.. : "ASsertions, .in Pr.ogr Languages". SI0P4AN:
Notices, Vol:. 15, 1i Yanutirsr 4980;.::Vp:,:.1057114...

.

of :-.Cceouter'. Pragragnite:'
;41ay!.:1-97,8*:"pp.., 21997.220.:(eapecially .pages.:199:72p1.0!..-.;

Page -28

(3) HOARE, C.A.R., .."Proof -or a-- Program:, FIND" CACM,y. ,

January 1971, pp. 39.-45:

(4)--HE1 AEL;W.' D.----ed.-,---"Progran----tESTMethods",1-973rticleson7-1
pages 7:10,:17 -28,'57-72.!" -- .-,:--;

(5) CHCW, T. - "A Generalized Assertion Language" ---Bnxesinga .4f.* -lilt &mg InterTatioral .12n.Software Zngineging,San Francisco,
pp. 392 -399.

(6): STUCKE,. L. :- G. c and G. L.., -"New, Adsertion Concepts for
. ,,

Self- Metric -.: Softtrare"; Nag 1475'- Conference :on: Reliable:*
.

'...aittatePP. : 59-71..

. a
r

Basic -Fea&ii4es. --Assertion pt.ocessing the- .Proceess:, whereby the.
--,--Llproireart*--aiSertions-1-c;intitiing,user specifssertiorris as descried in-theprevious, section) are checked during ,Prppanc exec4 19g. ,39d1; -thitechniques serve as a 3zridge...betweeb'the'more:formal -program correctness .proof ti

,approact="ang;theitore:cdaiMon.." back bOlio/teSt.ingis_a roaches: _
41.5.3. Inforination -.-.7gormdttiorViripiat:i0j.t..tfWtid4tque'',CdhSistS of 7 4.
prograi which :contains :_thVasSerViOtis to:be- ProCe prOgraii Can,' bewritten ih anir,rangtiage liUt.Mat:--Wreitri4ted .tek a ,parti, ar,- language -if . anautcinatic tool is used - to,,tierfort the, dynefnicasse.rtion lhforeOyer;'if a tool is used, the fOrtiat4or,,sPeCifYing. the assertions.. will:, be ..thatdefined by the ParticUlar.:7;t061-. Genera1.4';':asaertions are specified as
canments- in the source._ program.- ; -f ., "' .

ThfiiiimatiOn Outputt:' Outputireir e dynamic asSertion-prOcess normally
consists,;', of &Vie assertion checks which were performed' and a list of
exception. conditions with trace information...for ,tletermining the ..natirre .andlocation of. the - . : . ' l'

:outline..-pf:Method.; ,Ttie.....assertiorisc'are,4'enerated by the "iieveloPer as
'described in .the: 7 "Assertion Generation7'. technique..ibthe prey-IOUs:: section.
The .assertions arm then .translated into host language .program _stat.emerits:skhi.ch
actually 'Peri'orM the assertion -.checking,. at program.-..execution" time. :Thetranslation can be: done manually _or through- the use, of ,ari "automated dynaratc.-:,;assertion processor,.

-The transIat.idii. ss-is alii:wn in the'f-ollowing Aliritration An assertion
,.; /

(* ASSERT. condition *).

is translated.

(*Co.

Prodes*aSsertion violation;

The ;processpg-of the asiertiolf;ifiolatiOn will, minimallY,--keep track of the
total 'umber of violitions for each, asiertion,- print a messager.indicating that
.a 'violation or,the:asSertion has occurred, and print valbeS . of ; the
variables TT-refererideit....0-.; the.:..aSbertion... TO addition, the location;
statement lumber, ancrthe numb& "7-,Or times the 'assertion: is :checked' be kept
and printed,when a violation. op-curs. ,-. t
Sufficient: information :shOuld'ftge ;reported Upoti. violation -of ;- an assertion
assist- the programaer

7.of the specific of the errot....'':.pi

-Art.'autanated dynamic.: assertic*, processor can be of great assistance by
lleviatig : for the programmer- the burden of `hand generating the source:code,

necessary to :perform the assertionchecking.- Not- will this save time lilt'

age)3

it will also pei.forni the:translation-more, reliably.'
Specifying, assertions canments: is ,a. valuable 'form of idocumentati.on and

specific direCtives..
, .It.is important to note that''dynamic-assertion-.-procetsing for non-real timeprograms- muse: not alter the 'functional behavior of 'a program, ;- Use ,off a =goodautcmated tool will ensure-this: Execution time-, however,- increased;the ,amount which will depend on the nunber of assertions-'which areprocessed. ...It is important td...ndte.;- that dynamic :assertion._ processing canalter_the functional behavior of a program by altering- the execution:timing.

.

Th order to effep,tively--::.utilize assertion processing, . test data, Should be..
.enerat.ed'which-will cause the.execution of each assertion.

4.5.6. Example. The Program segnieht in Figure 4.5.64 is taken -fran a Pascal-.program which 'calls on .rdutine 'sort', to sort array, consisting : -ofinteger eleinents, in ascendirig order. ,The assertion" following the call toSort asserts that the element's are:, indeed:1.n ascending ortigr upon return.'Prat.the -Sort prbcedure.. The numbers to the left are the -line "nunberi Iran ..theoriginal source.!

:';;;',.

Figure 4.5.6-1- 'Source Program with.UntranSlated AsiertiOn
-- -----.:-'-.. .

The program segment in -Figure 4.56-2 is ifiat which results:after all of -'-theassertions- have been translated into PasCal. Note that a rather large nunbe'r.
of -statements 'were-used' to implement the assertion-. This is due.to the rather,invo,3tveci Checking required to implement an "assert. forall. .. .n. , Simpler -.;.4siertipils"willrequire fewer statements., The spec could be reduced: through:the -tte.of a ccamon assertion violation procedure... -..D.,.- .,

13 N:-der;'
....lit -

: -A--:' array [111AXN] ss2Linteger.. ..- ,. .

":- 1.5..; :AdsertViOCourt';,.. array--E1..',NIiixifASserts3'.0t;Inteeer;'. .

16. '' .AssertXqtedtmt-,.:,- array ..r t.:..-, Nunot-Asterts]sitiriteger;-.. .._

'17-. asSert...: .N5616;11'1.. : '- '. 2.

n
78..
79,
80"-

82
.83

85..1
86 '-
87
88
89
90 ..
91_
92

sort Ott A)
(4iaSsert forall: =A[1."+1] *);

,AssertXqtCount[33:= AssertAitCout[3]+11
,y 'assert :'3= true;

whitle(i<= N) iadCassert) 'gait check assertion *

assert` .

,._j472.

if Mt thPn assertion Violation'*)
'AsSertIrioCotintE31 :'=.AssertlfioCount[3] = 1;
Wrifeln Violation ;of 3 'at Statement' 57, .1)4
Writeln:(eXecUtion:!,, '-',ASsertAtCount[3]

.14ritelia(arraark-;=- A)
end 111-assertiOnviolation.*)

'During testing the following 'values' A were s used- in -successive ',-
executions of the .sort routine.

execution '
9 .171 201 251 390 '501,- ,

..0 .3 , -53 " 27 201 .,71 390 251

3-u 501':' 390 .251 1201 171 ,27 12 '3e '
0. ;0.- 0 0 0'

180 100..1,-100 994:=:999 999 1000
:

Ihe.resUltingeZedOtiOn.produdecthe following assertion.violition:

J violation oe-assertion 3--,at:itatement '57 ott-eiecution:
..-:* array..A.,:e3:.,;.-12: 27'. 53. 171' 2017 ,251 101...f. a

This. wat'the Only vioiat.I.Oriiihicli--ocOtirred.
. . .

ubseqUent ',ana.t..ysitof..i.fie5::*ir;t.:':peocedui.e:-Indicated that the
4

erroe`was'aue tO*-;:
an "add73).one";erroi%or.a'liop ,

.k.
7'4:5.7 iffeCtiveiie-ii:" effecfivehess of,, dirnamic assertion .processing
=depend _upon :the,: quality of the assertions jrineltifed. iii4.:pe_program;being
analyzed. .14oreolier; if"tile;trassiation is being ;done by handgthe "amount,i.of
time required, tO -translatell:qoupled with-the" unreliabilitY. associated .iiithlhe
ppOcess., will reduce its effectiveness:'NeverthelesS, the techniqUe, can of

= signifiOant 'value in revealing the presence:Ot program errors;' - R,

4 :5.8.. Applicability. generally ap =

1 :5.9- Leaining. .A fUncticinal undeistanding pf assertions -is ali. that is
necessary in 'ordei-tO.Manually_ use this : technique. If a .:tool-'is used, then.411
hour' or ''shoUld be,- stifficient..,to;: rearn ;the specification..,syntax : for
asss4rtions baCoeptable to.. ttiat-.--toolt.7... Of cOtt'Se,' the 'generation of useful

'assertions (see:"Assertion Generation" Writeup) isir:neCessarYin order for 'this.
technique-to be.trulY. valuAble.: ; 4

11.5:10.2 The costs-asiOciated.Witit this- technique Are almost entirely
ccaVrised of the amount of time reqUired,,to translate-the' Asser -intoto
source _code. If tone.mihnallY," this-could amount 'to' significant ...; cost. If
done automatically, ". the "cost-will be on: the order of ;ccOPilaticiii. (Aitertion.
Processors Are- usually-imilemehtet 'as.'sourde language '*preprocessors): If e
toed: As not "'available may weir be Worth_ the cost =to develop'one in-house

11:5s1i Referellc".
(1), sTucia, G. I, anc1,00SHEE;': -

Self-ketrie ,Software",lbsr;egaings-4. 19M,
2W:tare'*p13-59T:71.-

Assertion-. Ccincepts:
Conferences.

-7 (2) ANINIE3iS,D:24.1"Using ,EXeCutable Attertions for Testing",11th
r .emitgmqe an %mats; 4Ygams,:2114- Devices,:.7N6v:- -1979.

-:,-Cause-Effect-.Grapliing.
-

Basic features. Catise-effect graphing S a` test case design.methodology:,; It is usedits:5 select, in:a systematic manner a. set .oftestbaseSwhich.have al high probability of detecting. errors that exist in a program.This technique expIoeesthe4nputa_and_o.cabliatiowof-input-_-conditions-Of-a----progeanlin developing test cases. It is totally unconcerned with the inbehavicir or structure:Or-a: PrOgrani. In addition, ,,for each test case degthe technique identifies: the expected - outputs. The inputs and outputs'..of theprogram are "(fetermined through:. -*analysis of the requirement "specifications.These specificationa are theetraniilitedintlf.. a Boolean logic.- network or
test cases for the:software undergraph. The network is, used.to'' ,de

analysis:
`'

4.6.3. Information input.;_:. e infonsitionthat_ is required as input to, carryout this technique is -a -'natural-,1dnguager specification of. the program that isto be tested. The specification. .shoUld ,include all expected inputs andcombinations of expected- inputs to the-prOgram, as well ast-txpected outputs.
4.6.4. Information output.: The ihformation
cause- effect graphing consists of the follaiiing:

a. Iin.i.dentifieaticii Of :

requirement specifications.-

b. A Set of inpUt° conditiO
. . , :

c: A Set of"-ciutput conditiio

. -

output .:by fihe proceSs.".of

nsistent statements`-in :the.

the software (cause's).

the software (effeq.9).,"
.; .

d: ,A Booleart graph- thatAipks :the input' conditioq. to .the .'outAt;
!.., .

. ,

conditions. ,

table that 'de.ertainile. which inputconditions
limited

enresOlti.n,,each.i put..,.;cond-iA° h-,.'

et of test-'icases . ,

g. The-,,exPected programukts for each derive.d-Xest Case.

The -above outputs represent = 343e- T a i3.t of perfoTing:i the -variOus stepsin cause-effect. graphing. -

4.6.5.- Outline of, method .1 '9.A,_41.-:,bause-effec
El-anslated from . a nay.ii
represented as a -canbine
cauSr.effect graPh to, deriv.

%mph'. Is a formal language
'language. - specification: The graph itself is

z netxobrk:': The process of creating
.cases is 'described :briefly beloW.

IdentifY- 1
separate identifiable-4eu

; ,

;, .

is of Syitem and divide them into

r.

b.' Carefully analyze the,relluirements to identify all the causes andeffectsin the' sPecificatioh. A cause is a distinctrinpUt condition; aneffect is an output condition or.system transformation (an effect that an
input has on the state, of. the program or:system) :.

-Assign-each-cause-ancreiwor-a

d...-Analyze the semantic content of the specification and transform it
into a Boolean. graph linking the causes and effects; this is the cause-effect

Represent each cause aril r etf,gctby a node- identifiecl by'_ .its unique
'number-. ,

o List all the _cause nodes tlvertically on e left side of a sheet of paper;
-list the effect nodes on the right side. .,,

1.s,o Interconnect the cause and effect nodes by analyzing the semantic , .1,L\
content of the specificatiOn; Each cause and effedt can be in one of
two states: true or false:- Using BOoleah.logic, set the possible states
of the causes and determiner what"' ditions each effect will
be present.

o Annotate the,graph with constraints describing ccmbinations of.

causes and/or effects that are impossible because of syntactical or
-environmental constraints.

e. By methodically tracing: state' aonditions in tfies.-graph, convert the
graPh:. into a limited.entry decision table as follows. FOr'each effect,,trace
backthrOugh the graph to find all combi.nations. of causes that will set theeffect-' to be "..trtie: Each'such ccebination is represented as a column in the

.decision table. The state""of all .other'effects should alio be determined for
each such dombination..^ Each oblumn .in the table represents:a test case.

f. Convert the colunns in the"decisioh table. into test cases.

This teahnique-to.createtest cases has not yet been .. totally automated.
fiadever*,'. conyersion of the graph to the decision table, the..bost difficult
aspect' of the technique, is an algorithmic o-prodess which could be automated by

a computer program.

4.6.6. Example. A database management system requires that each file in the
database, haire its name listed ih,-a master index which identifies the location
of. each': The index is divided.: into'ten sections. A small system is
being developed which will allow_ the user: b interactively enter a command to
display any section of the Index at his terrninal.. .Cause-effect graphing is
used,' to'develOp a set of test cases for the system.

a. The specification for this system is as follows:
To `display onCof the ten possible index sections, a command must be entered
consisting of a letter and a. digit. The first character entered must be a D
(for display) or an L (for list) and it. must be in column 1. The second

Page 35

character entered must be a-digit -(0-9) in colunn .2. this canmand occurs,
the iridex section identified -by the_digit is displayed on the terminal. If
the first -character is incorrect, error message A is printed. If the second
Character is incorrect, error,message B is printed. The error messages are:

A: INVALID COMMAND
B: INVALID INDEXNUMBER

b. The causes and-effects-have been identifieeas follows. Each has
been assigned unique nunber.

:.:;Character in colunn 1 is D.
2 character in column -1 -it L. °

3.- Chiracter in colunn'2: is_ a digit.'

Effects
50. Index section is displayed.
:51. Error message A is displayed.
52. Error message B- is displayed.
a

c. Figure 4:6.6-1, a Boolean,: graph, is. c nstructed through analysis
of the semantic ,content of the specification:,

Figure 4.6.6-1

Nodet0 is an intermediate;node representing the Boolean state of node 1 or
node's 2. The state of node 50 is true if the state of nodes 20 and 3 are both
true. The state of node 20 is true if the state of node 1 -or node 2 is true.
The, state, of node/51 is true if the state of node 20 is =not true. The state
of node: 52 is true if the state of node 3 is j true:

,

Nodes 1 and are also'knnotated with a constraint that 'states:that causes 1
arid 2 canna be true Simultaneous (the Eiclusive constraint).

d.- The 'graph is -Coriver into a deaSion table, -figure 4;6.6-2. For
".. each test, case, the bott* of the .table indicates -which effect will ;be -present ,
(indicated by a 1): For each effect, all ccobisiatiobs of -cause*. 'that will
result- in the presence of the effect is represented by the entries in the
caw)* .of the -fable. Blanks iri,the table mean that:the state of the-cause is;

g.

casei

e 36

0

E.eets
50

Figure 4.646-4 Peision;Tble

e. Each colunn in the dedisidh table iscoriVerting'Into test Cases
figure 4.6.6?3.

Test tame 1 (
1

2
Index section 5iS displayed

..

Index' section 4-"is displayed
INVALID COMMAND

. INVALID INDEX NUMBER_

Figure Test Casei
. .

. Effectiveness. Cause7effedi:graithing is a, technique used to produce a
useful set of,. test .cases. It alsO <has the added oapability of pointing out
incappleteness and;:aMbiguities in the requiretent: _Specification. However,
this technique does :not prodtke all the useful test. cases that can,:be
identified. It also -diiet"-not adequately explore boundary'Zonditions...

4.6.8. Applicability.: Cause- effect-graphing= can be apified-:tO generate test
cases in any type of .imputing::application where the .speCificatiOn is cleaily. "
stated and canbinations;I:of input conditionS. can be identified-. Manual
application of this technique is a somewhat tedious,--, long, and moderately
canplek process.., However, he technique could- be appliezt.to selected modules
'idhere complex Conditional:lOgic must.be:tested.

4.6.9. 1.eariiing. ...Cause-effect graphing is,a',matheilat.ically-bised...techniqiie
that 'requires scale know3.edge, of Bodilgan.logic:' -The 'requirement i'PeCifisx!tion-

'of the systai must -alio be clearly `Un_ Eerstood in order ,ttcs, -successfu.11Y carry,
-Out-the pitocess.-!- -,. .

4:6:1Q. Ift-17761-1.91.6---atfOl..1,of---tT4i.s technique will
intensive.

4.611. . 4eferences.

(1) ELMENDOEF,
Systems Development DiviSiciri,

s.

(2) MYERS, GLENFORD,.

Wile - Inter-science, New York, 1975,

(3) gYEES, GLENFORD, "Software' Reliability:
Practices," Wiley-:Interscience, NEN Yotk, 1976. .-4;

Principles and

4.7.2: ..13.1* features: `computer' program which: is'-used to:.
examine -source ., tode and:and automatically determines whether -,Prescribed---,
prograiimirigstabdarda_and__praCticesl*e_beeill_followed

4.7:3.- Information input., The-information input to a code- auditor'. is the
source- code to be analyzed and the mainlands necessary.' fOr >the code auditor's

--,
4.7.4. ::,Information output:t The information that W.OutPulby -a code auditortoris -a deternibition of the code being aralyzed ere tO

l_
w

- 'Programing tandards., , If, errors liciSt, information' , is ' genera detailingtoce
whith, ,-Standards --have. been violated and __where the.:Iviolations: 'ur. This",
information can appear as errormessages'Included With.a.soarce li ting Or as

... a : separate _.report. Other! diagnostic infOrmation,' such' as -a' cross- reference .

listing,_may alSO be outpdt as:an aid in making the needed corrections.

4.7:54, Outline' of Method. COde'auditors 'are f11y automated'automated' tools -which
prOvide an objectiVe --reliablemeans of verifying-that

.41

a prdgram canplies with
. '-a specified-set of coding standards., Sane Connion"programming ,conventions; that ,.,

code auditors~ can -Check for are given below: :- - , : ,: `-'
--, ----- . -,.

o Correct syntax .-Do".a14 program statements conforn.t044"SPeCifidati6ns or
the langnage deanigotiyl.

o Portability - code-Written so that it can'eaiiii.--13.Perate:o
different computer ;Configurations?

, ; ,i..
-

.
. , . .!,!

... o..-Use -of structured 'programing constructs - Does the code niake:Proper use
ol". a specified set of coding constructs such as.IF=THEN-4LSEor DO-WHILE?

o_, Size - Is t.11e. length of any program unit not more than a specified ,nixober
of statements?

. . ,

o Ccmmehtary - Is each'iirogran uni propriately dOcianented;;-e.g. ,,-./is- each
unit preceded.,-bi ,ablaCk Of " " 0 --. 'which indicates the function "of the

..

unit end the": function of each variable used? ' .
'43- Naming conventions - Do the names of all variables, routines, and other

symbolic entities follow prescribed naming conventions?

o Statement labeling - Does thegaxnerio4abeling of stateinentoffollow an
ascending sequence thrOughout each program unit?

o:,Statement ordering - Po all statemen appear in a -prescribed .order;
a-.fortran proem, do all .FORMAT, statements appear, --at the end and DATA

statements before the first 'executable statement of a roUtine?t,,..
- ,

-
.... . :- -,

o ..Statement format".- Do all statements follow a preSciibed set of formatting
rules which improve program clarity; e.g:, are all:DO-WHILE loops
appropriately_ indented? '.

...- :-

As demonstrated by,.thisilist, code-eud.i.tors vary in sophisti.cation_ according
to their - Each- auditor, however, reqpires sane fori:.'of syntax
analysis to be-performed.":1-1Code -mutt be-parsed by auditor and given an
.internal representation- suitable for analysis; Because-- this type of,

proceAsing 'is found` in many static.:_analys' code-auditors-are-part
of -a more general tea'having many: capabilities. For ample, a compiler is a
form of code auditor that checks, for adherence to th specificatiOns- of a

-.language - ,definition. PYORT, a tool used to ch Fortran programs for
adherence to a portable,-,subset .Of American National S rd Institute (ANSI)
Fortran 66, also be& the capability of generating a cross-i-eference listing.

-
'uoae auditors. are useful to:prograirmers as a .-means:-"of self-checking their
routines prior to turnover :for integration testing. These tools are also ofvalue te .softwaie product assurance personnel during. integration test
prior .to formal validation testing,''and again prior to customer:

4:t .6.

Application. A flight control progrard iS tobe cOded.entirely in
PFORT,:- portable subSet of ANSI Fortran 66. The progranids-to *delivered
to a military- government agencyjwhich will install softWare on various
computer installations:- 'In additioni'the custalier requires that each routine
in the program.be-_-clearly,'docunented in a 4presdribed fOr7nat. All internal
grogram moments are _to': be later compiled as a;.'%eperate source of
doctimentation for the Program

.

b. 'Error. A named Ocighon block occurs -in several routines in the
program. In one rOutine, the-definition of a -variable5in that block has been
omitted 'because the variable is not referenced in that routine. :This is
howeVer, 'a violation of -'a rule-;defined:in PFORT:. which reqtiirei that the totat
length of a named canmon block agree in all' oCcurreneei: of that block.

c. Error discovery. A code auditor which checks Fortran for
adherence to -PFORT detects this error immediately.. The progranmer of this
routine -is informed_that the routine is to be appropriately modified and that
any confusion over the use of the variable is- to be clarified in, the block of
comments : that describe the function of Week-defined variable in-' the -rotitine.
A code -auditor.-tht-checks for:the-preience of appropriate comments. in.:each
-routine is used tOmerify. that the oscloof.: the -;-variable is appropriately
docunented. At' -the end of code ruction,- all such internal program
docunentation will be collited and summarized by another.. 'code auditor which
processes machine readable docunentation imbedded in source code.,

4.7.74 EffectiVeness. Code auditors are very effective tools in certifypig-,_.
that softWare . routines have been coded, =fin accordance with prescribed'
_standards. They are much more reliable than manually performed code audits
and are highly, cost effective as they are. less time-consuming than manual
audits.

4.7.8. AtTlicability: Code auditors can be generally applied :tO any- tYpe of
source code.' However, each specific tool will' be language dePepderit (i.e.,.
will operate correctly -only for specifiedsourcelanguages), "-and'.'will only

47.

f- hat appOrs in a, prescribed forMat.

Page 40 _

Learni)19.Aspeciat,traliing is ,reqaireil to use oide auaitors.code --aUditors may be used by a Wide igriety.:;ofe.,peOple -(0-ogrammers, managersquality 'assileance personnel, custeniers);' ease in' their:_use_L..ispoetant7-In use code auditors effectiVely,. however; die learningis. eq to gain familiarity with:the standards upon which the auditor;.. isbased.

4:7.10., COnts. .COde auditOe8- are geneially very -ineipensive to use as their
. overhead i usually no more than the .cost of'. a compilation:
4.7.11.- -:Refjp4.ende_s.

.c. ...4. !..

BRCW11,.... and' "A Graph, Theoretic Approach to theVerification -of ;Progran-..-StrUctures IErsgagslUga gelthe Internationd.
J.R.

_

Conference Sal Softiiar4 F,Ogitieering; Ma; 19784. - . .

(2) RYDER, B.G., and HALL, A.D./ "The -PFORT Verifier," faantAng .Zcierice Technical :Report /121 Bell Laboeatories, Murry Hill, Nev. Jersey, March1975.

. t3)',FISCHER,- "ilio..kts Manual for Code Auditorl, ...Cod` Olitimizee.AdviSbr Unit Consistency Analyses " -TRW' Systems Gr-Oup Redondo ,..;ffeach,: Group,_California, -July19741::

(4) Ho piarii;;.f.R.v."PBASIC. A Verifier- fore BASIC," Software practiceAnd Experitinie4 yo1:10, pp. 1757181, 1980:.

e

-liasicteatures.- A canparator ia.a. .--_compare
taro -: versions of -source -.-data-..to eitabliskt that, the .. two versions. are identical

tO7sPeCifically Identify ',where any 'differences in s"-.the Version* occur; - :=;:'
,

Information input. 4.nput:.-:trq-.0cmpara-Ar*-ConsiSts,-of two =-'Versions of
ce: data to be.-dtmpaied-.and. those-7:cconand*:necesSari-for"the.canParitor to

operate. The souree...,data msy:bez... -- e

a .Sauce -.pr ilgrana .

:V., Sets or prograi teat
--;aii:atabases

d,. Arbitrary data files i.;

Many comparators provide various User Options,' "such as...whether blank lines are
be included in Ompare pr6ceasing; to'*-contr-ol:ccmpailson 'operation. f:.7

. 3 -
, Information output. The-routpu# trait, a .comparator is of the

- any, between,:i.:the two versions of input.. Various rePort-.._,
writing options are: usually supplied by., the comparatar;-;,,to:. designate -.-the.-1,-,'
desired format of,,:-the-,:output,:4..*;Vc: whethereach:-differeiiee,:found should be-

niainberS. ,Many general canparator Utility--progranis :Installed
in:large text-editing Systems Can also - :create a file of text=editor.directives
that can be used to convert. one into:the-

4.8.5. Outline of method.;:tanparators.'ire fully aiitiinated-tOols which serve
to: eliminate .--...the-,tedious, 'timeconstining task of performing large numbers, of
canprisons: 'Thelz:care. moSt.'useful pr.** development- and maintenance..
During': progran 'development; 'theY.--VrCVide4..Mears of:ensuring that only 'the

intended -portdons of a program are changed Wheriniodifications are to :be made
-to ,,_the latest version. When regression testing must be performed '-following
-software,dorrections or iipdates,:'sicalparators. Provide:.;.-.-an:. efficient means of
comparing current test- cases and test results with past ones.

. . ..

-t'!'71',.cmperators are widelYsavailable and are often Provided as general utilities
:-in operating systenis. Other'ccmparators may be -more.. specialized and reqare
input&files. to be ;of 'a prescribed format in order for the tool to -operate
correctly.

-
Canparatori-are invaluable tools in assisting configuration' .management an
change'control as the software takes different forms during developnent.

EXEImple.
;=r:

O

Application: L. large command , and Control.. flight--:240ftware:2:::-6y5teRe.
.is being developed. During system teating, the ganeraidak-Of many differen:_
databases' is required as a source of in data far each .:associated test case.
Strict control of the databaseS, including '.,!iaintification of their
similarities and; differences, must constantly be Main ed in order to
properly verify test, results.

b. Error. k bug in the software'CauSee.-,the-execution or.Test Case -3
to generate, test ..-results.which are totally incOmpatibl.e.,:mith theieiblts of
Test- Case _11 though ,the inptit In both test cases is identical

Erroe:-.41scovery.-` A -comparator Was-used to canpate_the____databases'
used in Test Case. 1. and The location of-specific differentes in the: tiro
files determined exactly which iripuV-data, should be examined-.more closely and
When :traced thrOugh the program-the errer. wat'found.

