®

ED 233 688 - . o a0 g o0 IR 010 778

' AUTHOR .:S':Bbwell, Patffcia‘B:; Ed.” D . o
"TITLE - Software Validation, Verification, and Testing

_ o ~ . Technique and Tool Reference Guide. Final Report.
INSTITUTION ~° Boeing Computer Services; Inc., Seattle, Wash.

SPONS AGENCY National Bureau of~Standards (DOC), Washington, D.C.
PR - Inst. for Computer Sciences and Technology.

. REPORT NO = - 'NBS-SP-500-93 - _ 4 S
PUB DATE -+ Sep 82 ~+ 4 - - -
_CONTRACT - - NB79SBCA0102 _ c) =

NOTE ', =~ - 140p. h :

AMAILABLE.?ROM.'Superintendent of Documehts, U;S.-Govérnment gridtiné
B ,y-voffic?,'Washington, DC 20402 (1982-360-997/2244,

. ._ . 56.00 * - ’ -' o e e N R

PUB’TYPE « ~Reference Materials - Directories/Catalogs (132)

L]

EDRS PRICE ~MF01/PC06 Plus Postage. .
"DESCRIPTORS - *Cbmputer_Program§; Computer Science; Glossaries; .
; : Program Descriptions; *Progrdm Development; *Program
e . . - Validation; *Selection. S w '
IDENTIFIERS *Software Evaluation; Software Tools; *Validation
o : - 'Verification and Testing Techniques .
¥ ‘ o e - . 7
ABSTRACT * .

_ : Intended as an aid in the selection of software’

" techniques and tools, this document contains three sections: (1) a
suggested methodology for the selection of validation, verification,.
and testing (VVT) techniques and tools; (2) summary -matrices by
‘development. phase usage, a table of techniques and tools -with
associated keywords, and an alphabetized _table' of keywords with
associated techniques and tools; and (3) descriptions of 30 o

. individual VVT techniques and tools. Each descriptive entry includes’

an accepted or invented title; a short description of the basic .

features of the technique or tool; a description of the input __°

required for use; a description of the results of the technique or

the output’ of the tool; a brief list of the actions that a user is ,

expected to perform or an outline of method; an. example to illustrate

‘the inputs, outputs, -and the method; a brief assessment of the

éffectiveness.and-usability'of the technique or tool, including

underlying assumptions and difficulties that can be expected in
practice; an indication of the situation in which the technique or
tool is likely to be useful; an.estimate of the learning time and
training needed .to use the technique or tool successfully; a cost

estimate; and a list of additional references. A 35-item glossary .

defines terminology used in the docume;t. (ESR)]

. _ ; ' ' y

-

>~

N

- . 4

************************************f********************t*************

* ' Reproductions supplied by EDRS are the best that can be made - %
* s ‘

from the original document. ~ . *
********************7**
. ‘ \ Lo .

| Computer Sclence

. and Technology - I
'“?Nﬁggggggggagg, [----------------i--i--‘

EDUCATIONAL RESQURCES INFORMATION

";_, e e o menes « © NBS_Special Pu@catlon 500-93 L

received from the person of orgamuuon'.
* originating it.

R Software Valudatlon
R Verification, and Testung
. Technique and Tool

Reference Gwde

PatncnaB Powell Edltor

Center for Programmmg Science and Technology
Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, DC 20234

4

-
(04

EQ‘
- ") owa o ¢ '
U.S: DEPARTMENT OF COMMERCE
N ’ lhlcolm Baldrlgo, Secretary

Nuﬂonal Bureau of Standards
Ernest Ambler, Director

\
o Se,
T

Lol 7 v7F

lssued September 1982
A
S~

14}

-
1

[4
’

" NATIONAL BUREAU OF STANDARDS

The National"Bureau of Standards® was established by an act of Congress on March 3, 1901.
. The Bureau’s averall goal is to strengthen and advance the Nation’s science and technology
and facilitate their effective application for public benefit. To this end, the Bureau conducts
research and provides: (1) a basis for the Nation’s physical measureinent system, (2) scientific

and technological services for-industry and government, (3) a technical basis for equity in -

trade, and (4) technical services to promote public safety: The 'Bureau’s technical work is per-

formed.by the National Measurement Laboratory, the National Engineering Laboratory, and .

 the Institute for Computer Sciences and Technology.

THE NA’I’IONKL‘MEASUREMENT_ LABORATORY provides the national system of
“physical and chemical and materials measurement; coordinates the system with measurement
systems of other nations and furnishes &s'_.scntial services leading to-accurate and uniform
physical and chemical measurement throuéhoqt the Nation’s scientifi¢ community, industry,
and commerce; conducts materials research leading to improved methods of mwsu}emcnt,
standards, and data on the properties of materials'needed.by industry, commerce, educational
institutions..and Government; provides advisory and research services to other Government
agencies; develops, .produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:.
- ’ . .

Abs;)lutc Physical Quantities?> — Radiation Research — Chérﬁicﬁl Phys'iesv—-
Analytical Chemistry — Materials Séience ' |

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-
vices to the public and private sectors to address national needs and to solve national
problems; conducts research in engineering and applied science in support of these efforts;
“builds and maintains competence in the necessary disciplines required to carry out this
rescarch and technical service; develops engineering data end measurement capabilities;
provides engineering measurement traceability services: develops tesf methods and proposes
engineering standards and code changes; develops and proposes new engineering practices;
and develops and improves mechanisms to transfer results of its research to the ultimate user.
The Laboratory consists of the following centers: ' :

‘Applied Mathematics ~— Electronics and Electrical Engineering? — Manuf‘act’uring
Engineering ;— Building Technology — Fire Research — Chemical Engineering? -

THE INSTITUIE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts,
rescarch and provides scientific and technical Tm ices to aid Federal agencies in the selection,’
er technology.to imprave efféctiveness and -

acquisition, application, and use of comp y
cconomy in Government operations in accordance with Public Law 89-306 4o0usC. 759),
relevant Executive Orders, and other directives; carries out this mission_by managing the
Federal Information Processing Standards Program, developing Federal ADP standards
guidelines, and managing Federal participation in ADP voluntary standardization activities;
provides scientific and technological advisory services and assistance to Federal agencies; and
provides the technical foundatign for computer-related policies of the Federal Government.
The Institute consists of the fol owing centers: .

Programming Science and Technology-— Computer Systems Engineering.

‘Headquarters and Laboratorics at Gaithersburg, MD, unléss otherwise noted: -
mailing address Washington, DC 20234, .
JSome divisions within the center are located at Boulder, CO 80303.

»

,.‘ s) -

« . .
. - <

Reports on Computer Science and Technology

The Natxonal Bureau,of Standards has a specral responsxbrhty within the Federal
Govemment for computer science and technology activities. The programs of the >
NBS Institute for Computer Sciences and Technology are designed to provnde ADP
standards. [guidelines, and technical advrsory services to improve the effectiveness.
of computer utilization in the Federal sector, and to perform appropriate research
and: development efforts as fo,undatmn for such activities and-programs. This
publication series will report these NBS efforts tothe Federal computer community as
~. well asto interested specialists i inthe academlc and private sectors. Those wishing

receive notices of publications i in this series should complete and retur’n the form
at the~end of this publrcatron . i - ~

Library of Conére_ss Cataloéﬂard Number: 82;6b0589

\ L.

. v

Natlonal Bureau of Standards Specra(Publlcatron 500—93
Natl. Bur. Stand. (U.S.), Spec. Publ. 500-93, 138 pages (Sept 1982)
CODEN' XNBSAV -

U.S. GOVERNMENT mrnnn%omca ‘
 WASHINGTON: 1982° 70 © - °°

| s

leﬂlbyﬂb&mabowmm u.s. cmmmmmwa,wmm D.C.m
Price $6.00 -~ -
- WdZSpercmtforotlnrthanU.s.nnlllm

ABSTRACT and KEYWORDS -~ © =
'Acmowwnsmms '
“Pnsmcr-: |

Section'} . T

. Section é

~

1.1 Introduction.

Section 2
. = Techniques and Tools
2.2 Selection Aids
8.1~ Selection Matrices’ "and Kéyword Iablés
Section 4 '

4.1 Introduction to Téchnique and Tool Descriptions
4.,2- Algorithm analysis

4.4 Assertion generation
‘4.5 | Assertion processing
4,6 - Cau fect graphlng N C i
4.7+ Code auditor ' . ' . .
4,8 Comparator ‘ .)
4.9 Control .structure analyzer
\\\\5710\\Cross-reference generator

Data floW analyzer

Executlon\time estimatpr/analyzer

Formal reviews\~ .

Formal verificatit 4

Global round off’ analysis\of algebraic processes
Inspections ¢ . ~ :
Interactive 'test aids - - . RS
Interface checker

Mutation analysis

Peer review

Physical units checking

Regression testing

Requirements analyzer .

Requirements tracing -

Software monitor

Specification-based functional testing
Symbolic execution .

Test coverage analysis

Test data generators '
Test support fatilities

-3) b b b b b b -
\D(DNIO\UTJ:WN—‘

BNRRORNNY

EE SR

L
w
o

2.1 - A Suggested Hethodology fbr the Selection of V;V&

~

'éage-iii,‘

Table 3.1-1
‘Table 3.1-2 -
Table 3.1=3 ~
~ Table 3.1-4

Table 3.1-5 .,
Table 4.1-1"
Table 4.3.6-1
‘Table 4.3.6-2

Figure 4.2.6-1
Figure 4.2.6-2
Figure 4.3.6-1
Figure 4.3.6-2
Figure 4.4,.6-1
Figure 4.4.6-2
Figure 4.4.6-3
Figure 4.5.6-1
Figure 4.5;6-2
Figure 4.6.6-1
Figure 4.6.6=-2
Figure 4.6.6-3
Figure-4.9.6-1
Figure 4.9.6-2
Figure 4.10.6-1
Figure 4,15.6-
Figure 4.19.6~1

" Figure 4.20.5-1
Figure 4.23.6~1
"Figure 4.27.6-1

" MERGESORT and QUfCKSORT Canparison ‘
Resource Requirements for Optimization Example v

11

LIST:OF ‘TABLES AND FIGURES

'Requirements Specification Selection Matrix

Design Specification Selection Matrix
Code Selection Matrix -

‘Alphabetized Keywords w1th Associated Tedhniques

or Tool
Alphabetized Techniques and Tools with Keywords
Technique and ‘Tool Description Entries

- Resource Requirements for Optimization Example
- Resource Requirements for Revised Optimization

Example

QUICKSORT .

, 8

Revised,Opt;mization Example

Sort Specification] -

Sort Routine with Assertions’ .
Sort Routine with an Intermediate Assertion
Source Program with Untranslated Assertion
Source Program with Translated Assertions
Boolean Graph -

Decision Table .

Test Cases

MIS Flow Chart

Goto Violation

~ Sample. Cross-Reference Examples
Triangular- Matrix Inversion
Subroutine Count ‘ k,
A Program Structure

3

- Requirements Specification Statements 1\

Symbolic Execution Example b

(og)

4 . a

-

Page V

.ABSTRACT - - .
Thirty - techniques. and tools fe; valldatlon,' vertlflcgtigg and testing
" (V,V&T). are described. Eacg,geqcr:ptrvn‘iuciudes the basic features of the
technique or' tool, the'iﬁbﬁt"fﬁe ‘output, an example, an _assessment of the.
- effectiveness and usability, appllcablllty,'an estimate’ of the learning time
and tralnlng, an estzmate of needed tesources, and references.

.- o - . . - -.:\ .
Keywords: automated- software ' tools; dynamic “analysis; formal analysis;
'software testing; software verification; static gnalysis; test coverage;
validation; V,V&T techniques; V,V&T tools. v - .

* ACKNOWLEDGMENTS . g
This report was funded by. the Nation Bureau of" Standards Institute for.
Computer Sciences and.Technology under Y.S. Department of Commerce Contract
NB79SBCA0102. A The contributors to the report, as submitted by Boeing Com~
puter Services Co.,*were Randy L. Merilatt, Merk K. Smith, and Leonard L.
Tripp, ‘assisted by Alan R. Bennett, John R. Brown, Susan C. Chew, Linda S.
Hammond, William E. Howden, Leon J: Osterweil, and Richard 'N. Taylor. Con-
sultation was provided by’ Leon ‘G. Stucki. Thé views and conclusions ex-
pressed are those of the authors and do not necessarily represent the offi-
cial policies of the Department of Commerce or ‘the United States Government.’

-

‘a .

I

A o S . _ 7 ' ' Page vi
- -, PREFACE"
The following document was originally incl?ded as part of 'a document titled
. "Computer Software Validation , and Verification: A General Guidelire", The
- chapter on techniques and tools was extracted to be published as a reférence
marual; explanatory material was.added at the beginning; . reviewers' comments
were incorporated into the final document., The document, being prepared untler
coptract to ‘the Institute for Canlater,Sciences and Technology, is in ‘the
public domain and is, therefore,. not subject to copyright. Acknowledgement
and thanks are-appropriate for theffollowing reviewers who donated their time
and energy to eritiquing- the document: : Yoo

" John B. Bowen .= _ . _ \
.Martha A. Branstad . . '
Lorraine M. Duvall : '

- €arolyn Gannon. .

- Herbert Hecht
Raymond C.-Houghton, Jr.

Sukhamay Kundu
Melba Hye-Knudsen
Frank LaMonica

. David Markham

. Gerald-Peterson , ‘ L

Harlan K. Seyfer . ') A
Jim Skiles ‘ o ’ . ¥
Marilyn J. Stewart .
Al Sorkowitz, , >
Susan J.. Voight = . :)
Natalie C. Yopconka
Saul Zaveler '

Comments pertaining to the technical content are solicited and
directed to: <) .
© . Systems arid Software Technology Division
‘Room B266 Bldg.” 225 T
National Bureau of Standards _ , -
Washington, D.C. 20234 - ‘ - . : _\

L

14 Introduction.® - T : -

‘The Institute for CompuBer Sciences and Technology (ICST) carfies out the
_foilowing .responsibilities under P.L. 89-306 (Brooks Act) to improve the -

Federal Government's management and use- of ADP: . v , o

.. : : ™

iy R - : P

S o “devel‘ops'ngeral autamatic data processing standards§ '

. O provides égenc;,es' with. scientific and technological advisory services
.relating to ADP; : : - ' e ‘

o undertakes nééessary research in camputer sciences and technclogy. °

In-partial fulfillment of Brooks Act responsibilities, ICST issues Special
Publications (S.P.). This document is a reference guide for techniques and
tools which may be used in conjunction with a validation, verification, and
testing (V,V&T) methology. _ - . L

'n-né document consists of three sections::
6 A suggested methodology for the selection of V,V&T techniques and tools.

) © Summary matrices by development phase usage, a table of techniques and tools
with | associated keywords, and an -alphabetized table of keywords with
associated techniques and tools. T s ')

6 Description of 30 V,V&T techniques and tools.

This document can be used independently as'a referemce or can be used in
conjunction with "Guidelines -on- ' Planning for Software Validation,

V_grif ication, and Testing" (to be published as a FIPS PUB m 1982)".
A glossary, ,inc;ludeh as Appendix A, defines terminology used in this .document.

* L. . - L . . B : . o
2.1 A Suggested Méthoddlqu for the Selection of V,V&T Techniques and Toqls

- The FIPS PUB Guidelines on Planning for Software Validation, Verification,
and Testing” (to be -~published) explains: the role -of V,V&T in software -
‘development, stressing an integrated approach. V,V&T planning by identifying
goals, determining factors which influence the V,V&T activity, selecting V,V&T

“techniques and tools, and developing a detailed V,V&T plan are explained in
detail. This document is particularily helpful in the selection of techniques
and tools. S ‘ L

Selecting techniques and tools begins with the determination of a goal - a
' specific, measurable outcome. example, 90 percent statement execution is

a goal. Once a goal is determin&l, the selection. matrices (section 3) are
utilized to see if a technique or tool is applicable to the select_eg, goal.
For the example above, s&atement coverage “is checked during code exegcution,
Referencing the code selection matrix, one finds statement coverage. Next, .
“the alphabetized keyword table (section 3)“is searched for the. appropriate
keyword(s). ' For -the example, the tool for statement coverage is found to be
. : . A, P

.

N . v -
. * A

.)‘.-

. indirec

. The pages that follow contain three selection matrices.

P S . .
& o .
Tk ! R .- R

.\;\ .. . R D - \ ._. _‘ ‘,. . A N ,‘ Page 2
‘. S ' -7 . .

- -
~

test. coverage analyzers. The 1ast step is to reference the- technique and tool .
descriptions "(section. 4) q éonfirm’ ~that the technique. or _tool” does

" accomplish the desired goal For. the example under test coverage " analyzers,

%he statement "Ccmpleteness is measured: in terms of the branches, statements .
r

, other élementary constructs which are-used .during the execution of the .
- -program over the tests", confirms that,. a- statement coverage analyzer measures
'the completeness of statement execution. - . , L

22SelectionAids S T e

Tables 3 1-1 3 1-2, and 3 1-3 separate techniques and tools into the broadly

defined software development phases. requirenents design, and code.

The purpose of al selection matrix is to suggest possible techniques or - tools

for a rf in . a development phase. ."The goal is stated. (directly or
y) in terms of -the form or. content of a development product

‘(requirements,’. design, code).} The matrices list V ,V&T techniques and tools

applicable to analyzing the form or content of a product. Specifically,

.. manual and~automated static’analysis techniques and tools aid in analyzing ‘the

form.of :each. of the three products. Dynamic and formal techniques and tools

’ aid in analyzmg the-semantic content of each of the products.
o Table 3 1-4 lists, alphabetically, the keywords and the associated technique

“or tool. . It may. be used to identify characteristics of the technique or tool

' from one of the three matrices in Tables 3. -1 3.1-2 or 3.1=3.

Table 3.1-5 -1lists each’ technique or tool described in section 4 with
applicable keywords. It may also be used to identify. the characteristics qf a
“technique, or -tool. o R

The reader with sufficient knowledge may skip Tables 3.1-1 through 3.1-5 and
go directly to the technique and tools section.

ST

3.1 Selected Matrices and Keyword Tables

»Table 3.1-1 < Requirement Specifications

Table 3.1-2 ~ Design Specifications o~ o .
Table 3.1=3 = ’ . ' . .
and ‘ ' '
Table 3.1-4 - V,V&T Techniques and Tool Keywords) :
Table 3.1-5 - ¥V, V&;‘T Techniques and Tool with Keywords - ~
¢
] s ‘, 7.

Ja
EY

ANALYSIS TYPE . AUTOMATED TOOLS =~ MANUAL TECHNIQUES © REVIEWS

gtatic _"-Reqt.ii're\ments = Requiremen_ts‘ .- Inspections
o - tracing aids tracing aids =~ - Peer review * -

< 7 (Note 1) " - . .(Notes 1&2) - Formal reviews ..
© " Cross-reference’ Inspections L e

. . Data flow-analyzer - Selected manual
‘ - . application of- -
- -techniques-listed

T o . in column one *
. . L S (‘Note’,v3) - s i
Dynamic "~ Requirements 'Assertion generation.” .Walkthroughs
. - analysis . + (Note 4) . Formal reviews
_Cause-effect " Specification-baséd .
* graphing ‘ functional testing

Assertion generation . (Note5) = =
Data flow analyzer - Cause-effect graphing

_ ‘ (Note 5) E
. Walkthroughs .

.

Formal - ° Assertion generation Formal verification
. (Note 6)
1) The requirements indexing and cross-referencing schémes are egteplished‘and;
documented as.part of the.requirements specification. . ¢ \ . T

2) Requirements tracing may be pérformed through a totally manual process.
3) Certain techniques may 'be ‘manually applied to small applications or on
: selected portions of a given specification. This requires planning .and
° and preparation. The larger the amount of information béing analyzed,

- the greater the probabjlity -of "error. - -
. 8) ‘Assertion-genération is performed either for later analysis using an _
assertion processing tool, or- for manual analysis as an adjunct to testing.
5) This is a test data generation technique/tool: . . .
6) Axiomatic specification is necessary to support analys;sb

TABLE 3.1-1 -

SELECTIQN MATRIX I . - REQUIREMENT SPECIFICATION e
§ , ' '
] . v
[4 ™»
B "". .
\ 1; S '

-G A
. ‘f. » oo
- - Lo
X . . . =
\ RS i : o
. R o e - Tl .) B PR s
L @ . T s T . Sl : b
- L T e L R . .
S A P Lt Ty L el . P : u K .
S e _ : . : ~ Lot e age: L
L o PR g . -~ . B - . ~SAL B T . . .
) et : ’ v - ¢ . TN e ' C R Loy .

=

" ANALYSES TYPE, AUTOMATED TOOLS : - MANUAL TECHNEQUES - ‘REVEEWS

Static -. .. - Requirements .- .-’ﬁequix:ezﬂentsf; %+ . "Inspections %

: o . bracing aids . ' tracing (Note-1) Peer review. - *
o Cross-reference™ - " Inspections Sl *Formal réviews - -
VU --Data flow analyzer - Selected manual BV >

- e : B : T ap'plic\atj_.on of- "o
e . .~ . techniques listed in .~ "

. L e colum ong- =~ . - . ..