EffeCtiness. Canparators are most effective . during software 'testing
and maintenance when ISeriodic modificatibris th the software are-anticipated.
Their overall effectiveness is dependent upon the quality of their use.'

'
4.8.8. Applicab.i.liti. This-::methOde_is generally applicable.

4.8.9. Learning. A riiirrimPl amount of effort is requir'seri.p leain use
comparators effectively. 1140.; lioal,s,'..;user documentation should' provide_:
sufficient informatibri;:for-Ati."Pipper

4.8.10. Costs: Canparator4are-4enerally inexpensive to use. Their cost is
-similar to that of-perforthing::'two passes of -read ,.operations on one file. !,

gotetede-es.,-

William,- Program Test Methods", Prentice-fiell, Inc.,
1973.

(2): DEC IAS/iSX:11 "Utilities Procedure .Manual", Dis3j tat. EcLt4yment
Corporation, 1978.

Name. Control, Structure AnalYzer:

4.9.2. Basic features.-AppliCition of an _anti:mated structure- analYzer to
either-. _code. 4ydr--.-design allows detection of sane typesiof improper subprogram,.
usage and violation of control flowtariciards.- It also identifies---2-control
branches and pathS used by test coverage analyzers. --A structure analyzer-is,
also dsefill in--providing-required input to data flow analyzers and is related
in principle ,to code auditors. ,

4.9.3.. =Information input.'-' Tt:id input items_.-are- strilcture,.,ahalyZek-Ilie first is . the text of th.e..Peroiramroe-desigh,.t6 be analyzed.
-TyPically2tle-,,,text is to be provided...-to:ttie---anal-Yzer in an intermediate form,i.e., after ,.,SCanning...,-.and i parsing.Put not as : object -*code:. Often-tructure
analyzers-are incorporated'=withirl'Canpilers.. 7

. . -
The second input item is-a specification- of the control flow standards to bechecked. These. -standards, are often completely implicit in that theY:may be
Part of the rules for programming in the.-gi.ven language.-or design -notation.
An example of such a rule, is that subprograms may not be-,,alled recursively
FORTRAN.' Individual projects may,--however,' establish additional rulesinternal use. Many such. rules, for instance limiting the nunber of lines
allowed in a subprogram, can be checked,bya code auditor... Others, however,-can require a slightly more sophisticated analysi,and-are therefore-performedby a structural analyzer. '11.zo examples'in thie-`-astegory are "All .control.
structtire.f.'.mnst be well nested!!..and "Backward jumps out of d-ontror structares-
are not';alloWed."

Typically this second input.-item is not directly supplied to a structure
analyzer, but is incorporated directly in the toolYs construction.- Therefore,substantialinflexibility is common.

.4.9.4. Information output.. Irror. reports and a, .program call- graph -are
most, common output items: of , a itructhre analyzer. Error 'rep-Orts, indicaie
violations of the standards 'thit'were input to the-.-04;,-Cellgraphs,indicate
the strUcturercf the graph with respect to the use' subprograms; associated -with each .subprogram is information indicating all routines which call the
subprogram and all ;routines which are -called'by it.' The presence of cycles in

. the graph (A Calls'B, calls 4):,:,indicate' possible recursion; . Routines which are
.-,neVer- 'Called are evident, as 'well. as attempts to call nonexistent routine-s.

In cheeking adherence to control flow.standards the structure ;analyzer may
also output a flaw graph for each program,ini.t. The flow graph represents the

..stricture of the program-with, each--contr01:path'in the program represented byedge in. the graph: dditiOna.1.1y-, structurally. "dead" code-Within each

.
The flow graph and the call graph are items ,required as input..by data -flow
Analyzers, and it is common for the'two arialysiS7-capabilities:to'be combinedin a single autanatea-tlool.

4.9.5.:C Outline Of_method. Since structure-analysis is an ..-auttmated static`'analysis - technique; little user action _is required. - 'Aside from providing the
input informations-the user is -... uired- to_ peruse-the output rePorts, and
:determine ..if.program-Charigea -1-..- . ed. -Sane simple manifestations-of-the
tOoilLmay_j_not. L-provide

... ysia=-reportsF-, terefor eI more
responsibility3i.t-:placeVon the user to examine; 'for example, the calt_graph
for,.. presence of cycles.

,
,,..- -,,:, . .

\.:...',-1 ,.. .

4.9.6. Example.

- ,

An online management information system-program, figure 4.96-1,,
calls a routine MAX-to report the-largest stock transaction, or the day for'a\

.

given issue.. If MAX. does- not have the -necessary information already-\
4 %available, , RINPUT is called to- read the'required'data. Since RINPUT reads'

many':transaations for many issues, a sort routine -.is utilized to aid iii\
organizing the information before returning.it to the calling routine. ;Due to \

--. a keypunch error the sort routine calls,routine MAX (instead of the proper
routine. MAXI)- to 'aid in the sorting process. -zlhis error. will show up as a
cycle in the call graph -and wilr. be-- reported througti use of, a structure. ,analyzer. .%

. .

b. As part of the programaiing standards formulated for a project, the
ng

.follcwi.rule is adopted:. `. -/'''...

"All jumps from within a 'control structure must be to locations
OP after the.end of the structure."...

. -- -. .
. Figureli.9.6-R,' a segment of,'Pascal code, contains 'a:violation of this :rule"

which would be reported by a'suitably constructed structure analyzer.
.

GotoViolation

---EfXectiveness. .-. The techniq_ue :14e*pietely reliable for detecting
violations of standards speCified,ialtiPut,. -The standards, however, only
cover a Small range of programming standardad...-.40s,sible error situations. ,Thus,,.. the technique---is -useful: only In verifying ,very - coarse program
propertieS. The.techniquets-:Prime utility, therefore, is in' the early -'stages ':".
of -debugging a design or code 'specification, =

.

4.9.8. Applicabillty. The technique generally applicable and may :be
,

appliin design and coding phiSes. Particular apPlicability'is_indicated in
syst--- involving large numbers: of subpzograms and/or -.Ocinpler program

,

4.9.9., Learning. --Miniml
"Outline of Method.", -4

_
4.9.10. Cost. Little human ;cost. is involved as thereds'.no significant time, . . .spent in preparing the input Or , interpreting .:the:- output. -..-For an average.
program, canputer resources 'are small:Ithe processing 7requirect,...-catt.: be done
very efficiently-- and only a .single run is required:for arialtsis.. For large or
complex programs, the cost can be quite. high. :A plotter, which produces the
Most,readable structure diagrams, drives the coat upo

'4.9.11. References:

(1) fiLTRLET, Eichard E.,' "Ttitorian. Analysis and Dynamic
Testing of Canputer Software, " --Computerol: 11; No. 4, pp. 1,4723, April,
19'i8.

. -
(2) MCWDEN,W.E. "Reliability of the Path AnalYsis TeStinv.1Strategy",-'IgEt Transactions pn Software Enginegring,vol.. SE-2,no. 3,1976.

.

4.10.1 Name:- ..-Cross4Reeerence,';beneratOrs
...

4.10.2.- Basic feathr.e.s. Cross-reterefice generatorS `produce- lists
names-and:labels-sharing all of the places they 'are used 111 a program.

input. Input to.cross-reference g,enerators.consists Of a -computer progran in either source or- bbject 'format. -
-c, -

Information _output. Output fran a cross=reference gerierator.:-alphabetiied list of Variable riames, :probedure namesand.,statement labelsshoviing the locations in the prograni, where they are .defidni.---cand'.- referenced.Other information, which is scaretimes inclUdecl'. 'is data type, attributes and ,usage; informatibn. . .

. .4.10:5. : Outline- of Method Cross-reference gener,:ators- provide usefulinformation which can aid both program -deVe.lcipment and maintehance. They aid,.

progran develocme.nt by, helping identifyyerrors such as misspelled identifiers_and
17improperly .typed _variables- Programiitaintenance is aided by helping tolocate,- by variable' or statement. label , those_ portions' which may be -affectedby aprogram change -a varlable naine- heeds to be changed).

. -6-
,

vided- withCross-reterence.generators:are widely available and are usuallyi proProgran source ,'.-. text analyzers S1.141 ai,ccmpil.ers, standards checkers and dataflow analyzers. .

Cross-reference listings should be checked in detail-after a, program changehas been,made to check for:misspelled identif!iers and incorrect usage, etc.
Eicample.

Applioatibri. A i-canmunidatizn network :controller manages -the,contrdi"-::of a:- network of high-spe* 'canmunication lines connecting a largenumber' of. CRT terminals to an airline'treservatiOn.system canptiter,
b. Evor. A variable used to-Store message addresses-is as(fgned . anaddress- which, erroneously points to a location storing highly critical queuecontrol,informatiun. A subsequent dill too the device handler causes data tobe read into the 'critical storage area causing. a system crash.

.1c.- Error discovery. A quick study: Of software's -cross-reference_ ".listing shOwed all the locations where the offending variable Was.used, on.6 ofwhich clearly showed- that the error -was due ;to- improper:1. use of' a..,pointervariable: ..-*
7

Figure 4.10.6-1 shows --a , sample prograni. /isting and correspondingr.pss-reference, list. The program a utility routine used by a largeaerodynamio'analysiS iir,ogram. The tool which-generated thereport is calledPFORT (2) which performs variotiSFPRTRANsource analyses. The list. shags-foreach identifier its type (e.g., -integer 6:74.61); usage (e.g., variable or °-function), attributes: (e4., -.argument, . whether the, variable .has been set,Sca.l.ar or array) andthe line nunbers where it is ,referenced. .

INTEGER X(100)
LOGICALERR

3 CONCH/ERROR/ERN
4 - READ(500) I
5 10 FORMAT(I2; I5)

C END_ OF DATA CHECK-
IF(I GT..100) STOP'

T : READ(5,10) (X(J), J=1J) --
a_
9 ANS=DIORM(I, X) -;
10 - IF (.NOT,ERIO GOT0...2
11 . WRITE (6,20)
12 20 FORMAT (15H BAD VALUE OF N)

-13 'GOT° 1
!-14 WRITE (6,30) ANS
15 FORMAT (6H NORkk,E15.7)
16 - GOTO 1
17 4, END

PROGRAM' UNIT

NAME

ANS'

ENONM
-ERR

J.
X
10

Its-
20
2
30

O

COMM BLOCKS
.":- ERROR ERR

sm.

Page 48

Ley IQ Figure 4.10.6-1

explicitly: typed

obit= 2:

I' INTEGER "

R REAL 'GT assigned goto variable-
D .'DOUBLE PRECISION IF intrinsic, function
C ,COMPLEX '. SF arithmetic statement functioh
1 LOGICAL* SN atibeoutine name -:

H '11OLLERITH - V Variable/7-:,

Attribute Ea

arithmetic-statement'
function argument
function name
external (fUnction or subroutine)

colimm 4:
C is COMMON

coltxml 2:. . .

'E 'in:an EQUIVALENCE sEatement

column 5, 6
S scalar
Ari affray with

Figure 4.10.6-1 Sample Cross-,Reference Examples (COntinued)

o

4.10.7. Effectiveness. Cross-reference generators'are most effective- during
the software maintenance phase to help determine where software errors are
occurring, as seen in the previous example. Cross-referende generators, are
tools whose utility can often be . taken for granted or even considered
bOtherscme (e.g., "it produces too much paper"). Its 1ack of availability,
hawever will painfully demonstrate .hadl, necessary this seemingly- basic
capability is. Nevertheless, its true effectiveness is totally detiendelauPon,
the quality of its use.

-

4..10.8. Applicability. This method is generally' applicable.

4.10.9., 'Learning. Pdnimil effort is required to learn ,haw -to-effectively
utilize cross-reference generators.

.

4.10.10: -Costs. Cross- reference prcgrams are widely available, usually as a
function provided by a larger system (e.g., a compiler) and add only an
incremental anount to the totalcost.

'4.10.11. References.

(1) RYDER, B.G. and 'HALL A.D., iThe PFORT. Verifier," fallWtiDg
Sciepce Technical .Riport,No.12,Bell Labs, March, 1975.

4.11.1". Name. Data Olaf; Analyzers:

.4.11.2. Basic features. _Dath flow analyzers are tools which) can determine
the presence or abaence of data flow errors; that is, errors that are
represented as particirlan'sequences of events in a program's execution. The
following description is limited to sequential analyzers although efforts are
under-way-to include-synchronous-and-concurrent events.

. .

4.11.3. Information- input. Data flow analysis algorithms operate on
annotated graph structures which represent-the. program events and the order in
which they can occur. Specifically, two types of. graph structures- are
required: a: set of annotated flowgraphs and a program-Invocation (or call)
graph. There must be-one flowgraph for each procedure. flowgraph is a
digraph whose nodes represent the execution units (usually statements) of the
procedures, and whose edges are used to indicate the Progression of ...i,e?Fecution
units. Each node is annotated with._ indications of,which program-events
occurred as a consequence of its execution: The program invocation (call)graph is also a digraph""; whoae purpose is to indicate which procedures can
invoke which others.' Its.fnoiles represent the:procedures of the-.-program and
its edges represent. the invocation relation.

4.11.4. . Information output. the output of data flow analysis is a report on
the presence_ of any specified event sequences in the program. If any such
sequences are present, 'then the identity of each sequence is specified and a
sample path along which the Mega]: sequence can occur is used.. Thepbsence
of any diagnostic message concerning the presence of a particulaif event
sequence is a reliable indicator of the, absence-_of. that sequence.

Outline of ,.method..,'..Data flow analyzers rely basica' upon
'algorithms frail program -optirinz' ation:to determine whether any two particular
specified events can .ocaur in sequence. Taking as input a flowgraph annotated
with all events of interest, these algorithms focus Upon two events and
determine:" 1) whether. there exists sane program path along which the two
occur in ,sequence, and 2) Whether on all program paths the two must occur in
sixfuence. :If one wishes to determine illegal event sequences of length three
or more, these basic aliorithms Can succesaion.

A-major, difficulty arises in the 'analyati7of"- Programs having- more than one.
Procedure, because the procedure floWgraphs often "'Cannot be completely"
annotated.prior to data flow analysis. flowgraph nodes representing procedure
invocations must be left either partially or- tcmpletely unannotateduntil' the

of the procedures which:they represent have been analyzed.. Hence,
the order- of ana.lysis of the program's procedures is critical.. This order is .

- determined by a postotder `trayersal of 4.he invocation graph in which the
bottan level prOcedures which 'invoke em, and'
so forth until the main level-proOdurer zr each ..procedae,, the
data 'flow "analysis algorithms- must determihe:. _fiVents-which, can possibly .-

. occur both first- and last and.:: then make -this"---iniVitatiOn..,avallable for
annotation of- .all nodes representing- invocations of this piocedure. Only in
this way can it be assured that any possible illegal -event sequence will be

- determined.

Page 51

Example. The standard example - of --the . application of data flowanalysis tolthe discoYery" of references to":uninitia.lized prOgram variables.In this case, the program events of interest are the definition of a variable,the referende- :to a variable, and the mission of a definition. of a variable:_Hence; all procedure flowgraphs- are annotated to--indicate which specific-variables are defined, eeferenced, and undefined at which:nddes. _Data flowanalysis algorithms are then applied to determine whether- the definitionanission_._eventcan be fol-lowedbythe--_-refere.nce-Tevent for any specificvariable without any intervening -deflation .eyent for-that variable. If.so, amessa is pi-oduced indicating the liossibility of a reference to anni ialized variable and a sample prOgiam path along which this will occtir-.A _different algorithm is also used .to determine a specific Yariabledefinition mission must, along all paths, be follcwed P by reference withoutintervening definition. For invoked procedures, -;these algorithms are also.used to identify which parameters and global variables -are sametimes used andalways used as and outputs. -This- information is used to annotate allnodes representing the invocation of this prodedure, to enable, analysii ofthese higher level procedures.

Data fla4 analysis might also be applied to the detection- of illegal sequencesof file> operations in programs written in..languages such-as COBOL. Here theoperations of interest would be" opening, clOsing, defining (i.e., writing),and- r,l.eketencing (i.e., reading) a file. Errors whose presence or absencecoulebe determined would include: attempting to use an unopened --Zileattengting -to, use a closed file, and reading an empty file.
--Effectiveneis. As noted, this technique is capable of determiningthe absence of event sequence errors from a program, or their presence .in aprogran. When an event sequence error is detected, it, is always detected.along sane specific path. Because these techniques do not- study theexecutability of paths, the error may be detected on an -unexecutable. path andhenc6 give rise to a sptrious' message. Another difficulty is that thistechnique is unreliable in distinguishing individual elements of an arrayak.Hence, arrays are usually treated as if they were

- simple iariables. Asconsequence, illegal sequences of operations on specific array elements may besverlooked.

AppliIity. :Data flow analyzers' can be applied to any annotatedgraph. Therefore, the availability of this technique is only limited andrestricted by the availability of the (considerable) tools and techniquesneeded to construct such f/owgraphs and call graphs.
11.11.9. Learning. This technique requires only a, fatiliarity .with andunderitending of the output messages. No input data or user interaction isrequired.

11.11.10: Costs. This technique requires computer time, but the -algorithms_mployed are highly efficient, generally executing in-time which is linearlyproportional to program size. Expetience has_shtwn that tile construction ofthe necessary graphs can be considerable cost.- factor, :however. Potentialusers are warned that)priztoty tools:eiploiting this, feLrAque. have provenquite costly to operate.

As noted_ above, no human input or interaction is required, resulting in only
the relatively -la/ bun= .cost for_ interpretation of results..

4:11.11. References.
..... ,

. _ -:-(1) OSI'ERWEIL,-. L.J. and FOSDICK, L. D. "DAVE - A Validation Error. ..
Detection, :- and Documentation System for -Fort4n ,Prograns," Software Practice
.1111..hExPfriebge-i§,7.1:9473=186;aepit976. -. .

(2) FOSDICK, L.D., and OSTEDIEIL, -,_, L,:j. --."Data Flaw :Analysis in
Softbiare Reliabilitri,...kcit2ERigt4ng SurYeYsia, ;-305-330, SePtember- 1976.. ..

(3) HUANG;-.4 :C., Metection of Data F14r Aricaialy Through Pregram...:
Instrmentation", IEEE Transactions sgt .321331are Eigineezing,Vol. SE-5;No., .3,May 1979

;;;',

4.12.1. Name. Execution Time Estimators/Analers..,.
- --.-, .'4.12.2. Basic features. EiecutiOn time estimatOrs7analyzers are tools which---,

.provide -.information about the execution characteristiCs of a program.. They
can be considered as validatiorr toolS in that they can be, used to validate

, _ .

performance --.'requirements and are part of the programing- phase of the..Iifecyc.le. _.

4.12.3. Information input. ahe programs which are to have their execution
pertormance monitored are, essentially, the input deeded by the tool.Depending on the sophisticati.pn of,-, the partioillar tool being ,,,used, theprograms may be processed by a procesSor which automatically inserts 'probes tomeasure performance or pitobes may to be manually inserted? The: probesusually consist of calls to a: monitor .which records execution information suchas CPU and I/O-Wine, and.statement eXecution'Counts.

Inforthation outputs. The output produced -"by execution:, -timeestimators/analyzers are reports. which show either by statement and/Oemodule
execution t_.imeAistribution characteristics: ,..For example, -a tool.. willproxide' inforniation.- showing 'per module -the nunber of entries to" the module,cumulative execution time, mean :execution; time per entry and the percentexecution time 'of'-`the module with respect to the total program execution time.

4.12.5:: Outline of methOd. '..ExeCution "`estimators and:.,_63.iecution time',analyzers both perform', funetions .but` in e ors.-differens.- Executiontime estimators (1) function much in the same way as.. test coverage analyzers.
A source program- is instrumented with 'probes which 'collect statement executioncounts when executed. Agsociated with each Statement- is`at. machine dependentestimate of the time required to execute the_statiment. The execution timeestimate is multiplied by the statement execution count to give an estimate ofthe total-.time spent executing the statement. This is done for all statementsin a.progran. Reports shawing execution time breakdowns by statement, module,statement type, etc. can be produced.

Execution time analyzers are not usually as sophisticated as execution timeestimators. Probes to measure the actual execution, time of modules or program
segments are inserted (usually by hand) into the source program. When theproven] has completed its execution but just before it terminates, a routineis called which prints a report showing the execution characteristics' of the
monitored portions of-the-program.

The value of the,tool lies primarily in its use as a performance requirements.-validation tool. In order to be used to formally validate' performance
requirements, however, it is necessary for the performance requirements . to
have_ been clearly stated and associated with specific fu_ nbtiona/ requirements. .Moreover, the system should have--::been designed so that the functional
requirements can be- traced to.specific system modules.

Assuning that .'the above conditions are met, the tool could be uSect. in the
following way.. The program to be analyzed would be monitored by the execution.
time estimator/analyzer during. testing. The execution times for the modules"..
-corresponding to specific functional requirements would, be cempared with the

-Page 54

r.

performance =requirement f.or- that motion. Those modules which fail -,to
Satisfy theii- performance requirements ,would be studied in more detail for
possible efficiency improvements. The tool results can also help to identify
execution time:. critical sections of code. OnCe the necessary optimitions have
beeiimade, the progran_thotild be again tested usirig, the tool to validate the
performance requirement.s.

4,12.6 Example.

s

ApplicatiOn. A 'particular module in a real time, 'embedded
computer system is required to perform its function within a specific timeperiod. If not,. a cidtical time dependent ;activity ,cannot be performed,
resulting the- -loss of the entire- ,system. '4

.
.-.. b,"- : Errar.: The module:in question contained an error'-';:iibith InVOIved

perforining. unnecessary .:ccmparisons-. during a table look-up_funCtion although.
the proper table entry. was always -'fonnd. --_-. ', ;:,-- ' -_. - ,---..;-, .. .

...
...- , ,

1: , c.:.-Error detection. The problem was discovered diaring system testing
using an execution time analyzer which clearly indicated that .the offending
module Was not able to-ineet its performance, requirements. The specific '. error
was discovered on further examination of the modul-e.___.
1.katf4:-.-,.Effectiveness. The.. use of execution time estimators /analyzers (as

4 sleitas test coverage- analyzers) has-..*CoVeied an interesting property of many
programs. The majority,Of the .execution time spent program, isr.:-spent,
executing a very smaLl'percentnge of the code. ..Knowledge gained of where' this
execution time critical code is located gh the use of an execution time
estimator/analyzer can be extremely help in optiiwiing-a.".program- in ordei-
-to satisfy.:performance requirements. and/or .r uce

4132.8.. Applicability. Execution time..estimators/anaiyzers can be -..used in
; any application.

.-
4.12.9. Learning The -learning required is simply that which!' is necessary to
execute the tool.

.
4.12,10. Costs. The tool is automated and therefore does involve same cost.

_The amount'sd.11 depend on the tool's sophistication, but generally will not be
excessive.

4.12.11. References.

(1) "PPE. Users Guide", Boole and Babbage, No._ U-D503-0,

(2) "Poseidon 14C 88 Fire Control System Canputer Program' Verification
and Validation Techniques Study", Vol. III, Ultrasystems, 500 Newport
Center:Dr., 'Newport Beach, CA, Nov. 1973.

4...13.1. Name. Formal Reviews.

Page 55

11.13.2. Basic features. -:.Formal. reviews _constitute a series of reviews of asystem,- -.usually- conducted at major milestones system development-,lifecy.ele-.^. They are used- to improve -development.!..visibility and productquality-and provide the basic means of communicatiorf.petween the project team,
company .management, and user representatives. They must provide judgmental;:

decisions7taade-by-a-team-of-biue-ribbon-spectalists with a proven knowlidge ofcurrent. system operations. Formal reviews are most: often implemented formeditin to large size development projects, although small -projects oftenemploy a less rigorous form of the technique., '4 ,
The.most common types of formal-reviews are held at the completion of the
Requirements, Preliminary 'Design, Detailed (Critical) Design, Coding, and
Instillation phases:.."ibereas names of these reviews may vary by company, samegenerally.recognized names are: Requirements Reid*? Preliminary Design
Review (PDR),,Critical -Design Review (CDR) Code -Construction Review, and
Acceptanc6 Test Review.

,4.13.3. Information input. .." The input- to a particular .formal reviewwill varyslightly depending on the'Stage of the lifecycle just completed. In general,each formal review will require that some sort of review-package be assembledand then distributed at a review -meeting. This p ckage commonly contains asummary of the requirements which are the basis for the product beingreviewed. These and other common inputs to reviews fall into ihreemain categories, described below.

a. Project documents. These are documents produced by
development team to describe the system. The specific documents required'
dependent upon the lifecycle -phase just completed. For example: a evconducted at the conclusion of the reqUirements phase would necessl
availability of. Functional Specifications or System/Subsystem-Specifications.

-b. Backup documentation. This type of input is documentation
'is not usually contractually required, yet preparation of which .is necessa

to suppoi-t systems development or otherwise record project progress. JSircifitypes of backup- documentation vary by the phase for which the rev;ew,.i.
performed. Rough drafts of user and maintenance manuals are exainplpAsl or.backup documentaticin examined during a design review to plan for contin t on.of the project. Program listings are an _example of backup docuinen nutilized during a code construction review.).

c. Other inputs. AU other inputs are primarily used to clarifyexpand upon the project documents and backup, documents. They-mai include :
vipwfoils and slides prepared ..by:.. project management for the formal review'meetingi-- the -minutes; of the -previous 'phase review meeting, or preliminary,
-evaluation 'of -the_project documents- under reiriew. -

"Information output. The in ormation. output associated= with a formaireview generally falls into the fol ing categories.

-Page. 56,

a. 44anaikeinelit reports.---TheSe are written reports from the project
manager to :upper manageMent.-describing the results of the review, problems-,
revealed, proposed sOlUtions, and any'upper management Assistance required.'

b...Outside reviewer-reports. These are written. reports to the
project manager from participants otthe review who have not-worked on the

. project. These-rePort&rOvide outside revitimers.an :.opportunity. to epees's
'-',-their7-400taiSaI-7-Of'-theTprojecttstatus and -the likellhoodTormeeting7project7-
.objectives. It also allows,themHTto make "suggestioni for correcting any z.
deficiencies noted.

Action-items. .Thii is aaist,-ot-all required .-poSt-revies4ctiOn.
:items to be completed before a review satisfactorily closed out. 7: With
each.itet is an indication of--whether custamer or contractor Action is
required for resolution.

. -
d. ReViewininutes:This:-Is a14ritten record .of the. revieilneeing:

proceedings which are recorded-by a'desighee of, the leader. Ofthe review team.-:-
'11*minutes of the review are: distributed to:.eaoh-review: team member after the:i
completion'of the review-meeting. : , -

-- -

e. Decision to-authOrize next phase.' A:decision-must-be !reached, at
any formal :review to'authorize initiation of the. next lifeCycle-phase.

.

f. Understandingof project status.. At the cancluSiOh of -any formal
review there should common undetstanding of project status among the
project personnel present at the review.

4.13.5. 'Outline of method':

a. PartiCipants. The participants in 'a formal oreview are often

1010

selected-fran-thetta/cwinegralp of

o Project manager
o Project technical-lead
o Other project team members - analysts, designer
0 client
o Userrepresentative(s)
o 3ne management of project manager- .

o aitIpide'reviewers - quality assurance petsonnel, e
other projects

1) Functional support personnel - finance, technology
o Subcontractor management,, if applicable
o Othees-:- configuration management, representative;

representative-

. The process. forial.reviews should be
project,: management. Each. ,review must be schediil

durinesystedeVelopment.-:,,- The "reView 'effectivelY4-
milestone ors Particular-phase.

1

-There aie-five basic steps involved

Page 57

every forrnal:.reitiew-.

1. Preparation. All doc tation that servesfas source material for
the review must. be prepared prior to the meeting.:-.These materials may be
distributed to -each' partici t before the meeting in order to allow
sufficient-'time to review and make appraisals of the materials. The location
and time of the meeting and t 'be established, participants must be' identified;.

. _

_____and_an_agenda_planned. -

2. Overview presentation. At the review meeting, all applicable
Product and Backup -Documentation.is distributed-and a high-level.Scrtmary of
the product is presented. Objectives are also given. I

Detailed-presentation. A detailed description of the - projectstates 'and progress achieved during the review period is presented. Problems
are entifiedand openly discussed by the team members.

, Summatly:-..-

deCision.: about the'
-items is constructed :

assigned.

A summary of the resulti Of -.the review is given A .'t.
status_ of the product is made and a list of new action
.and for -completion, of each, item is

:-The ccinpletion of all action. items .is - verified;
-reports are completed and distributed.

.;
4.13.6. Example. By contract agreement, tsk''weeks prior to.completion of the
requirements document,- the producer of a program receives notification. frcin
his client that a- requirements review meeting is desired.. The client notifies
a preselected chairperson to conduct the meeting. For participants
chairperson has selected the project manager project-technical lead, a member
of the requirements, definition team, and a member of the requirements analysis
team. The client also has indiated that he would like' ..to :include the
following people in the review: a . representative fran the user shop, .a
reviewer from an inde-pendent ccmpu.1g organization, and a representative fran-
his own organization.

The chairperson infonns all review participants of the date, time, and
location of the, review. -Ten days prior to the-meeting, the chairperson
distributes all docunents produced by the requirementkdefinition and analysis
teams. (requirements doe.ument; preliminary plans, Other review material) tO.
each participant. In preparation of the meeting; each reviewer criticallyz-
inspects the docinnents.. The user repreientative.is puzzled over the inclusion f-
of a requirement-Concerning the use of---a propbsed database. The reviewer frcm
the outside canputAng organization notes that the' version of the -operating
system to be used in developing the system is very outdated. 'A representative,
of the client, organization has a question Concerning the use-' of a
subcontractor in one phase of the project. Each reviewer submits his:Oomments.
to the chairperson before the scheduled review meeting. The chairperson
receives the moments and directs each to the appropriate requireinents. team
member to allow proper time for responses to be prepared:'

Page 58

The requirements review meeting begins with a brief introduetion by the
chairperson. All participants are introduced, reViewniateri.als are, listed,
and the procedure for-conducting the reviiiiit:-..presented: A presentation is
then given summarizing the- problem that -ied--. to the requirements 'add the ,
procedure that was used tct-define these requirements: At.this tithe, the -user
representative inquires about the requirement concerning the use of a
particulaFodatalzase as -stated in the requirements document.' The project

;--technicallead---rspondstothis-questi-ork:---The-zuser---representative-accepts--
this re.spciiise, which is so noted by the_- recorder in the official minutes of
the meeting.

9

The meeting continues with an analysis of e requirem4nti- and a description
of the contractor's planned,approach for,developing a solution to the problem.
At this--time, the questions from the client representative and the outside
computing organization are. discussed. The.- project manager responds -to

"?- questions concerning the use of: a subcontractor on the project. .certain
`suggestions have been made which require the approval of the subcontractor. .

These suggestions are placed on. the action list. The technical lead
---ackribviled'ges,-the problemsl, that the independent computing, organization has
ppinted out. He...notes that -certain _system vendors must be contacted to
ctiv.e the problem.- This item is also placed on the action list. A general

...c.1 ussion among all review team members follows. .

it- the ed'of the review,
about the acceptability
'their approval, providing
thoroughly investigated.
meeting i..adjourned.

the chairperson seeks a deci rcxn the reviewers
of the requirements docurnei. They agree to give

that the suggestions noted on the action list are
participants _agree to this decision and the,

, : .,.: " '. , .' "

The chairperson distributes .a copy. -of the Minutes -of the .,meeting, including
action items, to all -participants. The project manager informs the
subcontractor of the suggestions made at the .meeting. The subcontraCtor
iubsequently agrees with the suggestions. The project: technicalkleader
contacts the system ..vendor;fran which the current operating systtm was
pUrchased and learns that the latest version can be easily. before it,

is needed for this project. Be notifies thee..projea manager of this, who
subsequently approves Purchase. The `requirements- document is
appropriately revised to--reflect the completiomof these action ':.items. The
chairperson verifies that all action items have been completed. The project
manager submit.s a Management Report to managemerit, summarizing the review.

.
4.13.7. Effectiveness: Since the cost to, correct an error increases rapidly
as the developme.nt process progresses, 'detection of errors by: the uSe of
formal reviews is an attractive, prospect.

.Sixneo&the qtialitative benefitS attributable to the -use of formal reviews are
given belag: s.

o Highly. viSible -systems ,deyelopment
o Early detection-of design and analysis errors
o .More rai.able estimating and scheduling .

o Increased-product reliability, maintainability

66

o Increased- edudatj.-On and'er ihied in the4 . ..t-

proceSs I.'
o Increased adheiviice-to standards
o Increased user -satisfaction

Little data is available' which identifiei
attributable to the use of formal -revisits.

Experience with this teclulizque indicatea-tbat it effective on large
projects. The costs:involVed in performing formal reviews on small projects,

er.may.be sufficiently-large enough. to considee lessening the formalityof theireviews,or even 'eliminating or -canbinirig some of them.

4 :13.8. Applicability.. Formal,reviers are aPplicable to large or wall
projects following all -development phases and are not liMitedby project type
Or complexity.

4.13.9. Learning. Thistechniqa does not *require --"any speCial training.
&Wives; the success or failure of .a formal reView is dependent on the peotaet

.who' attend. They must be-intelligent,;-81cLlled, knOwleigeable' specific
problem- .areci, and be '.able to interact effectively -with other team members.
The experience and -eXpectise of the individual responsible for directing the
reVieWfis also critical to the success of the-effort.

4.13.10. Costs. The method requires. no special tools or equirmerit. The main
cost involved is that of human resources.: If formal. reviews are conducted .in
accordance-with the resource guidelinee..expressed :in mast: references, the cost
of .reviews for aveage programs are not high. However, the cost- of reviewing.
major Prograns can be significant. 'Itist-Teferences suggest that formal review
meetings shbuld not require mow'' than 1 to 2 hoers.:'; Preparation time can
amount to-as little. as 1/2 hair and should not require onger than 1/2 day per
review.

. . .

References..

(1) FREEDMAN, D.P:, and WEINBERG, "Ethno Technical Review
Handbook ", 1977 Ethnotectf,Inc..;.

(2) WEINBERG:950.k., ` "Programming as a: Social Activity,l Psychology
Computer mrmitg,Van Nostrand, Reinhold, 1971.

!

(3) MYERS, G., "Reliable. Software ThrotIgh
Petrocelli/Charter,

Cbmposite Design",

(4) SHNEID BEN, -" Software -Psychology - Hunan.Factors in Computer
__.:and Information-Systems", Winthrop Publishing,..1980.

,

(5) GLASS, R. , "Softwaim Reliability Guidebook", Prentice-Hall,
Englewood Cliffs, N.J. r 1979.

Formal:.
'7-4 14-2 -;-- Basic features. The purpose of .formal_. verification. is to apply . the

formalitY.-:and rigor -.of mathematics to the, task of.proVing the consistency
7between an algorithmiC-sOlutionand a rigorous; Complete specification of the
ititent'Of the solution.

.11-ii---two4ipPuts7 -:required----arethe
solution sPecification and the?: specification. The solutian
.Specification is. Irf,algorithmic:for44often.:.but not alwayS, -exeCut.ibie.. code.
i'he..Lintent ..specification. is ..-deScriptive in for*, invariably consisting of
assertionS, usually..ixpressed-.in.'Predicate...calCulds.-

,Additional: inputs, may be required ..--depending, ..upOn -the rigor d specific.
zmechanisnii.-..to.-.- be '..employed...:.in.` the: '-consistency proof. For xample, the .

semantics of the language used.--.to express . the :,solutiOn..specification are
. required: and tiast tte, supplied - to. a degree of rigor.. consistent. with the rigor .

Ot.the proof :being attempted:-., Similarly,. simplification -rules and rules ..of. -
inference may .be.' required ,aa.input-if the proof, process is to be 'complete-1Y... .

.

rigorous.. . a

4.1114... _Information output. tie ;proof 0process- may terminate- with a .
Successfully- -completed proof of = "consistency, pi a demonstration -of - :
inconsistency, or it may -terMinate inconclusively. -In.tte: former. two cases,-

..- 'the _proofs -themSelVed' and . the =PrOven:,.. conclusion are-the_outPJES:, In -the
latter- case, any fragmentary:-chaine of1.--sUcCeSsplly; :proven 'reasoning: are the
oplymeanir4ful output:-. ,signi-fitance:Ng, -isilki3eit_teili highly variable.

.-*

4.14.5: °Wine of method. The usual :method used In %carrying out formal
verification 1.5tFloyd!s Method of. InduCtive.Assertionsor a variant thereof.
Thit method entails- the partitioning--'Of --the Solution- specification into
algorittunicaliSr -Straightline fragments by means of strategically placed

.assertions. This partitioning reddces the proof of consistency to the proof
,of.a .'set of smaller, generally 'much more manageable lemmas. -

Floyd's Method dictates that the -intent of the: solution specification 6e -

captured by two assertions. The first assertion is the inputs,a.ssertion which
describes the assumptions, about the input. The sedond-assertion is the. odtput
assertion which' describes. the transformation of the input, which is intended
to be the re:3gt .ofthe 'execution, of the specified solution. In addition,
intermediate. :aske.rtions must be fashioned .4notplaced within the body of the
solution specification in such a way that": every--loop in the solution,
specification contains at -.least one intermediate assertion. Each such
intermediate assertion must express completely -the transformations which are
intended to occur or are occurring at the point of placement of the assertion.

. - . . -

The 'purpose of. placing :thel assertions as just :described is to assure that
every possible program. execution Is decomposable :into' a sequence of
straightline algorithmic specifications, each of which is bounded -oft either
end by - an assertion. If it is known that each-iterniinating -assertion is
necessarily amplieeiby executing the specified algorithm under the conditions

the./.or -- -initial assertion, then, by .induction, it can be shown that the entire

execution ,behaveS as specified, by the inputiciiityut'assertittinsi- and hence as

set of lemmas -be proiren. This set cons, is of one lsimna for each tp4ir of
tended. ':-For the -user to :be assured this, Floyd's Method directs 'that a

tasdertions vhieh is Separated by:4 :st.raightline-algoathmiC specification, and
=no_otherintervening-assertion.-.---ForsuCh-an.-.4ssertionipairi--"4the:--Iiiiana-states

. that, Aux* the asStaled'.coriditions of the initial assertion, execution of the -:-
-algorithnt'sispecified by the intervening :oxide necessarily -implied the, conditions

. of the terminating assertion.- ..::proving all such lemaseatablishes wliat is'
known as partial',...cOrrectnes.s,.!". artial_ correctness establishes 'that whenever"
the- specified- .- Process: :terminates,; it has- behaved as intended. In
addition, total- correctness is established by . proving. that -"the specified .

solufion process mist always terminate. IS Clearly" an 'undecidable
question,. being equivalent to-the Halting and .henceits resolution is
inieriablyt approa the aPpliCation Of heuristeds. Le

e' above procedure; =the pivotal- capability
-is:.clearly

:the abflity' prove-..
various, specified lemmai. This can be done to .varying degrees:,Of.:rigori*

resulting in proofs , corresponding, varied i.-degreeS of reliability, and-
--trustworthiness . - For -- the greatest . degree of trustworthiness, solution

--J.,..speafication
'"

in specifiCation, and rules of -reesonint-- must 'elk- -be
.:--specified with let:e rigor and -pitec4,.°_..sion. The principart' difficulty iv:e;

lies' in specifying the solution ti.itil.tciptplet.e. rigor . and :precision. This
;entails specifying the semantt4:- specification language,- and the
functioning of any,: actual. exectitiarOenVirtinnent:. with ...ccMplete- rigor --add

'.sion. SUCh",ganpleti details"are- often .difficialt imPossibletO
are moreover, .when available, . geneeally..qpite -,voluminotis,- -.thereby

occasioning the need. to prove lemaas ;thich are-long:and,4.ntricate.,-;

acanple. AS an eiample of:what is entailed' -in,. a. "rigorbus44ormal
yerification' activity, consider:the .Specification sort procedure.,:
.(The detaili6f7this, can be.found in-Reference 3 fora this tecbnique:-)" The
intent of the bubble sort mustrfidt be. Captured by. aii444/oiatPut -aariertion
pair. Next, Obaerving" that the bubble soluti.oxiAgoci.thM4c6ntains two:Oft:ie.:steel

',loops, 7 leads to the 'that.two :additional* intermediate' assertions
might- be .fashioned, or perhaps one partiCularly well -plaCed"--,:assertion,.. might
suffice. In* the former case, up ..to "-' 'elght;. letwas-.. would then need to.be.
established, one corresponding:to each of the (possible' two) pathS. --from- the
'initial to each intermediate "assertion,' one corresponding' to eache 'two
paths from an intermediate assertion back to itself,;: one -for. 'each . of ...the
(bly- tw0). -paths fian one intermediate assertion to ,the other,: and 'finally

Or each. .the (possibly two) ". paths ;from:, Intermediate. I Co terminating
assertion. .-21emma would _have,: be; established :throug,hAlgorous.;

erratical (see ReferenceN3):: .FinaLly, 'a.. ProOn..;:Ofe.ftlecessary
termination Would meed to;ibe fastiiOnel-i(See Reference 3):: f- - Lt

4.11L7. Effectiveness. The effectiVene.M"'tif formal -Vefi4ca,r, been
,,attlacked on . several ' -first.'fand most yi.i;f01141? .

verifiCation can only :consistency. .between dUietip:Nidd,:s63.0400
specifiCation: HendenConsiatency. can, indicate error- in ':eitaF.'or'bpti.;--
.The sane Can be-,saidtforlaost other verification' queara-.:4tewerer. ..;'Wrist
makes' this _for formal' Verifi tion "complete

tant, thits.

Page 61

,
e:

ac _

1!..'

requirement for great detail irviteS.ercor.

The amount-of detail also occasions the need for large, eOm01..ex lemmas:
Theses especially when _proven using coMplex detailed ruleg' of inference,
produce_very_larger_intricate-proofs-which-are-itighly-prone,,porrerror., _

'-'-' his _ /Finally;-,formal verification 9f actual programs is furtherpopgnpat,d- by the
' 'necessity to express rigorously the execution behavior of.

thi ecutionenvironment is generally_ ... ed _incompletely and luii-tiierebyrestricting ;the v_al ity of e -proofs in -ways whOg:-, ..'diffpult to ..
determine. . '1

. . - ie. .1........_ ,

.
'I

..

4'

environment.- for . the. ,program: Is. 'a con-Sequence of

Pe-Vite these. difficulties, correctly ,proven Set:..consistency. 'between a complete specification and a
ci-: '

.44."
A.. c

whose semantics accu,rately known and expressed ;,.k.assurances -of corr. obtainable. This' ideal seen

rather than. code. . . .

attainable by aPplyNutomated theorem' provei-s to, de :.s.-.:pead-fica

4.14.a. 'Formal ve*ficati.on is ; -a jini
. "Phapplied -to determine ; the LiginsistenCy betWeen any algori c

speciffcation. and any:- intent 43pecification.' , As, elaborated _,upon eaylier,however, the- trustworthiness of- the results is highly7yariata _depending
primarily upon the rigof with whiqh- the, specifications- expiesSed ,y-and. the
proofs-ate carried out'. Format verifirl.ation perste_pnia..oyOsi-f;4:ii,ti6.41,bodeutherte errors have.seitereconsequen4s.

4.144:-y Learning.*-wis:notea4 tne essence- of technique-' is- mathematical.
Thus, the ..more matheinatiCal'sophitticat'ion and 'expertige'whiclepractitioners
pOssess,,. the bett.er..--i -In. particular, A considerable amottntPf mathematical
training and. xpertise is,..pecessary for -the results of .apply'ing this techniqueto be significantly- re.1.i-Aad;indistpistWorthy:

11.14.-10. Costs. This' Verchniqu...,teWhen seriously !applied, must-be expected toconsume very . 'significant 'amounts, of the time. and effort of highly trained
matiAmatically proficient perconnel.tNienc-e;;;:oonsicierable human-labor expensemust dxpectcl. ;

.

As 'noted
use of*,
however,.
Hence4.-th

.

P.

,, e li 1 . .. ,
earlier- human ,effeativeness can be considerably improved through the
automated to4i'such'eS theorem provers. It is important to observe,
that s4th. tools can -be prodigious consumers of computer resources.eir4 operatapnal costs. are also quite largp.

7,v,,: "4 . -

Refereneet-. ...

(1) ArD,- "Assigning Meanings,. to
Aspects. of-pitiglar Science, 19; SCHWARTZ,
.Soci-!tY Vvidence;'1I.I;.; 1967,;.'

-

PrOgramsei in Mathematical
(ed.), Ameripan Mathematical

441w

(2) ELSPAS, B. et al., IL4e.ssmen.t of Techniques for Proving
Program Correctnes4 " ACE re:muting --urveyst: pp97-147, June, 1972.

. .

(3) GOOD_ D.I. LONDON, R.L.
, "An Interactive

an : Verif tion Systeni;ssitstithm-r1=1_-_147_5_-_International-Conference-pn
TRW Catalog 75CB091104csit,---:`pp.11482-1192.-...,v- 7 .

(AY' HOARE,, , "An AJdcmartic -Basis for ComputerSAO 12 October-.1969 pp. 576583 ..-:2
rogramming,

4.15.1. Name: -Global Rouncloff Analy

Page 64

Algebraic Processes
4.15.2. Basic features. ihe'technique$4involves-the use of computer software-to locate numerical instabilities_ ip4algorittans consisting of algebraic
proces.ses_.__Global_roundoff,_analysis
error propagates in a Aven-nirmerical

of
for many or ell-permissible setsof data. This techniquethas two aromas of application; Case I - to decide

whether an algorithm is as ac.4..) as can -be expected given the.fundamentatlimitation of finite precisi.. tic; and Case. II - to decide which :of'trio competing algorithms stable," less susceptible to rbundiiig'errors.

405.3 Irrronnation"
-,.. <4.

a. Case I - Analysis' of, a single algorithm.::
a) algori scribed a simpleg awning language
(ii) data, or algo thm- .-.:.--=-`.F.i.C4-'",z.- . .. _ . ,,,,..(iii) choice type of rourldihg ures,
{iv) stopping-value f r. -maxim -i')...:-- ----
b. Case II: '4 *of two -aigori.

:*-.(i) each algOriffitii-described in a tsimple pregramaing. language
(ii) data set' tor algorithms°.
(iii) ,choice of rounding error measure and 'mode of comparison
(iv) stopping value'=f40aximiiel-

4.15.4. Information output.

a. 'Case Analysis orta'singr
(i) output ccmpOed fdr the'initial data-set
(ii) list of values found by the maximizer'

final set of data c . .

(iv) if instability diagnosed, then all arithmetic operations at the
- final set- of_ data are listed

b. Case II capparison of two algorithms --
(i) putpi..3t4ctiputed for the initial algorithms -cLz:
(ifrlist o values _found by maximizer--,.._:f17-:-- 6,-0:(iifinal set of data
Outline of method. For an .plgoritbm and a data set,d then:

(a) A fttnction!Car)-, called -a .Wilkinson lumber, has been defined whfch-
measures the effects of rounding errors. Large values for w is the sign of anunstable algorithm. .,

(b) Wilkinson number has been shown to be a "smooth 'functitn of -ff,i.e.: ,has the original data set values are altered in 'small increments, the
Values, of w are correspondingly altered in small increments...

. , .,,,,.,..

,.

. 40) 4 approximation toitilkinson'nnmbers has been developed which isstraight forward to cemPute.i.,
- _

:_ --

(0) The rePreseOtation of a.lgorithm, is analyzed. -:

Ce) Using the initial data set as a starting point, the global
analysis' program uses numerical -maximizatiOn ,tediniqUes -to-niodifY :the 'data .:Set
The search id,directed toward finding a, data set --with: a disastrously --.large'
value of.:w(a).

Example. :Triangular.. Matrix Inversion- .(4).. : The better" matrix
Aniersion algorithmS are ',_known -fecal" experience to almost invariably producesatisfactory' results. HOwever;,:i:.-the 1'Rnestion remaina. whether there .is .a.guarantee that the3ieStilta:Are:--alwaVs--good.' The question:can be reformulated

-the traditional back aul5stitutign- algorithm fOr upper
in the sense that:tiler-44a --thOdest*Pending -:w?":',7-,-;T:g-'.-apply the 'thealgorithm is reprise:4i t the ,statement "TEST .(11=4)".: search4or.ileUmricai m ity will

be conducted in the domain -to w, W4,will becalculated. .

TEST (N=4)
- .

COMPUTE S = 'INVERSE) , WM;
TRIANGULAR MFTRIX.4
DIMENSION (SENA) ,)

INPUT T.
FOR J = 1 to N BY'1

FOR I = J to 1 BY -1
IN (T(I,J))

COMPUTE S.
FORK = 1 TO N i

S(K,K) =1.0/T(K,K)
FOR I = K-1 TO .1 BY -1 ,

S(I,K).= -SUMMATION(T(I,J)*S(J,K),J=I+1 TO K)/T(I,I)
END (I)

END(K)

OUTPUT.S:
FOR J=1 70 N BY 1

FOR I=J 71) 1 BY -1

OUTPUT(S(I, J))
END(I)-

,END(J);
STOP;

`*;7 .7....*-

Figure 4.15.6-1 Triingular Matrix Inversion
...., .

J.

'The tianP11 er portion of the pabkage. jam. the Program for errcrat
translates them into a. form suitable- ior4 ma. Iyiis.

The initial data set for the search for numerical. instability

66

The. rotmdoff analysis program was told to seek a vait0
10,000._ The.-maxiniezer located the following matrix:--_

-0.001 5.096. .5.101 -- -1.853

3.737 g:740- 3-392\

0.0006 =5.254' 0

_04.567

with .W4(T0)>10,000 in 6 seconds CPU time on aSM 370/168..-

f W in excess. of

viA.4"

The fact that W4 can be 4.arge fon data like T seems implicit in known results,
e.g.; (6), verifying the 'ill behavior of triangular matrices with diagonal
entries approaching zero.

. 4.15.7. -Effectiveness. Failure the - maximizer fci- find large values of. w
does not guarantee that none . exist (2). Thus, the technique 'tends to be
optimistic- unstable methods- -may appear -stable. However, t'txperience
indicates
optimistic;

this method -1;stsurprising,ly reliable. At leatt, the...failure of
the maximizer to .find large values;; of w can 'be --interpreted 'as providing

_ evidence for stability equivalent to a large amount of practical experience
Vith lcto order matrices.

-4.15.8. Applicability. The technique is intented for noniterative *methods
from numerical linear algebra.-

4.15.9. Learning. MOst algorithms should be able to.be analyzed in 2 to 8.

hours of training and preparatirasstming the software is available.

'4.15.10. Costs. The performanCe of the 'technique is related to the
performance of the algorithm :being checked.. -

4.15.11:-. References.

(-1) MILLER, W., "Software for Roundoff Analysis ",:'AZ Transactions an
- Mathematical =3girg.,112,June 1975, 108-128. -

. .

1

6.

-ti,ZZ
'4..MILLER W. t4`! 0:mputer Search for NinerrCal Instability ", Agar:nal

4,0ctober '1975; 512-521:.

(3).. MILLER, " Roundoff Analysis by Direct*.-Gtinparison of Two

C4) MILLER, W. and SPOONER, D., nSoftWare for R;iiildoff. Analysis, ,l1",
Traiiiectiong 21,14iithethatical ,SoftWare4 0,1978, 369-387.

(5) MILLER, W. and SPOONER, D. ',Algorithm 532'::Software for Roundoff
AnalySis 2 ",:ACM Transactions op Mathematical =tau, 4,4,1978, 388-390.

Page 67

(6) ANDERSON, A. and KARASALOyi "OnCcmputing Bounds for the Least'
Singular Value of a Triangular MatrixtriBIT,1975,1-4.

4 '7

e.

. .:1-!j:09'

t
..1:4;;;....:1...1.;.,

, .4.16.1. Hame. Inspection

4.16.2. --Basic-features; Informal reviews constitute a thorough inspectionmechanism. used to detect errors in system components ar4:I, documentation.Several inspections _are_gen_-_, - ly. conducted4or each itemat it--progressesthrough the lifecycle. The- st commonly recogniZed inspectionstare conducted_during the design and programming- Igttages and are referred' to as designinspections and code. inspections. However, the inspection concept may. beapplied to any finuctionally-cViete part of a system dUrin-g any or all phaiesof the lifecycle'and_. are typified by utilization of checklists and summary.rePorts. Another-Unique feature-of an,-inspection is the use of data---Itcm past:inspections to stimulate future detection' of categories of errors.
4.16.3: Information input. The input.required for .each inspection falls intothree main 'categories: relevant prOject docurients,,. backup documentatiOn,.. andinspection checklists. -

a. Project doeumentA:::::, These ire - documents produced by thedevelopue.nt_ team' to.descrihe:iiii-"*Stem.- Me specific c104umente. required are ,dependent upon the lifecycletiac: rrently in Progress: '"' For -example:inspectiOn conducted during the design phaSe 1101.3.41 necessitate availability- ofFunctional:Specifications or Systeui/Subsystem Spedifications.

,b. Backup documentation. . Thig type of input in jdOumentationis not usually contractually requiredr yet preparation of which is necessary.eb support systems develowent-or otherwise record project. progress.:- SpecificWes._ of backup -slociamenitatiori vary by the phase.in which the inspeCtion-is,conduoted: Data dictionaries and croSs-reference tables are examples :of
backup documentation utilized during a design inspection. . PrograM listingsare Fan examPle of code inspection baakuP documentatiOn. ;

c. Checklists. 'Each member of the;dnspection teaM.uses, a checklistfor .review preparation and during .the-c6*se of the inspection
l'-checklist content may-, vary :based upon the particular aapOlicaticin; beinginspected and is updated frOn',, feedback of other;:recent insp#Otions: Forexample,' a. checidi to beemployed . during a code 'inspeation; of .1a COBOL,program ccmpcinent w d. contain. items like:

o Are Specialized -p
(e.g., use 0.;s_ EJECT or SICIP- commands)?

o Does each priicedure have onlY-one-e4.t and - entry ?-.
o Are IF-THEN-ELSE statements indented in a logical fashion?:::,:o Are file, record and data names °representative of the infOrmation they

contain and do .th conform- to established 'nettling conventions?o Are cents exp -and accurate?

ter controiS used to enhance component-readability

etc:

-4

4.16.4. Information output. The information ."output associated with- an
inspection is either related to inspection planning and scheduling or
inspection results.

a, Inipection-schedbleHmemo.. TheHmemo,isproduced-upon--notification----
from management 'that an inspection Should be forthcoming. -The memo defines
the roles and responsibilitieslpf each-inspection-team member-, estimateebtime
required for each inspection task, and-a summary of the status of the item
being reviewed (including any previous inspections conducted).

b. Problem Definition.Sheet/Error Description-Summary. This fioprm is
-used to record information. about each detected error. descr bes the
location, nature, and classification of the errors. "-

c. Summary Report. A Summary. Report is used to documen.- : _correction
of all errors reported during an inspection. Dati recorded on the report is

improve the development end_ inspection proCetsseP;'
tabulated and becomes part cumulative- statistics which can be used to

't14,4

reportshighlightsfreqtentceoferrorproviding input to managethent

d. Manageme Reports. Theserepo ts are -the means by
management is informe&about the types ofFerrOr being detected and the
of resources being expended to co ect them "The information from theSe

for future updates to the inspection checklist.