ST T T -t (Note) T LT _

- Dymamic . Cause-effect . - . -Assertiof geheration -“'Walkthroughs . .
S graphing’ . . . (Note3) - . . Formal reviews
. - - ‘Specification-based ' . SRR

‘functional testing -

L ' _ IR (Note)" =~ =~ -~ ... ' .

_ o B L Cause-effect graphing) ‘% o
S T Wetewy o o T
- . Walkthroughs

Formal-, .~ -Apalytic modeling of Algorithm analysis
" -Software designs - Formal verification . °. : ,

' _(Note6) -~ "~ . (Notes 7¢8) -~ . . - "

Global roindoff SR AT : -

“analysis’of - T o

. ‘algebraic processes - <. . R} -
,.(Note 5) o :

- Formal verification

- L " (Note 8) » R

1) Requirements tracing may be performed through a totally manual process.
2) Certain techniques may be manually applied to small applications or ‘on - "
- Selected portion® of a given specificatioh. This requiges planning and .
. Preparation. .the larger the amount of information being analyzed,- - .k
.. the greater the probability of-error. = T I ’
3) Assertion generation is performed either for later anadysis using an-

- assertion processing tool, or for manual analysis as an adjunct to testing.
4) -This is a test data generation technique/tool. ~: = - < - &7 : _
5) Analyzes an algebraic algorithm,- independent of ‘a givenslevel of” Rl

- specification and; therefore is ‘applicable to a design or code,le el ... o+ "Hh*

-

¥

J

e

.development of, a model; which is then run.

ation:is'nécessary’to support analysis. = - = : \.?.‘.f
tion Is-a primarily ‘manual exercise:though supporting tools

) o, TMBLE3.4-2 . o oo i
o . SELECTION MATRIX II * 'DESIGN SPECIFICATIONS U
e . ' . ;‘ R “,‘ _ '.\‘.L‘, - L
- ‘ ‘ . I ". o 7 —
~ - o ‘. N A

REVIEWS®

' '.‘._Sf#tic o 'rl.i"--v-,Requiranents equirements et ."Inspections e
owh 0 tracing.- +-tracing aids, (Note 1) ‘Peer review 7

, Cross-reference -7+ Inspections: " . : I-‘ormal reviews:
— Data TIow anaIﬁer = Selécted manual - _ EEEES
: Control structure - : application of. - . L
. analyzer 3 - techriiques. listed in‘ -‘ - e -
7. Interface checken» ; colunn. one - . o T ed
‘.. Physical umits . ‘" ::(Note 2) . . .l :

L ,j;,-Test data generator A e

T __-t.—"fAssertion processing ;_Assertion generation : Halkthr:oughs
. Test data: generators _*(Note 3)- I-‘orma] reviews
- Test support o v Regression testing .
. facilities - -7 - . .. (Note 6).:% * B
--w° Test: coverage ©. - Walkthr . - . .
e A | analysis . s T R P
LT Mutation analysis e Seo T T e

v',‘(’_.

S Note By o e
© ot ¢ . Interactive test aids : ~ L
, * .+ Exectition time - :

e estimator/analyzer(Note 5) Lt e
. Software monitor(Note 5) - a R

;7. Statementcoverage ... L R e
.-~ 77 Symbolic evaluat:kon ' R

I-‘orml “;_;‘; :"IFormal verification S I-‘ormal verification SRR S

1) Requiranents tracingmay be performed through a totally manual process.
- 2) Certain techniques may be manually applied-to-small-applications or-on.
S a‘ selected portions of - a: given specification.’. This requires planning and
- and preparation. . Thelarger the amount of information being analyzed, .
' the greater the probability of error. .. S
3) Assertion-generation-is: perfomd either for later analysis using an-. o
7 assertion” processing :tool, or for: marnual - analysis as an adjunct to testing
e ,;,.,ll) The: objective of mutation analysis is to help assess the sufficiency of the
ST test data.: L
}a‘S) Assist in- testing the satisfaction of performance related requirements N
‘' 6)_Testing. after modification of .tested software, i.e.; retesting.-= L
“7) Formal verificatien isa primarily manual e;ercise though supporting tools o
have been developed :
S T “THLE 3 1-3 Lo LT AR
,’ - SH.ECTION HATRIXIII (1)DE:f et T 5 .

Co L - ,-: T . A . . o X .
L S ", .) L) . e
e T Sl e \u;» T \.‘_‘) LT S L .

A
b L . e B - . oL Y e

- .accuracy analysis

S 'algorithm analysis o

~-algorithm efficiencx, e S " algorithm<anatysis™ "
' - amount. of-Space (memory, disk etc) used * algorithm analysis.
-, . agiount’ of -work. (CPU- ,
,____assention_violations T - - assertion .processing

bottlenecks <
boundary test cases

operations) done .: ‘algorithm analysis |

, ;_7::4 & . " analytic modeling of -
e w0 TireUUsoftware designs B
' o .specification-based functional_ .
" testing . L

.~.'t e

e branch and path identification o | . contro‘l structure analyzer.A -

 eall graph

-

" bramch testing

vcheck 1ist
- code’ reading

conpleteness,of test data' At ‘.. ‘mutation’ analysis ’

tional upper.

. consistenc . in ccmputations © . - -physical units testing |

// " .7 - ., !inspectiohs ..

L - test coverage analyzers :
B :'. - control. _Structure analyzer R

Y

v, .+ peer review . <.
bound howfast -0 . algorithm analysis - -

- correspondence between actual and formali ' _'.;interface checker IR

: paraneters -

‘data; character.istics SRR ‘:{_ A assertion generation e 7
dynanic testing of” assertions” '_ e _" .. : assertion. processing
- enviromment simulation . - it ... test-support: facilities .
- evaluation aloggrprogram paths I ‘symbolic execution C
ing S

"execution moni

execution sanpling
“execution. support

A . software monitors . »
oo software.monitors .
' i - test support. facilities-

expected.inputs outputs and e ~‘assertion generation o
.intermediate results. _ L

- expected. versus”actual results L comparator

file (or"other -event) sequence errors o data flow analyzer

- formal specifications . - o UM assertion generation .

" functional interrelationships . I requirenents analyzer

* global information flou s t-..c . interface chécker .

go/no go’ decisions

v -* formal reviews

‘*hierarchical - interrelationships of modules : control . strUcture'analyzer LT
information flow consistency Coe = requirenents analyzer. .:.: e

- inspections -

" 'peer review -

- inter-module structure S T cross-reference. generators

loop invariants
‘manual . sinylation
module. invocation

| mmerical stability =

s L

S _......'.assertion generation
o " .. . control- structure analyzer
o ,-global roundoff analysis of
e algebraic proee;ses A
e : L

CTABE3. L

VV&TTECHNIQUEANDTO(I.KEYWORDS

B i s R A R " L e

Sa

. path testing S
- performance. analysis R
physical units

portability analyzer | : L
—progran—execution—characteristics———

1 o
proof of correctness
. ‘regression testing ,
requirements. indexing~ - i
- requirements specification analysis
' requirements to design correlation _
‘requirements walkthrough :
- retesting after changes i
. round-robin reviews .- - -
: rounding error- propagation

JER

' e, -

's L e

_’.-.

A '_selective progran execution
.. standards -checker - - - »
statement coverage
tatement tésting
tus reviews - 0

stem performanoe prediction

technicalreview '
. test. case. preparation (definition ang -
» . specification) - &
' test data generation

»

\.] N

Z.;;"te'st hamess R \ .
. testing thoroughness . = .
.. type checking S
" uninitialized- variables T
unused vafiablés -

.+ variablé.referénces : ..
- - vapiable" snapshots%racing AN :
» verification~o,f algebraic ccmputation

.)i

f

-~
-

. 7-assértion generation

-

e

N .
.

v

test coverage analyzers‘ ‘

_requirements analyzer

code auditor-.

‘*—‘execution—time"estima'tor/_ A

- ‘analyzer - .

. .software monitors =~
- formal verification .
..comparator . .

: requirements tracing

. cause-effect graphing

-

requirements tracing

"~ requirements analyzer
~ regression: testing
. peer reviews 3}

. code_auditor

- .formal reviews -
+ - analytic modeling of
- software ‘deésigns

global roundoff analysis of
algebraic ‘processes . - "

- -

interactive test aids.
test coverage analyzers

.test coverage analyzers

‘peer revieu .
test data generators :

mutation analysis Ve
-specification-based mnctional)

testing

. test support. facilitieg

" interface checker -
. - data’flow analyzer
. .interactive test-aids

R

test coverage analyzers.

. '
.‘4'.
I

data flow analyzer

r o

cross-reference’ generators)

; symbolic execution

B

L .peer reviews

e TABLE 3 1-4 (Continued)
V,V&T TECHNIQUE AND TOOL KEYWORDS

'.'5

oy

R Py . : L.

SRR S ..._.:,._.._—...._,_m S S SEE Sy T o, Page 8

Algorithm Analysis - =~ = = algorithm efficiency . '
T oo T amount of work (CPU operations) done
- : - L. computational upper bound, how fast :
‘amount of space (memory, disk, etc «) | used
accuracy. analysis ’) o

: Analytic Hodeling of - system performance prediction S
SoftwareDesigns - -+ bottlenecks - T

Assertion .Gen_eration_' .. formal specifications .
: C . data characteristics -
s - physical units
s S loop invariants = . -y
’ . B . PRI . expected inputs B
- .outputs and intermediate results

"'Assertion Processing ‘ assertioréiolations o
e dynamic tingofassertions LT .

'CausegEffect Graphing - test case design using formal specitjication
: requirements specification analysis

"Code }.tor - standards checker ‘
‘ D portability analyzer

Canparator o S regression testing -
C ot expected versus actual results

Control Strucﬁ_n-e.-nnalyzer:-.. - eall graph ' .
: CE e ' , . hierarchical interrelatienships of '
I o . modules ' : _ o
T T module invocation . R
: S _branch and path. identification
Cross-Reference Generators - " inter-module structure '
' Y e e variable references T
Data Flow Analyzer . - uninitialized variables oy Y
e RPUR Lo * . unused variables - e
B s ' file (or other event) sequence errors

Execution 'l'ime Estimator/Analyzer program execution characteristics

I-'orml Reviews . go/né go decisions
: . status revieus

' I-'omal?e’riﬁc‘ation e | proof of correctness
- .. TABLE .,.1-5 | A. e e
,vumous/mwimmwoms S

16

" Global Roundoff Analysis of
Algebra:lo Processes ' '

: Inspections

L v '.' \
| _.f.'check list ,

/\ \

\

\

- . . AN . i . P
e ot - . s ’-'" ~ . - el - .’ et e
. : .. e

nunerical stability T
rounding error propagatibn o ' . s

Interactive Test Aids B

InterfaoeChecker S

. Mitation Analysis -
Peer Review
" ‘Puysical Units Testing

".Regression Testing
: Requirenents Analyzer :

"Requirements Tracing .

_' Specifioation-based Fxmctional

Testing | DY |
Symbolic E_xec_ntion P

5

Test Support Facilities .

selective program exeoution
Lo '_,._variable snapshots/traoing

'icorr\espondenoe between actual and forml

~a —-)‘3‘

parameters - S

" “type checking
- .,global information flow

“test” data\generation .

"technical 1

: retesting after changes e

completeness of test. d%ta o -

code reading\{ R
round-robin reviéws Booel
walkthroughs

inspeotions

<

consistency in canputatibns

functional interrelationships

" information flow consfstency '

. requirements walkthrough '
"requirements indexing *

. _Texecution, sampling
_.execution mnitoring
o program execution charaoteristics

boun test»

performance analysis.

/\ s .)
\ . BRI
. "‘,.':

requirenents to design correlation '

test data generation - N‘\ _' _" v -

,‘ | .evaluation along progran paths
. verification of algebraic canputation

\

) test harness s
execution support

enviroment sinnlation

TABLE 3 15 (Continued)

EEEN

. v',il&'r mcmuouz/m WITH xmzonns

Iést_Coveraée.Analy?ens'i;g

N mmm /.

f) branch testing
. - statement testing T
- statement coverage = N
path testing - .

Page 10

'f;rest Data Generators

-

EU .

. V,Ver TECHNIQUE/TOOL WITH monns

testing thouroughness

- test case preparation (definition
"1 and specification) _

-f manual simulation

' T!BLE 3 1-5 (Continued)

v

B

a

'R mmci:ucrxon T Tscaumus AND TOOL msscnm*:ons R P

‘Each technique and tool description is alphabetically presented in-a standard.'
format, The following table describes the entries for each where "n" is the

: section 'number o _ R -
K 7% Py O .Nane - e — -
This is the accepted title, or when an appropriate one does not exist ‘an
-~invented title. s N _ S, ‘ . e

B.n.2. Basic Features | R - .
-A short description of the technique or tq.oi L

4.n. 3. Information Input -. :
A description of the input required for use._

4.n.4, InformationOutput e - .
A description of the results of the technique or the output of ﬁ’ne tool.

$.n.5." Outline of Method Vo . ' | | .

A brief 1list of the actions that a user is- expected to perform.

.~

4.n.6. Example . | ' g .\ e

An example to illustrate the inputs outputs and the method.

ll. oTo Effectiveness \‘ R
A brief assessment-of the effectiveness and usability, including underlying
assunptions and difficulties that wn be expected in practice.

4.n.8. - Applicability S ' '
" An indication of the situation 1n which the technique is likely to be ‘useful.,

l' l

"’“onogo' Lemg—“—*;“" b :

-

An-estimate of the learning time and training needed to use the - technique or .

_.tool successmlly. ot T . , ~ .
4.n.10. Cost. s e
An estimate of the: resources needed.
4.n.11. References) N I
_Sources of additional information. e
CTABLE 8.1-1 . LT s

TECHNIQUE’. AND TOOL DESCRIP‘I’ION ENTRIES- »'

-l

_ e e e Page 12.
'.".JAP N . o ,-. . : .’.‘.'. ¥ |

R -5 A Name AlgorithmAnalysis’ S S Sy

. %.2.2.. Basicfeatures. ..Two phases ‘of . “algorittm analysis can be
. distinguished:.. "a::priori:: analysis® and."a: posteriori testing.™ In a-priori. -
analysis a-function (of scme relevant parameters) is devised which bounds: . the

~+ algorithm's use of time and® space to campute an acceptable solution. The .
—— —analysis assumes a model of computation such -as: , a . Turing- ‘machine, . RAM
. (random. access machine), general ‘purpose machine; ete. - Two: general kinds™of
" . problems are usually ‘treated: (1) analysis of a particular algorithm; .. and
- (2); analysis of a class of algoritms. In a posteriori testing actual -
. < Statistics are collected about the algorithm's consumption of time. and. space
' while it-is exécuting. . en T [T R P

4.2.3. Information'imput. . . . |
. "a. Specification of algorithm =

- .

Ll e N

'b. " Program representing the algorithm .
_4.2.4, ,Informatibn output. .

~a. Apriori analysis = I = .
* Confidence of algorithms' validity. ST e S
Upper and lower.computational bounds T IR
. Prediction of ‘space usage @~ @<= . , T
" Assessment of optimality. . - ' e

b..A'posteriori testing *.i:- .
. Performance profile el

4.2.5. Outline of method. , -
a. A priori analysis

Algorithhls éi-e analyzedwith we"ﬁ&ﬁibn of improvmg them, if.'possibié,;i;;hﬁ
for choosing .amo several available for a problem. 'Ihg\ following criteria .. .

‘may be}used: .

’

Correctness ﬂ ' S
- Amount of wdrk done SEEPN o e T ST
- Amount of space used , e L L s
- Optimality T : g
Aceuracy apalysis . - ... L0 T T
- Lorrectness. There are three majqr steps involved . in” ‘establishing the
. correctness of an algorithm. . 7 . . e ERL e e

(1) Understand-that an algoritim is correct if, when given a valid thput, - -
it computes for a finite amoupt of time and produces the right answer..: . ..

<. - ' Lt B I I

R - . e e o e A

S (2) Verify that the: thematical propertles of the me‘Ehod and/or formlasa
o ~.used by the algorfthm are correct. ", " . C

‘ :ff‘a'g'eds o

(3) Verify by mathematlcal argunent that the instructlons of the algorithm;_ -

" -do produce the right answer ‘and do terminate T T e

. .Anmmj _Q£ mx:k .dgne - A priori analysas 1gnores all ‘of the factors whlch
are -. machine or programning language dependent and concentrates on
determinmg the order of ‘magnitude. of - the frequency of execution of

- statements.. 'For demoting the upper bound on' -an algorlthm ‘the O-notatlon;_ T :

. .is used. The. following notational symbols are ‘used - in - the follomng
_-description° **-exponentlatlon, . []-subscrlption. < A K

o Definitlon, f(n) O(g(n)) if and only if- there exlst two pos1t1ve'-
zconstants C and n[o] such ;hat f(n)_<.C g(n) for all nZn[o] - B

The most comzmon < computing t1mes for algorlthms ~are° " 0(1)<0(log5 o

n)<0(h)<0(nlog . n)<0(n**2k0(n“3r_/062**n) 0(1) means that-the number

of executions .of -basic operations“is fixed and hence " the total time is . .. -

bounded, by a-constant. The first six orders of magnitude are bounded by a -
. polynomial. However, there is no integer such that n*¥m bounds 2%¥%n. " An - -
~algorithm - whose - computlng time -has this property . is said to requ:.re
exponential -time; There.are notatlons for lower bounds and asymptotlc
‘bounds - (see reference. (4). - for. detalls). The term- "complexity" is.the

- formal term for the amount of uork done, measured by sane complexlty (or'-_:.__..f

;."_v cost) measure. Lo) . B .__.'x_ .4. e ~_4

K In g_eneral the amount of work done by an algorithm depends on the s:Lze of
-~ .input. . In scme ‘cases,’ the- number of -operati '
e pa . 1cular 1nput. Sane examples of s1ze are. N

S . . A..‘r,.

- A) m .4 L AN : : .
F1nd x in a list of names i ‘ The nunber of names in the .
2 Multa.ply two matr:.ces L Th dmensmns of the H

the number of equatlons and

3.‘Solve a system of 11near equatlons '
solutlon vectors -

To handle the situatlon of the input affectmg the performance of an'

algorithm, “two approaches (average and worstfcase analysis) are used.. The .- 2

.average approabh assumes a:distribution of -inputs -and-then calculates the

. number of operations performed for each- type of “input in the distribution ==~

and .then computes a welghted average. The worst-case approach calculates c
the maximun nunber of basic operatlons performed on any input of a flxed

- ._,. Tei

. Amm& .Qfﬁnas& ﬂsﬂ 'Ihe nunber of memory cells used by a program, 1ikef’"-i

.~ the, number “of seconds required - to .execute -a. program, depends on the
"partlcular implementation., However, same. conclusmns about ' space - ‘usage - -
..can ‘be . made. by -examining the ‘algorithm, - A program. will requ::.re storage

e

space for the instmctions the constants - and - variables used by theg w0 -

N '.f_,_, o Tl e e e

. . - . L & W) . .
- e . PR I & . “ e T e L 3 > A e - R
. T ‘ -~ R v PRI .

» : .'\,:’ o \ .- _".:4_ L S - '

progran, and the «mput data. It may also use some work space for o

manipulating the data and storing information needed to carry. out its Uk
\cpmputations. - -The: input - data" itself may be representable in several .
' ’ forms, same” which require more space.than others._ If the input data has
" one matural form ~ for example, an.array of numbers or a.matrix - then we
' analyze the extra space used. aside. from_the program_and the_mput._lf_the_
. amount of -extra .space iss.constant w1th reSpect to the 1nput s:.ze the
algorithm is said to. work ":m place" ST o

§impl1._ci_1 It is often, though not always, the case that .. the simplest

‘and most straightforward -way ‘of .solving "a ‘problem is not.the most .

" ‘efficient. --Yet: simplicity in an.algorithm is a desirable feature. It may. .
make verifying the - correctness of ‘the - algorithm easier, and it makes

. writing, debugging and modiﬁn.ng a-program for the algorithm easier. - The -
“« ... time needed to. produce 'a debugged program = should be -considered when "
“. . choosing an-algorithm, but, if the: -program is to be used very often, its -
: efficiency will probably be ‘the determining factor in the choice. L

<. ‘

~

' 'v R _Qp_tmlm 'mo tasks must be carried out to determine how much work is
- necessary and sufficient to solve a problem. o .

; . (1) Devise what seems to be an efficient algorithm call it A, Analyze A
® . and find' a function such that “for 1nputs of size n, A doesyat most g(n)
P basic operations. B ST P ' ; .

. : (2) For™ scme function f, prove a theorem that for any algorithm in: the
© -+ '+ class. under -consideration there "is same mput of* size n- for which the -
algorithm must perform at least f(n) basic operations._ ; RRETIERE

. _‘.' @ . PR o
‘If the functions g and f are equal thtn the algorithm A is optimal.« 3

Ag_cm:a__y _analxm ‘The computational sta'bility of ‘an algorithm is
T verified determining that the integrity ‘of round off accuracy is:
mamtained.-. It 1s done manually at the requirenents or specification .

| .flb. A Posteriori Testing ,, R

- Once an algorithm has been analyzed “the next step is usually the confirmation

. of the ‘analysis. ‘' . The confirmation ‘process. consists first of devising a
T progran for the algprithm on.a particular .coniputer. > ‘After . the program .-is

- .operational, the next ‘step is producing a: "performance profile"- ‘that 1s,
_' '«;determining the precise amounts of -time-and storage ‘the. program will consume.

- To: determine time consunption, the computer clock is used. Sever_al ‘data sets -

- of varying size. are éxecuted ‘and - a performance profile is developed and
_*compared with the predicted curve. R r\ : A o

A’second - way to use the canputer s timing capability is to take - two programs
- which! "perform- the -.samé. ‘task” whose xorders:.- of- magpitude are identical and .
ompare them as they: process data, - The resulting ‘times will show which Cif ,'q
. €ither, . program is faster. . Changes to a program which do- not alter the order
of magnitude but which purport to speed up the program also can be tested in

T oL o . EERN O : . . Lo T : : L : .

o . i . . . BN e . S . C e e e
[P . .. - A . . H . o . . R - . i
Yool el e F T T . . .
s ol L S . Nl s LT . . oo

. L A o e R [R Do e I .

: el R o _' RAEREEE | T’._:f;,iféée 1-5__
this waiv ERICIR I J’% G 'ﬂ T T

' H.,2.6% ¢ Example. QUICKSORT is a rec,ursive sorting algorithtq (5). Roughly‘ .

. Speaking, it rearranges the keys and splits the file® into two* subsections or

. Subfiles, such that all keys in the first section are smaller than all keys in

_-the second. section. - Then QUICKSORI_sox:ts_the_two—subfiles—recunsively—(i.e.—,—
by the same method) with the result that the entire file is sorted. . - o

Let A be the array of keys and let m and. n be the indices of the first and g
last - entries, Trespectively, .in the subfile .which - - QUICKSORT - is currently

- sarting. Initially, m=1-and n = k. The PARTITION algorithn’ chooses a key K
frdn the .subfile and rearranges the- entries, finding an integer J such that
“formgi<y, A(1)4K; "A(3) = K; ..and for j<ign, CA(LK. K is- then in its
correet position and is ignored 1n the subsequent sorting o . P

QUICKSORT can. be described by the following recursive algorithm:f o "f’

QUICKSORT (A,m,n) : L .

_:L£ m<n _thgn do - - PARTITION (A,m,n, ,J) :
SRR QUICKSORT - (A, m,J)

: QUICKSORT (A,i n)

e EI SN

e e Flsure 4.2, 61 ouxcxsonr Lo

The PARTITION routine may choose as K any key in the file between A(m) ‘and -
A(n), for simplicity, -let K = A(m). . An ef£1cient partitioning algorithm uses -
..tWwo pointers, i and J, initiala.zed tom and n+1, respegtively, and “begins - by
copying 'K elsewhere so° that ‘the position‘A(i)- 1s7/availables for. same other
-entry. The location A(i) - is filled by decrementing until A(j)<K, and " then - .
.' copying -A(j) . into ' A(i). " Now A(j) is filled by inprementing 1 until AG1)K, - . -
‘and, then copying A(i) into’ A(J) Jhis procedure continues until the values of -~
i 'and. J meet;. . then K is . , in - the last” plape. ‘Observe. that’ PARTITION-'V.*.
- ‘compares. each key ‘except. th& soriginal in A(m}' to K . so it does nem -
écmparisons. -See (5). for. ﬁ:rther details. o SR !

EQl:ﬁ.t S‘as.e Analms.lf when PARTITION is exeeuted A(m) is the largest' key dAnco
the current - subfile (that is, A(m)2A(1) for«mgi_(n) then PARTITION will move: -
/it to the bottam to position. A(n), and partition.the file into one section with
nem entries - (all- but the bottam one) ‘and -one section with no “entries. i A1l | *
that has been . accamplished is moving the " maximm entry to the bottam.
‘Similarly, if* the smallest. .entry in the file is Amposition A(m), PARTITION - -
wWill simply separate it fram the gest ‘of the-1ist, leaving r-m items still - to;:-.;f
be - sorted. ' Thus if ;the input: is arranged so- that each time. PARTITION 1S

‘éxecuted, A(m) is the largest (or the smallest). entry in - "the section ' ‘being :
- 'sorted, then ‘let p = n-m+1; the nunber of keys ‘in the unsorted seetion, then

the number of comparisbns done is’ I LA LI RN
SRR ; 23 .

_/ Y ,g 'pagens’f

.’ . B : R o
: ! ;e

mmm : If a sorting algorithm removes at most one -

.- inversion fram the permtation of the keys- after each canparison, then it must .
do at least (n#%2-n)/4 . ccmparisons on the average. QUICKSORT, ~ however, .does .
~not' _have -this. ‘restriction., . The PARTITION algorithm can move keys across a:

" large section of the entire file, eliminating up to 'n-2 inversions. at one

time.__QUICKSOBI_desecves_it&name-because ofi—i;ts—average—behavior. =

] Consmer a situation in which QUICKSORT works quite well, Suppose that each K
. time: PARTITION ‘is _executed;. « it splits the .file into two roughly ‘equal
‘subfiles." To" :~:impl:4.:£}v the canputation, assume that n = 2¥p .1 for same p.
The mxnber ~of ‘comparisons doné by. QUICKSORT on a-file with n entries under' -
- -'these assmgptions is described by the recurrence relation T S

R(p) (2**p) -2+23(p—1)
R(1) -0 o '

- T(2**(p-1)) ‘-1, entries. A Expand the recurrence relation to.get -

o a'(p)_

(2"p)-2+2R(p-1) = (2“p)-2+2(2“(p—1)-2)+1m(p-2)
(2**p)-2+(2**p)-4+(2**p)-8+8R(p—3)

R(p)

-l

..
'-\

% (2**p)-(2**1) (p-1)(2**p)- 1.1

((P-1)2“p)-((2“p)-2) n (ns1): -n+1

iy

-./— :

'I

‘Ihus if A(m) were close’ to’ the median each time the file is split the nunber

.. of- comparisons - done by . 'QUICKSORT . would - be of the-drder (nlog n).. ‘If‘all - -
- permutatiohs of the irput data- are assimed equally likely, _then QUICKSORT does
approximately 2nlog n ccmparisons. : ' R) , o

ﬁnace'usagg At flrst glance it ‘may seem that QUICKSORT is-an in-place sort

"It is not. While- the algorithm is working on one subfile, the. beginning and A~f
" ending indices (call- them-the ‘borders) of ‘all the other - subfiles yet. to ‘be . -
.Sorted must -be saved on: a-stack, and thé.size of ‘the stack depends on-the

The first two terms in R(p), (2**p)-2, are n-1, the nunber of - ccmparisons done,'.
..~ by . PARTITION ‘the first - time. - The second term is the number of canparisons '
' done by QUICKSORT to.sort.the two subfiles, each " of - which has (n-1)/2, o

. ‘number “of "stiblists into- which: ‘the - file -will .be . “split. Thisy™ of : cowse,~i

depends on n, - In the worst case, PARTITION may split ‘of "orie entry at a time -
-in 'such a way. ‘that n pairs of borders are stored .on' the stack.- :l‘hus, the..‘-_,_,

amount of space vsed by the: stack 1s proportional to- n. s

n 1eoo . 2000. - 3000 uooo -sooo

HE!EESORT 500 + 1050 . 1650 22507 2000 - R
QUICIGORT 1-100 850 "~ 71300 - 1800 2300 - Lo "'., R
: (Tme is in mlliseconds) _,-'_.: L e
Con '.F;i‘gur/e _'4.2.'6‘-'2 | mnsssonr and' ouxéxsﬁarc‘:ampaﬁssa S e A
...... ‘ - -‘_; . 24, . I:

X

t '_ <= B - Page 1

e -

M;mg 'l'he results of comparing QUICKSORT and MERGBSORT ‘are reported in B
rei‘erence () and are sunnarized in i‘igure 4.2, 6—2. . :

- B,2.7. Efi‘ectiveness. Algorithm analysis has become an 1mportant part of
-.computer’ science, . The only issue . that limits its effectiveness is that a_ ~.
particular. analysis depends on a particular model. . of computation._,I_f_j:he____

- assumptions of the model are inappropriate then the analysis- suffers.v e

4,2.8. Applicability. CAn’ analySis of an algorithm can“be limited by the '
. current. state of the art and the ingenuity of the analyst o _

.-y, 2 9. _‘ Learning Algorithm analysis requires significant training in
mathenatics and . computer science. Generally, it w111 be done by. a specialist

ll 2 10. Costs. The cost to analyze an algorithm is dependent on the
complexity = of” ‘the’ algorithm and the amount of understanding about algorithms
ofthesameclass.' . . e -

ll 2. 11., References.:;f‘ ,.'j--- n W o
CEeLuro (~1) BENTLY J L., "An Introduction to Algorithm DeSign" .Cﬂnmlt&x: Feb
1979 . : R . . e .
o <@ WEIDE,. B., "A" Survey of- Anaiys:.s Techniques for ‘Discrete" o
Algorithm " .anp.utxng&uma Vol-' 9, No.. _‘l Dec 1977- e e .-l
~ '(3) ‘AHO, A.V.; HOPCROFT, 4.E.,'. and.. ULLMAN, J. ., e Desrgn and
Analysis of Canputer Algorithms " Addison-Wesley,Reading, ‘Mass., 1974 - -;. N

: (ll) HOROJITZ -E., and SAHNI . _ "Fundamentals : of Ccmputer
Algorithms LE Ccmputer Science Press Potanac Phryland 1978. " e e

: ©" (5) HORE, C.A:R., "partition. (Algorithm 63)..and’ QUICKSORT (AlgorJ.thm -
6#)" Mwﬁ.&e&ﬁ,va 4, No. 7,pp.321, ,July 1961, 0 Lt

- - (6) HOARE; C.A.R.,"QUICKSORT" _mgg_gn _J_qgm_al vol.5, No.1 1963

.

. .
. BT R N !
- s
. - L . PR
. T oy / C
. - . . .' . L . . - :‘;. ." “ -)
. e . e T PN :
L. . LN) EP—. Jo S - . -
LA S 3 ol T - - r.
o .. kR N
M . ' . . P -
PERAE . - . : - .’ - -
O L PP ¢
- . . R
A L A . B -
oo : . .
S) Lh] ’ .)) .
B PPN e A
g) ‘ o
BT w L i STl = <
#:: b Lo - - Sl N
T e - S e e o -
. LAyt i - T - A i
Y"?’y’_‘ .)) % e ‘ - ' TR e
] g 3.‘d _'—- ' ' T . -
0 .
. . i . . - - 1. X
PETP - . : i
’ L : : . . :
e) R g b T
: . - L s 2 —_— -
: 1. ; o

~

e -..143.3.2.. . .Basic features. . The purpose is to provide performance'evaluation and» £
*+ capaeity’ planning ‘information ona system design. The process- follows the top
. down" approach tmdesign through ‘hierarchical levels of - resolution. - It:‘can’ “be "~
_applied_at_early_design*stagesewhen—ﬂmetipnal—moduies—are‘relatrveiy‘large* T
and where knowledge of their execution behavior may - be imprecise. - As. the - -
- design. proceeds “and the modules. are further resolved, the estimates of their
. behavior and-execution resource characterization become more precise. The
.-approach - is*- prediwted on twor representational bases: on extended .execution
- graph models of* programs and systems “and ‘on- £extended queueing network models'
o cf computer system hardware resources and workloads. e /'
: S .

4 3. 3. Information 1nput Ihe information which is needed forf:th;s technique .
consists of ﬂmctional design and performance specifications a follows. L - -"*'?f

IR Identification of the functional canponents of thersofWare deSign

L b, Identification of the execution characteristics (pr"_'imarily, e
= execution time es‘timate) of') each functional component “ :

, '_ - e Ah execution flow graph which gives the definition of the order of
execution of the various fun,c,tional components B e L g

- - A
- a -
e

d Execution enviroment specifieations which can 1nclude information
W _such as - operating system :overhead and the worktoad on the system that could
potentially impact the particular software- undér. -development ’ ,

"~Z

oy System execut'ion scenarios which prov1de the- definitions of the
,-.g_..external inputs to the model needed’ for each sinmlation of the 'model., ,- S T
e f.. Performance goals for the total system and components (an example o
o is an upper - bound for ~the mean- ‘and variance of the ‘response tme for a .
o specified execution environnent and’ scenario).. ‘-f o T
5, 3 4, Infomation output Output ‘fram the technique fmll consist off the
oa. A lower bound ‘on the performance of the system . R .' ,
o o A comparison of the performance goals w1th the performance §
7'» ._resufts - R o " - . s e ‘/‘ K _ S
T : Identification of the functional components which had the greatest '
..effect on system performance. o ST e CoLrE . e

ST

-

ll 3.5 Outline of method Much of the effort in using this technique comes:
-~ in the preparation of. ‘the: necessary input. info,rmation. ‘Once’ this has been ~
..‘-done, it'is ‘generally suhnitted toa computel” which-performs the simulation:of'.-
- .the . execution -of - the model.. and repor'ts the: results, wHich.are then analyzed'
and the”model revised as necessary.- The specific steps in the technique are

EY -
- '1 Ll . B oS gl . »»' L R L T) B) . o . “
St Lo T o Tm Y U e belher el g ,
T e e e g L R
. . . . Pt L. AT Lo N Toap e St G
oL T - LI R MR N Lo < S i -
Q s N e : .

‘lhe structure of the sofbware design is characterized in terms of

hierarchical in’ structure, a: modei may be’ modified to represent ‘the systém. at -
-different- :levels of detail each being analyzed at different stages in. the -

éx—-—proeess. T i T T

- b. The order. of execution of the components is-. determined and the."-
execution graph is constructed o _ o A

Lot
B Resource requirements (e.g., hardware or operating System '
resources) ‘of - the . functional ccmponents ‘are identified .eand a. possible ’
. enviromment :is- studied with the specific - resource workloads being - determined -
“These.- workloads consist - -of . the average wait and usage times for “the- resources
controlled by the envirorment and used by the software (such as’ average disk :

'- access time). R SR : .?

;/ ,d.. The workloads are then mapped into the model (as represented by
the execution .graph) “based upon the identified envirorment ‘resource
requirements of the individual functional components - _ _, el

EEEEPURE,

@

el Next ‘the system execution scenarios -are: constructed 'rne '

external .inputs”’ comprising _each 'scenario’ ‘may be’ for;m:lated for-example, in.:

“terms ‘of the number of ‘disk accesses. required to find a needed data iten.:,.::;.
: within a particular ccmponent : , R -

PR f Upon ccmpletion of the above steps, the model is driven, producing,- :
\ system and -component’ perfor'mance results. - (The" "driving" of the model is -
. usually done using a _system simulation tool such .as 'GPSS; General Purpose---' _
Systems Simulator, on a codedcspecification of the model). _ L

A " g. 6l‘he performance results are now compared with the performance-;{ .
goals of the system. If the .goals are .not. - met performance critical_
ccmponents -are then- analyzed in order to determine where improvements scan’ be.

-'made. .The ™ design is modified and the technique repeated - This process

~ continues until the performance is acceptable or until it can be determined

- that the goal”s are unreasonable. R . , BTSN

4 3 6. Example. Fim.te element analysis is ‘a technique f‘or determiningf' o
characteristics such as deflections: and “stresses . in .a ‘structure .(%.e.. 9
building, _airplane, .ete.) otherwise too camplex: for closed ‘form - mathematical
 analysis. . The structure {s broken into a network of simple elements : (beams,;
-.-shells, . or cubes depending:on the geametry of the: structure), each ‘of: which ,
has stress and deflection characteristics defined by classical theory. T

Detemining the behauor of the entire structure then beccmes a--task . off. "
solving the resul:ting set of simu,ltaneous equations for all elements.‘ CoT

The exanp_le developed below is a portion of» ‘a ‘system which ~does - a finite'- T
element analysis. . Consider ‘the . software execution- graph in Figure 4,3,6-1., .
Only the top level of the processing is illustrated here.,_. The " CPU ““time hand

G 4

. Page 20

| rom rRosLe M A "
. | (wor1vmnEa) .

-4
1
-1
1.
1N
b,
-1
A
[}
[]
|
-
ER
1
4
‘b
[}
-
R &3 ‘_,v'. :
PR
L
.
R
1
-1
1
i
1
1"
[
NN
[
-t
A
E

_' 3’ | Figure ll 3 6-1 Optimization Example (reference?(ﬂ)

Find- bean definition T ‘ ' ' 111
Sort on'beam mmber: - 72":-- L 32 644 ’.'-£-_"":f
Retrieve beam definition » B - ,' : 88, ,832 .o L
Find node:locations =~ - et i 3 018,726 ’
‘Retrieve. node. lmtions "36- T e o 177 016
"Send data AT LT e 2600 L

EINR

2 TR e N
LT e

S

lhe elapsed time to canplete an I/O operation is assuned to.be 30 ms-." ‘Other'
-i specifications are unimportant in- this example. B
The ave:ageinesponse.i:im&foexhis—scenario—isﬂazﬁ—‘seconds*—(m minutes). .

- This ' is clearly. unacoeptable for an interactive transaction.. The bottleneck -
arlalysis indicates that the CPU ris:the_rcritical resource since it.has a higher

- ratio "o the elapsed .time than the _I/O.‘ratib Furthemore, the "find node
location" component is the critical canponent RN v .

-~

The processing details of this collapsed model are not shown, . however, close
 examination. of the " details :indicates.: that a nfind".data base command is .
. invoked- for -each of ‘the three search keys, ‘and then takes: the intersection. of
i. - the records that’ qualify. ‘Alse, it is found that the result of-the "findn nfor.
- the; problem number search key is invariant throughout the loop and need not be
~ repeated; LA knowledge of the nature of - the problem leads to the observation. -
that‘most of the ‘time (855) ¢the "find"'on the node 1 - ,kgx yields the same.
-result as - the" "find" oh the m 2 Kkey from the’ previous Pass’ through the -
loop, and need not be repeated Ihe results of this analysis indicate changes
which optimize ‘the’ process. E e P il .

mese optimizations* ‘are: reflected in. the execution graph in Fi e 4.3, 6-2
'l'his graph is :more complex;’ ; however, the. total .processmg req enents are -
educed aslshownin'l'able436-2 R S
'l'he response time has been r_edm by 3023 seconds, a. substantial savings!
 The' response time (303 "seconds)" is 8till ‘unacceptablé :for'most ‘on-line
applicationsQ Another optimization, storing the "beam dei"' data ' in. béam .
‘number- sequence, - precludes- ‘the” .sort.” _The: resulting response time is’ 269
secobds This optimization - process continues unﬁl a »resulting response time
of 82 seoonds is obtained -

Find beam definition 7 T
Sort’beam number . . g2 - o 32,644:
* Fird node"Iocation V' S e W o K0T
R ieve bean~definition ' R A . 3 _33,332 oot i
. B-tree 1/0 PR e | A _102- T
,Ed.nde nodes . . . == o My000 3y UL
Retrie\ernodes T Ty - 45~ « B A
“Find tnode; ¢ oo 226,000 T s
~“Retrieve 1 node R i - T 800 1 - - e
_ Record I7/0 . e 36 ,21_6-
: Send data . o Tge R »2’9‘@ R
Topal - oo T 208 oo 207,580 ms; § o
. TABLE 4.3.6%2 RESOURCE REQUIREMENTS FOR REVISED OPTIMIZATION EXAMPLE

The performance is still only marginally acceptable, . but it 18- a. dramatic.
improvement - over the' original design. " " The- bottlenecks .are detected ‘and

corrected prior to actual coding and therefore, the modifications require'

W*efforu.

yom TROSLDY WM. - - 1
mem'g,) .

Yarze . o Fror qropE W
FIKD WODE LOC" | yonp 2y ... - .

L / -
2 QUALIFY .