II. I

4.16.5. Outline of method. C

a. Roles and Responsibilities. 'The group of.people responsible' for
the inspection results are usually called an inspettion team and are given
responsibilities based upon their contributiOn to the item bM.ng inspected.\
The leader -of the group is responsible for all.process planning, mcderating,
reporting, and follad-up activities. The designer implementer (per
responsible for building the item) and the tester of. e item being ins
are also memteNrs of the.;=, spection team. Managemen does_ not normally
participate in,an inspect ft ;

b. :The Process. --There are five basic steps involved- in. every
inspection: planning, preparation, inspection meetingl.rettork_agd-follow-up.
The first inspection fona particular item -contains another, step: overview
presentation. These steps are summarized below. -,-;;

While these steps should not vary functionally for- inspectichsl'bondneted at
different development phases, the responsibilities of the individuals on the
inspection team will necessarily vary slightly. This occurs -because the
primary responsibility 'for the item shifts as the lifecycle kroiresses. For
example, during a design inspection, the designer is the focal point.o.
However, during - .a code inspection or document inspection the implementation
is the focal point.

1. PlanninA. Set up inspection schedule and assemble inspection team.
2. Overview Presentation (conducted only for the first inspection of the

item during the development process). Distribue_applicable Product

.1

ckup Docunentation and present. a high leiel teary of.....the'kit:e0
.,-to -inspected.

3. Preparation. Team.membe.rs read and ereview. documentation .an any
questions.

4.2-Thspection-Meeting-.--Conduet-detalled-deseription-of-the-ite*Lnoting-:33:------
errors- detected: Use checklists to ensure .ingection ccmpleteriess and
Problem Definition Report to sumiariz_e errors g :1

5. Rework. Estimate time -to correct errors and h.tt:7,e-z 'gent the corrections.
6. Follcw-up. Verify that all errors have been- corrected using Problem

Definition:Sheet-as a checklist. Canp.lete -Summary and Management
- Reports.

4.16.6. Example. The folicwing is an example of a design-- inspection of a
software component. or item which defines' the roles and responsibilities of the

-inspection teem members. Upon decision of -management conduct a, design
inspection, the selected leader initiates process planning by identifying team
members and their roles and responsibilities. If this is the first inspection.
for this item (i.e., there has been no iequirements inspection), the _leader
next schedules an overview presentation. The project'and backup documentation(i.e. Functions Specification system flow chart5,1f etc.) are distributed and
the item designer leads the -team through a high- level description of the item.

.

After the- preientation each team member- reads and reviews the distributed
docunentation -and listsr any questions. This list of prepared questions is
often given to the-leader and/or-designer prior- to

p,
the inspection meeting.-

At the designer inspection meeting the implementer leads the team _ ough a
detailed description; of the design of the tiein being inspect . Backup
clOcunentation_facilitates the descriptions and cl 'lies points may -be

12brought up. The_checklist is- used by each team ti,7.,. to help id tify errors
and enforce standarils. The problem definition sheet is, prepared the. team
leader at the end Of-the inspection. . The item" design will either be -approved
as-is, approved with. Modifications, or rejected. In the last two cases, . the
problem definition sheet is given to the designer and the correction- process
begins. . . .

. ir. ,
At the start of this rework process an estimate is made by the leader and
'designer specifying time .required fcRreorrection. This estimate is entered on.
the ProblemDefinition Sheet and is provided to management. Manageme.nt can
then make a judgment as to "whether their project schedule wille.be affected.
Necessary changes to the item are made *and the item, is eider reinspected or
submitted to folloW-up procedures. .

During folfow-up, the Problem Definition Sheet is usedzas a checklist for the.leader and designer to verify that all errors have been analyzed and
corrected. The reader then fillsout the &winery and Management Reports and
submits them to management. ...

.
4.16.7. Effectiveness. . Since .the. cost to correct. an error increases rapidly
as the development process progresses, etection. of errors by early use of
inspections is. an attractive 'prospect.

es have been carried out-which indicate that inspections are an effeCtive
v -

method- of increasing product quality (reliability, usability and
maintainability) . Experience With the technique - indicates__ that it is
effective --on projects of all sizes. The best results are generally achieved
when the 'inspection leader' is exp_eriencect in the_inspection prooess.

Sane of the best quant.itative:isults of the use of inspections have cane froai
IBM, Which. has been studying the:use-of. the technique for a nuthei of years.
One study, detailing and coinparingirt e benefits of inspections and structured
sialkthroughs, vindicated '23% high programmer productivity with inspections
than with wallothroulths. No data was -.available documenting the amount :/.Of
increased programmer productivity attributable to inspections alone. The
study also:reported 38% .fewer errors in the running .code than if solely
applying walkthroughs as an .error detection mechanism.

. .
The qualitative benefits attributable . to the use of inspections are
substantative. The following list is-ilrustrative of some of these positive
effects:

oProgr.am.s which are less complex
o Subprograms whic,h, are written in a consistent style, complying with

established Standards
o Highly visible systenn development
o More-reliable estimating and scheduling
o Increased education and experience oeall iildivIduals involved in the

inspection process
o Increased user satisfaction
o Improved documentation
o Less dependence on key personnel for -criticalf;skil_ls4

4.16.8. Applicability:. While the most commonly- .used inspections are for
design and code, the technique is -itotr liatted to these phases and can be
applied during all phases, for most tlipes- _of --_applications (i.e., 'A business,
scientific, etc-.--)-en-large or anal projects::;"

4.16.9. Learning: The experience of the inspeC,tiOh leader is -essential to
the success of the effort. A correct attitude about the process is essential
to-all involved,- including the appropriate managers. Many excellent -texts
about _Inspections (and other typesof review.$).are in existence which should
Supply the 'required levelof detail as well as disCuss sane team psychology'
issues ,pertinent. ,to.' inspection conduct. _

4.16.10. Costs. . The method requires no special tools or equipment. The main
cost involved' is - that of human resources. :If inspections are conducted in
accordance-with the resource guidelines .expressed in most references, the
costs -,of inspections are negligible comparecT_Adth ttim expectedoreturns. It
,should be kept in mind that follow -up inspections!WO correct 'previously

.detected errors can increase the original cost estimation. Most references
-suggest that inspection meetings should last no longer than 2 hours, and
reasonably be kept .to 15 minutes. Preparation time can amount toes little as
1/2 hour and should not require longer than 1/2 day per inspection.

79 '-

. Referencei.

(1) 'Toile ;Reading: Structured Walkthroughs Inspections", IBM, .

IPTOa Support Group, World Trade Center, Postbus 60, Zoetellmeer, Netherlands,
March 1976

(2) FAGEN, M.E.;.-"DeSigii-AncVCode, InSpecjefons to redUce errors- in
program Develormentn, Systems Jcurnal, No. 3,1976. ":=;;i

(3) FREEDMAN,- D..P. and WEINBERG,, nEthn - Review
Handbook"?,:_*Ethnotech, Inc.,1977.

(II) "Systematic Software. Developme.nt and Maintenance (SSDM)", BCS
Docunent, 110155,February 1977:

6

AM.

. 4.17.1.- Name.- Interactive Test Aids.

2 1,17.2. sic feau.yre.5.. Interactive test aid4,debtiggers4 are-tools used to _

control and/or 'analyze the dynamics of a s\mogram during execution. The
capabilitieslprovided by these tools. are used to'' 'assist- in identifying and
isolating program errors. These dapabilitiesallow 'the user to:

o suspend program-execution at any-point:0:j examine Tor am _status:
o interactively dunp' 4 the iralues of selected variables: and memory locations,
o modify the canputation state of an- executing program,.
o trace the 'control: flow of my-executing progran.-

,1.

4.17.3. Information ifiput. Interactive test aids require as -input the source
code-. that is to be executed and the canmands that indicate which testing
Operations are to be-performed by -the toali.dirring execution. Included in the
cc hands are indications of which---prbgrag:itatements_are to be affected by the--
tool's operation. Cc:wands can be-Insetted-An the source code and/or entered .

interactively by the user- -during' f,tirogram- execution: at preselected break
points.

A 4.17.4. -Information outpirt.- --The information output by an interactive test .

aid is a display of requested information .during the execution of a program.
This information may include._ the ,!contents of selected storage cells at
specific execution.points or a display. of contril-ficu during execution.

. .. .

4.17.5. Outline of method. The functices performed by an interactive .te'S
aid are determined by the commands input:to it. Sane canon canthandS-
describeditercO. -

BREAK: Suspend program execution sitierr-a.-particuilar.statement is
executed Or a pariicular -variable is altered..

' 1

DUMP: Display the contents of specific storage cells, e.g. , variables,
internal registers, other memory locations.

TRACE: pisplarcontrol flow dUring program execution through-printed
traces of:
o statement. executiOns (using statement labels or lifie

numberS),
o subroutine calls, or
o. alterations of -a specified variable.

SET: Set the value of a specified variable.",

CONTENTS: Display the contents of certain variables at the execution of a
speCific statement.

SAVE: Save the present state of execution.

'RESTORE: Restore execution to a-previously SAV

CALL: invoke.a subroutine.

EXECUTE:-Resume progiam execution at a BREAK fitdnt..

EXIT: Terminate processing.
4

Page 74 -

-

These commandi allow ccmplete- user control over the canputation state of an .:i-f
A

executing program. It allc4s the tester to inspect or COnge the value-Of-any
variable at any point during execution. . _

-4.-3)

The capabilities of special interactive testing aids can also be found-in EOM
implementations of interpreters and compilers forsuch languages as. BASIC,
FORTRAN; COBOL, and PL/I.

. -

4.17.6.. Example. A critical section of Cxxie within- a-rputine.ii to be
.tested.' The - code computes thelialWes;of..thrie(variables, X, Yo, and, Z, Web
later serve-au-inputs:to other routines, TO ensure that the values Assigned
to- X, Y, and Z have .been correctly computed in this section of-code, an
interactive testing aid is used to test the code...

.

. .

TwoBREAK100006ds are initially inserted into the code. A BREAK _command. is
inserted inime:datelyt,efore the firsts .statement and immediately after the. last
statement of the section of code being tested. To display* thevalbe of X, 1,,
and Z, a- CONTENTS .command is placed before the second BREAK ccomand: The
program containing .the above-mentioned code is executed. Aihen the firstliREAK'
command is-encountered, execution is'halted'and a prapptis.issued.to.the user
requesting that a command be.entefed. SAVE command is typed by the user in
order :.2top save the present state of execution. Then SET command is entered to
set the values of two variables, Aand Which are-used to compute the valUes.
of' .Y, and Z. The EXECIITE'. cauband is then issued-to resume program
execution.

At.the end of execution. of the.. event section 'of ..code the preinserted
CONTENTS. command 7.displays ,the: values ofTX Y, and Z. -The'pecond
BREAK command allowS time for these ties to beexamined and, gives -the. user
the opportunity: to -enternew r At s timei TORE' command is
entered that will restore the computation. te that was
preitiO4441y saved by the SAYE,command. :For-this"example, , --uputatiOnstate
retUrn;Tto that which f011owed the.first..BREAK command,- Arming the'. code

_linder'analysis to, be tested. witk.different.input.valUes: Different values for'
A and B are entered.00 the-contentivof,X;JI:and Z are observed ,as befOre.-
This -process .is'repeatedseireral-timet'Using carefully selected values for A
and B and the correspcoding'valties of.X; YOInd Z are closely' examined 'each
time.-: lir., results *O17, = severalcomOUtations look suspidious their input and
output-values are noteCrand,the'cOde_is More thoroughly examined. The program
is ;'finally terminated by entering the EXIT.comihnd at one of the two possible
break points. .

.

EffeCtiveneSS. TO.....be an effective testing toOl;:an4nteractive test
lid shouldbe used witir:Oiscfplimed- strategy to gUide theZteiting'process.
The toOls can be.easily misused if no testing methodology'; is ...combined. with"
their use.

.

-

4.17.8.
.

,Inteactive-test i-ads can be applied to any
source code. Most existing-tools, bowelier, are' language depende:n'
operate correctly onljkor-specified-langnages).

4.17.9. Learning. A. minimal-arpount:of- learning 'z.is required .to use. these -'
tools. It is canparable to the learning .required in using a text editor:pia ve ezuSed-niost.--eff-ioientarlsan
in utilizing the tool with,an effective testigg-Strategy.,

e'04).17 .10 . Costs. .Program' er an interactive 'test ' aid
-(e.g. -execution tim4-inemopr for -diagnostic

ration."-- :114;ccist IS *pendent on nth
:example, 14!those -Ebased

-
on 1nthrpretive

ent-fraethose dryen bymonitor- balls.

orequ.ire more computing, r
tables) than if -executed
implementation of; the. t
execution will involve cos

Ye' MYERS, ..-.01e.riford, -"The
science, New.York, 1975..

Art; : Software e Testing, "

(2) "Sperry Univac Series 1100 FORTRAN b:SeTI
Sperry Rands Corporation,1979 .. 0-

.% (3) :TAYLOR,, R.N. , MERILATT, R. L.. , and. OSTERWEIL, _ .a. nInteir-atpd
Testing and Verification System, for -Researth Fight
Docunent,-"-NASA CR 159095 I July 31 1979

-Refererite,"
--:-

ftware - Desigh

'Page 76

4 . Name:. jInterfaCe. Cheekee-'

11.18.2. Basic kf-eatures.,-- Interface..- Checkers; alyze 'the._ consistency and
canpleteness of the ihfc5rMatiOrfand:control how between camponents, modules
or procedures of a systin.-...--

. .

.. -

. .

- a. a torn* representation of :system." requirements or
b.:a fotmal.repregentatgn of ..systeth. deSign or

progranr,bodedin -a high-level>language.

Inf tiorrli.itimi:7--Modale interface inconsistencies and errors are
revealed. information -came provided as-ertor niessages included witk

1%-

* 1.
-r"

source listing' or as '-a separate report., 7 -

11.18.5. Outline, of method. Interface checkers are automated tools
which analyze a computer processable form of a software system reqiiirements
specification, design-specificition,;ort.;:pode. The method for each of the

em
three.

representations requirente,'04ign, and code .-- be illustrated %low'
by examining the interface checking capabilities of three existing toolf. .

.t,- ..,
PSL/SA (Probleni S.t.itement Language/Pro k Siatenienti 'Anaiyier) T-1)- is 'an
aptanated. ..reqiiirements ; SpeCificatfOn ----,-kilasicatiA,,'PSL/PSA -cles6ribes-
sy)stem requirenenti 'as->a system of"- prs2Cesses ., and ootpdts..:- Both".
infOrmatibt.-.and. control flow-:ere rep :within PSL. Interfacchecking .

A-.:-. performed by .PSA:Cansisti of 'ensuring- at . to items, are 11.-used and
generated` ;by,- ...j. process and 'i.. that ":. -all, Pi s use data:-* %caplet&
reeluiremepts. speci -...tion are, thekekOre, easily:

. .a

The-Dasign Assertion Consistency -Checker - (ACC) (27" is 4- tool which,. analyze's,

iv rfb' f
.

module-interfaces based"on a design whictrcbnpaihs-ainformatig__desc ing,. for
each _module,. the nature of . ,tie. inputs and -;outputs. z This ingormition is
ipecified Lising . assertion's' to.-indicate -thenumber and 'order of input4";irlajta
types units (e.g. feet or radians):;,acceptable -.rangvt'4and so - on-. DACC
_heck; module calls -against: c the assertions:- in -. the called. mbdule :.for
. consistency. produces a consistency sreporV indicatingwhich ' ass Lions 4have; been ra .-

--,
..,PFORT'-(3) 'is a static analysis_toor Which is primar...i.al, used 'for .. checking

.

-Fortran -prograns for idherence.to a portable. subset-of Fortran language..
, but it also performs subprogram interface Checking. PFORT ma es actual with
duiigy Y arguments and checke for unsafe references,-..sucli:as con raints being"',..passed as argumeritS.

Interface checking Capabilities can also -43e. included within a particular
.

,language,s compiler as well.. For example, Ada. - (14) provides'a. parameter
passing mechanism whereby paranitters are identified to .be input or output or
input/output. Moreover, 'elate type. and constraints (e.g. range and preciiion).

k, must match between the actual atmoments and the formal parameters (in
non-generic subprograns).

4.... ., .
..-1:::'In =nary, -ineerfa checking' tools will generaWoilecli for: --

o modules zwhiCh are used but not definedt ...

o modUles7ithich-are defined but not used, . i

-; ilia,-
Page"777

- . .o-Incorrect number of arguments, --
o data =type miimatehesebetween-actual and..formal paramdter,,S;

betweerr-acttiial- -and -f ormal
o datd usage ancmalies. "-- =

4:18-.6. Example. [_

' . a.' 415Plication. A Itatistical'aiialysi.spackaie-- ,4-eiften 'in 'Fortran
utilizes a Tile, access system ge retrieve records containing- data used in the,

'...analysis...;*-. '. -: ,` '.- ..:,..--4._. .,.,-- -.,:.

b: Error. -.1111e priniary recOrd...retrieval subroutine 4.* altiays pss!ed aZ.
'Statement number -in .thee calling program which. i§....td'receive -control in',Case: an
labnorm;i1 file procesSing, error occurs.. This i-06:s the last _argument in.. the

'fle:ar list of :!..1:ie' sui*Outine call. One prOgram howeverfatls to- sUpply _...: .,,

', gumetit;'" 11;ii.:Citopiler isllot 'ablto detect_the ,er*.i.or:-.MOreover,7,. uie 0-Z.o.....4
_,..,. - ..the ...: i.prrtran imilisonditation is .shc that.rio execution time error .

odCurs:un Aiii,..-.:rceturiis.o.,. e unSpecified,stateM- numbei°:As attempted, :: -etc,-.....-.^ . ..t.., - -, , . -which time- ,syste5._,. craShiEs... ...-r ,.:',-: '. . ,.._
'''se--. pv.A.,..2..',

..... . $-c: , bcovert. -i This error can e:asilr'be detected .by0:using.: an i':1, -
ace. Ch ei=-;.-:-,7-et--'-either.' the -(4:11-:1. ACC),.or coding phase (e.t.-..1.: -.....vig

Fa of _tie: .Sfetiv!galeyel.opment activity- Bo DACC:and PFORT cam detect 0-1,,,4
incorrect :01/00e-rs' of Irigtiefit-5.

.tEffeetivenes.4. Interface checkers are very effectiVe at detecting
lass:- -Of errors which can. be, difficult to isolate if left' to testing. They
area more cost-..e.ffietiv if proyidethas a capability. within another D'

-as a canpile14 f!..data '''flow analyzer or a -tequirements/Osign
tion e

Applicability.... The method is generally applicable.,

Learning. .-g.e use, of interface checkers requires only a very, minimal
learning.effort.

4.78.10. 'Costs. Interface checkeri are quite iexpensive to
much less than. the cost-of a compilation. -- .
.18.11. References.iT

. (1) TEICHRGW, D. :and HERSHEY III,. -"F.Sf.../PSA: A Computer -Aided
Techhique....- for .StrUctured*Documentation and Analysis:Of Information Pr&esSing,
Systems'!, IEEE Transactions ..Qn -yam .Engidgezing,.: SE-3, 1977(41-48).

.4...\usually

.(2) BOEHM, B. , McCLEAN, R.
..4.-Lit.caiiated Aides tO Design
Tranpactions --sm.:24007 ".4Sogingenial

.orcl URFRIG, eA.Itelinascmblee Experience .with
of

§E4.11.3, 1975 :'.(1.25-133)4. r

MUtati9 onalysia:
,

.,.4.19.2. Basic featubB7 Sr: Mutation analysis is --technique tor. .detecting.errors 114,.,a program. and for determining the oroughness with which the--prcfgra.'hasn. been . tested. It -- entails studying e, behavior of a largeof programs which have been Sydtematically .,derived." from the

4h . I
*Informet.ion ts.7 The basic input required by mutation analy,sis.. is

Drogr operates correctly,: and which the user considers to adequately -and, .

source program and collection of test data sets of,ii",.c.lv.the.
-

thofoug41,,y, test the -program. ,

4:19:4.- _Information .outputs.
and

ultimate outpUt of mutation- analYsia.
colleetionof test data sets and good assurance that the collectiori
adequate to thoroughly test the program. is importint to lnderstanithilthe -mutation analysis- process may very JeU hate arrived et this-final state
onlY.after having exposed program crors and inadequacies in the \originalt.test
data set collection. °Hence' it it not unreasonable tit) consi errors-
detected, new prOgranithunderstanding; and. actaitionat test date', sets. so be
Ali-formation:outputs of the mutation analYsiSiprocess:

e

Outline-ofjnethod. The'essential approach taken in the-.rautat.ion_
of a prograne.15 to;prcguce- fkthe- program large set

ved from a trififal,trffisformition of:the - originals and °Ito!.
-,,pacte-ifefsicin to testing by tif-Oen collection of test data, sets. - ...

Atinettire of.the-stransformationS,-. it -,is expected that the derived v
-ite--_AsSenti41.1y-difftrent pragranisz-fran the original. Thus, the teStiiii.

regimen-should demonstrate that; each is in-daCt different. Failure to, . soinvites suspiCion thatl-he co1,1,,eation,oftest 'data' sets -iiiadreqUdte.
Usually leads to greater _understanding cifithefprovani and eitheeithei detect;on-
of, errors or an improved -collection of tii4..440,ets,

-e.kacentr.featiire of mutation analysis is --the mechanimn for creating the
prOgram- mutations the derived versions of the original program. The set of
mutations. Which is genergted- and tested is the set of all programs- which
differ from the original only in a- small -number (generally "1" or 2) of textual
details, such as a change in an operItor, variable or t constant. Reseanchappears to indicate that- larger numbers 'of changes contribute, little or:'
additional diagnostic power.

_ The, basis for this procedure is the-nCanpetent--Programmern assiznp ons whichstate that program errors are not random .phenanenal but rather esult -frcm
lapses- of hu ory$,or concentration. -Thus an erroneous should be
expected to 'differ from the:carrect one 51nly in. a
Hence, if the- original program is incorrect, then the
created by- making . a small.ntznber .of the 'snail to
should include the .correct-.program.- A thor
would reveal-:--behavl raLL:-differertees
acid the deriied correc e.., -. :

1 ntznber of details.t of all programs
changes just descIsibed;

eation;o1:7.test: data sets

Hence, mutation- analysis entails determining whether each mutant behaves
.diffpently from the-original. If so, the mutant is considered'incorredt. =If
not, the .mutant _must be studied. carefully. It is entirely .possible that the"
mutant is in fact functionally equivalent to the original program. If. so, itsy
identical behavior is - clearly benign._-, snot, the mutant is highly.
significant, as it certainly indicates an inadequacy the collection of test
data sets. It may, furthermore, .indicate.an error in the progran
which previously went undetected. EticauSe of inadeqpate testing.- Mutation
analysis facilitates the detection of such errors by aut.anaticallt raising the
probability of each such error-and then demanding justificatIon for concluclOg
that each has not in fact been cabmitted. Most mutation quickly manifest
different behavior under exposure to any reasonable0:4 -data -sst- collection,
and,thereby demonstrate the absence of the error cortespOndini.to the mutation
b3! cb they were created. This forces detailed _attention thosse mutants
wic-.Wg;13e-bave identically to the original and thus tdtces attention on any
ac errors. .

If all .mutations of the original pr reveal different ex
w: then the program is considered to filiikuately tested and Garrett within the

limits of the nCcmpete.nt Progrannernassumption.

2.19.6. Example. ConSider the Fortran pr:oltrani, figure 4.19..6ecwni.c4!-counts-F,-.
,the number of negative and'non-negative.ntinbers in array ../1:--c!"',-,

tei_AUBROUTINE COUNT (A," NEG, -NONNEG)_.
DIMENSION A(5)..

.

NEG=0
NONNEG=0
DO 10

NONNEG-.

(I).LT..0).NEG=NE64-1

t
Figure,4.V.6-1 subroutine "Count

and the.collection of test. data* sets'producea by dnitializing A in turn to:.

I II
1 --1

-.2 2 -2
3

-4.
*5

3 .i
4
5

-3
-4
-5.

*Mutants might be produced based upon the following- alterations: z -

a. 'Change an occurrence of any variable to 'any other variable, e.g.,

A- to.*I
NONNEG.: to NEG.
1 t.ki.NEG

b. Chant-en occurrence of a cons

e.g.,
1 to
0 to 1
0: to -i
'1 *t6 2

is eaose in

c. change,an occur of an operaton to":ariether:,operator:

_:.NEG-."+cit to NEG * 1
NEXT4,4 to ,NEG 1 4- .

--._:A(I).01..0 ACI).GE.0 - ;-4s 2te

,Atti- 1(I).1.1',70 .t,o A(I).- NEB -titl;,.,--.- -- ":fst, ..

' *Thiks, the set-of an "single alteration" mutants would consi;t411l---;:!'''''''"
containing exacqy 'die of the above tchitlges,-. :- The set. of al
alteratidn" mutants Would--Consist of all progeaks" containing a, .i
above-cliangs. ' ' --- - i ' - .."-

, -4-

,Clearly-many suchinutatiOns are radicalledifferene and would ,quicrily est
-cibvioulik, cliditent behaiior. For exainple, in changing variable.Lto A (or
Sri s Ai) the program ,rendered tincanpilable by most canpilera._

.::"NEG=0" to "NEG=1". causes a different outccme for test case I.

Significantly, -changing A(I)GT:0 A(I).GE.O or A(I) .LT.0
.

to -- k(I).LE.0
produces, no- .difference in run=time behavior on any of the tit test data
sets. This rivets attention on 'these mutants, an ii, subsequently on the issue
of how to count zero entries: %'"One rapidly realizes that the collection of
test data sets was inadequate in_that did not incilude ad), zero
values.. Had it included one, it would have inateited that:

IF (A(I).GT.0) NONNEG=NONIEG+1 shbuld have been
IF (A(T).." GE.0) NONNEG=NONNEG4-1.

.11
oi) . .

4, mutation analysis has poin aut,-both- this error and this weakness
the, collection of test data sets. After changingithe program and 4513,ectio
all mutants will behave differently strongly raising our confidence in the
correctnes*. of the.progratn. ,,- -
4.19.7. Effectiveness. 14.1tatfott analyata-earr" tit an effective technique for
detecting errors, but 4.1 must be understOod that it requires ccebining an

with good automated. tools Eieilihen it mast be undersU1.4 tagnan .

it is,".a reliable technique for .demo ati.ng the _absence only if al
possible mutation .errors (i.e., those invo 'alteration, interchanging,- or

cmissiori -of operators, variables,:, etc.) are gex

The need for --zood- tools is easily understoOd
program: has-an enormous Lumber of mutations, each
-exepilised-by ,the test,data.sets, and evaluated.: On .

appea to _entail thousands:Of 'edit runs,-.-.ccmpilatiolf and
=--toOlshave---been,bt!ilthoweveriwl4ch---operatlea sPecia-internalrepresentatiory of the original- program. ?his. represk*.atiori is residily- and

efficiently. transformed into the various mutationt., and also serves as thebasis - for very rapid simulation tf the mutants' 'executions, thereby avoiding-- .
-need fmccuipi_lat.ion and loading-of each mutant.

T3is tool- set still' does not bypass the need for-humans, hoiiever. . Humans must
"- siztl).4 carryt. out the job of scrutinizing mutants which behave identically tothe original' program in order to determine whether the mutant is equivalent or

= whether the_colaection-of test data sets-is inadequate. .

At-the end of a-PcsuCcessful mutation ctanalysislf.J. many errors may havee.':''sbeen
undogereiit and the collectfon of test data sets' has certainly been lade 'Very
tEorougli; 7 Whether :the .absence-.0 errors. has been established; however;. mustbe. considered. relatixe. to the "Canpletit Prograpmern assumption. Under this
assuripti'bri, ally= Oerrors: ofl mutation .are detectable by mutationanalysis, thtis, ,,the-abgence* of diagnostic messages or sfind,i.ngs indicates the

..4,rabiente Of -these' erfors. Mutation: .analysis cannot', however, assure the
-fabsence df errors'vihich cannot be modeled as mutations..-,-

izes.:that fly '
must be :generated;:7
face, this would

execution's. Clever-

The

lever

:4:1%;8.- Mutation an 'apicarentlyapplicable to any4gorithmie striation specification. ,It& previousl indicated,. it cart only be
:considered effective when supported by-a body of sophi.sticated tools. Toolsenabling analysis of Fortran and - COBOL source .trOct exist: There is,

.---..f4rtfiermore; no reason why tools for other coding Tanguages, as well as:;algorithmic desigri _languagestf'could not be built.
4.19.9. Learnint. This' que requires the potential mutation analyst to

liecome% osophy and goals of this novel approach. InadditionVit appears that e-familiar the analyst 1s_ 'with the subjectalgorithmic solution s ications, the mop effectivMthe analyst will be.This is because the an st may well have to anlyze a collection of t data
axe to analyze two progr to5stsets to determine how to augment it, and may

determine; whether they are equivalent.t
.

4.19.10. Costs. In view of the, previous: discussion; it is: w..rtant tO
recognize that significant amounts. of human analyst time are ikely to be
necessary to do mutation analysis.. The ccmputer time required is not likely'to 'bei excessive if the'.sophistica tools. described earlier are available.-
The. interested reader is urged consult \ the. following references for
expl on of thiS..

4.1 . References:

telt/.
eg-

(1) DEMILO, 1.A. , LIPTON, R.J. and SAYWARD, F.G. I. nProkrameldutatiiii:
A 'New Approach to -Progran T ngn, _ Infosit State-of-the-Art Repbrt .n

Testing, V.2, INFOTEC 1979, pp. 107-127.

Page 83.

(2) LIPTON,
. Program: Mutation,

R.J. and SAYWARD, F.G., "The 'Status' of Research on
Digest ar _the Workshop 7.on Sofj;ware 'eating And Test

t

4.20.1. . Peer- Review

Ro

Page44

4.20.42: Basic Features. A peer review is a procesi- by which projeco
persoinel perform a detailed study and evaluation of code,-documentatiOnt
specification. The term peer review refers to product evaluationswhi
condOcted by. individuals of equal rank,, responsib or :0-

-aexperience-and--There-dre-nunber-of
the, overall category 'of -apeer review. Code r ,7r6und-robin.reviews *

walkthroughs and inspections are etamples'of "dews which differ. ini''
formality, participant roles and responsibili t put produced'and
required.

-

4.20.3. Information input. The input to a,parti peer review will vary
depending .on which form of deer _review is being conductei._ In

general, each of the forms -of pee5libyie4 require that- sane -sort, of review
Package is assembled hand distrigkted. This package commonly contains-alt-
summary of the iequirement(s) whiefl"Fare the basis for the 'product being
reviewed. Other, cannon inputs are differentiated by the stage of-the
lifecycle currently in Process., For example, input'to a peer review during
'the- coding phase would consist of program listings,. design specifications,
programming-standards and, a' summary of results frdm .the design peer review
previously held on the same product. Common input to particular-forms of peer
review are:described belo4:- (A summary of the mettiodology for each of these
reviews.appears in Section 5.) =

$. Code- Reading Reviiew.

o
.4

Canponeht requiremens
o DeSiti-sbecifelcations'

..-o Prograin liStSigs,

o Programining\stanciards

b. Round-Robin Reviews.

o Component requirements
o Design or code specifications

--,,,p4rogrsm listings (if during coding phase)
, \

o Componentsr r Vents
o Design or code ification AL

- b. Program listings (if coding phase walkthrough)
4111oduct standards -

Back - -up documentation (i.e., flowcharts, FIIPO charts:
1144 ticmaries, etc.)

ion list (derped byparticipants prior to review)

41.

A

d. Inspections._$

',401156nb.P,170gUlremehts
ign 'Cdde specifications

L.
Program listings (ir dui-ina coding phase)

`standards
ocunentation
!,(containing descriptions of particular features.uated)

ormation output. The output frcm4
--review. One output common to each forri of a peer review is pr.consensus about the product under review.- This is usually, in the l'sfrM of agroup approval . of the - .product as. is, an approval with Mc:mendedmodifications, or a rejection (and rescheduled review date). .

Specific output frail peer reviews.described in Sec tion 5'ar&ia

a.. Code Readirig Review and RoUndRobin,Review.

o Informal documentation 'of 'detected proems*
o Reccamendation to acce -or reject revised producto Discrepancy List

b. Walkthrough.

.o Action List (formal-documentation of problems°
o Walkthrough Form (containing review summary and group: decisiory)

c. ;Thstection-.
. - ..o ins on.-Sehedult and Memo (defining indi.vidual. roles,

./ties, -agenda and schedule) .
"PeCtlem init1.420 Set- .4 --go
Stitmary' report '<documenting ---error.,.correction status and P

.. -'". related statistics -on the erlbrA- s'4
O tlanagement report (descri-Pihg errors, problems and ccefponent Akir,osStatus) ' - ''': -s -

...- - .4.20.5. Outline of method. The peer reqesr; methodology and partieiRantresponsibilities vary by form- of review. .Sumnaries of these methodologies areprovided in the later part o this section: -He revery there area res.! featurescon to.each methodology. / 4, 11, . .Att,..4.-t4;
---/'For example, .mos seviews.are not attended by management. (An exceptionis made in circumstances where the project manager. is also a designer, coderor tester -- usually on very small projects.) The presence: ofeepwagenient tendsto inhibit participants, - since tht.y. TOL- that they are1,0.1.0* ', being 'evaluated: This would br. contrary to the-.intent of peer reviitle'l.--:- at ofstudying the pr,oduCt itself. , . .

---, er: / 4 ' -4=4Another common feature is the assembly and dist'rib'ution'-,of prvjecti review'materials prior, to the-_condUct of the ,peer .reiriew.. is a.11otIXP.Vt111:kants'.to spend sane amount of_ time reviewing the data to tter."-;prepOregi forI.the review. , - .2, .,4 ;-

y.

Page 86

t e%etid of.mostpeer reviews the group, arrives at .a decision .about the
`status lofit the. review, product. This decisiOn is usually communicated to
managemeht.

. .

Most reviews,arelondueted in agroup organizatigp as oppoSed to individually_
by: o r b bythe project team itself. 'While -this may seem an obvious-
featurel___it_Lbearsdame__discussion. Most organizations--doing--Isoftware
develOpment and/or maintenance employ some variation of -a team approach. Some
team organizations are described belcw.,,

5,/

o Conventional.Team L' A senior programmer directs the efforts of one or.

more less experienced.programmers.-
6,--Egoless Team.71,Programmers who are of about equal experi
produ4 responsibilities.

o Chiefejogrammer TeaM. A highly qualified senior progr
effoyt.S-)be other teaminemberkpir which' specific roles an
re41560iipilitAes have lz,eenassigAed (i:e., badk-up pr

) ,

, The grotip!whiak par icipates in the.peer review iS not neces
.the .teau to manage arin6omplete the software,
group ts'lik a = composed of a Subset-of the ,project

red by the form of review being held
s. The -benefits of peer reviews

attained A.

F%BbloW. Th

'are.

leads the

secretary,

y the same as
The review .

plus other
e stage of the .

to be"
group acts separately, without gfie . designated
e role nly used in. review ,gross:~ are described

e .W.1. employed irkany one reviews(but repreSent
...6.;t1.2.- -, ---
,,-...,,,..w --3-P, -.41 1; lkf:,;-

, -- l"..-.
-p GrOup/RevieW -'''' , tttedindividual designated by Managethent with

:;planning, detectingl'orginiZing'and coordinating responsibilities.
-Usually has responsibilities after the review to ensure that

,

recommendations are implemented:
'o Designer - the indiv ual responsible for the specifiCation ,

.of the,"'produotfan.. .

--) - ...'for its impl ntation.
o Implementer - the Ire vidual respon or-.developing the product
acOording the' lan detailed by the ,designer.

o Tester - indi dual responsible for testing the prodtict as developed
by the implementer. .

o Coordinator -.the dividual designated with planning, directing,
organiziAg.pd ating responsibilities.

o Producer,- the i dividual whose product is under review.
o Recorder,=.the individual responsible for documenting the review
activities during thb review. n

6 User Representative - the individual responsible for ensuring that the-
user's requirements are addressed.

o Standards Representative - the individual responsible for;--enAuring that
:: product'siefidards.are conformed tai-n:. ,

,o.Mgintenanoe Repiesentative - the:individual who will 6.6 responsible -for
updates or .corrections to the installed greduct.

. .
. .

o Others - individuals with specialized skills or responsilpilities'which
contribute. duringe,e peer review. ?-- 4,Azza tsii s',.

4. 1040

9

involve"-n""`,.'":`47White the forms of peer "reviews hay sane .siaiilarities and ..generallydesignation of participant role and responsibilities,- they are different inapplication. The remainder of this section will
previously

the application .-methods associated with.the forms of peer reviews previoily introduced.
a. Code Reading Review. Code rea g is :line -by -line" study andevaluation of program source. code. It is g y_performed-on-z-source-codeocoipiled and 'is free of."..gyntax errors. However, saneorganilations practice code reading on tuiccmpiled source: listings or-handwritten code on coding sheets fn order to remove sYntar . - error-s priorto code entry. Code reading is commonly practiced n structuredrode and becaues cost ineffectiye when performed . e.

EPT,The. Optithun size of the code reading reViest. t eethr to four.producer sets up the review and is responsible,' ; team leadership...Two, or.three Programmer/analysts and selected by the producer based ..upon- their. .experience, responsibilities with interfacing programs, or other specialized' ."

2,-
.-.

-.- = *.iv .,The' produceitclistributes the review input (see section 11,..20.3). about two . days' '..Jr- advance. During- the review the Producee and the reviewers-go tlirough each ?,:%.line,ofcode checking .for%featuret which willmake the ,rogram more' readable,:usable --teliab.ke 4....and ...ft-tainable7.'...- Two typpas' ot., . reading: :.may beperforled: rea.Wg fo4Funderstanding andsreading: for fication. .:24Readingfor understanding is Perforthed;,yhen.the reader desiret an 'Overall appreciationof how t. :program- Module works',,,,' its structure, what functions. _it perto ,and ,wbetimr it efpllo;zilestabliabed_standards. ASstiming that figure 4.. 5-1depicts idle ".Structure '.of f a!--Prograni -., ccaporient, :,-.-a reviewer reading - for.:'understanding . would review: ti modules yin.the fel order: t 1:0; 2.0,2.1:1.. 2.2;3:0, '3.1,, 3.;4.3:3.
:

.they
.,,, ::***.j...-...

.....
>;....v.;,-4-.

.0.

Figure .20.5-1 Program 44-udture

In contrast to this top -to- bottom .approach, reading for verification imPlies a.bottan-up- review/of he code. e component depicted above would be perused.in the follaiing order:' 3.3, .3 ,-.413:1, 3.01 2.2, 2.1,. 2.0; 1.0'.. 4 thismanner it is- possible.. to pr Oe. a depenaency list, detailing parameters,control switches, table pointers, and internal and external variables used. bythe ocmpcinent. The list can then be used to ensure hierarchicalc!consistency,.!
...Q -.*...,

--''Page 88
. 2%

data-availability, variable initiation; etc. Reviewers point out any problems
or errors detected while reading for understanding or verification;duririg the .

review. -

The team thenmakes fnfOrmal decision about the acceptability
-product and may recanmend _changes.- The producer notes' suggested

and is responsible.-for all changes to the source code_.____-__S_ugg_e_
:evaluated by the producer and Ineed not be implemented
determines that they are invalid. -

of.0 the-':COde
,,mddifidations

anges__ane_
e. producer

There is no -mechanism to endure -that change is -implementedbr on
the-review.- - - -° ." , .

e
Round-Robin Review. round-robin review is a peer review where.'each particiant is given --azi equal, and similar shaFe of the product: being,

reviewed to study, priesent;- and lead in :its evaluation.'. .

round-robin review can be given Siring arty phase`'of the:. product .lifeCycle
abct. is also useful for' rewentation; review. 'In additith there

!'";itariativis 'Of the tound:-ribi review which . incOrpor4te sane Of
featurese:- from' other peer review. -forms. but continue to use _e-altertating,

.,. review leader- vppeoachtt -Por example,' 'during a round-robip
the

inspection checklist is made _the.resporik ity, of alternating
titiPantsr .. ,

, .
e oannori.nunber'of people, Involved in, this type of peer review is four to

Oix..',The.meenang is scheduled by; the Producer, who also distributes .sane 'high
level 'documentation as described. in section 3:f The prodUcer bethe -first review leader or assigh: this responsibility to,,another
participant. The temporary ,leader will guide .the Other participants <who may
be imPleme.nters, °designees', testers, users, maintenance representativesa ,etc.)
tttrough the first unit of work., This unit may be ,a module, paragrapiti.jine'Of,

`'dodel. inspection itee, or other unit of inanageable participants
(including the.,leader)7have the opportunity to commenti.ORethelmit beforepeatize
next leader begins 'the eValuation,: of the next unit. The leaders.=are
responsible for noting major comments raised, about-their pieAe- -of At
the end . of the all the.major canmento are suinarized and the grbup
decides whether bi- of to approve suae product: .NQ 'formal mechanism-for review
follow up-is use.

>' Waikuirou pe of peer-review-is-Sore formal- than the
reading= -Teview _. round-T4bin,,,-.- review. Dist ; roles. , andh,

,.. li4irisibilities are -assigned :prior tli/E'reViAw. Prereview:_prepalation. isa.
a - more.t-ormai 44-roach to :PrOblem doeunentation is stressed; .

feature' of this review IS that it is presented -by the producer..
A,.. , - ...

'4;:fno'it"--; 'Cannon walIcthMiglis are those -held. during design and code, yet
y- .they are being applied -tO. specifications docupentation and test ...thy

-P.
... I. .11.Y , . . 4 '

.

'Theoproducer -scl;edule4 the review, and assembles and distributeS input as
described in . sectiont In most cases the producer selects the walkthrough..

,.participants (*.though sometimes this is done by m'anagenent)- and notifies,, them

Page 89
.

of their roles and responsibilities. The walkthrough 'is, usually conducted
with less than seven participants and lasts not more than 2 hours. If more
time is needed a break must be given or the product should be reduced in size.
Roles usually included in.awalkthrough are producer, coordinator, recorder,.
and representatives-of user, maintenance and standards organizations. -

The review is opened'by the coordinator, yet the producer is reSPonsible for
leading the group through'-the produCt. In the caseof,design and.dode
walkthrough, the producer simulatesthe operation of the. component, allowing
each .participant to comment based upon his area of specialization. A:list of
problems is kept and at tae end' of the review each participant signs the.list
or 'other walkthrough form indicating whether the product is accepted as-is,
accepted with recommended changes, or rejected'. Suggested changes are made at
the discretion of the producer. There is n9 formal means of follow up on the
review comments. However, if the walkthrough review 1.0"used for products as

.-they 'evolve during the.lifecycle (i.e., specification, design, code and test
malkthrOugh), copments from past reviews 'can be. discussed at the start of the
next review.

d. Inspections. i4pections are the most formal, commonly used form
of..peer review. The key feature of an inspection is that itis driven by the
use of checklists to facilitate error detection, These checklists are updated
as statistics indicate that pertainftypes-of ef.ror are occurring more or less
frequently' han in -the past. The most commonly held types of inspections are

4- during
on the product design. and code,, although inspection; may .be used

4-during any. lifecycle phase. Inspections.ahould be short since they are often
quite. intensive. This means that the product component to be reviewed must be
orstall size. Specifications or.design which will result in 50-100 lines of
code are normally manageable. This into , an inspection of 15
minutes to 1 hour, although complex.camponents may require as much as 2 hours.
In any event, inspections of more than 2 hours are generallYqess-effectille
and should be avoided. Two' or three-days prior to the inspection the producer
assembles input as described in section 3 and gives it to the, coordinator for
,distribution. 'Participants are expected to study and make comments on the

c--materials prior to the review.

. The review. is lead by a participant other than the producer.- Generally, the
individual who will have the greatest involvement in thg next phase of the
product lifecycleis -designated as reader. For example, a requirements
inspection would likely be lead by a designer, a design review.by an

`Implementer, and so forth. The excdptign to this occurs for a code inspection
which is lead by the designer. The inSioection is organized and coordinated by
an individual designated.as the grotip leader ort coordinator.

The reader goes through the product component; using the checklist as a means
to identify common types of errors as well as standards violations. A-primary
goal of an inspection is to identify items which can be modified to make the
component more. understandable, maintainable, or usable. Participants
(identified earlier-in this section) discuss.any issues which they identified
in preinspection study.)

L

9.7
0

At theoehd of the inspection=an'accept/reject 'decision is made by -the oup
and the coordinatar summarizes" errors and.problems detec Ond
provides this Tistto alLtparticipants. 'The individual,whose work was under
-review (designer, implementer, tested, etc.) uses the list to make revisions
to the component.'t When. revisions are 'impaemented,' the coordinator and
producergo throUgh a mpirevie using the prcblem list as a checklist.

:
.

The coordinator-then-completes Management and Summary_ Reports, The Summary
-rePbrt is used to update cheeklists for subsequent inspections.

.

4.20.6. Example. The follcwing is an example describing a code reading
review.

Three days prior tO estimated:cOmpletiOn ofcbding, thelproducer Of a...pr'ogram..
compOnent begins preparation for a code readingreVieW.'7:The component is
composed of 90 lines of FORTRAcode and associated. comments. The producer.

.obtains cdpies.. of the :source listing, and requirements and'. design
specifications for the component and distributes them to .three 'peers,
notifying. them of the review date and place.

Each.reviewer'reads the code for general understanding, reviewing a' major;
':fpnction and ,its supporting :functions ,prior to' reviewiho the next major
'function (see section. 5), .

One reviewer, notes an exceptiouto the programming standards, Another thinks
that the data names -are. not meihingful; The third has foUnd'several commentS-
whichinaccurately-repreSent the function they describe. Each reviewer makes
a . note of these points 'as well as any comments about the structure of the
component. Next,'.the requirements are studied to ensure that each requirement
is addressed by the-component. It appears that the requirements have all been
met:

The.code reading review is led by the producer. After a brief -description of
the component and-its interfaces, the producer leadsthe reviewers through the
code. Rather than progressing through the component from top to 'bottom, the
decision is made to perform code-reading from the bottom up. This form of
code-reading is used to verify component's correctness (see, section 5).

As the code is being perused, one of the reviewers is made responsible for
keeping a .dependency list. As ,each variable is defined, referenced, or
modified, a notation is madeon the list.--

The verification code reading uncovers the use of a variable prior to its-
definition. This error is documented on an error list by the producer. In
addition, each of the problems detected earlier during the code reading (as
performed by each individual) is discussed and documented.

At the end of the review, the error list is summarized to the group by the
producer. Since none of -the problems are major, the participants agree to
-accept the code with the agreed to minor modifications. The producer then
uses the error/problem list for reference when making modifications to the
component.

' -

4:20.7. Effectiveness. StudieS,have been conducted which
following qualitative benefits the fords of peer reviews.

.0 higher *status visibility,

.o decreased debugging.time,

Page 91

identify the

'0 early detection of design and analysis errors which would be muc
costly to correct in later development phases,

o' identification of design or code inefficiencies,
o ensuring a ence -to standards,
ciincreased ogramreadability,
o increased .0 er SatisfaCtion,
o communicati n of new technology,
o increased tainability.

Little data is available which identifies the quantitative. benefits.
. attributable to the use .of's particUlar form of peer review. However, one

source estimates that the number of errors in productiori programs was reduced
by a factor of ten by utilizing walkthroughs. Another source estimates that a
project employing inspections achieved 23% higher programmer productivity than
with walkthroughs. No data was available, indicating the amount' of increased
programmer productivity attributable to the'inspections,alone.

4.20.8. Applidability. Peer 'reviews ars--applicable to large or small
projects; durihg all development, phases and:Nre not limited by project type orcomplexity

ti

4.20.9. Learning. None of the peer reviews discussed' require extensive
training :to implement. They dd. require familiarity with the concept and
methodology involved. Experience has Shown that peer reviews. are most
successful; when the indiVidual with responsibility for direCting the review is
knowledgeableabout:the process and its intended results.

4.20.40. Costs. The reviews require no special tools or equipment The main
cost involved is that of human resources. If the reviews are conducted in
accordance with the resource guidelines expressed in most references; the cost
dePends upon the number of reviews required: Mostreferences suggest that.
peer reviews should benO longer-than 2 hours, preferrably'1/2 to 1 --hour.
Preparation time cap amount to as little as 1/2 hour and should not require
longer than 1/2 day per review.

J
4.20.11. References.

(1) "Code Reading Structured Walk-Throughs and Inspectioqs",' IBM IPTO
Support Group,World Trade System Center, Postbus 60, Zo4tenmeer, Netherlands,.
,March 1976.

(2) FAGEN, M.E. "Design and Code Inspections to -Reduce Errors in
-Program'Development", Systems- JOurnallNo:311976.-.

I

(3) YOURDON "Structured Walkthroughs",Yourdon Inc., 1977.

99

(4) FREEDMAN, D.P. and IiiiINBERG, G.M.,.

Handbook," 1977,-Ethnotech, Inca :

Pdge 92
. .

"Ethno -1 Technical Review

(5) -:DALY,. E.B., "Management of :Softare
Transactions 92 SoftwareEngin!gring,MaY 1977. 4

(6) HNEIDERMAN, Ben, "Software Psychology Hunan Factorsin Computer
and Information Systems," Winthrop Publishing,

"Iv

Development", IEEE

ti

Page 93

Name.' Physics] Units Checking.'

4.21.2. Basic features. Many (scientific, engineering,,and-contrcl) prcgram
' perform computations whose results_are interkete in terms of physical units,.
4; such as feet, metersp.watts; and joules. Physical -units checking"' enables
specification and checking or units in iprogram computations, in'a manner
similar to dimensiohal analysis. Operations between variables which are not
.commensurate, such as ,adding gallons and feet, are detected.

4.21.3: Information input... Units..checking requires three things to be
specified within a, prcgram: 1) the set of elementary units used (such as
feet, inches; acres), 2) relationships-between-the elementary units (such asfeet = 12 inches, Lore =,43;560 square feet), and 3) the association of'units
with program. variables. The trogram6ing -language used must 'Oupport'such
specifications, or the program must be preprocessed-by a units checker.

4.21.4. InforMation output. The information output depends upon-the specific
capabilities. of the language processor or preprocessor. At*Aminimun, all
operations'involVing variables which are not commensurate are detetted and
reported. If variables are.commensurate, but not identical (i.e., they are
the _same type .cf quantity, such-as _units . length, but one-'requires
application of- a scaler Multiplier to Place it in the same units as the
other), the systewmay'insert the required.multiplication into the code, or'
may only report what factor must be applied by the programmer.

4.21.5. Outline of method. The specification of the input items' is the
extent of. the actions. required- by the user: Some systems may allow the
association of a units expression wiih an expression within .the actual-
program. Thus, oee may write LOTSIZE,(LENGTH * WIDTH * square feet) as a-
boolean expression,- where the product of LENGTH and.W1DTH must be in units of
square feet. The process.Of ensuring.: llat LENGTH * WIDTH is in square feet is
the responsibility of.the-processing system.

4.21.6. Example. -A short program in Pascal -like notation is shown_ for
computing the volume and total surface:raea:of a right circular cylinder. The
program requires as input the radius of the.circular base and the, height' of
the cylinder. Because of peculiarities in the usage environment of:thee
program the radius is specified in inches, the height- in feet; volume is
required in cubic feet, and the surface area in acres,. Several errors are.
present:in the program, all of which would be detected by the units checker.

In the, llowing, comments are-made explaining the- progrOM;Nthe errors) it

-..-

contains and how they would be'detected. The comments are keyed by-line
number the program.
Line

. - Comment
.

e.
.

,
.2 All variables in the ptogram which are quantities will be

expressed in terms Of these basic units. ,
3 These are the relationships between the units known to the

units checker.
.

.

5710 . Variable radius is in; units of inches, height is in units
of feet, and so forth.

Page 94

. _ ,

.

12 Input/ values are read into variables.rdius and height:
13 Lateral surface must be exprested in square -feet.,(RADIUS/12)
7 is in feet, and can be so verified' by' the checker,
15. Lateral-surfice-= and top-surfaceare.both expressed in.square-

feet, thus. their sin is' in square feet, also. Area is .

expressed in'acres, howeverl'and the checker Willjsspe'. lt.,

a message to .the effect .that though the two sides.are:. ',.
commensurate the conversion factor vf 45,560, was omitted
from the right side of the assignment.

16 The ecker will detectthat.he.two sides of the assignment
. ar not commensurate.. The right side is,in units of feet

quadrupled, the:left is'in fe0 cubed. .!

(1) program cylinder (input, output);.
,--..

(2) elementary units inches, .feet, acre;
(5) units relationShipi feet = 12 inches; acre"= 43,560 feet**2; ..

(4) constant,pi = 3.1415927
-

(5) Var. radius (inches), ,

..

(6) height (feet),
.-

(7) volume (feet**3), ,

(8) area (acre),:. .

(9) , lateral-surface (feet**2),
. (10) top-surface (feet012): real;

(11) begin
(12) read (radius, height); .

ft

(13) 'lateral7surface := 2*PI*(radiaS/12)*height;
... ,

. -(14) . top-surface .:= P/* (radius/12)**2
(15) area :=-lateral-surface + 2*.top-surface;
(16) Volume := PI *((radius**3) *height).; 'id-.7 ,

.-.(17) _ write (area, Volume); .

,
.

(18) end;

.

4.21.7. EffeCtiveness. The effectiveness of
:
units checking isTlimiteds only

by the capabilities -of the units processor. ..

Simple units checkers. may only be able to verify that'.two variables are
comunsurate, but not determine if proper conversion factors have been applied. '
That isia.relationship such as 12 inches = feet may not- be fully used in
checking the computations "in a statement, such as line 13 of the example. /
There we asserted-that (radius/12) would be-interpreted as converting inches
'to feet. The checker may not support this kind of analysis, however; to avoid
ambiguities with expressions such as "one-twelfth of the radiOs."

4.21.8. Applicability. Certain application areas, such as engineering and
scientific,"often deal-with. physicalumitt. In others, however, it may .be
difficult to find analogies to physical units: In particular, if a' program
deals only in one type-of quantity, such-as dollars, the technique would not
be useful.

.0,

Units checking can be performed during all -stages of software development,
beginning with requirements specifications.

1 0

4.21.9. Learning..- Ztmensional 'analysis is commonly taught in first year
collOge.physics on statics; conversion frem English to metric units is common
throughout society. Direct application of these prindipleS in programming,
_using a units checker, should require no additionalr training- beyond
understanding the capabilitied of the. specific units checker. and the-means for'
'specifying units-related information. _

4.21.10.. Cost. If the units ,checking capabilities are\ncorporated directly
in a compiler its Usage-cost Should be negligible.. If a preprocessor is used,
such systems are:typically much slower than compiler (perhaps operating at

compilation speed), but only a single analysis of the program is
required. , The analysis'is only,repeated_when the program is changed. -4

-14-81...11... References.'

Cl) KARR, Michael and LOVEMAN III, David B., "Incorporation of Units
-into 14:ogranimingLanguages",WM,Vol: 21,No.5, PP. 385-391, May 1978:

I

t

a

103

Page 96
;,

..

4.22.1._ Name: Regression Testing

4.22.2. Patio features. Regression testing is a technique whereby spurious
errors caused by system modifications or corrections may be,detected.

4.22.3. Ihformation inpUt. Regression testing requires'that-a set of system
test cases be maintained and .available throughout th entire life of the
system. The test .cases should, be complete enough so that all of the system's
functional caPabilities are thoroughly tested. If ayailable, acceptance tests
should be used to form the base set of tests.

In''addition to the individual test cases themtelves, detailed descriptions or
samples of the actual expected output produced by each test case must also be
supplied and maintained.