L]
. S
]
[}
]
[}

>y

e R

‘* 3 7- : ;*Effectiveness; - The accuracy cf the performance prediction is only as‘ K
:good. as “the ‘. quality ‘‘of the performance specifications. ‘The quality of the_.:
w,specificntions usualﬂ.y improves during the design process. A 31@]&51@ S

" Page 23
o - .approach’ is used to" analyze queueing network ‘models, This ‘residts in. -
" .'approximation of the relationships’ between contending resources. ' Several
- compensating features are used to.offset’ the approximations used. . ‘-

- 4.3.8.° Applicability. - The - technique - is . generally -applicable -: t5"

h _~~nohdisj_:rfibuteqe systems...; - T - e

" 4.3.9. Learning. The user 'of this a proach needs £ be - familiar with the
: intricacies"of.the modeling techniques used. . : : I N

4.3.10. Costs. ’me._.-pir'epara'tion, anal'ysis,.-and, sblutipn_;éfi the model costs

L. e .
B L

' approximtely 5% to 15% of the total design 'cogtg»._ . .
4,3.11.° Referénces. - © - - |

(1) SMITH; C.U,, "The |

C , Prediction and Evaluation of the Performance of. -
. Software -Ercmﬁxte_nded’be‘sign-i‘ Specificationn; Ph.D. Dissertation, University: -
- vof Texas-at Austin, “August.1980. A

 (2) SMITH, C.U.;"and BROWNE, " J.C.," "Performance Specifications and -

" nalysis of Software Designs":Procesdinis of the Conference on.Simulation, -
Heasurenent, and Modeling of Caiputer Svstens,Boulder, 0., fugust WMy

LN
¢

p—
RN
. . <
o s . e -

Y, . B S
»~ . . . e, e . v "
. R) - . R TL (I
B S
b 3 . g

R

K

-

T ragdan

C o< 4.4,1, Name, “Assertion Generation. - °
) k.4.2, Basic features. -Assertion generation is not so- ‘much -a’ verification

'—‘—tecbnique—itSeIf—‘—asfitéis—;fomdational‘fto*afvamety .of other techniques.. -
- Assertion generation is the process ' of capturing ~the inténded functional
- properties, of a program in-a special notation :(called the -assertion language)

- for insertion into the various levels of program Specification, including the

. program. source -code.- ' Other -verification techniques utilize ,the. embedded -

~ assertions in. the process of comparing the .actual-.mnctiqnal_,propertj'.es;of the -

"program with the intended properties, .’
e s -~ T

" '4.4.3, .Information input. A specification. ‘of the-:desired functional
properties of the program is the input required for assertion generatioh. For |
- individual modulés, this breaks down, at a minimum, _to a Specification of = the
... 'conditions which. 'are "assumed" true on a modulé.entry.and a specification: of
S the;_,conditionsﬁlgaired on module exit. If the specificitions fram -which the
- assertions - are': to be'.depived,include@'algqpittmic detail, the specifications.
'+ will indicate,conditions which are tothdld'véﬁ’{inter‘mediate'points,wwithin.. the:
. Wodule as well.' Additionally, assertions can state data ‘characteristics, e.g.
- 1oop invariants, -physjcal units.or a variable, as input“only(can not be set)y. ..

4.4.4, Information - ocutput. . The. assertions. which ‘are created ,fran.)-th\‘;‘_.__

- functional . or algorithmic "specificaticns are expressed in a notation called
the -.assertion language. ~ This notation comnohly. includes:-higher “. level
expressive constructs that are - found, -. for example, in - the programming -
‘language. An example of such a. construct is a-'set. Most commohly,. "the
assertion language is " equivalent . in ..expressive . power -to the first ordér- P

. Predicate calculus. . 'Thus,. expressions such as. "forall i -in set S, Alil
r ALi+1]" or . "there exists x such-that £(x) = O" are possible.s The" assertions -
- .which are generated, expressing the functional properties of the:program,. can.
then be used.as input:t¢.a dynamic. assertion processor,a formal .verification :
" tool; walkthroughs, _speﬁ'_cf.fi@tion;simlatbbg';‘ and -inspectiofis, “among other V&

. - techniques. ' ' i v TS S
v 44,5, Outlineof method " 2ASsertion: generation - proceeds hand-in-hand with
- " the hierarchical elaboration of ‘program functions. ¥When, ‘during-development, -
- aTunction is identified as being needed,.it is usually. first -specified ..by:
. 'what “input -it is-expected to-take and ‘what the characteristics of the output ' .
- @re (outputs are often. in terms..of the-input- quantities).” For;such a:function -
- it is possible:to-generatée.inputiand output -assertions without-any knowledge “
..., ©of how the function performs its task. - .The input assertion,':expresses ‘the: -
. requirements on . the, dataithe function is to use during its processing. 'The
- '~output assertion expresses what is-to be’ true on' function-termination. ... S

~Later, as the function is elaborated, ‘the:designer or coder will identify’ the' =
. 'necessdry - steps. to: be ‘‘taken in order’ to accamplish what is required -of the. -
- jfunction. After eash Stepit can be said that 2 "part" of the task has beer~
#. “accomplished.. "Thgt \part is:necessary for the Proper operation;of the:next
" step;. and so on, until .the entire function has been:realized. ~-The character . -
- Of “each .part:-can, be’icapturedi’by - an'“assertion’in. tlie Same:way as .the
description-of “the “éntire furction.: The. output assertiom:.for., ode step ™"
.. represents {at, least part of) -the input 3388,8_213?293 for “the following step. '

=

!

EN A
e .

PPN

’ : R B S Page25 o
. - -»- . . R -~ . - -] . .- . :

Snch assertions are m.‘[led intermediate assertions.

. J
Each assertion, input output,, and intermediate is expressed using_lthe
assértion language and is placed the specification of the function being - .
implemented at the appropriate’ ts. ~-Thus, the -program “source- text ‘will. . .
-include in it -all the assertions developed during the requirements des:Lgn,

and coding phases. S _ _ _ e

Sane prOgranning languages int:lude facilities for expr%smg assertions in the-v')

- Source:- code. -but..most .d6 not. ses it is custamary to include the
assertions within carments for- indeed ocunentation expressing the ..
" desired functional characteristics of th Subsequent: V&V tools, .such

- as dynamic assertion processors, are const cted ‘to. utilize these special .
caunents" during ‘their . processing.™: Dynamgz ‘assertion processors are able to @
 check 'the validity ‘of the source assertions during program éxecution. Thus .a-
method for dynamically veriﬁring that the program is behavmg a cording to 1ts,}_
intended épecification is possibl . . ‘ Y i e

often- important to. formilate assertions which are. al "'
points within the loops.) Such assertions are termed .4 1
| assertions. et

- . ..;‘/ . - - . e,

| ll ll 6.. .Example. Since assertion generation is so closely entw:.ned with
progran development only a brief example is presented here. 1'-_'or more thoro_ugh o
examples see references (1-5). o 7 e

During progran developnent the requirement arises for sortmg the elements of
an agray or table. -In-order-to support flexible processing in the rest of the
systenl, the array is declared with a “large, fixed. Iength. However, 'only a
. port n of the array has element® in it. The nunber of elements currently in - .
the /array, when passed to the sort-routine, is contained’ irst-. element - -
of ‘the array. The -array is always to be/sorted in ascen‘ “order. The :
sorted array is returned to the calling progran through the same formal

R, A __.- o
2 e - Ve, L

_ 'Ais the aéraytobesorted g P T T
: DIM is the dimensmn of A - SR e NI

N q":,x'
wild.,

(-

L \‘\ - -, ' : Page26

me characteristics of the: wbroutine may be part:[ally captured by the ".
following assertions.v Notat:lonally, :"or" and &."and" LT . ‘

Abbl.‘.ﬂ'.l‘ INPUT_ ((KACT)SDIH) (DIHZ?.) '.-;‘.» B TR
ASSERI OUTPUT (A(1)=0'v 3(1) 1 &: .&‘DJQ.) v e S, T
(A(1)>1 & FORALL I IN: [2 e A(1)] A(I) A(I+1)) ST

'me input assertion-notes the required characteristics of A(1) and DIH. ‘me-f~
output . assertion indicates ' that if there were 0 or .1:elements in the. a_rray,,:
- the array.is sorted by default. If there are. at . least 2 elements in the: "

array, thenthearrayisinascendingorder S

i me next level of the progran may have the follwing appearance. An ,
s intermediate assertionisnow shown . SR . S _

Soom

Y e

R anaaourmz som' (A,Dm) : .

G- o

- C. u.MAisthearraytobesorted : :

e _DIM is the dimension of A _
% 7+ ASSERT TNPUT (A1) DIMY; (DIM>2) B O
L IF (A(1) .LE. 1) GOTO' 1000 - T e T
e Sort non-mvial array ‘ e R

. c o it .',\-':..-, 3 : .
100 . _Assmroumn‘ (A(1)=0 VA(1)-1 &.tx:ug) v e “ -;j‘
STE (A(1)>1 &maau. T IN {2 .o A(m A(I).SA(IH)) (R

;Suppose a. straight:selection sort algorﬁhn is chosen for 1:he non-trivia} casé

NEES 6 X REE ;find . the smallest element and’ place it’ in. A(Z), find:the next élnallest =
% ,and-place ‘it in A(3),.and so forth, where the original _contents Oof) (I) 18 -
o excha_}pged with the ‘element - that belongs in ‘the" Ith poaition in-‘the sorted:

- JAthir the sortmg

c s wmanmm smamm smcnou sonr e
"find anallest element in A(JJ i A(A(1)+2) S
© - let-that element be A(K) R DT S P

PR
T~
e &Y

:

Sl

C
c
c

. - .- - . . B . . N : - e * "_ R '“'. R
N e oo . s . S R . T N AT e W)
T S U O LT T Page -27
D . e e . . ‘e . : e . Lo - L. L. B
- - . . B AR : .‘ N Ty, e N ‘. « S e v RS, o ot Cae, . . .
e, - B '_‘_
J

) A signifiwnt issue which we have not dealt with fyet is asserting, _on
termination, that the sorted array. is-a permtation of. the original array. -In

b ‘other words, we wish to assert that in the: ‘process of - sorting, " po- elements
‘___..luere._lost To~do4h1t—at—the—m:ghest—level——our~first—attanpt at the" program
requires advanced .assertion" language facilities. 'I‘he interested reader iSj a
referred to references (1) and (5) _ _ R T ERET

- u.li 7. - Effectiveness. o Assertion generation, _-particularly when used 'in=

3 conJunction with allied techniques -1dike. ‘dynamic = assertion processing or. "
. furictional - testing, “éan “be. extremély. effective .in .aiding . V&V, - Such
- effectivéness ° is -only: possible, however ;. when’ the assertions ‘are used to
capture the: important funetional “prope ,of the program Assertions such_-
‘as the foIlowing are of no. use at all. . S S

S . e A
g . . . P -

Capturing the. important properties m be a difficult -process qnd is prone -,to_.
," ~-error. Such -effort is well -rewarded, though, by increased understanding of "

- the problem to be solved. Indeed assertion ‘generation is effective because_ L
o th Sertions- are to. be' parallel to . ithe: program . specifications. 'Ihis_
o elism enables the detection of errors, but effort is., r?quired’ a

A cost-effective procedure, therefore, is to develop intex}xnediate assertions.r =

- -only .for particularly important parts of the computatj.on. Input .assertions .
- should always be employed and output assertions whenever possible. S ,

“n.8.8. ~dppicability. . The . technique +i _ generally. applicable, ,m Al
development phases an“d fOr all programning aﬁguages.,:_,,_y S .

Ty, ll 9. Learning. Training and experience in writing assertions is the key to _’
“their effective " ‘use.". moughtful consideration of . the material contained in

Yo,

~the references: should - enable a programner to - begin_ with useful assertions.” - -

Experience will’ sharpen - ‘the * :ability, - especially if a dynamic assertion :
processor .or. other allied technique is also used S R A A

li 4, 10. Costs Assertion generation is generally a mgnual technique, 1 e.,

© no. machine resources are- required Effective use requires. ‘thoughtful . problem = .

L .and solution consideration, but no” more than . is* ‘normally:’ ‘réquired -in .
professional ‘task perfo : Too],s +do- -exist. that use symbolic execution to
 automatically generate:lot invariant assertions.‘ ‘The cost then becomes that‘* -
_of symbolic execution. A ST A

C o, u /; References.

' (1) TAXLOR, R. , "Assertions- in Programning Languages" SIGH-AN

mieee Vel rs, 1, - January j980, pp. ; 105-114._, BERR:
NNA,: Z;.. WALDING;: ~Ril; ™ PThé ’ Logie. *of;:'canputer "rrogramingn'""' ;
,‘,f 'Hay 1978. PP-. S 199-229 (especially pages 199-20 L

: _Califomia-,;- PP- :392-399

€ 6) '
Self-Hetric

e, f e

.5 2 Basic J‘-‘eatures Assértion pi‘ocessing is the ‘ process whereby the
*progran's“asser-tfons‘(ﬁeontﬁning user specified- assertiohis as: descriﬁed ‘in-the
- previous: section) - are “chesked: during program; céxecution. --As: : such; “the
techniques servé as'a Qridge .Betweeh “the more; formal “program: correc_tne_ss proof :
approachea ang,themore cannox‘rif "b?ack bo "?testinge?appr_‘ga_ches.-, : "‘. "'-;.-1- :
AL A ""-“ o '

.5 3. Infomaﬁ“%n Inputf iforma
. s . -thegrassertions to: be proce gy [}
-='writteninanyIanguagebut;mayberestriqted to:apart'i -3f-an -
.autanatic tool 13’ used.to ‘perform.the dynafnic’ assertion processing Moréov,er,
if a tool’ is used, the forta ¥or, . speciﬁying _the : assertions will be- that -
- defined ‘by - the' particular__;fboél Generally, , assertions are specified as:_'
~ ccumentsinthesowceprogram ,«"--“ B R T CE
. % L ST Do g
.*S.Il Ini‘<>rmation Output Output ;:d: a“ dy,namic assertion process normally,_,,-
.. consistsof -a:1ist - 6F Ehe : assertion checks which were performed and a'1ist.of -
.. except tion conditions with trace: information for determining the nature and
location@t‘the ﬁoiaﬁons.h-__...g BN R AT e
. 1’ * . 9:‘ N e
¢ 855 Outlineof Method., The: assertions are. .generated by the’ developer as -
described -in‘the ~ "Assertion™ Generation" techniqué i the previous: section. -
- The’ assertions are then translated into host language program statements. which
* actually perform the assértion - -checking. at- program . execution time;x The',---_
. translation can be: done manually or through the use of .-.«aﬁ_ ‘"autanateddynamic ,'
., ,assertion processor. S) A

The translation propess is shown in the fol’lowing ﬁlustraﬁon. An assertion |

of the form° E N i
I ,//.,7' y .
Ly //1‘ AR "
':0‘: o
K |
P
2 -

Proce "s,. _sertion ViOlation, Y Lo oo

'Ihe processing of the assertion ﬁolation will minimally, keep track of the' N
- total number of - violations for each - assertion, print a message Andicating. that',j.
¥ a: violation of ‘the assertion has” “occurred, - and.’ print - ‘the values " of | the: .
“variables “referencéd in the, ,,assertion. -In addition, ‘the location, i,e. I
' statement number, and the numbér of* ‘times the Aassertion is checked inay ‘e kept
and printed when a- violation occurs. (RO - e

Sufficient information shouldbe repor‘ted uponlviolationy'ofl
assist .the prograuner of the speciffcinatm-e of the error'-

wAn. autanated dynamic assertidn processor can be of great assistance by '
alleviating for .the programmer the burden :of hand generating the source . code....
necessary to perform the assertion cheeking - Not- only will this save time but~ ‘_

eh?‘?-‘;asse#ti’dn | ‘fﬁ°}: B

it will also perform the translation more reliably.
Speciﬁing assertions witff:‘;.n~ oanments is a: valuable i‘orm of documentation and
~-—‘also—enst:u--es——th:—.tt—1:1fxe—sot;1rf.:e—progrz:mr*is’—kept free of non-portable, tool

. r"

j ;'-,-.vIt is important . note that dynamic assertion proce‘ssmg for non-real time._
.- programs must: not .alter the functional. behavior “of "a program, : Use of a-good
. - autcmated tool will ensure:this; - ‘Execution’ time, ‘however, will be- "increased;- -
- the :amount, .of - ‘which, will. depend” on_the. nunber -of assertiorns which are .
s processed' It is important to note:+ that ~dynamic assertion.. processing.. can,

: »alter -the: functional behavior of a program by altering the execution timmg '

in ofder t6 effectively: utilize. assertion’ ‘processing, . test data should be
- ..generated which will cause the execution of each assertion. e cR T "t

. ,__,ll 5. 6 Example. lhe program segment in Figure 4 5 6-1 is taken fran a. Pascal T
 -program which ‘calls. on. . routine 'sort' to sort array 'a!, con31sting ‘of Nt
' -;"integer elements; in' ascending order. ~<The assertion followz.ng the -call to-
-, Sort " asSerts that the elements are indeéd .in ascending order upon return ‘from~ .
.. the sort. procedure. The nunbers to the left are the line nunbers fran the -

o original sourge..: - % T L

C e R . .
R .

v oo -

e R el B e oL . .
RN - -

L AN A% annax,h..mxn] _Qf. mteger, R Tl e T
“.. PR ' ’-.l T ’ B . o ._ : Tt e - . . .'. . :
’) N . .‘ . o e ’ . © . -
e AR A e TE K <
, .26 . sbegin.. ... = - : X SRR e :
b o L o . 5
Lo * ~ : Y -~

56 o l sopt (N A), wel .. wa - k
7 (* mm i J.n [1..N-1] A[i]<-*l[i+1] *), S e

1 N W e

ERO * LT

‘ Figure u 5 6-1 Source Program with UntranSlated Assertion

-

'me progran segment in Figure ll 5 6-2 is :that which results after all of the
assertions . have’ beeh translated into Pascal Note that a ‘rather large numbet
L of- statanents ‘were. used to implement the assertion.. This is due to the rather
invo],_ved checking .required .. to 1mplement an "agsert forall. . .". . Simpler:-.
»éssertions will require fewer: statements “The spéc could be reduced‘ ’through
the use. of a camnon assertion violation procedure. oo ST

Wl e . —‘ P
4 : < e : = BT e AR A - B
.) - N - S -__:.,. o o X . . i e
S - MO ; o AR - .
- S > e - 5 Le. el b
: X T NI T < ~
- RO N .
\ L : .
. L 3 . E :
- et -
~ ~ k .
3 - e L. . by
- A "

A .arna![L.MAXN]_Qf_mteger, g
. ;.’--AsserthCount 2 .ax::axﬂ [1.‘_.;:,‘NmofAsserts] .Qf integer,‘ .
_[1. NunofAsserts] _Qi integer,;

%
it
%
5

' sort (N,A) ' ' ' G
s (% zssert forall? ifi [1..N—1] A[i] -A[i+1] :), SR
- AsserthtCountB] Assert.thCount[3]+1"
‘assert :i= true, O A AT
i==1,,_“" T N
- mils(i<- N). .and(assé'r‘t) _dQ(* check assertion *) [P
” J.f A[i])A[I+1] j;hgn A L e

;i ng_t assert ﬂ;gn Egin(* assertion violation *)

- AssertVioCount[3] = AssertVioCount[3] = 1; .- .- '
... Writeln ('violation.of assertion 3"at statement 57 ')
o oeoe D702 ad Writeln (on, execution:?, AsserthtCountB]), .

I ".f* JMriteln’ ('arrayA =k A)

.end (' as/s.ertion vi‘olation *)”_.:v S
A e e e : :

-\ . . . - B o ‘_ .
Y~ *

During the testlng the follouing values of A were used m successive
executions of the sort routine. i S T T A

i

_o*l"'3‘ 12 27 53 171 201 %1 390 501 T
g 0" 3 453 27 201 171 390 251 so1 i

T e e S O R T

R \' l - " u j‘ - '.'.'“"‘v:""‘\OT_-‘- ‘0 T o D 0 ’ o j_ :,- 0 E 0 o r "0\ \\/ *0 'u_:‘-;_a 4: .

7 ~': Wy i o s e E ey s ';:.:l - I\’\ -‘1 .) ’ .r :.' , ’
. f* 1.;.0'0' 1oo 1oo 999 999 999 1ooo e T

7’:}_ % vj.olat,ion of assertion 3~at statement 57 on ‘execution'_j' Qo

I -

arrayA-~3 12 27 53 171 201» 251 340 -501 0

'mis was the only violation which occurred

Subsequent analysis of'the sort procedure indiated'that the error was ue g tO*:'.".C
"add-by-one" error on a loop limit » A _,r_, _ - '

.,:’.3' .