4.22.4. Information output., Tipp output from regression teineit simply the
output .,produced by; the' system from the execution of each of the-individUal
`test cases, When the output from previous acceptance. tests has been kept,
additional output from regression testing should be-a comparison'of the before
and 'after executions. -

4
4.22.5. Outline of method,. Regression testing is the process of retesting'
the' system in order. to detect errors mbidh'mpy have been caused by program,
changes. The technique requires the utilization of a set of test cases which
have been developed (ideally, using functional testing) to test all Of-the
system's functional caPabiUtiet. If an absolute determination of portions of
the .system which can potentially be affected by.a given change can be made,
then only those portions need to be tested. Associated. with each test case-is
a description or sample of the correct'output for.that test case. When the
tests have. been executed, the actual output is compared with the expeCted
output for correctness.' As errors are detected during the actual oDeration of
the system which were not detected by regression testinf, a test ease 'which
could have uncovered the

. .

d be constructed and included with the
existing test cases. .. .

, _.
..,

. ,.

can _ -_,
AlthoUgh not required, tools can be 'used' to aid in performV regression
testing. Jutamatic test harnesses can be used' to assist the'menaging of, test
cases and in controlling the test execution File comparators tgn often be
useful in verifying actual output with expipctecLouttotilt. Assertion processors
are also usefUl in verifying the correctness of the output for a given test.

'.
4.22.6.' 'Example..

a. Application. A transaction processing system contains a dynathic
data field editor -which provides a variety of input/output field editing
capabilities. Each transaction is comprised of data fields asIppecified by' a
data element dictionary entry. The input and output edit routine used by each
data field is specified by a 'fixed identifier contained in a data field
deScriptor in the dictionary entry. When. a transaction i input, each field
is edited by the appropriate input editor' routine as pecified in the
dictionary 'entry. Output editing consists4of utilizig outpu editor routines
to format the output.

b. Error. An input-edit routine to edit. numeric 'data fields was'
modified 'to perform a fairly restrictive-range check -needed by.a-15articular
transaction program. Current system_ ddc66entation indicated that. this
particular edit routine was only being used by that-single sacticb.
program. However, the documentation was .not up-to-date in that' other,
highly critical, transaction program aleo used the routine, often wi data
falling outside of the range check needed by the.other program.

. . .

.

c. Error discovery. ,Regressia testing would uncover -(h ieerror gven
. ,

that a sufficient set of functional- tests were used for performing the
testing. If only the transaction program for which the modification was made
were tested, the error would not have been' discovered until actual operation.

quality of the data used for performine regression testing. If functional

4.22.7.,-Effectiveness.' The

er

of the technique-depends' upon the

testing, i.e. tests based on the functional-requieemente, -is used to create
the test data, the effectiveness is lighly effective. The burden and expense
associated with the technique, particularly for small changes, can appear to
be prohibitive. It is, however -..often quite straightforward to determine-'.2.
which functions can be potenially Lileated by a given change. In such cases,
the extent of the testing can be reduced to a more tractable size.

4.22.8. Applicability. This method is'generallyapplicable.

4.22.9. Learning. No special training is-required ih order to apply- ,the
technique. If tools are used in-'.support of regression testing,. however,
knowledge of their use will be required: Moreover,, successful application Of
the technique will require-establishment of procedures and the management
control necessary to ensure adherence to those procedures..

4.22.10. Costs. Since testing' is required,,as a result of system
modifications anyway, no additional burden-need result.because of the method
(assuming that only the necessary-functional capabilities are retested) The
use of tools, however, to support it could increase thecost but it would also
increase its effectiveness.

4.22.11; References.

(1) PANZL,
April 1978.

"Automatic Software Test

(2) FISHERIK.F.,"A Test Case Selection Method for
Software Maintenance Modification",LEEE COMPSAC,1977.

Drivers," Computer,

the Validation of -

(3) FISHER,K.F.;EAJI,F.;and CHfUSCICK,A.1"A"Methodologywfor Re-testing
Modified Software",figIional Telecommunications Conference, New OrleansrLA.,Nov.(
1981-

(/

105

4.23.1. Name. Requirements,Anaryzer.,

Q. Page 98

.!

.4.23.2.- Basic features. .111e requirements foi. a *system. will .normally be
specified using same formal language which may be graphical-and/ortextual in
nature. A:requirements analyzer can check for syntactical errors in the:.

.requirements specifications and then produce .a useful analysis of the
-'; relationships between systeT inputs, outputs, processes, and 'data. .Logioal

. . .

_ inconsistehcies dr.- ambiguities in the specifications can alsobe identified by
the requitementS:analyzer.:

_
c -

, 4

'7.4.23.3, Information input. The formand. content of the input will, vary
greatly for different requirements languages. Generally, there till be
_requirements regarding what the:system must produce(outputs) and what types
.of inputs it. must accept. _There will usually be specifications.describing the
types of processea-or functions which the system must apply to the. inputs in
order: to produce the outputs. Additional requirements.may cbiicern timing and
volume of inputs, outputs, and 4proctstes as well as.. performance' measures
regarding suchthings as response, time and reliability of operations. The
form: of 'the inpUts to the requireme44 analyzer is spedified by the
requirement a specification language and varies considerably foi different
languages. e cases all inputs are textual, -whereas sane languages
.utiiize* all graphical inputs :from a display terminal (e.g:.., boxes might.
represent processesand arrows betWeen boxes -might. represent information
flow).

.
. ...

4.23.4. Information output. ,Nearly all analyzers ,produce error reports
showing. syntactical etrors or inconsistencies in the specifications. For
example, thesyntax.may require that the outputs from a prodess at bone level
of system decomposition must include all outputs fran a decomposition of that
process at a more detailed level. .Similarly or each system output there
should be a% process which produces tha utput. 'Any deviations fran these
rules would result in error diagnostics.

C
Each requirements analyzer. produces a' rePresentatiOn of the .system which
indicates static;. relatiOnships 'among system inputs, outputs, processes, and
data. Some analyiersaliO represent dynamic relationships and provide an
analysis of'them.Thiv:may 4p-a-Precedence relationshipf e.g , process A 'must
execute bore process:b. Itmay:also includeinformation.regarding hoW often
a given process execute: in order to produce' the volume of output

Yrequired. Some analyzers produce a detailed representation of relationships
between differentdata items. This output can sometimes be used foi
'developing a data base for the system. 4 few requirements anallrArs go even
further and provide a mechanism for simulating-the requirements using the
generated system representation including the perfOrmance and timing
r uirements.

4
4.23.5. Outline of method. The user must provide the requitements
specifications as input for the analyzgr.' The analyzer carries out the
anapsis in an automated manner and provides it to the user who must theh

iicerPret the tesults. Often the user can request selected types of outputs
an alphabetical list of all. the processes, or p.list of all the data

items of a given type ... Some analyzers can Abe used either interactively or in

Page 99.

-a batch mode.- Once the requirements specifications are considered aCceptable,
a few analyzers provide the capability for simulating the requirements.' It is:
necessary. that the data structure and data values generated' from ,the,
requirements specifications= be used as,aput- to the simulation,. .otherwise the
simulation may not truly represent the requirements. . / -

4.23.6. Example. Suppose that a `process, called, PROCESS B roduces. two files
named H2 and H3 from an input-file/name,M2. '(The purpo s of the files are
irrelevant to.the discussion.) Suppose also that PROCESS D/ acdepts 'Files H2
and. H3 as input-and produces-Files -J3 and J6 output. .Inradditior4 PROCESS G
is a subprocess 4r PROCESS D and it accepts Fie H3 as input. and produces File
J6. L. Then the. pseudo specification. statements,-figure 4:232.6-1, might be used:
to describe the requirements: (Note that these. requirements are :close to

_ 'design, but this is often the case.)
.

PROCESS B'

USES FILE M2
.PRODUOES FILES H2, U3

PROCESS D

USES FILES H2, H3
. PRODUCES 0IIIES J3, J6

. -

PROCESS G
.

SUBPROCESS OF PROCESS D
USES FILE H3.
PRODUCES FILE J6

A
,Figure 4.23..6-1 Requirements Specification Statements

Thi.requirements specifications imply a certain -.precedence of operations,
e.g., PROCESS D cannot execute until PROCESS B has produced files 'H2 and H3.
Detailed descriptions of what each prodess does would** normally be :included,
but are' omitted. for brevity. The. requirements analyzer would probably
generate a diagnostic since the statement for PROCESS D fails to indicate that
it includes the subprocess G. A diaghosti,c woad'also be generated unless
there are other' statement's which specify thatifile M2, needed by. PROCESS B, is
available as an existing file, or else,is produced by sane other.process.
Similarly, other processes must be specified-vhiCh.use 'files J3- inci:J6-'e.-e
input7 unless' they are spcitified as files to... be output frbm the system.
Otherwise, additional.diagnostics-would,be genei-Ae:d. It can be seen that
same of thfi checks'are similarto-data.f.low analysis for a computer prograM.

107

:page 100 .

--Hcwever, for large sy.item.s,the analysis of requi.recients beccmes very ooMpliex
requiiements.: for timing and performance are inclUded? and-if timing°73and.

-.--.volune analysis :are to be _carried out. analySis is i concerned with
-`su6h: ihings as.'-'fiow.often various processes mist execute if the syS.tem is to
accept and/or produce,a volumevole of ..tiata.in 'a single given period of

.

time.)

4.23.7. Effectiveness. Some requiremenfs -analyzers. are very. effectiye for
maintaining accurate 'requirements .specifications.---.. For large systems with a
large number. of requirements they are essential. On the other .-hand, ..most

existing.* r.equirements analyzers are rather:expensive .to Obtain and use, and
. they may not be cost effective for development of small systems:

, 4

4.23.8... Apylicability. Requirgments analyzers; .are applicable "for- use in

developing- most . systems They =are partiOularly usefui . for analysis of
requirements. for large and, complex, systems.

_ .
=,-

4.23.9. Learning. Most requirements ana,l.yiers requfre a copsiderable amount
. .

Of training of perso '. - : --.:.'

,..-

to* obtain and use.

ccmpOtest. and 'so ban-

. .

Cost.' Most uirements analyzees are expensiye
They genera.ly -require a large'amouiit -Of storage a
only be used one.large ccmpliters..

- -

4.23.11. References.

() ALFORD, Mack W., "A'Requirements Engineering Methodology for Real-
Time Processing Requirements," TRW Softwre4.Serfes, TRW-SS-78-07,Systems
Engineering and Ihtegratioh Division, September 1976. -

. .

(2) TEICHROEW, Daniel, "A Sury of .Languages for Stating -Requirements
for Canputer -Based Information Systems," The University Michigan,_
.Proceedings .gf .the Fall Joint Computer Conference,1972,pp0203-;.1224.

.A y

`i

I

Page -101
- .

-4.24.1. Name. Requirementa Tracing.

4.24.2. Basic' features.; Requirements tracing providei:a means of verifying..
that -the software of a system_addresses each requirement of that Systen'and
that the. testing of the software produdez adequate-

rand !appropriate responses
to .thote requirements. --. . -

4.24.3., 'Info rmation input. The information needed to -perform requirements .

tracing consists of a set of system- requirements and 'the software which
embodies the capability to satisfy the requirements. .

4.24.4. Informa,tiOn output.: The infoimation outpUts by requir ents _ tracers
'is . the correspondence -found between the requirements of a system and.the
zoftware.that is intended to realize these requirements,.

4.24.5. OUtline of methOd. Requirements tracing generally serves two niajor.
purposes. The first is to ensure that ,each specified requirement of alsystem
is -addres.sed by an ',identifiable element of-the systein software. The second is
-to,-ensure that the testing of that software produces; results which are,.
'adequate -r6spOnses in satisfying each of these -requirements. .

,
A caffincin technique used to assist in making these -assurancesfis the use of
test., evaluation.: matrices. These' matrices repiesent a visual-- scheme of
identifying Which' requirements of a system have- been adequately and
appropriately addressedand whibh have riot... There are two basic forrhs of test
evaluatiorrInatrices. The first forkidentifies a,,smappi.ng.that.exists between.
the requirement specifications of a system anti the modules of that system.

:-'This.matrix determines whether each requirement is realized by sane module in
the System, :and, conversely,. whether each module is- directly associated with a
specific system requirement. If thematrix;, reveals that a requirement is not

---=addressedby any module, then that requirement has probably been. overlooked in
the software design ectiv-ity. If a module . does not correspond to any
requirement of the system, then that module4s superfluous to the system. In
eithei- case, the design of the software mus be further scrutinized, and the-
system must be- mOdified___accoriiingly. - to-- effect an acceptable
requirements-design mapping. -

The and orm of--a -test evaluation matrix provides a similar mapping, except.-
the t-- g existts between .the modules of a system and the set of test cases
performed 'bn the system. This matrix determines which modules are invoked by
each test- case. Used with _the 'Previous matrix,. it also determines which
requirements will be demonstrated to .be 'satisfied by the execution of a
particular test case in the test plan. During actual codedevelopment, it can
be-used.,to _determine which requirement specifications will relate to a
particular module. In ..this way, it is possible to.have each module print out
a message 'during execution of a test indicating which requirement is
referenced by the execution of this,. module.. The code module itself may also
.contain comments about" the applicable:requirements.'

If these matrices are to be used'most effectively in a requirements.. tracing
activiW, %- the two matrices should < -be used together. The second matrix., is
built Prior to software development.. After *0 software has beeri developed-

-. 4 _

Page 102.

and :the 'test. caset have bee:1i; detigned (based upon this matrix), it is
necessary to dete.rmite whither the execution of the 'test plan will actually.
denonstratte satisfactiOn' .of. the requirements of 'the software system. By
Analyzing the.results of each ,test case, the firdtmatrit can be constructed'
to;-.determine the relationship': that -`exists between the requirements andreality.

r. . 3
The first matrix is mainly useful for analyzing' the.functional requiremdnts ofia system. However, the second matrix:Lis also useful in analyzing the
performance interfate;.and-designrequirements of the system, in addition to
the tunctional requirements. Both are often used in support of a more general-.
requirements -treeing .'.activity, that of preliminary and, critical ,design
reviews. This is a procedure useeto ensure verification of the traceability
of all,the above mentioned requirements to _the design of the System. In
addition to the qse... of test eialuation matrices,- these design reviews bay
inalUde the trading of individual subdivisions in the software design,dactiment
back to applIcable speCifications made in the 'requirements doctinent.L This is
a constructive technique used to ensure verification of' requirements
traceability.,

4.24.6. EXample.

a. Application. A new payroll system is to be tested. ong the
requirements of this system is the specification that all'"employee of age 65
or older:

.

.

receive semi-retirement benefits, and

"2. have their social security tax" rate readjusted.

To .ensure that these particular requir7E.10-eilts are appropriately addresSed in
the system software; test evaluation matrices have been constructed and filled
out for the System.-

b. ErrOr.- An `omission in the Software causes the social security t,,x
rate S individuals-of age -65 or older to remain unchanged.

c.° Error discovery. The test evaluation matrices reveal that, 'the-`.requirement that employees of age 65.or older have their.--,social-securit
has not been addressedby the Payroll-:-programt, 'No module in the

. system ..had been designed to resPOnd to thit specification. The software is
revised accordingly to accommodate this rq-quirgnept,_ and a test evaluation
matriX is used to ensue that the added module is tested in the set of test-
cases. for the -system:

.
.

4.24.7."'-.Effectiveness. Requirements tracing is a= highly effectIve tec.htique
in discovering errors = during the design and coding phases of software
devellixnent Thig technique hat proven: to bea valuable aid in verifying the
completeness, consistency, and ,testability- of Software. a system
requirement is modified, it also .provides, much assistance`:. in retesting
software by clearly indicating which modules ;oust be rewritten and retested.
Requirements tracing can be a very effective techniqug in detecting errors

Page 103

early in the software development.-cycle which could otherwise prove to be very,.....
. expensive if discovered later. ., , .

4.24.48. .Applicability. This technique is generally aiiplicable in large or/small system testing and for all tykes of caaPdting applications. However, if...the system requirethents themselves are not clearly specified_and_documented,-----properrequirement-5 rtacing can be very", difficult to, accomplish in.anyapplication.

4.24.9. Learning., .KnOwledge and a clear understanding of the requirements ofthe ;system is essential. More complex systems will result in a correspondingincrease in required learning.
.

. Y4.24.10. .4.2/L10. Costs. NO special tool's or equipment are needed to carry out thistechnique if done manually. The major cost in requirements tracing is thatassociated with human labor expended. Requirements tracing, is often a featureof reiguirements analyzers which are expensg.ve to obtain and use.
)

4.24.11. References.
4 .

."
(1) "THREADS: A Functional Approach to Project Control , "C-anputerSciences Corp., El= egundo, California 975.

(2) HETZEL W.C.,"An Exper tal Analysis'-of Program Verification.Methods;" Ph. D. yt e University if North Carolina 1976.I
ill ,

Page 104

4.25.1. Name. Sqftware monitors.

4.25.2. Basic features. These tools monitor the execution'of a prcgram in
order to lccate and identify'possible.areas of inefficiency in the program.
Execution data is obtained while the program executes in its normal
environment.' At the end of executioh, reports are generated by the monitor
sturnarizing-the-resource-usageOf-the.program.

4.25.3. Information input. Software monitors require as input the program
source code to be executed and any data necessary for the program to run.
Certain commands must also .be _provided by the user in specifying the
information to be extracted by the monitor and in specifying the format of the
generated output reports. These commands may specify:

o what is to be measured (e.g.., execution times, I/O usage, core usage,
paging activity,,program waits), ,

o the specific modules to be monitored, _

o the frequency that dated* to be extracted during program execution
(sampling interval), r

o. the titles, headings, content Of'each output report,
o the units Used to construct graphs,.
:-.16-whether the graphs are to be displayed at plots or histograms.

infcrmatioh output. The output of a software monitor is a set of one
..or more reports 'describing the execution characteristidS of the program.
Information that may be contained in these reports is given belcw.

o A summary of allthe sample counts made during data extraction,
e.g., the number of samples taken where the program was executing.

_instructions, waiting for the completion of an I/O eventl'or otherwise
blocked from execution.

o A Ammary of the. activity of each load module.
o An instruction location graph that gives the percentage of time spent.-
for eachlgroup of instructionsjartitioned in memory.

o A program timeline that traces the path of control through time.
o A control passing stWnary that gives the number of times control is
passed frcm one module to another.

o A wait profile showing the number of waits-encountered for each
group of instructions.

o A paging activity profile that displays pages-in and pages-out for
each group of instructions.,

This information is often_ epresented iribistokrams and/or-plotted graphs.

4.25.5. Outline of method.:- Software monitors. typdtailY, consist of two
processing units. The first unit runs the program being monitored and
collects data' concerning the executioncharacteristics of the program. The
second unit reads the collected data and generates-reports from it.

. .

A software monitor monitorS a program by determining its status at periodic
intervals. The period between samples is usually controlled through an
elapsed interval timing facility of the operating system. Samples are taken

112

, - Page- 105

-..
-,

,
. ..

:from the'entire addrpss range addressable by the executing task. Each sample
may contain an indication of the status of-the program, the load module in
which-ifrtheactivitOas detected, and-the absolute.location of the instruction
being executed. as11.1.s.ample intervals increase samplifig accuracy but ,result
in a corresponding increase in 'the overhead required by the CPU.

I

The statistics gathered. by the data extraction unit are. collected and
summarized in reports 'generated by the data analysis unit. References to
program locations in these-reports will be in terms of abscaute.addresses.-
However; in6rder,to relate the abscaute-locationS to source Statements in the .
program, the reports also provide a means to locate-in a compiler listing the
souroe statement othat corresponds to that instruction. In this way, sources
of waits and program locations that use significant amounts of CPU time can be
identified' directly in the source code; any performance improvements to the
program will occur at these identified statements.

Software monitors. are similar to an ther usbd to monitor. program
execution, test coverage analyzers. -.Tes coverage analyzers keep:track of and
report on the number .of times that certann elementary program constructs in. a
program, have been traversed during a sequence of teSts. During the monitoring'
of a\progr . th tools count-the frequency that certain events Occur.. After
program ex. ion both generate :reports summarizing :the data collected.

these tools serve different fanctions -!they are different, in&Never: --

their tecHniques of gathering information and in the.type of information each
collects._ Test coverage analyzersare used:to measure the completeness-Of a
set of program tests, 'while software monitors measure the resourcsage ot a
program as -.a means of evaluating program efficiency. As .an. evaluation of
program efficiency reqUites consideration of execution time expenditure,
software monitors ntilizestrict timing mechanism during the ccaledtton of
data. This is absent in-Monitors such as test coverage analyzers which are
not used-to evaluate program4pei-formance.

4.25.6. Examine.

a. Application. A program that Solves a _Set -of'-simaltaneous
equations is constructed. The program first generates a set of c6efildients
and a right hand side I'ce the system being solved. If then proceeds to solve
the system and output the solution.

b. Error. rn'theset of calculations required to solve the system, a.
row of coefficients` is divided constant an&then subtracted from another

-row of coefficients. The divisions e.performed-wi a nested DO-loop but
should. be moved' outside the inn sf joop, as dividend.and-divisors,--

- within the loop do mot change. f

c. -Error discovery. The performance of the rogram evaluated -

through the use of a software monitor. Examination of the output reveals that
the program spends almost 85% of its time, in a particular address r.,allge.

Further analysis sha4s that 16.65%, of all CPU time is used by a single
instruction. A compiler listing of the program is,used to locate the sourqb
statement that'generated this instruction, which is found to be the statement
containing the division instruction. Once the location of the ineffidiency is

113

Page:106;!.:-/
/

discovered, it is left to the prograMmer to,determine whether and how the code
can be, optimized.

4.25.7. Effectiveness. Software monitors ate-valuable tools in identiifying
performance problem in iProgram. Their overall effectiveness however, is
dependent upon the quality_of their use.

4.25.8. Applicability. Software monitors can be applied to any kind of
program in any programmigg language.

4.25.9. Learning. There are.no special learning requirements for the use of
software monitors: In order-to use the tools effectively, however, the input
parameters to the monitor must be carefUlly selected in determining the most
relevant ,reports to be generated. Once the:. areas of a program which are most
inefficient have been identified, it requires skill, to modify the program to,
improve its performance.

4.25.10. ',Costs. The largest cost in using a software monitor is that
incurred by the CPU to extract the -data during execution. In one
implementation, extraction of data resulted in an increase of user program CPU
time by 1% to 50%. Storage iequirementsalso increase in order to provide._
memory forstiagnostic tables and the necessary program modules of the tool.

4.25.11. References.

(1) "Problem Program Evaluator (PPE) User-Guide," Boole and -Eabbage,.
Inc., Sunnyvale, California, March, 1978.

-(2) RAMAMDORTHY, C.V. and KIM, K.H:4 "Software Monitors Aiding
Systematic Testing and Their. Optional Placement;',"ErmledingaszE the First
National Conference sal Software Engirleering, IEEE Catalog No.. 75CH0992-8C,

.4September, 1975.

Specification-Based Functional Testing.*

4.26.2. Basic features. Functional: testing' can: be used to generate system
test data fram-the information in requirements and design specifications. It
is used, to test both the overall 'fUnctional capabdlities of a. system and

.funcohs which driginate,during.system design.
T.

Page in

Information input.

a. Data informatibn. Me- techniqUe requires the availability of
detailed- 'requirements- and design specifications and, in particUlar, detailed
descriptions of input-data, files and data, bases. Both the concrete and
algebraici abstract- properties of all data must be described- Concrete
Properties include type, value ranges and bounds, record structures, and
tounds on file data structure and 'data base dimensions. Abstract properties
:include subclasses of data, that correspond to. different -fUnctional
capabilities in the syqtek and subcanponents of compound data items that
correspond to separate saeunctional activities in the system.

b.. Function information. The reqUirements and design specifications
must also Aescribe the different'functions implemented in the system.

'*Requirements functions correspond, to the overall functional capabilities of a
system or to subfunctions, which are visible at the requirements *stage and are
necessary .to implement overall capabilities. Different, overall-functional
capabilities 'correspond to conceptually distinct classes of operations that

. can be carried-out'using the system. Different kinds of subfunctions can also
be identified. Process descriptions in structured specifidationsi for
example- describe data-transformations*which are viaible -at requirements- time

. and which correspohd to requirements subfunctiohs. Requirements"subfunctions
,also occur,implicitly in data base schemata. Database functions are used to
reference, update and create data-bases; and files.

The_desigher of a System- will have' to . invent both general and detailed
functional constructs in order -.to implement the.- functions in requirements
specifications. Structured design techniques-are 'particularly useful for
identifying and. documenting design functions. besigns are represented as-an
abstract hierarchy of functions.* The functions at the top of the hierarchy
denote the overall. fUnctional capabilities of a progran or system and 'may
correspond.to requirenents functions. Functions at-lower levels correspond to
the., functional capabilities required to imaemeht the higher level fUnctions.,
General-design.functioni often correspond to 'modules or parts, of programs
which are identified as separate functions by ts. Detailed design
functions may be invented during the programming,sta system development
and may correspond *to single iinet of code. , .

.

4.26.4. Information output. The output -to be examined,:, ds on ,the nature
of the tested function. If it is a straight inpu function, then

tput. values are examined.. The testing of other classes. of functions may
olve the examination of the, state of a data base or file.

Page 108

-4.26.5. outline. of method. The basiO: idea in :functional testing Is . to
_ identify "functionally. -InOortant" classes of data. The two" most important, '.
classes of data' are extremal values and special values.. Different kinds of
sett of data have different.kinds of\extronal values and diffel-ent 'classes of

---'sPecial values must be used to teat:different -kinds .of functions. -- .

a. .Factional Values. The .:1 lest st kinds ,of -. extremal values are

isssociated with elementary-data itegg. , a variable' is constrained to take
values which lie in the range (alb), then the extremal values are a and b.
a variable is-constrained to.take on.values trcm.a small set of discrete

values then each of those values can bethoUght of as -an,-extremal case:

The construction 'CC extremal cases for ,data structures (e.g. , group data
items) can be more ccmplicated. It is necessary to construct extremal.values
of both-the ccmpOnent eTemenkary. parts of the data structure as well as its
dimensions. The data structure canbe treated as ,a single quantity. In this
case, -s,Then it takes on an extremal value all of its elements take on that
value. It is also possible .to consider its ccmponents as asset of values in
which one, more, or all of. the .canponents have extremal val,ues. The
construction of extronal values for files and data bases is similar to that
for data structures. Files with extranal diMensiobs contain the -smallest
possible and largest possible number of reCords. If' the records are variable

:sized they contain records of the smallest and largest dimensions.
_ . ..

b. :SpeCial.values. There appear to be two kinds of special -values
that ire_ important - for data processing programs. The first is useful for
testing functional capabilities in which. data is moved,: 'around from onelocation to another, as in a transaction-update.prograin. Functions of this
type should. be tested over distinct-sets of data (i.e., values in differentfiles, .records, variables-or data structure elements should be different) in
order to detect the transfer of the incorrect data fron.the_ -wrong b' oe or.into the wrong destination. The second kind of special_data is - for
testing logical-functional capabilities'that carry out different operatio s on
the basis of relationships between different data items.' It is importa to
test functional capabilities of this.type over special values' such:as tho in
which sets =of data that enter into the caparison are.iall the. sane.. - .'..

Additional kinds of special values are important for scientific .programs or --.

. ..

Programs which do'.' arithmetic calculations. They-include zero; positive-and
negative values "close" to zero, and large negative.and positive values.--

Functional testing requires:that tests.:be constructed. in -wilich-the input: data.is . extremal,. non-extremal and special as well. as tests 'that.. result in program..
o u t p u t that* is . extremal, non-extremal o r special.