S 4.5 T.. Effectiveness The effectiveness of dynamic assertion processing wiil’ _
; -depend .upon :the . ‘quality - of -the. assertions ‘included. if ‘the_program being -

. ‘analyzed, Moreover, if the: translation is being done. by . the - “amount : 2,08\
“time required,to translate,: eoupled with the’ unreliability associated with‘th

- prpcess_will reduce its- effectiveness, Neverthéless, the technique can be of‘ v
significant value in revealing the presence of progrm errons. L / . :

I; 5 9.. Learning A ﬁmctional understanding pf‘ assertions is all that is :
necessary in ‘order :to’ manually use .this’ t’echnique. If atoolis. used ‘then: aﬁ
_hour .or 'so" “should be- sufficient to; ‘Yearn - -the ° specification syntax for o
‘asssértions >acceptab1e to. that-: tool. -+ Of - course, - the’ generation of. useful .
fagsertions (see "Assertion Generation" writeup) iSr necessary, in order fo‘r this .
technique to be truly valuable. e SRR S e

‘l 5 10.- ,Costs. 'lhe costs associated with this technique are almost entirely
canprised of the ‘amount «-of - time’ required.to translate ‘the assertions - into
'Source -code, " If: done: manually, ‘this could ameunt to signifiwnt‘ cost, ~If
dpne autanatically, ‘the_ “cost-will be“on. the: order of ‘cdnpflation (Assertion

Processors -are-usually- implemented: as 'source language preprocessors). If a- g
tool is not available, it may well be worth the cost to develop‘one in-house.

g

1 AR

R 'erenc_

u 5,1i = =
= smcxx, L. G., and FOSHEE.G.- L.,«:

"New Assertion*- Concepts g

Self-Hetric Software" Ming;,_ Jm m :;Qn
(2) Annnms B.H.,"Using Executable Asbertions for Testingn m m

mimar_ mcergnge on _camuin, szm g Devioss, Wovi 1975,

S) .
A T
235 .
. KRR oo
Bra - e - N
< - EE A A S
. e f Lot
FFREE g X .
N . - o
- -) T -
. o g "_ . A,
A D N = e
B o » N vl L
e N ~ N
o s LR
" .t . "‘,‘
e w .
. N < o
. £
i y .
W . Loi
R ’
-~
v Lo T
Y - N .
&
: o .
. e

: '."‘ll 6.2. Basic features. i Causeheffect graphing 1s at test case design
'methodology. It is used'to select in-a systematic. manner a-set.of: test cases -
.- which have a: high probability of detecting. errors that. exist in a‘ program;:
. --This : technique: explo&th@%and&cmbination&of—input—condition&of—a-*
7~ ‘program in developing test cases, It 1s' totally unconcerned with the in
. -behavior .or structure’ ‘of a: program._ -In addition,.for each test case deri;ed, :
- . the: technique ddentifies: the: expec@d outputs. . The inputs. and outputs of / the.
: program - are "@etemine& through ’ analysis of the requirement: specifications.
. These specifications are them s] zl‘L'lnﬁS' a Boolean logic: network or:
" . graph.- The network is used 27 der*ve test cases: for the: software under
. analysis ; ; SRR S)

. 4.6. 3. _ Informtion‘.inp‘ue The informstion: that is required as input to.carry

_out this technique is-a: natural laﬁaguage sﬁecification of the program that is

to be tested. - The. specification -should’ -Anclude all expected inputs and
.combinations of expected inputs to the program, as well as expected outputs

W64, Informauon output., The ﬁzformation output by ‘the”’ process ES of
' -cause-effect graphing consists of tbe follqving. Y e .

T ‘a. &n- identification of S
..requirenent speciﬁcztions..

; b. A Set Of input conditio onf the softufare (causes). -
| e A set of: output condiztvio&s &r the softwgre (*effegtﬁ) g |

S A Boolean graph thatﬁiaks the input conditions; to- the outpdt.
"_conditions.».; STy t R e . -

Y S lim:lted ‘entiytxs;deeiaion etable that determines which ‘in"put -
’ conditi.ons will result in, each 'idenbﬁ_‘ied output cond:[ﬁ;on. et R

-“&65. Outline op method. ,J,,;cause-effec sraph‘is a. forml language
: slated from.'a nafir _,‘;‘.Jaoguage speczfication.. “The ‘graph itself. is

represented as a. canbing oridl - 1vghe netdork The 'process " of - -creating a
' muse-effect graph tolder teat _ses is described briefly below. L

3 o

{' .
s

b Carefully analyze the. requ:.renents to identify all the causes. and

o effects “in the - specificatioh.. A cause is. a’ d1stinct input condition, an”

~i¢;?={;;a~. f:<:’7?,f;f‘--f"'.,i‘*1._,?ase~3h@

-grfeffect is an output:eondition: or:; system transformation (an effect that an

'.73-;.:5;1nput has on the state of the ; rogram orlsystem)

Asmgn-each.caus&and—effee&a—umquemmbex

:-_E:j-rfz_fsraph'-' , e e
L O Represent each cause' and.- effect;_ Y - a node 1dentif1ed by 1ts um.que s

o List all the cause nodes vertically on t?he left side of a sheet of paper,
list the effect ‘nodes- on: the right s1de. o e) ;

o Interconnect the cause and effect nodes by analyzmg the semantic U BN

‘-content of the specification. Each catise and effect can be in one. of
two states. ‘true or false. - Using. Boolean logic, set’ the possible states
- of the causes and determine, under what“of'-!}i;tions each. effect w:.ll -
be present R ; . .

o Annotate the: graph w1th constraints describing canbmations of R
“causes and/or effects that are 1mposs1b1e because of syntactical or -
-envirormental constraints. _ P _ '

~
.,4‘

" By methodically tracing state conditions in the -graph convert the

gr-aphr mto a limited.entry decision table as ‘follows. For' ‘each effect,.trace _

back- through the. graph to find all ‘combinations of : causes that will set the

- effect "to " be true. Each such combinatlon is represented as a column in ‘the ’
-.decision table. “The stateof all: .other effects should also be detemined for -

- each such canbination..lv Each colunn in the table represents a. test case.
. - n . N
- 4

'Ihis technique to create test cases’ has not yet been totally autanated

However, conversion "of - the ‘graph to. the decision:table, the:most difficult

- aspect- of the technique, 1s an algorithmic process which could be autcmated by
a computer program. Trma , 1 _ _

ll 6 6 Example. A database management system requires that each file 1n the E

database have its. name listed in,-a master index which identifies the location
of -each: file. The index is. d1v1ded into'ten . sections.. A small system is

being developed which will" -allow. the: user. to; -interactively - enter a command to .
display any- section of the index-at his ter'minal Cause-effect graphing 1s "

us’ed. to develop a set of test cases for the system
: ?~
o . The specification for this system is as follows.

consisting of 'a letter and a; dlglt . The first character entered must be a D

f Convert the columns 1n the decision table into test cases. .. .

R 3 -;:."I*Analyze the: semantic content of the specification and transform 1t
-into.a Boolean- graph linking the causes and effects, th1s 1s the cause-et‘fect

‘4"., C
A

To display oné‘ of -the ten possible index sections, a cammand- must be entered‘

(for display) or an L- (for 11st) and it, must be in colunn 1. N ‘The second

.{f;h42§:, .

character enter'ed must be a.digit {0-9) in colunn 2 If this command occurs, N
-:’ rthe index section identified by ~the . digit is displayed on. the terminal, - If
- -'_the first character is Aincorrect, error message A is printed CIf ‘the: second
"character is incorrect, error message B is printed -The error messages are: - '

A'- INVALID COHMAND
B' INVALID INDEX NUMBER

L 'Ihe_ causes and effects haVe been identified as’ foflows. Each has -
Vbeen assigned unique nunber.- '. e S S

. * 7. Character in colum 1 isD. e R
2 ~Chraracter. in colanmn-1 iS5 L.~ T 0N EEL
3 Character in colunn 2 is a. digit T

' 50. Index sectiim is displayed. K
- :51. Error message A is displayed. -
52 Error message B: is displayed

Foa—

IRRE ‘e, Figure l-l 6 6-1 a Boolean* graph, is [nstructed through .vvanaljsis-
. of the semantic content of ‘the speczfication. S - ST

L T e A
.7, s =
e Eoeo-co‘.

B N
SR oo

Figure 4 6.6-1" Booﬁgn Graph e

_ ,Node,20 is an intermediate, e representing the' Boolean. state of node 1 or
. node*2.- The state.of node. 50 is true if the state of ‘nodes 20 and 3 are both
" ‘true. -The state of node 207is true if-the- state of node 1.or node 2 is true.
The. state. of: node/51 is-true-if the state of node 20 is ng_t true. ‘The. state
’ of node 52 is true if the state of- node 3 is ngt true.v : B

Nodes 1 and “are also @notated with a constraint that states that causes 1 I
and 2 cannot be true sinniltaneou_- (the Exclusive constraint). EEREER TR

- A- The graph is conver into a decision table, figure 4 6 6-2 For .
. each‘ test. .case, the bottpn of ‘the table indicates which effect will be- present ° -
- (indicated by a 1)« - For each effect, all combinations of “causes. that will
'~ result- in " the. presence . ‘of . the effect is represented by the entries in the -
_ colunhs of the table. Blanks in the table mean that the state of the cause is;-

. - . - . - - . e . Y - .
.- o P T O T P 3 = AT : . TN L
Rt . e e S : A : s C 2o T :

" ..this. technique do

' '4.6 8. Applicabﬁity Cause-effect graphing can be. applied to generate test o

Figure 4, 6 '6- | Decision Table 5

mmﬂ Znputs mm SR
DS - Index .section 5 is displayed ; .
'};.;_‘2;;.‘. oA o ,'i-Index ‘section ¥ is displayed ST L Mo
3 - '_ -+ INVALID ' COMMAND- Ry T
N b_A_-:.- .- InvaLTd Im)zx NUHBER s

Fizure 5, 6 6-3 Test cases B P

L

4 6.7.. Effectiveness. Cause-eff‘ect graphing is a technique used to produce a
‘useful : set of . test cases. ‘It alsé has. the added ‘capability of pointing out: ..
inoanpleten&s and ambiguities in the requiralrent specification. E Howeve_r, :
._not prodiuce all the useful. test cases that can:be

identiﬁed It also does not adequately explore boundary conditions.-_ .

R Each colunn in the decision table is converting into test cases, B
' figure 4, 6 6-3

°
" -

“'cases in any type of computing:application where the specification is clearly
_Stated and. combinations-: of -input conditions - can .be identified.: Manual

e - .‘_‘.

application ‘of this technique is a samewhat tedious, -long, and moderately
canplex conditional logic must be tested

': canplex process. .. However;:the’ ‘technique .could: be applied to selected modules -

4 6 9., Learning,\Cause-effect grapbing is a- nnthenatically—based ,.-'bechnique
that requires scme lmouledge of*: an logic. ‘Thé réquirement §pecification .
“;of . the system must also be clearly rstood in order tb successmlly wry,

out the process. S e e _ ST -

lr 6 10. : Costs Hamnl application of'ﬂiis.technique will be highly iabor
. intensive. e P NP SRR S
. u 6.11. JBeferences. AR (

,..4

U (1) EI.HENDORF W.R., "Ca" -.\Effect. Graphs in I-\mctional Testing, .
Systems Development Divisioa, 7)0 '
L, ‘x : N B aln
- (@) - HIERS GLENFORD
Hiley-Interscience, New York 1975.

BH

R 08 MYERS, GLENFORD . "Software Reliab 11 ity S Principles ‘aﬁd :
Practices,'_' Wiley-Interscience,New Yor'k, 1975 .’;.,./' RO wpe
s :;) R
N / S
< b B - \ - ‘:3 g

: ,u71. e Code'_Auditor.,_

4 7 2. Basic features

, code auditor is a computer' program which is used to

e

examine - -source.; code ;' ‘and. ‘ autematically - determines whether prescribed
erogra!mingjtandands anchnacticesJ;aveJ:eeszolloued' - e

,'4 7' 3. Information 1nput 'lhe infornntion input to' a .*'code auditor 48" the

' source " code to be analyzed and the cannands necessary for the code auditor's
operation. T R SR _ e :

- "-'-‘
s

S gy, 5, Information output 'Ihe information that is output by a code auditor |

“: 18" -a. determihation of-whether the code being’ ‘analyzed adherés to' prescribed
- - ‘programming ;standafds.--If errors ¥xist,.information” 1s” generated ~]
" which-:8tandards - have been® violated and where the -violationsNoceur. This |

~ information can appear as error messages ‘included with a: sonrce liNting or- as .

v

- a . separate . -report. - Other! diagnostic information,” such as ‘&’ cross<reference .

listing _may also be output as~an aid in making the needed corrections.-_., :

8,755, Outline ofmethod cbde auditors ‘are fully auteindted” tools vhich

+ ".provide an objective,"reliable means of verifying ‘that.a prdiram camplies with
" “a specified. set of: coding standards.- -Samé common’ programing conventions that
: code auditorscan check for are given belcw. SRS S ey :

I T Correct syntax ~Do all prog[ram statements conform to thre specifiwtiéns of
. . the language’ definition? _ o ,

o Portability . Is- the code Written S0 that it can’ easily-_i_ perate'on
different computer configurations? o o el .;. o

T

0] Use of structured progranming constructs - Does the code make proper usé -
of a. specified set of coding. constructs such as. IF-‘IHEN-ELSE or DO-HHILE?

o Size - 1Is the length of any program unit not more than a specified number

of statements? e o -

o Cannehtary - Is eat:h pl‘osran propriately docunented' @.8e 418 each
unit preceded. by -a block: of “which: indicates the function ‘of ‘the
unit”‘and the ﬂmction of ‘each variable used? . . : . ~

0 Naming conventions . Do the names of all variables, routines, and other

symbolic entities follow prescribed naming conventions? - L= -

o Statement labeling Does the ~nuneric 1abeling of statanent;i follow an :

. o Statement ordering Do all stat@ts appear in a prescribed order, e.g.,
7xin a:Fortran Jprogram, do all FORMAT, statements appear -at the end .and. DATA
‘ statements before the first executa“ble s’mtement of a routine?

’ o Statanent format ‘Do all statements follow a prescribed set of formatting_‘)

‘rules-which improve program clarity, e.g., are all DO-HHILE loops
? appropriately indented? L U _

Page 39

iy
AR W
Lt

.

As demonstrated by this list code auditors vary in’ sophistication according
..to their; :fupction.” - Each audito_r, ‘however, requires . séme form:of syntax
: analysis to ‘be "performed.” “|€ode 'must be'parsed. by the: auditor and: given ~an
.mtemal representation“ suitable” -for - analysis..- Because this type of.
process:ng is found in mahy static analysis_tocls,_many wde_auditorsare—part—

. Of ;:a more general tool having many capabilities.- For _ample, a compiler is a
: specificztions -of a

-Fortran programs for
y - ; rd Institute (ANSI)
Fortnan 66 also has the capability of generating a: cross-reference listing

e

Code auditors are useful to progranmers as a: means of self-check:mg their.
routines prior ‘to turnover .for integration testing These tools are also of ,
“value to. software product assurance . personnel . during integration - testing,
prior to fonnal validation testing, and again prior to custaner delivery.

4 47 6 ‘Exampl%. P . | .
BRI S a. Application. i A flight control program is to' be coded entirely in
"-PFORT “‘a_ portable subset of ANSI Fortran 66. -The program. is. to be delivered :
 to:a military government - agency which will install-the. -software on various)
N computer installations. “In addition, the custcmer requires, that ‘each routine .
in the. progran be: clearly “documented in a iprescribed format. .o AL ~intérnal -
. program’ :comments are 'to” be later compiled as: ay separate source - of-_..
docunentation for the program. T . , L

o Error A named common block occurs in several routines in the
progran In one routine, the‘definition of a. ‘variable‘in that block has been
‘Qmitted because the variable is not referenced . in that . routine. “This isy .
however, ‘a violation of* *a rule;defined:in PFORI, which requires that the total_ o

length of a named cammon block agree in’ all occurrences of that block '

Ce. - Error discovery. : A code auditor which - checks Fortran for
adherence ‘to ""PFORT detects - this error immediately. The' programmer of this
routine -is informed._that the routine is tp be appropriately modified and that
" any confusion over the use of the variable is to be clarified. in the block of
comments: that de:scribe the function of e'.'ach -defined variable- in'’’the -‘routine. .
A-code ‘“auditor that-checks for: the presence of .appropriate commentsin. each ::
.routine is used to*v.erify that the use' of " the- variable is appropriately -
" documented. ' At'-the end of .code c¢ ruction, all such internal program -
documentation. will be collated and sum:arized by another: ‘code auditor which
processes machine readable docunentation im.bedded in source code.. . d; :

.

ll 7. 7. Effectiveness. Code auditors are very effective tools in certiﬁﬁ:ng;,;;_ E
that software . routinés have been. coded.’in accordance " with prescribed";i:i..
_.standards. -They are much more reliable than manually performed code audits -
‘and’ are highly cost effective ‘as they are less time- constming than manual
audits i B e . . C

.7 8.. Applicability ‘Code auditors can be generally applied to any type of i

* source ' code.” However, -each specific toal will be. language .dependent (i.e., .
‘Will operate’ correctly ‘only for specified source'--languages), *and will only'-:;_'-;.j-_;._

47

N) . RS Sar
e e SRR PSRN (SO P
o B k- R PR S Page 40 .
« s
By s By

S v
.8 e
. Y

‘ Learning. No special training is ,reqUireu £5 ¢ use’ code auaitors. . AS
w5 eode auditors may be-psed: by: a:wide: variety of’s +people: (programners, managers, .
e quality‘asan'ance - personriel , custaners), ease’in’ their-. "o use-.is "an. - important
—attrjtute “order-to use code “auditors ‘effectively, however, Some learning
“. - -is.fequi ‘_ to gain familiarity with the: standards upon which the auditor is

: basedo i) }-: - f"‘ ’r". .

.7 10 Costs : »__Code auditors arev generally very inexpensive to ‘use as their
overhead is usuaIly no more than the cost of: a canpilation. R

.7.11. Ret‘érences

R (1) BRWN J.R_._, and FLSCHER K A Graph Theoretic Approach to the
Verification of 7 Prosram -Structm'es, Ex:qae_a!ings gf.: .the 3:31 Int&matmnal

- -
roey

Qnm:_eﬁnsineemngﬂay 1978, -

oy RYDER, B.G., &hd "HALL, A.D., "he - PFORT Verifier, _Qqnmmng ff'
Imhni_gl Bem #12 Bell Laboratories, mrry Hill New Jersey, March ‘

1975

(3) FISG:IER KF., "User's Hanual for Code Auditor, Code Op’t:lm:l:r.er~

Advisor, Unit- Consistency Analyses," TRW Systems Group,Redondo B,each
California, Ju1y~1974. e

..
e

W Homcms T.R., "PBASIC- A Verifier- for BASIC n /&ﬂuane Ex;ag_tigg
Exnﬂ:ienge; ol 10, pp. 175-181, 1980 _ i

e TR
’ - Az, ~
- < . .
e P € E
§ . -
: - bt ——-
P
E3
-
N v -
J .o ., - XA < .
- e . hl M
(I f
- -
-’)
o
)_' -
iy
) + T . I -
L= B
LT 2NN f
-, b . .~
- N g Y
1. - N
2° . B
o~
.
" <
~ I
)
N . -~ -
¢ ~ -,
. . - “ L
' N
. - \
= - T
- 1
-!',

Husedtocanpare-

B sic fea -is'.a. computer ‘program
two versions of source ‘data-to. esta‘blish tbat the two . versions are identi@al
“the 3

te

or to specifically identify‘ahere any diff ence s:i

- change control as the software takes different forns during developnent.

- properly verify test.results. == - . [=

Hany canparators provide various user‘options, such as whether blank 1ines are .
~to be included in canpare processing, to control canparison operation. T

li 8 li Informaﬁon output ‘l‘he output'iran a canparator is a- listing of the
differences, if"_any, - between . the . Swo ‘versions - of input. Various report...
-~ writing options are: usually supplied by, the” cm:parator:f; £0. - designate “the
 desired - format . of .. the; output FIELgS s whether., -eéach: ‘difference found ‘should ‘be:
preceded by Tine nunbers ~Many. general. ccmparator utility programs installed
in large text-editing systems can also create afile of . text-editor directives ‘

Outline of met‘hod Canparators are mlly autcmated Atools which serve
‘to.” eliminate -the’ tedious, “time-consuming task of performing large numbers of
canparisons 'Fney ‘are most. useful during progr:an developnent and maintenance.:
During program “developmert; ‘they-‘providé a means of ‘ensuring ‘that only the
-, intended porﬁons of a.program are:changed when.modifications are to .be made
to the . latest version. When regression ‘testing must be performed following
software corrections or updates oaﬂparators provide -an” efficient means of ..
comparing current test cases and test results with past ones. : N :

anparators are widely available and are often provided as general ‘utilities
4n operating - system Other’ comparators may. be-more. specialized and require
input files. to be of a prescribed format in order for the tool to operate

correctly. e : . oo
Canparators are invaluable tools in. assisting configuration management and -

486 Exanplé., '.t-l_- ’ - . : .
L a. ,Appli@tion. A large comand and control flight,) soft:war

system_ .

is being -developed. During system testing, the, generaﬁ.on of ‘many . different\

'~ databases is required as.a source. of input data for'each associated test case. ..
Strict control of ‘the’ databases, including -idéntification of their’ 2; "
: similarities ‘and:differences, nust oonstantly be - min ed in order to

R

Lo b Error. A. bug in the software causes the executlon of; Test Case 23
¥ to generate. test :Tesults which are totally mcqnpatlble with the’ results»of
t.-'l’est Case . .-thougz Jthe input.in _both test cases 1s almost identlcal.- ,

- Error: discovéry-.'i? A comparator 4was used to. compar_e t.he"

oy, 8.7. Effectiv'eness. Canparators are most. effectIVe during software testlng

used “Ih Test Case. 1 and 3. The location of Specific ‘differences in the. two -
. files. detennined exactly whichinput-data- should ‘be examined— more: closely and
, ;‘__when traced through the program the error was found : o i

" and: maintenance . when periodic ‘modifications to the software are: antlclpated

"meir overall effectiveness is dependent upon the quallty of the:.r use. PR

| ll 8 8.,. Apphwbilrty. | This method* is generally appllwable.

ll 8.9. Learning Aminimal amotmtofeffortisrequired,tolearn howto use
.~ comparators effectlvely. The . Book!s: - user - docunentat:.on should prov:r.de
) _,__:_,sufficient mformation for _its proper utilization. T e ‘ o _

11 8: 1 0. Costs Canparabors are generally mexpenslve to use. I‘helr cost 1s
- similar to that of performing two passes of read operations on. one f:Lle.