14.26.6. Example-ft,

Exampl,i:A : -.Testing of requirements functions.
?a. ..:Application. A computerized datin& system was built in which a

sequential file- of potential dates was maintained. Each-client for the-
--iervite offered would submit a canpleted ciOestionnairewhich was used to find

the filie alost,pcmpatilble dates... Certain criteria had to be .satisfied beforeany potential date was selected and it is possible that no date could be foundfarsa client.or 'less than fiire dates found-.

b.. ror: An' of dri in the.rale_ perocesSing logic causes the proz,ramto select last potential..date in the Sequential. file whenever there isJnbpotential da. fors a" client:. '

c, Er . r discoveiy. The number of dates which are foiand for eachclient is a II , on of the output data and has extremal 0 and 5. Ifthe -Vind-n--/ -da :" ctional capability of the system is.tested over data fora client for,whic.h no.:dite should exist then the presence of the error will be-revealed'.

Example 2:: !Testing of- detailed design functioni.

AtplicitiOn. The designer of the .canpiirerisecr dating system in
Example 1 decided to process the file of potential dates for a client byreading in the records in sets of '50)3cords each. A simple function' wasdesigned to compute the lumber of record subsets.

,
Erroll.. The nunber of subsets function returns the value 2' whenthere are =less than 50 records in the file.. ,

. . ..

,c. Error discovery. The error will be discovered if. the deslignfunction . is tested over the extremal case for which is should generate theminimal output value Note: that this, error is not revealed (except by.'chance)' when the program is tested at the requiretnents- specifications _level.It will also not necessarily be revealed _unless the code implementing' thendesign function is tested independently and not-in combination with the restof the system. N
4.26.7.- .,.Effectiveness. Studies have been carried, out which' indicate.functional testing to be highly effective: Its use:depends:on specific'
-descriptions of system input and output data and a complete list::' of all-functional capabilities.\ The method is essentially 'manual. and .somewhatinformal. If a formal language. could be designed for describing all input.-and,,output data .sets then a tool c:ould be used to, check the, completeness of thesedescriptions. Autcmated. generation of -extremal, non-extremal and specialcases. might be difficult since no rigorous procedure has been developed forthis purpose.

For many errors it is necessary to consider .combinations of extrenjal., non-extiemal' and special values- for-"functionally related" input data variables.In order to avoid .ccmbinatorial ,explosions, canbinations must be restrifted toa small nunber. of variables. Attenipts have been made to identify importantcombinations (see references) but there-'are no absolute rules, onlysuggestions and iuidelines.

4.26.8. Applicability. This method 'is generally applicable:

1

Page-110

4.26.9. Learning. It is neces tojdevelop scale- expertise with the
identification of extremal and special- cases and to avoid the ccmbinatbrial
explosions that may occur when combinations of extremal and special values_for
different data ,items are considered.. It is also necessary to become skilled

'in--the identification of specifications functions althbugh this process is
simplified if a systematic approach is followed for the representation of
requirements and design.

4.26.10. Costs. The method, requires no special tools. or equipment and
contains no hidden excessive tests.

4.26.114 References.

(1)

Transactions
EN, William. -E. "Funetional Program

Software Engineers .g, SE-7,-,March, 1980.
Teating; n IEEE.

(2) HCUDEN, William --E.-, "Functional Testing -and Design
Abstractions,"Journaiof Systems and Software, Vol., 1, 307-313, 1980.

,(3) MYERS, clenfora, "The Art of Software Testing, "
.Wiley-Interscience, New York,-1 t5.

Name, sSymbolid execution.
7

4.27.2. Basic features. Symbolic- execution is 'applied to paths thsough
prograns. It Can be used-_ to generate expressions which describe the
cunulative effedt oi the ccmputationS;ghich. occur in a progrk path. It can

- also be used to generate a system of-predicates describing the subset Of the 4.input domain which causes, a specified path to be. traversed. The user is
expectedto.-verifythecorrectness--.ofthe output which is -generated by
symbolic.executiOn in the same way that output- is verified 'which has been
generated. by executing a program over actual values. It is used as a basis
for data flow analysis and proof of correctness.

. ,

Information

Page 111

a. Source
source 'code.

. The method-requires the availability of the program

b. Program paths.
be symbolically- eValuated-
dieectly by the User" or,..
automatically.. .

The :path br :paths. -through the program.which are to
:must -be specii-ied. The paths may be specified
n . sane symbolic evaluation systems, selected

c. Input values. Bymbolic-valties must-be assigned to each - of the
"infmt!!- --variables for the path or _ paths which are to be symbolically
evaluated. Me user may.be responsible for selecting- these values or the
symbolic evaluation system which is used may select: them autcmati,cally.

- Information output.

a. Values of variables-. The variables whose final 'Symbolic values'are of interest *must- be specified.. Symbolic, execution will result in the
generatiqn" of :expressions which describe the v es *P., these vai-iables in-
terms of the dummy symbolic Values'aSsigned to- nput variables.

b. Si/stem-of predicates,. Each of the br -predicateS :which occur
along a programi path constrains the tnput- which causes that path to be
followed. :The. symbolically evaluated system of predicates for a path
desdribesthe subset of the input ,dcmain that causes that path to' be--followed.

s.

'4.27.5.' -Outline of method.

7 '

e.
. ,

a, Symbolic execution. Symbolic values are symbols standing,for sets
-v-aueS. :.rather than actual -.values.- The symbolic execution of a.path is

carried out, by symbolically executing the sequence 'of assignment statements
occurring in the -path. Assignment statements are symbolically, executed by
symbOlicallt-evaluating the expressions sion':the right .harld -side of the
assignment. The ,. resulting,' symbolic value :becomes ;the new symbolic value of
the_ variable on the left hand side. An arithmetic or logical expression is
symbolically executed by substituting the symbolic yaluesof the variables.in
the ,expression for the variables.

. .

The branch conditions. or branch predi s . which tccur. in conditional 4
branching-statements can be symbqically ecuted to form. symbolic predicated.
The symbolic' system of. .predicates -for a path Scan be constructed by
symbOlically executing' both assignment statements and branch predicates during:
the symbolic- execution .of them_ path. The smbolic system of predicates
consists of the sequences a symbolic predicates that are generated by the
execution the branch_ predicates.` , -____,

Page 112

b. Symbolic execution systems. All symbolic execution systems must
contain facilities for: selecting program paths to be symbolically executed,
,symbolically executing paths, and generating the required symbolic output.

Three types. of path selection techniques have been used: interactive, static
and autanatic. In the interactive approach, the symbolic execution system is
constructed so that control returns to the user each time it is necessary toy
make a decision as to which branch to take during the symbolic execution of a'
program. In the static approach, the user specifies the paths he wants
executed in advance. In the autcmatic approach, the symbolic execution system
attempts to execute all those program 'Paths having consistent symbolic system
of predicates. A system of predicates is consistent if it has a solution.

. .

The details of 'symbolic - execution. algorithms indifferent systems are largely..
.technical. Symbolic execution -systems may differ in- other than technical
details-tin the tyPes of -symbolic output they generate. Score, systems contain;
for- example,: .facilities for solving systems- of branch. predicates. Such...,
systems are capable. of autanatically generating test data for seleCted program
paths- (i.e.,--program- input 'data-whichwillcause the path to be followed when
the program is executed over that data).

4.27.6. ExamPle.

a. Application,. A FORTRAN program called. SINIas written to
the sine function using the- 14cLauriseries.

PREDICATES:

(C*113/,6).GE-.E

(X**5/120j.GE.E

(X"7/5040),I.T.E
OUTPUT.

SIN = ?SUM (X115/6) - (XI*51120)
Symbolic output for SIN

ccapUte:'

Figure 4.27.6-1 Synibolic Execution Example-

b. Errors. The) program
,unin.i.tialized variable, the use
,(-1)**(1/2), and the failure to add
the final °reputed sun.

...contained three -errors, including an
-of- the expression- -14*(172) instead of.
the 4ast,,,,term canputed in the. series -on to

4ecvr,
R

?.., ge 11
/

fe.rent-Dath.§ through SIN correspond to different_tunbers of. iterations
the loop in the program that is used to ea-opiate terms in the seities. Thesymbolic output in figure 11.27.6-1 was generated by symbolically evaluating
the path that involves exactlSr_ three iterations of the looP.

c. Erro! dicovery... The errors in the program are diaoVered.: by
"comparing the symbolic output with -the standard formula for the Mc. Laurin:s Ties. The symbolic evaluator that was ilsecL__to generate_the_Output---represents the values- of variables that have been uninitialized with a
question.mark and the name' of "the variable:r.--, -The e.rror. invrolving theexpreSsion .1)**(I/2-)results in tlie generation of the same rather than!alternating igns in the series sun. The failure to use. the. last computed"term can detected by comparing7J,the predicates ;for... the symbolically :evalua path with the symbolic -Output-value for SIN-. '

Effectiveness.-" Studies have beep carried out whicb indicate that
symbolic evaluation is useful. for discovering a variety of errors -but that,
except in a -smaLl *umber of casts, it is not more effective than the' combined
use of other methods such as dynamic and static analysis (1).

-One of the primary uses of -symbolic evaluation is-in raiding the confidence - tof a user in a program. Correct symbolic output expressions confinn.-tothe user that the code carries out the desired computations. It is. especially
useful for nonprc?raniner users.

Applicability. .Tne method is primarikly useful. for programs writtenin languages which involve operations that' can be repreiented in a conciseformal way. Most of the symbolic evaluation
that

that have been built are .for use with algebraic- programing languages such as 'TORTRAN and PL-1.
Algebraic programs involve comput.ations that can be easily represented -using:arithmetic ,expreiaions. It is difficult to generate symbolic output from
progews which involve canpl.ex operation's with -*wordy" representations-such as--

the REPLACE and MOVE-CORRESPONDING operations,in COBOL.

4.27.:9..-3 Learning. It takes a certain amount' of practice to choose paths
parts ,drpaths_for symbolic evaluation. The user must. avoid` the selection of
long paths or parts" of paths that result in. the generation of expressions thatare so large - that they are unreadable. If thesymbolic evaluation system

.teinc.used....gives the user control over the types of expression simplification-
the generation of:the most revealin-expressions.
that are carried out-,-then,he.must learn to use,this in a way that results in

g
. ,

4.27:10: . Coats. StOr-age and execution" time: : Coats. for sytnttolic evaluation
have .been. CalCulated.dri. terms of program size, path iength,. riunber .of,prOgram.
variables aud,thecost of interpreting' (*rather. than compiling .and: executing) at_

_progran path..,'
.

Me.storage required for symbolically evaluating a) path of length. P in a
program with S statements containing N variables is, estimated t.6.te.ori.the
order of 10(2+S+V) (2): Let Cl be the cost of preprocessing a program for .
inteniretation, C2 the cost of interpreting a program `:path,' Cons is.,the cost
'cf checking -ti'consistency (i.e., solvability) of .a system-- of .symbolic"- -

Page 114-
.

. -

redicatest; and , cond., of eval. coda. tion
.sta*ent., 7.Co0,and Cond are eipreSse4 in unity .of - :the =cast of` i terpretirig,a

pcecUtiOn.
.:431rogr*:pattr.10$., estiiUated to be on Ahe. C11:4- 1.

1 -4.;Cohd/400):.J2W::.

fteferenc:eS.

"An.' ''Evaluation of: the Effectilienese'l ofSymboliC Testing," Zoftware-Practice and ExperienCei8; ,1978,

(2) liCWDEN,

and ,Effectiveness,"
Virginia

:(3) it.WDEN'y

Evaluati.on Sy "

William E. ,'-''"Symbolic Testing Design Techniques, Costs
'U.S. Department sze CcomerceINTIS PB=268;517, Sprirield,

Q.

:
William E. ," "Symbolic Testing and the DISSECT Symt?olio:-
.11EE-'11-ansaction.p D.n .aoftwafe Figinegring, SE-3, 1977.

"Symbolic. Exeootf6n and :Pr:4mm §Aoli
19,1976:

(5) CL.ARKE, L:A. "A System toGenerate Test Data'. -and .:Symbolically
Execute, programs," IEEE Transaction't Softiiare Engidgmrina,SE-2,,, 1976.

7.4-7.-28.2:'TBasic features. Test-...coyerage:analyzers monitor-the execution of a
pr:ogram -,during program teiting in order,-to-measure.the'canpleteneas of a: set
of progranl 'tests. Canpleteness is Measured terms' of the .branches,
statements or -other elementary irogram.Constructs whkch'are.used during the
executionr of . the -program over the- tests.

4.28.3. Information input, Test coverage_analyzers use the prbgrams source
code and a set of program tests to generate- test ...coverage:: reports
SophistiCated coverage analyzers may . also- .involve input parameters that
describe _which of, several. alternative coverage measures are to be used

4.28.4.- Information output. Typidal output consisti of 'a report-. -.which

describes the relevant feature of the program which /las been "exercised" over
a sequence of tests. Branch coverage .analyzers keep track of and report on
the number- of times that each branch in a program has been traversed during a

° sequence of tests (1)... A program -brancti,is :any: transfer of control fran one
program statement to another, either thrOugh 'execution of -a control transfer
instruction' or through normal sequential -flow _of control fran one statement to
the next.-

Different kinds of coverage analyzers Will ,report different kinds of
infOrmati.on. -.Analyzers which.melsure coverage in terms of pairs of branches,
loop iteration patterns or elementary: program functions haVe been proposed but
branch coverage analyzers are the most widely used. In,addition to coverage
information,:. - analyzers may also record. and print variable range and subroutine ,

call ,information. The minimum and maximum values assumed .by ,'each variable In
a program, the minimum and. maximum number of times that _loops are iterated
during'. the -executions of a loop, and a eecord of each subroutine.call may be

- reported.

4.28.5. Outline of Method.

a. trerfgh analyzers. Branch"- coverage analyzers typically consist, of
two parts, 'a preprocessor and a. .postprocessor. -The preprocessor inserts
"probes" into the.program far which -test coverage analysis is required.

4 .

The probes call subroutines or update matrices that record the execution df
the part .

out
the program containing the probe. Theoretical studies have -been

carried out to determine the.minimum number of probes required to determine
which.- branches are executed during a program execution. The prdbes may also
record information for determining minimal-and maximal- variable values, loop
iteration counts and subroutine .calls.

- ,

The information which is generated by program.. probes, has ..to be. Processed
before test coverage reports can be generatedr' 'If a'sequence--Of-:tests has
been .carried out; the information: from the different tests has to be merged:
The processing.- of the information generated -by .prOben-duringprogram testing
is processed and reports are generated,by the coverage analyzer postproCessor:

Function analyzers. Function analyzerd are*based on the idea that:
each program construct implements-' one or more elementary functions. Loop
-constructs., for example, involve functions which codetermine, if a loop is to be-
-*entered,. ''.when,.. it is -.to be exited; how ,many times -to be _iterated, the. '.
initial "value of.t.helOOp index 'variable (if present) and.sUbSequent:NalUeS: Of.
the = loop' -index; .1.s. possible to define ccmplete sets_ Of tests for fhese.
funationS _which. will cause `the. function _to :act :.incorrectly` on at least one
test if the function Contains, one of a predefined set of poSsible
errors (2). -coVerage analyzers can be built which .keep track of the,data
over whicti-' constructs are executed; and 'which report On the flirtation4a.
eanpleteness. of the data used in the. exebution 'of the': constructs. FUnCtion
coverage. analyzers . can be constructed using the preproceSsor probi. insertion
and PostprOcesso generation approach used'" for _branch . :coverage

-analyzers.

4.28.6;
..

Apolication:-...-_l_quicicsort program was constructed which..containsl:a.
-branCh fO. a separate part of the Program _code .that carries out -an,-insertion

sort: Thee quiCkSort part'of theYccide branchestO: the;.insertion sort. The
quicksort part of the code branches to the insertion'sort wheneyei ..the sizethe on list to be *Sorted...or kor, a: section of the bi4igin61 list' is :"belcw
sane threshold value.. Insertion 'sorts are.more.effectivethin-quiCksOrts for
small lists.. and sections 'of-:,lists tecause oP.the:smaller constants in . their
execution time formulae.

The correct' threshold value is -11,. Due. to a tyPographical
, ,error the. -branch to the insertion.-sort..is made whenever the length' of:the

origiallal list, Or the -section of the list currently being processed, is' less
than or equal to one.

-

c. Error discovery. "Parts of the, inser ion soft 'code are not
executed unless the list or list section being '.is of length 'greater
than one. Examination of the output.frcm a 'branch coverage analrer Will
reveal that parts of)the program are never -executed, regardles&of e program
tests whitih are userd. This will-. alert and drat/ the attention of the
programmer to the presence of -the error. ,:,`

A

It 16. interesting:to note that.:ts error is-not discoverable by the examination
of test output'" data: alone since the program will still-correctly sort lists.

. ;

4.28.7. Effectiveness: Research''results confirm that test.coverage analyzers-__
are a necessary and important tool for software validation.. Prpiously,
assumed !complete", test sets for productiori software have been found to test
.less than 50% of the branches in a program (1). The use of test' coverage,
analyzers reveali the inadequaCy of.-Such.teSt sets.

Studies indicate -that although test coverage of all parts of _ a program is
IMPortant, it is not enough to simply test all branches, or even all program
paths. A large ,percentage of errors are only detectable when_ a program. is .

tested over extrema]. oases or' special values that are. closely related to the
functions performed.in the program. Mere appear to be ',three situations in-

Page 117
. ,

, branch coverage is effective in finding errors. The first" s that in

which an error in part of a.program is so destructive that any' test that

causesthatpart, oftheprogranr-tobe-executed-will-result-in-incorr-ect-----
output. The second is that in wiiich_ parts of a program are never used during

any. program execution,' and the .third that in which'imexpected-parts.of a

Program are used during sane test. Other kinds of errors reiquire _additional

test selection techniques, .such. as fianctional testing.

4.28.8. Applicabilfty. Test coverage analysis can be applied to any kind

/program in,any 'programing language.
--

4.28.9. Learminik-0 There are no special learning requirements for the use
test coverage analyzers.' Once a- set of tests has been found to be inadequate;
it requires- s411 to.generate data that-Will cause the unexercised features of

the program to be used during program execution.

..tosts:: Test Coverage analyzers- can be. inexperisiire to. use. The

ma expense is -the- capital -cost for- the It is estimated that the'

et:instruction, of,a _test coverage tool requires a level of effort which is more

than that ..requirkl- for a parier but less than twice that effort. '-lhe Major

Part of,test "coverNe analyzer' consists of the parser. 'that is used to
, ,

,detennine probe insertion pants- for a prOgram:

4.28.11.; Refe.rences. =

(1) &TUCKI,, Leon G.; "Automatic, Generation of Self-metric Software,

Zper, 1.971 IEEE-.aympositia Computer Software 'Reliability 994 (1973).

'-(2) HCWDEN; E., "CanpIetene.ss Criteria for Testing._ Elementary

Program Functaons,q Univertifcy. sar-Victoria,-Jkaa: .s2f. Mathematics, DM-212-IR,

May 1980.. ,
. - .

(3) GANNONICaroiyzi,"Error Detection Using Path Testing -.._and.

; Analysis", Canputer, August..1979.

Page 118

4.29.1:: "Name...Test data generators.

4.29.2 .Basic_feathres: Test data-generators-are -tools whichgenerate--teb
data to exercise a target program. They may' generate-data.through analysis of
the progran itself_ or through analysis of the expected input to the'prograra inits normal operating environment. Test data generators may use numerical
integrators and random number.generators to create the data.

hiformation input. Test data generators require as _input:
a. the program for which data is to be:.:gerierated, or
b. -a quantifiable _description, of the lanain of possible inputs to

the program frcm which the test data gendrator is to produce
representative values.

.4.29.4. Information output. The output produced' by test data generators is a'set of data that can be used effectively to detect eirecutiontime errors- in a
program.. It is generally intendedthat such test data cause the, program to be ..
thoroughly, exerciSed - when executed.. It ia also-desirable to have this input
data be representative of the actual data used in real program operation In
order to properly. evaluate results cobtained from Prograni execution.

. .

4.29.5., Outline or method. Test data-generators generate test data" for a
program in a Systematic, deterthinistic manner. There are -two Major methods
urrently used to_genera_tetest-data.- Bak- methods-,-;:can- be---implemented as

y. automated tools.

, .
Onemethod of test data .generation _analyzes the structure ie a program and,
based bpon ^this analysis:, generates a set of test data whi.dt vill drive
execution along a canprehe.nsive set of program paths. This method attempts to
maximize sthe structural coverage achieved during execution with the deriveddata. -11fough this approach ..requires a-detailed, rigorous structural analysisof a `'.program(Which is often quite difficult, if not impossible), tools have
in developed which aid, in the automation of, this analysis. There are tools'*ich can analyze a program. and identify certain structural elements in that
'program. Data is then automatically generated that will drive execution
through each of these program elements.

If it is desirable to increase-the coverage achieied by the test data, there
also. exist .tools which use automated program-analysis to aidin accomplishing
`this. After monitoring program'.execution with the generated data, it may be
possible to.. increase the current Structural coverage achieved : -by;: using
automated tools which assist-dn deterthining how to alter.the..-, current set ortest-data as necessary to cause different branching-conditions to occur. Test
data generators that create-test- data based upon _the amount or structural .

coverage. that the data Will achieve_are-generally very sophisticated -tools.:Much research and development- work currently being done in this area.

k second approach_ to :generating test data is based, upon analysis.-:',:of thepoSSible to a program under real.; operational Udage:-. This technique
:requires more knowledge ..of Software"- for input. data is to be
generated ..-thaniithe previoui However, in thisapproachl the outputgenerated from program.:execution provides, more meaningful-results to'thet User: -"\

during testing. One Such tool that ,utiliies this technique examines the
danain of all possible input values to a program under normal *program
.operation and partitions this domain into mutually_exclusive_aubdomains..___Foreach

'subdomain there le an,asociated probability that a sequence of .abtualinput values, will belong-, to that partitiOn. Data is then generated by
sampling from- each subdanain with the distribution of sampling determined by
the ..subdomain's 'associated probability. Automated tools have been built to
assist in computing these probabilities and in-sampling from the appropriate
partitions.

. .

_This ..technique attempts to mirror the intended operation of a' prOgram by
generating test data which is representative-of its operational input. This
mode of program testing -can be very, useful during a preliminary period of
software operational use.. Using- this technique, reasonably accurate
predictions_ can 'be made on the software's performance in real opera.tion.

-.

Other test data generators exist which Use less sophisticated techniques than
.those ',described above. Many of them generate data based upon commands given

-.:133). the user and/or from data descriptions in a program, such as in COBOL
progrant.s data ,definition section. This is mainly ,a COBOL oriented technique
in which the teat data 'is intended to simulate transaction inputs in a
database mankgenent situation. This technique, however, can be adapted to-,

\ther enVironnents.; ,

E.ican_ple. Test data is -required for a new payroll -program: A test
data -'.generator is used tot generate data normally contained in the paymiLl'
records of each employee on the payroll: The data %fields in these recordsconsists of: ,

loyee.,i.dentification ntantr.4! .

::Employee nanaie
Indicatioti:pr-hotirly or,. ialaried,:employee
talary_rate of salaried)

cr'flourly 'rate (if .hourly). ;-
o Number' of;,-hoUrs worked during last pay period
C Number of tax- exemptions;. declared
t-$ federal Withholding 'tax. rate

SoCial security.-tar:-rate
o Marital status;

4

A file of records containing this information is created bx ;the test data
generator. .-.for each= field in -a record, a' value with the appliopriate data .type
is randanly generated (e.g., alphanuneric for Employee.. Name, integer for
Employee Identification !Anther, real for Federal Withholding Tax Rate).-. The
file .1.,s then

.

refOrmatted. in-an organization that is acceptable to the -payroll
system as input.' _ The generated test data will then be fed to the paYroll
:program to be tested.

. - .. . -,-.,

4.29.7.:* Effectiveness. The overall -_ effectiveness of automat.ed test "data.
generators in use today is generally poor:, Though these tools' permit'. the_
generation of more test data than any . Inman tester colad -Create. Xthereby

... devising more, test caseslca burden is created on the bunian-tester ti;evaluateo --

... .

page 120''

. .all the testiesults obtained .froni pr execution with-the. generated datk. -Unfortunate ly,,, test.data -generatdrs. themselves dO not have a facility by whichto verify these test.resultsaddition,L_MOst_ADfthe-test--datagenerators-7.iin use today :Create data in :: wmanner which is totally insensitive to thefinictiOnal:petuliari.tie.s of A program.A The data may often be .meaningless incontent. It may focus testing:npon,-an unimportant -portion of the program and 1:74.0tallyignore critical portions. A. human tester,- tocreirer often has a 1certain irituition'.about "which- program areas need'to be niorelthor ghly testedthan others and. so creates his test data-,aCCordingly. The -over 1 ignoranceof test- data 'generators in determining:Which data items wo offer- the most;potential in discovering 'errors:is .the major facutor behind . their current.ineffectiveness in-program testing.:rApplicability. Test data generators are generally applicable for anysystem- rettuiring input -data- for operatio.
.....41.29.9. Learning. For thbse test data generators which-only require as inputthe source program _ for which test data is 'desired, very little learning isrequired_to,use..these tdols.. The user _interface with the tool will always bethe same, and the User for' the tool should provide sufficientinformation' for its operation. .Nr those data generators -;which create databased upon the domain of expected inputs to the program, much more_learning isrewired: It is_ necessary to acquire sane knowledge - about 'the applicationenvironment and'Oprational-uSage of the software so that -representative inputdata can be generated:

-11.29:10. - Costs.. Autanated test data generators are generally .quiteexpen,sive. This is primarili due to the relatively irifrequentk use =of thesetools in actual' testing environnents. The initial costs in building, st. datagenerators have very rarely been offset by benefits obtained in us g them.'As yet, the derived,Artillzation of the more Sophi,sticated tools t existhave-. not their Acdoidifigly--. test data generator' are amongthe most costly testing tools that exist tod4. '"-''
.

_4.29.11; References.

"(41)f CLARiSE,: L.A., .04 System to Generate, 'Test, Data and Symbolically: Execute Programs, IEEE Transactions si.wjaiare*.Erjgatriiriamt,.-SE-2,,..September;
ti

(2 FIQJDEN, 1'14. -nmetlictddaogY for Generation of Progi-em Test DataIEEE actions ComouterS,ITC-24; May, -.` 1975.

, "Autaiited,-Generation TesDatasets, I 1975 Interriaiional; Conference I jieliability, LOs Anieles

(4) . `and Data .,,Gen
...liebilgglpi.,;440*1-'' . Workable Quality "Controlt7.?:par I anProcessi

.

:DisteSt;':V.or'18 2 :And. 34,..FOruary and ..March, 1972

tors :and.
.

Wane.; : Tett- sUppOrt

envirorenent_simulation,or_test__bedis a__teit___
site used to 'test a = canponent :of ,Software-. This test site simulate., the
environment sunder- which :the isoftware , normally operate. A test bed
perMits fall control of .inputs'and canpUter-,characteristics, a.11ows processing
of intermediate outputs- wiliout -destroying-. simulated execution P.time, and
allows .:= full test. repe.atarlity and diagnostics. To be effective, the
controlled Circumstances of the test bed-must truly- represent the-behavior of
the system of which the SoftWare is a part.

4.30.3. Information input. The -information input a . *test bed is the -

software for ..which_ a ,testing environment is to be simulated d-and -Which will
later -be installed in a real system.. . = =

4.30.4.' req I 1 :-.4911 oupput. 11.1e- information output b5r. a teit bed are: 'the
results obse' ed through .eiecntidri of the softwareliistalled in the test bed.

)1his informati 4.. is used as <a preliminary means of ,determining -whether- the,.,software win teas .i.nt.ended.:in -its real environment:

Outline, of method. Test beds provide- an environment in which to-
monitor the operation of software prior to installation in a real system. To
be of valne,'thisx'environment must realistically reflect those; properties of
the system-which will iffect or be affected by the Operation.Cr:the:sOftware.-
However, the test bed should simulate only those 'components in -the system
.which the software requires- as a mininirse interface with :the syStem. This will
permit testing to focus only on the software cmponent.forwhich the bed
is built.
Test beds are built through the consideration- of, and-proper balance between,
three major factors:

o the 'amount tftgrea.lism required by the test bed to properly reflect the
operation orsystem- properties

o resources available to build--,d1e:te4 bedl=and -_

o the ability: of the -test bed -to- focus on., on the soft:Ware- being Rested.
. . .