‘._-ll 8. 11. References

N (1).**
' :1973_‘.- , “w e : , L y |
. ;'_.j:.; v (2) .. DEC IAS/RSX"11 "Utilities Prmedure Mmln Am < .-_-.-.‘ .)
mngn 1978 | | P ,”_ bment .

e e
e

Il.léli,'

B ..
P wr o
. L
G
. wy ~
N
- ’ - D¢
3w - -
>~
Iy “a .
E ’
.
N - -~
< = - -
- v
'''''
b e
p . o P
. K A
. i - 2

. 9 \1. . Name : Control Structure Analyzer. e T T

ll 9 2. Ba51c featur:es. - _.Appllcatlon of an autcmated structure analyzer to
elther _.code . :or: deagn allows detection of same types ,of dmproper:subprogram- .
- usage' and violation of f_control’ flow, standards,~ It a Lsoidentifies—-control—
R branches and paths used by test coverage .analyzers. --A structure analyzer-is
~also “liseful A pnov1d1ng ‘required 1nput to data flow analyzers and 1s related

- in princlple to code audltors. S . ,

o b 9 3. Informatlon mput. mo 1nput 1tems are requlred by a str.ucture'{‘

. analyzer,_h v,lhe ‘first - is.: the ' text of- .the’ progpam “or’; design’, 10 be ‘analyzed.
Typlcally ‘the; text is to be provided:to:thie-anal: alyzer in’'an intermediate form, -
i.,e., after™ scannmg cand parsmg .but not- as: obJect code. Qf_ten _structure
analyzerskare morporatedwztttun compa.lers._ T o R

'Ihe second mput 1tem is'a speclflcatlon of the control flow standards to be_, e
checked. These: standards, .are often completely implicit in-that they*may be-
-_part of the rules for’ progranmmg in the given languageu or . design ‘-notation. T
- An example of such .a rule is. that. subprograms mdy not be: called recursnely- ,
. FORTRAN. Ind1v1dual projects may,‘however, 'éstablish additional -rules for-
7 internal - use.. Many such rules; for 1nstance lmltlng the number of lines -
- allowed in a subprogram, can be checked, 'by_a code auditor. - Others, _however,
‘can require a slightly more sophlstlcated analysrs and "are therefore- performed
by a structural analyzer. - Two ‘examples'in ~this™ “Category are’ "All . control :
structures .must be well nested" and "Backward- Junps out of control structures’ T

Typlcally thls second mput 1tem is - not dlrectly supplled to a structure -
analyzer, but is incorporated dlrectly 1n the tool's constructlon. . iherefore, B
"'substantial inflex1b111ty 1s common. S ., I R

‘3.9.4, Informatlon output._ Error reports and a prognam call graph are” the;-‘r.?;,};'}'

 ‘most - eonmon output 1tens of, a" structure analyzer. Error reports indicate : -
v1olatlons of the standards that were 1nput to the tool Cali -graphs indicate: ...,
. the. structure .of: .the: graph with respeet to“‘the usé’ of subprograms, assoclated
w»:.th each subprogram is’ 1nformatlon mdlcat:mg all . routmes which = call the

= subprogram and all routines which' are.calléd by ity 'Ihe presence of cycles in

. the: graph (A calls ‘B. calls: A)*,lndlcate p0551ble recursmn. Routines which are
never called are ev1dent as well as attanpts to call nonexlstent routlnes. o

In checklng adherence to control flow standards, the structure analyzer mayf
also output a flow graph for each prognam.umt The flow graph represents the
structure of the program.with- each: ‘control’ path*in the program represented by
an’ “édge 'in the graph. - Addltlonally, structurally "dead" code w1th1n each-g
module is detectable. _ : -,::.' _ o

The flow graph and the call graph are‘ltems requ1red as 1nput by . data flow o
analyzers, .and it is common for the two analys1s capabilitles.’to be combmed
in a single autcmated tool Lo , _ .

-

fyay
s temAnt LAY . N . . e . . .

L R I . LA ST T . L e . - Tedpe,
Co . S . L . R . oo, i

i~

- 'Pagellll

> -

"‘_
A

RS

o '
i .o >
Iy

"7 .B.9.5: Outline of method.S’ Since stiuctire-analysis is *an -automated * static’
;. .7 analysis- technique, ‘little user action is required. - ‘Aside fram ‘providing the.
" *:input information,the lgarequired’

P H_anjc._:han‘gesu'

AT

. R)

a - - e

P

& . _-w @y in online management information system program, figure 4.9
© ‘ealls - a ‘routine MAX-to'report:the largest stock transaction. of: the day for‘a,
7 ‘given. issue, - If MAXdoes“not have - the -necessary - infermation- already-\
- .available, .. RINPUT ~is ' called ‘to read the'required-data. “Since RINPUT reads’ -
' many*transactions for many issues, a sort routine -is’ utilized ‘to aid i
- .. organizing the information before returning it :to.the calling routine. ’ Due to '\
. @ keypunch error the sort routine:calls:routine MAX ' (instead of the proper
* . rroutine. MAXT)- to "aid - in-thé sorting process. :This error:will show up.asa
. cycle in the call graph-and will" be* reported through~ use -of a - structure

{ .
L
N

B

t N v
3

N &

Lo |
[ES . .
‘30,

Ta L U
sl Lo

v
S
e

*
o
k%
[]
Sul Sul oup ovw Oowm
L'

. .

SR SRR
A .
4]

-
-
-
. 3. v N .
R "
d

B
e
v

. e c a

B IR i
v

| Figure 4.9:6-1 -MIS Flow Charts = -7+ ;

b, As part.of the programiing standards formilated for a project, the .-
=;-f,,‘.'follovdngi;rule-.-is adopted: . - . - L TR E s
'"All jumps fram within a ‘contral structure must be to locations - -,
7 after the end of the structuré.,m” ™ . R o
.. Figuré 8.9.6-2, a segnent.of, Pascal code, contains i violation of. this ‘rule-
- which would be reported by a'suitably constructed structure analyzer.

EARY o _','l:»

o
oot
q

N ’ '_ .. .

Far el o
e - ‘ e : "l:.' W S D - ’ . « -

B\

RO

= < : iy -
LI - . & T -
-, - <. i
@ ¢ © - <

.9.7.' -_Efi‘ectiveness.r 'nze technique is:;*ednpletely reliable for detecting
- violations of “the standards _specified ,as‘input “The. standards, however, only "~
. cover a .small rangé of progra:ming standards&

of debugging a: design or code specification. o

'-s;«pos,sible error - situations. -
~ Thus, " the ' technique:is -useful:-only in verifying very- coarse prograxn.__.;:f"]
¥ properties ‘The. technique's prime utility, therefore, is in the early _stages e

Figur e ll 9 5-2 Goto Violation o R \L

""“'"i'l& 9.8, Applicability The technique is generally applicable and may "be': :

'. app%%in design-and coding phases Particular applicability is ndicated in’
flow.

ving large nunbers -of subpz;ograms and/or canplex progran control,_.__

h.9, 9.cLeﬁrning Hinimal
. "Outline of Meﬁ:od. R R

'l& 9.10. Cost Litt‘l.e hunan cost is involved as there is .no significant time';: L
' spent -in. preparing ‘the input or . interpreting ‘the: output. i~For an average -
- program, computer: resources ‘are small : sthe processing required ‘can” be done -

very efficiently-and: only a.single run-is required- for analysis. " For large or: -

__s;required for use of the technique. See

complex programs, the cost can be quite. high. :A. plotter which produc_es_ the |

most readable structure diagrams, drives the cost upa S Gan, T

-

) .9.11. References

. ¢ (1) FAIRLEY, Bichard s.,‘ "Tutorial"‘ " Static. Analysis “and - Dynamic- :

’ re'mng of - Canputer Sot‘bware, gmm\m.__ 1, No.. u, PP. 14-23, April, |

.7 1918. . "~_A‘] N

(2) HCHDEN W.E .,"Reliability of the Path Analyszs Testing Strategy" -

Iﬁﬁﬁkanaactimgnmﬁnmﬁning vol.~ SE-2 no.» 3,1976 i

. . Lo T -»,..,.. R L
. n" “ - L . N E e
: TN R ° L Il
o IR N . .
. . L. .
a . Ve L - N -
- PP
- .o o A .

-3 Cross-aeferenceﬁenerators .
: .;f{l} 10 2- 'Ba51c featm'es..'-.f:’_ Cross-reférence generators produce lists:iof
~'j.'-:'names.and'labels show:mg all of the places they are used 1n a program.

Name.

) 4*103- - m:t‘ormat:.on 1nput Input to cross-reference generators cons:.sts of a ~'_
compute)' progran .m'elther source or \Ob,]ect format o ?_;-.-::-(':” [)

Coey, 10 i; Information output Output fran ‘a cross-reference generator 1s
alphabetlzed 1list of ~ variable. ‘names, .. :procedure names. ‘and. statement labels
showmg the locations in_the program. where ‘they are ‘defined ‘and" ‘referenced.
___Other- mformataon, which. 1s scmetlmes 1ncluded’ ’1s data type, attrlbutes, and

usage .mformatlon. = AL .,_ 2 AT

\-. w

. 4.1055: Outlme of Method ~ Cross-reference -generator' - provide - useful

IR 1nformat:|.on ‘which can a1d both' ‘progr:am : deVelopment and: ma:mtenance. 'lhey aid-
progran de\?elo;xnent by, helpmg identify-érrors ‘such as mlsspelled identifiers-

. -and:’: -improperly. ; typed Jvariables. . Program maintenance is.aided by helping ‘to -,

o ,locate by.. varlable or: statement dabel,: those portlons ‘which: may = be_. aaffected

- "by @ program change ~€e. "ﬂvar‘iable name needs to be changed) SRR

;,j;'-'.‘-;f.'Cross-referenee generators .are- w1dely avallable and are. usually prov1ded Wlth“
... program _Source.: -text analyzers such as, ccmpllers, °standards checkers and data T
flow analyzers S , _ L .

. Cross-reference llstlngs should be ,phecked in detall after a program change
- has been made to check for mlsspelled 1dent1hers and 1ncorrect usage, etc

u 10 6. Example. .

}(.

-__.‘ ,l-_.,
-

P
R -
Ve %
. .“

L ; Appllcatlon. . A commumcat:.on network controller manages the
" control ‘of “‘a; network of hlgh-spegd canmum.catlon lines’ connectlng a large
nunber of CRI tennlnals to-an a1rline“’ servat:.on ,system CO!I;PUtqu e ,x'

E;;ror. A varlable used to store message addresses is: as/ gned an

_ _address whlch erroneously points to- a locatlon ‘storing hlghly critical queue /
. " control: information. A subsequent ‘G311 to the device handler causes . data to -
..é'- be raad into the cr1t1cal storage area @ﬁsmg a system crash o o .

,) ‘» Error dlscovery. A qu:Lck study of sofbware‘s cross-reference '
' fllst:.ng showed all. the locations where the offend:mg variable was ‘used, oné. of

~ which clearly showed that the error was due to 1mproper° use . of a.. *’po:.nter ,
- varlable. et ,) . v o L »_ g R
o F:Lgure 4.10. 6-1 shows '.~a sample program llstlng and correspondlng

'y_cros&-ret‘erence list.- The program . is ‘& u‘ta.llty routme used by a large .

~ aerodynamic- analy51s program. The" tool whlch’ generated :the”] report -is ~called

-~ PFORT '(2) which performs various. FORTRAN ‘source analyses. The list shows. for ,

- each identifier its type" (e.g., .mteger or oreal), “usage v (e.g., .variable or-’

’ functlon), attributes (€g.,. ar,gument, - whether - the. var1able has been set, .
scalar or arx:ay) ‘and the l:me nunbers where 1t is referenced S S

- T P PR P . e . e AR - H .-.,.'v:..' :
N e . s e . - Lo « - L R ...'.. N L. . N . Tt N .
. ! T PR . - oo T R N - . . N . -
X . E K . < . . Y . he . . W

. A . . : Co It -"‘-y . S . >, 54 S S O Y S - ‘
LT . e o ‘o -~ S - to- : . TS, .
“. N - . . L . T N . - ’

. AN = g L v

.ot f‘ -C DRIVER PRmRAM '1‘0 TESTJ,EUCLIDEAN NORH FUNCTION
c
- . INTEGER X(100) . 7 4 R
- LOGICAL-ERR - - e
E CODM)N/ERROR/ERR ----- e .
177 READ(5,10) I LT |
.-1o " FORMAT(I2;I5) . T T e
. END. OF DATA cazcx R

- IF(1.GT.100) STOP - SRR P &

' - READ(5,10) " (X(J) JA1 I) o
| 'ERR=.FALSE, wdi v 7
S ANS.ENORM(I PO ~~’?‘;.;‘. R

100+ . IF (.NOT. ERR) GOTO 2 B AT
R | . WRTTE (6,20) - e e _
12 20 - FORMAT (151{ BAD VALUE oF L AR
SB18 2 % WRTTE (6,30) ANS< S S s
15 _..','~‘:'f;-,30'_ FORMAT (6H NORM: £15 7)

',

Oww@ﬂwgwmq_

o Fi_gt.ife 4;19."6—1’ o - ‘Sample ‘Crbss-ae"f_?erencé'_' Examples

-~ " w Lo X .
L @ e
C . T P ¥ .
. . “ . . K
. - - . - - . Te .
y. g & - .
oon - e) : L :
b : 1 i ~ A
.) \
N B . - . J’ -
" A
- . 3 i
. <

Page 48

Cey
A

S colunns 1 2' '

R E exphcitly typed . FA arithmetic-statement L BRI

S v - - function argument T g
colunn 2 Aty .. FN . function name ST e

o T B external (ﬂmction or subroutme) R

I. INTEGER < .;, S N . \ o !";. . .

R REAL . ' ~+ GT _assigned goto variable

‘D - DOUBLE: PRECISION SR IF - intrinsic function . . e

C. COMPLEX . .- .o T, SF -"arithmetic statement functlon -

L L(I;ICAL oL T SN ;subrout:me name - TR

H SR A Variable - '

gﬂf,column'ai . : : . -

E in an EQUIVALENCE statement SR "SR R L A

c°1mn u. - T
B S‘ value set by program unit
colunn 5, 6. ERRE CeedlT Lo \,4

S - scalar - - st e e SR
oAb ﬁ'ray withndimensions T U ST ST

= Fig‘ure 4;'10.6-1. Satnple.Cross-'Reference Exampl_es (Co‘ntinued)_ ,

L N . l . o _. . v h . : -I -
ll 1 0.7. - Effectiveness. N Cross-reference generators are most effectlve durmg'_:'j
. _.the software. maintenance - phase to help determine where . software errors are
- occurring, as seen in the previous example. - Cross-reference - generators are .

-tools : whosé - utility can often be - taken - for granted or even considered.
bothersane (e.g., "t produces too much paper™). Its Jlack of.~ avallab:.lity, B
however, will -painfully demonstrate how,, nécessary - this seemingly - basic '

- .capabiligy is. -, Nevertheless, its true effectiveness is totally depende?‘upo
the mza,lity of its ‘use. ' S _ , o

u 10. 8 Applicability.. Th1s method is generally appllcable.,-[

4,10, 9. Leaming Hinimal effort is required to learn how to effectively
utilize cross reference generators- S : o ,
li 10. 10. Costs.- Cross-referen,ee prograns are widely available, usually as 'a

" function provided by a larger 'system (e.g., a compiler) and add only an
incremental anount to the total cost. - : o .

‘- = 4 10 11. References. s E -‘__._, . o \
" (1) RYDER, B.G.” ‘and HALL A.D., e FFORT Verifier, Computing
Sciens.eleehnis:alﬂmntuo.maenr.abs March 1975.,,,- P

. .-

.
re

2
.
. .\{‘ .

=

"-L,:;ztp1"1¥~1 Nenne Data Flow Analyzers

"B.11.2. Basic features.” Data flow analyzers are tools whlchl can _determine
the’- presence “or absence “of - “data’ “flow. errors; ' that-is, errors that are
" represented as particular sequences of events“in a program's. execution.- - The .

.following descrlptlon is limited to’ sequentlal analyzers although ef‘forts are

Cooam 3. Informatlon 1nput Data flow analysis algorlthms operate on
.77 annotated graph structures wh:.ch represent’ the. program events-and the order in
‘which they can . oceur. Speclflcally, ~ two - types. of- graph - .structures. .are
L requ:l.red. ~a’ set of. annotated flowgraphs "and a program “invocation (or call)
graph. - There must be-one flowgraph for-each procedure. = A’ flowgraph is a -
" ‘digraph ' whose nodes- represent the execution units (usually statements) of the
.- . procedures, and whose edges are used to indicate the' progression of :;execution
. units. Each ‘hode " is- -annotated " with.: indications of. which program ‘events
occurred as a consequence of its execution: The -program . invocation - (ecall). -
- graph. is- also' a digraph” whose purpose is to indicate which procedures can
~ invoke which others;’ Its! nodes represent the. procedures of the program and o
- its. edges represent‘ the mvocatlon relatlon. L o

£ rigae o
,‘A,snu x

4.11. ll Informat:Lon output The output of data flow analy51s is'a report on.' s
- the presence. of any - .specified. event sequences J.n the program. If any such -
. ' sequences are’ present ‘then: the 1dent1ty of - each. sequence is specified - and - a
“'sample "-path along which- the 1llegal sequence can occur 1is-used. Thegbsence
of any dlagnosta.c message -concerning - the presence of a partlcula event .
sequence is'a rellable md:.cator of the absence of that sequence. : : O
o4, 11.5.. Outllne of method Data flow analyzers rely basmal@ upon,,

. - algorithms from -’ program optlm:tzatron 0 determlne whether any two particular
¢ Specified eventscan -occur-in sequence. Tak:.ng as ‘input-a flowgraph annotated
© with . all ‘events - of- interest, these algorithms ‘focus ‘Upon two events and -

. - determine:” .1) whether: there-exists same program ' path -along which the ‘tWo -
“e. oceur -in . sequence, and 2) whether on all program paths ‘the- -two must gcecur. in
o 'sequence. If one w1shes to determine 1llegal event sequences of length three' ;
N or more, these basic; algorlthms can be applled in successmn. i »
. lt maaor d1ff1culty arlses in the anal-yés of: programs havmg ‘more - than one..
. procedure, - because - the procedure flowgraphs often 'cannot be completely
- annotated:prior to data flow analysis. Howgraph nodes representing - procedure
“invocations must be left either partially or-campletely unannotated:until'the- .
_flowgra of the procedures which :they represent have been _analyzed. Hence, '

~"the orter of -analysis of. the program's ccedures is cr1tical This order is =

- " determined by.a postorder. traversal of +the invocation - graph: in ‘which the "
... bottam ‘level procedures .are. visited. fizst,.«then.-those which ‘invoke en, ‘and” -
~-~S0 forth until the main’level procédure iS*reacHed i iFor each _procedt .the
. - data flow analysis algorithms' mist determine he e
.. oceur both Tirst and - last -and'. then make 'this’ information . .avgilable for -
T ,_annotat:.dn of- "all nodes- representing invocations of- ‘this procedure. Only m-- '
. this way can it be assured that any poss:Lble illegal event seqUence w111 be
- determined .) ,

‘events:- whlch -can posszbly e

1 . - .\.-. - ' - . - - | .:.—_"";’."' Piage51) B

-~ Y
-

R 1.6. Example The si:andar‘dexampleof‘theappllcatlon of data flow
- analysis“is to-the discovery of-references. to’uninitialized. program variables. -

In this case, -the program events of interest are the definition of a variable,

the reference .:to a variable, ‘and the amission of a definition.of a variable. -

-Hence; all procedure flowgraphs-, are: annotated to::indicate which specific .
- variables are defined; - reférenced, and undéfined at:which nédes.. ..Data Flow s .
- analysis algorithms are then applied -to determine’ whether. “the. definition

. ‘uninigialized variable and a sample program path along which this will ~eccur, . .
-A. different -algorithm is also used to .determinef'__-i,f_ a specific variable- -
definition amission must, aleng all.paths, be followeéd * by reference without
intervening definition. . For Anvoked - procedures, :these algorithms are also
_-used to identify which parameters and global variables-are scmetimes used ‘and
~always ‘used.‘as-inputs and outputs. This- information is used to annotate all "
." nodés representing the invocation of this procedure, to enable analysis of
~ these higher level procedures.” . - - - ’ B
- Data flow analysis might”also be applied to the detectiom of illegal sequences = .
of - file operations. in programs written in:languages such ‘as COBOL. Here the '
operations -of interest would be opening, closing, defining (i.e., writing),
Epre reading) a ‘file. Errors whose presence or absence
‘det include: attempting .to. use”'an unopéned..file,
g to use a closed file, and reading an empty file. - T

“:yeferencing (i.e.,

8.11.7. . Effectiveness. As noted, this technique is: -capablé of determining
the . absence . of event Sequence-errors fram’a program, or their presence in a
- program, -When an event sequence error is. detected; it 'is always: - detected.
along - same 'specific path. Because these techniques do . not. study the ,
executability of paths, thé ‘error may be detected on-an ‘unexecutable-path and - .
hence give rise to a spirious; message. Another difficulty is that this
technique is unreliable in distinguishing individual elements. of an. array, o
Hence, arrays are usually -treated as if they were simple variables. As™® -
consequerice, illegal sequences of operations on specific array elements may be.--.
-Querlooked. . . T N R
e L < =L L : AR
- %.11.8. ApplicaBility. . Data flow analyzers-can be applied to any- ‘annotated
graph, Therefore, the .availability. of this technique is only limited and
restricted by the availability of the (considerable) tools and techniques
needed to construct such flowgraphs and call graphs. o o

P -

4.11.9. Learning, :This technique requires -only a familiarity with and)
‘understanding of thé_ output messages. No input data or user interaction is -
-4.11.10. Costs. . This technique requires camputer time, but the ‘algorithms
_employed are - highly efficient, generally:-executing--,in-»;ime which is linearly
proportional to program size. - Experiénce has shown that the - construction of
-the necessary graphs "c¢an be] considerable cost.factor, however: - Potential - - -
users are warned that ‘prototype

quite costly to operate. -

fools exploiting this fichnique . have proven

&

??". . . .) . et T ‘ :: " L 'K _f .t ‘; '

e

'Pase 52 .

is’ required resulting in only

As noted above, ‘no hunan input or interaction
the relatively 1ow hunan cost for interpretation of results 2 N
Error.

;'~_" 411 11, References S .'“r ;;,.,__ o
s (1) osmmn. L J.. and msnmc L.D.; "DAVE. - A Validation, P
: Detection,‘ “and Docmentation System for ‘Fortran Programs, n Software- Practice
—andmm..i—wpa R o
(2) FOSDICK, L D., ' and OSI'ERHEIL, 5 L.J., "Data Flow - Analxsis in
Software Reliability, - ACM' _Qﬂnp_u&ing S.mexs_;B i? 305-330 Septenber 1976
."Detection of. Data Fléu Ananaly 'Ihrough Progran
mwmmwm. SB-B,NO 3,

o (3) HUANG;J.€.,
) Instrunentation"
Hay 1979. o i .

o .. Wy

\s
P

°
;- -
-
R .. '—.
P < .
~
h @

g
H

Y

-.«r

4 12 1 Nane Execution Time Estimators/Analyzersq N

4.12 2 Bas:.c fea es, Execution time estimators/analyzers are tools which T
- provide information “about * the: ‘execution characteristics of a progran --They

-can. be- considered as‘validation tools in ‘that-they ‘can' be's used to- validate

A.'lifecyc\le.) o . S 2t . ‘& _4- b

'performance requirenents and are part of the progranmihg phase of the

4.12, 3. Information input 'Ihe programs which are to have their execution .

perf'omance momtored are, essentially, ‘the - input rieeded by the tool
Depending on the . sophisticztion of - the “.particilar tool being .used, the
programs may ‘be processed by a processor which. autanatically inserts probes to"-

' as cpu and 1/0 't:une and statement execution counts _ N A

-~ by T e,

. measure performance or.probes’ may need .to be manually. insented.: ‘The- probes :
= usually consist of calls to a ‘monitor which records execution information su_ch

- n, 12 L, Information outputs The output produced by execution \ time .
: estimators/analyzers are. reports which show either by . statement and/or module

the execution timefdistribution characteristics. ‘For’ example, ‘A tool . will
provide” infomation ‘showing ‘per module the nunber of entries- to the module,
cumulative execution time, mean execution time per entry and the percent

uexecution time of**l:he module mth respect to the total program execution time

. 4.12.5.- Outline of method.
'analyzers both - perform™. s:Lmilar functions but in different™ ‘ways.. Execution

i Execution time estimators ‘and execution time

time estimators (1) function much in the same way as test coverage - analyzers.
‘A source program:is- instrumented with -probes which collect statement execution
counts whén executed, " Associatéd with. _each ‘statement 'is’a - ‘machine dependent

- estimate of ‘the time required to exécute the statement. The execution time

-estimaté is multiplied by the statement execution .count to give an estimate of’
the total- time .spent executing. the statement. . This is done for. all. statements

in a-program.. Reports. showing execution time breakdowns by statement module,

statenent type, ete, can be produced R g

Execution time analyzers are not usually as sophisticated as execution time

. ~estimators. - Probes to measure the actual execution: time of modules or program.
o segments are inserted (usually ‘by hand) into the source " program, * When the -

-progran has’ completed its execution, . but Jjust before it terminates, a routine.:
. 1s"called which prints a.report showing the execution characteristics of the _
monitored portions of the program. . . C S

: The value of the tool lies primarily in its use: as a performance requiranents
' validation tool.. 1In order to be used to “formally validate performance
 requirements, however, it is necessary for the performance requirements . to.
. have.been clearly stated and associated with specific funttional requirements. . =
- Moreover,’ the system should have: been designed so that the mnctional
-requirenents can be traced to specific system modules. I :

;’#‘-Assming thatMe above conditions are met the tool could be - used in the
.. following way.. The program to be analyzed would be monitored by the execution
“time estimator/analyzer during: testing. The execution times for the modules’”
r'corresponding to specific functional requ:Lrements would be ctmpared with the

e R ‘_ < 61

B :

T

- R
P i
L .

performance requirenent ,f:or« that .ﬁmction. : 'lhose modules which fail o .
satisfy their performance” requirenents would ‘be’ studied An:more detail for. .

' possible efficiency improvements; ., The . tool | ‘results can also help to: identify
N .execution time:critical . sections of code. Once the necessary optimitions have
._.=been: made, ‘the program. should be again tested using\ the tool to validate ‘the
-=_...j-:-perfomance requirenents. : ‘ Ak S :

v-.‘_;, . BRI . “..—::\\ _‘I

-

performing unnecessary comparisons-. during a table lcok—up mnction although

- s .~\ .

Applicration. A particular ‘module in a real time, embedded.':.

- ccmputer systan is required to perform its i‘unction within ‘a specific time
-period. .If not, a critical time dependent _activity cannot be performed kN
;-;resultingin the—loss of" the entire system. = T S S

- Error.. The module ‘in question contained an error™ which involved-"__

the proper table entry was always ‘found. - [e Tt T

S Error detection. The problem was discovered’ during systan testing .
using an execution ‘time analyzer which clearly indicated that the offending
module Was not .able to méet its performance requirements. The specific error
was discovered on further examination of t'ﬁe medule... = & i o

g, 12.7. 2 Effectiveness. 'l'he use ef execution time estimators/analyzers (as B

.....

',weIl ‘as test coverage: analyzers) has’ uncovered an interesting property of many -,

programs. The majority.of the execution time spent by ~a -program isi: spent:

- executing a very small percentage of the code. Knouledge gained of where this

- éxecution time critical code is located gh the use of an execution time

. estimator/analyzer can be extremely hel’._:rniiin optimizing a: program in order
. ‘to satisfy. perfomance requirenents and/or r uce .costs.-

4.32.8.. Applicability Execution time estimators/analyzers can’ be used in

B ; any application.

ll 12 9. Learning The leaming required is simply that thch" is necessary to
execute the tool. - o .

5, 12.10. Costs. The tool is autcmated and therefore does involve sane cost. '

. The amount will depend on the tool's sophistication, but generally will not be

excessive.. - : -

EERTRIR Rei‘erences.'_' L o

(1) "PPE Users Guide" Boole and Babbage, No. » U-D503-0
- (2) "Poseidon H(88 Fire Control System Camputer Progranr Verification

""_-__and Validation Techniques Study", III, Ultrasystems, Inc., 500 Newport
. ,.‘_;Center Dr., Ne_wport Beach, CA Nov.- 1973. ' : . :

- B L R -7 . Pages5

- . .) ‘ 6_;:.‘1‘..

) 11-13 1. Name | Fornnl Rev1eus. .

4{'. ::.'; S

4, 13 2 Bas1c features._- Forma—l rev1ews constltute a seri.es of rev1eus of a
_system -usually conducted at major milestones ' m ‘the system development
' ’,lifecycle. . They are used- to improve -development..: v1s:.b111ty ‘and. product -
quality and: provide the basic means of commmication’ between the proJect team,
company .management, ‘and user representatives. They must provide Judgmental
—declslons—made—by-a—t@am—of—blue—rrbbon—speclahsts*mtn a proven knowledge of *
. current. system operations. Formal reviews are most often mplemented for
medium® to large size development pro,]ects,- although small” proaects often
employ a less rlgorous form of the technlque. 5 o

The most coumon types of formal reviews are held at the completlon of the
Requ:rrements Prelmlnary ‘Design, Detailed (Critical) Design, Coding, -and
Installatlon phases’’ ’ Whereas names of these reviews may vary by company, some
generally recognized names are: . Requirements Review; Preliminary Design o
Review (PDR), :Critical Design Rev1eu (CDR) Code Constructlon Rev:.ew, _ and S
Acceptance Test Rev1e.1. o , - _ : R RN PRECRIELEL

Ly, 13.3. Informatlon input lhe 1nput to a partlcular formal review. w1ll vary
slightly dependlng on the- stage of the 11fecyc1e just . completed In general,
each formal review will require that some sort of review.package be assembled
and - then distributed at a review meeting. This p ckage comonly contains a-
‘summary of the requirements which are the basis| for ‘the product . bemg
rev1ewed These and other common: 1nputs to. ¢fo gu} rev1ews fall 1nto three ,
- main categorles, descrlbed below. =@ B . :

S a..') Pro,]ect documents These are documents produced by .
' development team to. describe the system, The - specific documents required:3}
dependent .upon the lifecycle: ‘phase just completed For ' example: - a".revy
‘‘conducted -at the conclusion of - the requlrements 'phase would necessitz
avallablllty of Functlonal Speclflcatlons or System/Subsystem Speclflcatlons. .

b Backup doeumentatlon. This type of 1nput is documentatIon u* "‘
is not’ usually contractually required, yet preparation of which .is necessa Vo
to support ‘Systems. development. or otherwise record. project progress. Specifi:
‘types - of" backup - ‘documentation -vary by the phase for which the review: \Q..p

LR A

* performed. Rough drafts of user and. malntenance manuals are examprw’ of'

- backup documentatlon examined. durmg a des:Lgn review to plan for cont1n
of the project. Program listings -are an example of backup documen)
utllized durmg a code- constructlon review. 7 - , /

o , Other mputs ‘A1 other 1nputs are pr:unar:.ly used to- clarlf‘y'p or (

' expand upon the. project documents and - backup documents. ‘I‘hey -may 1nc1ude :
-viewfoils and slldes prepared.by: pro,Ject - management. for. the formal review
meet:mg, :the'~minutes - of “the ‘Previous ‘phase’ rev1ew meetlng, or prelimmarya —
evaluatlons of the proJect documents under rev:.ew. SR i : : -

4 13 4 Informatlon output Ihe 1n' ormatlon output assoclated w1th a formal "
rev1ew generally falls 1nto the fol ,1ng categorles.) : : o

L
Moy

......

T e 3 W
T D o A
LT e et ,_-a .

N

- oo a. Jhnagement reports “These arewritten reports fran the project K
d manager to upper management . describing the results of the review, problems-
. revealed, proposed solutions, and any upper management assistance requil:ed ,»;:.

<o b -Outside revieuer reports These are written reports to the
project manager from participants “of ‘the review who have not worked on the
. project. These reports provide outside reviewers an opportunity to" e;press ‘
m—ﬂxeir—appraisal—*of*ﬂne'project“status“and*the Iikelihood—of“meetingwroj‘e'ct
~.objectives. It also allows them to mke suggestions for correcting any -
deficiencies noted. - ‘ - _ -

7 e, Action items This is a list of all required post-review action
items to be completed. before a review can: -be ‘satisfactorily closed out. “With
each item is an indication of" whether customer or- contractor action is
required for. resolution. . : . . - _

d. "Review minutes. . This is a ﬂritten record of the review meeting.
proceedings which are reeorded by a ‘designee of the leader: of the review team. - |
" The minutes of the review are: distributed to: each review team member after the-,-,f
completion of the review meeting. E TR e AR

“,.-.' " -

- - e. Decision to authorize next phase. A decision must.be reached at
agy formal review to authorize initiation of the next lifecycle phase ’:/

R f‘.- Understanding of project status At the conclusion of any formal. ;
. review there should be“ a common understanding of project status among the:__

pmject personnel present ‘at ~the review. . A) ISR .
4 13 5. \ o\ztnne of methoa B \ ’ : '

o Participants The participants in a formal @review are often
selected from the foIlowing group of people. e ? g

foProject manager . o
.-+ o Project technical- lead o SO
"o Other project: tem members - anal ts, designers, Agrog
.0 Client - . . R R
. o'User. ;epresentative(s) . i ’
o ﬁ!ne management of project manager ™ . ¥
: ide: reviewers - quality assurance perjonnel e »
: other -projects’ - TN
‘0 Functional support personnel - finance, technology “»
. o Subcontractor management, -if applicable . ¥ S|
- 0 Others "~ configuration management r.epresentative,‘ ;
representative B - A

. ot b. The process.- Sormal reviews should be _
project ‘management. --Each -review must be schedul'.
" during SYStem fdevelopment. -+ The "review effectively

milestone for any particular phase.
kY

. i .. . Pagesy

o

** ‘Triere a}-e five --55519_ 'steps involved

every formal'review. *-

1. ~Preparation. . All docugefitation that serves:as source. material for
‘the review -must. be prepared/ prior to ‘the meeting. '-These materials may be
- distributed to' 'each® participant before the meeting in order to allow
sufficient -~ time to review:-and make appraisals of the materials. -The location” -,
‘and time of the meeting mist: be established, participants must be - identified; =
and_an agenda plamned. -« . . - die . o
- 2. Overview presentation. - At .the review meeting, all .applicable
Product - and :Backup ‘Documentation :is distributed-and a high-level Sgrmary of

: %

'the',proc_ipqt is presgnted, Objéctives’are also given. -

-l
D]

- #73, Detailed-presentation. A detailed - description of the . project - -
'statﬁ -and progress achieved during the review period is presented.”: Problems
are Mentifled and openly discussed by the team members. [<

‘.o W Summary.. A summary of the results of. -fhe review is given. . A«
'~ decision: about the' status.. of . the product is made and a list of new action .
items is constyucted :.and . responsibility. fof -completion .of each. item is- . ..
U5, "Followsup. :-The ccampletion of all’ action. items is -verified: ":All -
-‘reports are completed»_and,d_i.stributedv.ﬁ(Z” Do e T

3

A R Ui I
> g o -~ . 3 - . \ B

o

" 4.13.6. Example. §y contract "agreement, tt%’w_e‘eks.:prior‘«to,-_canplet’:ion of the - -
requirements document, . the producer of a program receives notification fram =
his client that a requirements review meeting is desired. The client notifies -
a . preselected chairperson to conduct the meeting. For participants’the °
chalrperson has selected the project manager, project technical lead, a member o
of the requirements definition- team, and a member of the requirements analysis =
team. The client also has indicated that he would like' :to .include the . .
following - people in the review: a.representative fram ‘the user shop, a.. -
-reviewer from an independent can&t}ng organization, and a representative from- =~ -
“his own organization. . LT T
The chairperson informs all review participants “of the "date, time, and s
location ,of ‘the review. -Ten days prior to ‘the meeting, the .chairperson - L
-distributes all ‘documents produced by the requirement hdefinition and analysis - e
teams . (requirements document, preliminary plans, other review material) to- -
. €ach participant. In preparation of the meeting, each reviewer .'cr.itically/
inspects the documents. . The user representative . is puzzled over the inclusion 7 -
of a requirement-concerning the use of--a proposed ‘database. The reviewer from =
the outside computing organization . motes that the: version of ‘the operating ~ -
System to be used in developing the system .is very outdated. A representative, -
of . the client organization 'has a question concerning the ‘use iof.-a
Subcontractor in-one phase of the project. Each.reviewer submits ‘his ‘comments = - -
to the chairperson before the ..Scheduled -review meeting. ' The .chairperson = -
receives the comments and directs each to the appropriate..requirements. ' team -
member- to allow proper time for responses to be: prepared.: .. oo .

!

. B N

. S Y T . | . g 2.

S Page 58; .
'I'he requlrements rev1ew meeting beg1ns wzth a. brlef introductlon by the
", chairperson. A1l participants are introduced, rev1ew ma‘terlals are, listed,
- “and the. procedure for- conduct:r.ng the revlewL as7 presented A praentation is..
.then given summarizing ' the® problem" ‘that -ied-: to the requlrements .and the
. . procedure that was used to" define ‘these requlrements. At.this time, the -usér
.. representative inquires about. the ‘requirement - concerning the use of a.
partlcular .database as- stated . in ' the ‘requirements- document.. The project
,—techm.cal?.JIead—responds—to—tha;s—questlon.——'lhe—user~representat1ve—accepts—
this response, -which 1s so noted by the recorder 1n the off1c1al m:Lnutes of -
the meetang. e 4 _ . . -‘r"' AR R
. PR . 9 B . - - . . - N
'I'he meeting contlnues wrth an analysls of e requlrements and a. descrlptlon
< of the contractor's planneéd : -approach for developing a soluifinn to. the problem,
. At this-time, ‘the’ questions from the cllent representatlve "and’ - the - outside -
‘computing organization are. dlscussed The - prOJect manager responds -to
uestions concerning the use of. a subcontractor on. the project. .Certain
e uggestlons have - been made which require the approval of the subcontractor. -
e vThese- suggestlons are placed -on. the -adtion list. : The technical 1lead
.a.aclm"owled'ges -the - problems, that the independent compnt:.ng° organization has
g _. pointed out. He.notes that .certain system vendors must: be ‘contacted to -
Qg‘lv.e the problem.- This item is also’ placed 6n the act:Lon 11st A general_ .

ussion’ among all rev1ew team members follows _ %

s At the end of the rev1ew, the chalrperson seeks a dec1 from the rev1ewers T
. ‘about . the acceptability of the. requlrements docmnen ’They agree to give
“‘their . :approval, providing that the suggestions notéd on the ‘action list - are .

"-thoroughly mvestlgated. . All part;clp_ants _agr_ee to th1s decls;on and the, .
meetrng 1s adJourned. el R _" R i nE e

The chalrperson d1stributes a copy. of the mlnutes of the meetlng, ' 1nclud1ng_‘ =
“action . items, . .to .all’ particlpants., .The - pro,]ect ‘manager’ - -informs " the -
subcontractor of ‘the suggestions ‘made “ at - the -meeting. -.The subcontractor L
subsequently agrees. with the- suggestlons. - - The: prOJect technical geader“_
.-contacts the. system vendor “from. which' the current. operating sy was
purchased and learns that the latest version can be easlly. mstalled before it~
.. ‘1s needed for: th:.s prOJect ﬂe notifies thes. proaect manager- of - th1s, .who -
‘ subsequently ‘approves. . its .purchase;’ ~The - requlrements - document is .o
" appropriately revised .to- reflect ‘the: completlon of these actlon ~items, - The -
chairperson - vemfies that all action items. have been completed. The. pro,;ect .
nnnager submts a. ﬂanagement Report to management sumnarlzlng the rev1ew. '

4 ll 13 7 Effectlveness. S:ane the cost to correct an error. 1ncreases rapldly

o as: ‘the development -process - progresses, detectlon of errors. by the. use of
formal rev1ews is an attractlve prospect R L o _ :

Ve

Me of“the qual:.tat:we beneflts attr:.butab}e t6 the. use of formal rev1ews are
T g1ven below. Coaew o UREL S oy ;_;, PRI
1" o nghly v1s1ble systems development LT e e
7z . o Early detection of design. and analysis errors:-- . i
...~ ‘o:More reliable estimating and scheduling tis-The T
U o Increasedﬁ?'product rellabillty, 1nta1nab111tyv A i LR

o ".’_-"-"o Increased adherence~to standards
0 Increased user satisfaction

process ;. loAE L

0 Increased eduwtion and expenience of all individuals»involved in the ,

_ Little data’ is: available which identifies the ’ Quantitatiile." : benefits ,
- attributable to the use of formal revieus ' o o

é

. ll 13 8. Applicability.. For:mal reviews are applicable to Iarge .or:- small“

Petrocelli/ Charter 1

" Experience with this technique indicates- that. it is\n&t effective on large .
progects. - The costs involved in performing formal reviews on small projects, :

er, may-be sufficiently large enough to copsider. lessening the formality'

of the reviews or egen eliminating or canbining sane .of- them. L

pro,]ects following. all development phases and are not limited w project type' 3

or ccmplexity.

u 13 9. Learmng. This techniq& does not require any special training. ‘
However, : the success or failure of -a formal reviéw is dependent on the people’. :

-+who' attend. They must be'intelligent,.skilled knouledgeable 4An*’a" speeific:
problem”. area, - -and ...be . able to interact effectively ‘with other team members.