Test beds cane in, many.-forms, depending on the leVel of- .testing desired. For
:single module testing; a test...bed may consist merely of test data and a test
driller.' 1C. test driver is a program -which TeedS"... Input data to the program
module beingtested; causes the modUle to be executed,. and-collects theoUtPut.
generated dUring,;the.-program- execution. ccmpleted, ibiiv.no0-Sin01 version;
of sail:Ware f S to 'be .teited; the test:bed:May also include stUbi. "-k tub isfa
distil* routine that simulates the operation of a:module that"lis invoked. within
a.. test. StubS can be _ as :simple :. as.: routines t_ hat- automatically return on a .

or they can :be more canplicated.and.return simulate&,.results. The final
] version:, ',-Of the software may be-41pked*ith other.-softWare-sUbsystems2.1w,a

larger total system. The test bed for one etemponentin the system maY-Cansist-
of those-- system: canponents.:.whiCh directly interfaCe with'the canponent being

. ,teSte4,

Page 12

As illUstriated in the above examples test *bede epermit the testing f--
component of a ;system without requirini the availability of the full, complete
systein: They mereli-,suOply.'the- inputs required by the software to_-be exec u aitovide'a -repository for outputs to be -placed fon'aparypie:In addition test bide. May contain monitoring,- devices which; collect: anddisplay'intermediate_outputs during progrith:executicon; In this !rays: test 'beds
provide the means of,observing the operation of . software as a component of a.dysteih without 'requiring, the 'availability' of other -system cceponents, which

'may. be unreliable.

4.30.6. Example. . The federal government'has 'exist distributed to all ,AmeriCa.ri
-.corporations new. 'tax rates*. to be impoied on the earnings of all employeesbeginning at start of next year. Due to these new tax rates,: panpani-ha& had to revise its current payroll program so that it will accommodate:_ the
new. .rederal. regulations by January 1.

In order to tesi',this....new progr-aiir; test:Ixd 1.3 being:constructed to simulatethe operation of the system. 'To simulate the inPuteto, this .systeml_atest file.of ..data containing all the., information necessary-- for:the 'system toOperate Created. The 'file consiste,:Of "a. record of information for eachemployee in the Each record contains the following,data:,
_ . ro identifitation- number

o Employee. name'

. .

o ;Indication of -.hourly:- or salaried emploYee
o Sa.lary rate (if:..saleried).

- rate.,:(if
o Amber of .hours :Worked dur ine.last pay period
o'fithfiber of .tax: exemptions declared
o Federal 'Withholding tax

. o security tax rate
o Marital statue--

kieet driver 'controls the eXecutiori- of-the payroll program:: It feeds: --the
ab'oire data tolz., the program. --lithe proper fOrMat.. At the end of program .

tesexecution,the Ciriver11 :is- .the facility of !the payroll.system ; in the ,folIcuirig to, dr': It directs the" output of the payroll programto an f The-outpUt cOnsiste,-Otia: record_ of, data for each company
employee;:: record, dontains. the following information:

o Employee name ,

o Employee social --sec i.tiIgnumber
Check'date

o Total employee less 'deductions_ .

The test driver then. dumps: this information the ,z-outputfile.. onto
harddOpy : device. so ;that . the output can ',. be analyzed and verified for

4..30.7. EifectiveneSs. The ,use test,,. beds-';' has :::.prOVen
effective and widely used (technique to test the operation of

f,._.test drivers; in#part.icular, is one of the most widely
-

4.30.8. ipilicability: 7Ihis method is generally fran single
module th-large system. Ming. and for all types of Canputing. appliaatiOns.

4.30.9. Lea_., 'In order-to build:an effective ,test bed,--it is necessary
to develop a solid understandini.Of toe software and its:dynamic_oeration in-
a sYstem. understandint should aid in determining what parts of the test
bed deserve the most ..Attention.e-during its construction. In addition,
kficiwledge of the. Aynamic nature -of d'. program in a *ystem is-- required in
gathering. aseful ihtermediete outputs -during program execution and in properly
examining. t.hese.results._

. .
4.30.10. Coit. .The..amoupt Of realist), desired- in a test bed -- will be the
largest :factor *affecting -Cost. Building:a .reallAtio test.. bed: may require the
purchasing of new hardware and the developMent of additional -software.in orderto properly aiMulate an.entire system. .1p, addition, these added resources may
be- so specialized that they may -seldan IV -ever be used %again in other
applications. ,this ,way.t.. very sophisticated* test beds may not prove!to he
highly _cost.:efl'ectiVe.-

-4.36.11 Refeiences:
-

1..4"

,-(1). !UPTICK; ft: D. The Advenced4Targeting Study;" SAmSO-;*TR--71-124,
Volum 1, Jime< 1-971.

.....
'...:, Z2) PANALf,. p:',T..:..i. 7Autcmatic _Software Test Drivers, , 'IgEE Canputer,...

April-.i978. .-; .
..

,,,- ,--. .
., -

4.-31.1. Name.- Wa lkthroughs.

BaSic reatures-.':- Waikthroiaghs".. (WT) constitute -a structured: series.: of. . . .
peer-t-reirrews---70f7a7Statem CanpOnent used to-enforce standards, detect errors;

and improve- develogneft xisibilitys and. sy-Stem. quality. . They may be condtidted
chiing any of the-lifecyble phases and mayalso-be. applied to.'documentati4n:
An identifying feature' of :a- WT is that it is generally tireiented -.. by -the,
Creator or producer otthe.material being reviewe&zathenthafr an. independea.
or third Party.- InZaddition.f.- because of the presenter!.s advance , preparatioridad his with the.material, -less preparation by,: other members is,-

. .required.-- =

4.31.3. °Informzition input;

talkthroUgt Package.- -This set'..of 'Materials includes all neceSsary-;
backup documentation -for WT. Examples materials made- available include

.

(but are nottimited-to)- module flow charts, 'system charts; REPO _charts
(or other .high7level,f.representation , schemes), and module Sings. ?_;Other
important materials=may' include sections ' of the._ -Functional' i cation,
System/Subsystem: Specification and Database Specification ap
which pertain,to,the vanpohent-Imder review'. Often,, copies of ap icable
standards are'..:also.part of the WT input.

. .,
b.-- Questions -.List. = Sane organizations which pra tice-a more- -formal

version . of WT require.reviewers to submit the.can ent to the presentee- .

prith to the WT. This eftlabies.,the presentor to be bett r prepared to ..respond
to the question at-the, WT. .

1.4. Informatio.h. output.
;,.

a. liCti.on WT, a list of Vrobi61. and
/

.recorded.. This actionliSt is distributed to all particiriarits.and is used by
the':prod0Oer..(reviewee): as the basis.:fOr'. stibsequent changes to the hanponent.

b. Walkthroughs Form.- ..:7DUriiig the course of -the WTI. ;this- form _ is
'completed by an "individnal ..with ?recording reiPonsibilities:4.; The .forti-;-.

identifies participants 'end:their rekikinisbil:itieS:,-, the agenda for the WT,
decitioh of the NT.C.acdept-Cas-ls ''reyiSe,revise.and schedule another vrr) , and
Is:signed -by* all.: participants at the ti,e`WT.; -

,

c..3.1j :« '_.Out .. ,,of .:::.
.

.,.,.. -..

.... -,- ...,. Th.-
,:. ,-;,a,.. Roles . -.and. '.2esPonsibilities..; The .group ' iiidiiiiduals.,

,..:PartiCiPating in 4:14f-are lUsually,referred to as reviewers..... The leader of the
WT"is called the coordinator: The _coordinator is reaponsible'fOr WT, planning
Organization,7 .and distribution of : 'materials: .l. ,The .111T--,is-.:called: to order,;
Moderated,- and .-Saanarized by the:. coOrdinator:1--. - -. r. .. -.. ' ...: '

:Thel.:00-5ducer (or ar*iesiee) is that individual whose....,module,4i component is to
be reviewed the WT. -Orcidueer)., lenerally
responsible.fOr'-Selecting the coordinator and review: team (in -most? situations*
..sanetinies:smanageinent --may'perform this fUnction) and providing the tit package

Page :125'

..;.materials tct the COoedinator. During the WT. the'-producer initially provides agenerah` description of the module,-then, .leads the "=reviewers- through adetailedi. Stept.hy.nstepdescription "Of-the.module. After the la the producer
::---=shduld-Lobjectrvely;-consider-eVerY-itearciertheaction---1-ist-antreiake changes. to .

.-.histprodUcti as..-he'creeres appropciate*
,

Theireyietters dre.C:Cinpo'sed 6f.individUals fro4Varying backgrounds and fulfill
reslionsibiritied 'based' upori- -their:area of specialization. ,SOnie roles which

are..-:these-bf.feaOrde,r":-and,represen tiiireS of the user, standards
:anci;.,- -.maintenance -Igroups: _ In-:general, these .Partic is are .reSpOtiSiblet for

"- being fainti;ar;withi the:Material. being .presented, submit ing .comments prior to
the -,relfieW,'" emir:listening:and contribOting. during the WT. At the end of the

-revieW each rust Cast- a-'. vote indicating'''Whethef the -mOdule is..."-aQceptableineeds, rev- ision, or is .

Because

_ - -,

, - -of the organization which each,. is representing,; .same- "specific':responsibilities' are associated , Iri. 'additioncOntribUting to the -..the,--recarder ,mUst 'inake 'Written' .- note
participants assembled and the'action' items whicaTresult.fecei the'revied.
The' user representative. often :invOlved during .earlii-IiT's .of a .module (i.e.
during requirements :: anAlySis cesign). His 'restionsibility'-: is to ensure

"'"that thecproposed solution is usable "and does, in fact, --meet-the heeds of his.organization . -. : : .. - ,

The Standards. representative; referred-.t some dour64. ad:a". iistandards- besrei, is :.:responsible fora -'checking;, - being revieWed-,,adheres ..;-
t9.i9rganizeixtOn4standards.:71n -some :casesr.he may be asked to proVide input 'to

-4,srequest .toi deviate 7. tiCal a Standard. .
.,, .:--:"'?" -.,-,, ,... ,..

The maintenance ,;. Tepresentative,i7i..c.teferted -...to- by some :-.::4;sources: as the. Niairitenance "Oracles)! must vii the product "frcin the Standpoint- of the-..grouV.''
:11116.14111 be requiredto maintain the prodUct. Itains which. may '... be of prime

::;,cOncerti:o .,.,thl.S. 'individual are documentation and Program consents, program
,'...furig-tionar..ty or-. Modularity, namingz i ..onventons,.and data .decomposition._'

:' '-'.', .7..".... ..---,:.,,,:'.
b. The ':Process. : '. Many .-organiiatiOns Practice walk-throughs. which

: radically- in '-fOrmality. ,!...The. process descri ,in the foliming
:paragraphs ..falls at the midpoint between these ;extremes:. There are fOurbasicsteps in-the process.

- -.. .

. the.work item.,module is very near-completion
-(including .documentation); -the:Producer notifies management.,and,selects
the WT PartiOtpant:s. :The:lit date is agreed Upon'arid. facilities are
schedulesk; The WT..should:pot goped-2atiours and is best is kepV;f:OAess-
than 1 hour. ',This implies that the work-'4itenf,-.Xs o - manageable size.
Sources ,suggest;, the following guidelines for4Tork Package'

pages ,--Of specifications forf,a requirements WT, .''''
15 structure charts'-(Or HIPO .diagrams) for preliminary or
detailed design.WT,

o; code :for a 'code or test WT.
g .

- .

2. ::Preparaticii. .'Thd 15rodUcer.;:collects appropriate:information for use
at they WT -= and gives -: it to coordinatorfor 'distribution.. Each'..reVfewer-strgies the inateriala
Most sources .estimate that a thaximtin,-.OP 1 hOiir'_Lpreparatibn_by-__tgfi'ids

.
.

3.tdiiikthrough-Meeting.ii- '':After the;cOOrdinatorcoordinator,-opens review, the-
pr, ucer .uses test', data.to%simt2lat.,,e-ttle operation "of _the. component.
Each -specification,:: design phrase; ',oe:line: of,:c6de reviewed, =The
-recorder,idoetinents eanthents'br qpestiont-usng: the ,aatiOn Each',
reviewer iignd the WalkthO:Igh, documenting-: the decision Of thei

..,.,meeting .(accept,produCt.,asipis,-., accept with mOdifidation;
The recorder,providei2a 'Copy of : action- list. to .all :ParticiPantS;and
SupplieS a Copy. oethe Walkthr.Ough:FOrm Manageinent.. - ,

' The prodncer each action item; making prOduct
changes as he'feelS:necesSary., He Mak--decideto implement all, .partor .nonel of the Suggested.-changes. Ro'rfolloW-up is held to ensure-

.-.snggestionS are '1.21corporated; it is assumed- that the producer is in th*::::*.T.,
best position, to =make iinplementation.`dedisiOns.-. :MajOr-items -on the -action list may.:be'.'suriniarized 'at the. next. WI for .the:mOdule. .

ExanipIe. . One week prior ;_td_ completion; ,of a 7.-inodnle'75400 --lines, they prOdUcer '..'nOtifieS- his line: manager of the:need itor..a.WT:.
'Upon managaWnt approval the .piodiker. selects-a. coordinatorCooKina tor (one the. lead -,analysts from the develOpment a standards;representative, (franQUallty Assnranee group), ,a maintenance reptesertetive _(tram the Pr oPrOgram orgapization); ja-_hser.:.reprelietive (frkim:the'lgraivrequesting
the-.'system).:..Three .days .prior,to.'-the inspettion he:notifies.... the ".:coordinator:.planned "' WT and ;.- suggeSted': partiOipant.s, At 'this'tinie he gives

,

the,coordinator copies Of the program, . Affcinding-
systent4eVei-Ilowehart depictitC how,- it.. interfaceS, with other. modules

n
.. a dati,;2

o4OParii: -a :set! of and a section :fedi - the Functional 'SpetifieatiOn detailing. the .user requirement associated Withthe.modiile.

The coordinator notifies the .selected participants, receives.their 'cciimitmentto.: attend . and ..;.diStributes to_each a:.,,CopY of the materials furnished by. the

Each participant reVieWs)the materials: Ihe--;Standards,,repreientatiVe firidatwo instances Of deviations fran publtshed:Ldtandards and. potlfies. thecoordinator (who lif:tUrn notifiebe,' The 'user repreSentativeVerifies;-"that the, code', addresses'-leach--f,,deSigned- ispeCt;', by reviewing the.. ..

4ro§eedingvof 'the previonsdesign,.,WT4 He' is fsatiSfiedrlhat each i--_requirementhas. 'been: addresSed and notifies: the coordinator That he' finds- no errors andfeela that hiS:,presenee't!'..is 170.404,0:.. for the code walkthrOtigh".- The-Maintenance', representative findi'nO-.4.ffinieclirato,:boncerns With :the, code but makesa note-to inquire abohtthe structure
_ .C. 1 :1 -7 z' !:The: WT:'.begini with ,,a,brief'2.,intrOdnetion by the coordinator, who- then -turns Abe

,....review over to the -.prOduder..,-- fie-uses tiie system flowchaf*t sunmary.,the lunotion3 of the module and preceeda go line -by- line ;through,,: the

4

Page 127

code sing the selected test data.: Upon:reaching the lines Of..-coneern to the ,'-standards..:representative :a' brief discussion OccurS:to explain ;the :reasons for'the deviationi* =.fran--..stlindard.- -In this instance, the reviewers' are'-satisfied_that :the?devistions are_justifiedlhereCorderso-notes7ion---theT.:--aeticinlist'and the meeting,..-PFOceeds.' .The.inaintenanae representative Points out: one' lineof highly complex code and suggests that it be broken up*into-two-lesS complex ,Step's. Agreement cannot be. imediatelY reachedi so the "suggestionis added* tothe action list:
- _

At the end. "ol.,theemodule review _the icoordinatOr seeks a decision frau- thereviewers about the module. They agree to give tbeir-aPproval,,,providing. that ,the suggested' changes =are made and-that the producer' Will- further- investigate.the. effect of,.breaking the ccmplex line of..Code. Each signs the
Wa..1cthrough form and meeting-isadjoui'ned.'
. _

The reCorder distributes a`..copy of the, action to all' parbipants.'
prOducer makes the changes he < feels are necessary. He-runs-a be.nchniark of .themodUle with the .ccmplex code and again with the Cbdebrcken: down. ..Sinee ...nosignificant' loss of efficiency resulted, he modifies. the code._ The module .isnow ready, for unit test which may be follcued .by another'WT..

11.31.74 ,Effectiveness. Studies have been -conduct.ed "-which identify thefollowing qualitative benefits of Walkthroughs:

o' higher status visibility
o deereased debugging:' time
'o early dection,of design and analysis err

costly, to correct-i.n:later'develcment phas
o identification of design or .code ineffici
o ensuring-adherence to standards
o increased prbgram readabi4ity.,.

increased user satisfaction
'o-ccexnunicatioia. of new ideas or technology
o increased-maintainability``_ =-

Little' -data. is available , which identifies the quantitative -benefitsattributable.' to, the use Walkthrough.s. -However, ''one. source _estimates thatthe number of .'errors in ;production programs- wasreduced:lw afact,,.or, of term

11.31.8, Applicability. The WalktfIrci. applicable toot- l e or _ 'projects during all deielopment phases andsis not limited by project type or-7.1-
complexity..

4.31.9. Learning. The',Walkthrough-' -cibes-- not require -specie . training4 toimpleMent. ficweyer, experience* has shown that the .-effectiveness of-Ahe
Walkthrough-frid?eases as the,,WT experience of the reviewers increases.

WT requires no special 'tools or eq4Fment «to. implement
The direct'eotts'aie eqdal.toihe expense.' associated. with'theiiimeh resources

;-(1Y*1'dode.::ileadingt Structured Walltthrought andanspections!,*IBM IPTO
-=p0ior-tid7TradeArstem-Ce.nter-,A,o,stbus=60-1-,-ZoetenmeersOletherIands,

March:

12) FthAtij E., 4,0dOigh.7arid Code Iona to R6duce Er
,Program jOeirekopmeuth, IBNAratisailsturnaL, No. 3, 1976.

13}--FREEDM4*,.
:Handbook' Ethnotec.h. Inc.-, 1977.

(4),:*itALY E. -B1 94anageledt of SoftWare:.-. Developaentn, IEEE
Traiftactions AtiBgawarg Erjaigerint May _1977:

, Ben, "Software Psychology, *.Htzaan Factors.' in Computer
'nd lilftiltatiOrl Winthrop.Publfshia r X980; t;

SLACK BOX TESTING see' FUNCTIONAL TESTING

EPUNDARTITALUE-AIVALYSIS: a selection technique in-which test data is . choden-to Xie- along aboundaries1 sot.. extremes of input:dcmain%-(br-output rangelclastes,' data-structured, prpeedure parameterstyete.:_: ChoiCesi'-often ;include.maximum,- minion, and trival values orcparameters:."--;This..flIchnique. is enstress testing.:-

BRANCH TESTINC: a teitimethod satisfying' coverage criteria that uire, foreach-decision point, each -possible branch be 'executed at least: °pee.
,; -, CAUSE-EFFECT GRAPHING: test data selection teehhique. The inputs and outputs

of the prograo are determined-through Analysis of the _requirements.
.set of input...s..is chosen avoiding the testing.';of multiple inputs wbich, cause-.

w; identical. output, . 114

C .6 4.

COMPLETENESS: ..-the property ztioat all neces s iy: parts =. of: the entity in questiOn:.are included: Canpleteness.' of agsprodilet, is often uied .to express the feet_tliat -all requii-enIents have been met by the product.
. ,

CONSISTENCY:. 'the -property of Logical coherency amoung - constitutant
COnsidtency may alsolt'expressed...as adherence to egiven set of ruled,
CORRECTNESS: the extent to Which :software Is ' free 'frail .design_. and coding

...', defec*si: i.e. t au.lt 'free. It 'is also the extent to which software :meets itsspecified :ieqiiretients and ,..-14ger _-objectives. -,.. (IEEE-. Software. Engineering'
.4,-TerminOlogy)i. `'. -. ,--N.9- '-

..,.. ,,,, '.::: . , '', Sr"
.,...,v, . .

.:. DEEitIGGING;-,'T4..he process ;or' correct Mn..m.ctic -and -12giCal- :.errors detected.....
during Cgairig. With the piithary goal, P an :etecuting .piece o codedebu -P'.;:shares' with testing certairrtechniqued-and strategies but differs,sinitS , a d shbe-application and local scope. ... -... .. .-..:..

..FUNCTIONAL TESTING: the e'pplication of- test data throughfunsDESIGN EDTj
incidde. design(see FUNCTIONAL TESTING). extended to

ft.inetionsawell as requirement functions.

9ode'Which sets up an environment and calls 4. module for test.--
,DYNAleilt- ANALYSIS: involves 'execution or simulat.ion of a' 'deVe.lopment...phadeproduct: It detects errors by analyzing the reiponse of a product to sets of

;

F.XTREMAL TEST DATA: test. data that is a the.extremed,- or boundaries,. of thes..danaln of an%input-variable whieh produces:redats at the boundaries of an;
d'omain.

. .
tFORMAI4' ANALYSIS: uses rigorous matheMiatcal techniques to' :analYze thealgorithm .:of . a, solution... The algorithms may be analyzedfor 'numerical
properties,`. .efficiener, _:andOr'eorrectnesd.

Page 130

FUNCTIONAL TESTING.: apPlication ,of' test data .derived fran the skcified
functional requ.irements :without regard to the final program structure. s

. -

INSPECTION.: a manual analysis technique in which the orggram (requirements,___
design, or code) is -examined '.in a very-formal and "disciplined manner to
discover. errors.':

INSTRUMENTATION:" the insertion of additiOnal code into the program in 'order
to collect infonnation About program behavior durilg prograin execution. .

INVALID:'1NPUT (TEST DATA FOR INVALID.: INPUT DOMAIN):
. test data that

outside= the danain of the program's function.

PATH TESTING: 'a testmethod..;satisfying coverage .criteria that each logical'
pa* :through the program be tested.. Often paths through the program are
groupedinto a finite set of c1*eP;'" path from', each class ,is then
tested..

. .

PROOF OF CORRECTNESS: :the use of teChniques of mathematical; logic to infer
t a relation betWeen.-program" variables assumed true at program, entry

Implies that another relation between program variables holds at' rogram exit.

-REGRESSION TESTING: testing of a previously validitect,program_ which has -been '-
modified for extension 'or correction:- . c,

. . .

SIMULATION ,:use of an executable -model .to represent the behavior of an
objebt., Duriiig testing the ccmputationa.1 hardware, the -external environment,
'and even code -segments may be simulated.

NIF-=

SPECIAL-:TEST DATA: test data bas on input values that are litcely to require
special handling:by the:Program.

"!

STATEMENT TESTIM: a test inethod.satisfying the criterion that each statement,
in-a Program be executed at least. once during pr,ogram testing.

STATIC ANALYSIS: :direct analysts of the form and structure **of a product
without, executing. the product.: It may be applied. to .t.hp requiremenis design:
or code.

STRESS 'TESTING: see BOUNDARY VALUE 'ANALYSIS.

---tTUB: special code segments that when invoked by a. code segment under test
will simulate the behavior: of "desigied and specified modules not yet
--constructed.

SYMBOLIC .EXECUTION: an analysiS. technique that derives a symbolic expression
for each progran.path.

TEST-DATA'SET.: set of input elements used in the testing prOcess..

lage:431

...,
/TEST DRIVER: ..:a pr am which' dfrects the execution of..,:apother:Tfrixram- against
a colleation--:of nest data. sets. usually, the ,..-test- 1. driver records".. and
organizes theputput .generated as the tests are.run.

. . . .

VEST HARNESS:. see TEST DRIVER.

TESTING: _examination of the behavior. of a prograM by,-,executing the -program on
'sample data sets.

VALID INPUT (TEST. DATA FOR-1C VALID 'INPUT DOMAIN): test data- that_lies within
thethe domain of the function represented by the program.

_VALIDATION.: determination,of the correctness of the final' progriii-or software
produced from a deVelopment, project with respect to the user -needs and
requirements.

VERIFICATION: in generall.-the demonstration of -consistency, ccmPleteness,and
correctness of the software at each stage and between each-stage of the
develcpment lifecycle.

WALICTHROUGHia manual-analysis technique In whichi the module author..,describes
the module's strpture and. logic to an ,audience .ot Colleagues.-

NOTE: Most of the definitions above are-Trcm:

ADRION,W.1.1BRANSTADIM.A. and CHERNIAVSKY,J.C. "Validation,
and Testing",NBS Special, PUblicaiton 500-75.

U.S. Delis. or COMM. L PUBLICATION ,OR .- 2. Pisrforrning Organ. No 3. Publication Date
..: BIBUOGRAPHIC DATA:. ,..-,-

'REPORT
. -d .. , .,. .

SHEET1tee inkiiicuensi NBS-791P -500703 : :..., September' 982
4. TITLE* AN D SUBTITLE . .

Computer Sci ence and Te
.'Software Nal i dation , VerifiCatioti; and Testing Technique' and' toOl. Reference,-Giii de

.... , . , .,..

5. AUTHOR(S)'.1...;;__:,..:
Patricja_3_,Flowell,Ed Lt.° i= .;

- 6. PERFOFtMING.ORGANtZATION1 (I f joint or other than NeS.-3see:in:3:truitions);w.,-
.. 7. Contralr/Grant No::rjt

NATIONAL BUREAU OF STANDARDS. Boeing 619mputer Services. Co. N879SBCA0102
DEPARTMENT OF COMMERCE - Seattle,' WA, 981'24 TI ype of Reportli`PeriPd:Coyered
11/ASHINGTONi.D.C.- 20234 ::' -:., -.. , .. . - final'- .. . 7,..-..

9. SPONSORING ORGANIZATION NAME AND COMPLETE. ADDRESS (Street. City. State. ZIP)47- .. -
.

:- .

Same
.,,

.
_

10. SUPPLIMENTARY NOTES .

.

.

.

Library ok-Ccaigress Catalog Card Number: 82 -600589''' '..-"' ,

uI. Do cin en t deScribesta comPuter program; SFif85, FIPS Software Summary.;13 aftached:

11. ABSTRACT (0,200-word or lesi factual summary of most fignificant information. If documentincludes a significant
bibliography or literature survey. mention it here) ' .

:Thilty :techniques and tools for validation, verification, and testing (V;V&T) are
de&Cri4ed: Each-, desCri ptjUn. --include the basic. features of the technique or tool;
the-fripUt, the output, an example) an assessment ,iit.the effectiveness, and usability,

.., applicability; an .estimate. of -ite learning time and training., an estimate of needed (
resources ,-'and- references. .

.

.
.

.

.-
.

:?..

12. KEY WORDS (Six*::to-stwelve entries; alphabetical order; capitalize only proper names; and separate key words by_semicolons)
-automated .software tool s; 'dynamic analysis; formal analysis; software testing;
software veilftCation; static analYsis; test coverage.; validation; V.,V&T. techniques;
V,V &T tools. ,

. .

1

13. AVAILABILITY '. 14. NO. OF
,k PRINTED PAGES

-1:1 Unlimited
'. -... .).380 For Official Distribution. Do Not Release to NTIS '," : 1,

[131 Order From Superintendent of Documents, U.S. Governinent Printing Office, Wash ingstOn. D.C. ,

15. Price,
.

$6.00 ,,.

0 Order From National Technical Information Service (NTIS), Springfield, VA. 22161

..

USCOtaiDC 6043..10,

403.'S.,GOV,EliNMENT PRINTING OefiCEI:.i9$2-360-997/22'44-