_'The experience and éxpertise. of the individual responsible for directing the o

' review is also criticrel “to the: stmess of the effort

4.13.10. Costs. ‘The method requim no- special tools or. equipment. “The main

cost mvolved is that of human resources. If formal reviews are conducted in -

- accordance “with ‘the-resource guidelines expressed in: most: references, ‘the: cost

of: 'reviews for average programs are not high. :However, the: cost of. reviewing S
major programs can be significant. *Most’ references suggest that formal review

‘meetings - should not require moﬁ “than 1 _to 2 howrs.: Preparation time can . °
-amount .to-as little as 1/2 hour and should not require longer than 1/2 day per C

review. j~ R T g g L
x 13. e References.- | | '5.'.;;." 7"'7‘5’?’%*'-' .

+ . (1) FREEDMAN, DP., andHEINBERG, G. .; "Ethno - Technical ‘Revi_ew,
Handbook" 1977 Ethnotech Inc.. S . S

(2) WEINBERG “G.M,, ® PrqérmingasaSocial Activity,‘lhgﬂw_qhglms

szis‘mnm'&xzfmsnmingVan Nostrand. Reinbold 1971- L .
" (3) MyERs, G.,"” "Reliable Software Through Composite Design"

() SHNEID“

. (5) GLASS, R.;. "Software Reliebility Guidebook" J_P!'en'tice-ﬂall,
Englewood Cliffs, N J., 1979. _ S)

«s .

S . BEN,” "Sofuvare Psychology Hunan Factors in Canputer'
and Information Systans" Hinthrop Publishing 1980 - _

u 141 Nane Formal Verification.,.. o oezae 7 A

j" ’4 14,2 Basic features.

'Ihe purpose of formal verification is to’ apply the e

formality ‘and rigor- ‘of miathematics to the task of _proving the consistency
" "between an algorithmic solution and a rigorous, complete specification of the

intent of the solution. T

~.—1§fwr3.~—1nfomation—input ——r—'i‘he—tw'
«solution specification .

inputs . required —are—the—
- the: :intent - specification. The solution

: ‘specification is in algorittmic form, often :but not always, - eyecutable . code; .
" The - intent specification .1s .descriptive :in: form,. :mvariably» consisting of :
assertions, usually exprwsed in- Eredicate Calculus. P . -

...l

" Additional inputs may- be
-2 méchanisms*- to-

required depending upon the rigor d specific

be -employed . “in." the=consistency proof For xample, the L

'} ‘semantics of the\ language used: ' to “express . the ., solution . specification are .
required .and- -mist’ be: supplied to.a degrée of rigor conSistent with the rigor -
" of the proof ‘being attempted - Similarly, simplification -rules ‘and’ rules- of -

inference may be required as input if the proof process is to be completely

rigorous.

ll 11F14 Information output ; 'lhe proof eprocess may terminate with a) '- f-

successfully “completed.
inconsistency or it 'may -
- “the - .proofs themselyes

latter- case, any fragmentary
.. only, meaninémi outputy:.*

ll 1”.5. : Outline of method The usual .method used" 1n : carrying “out formal
. verification - is%l-'loyd's ‘Method.: of Inductive Assertions- or a variant thereof., -

'This method entails the .

8. L

proof “of i consistency, .or” a, demonstration ~of S
terminate inconcIuSively.; In&the former.. two cases, -
-and . the. :proven::conclusion-are-the- outpuTsk In the .

-chains: of: successﬂilly proVen ‘reasoning“are .the :
'meir signifféance g, - mebte_d, highly variable. T

s R -"»-J.‘."

:-43 Pl LA

=2

e*’ o e

‘partitioning:. of -the $olution specification into

- algorithmically - straightline fragments by ‘means. of. strategically placed
.assertions. This: partitioning reduces. the proof of consistency to the proof
of a- set of smaller, generally ‘much more manageable lemmas, - . W T

Floyd's Hethod dictates that the intent of the solution §pecification be
captured by two assertions. The first assertion is the- inputvassertion which -
describes the assumptions about the input, The second .assertion is the output
_assertion which ' describes.the. transformation of the input, which is intended .
to be the r&ult .of, the ‘execution, of the. specified _solution. - 'In’ -addition,

- intérmediate asgertions must be fashioned Ardbplaced within the body of the © -
-golution- specification -in’ such -:a .way . that~ ‘every-loop. in the solution.
specification contains at .least one intermediate -assertion.. Each -such” -
intermediate ‘assértion must express completely .the transformations - which are « -

intended to occur ar are occurring at the point of placement of the assertion. R

'l'he purpose of placing the assertions as Just described is' to assure that -

“3

~ every possible ' program execution ‘is decomposable ‘inko - a -Sequénce ‘of
o straightline algorithmic specifications, each of which is:. bounded -oft either -

.end by -an assertion.-

If - it is known that each: ‘terminating -assertion is.

. necessarily implieg by executing the specified algorithm under the conditions -
.of the initial assertion, then, by induction, it can be shown that the entire o

R

L

e
\, HERE
0

- a3 ‘o,
-

execution behaves as specified by the input/output assertions, and hence as. e

intended. “For’ ‘the .user to be assuredi', . this, Floyd's Method directs that a

'set "of ‘lemmas be proveh. This set consists of one -lgmma for: each «pdir of .
assertions which is Separated by a straightline algorithmic specification and

N T B ertion.-—For-such-an-assertion-pair; —the—le:ma—statesf—
* that; undgr the -assumed ‘conditions of the initial assertion, execution of the-

algorithm ;specified ‘by the intervening -code - necessarily -implied the. conditions ,

of: ‘the terminating assertion. Proving all such lemmas- establishes what is"

known as "partial correctness n Partial correctness esﬁablishes 'that whenever"

““the specified solution process terminates, it has-behaved" as intended In
addition, total correcﬁness is established by proving that " the - _specified

. » solution . process must always - terminate. ~ This: is clearly an undecidable

"+ questiony being equivalent to the Halting- ém, and hences its resolution is

. _'_'invaria y X the application of heuristi’cs. ST e ;

.ﬁe above procedure,'—f'ithe pivotal capability 1s clearly the abﬁity to prove

o various specified lemmas. - This can be done to varying degrees of rigor;"
-‘~resulting in " proofs . of:. corresponding varied -degrees of reliability ‘and
«trustworthiness - For- fthe ‘greatest degree :of - trustworthiness, - solution

,spe@ification, inﬁ specifioation, -and ‘rules of" reasoning* must.- 211~ "be -
§ ~specified with lete : rigor and pr.ectsion. ‘The principal® difficulty l'@‘-e .

. lies” in specifying the: ‘solution'’. witw mplete . rigor and _precision..-.:This d j

;, entails specifying the semanti.cs o ,the specification language,- and the

_functioning of any. - actual execution

_fenvironment- ‘with -complete- rigor -and

- pregision. Such ccmplete details’ aré often ‘diffictlt or .impossiple to ‘adduce .-
Th are, . moreover, .when ~available,. . generally’ quite - voluninous, thereby
occasioning the need to prove lennas nhich are: long and a.ntricate. o _

41%.6. Exanple. As an’ example of what is entailed in a rigorous :t'ormal
verification activity, consider- the. specification of" a»bubble sort procedure. /
- (The details of this can be.found in-Reference -3 - for. this technique:) The
intent of the bubble sort must. first. ‘be. captured by an input/output assertion o
: pair. Next, observing that the bubble ‘solution:. algoritm ‘contains two.nested "
“1oops, ' ‘leads :to the 'conclusior that:two add‘itional intermediate assertions
might be fashioned, or perhaps one part{cularly well placed ‘assertion: might
‘suffice, ~ -In. the former -case, up . .to- eight‘ lemmas’ would then need: ‘to:be.
. established; one corresponding’ to each of the (possible: two) ‘paths’ -fram -the
. 'initial to 'each intermediate assertion, one corresponding to; each Of-the - two
' paths from an. intermediate assertion back to- itself,: one for ‘each. of . the -
R ¢ bly: ‘two) -paths. from. one: intermediate assertion to.the othér,. and finally
og'a?or each: of .the (possibly two) - ‘paths’ from. intermediate to ~terminating .
~ assertion. . “Each =lemma would. have to be: established rough -rigorous
. miithematical “logic ' (see. .Reference®3).” Finally, ‘a proof;. of 2
temination would need to«be fashioned (see Ref”erence 3).., %

& 'lt 14,7 . Effectiveness 'me effectiveness of formal irTcationi-h
% attacked " on . ‘several * grounds. ;. First.7and most fune Srrtatl; wfonnal
verification can only establish :consistency - between - iﬁten ¥a sblution
specification. ‘Hende; . ,inconsistency cam ' indicate error- in: eithg: or

“The same .¢an. besaid-for most other verification & Roueyer

- makes . thISs panﬁicularly

< _rigor) d’. detai.l ’1!1

requirenent for great detail invites ernor e A |

'me anount of detail also occasions the need for large, complex lemnas ,-iz
' f_ - Thesé, especially when' proven using complex, detailed- rtﬂe*! of int‘er’ence, L
_pnoduce_zery_large,_mtricate_pmofswhich—are—higkﬂf-prone— "7__‘-% %3

. Finally," formal verification pf Hctual programs ‘is further 4 %ated’ by the’ R
‘necessity to express rigorously the execution behaVior of the;acatual/ computing_: M
environment- for - the. prbgr . AS. ‘a consequence -of; e ,;-;',gxeeution, o

.. environment.. is. generally: ed incompletely and " ‘imper t_h’ere'byj,
” ""restricting the valEity of - e proofs in- ways th,ﬁ I 11t to .
- determine A \, L S P

Despite these difficulties, a correctlys proven set Gy
_.consistency-’ between a’ complete- specification and ag 0
... Whose" semantics are®. accurately known. and: expressed se;
., assurances -of correctness.: obtainable. ‘l‘his ideal_
“* attainable by- apply' automated theorem provers to ;- de:

S neod

rather than code \ _ e € ""
- ll 14 8. App‘.l,icability Formal ve*fication is Ja @c}mc{n}7 wbi,ch _

\ ‘ applied -to" determine the - éonsistency between ‘any’ -algori sod s
:specification and any * intent ™pecification. ~ As, ‘elaborated . upon ea‘plier, Py

.. however,” the- ti“ustworthiness -of*- the “results is highly™ variablie depending ¥
. ‘Primarily upon the rigor with' whigh the speeificationSJare expneg.lsfeq ~and.. the ./~
#. proofs.are carried out. ~Formal " verifica_tion-i‘s, i >
where er;rors hav‘e seVere consequences. TR

5145, Learning. ns.noted, the essenqe of thlS technique isv mathematical R
* .Thus, the :more mathematical sophistication and expertise which’pr’actitioners :
- possess, . the"better - In ‘particular, -a” considerable. - amo¥nt ”of mathematical -
. training and- .expertise.is aﬁecessan'y for the results of applying this technique o
_to be SignificantIy reli e @dﬁmsﬁormy. . . o v

v -
@ ." f \-

) ll 14 10 Costs This technique, When seriously °applied must be expected to
- copsume - very Significant amounts of -the. time and effort of highly trained
. math'&natically proficient personnel -cHence* /conSiderable human-labor expense
;'. be expected -._J."'-'. EATIN. «_ K) ‘k_.;‘

a .’

, As noted earlier, hunan effectiveness can be considerably improved through thef L
use. of, autamated too :JI.s such as theOren proSIers. It-is important -to observe, v

' 'however, that sqch s can be prodigious consumers of computer resources.’ ;

. .Hence“ theiﬁopemta.pnal costs are also quite largp B N

, i "*#’ T . . < S L 7,'
‘ra 1u 11., Refereﬁ S F - ',g> . n,.;;{: a R

R (1),}3ng R’W., "Assigning Meanings to Programs" 'in h&h@ﬁh@l
A.AQ& L__mm 19, SCHWARTZ, - J. T (ed) American Mathematical

. Society,. QioVidence, R. I. y pp.19-32, 1967. . e . Y
. P i v T o i Lo T .
"~ . . ’ " . . .t X . . T . .-
< - . .' . i - - e~ .o . R . . R . . . R - \“ »
. ’v', X .‘;' w : . . - . ,: "3“ .-.,f' :] Y . . . Lo » . - R
Pt L N
. I S : AN
S N e N~ v
gl ' oA o Co v i ‘; 2
C QB

'Pase; 63 "

@ ELSPAS B., et-al.; - mag. Assesanent Of Techni
: oy ques for Proving
- Prom CorrectneSS‘J "mmmmmmxa 4, pp.97-147, June, 1972. |

(3) Gody, D.I., LONDON; - .Biijﬁnsos,' WW., "n Interactlve

.m{?‘

‘Program’ _“Verif tion System, " m&r_engem

= i gk,l%. 482-492. .

R ey HOARE. ,cfA.R.’ mpn Axianatic Basis”‘for Ccm uter P ogranmm
mgu 12, October'1969, p{:. 576-583_" < P i} b

. . . ’
PR £
- & N , -
. B e o 5 -
. . . S
X - I - A
- - - . K = B
. ‘_ -~ “ - ' ¢ ’
SR L. . -
.)

P \.. :.
. 8 Lo~ S
- 3 o
R) pct
> oo - . T !
o L. i v - :
- E “ . . . %
> - B . .
[y L 1 . P N) .
. ,l i - - : . o . . &
- . . o v - Coe
. Py s _ A L <
) e - o ‘ - -
- ", N) : (N N . ’
. - T ~ '
< u o ' v v ' :
oY .. . PR . +
) L% - I
< e .- -~ = . -
. S e z .
. . o »
- !

¢ - T &-’ . v::.; - .
; PR s : A g ©
. I e " - %

\ .
- . A
&> .
. - ’)
' ,)
A - SR,
- R 2
- LD N

R ,_; . ;\ 'Page: 64
.Algebraic Processes N v

e

"'_ 4 15 1 Nane Global Roundoff Analy‘ :

. ".tm‘T: .

4 15 2. Basic features. Q'ﬁe technique rinvolves the_ use of computer software
- to - loute numerical instabilities: . algorithms . consisting of algebraic)
5 processes __Glohal_nolmdoﬁ‘_analysis_i e~—deter!mnation—of——hw—‘roundi:ng-—
error propagata in a given-numerical method for many or-all- pennissible sets'. -,
of data, This technique -has.- two Aar:,,eas ‘of application: .‘Case I ~to. decide-
whether ' an algorithm is as.accfivabe as can -be . expected given the fundamental
T limitation of finite precisi_ﬂf ftimetic; and' Case II - to decide which -of "

stable, iz e less susceptible to rbunding
- _ . i

b o .

- errors. B

53 Informnorr mPW-"m s -

o o) -’:' . ’ _
a. Case I Analysis of a single algorithm ST R
' (1) algorithmgdescribed omo .- e

_-":; i, . (ii) data. or-.algo,
TR v (411) choice”and: type /of mundihg ;
(iv) stopping value ‘f r ma:dmize‘

b, Case’ II < _ : gor : ‘
« : (i) each algorithﬂr -described: ina: gs:unple progranming language
- . (ii) data set for algorithms.° . N Cog®
- -~ (iii)~choice of rounding erz:@? measure and‘mOde of comparison B
(iv) stopping value f@kmaximzegg . |

'\ ‘
4, 15 4, Infonnation output

. a.Case I & Analysis of,a\singl algorithm% o G L
(1) output comp for the initial data’sét™ = . - - - S

(i1) list of values found by the maximizer o . e T

. (1ii) final set of data = S -

(iv) if instability diagnosed, then all ari ic operations at the -
- - final set of data are listed T o

“b. Case I < quparison of two algorithms
L (1) _putputigatiputed for “the initial algor:i i
oW (149785t of values found by the maximizer
S (iiMinal set of data - .

o

4, 1555. Outline of method. For an. algorithm and a data set d 97 then.
(a) & tion ﬁ(—) calfed’a Wilk:lhson mxnber, has been defined whi'ch

‘ measixres the effects of rounding errors. Large values for W 1s the sign of an
unstable algorithm I s

A R

.-\‘.»1.

- .- . -(b) Willa.nson number has been shown to be a "smooth" functibn of 'd,
-i.es wwas ‘the original data set values are altered in small increments the
: values, of w are correspondmgly altered ‘in snall mcrements ¥ _

'L.-'

1]

.....

e . | Page 65 - ‘

. (c)% appmximation to Hﬂkinsonnmber;hasbeendevelopedghj_ch is
straight fomard to eanpube T y SoTE T

: .".';%3- o
(d) ‘l'be represegtation of e algorithm 1s analyzed S

o (e) Using the iriitial da’m 'sét as a 'starting pOint the 510ba1. }'i
. analysis’ program uses numerical maximization _techniques to modify :the dita set.” -
"~ The search %.;’. directed tward finding a data set with ‘a disastrously larg__ ge
- value Ofﬂw(v : E D

" B.15.6. Example.- Trlangular Matrix - Inversion (4). . The betber matax_
":;inversion algorithms -are .- known from’experiehce to-almost invariably’ produce.: .
satisfactory: rwalts. 2 However, ------ -the question .remains whether: there' 'is .a . -
‘guarantee . that the‘results:are. alm}good ’The -question-can be reformulated - - -
;a:'g:_;” Is,the traditioaal back suﬁstitutiqg algorithm for “inverting. an upper =~
sopguar mtrly Tmerically stable. In the. seiise that thereeis amodest . .
“bound, “depending on’ the ma’fri % (- St ‘), |
—al rresented - in“figire-4.15.6-1. Note that the .

"-the{smch_for numerical~s

' be conducted in the domain BEA¥E T
calculated . | e i

~TBT (N=4) -

'€ . TRIANGULAR MJTRIX., -

- DIMENSION (SEN,N), T(N’fa))

¢ T

" "FORJ =1toNBY'1 '_
- __FORI:Jto1BY-1
W | §T(I 5)

- FORK=1TONBY1 - T
S(K,K) = 1.0/T(K,K) L R
. "FORI=K-1TO1BY =1 .-
‘ S(I,K).= -SUHMATION(T(I J)"’S(J K) J=I+1 TO K)/T(I I)
L END_(I) o,
c . . ° . . . v o é -) ::‘

FORJ-1TONBY1' Lo @
- FRIJTO1BY=i . - \))

ba

- OUTPUT(S(I, J))'
-« END(I) -
BN F
| Figure 3.15.6-1 Triangular Matrix Inversion c e

) S o . o~
.

::’:’“"‘lhofcanpiler portion of the package.,,_~ ecks the prosram f°1? E .
translates then into a form suitable for analysis e ‘i}[f:_' SR

‘me roundoff analysis program was told to seek 'a’ vall.p": of "W in excess. of :
10,000.- “The: m:dmfzer located the following matrix.- : - S

/-0-001 - 5,096 5.101 -~ 1.853, B |

= 3737 3"740 33 oo .
AN 0. 0006 5. 254 S
! . =] .-
| v ‘ S, ser/ |
Hith W (:Qomo 000 in 6 seconds CPU. time oh é@u 370/168.\ R ,;
e SR

‘me fact that m; can be large for, data like T seems implicit in known results
e.g., (6), verifying the <411 behavior of triangular matrices with diagonal
entries approaching zero. F AN . .

t:

T

8, 15.7. Effectiveness Failure the maximizer t‘o find large values of w
does not guarantee that: none “exist (2). Thus, the technique tends to be -

optimistic; . unstable methods - may -appear. -stable. . However, ' ‘Sxperience - -

indicates thit this method i,s%w-prisinsly reliable. At least, _the failure of
the maximizer to-find large value alj of w .can’ be “-interpreted ‘as providing
-evidence for stability equiv: nt to a large amount of practical experience "

ﬂith lou order matrices, - 5 .

B, 15 8. Applicability The technique is intended for noniterative methods. o
fran nunerical linear algebra.x " , S

,;ms 9. Learning. Most algoritims should be able to be analyzed in 2 to 8_}
hours of training and preparatigp assuning the software is available. S

*ll 15.10. Costs. The performance of the technique is related to the
perfomance of the algorithm -being checked. -

u 15.11. ¢ ReferehceSo . _l.' . £

[P
P

, (1) um.sa, W., "Software for- Roundoff Analysis", m Ir_ansag_tigns on
Mm,‘l 2,June 1975, 108-128 L o

A

T SComputer Search for Nuner:[cal Instability" " Jeurn
20K, i, October 1975, 512—521.1-,- o , o
B (3) HII’..LER H., "Roundoff Anaiysis by Direcbx Gunparison of M
P '4) MILLER, W.-“and spoonm D., “mSaftuiare for”a doff:-Analysi's,',nw,'
mwmwmu 1978 369-387 o

o (5) HILLER, W. ‘and SPOONER, D., "Algorithm 532 Softwar:e for Roundoff
Analysis 2m AQHInmﬁas_tign; gnlﬁﬂma;msgﬂmne, 4,4,1978, 388-390.

o (6) ANDERSON, A, “and. KARASA[.O I., ‘non’ Ccmputing Bounds for the Least’
Singular Value of a Triangular Hatrix",BII,1975 1-4 » E

-

.3
R

o

« A. -
o~
~ :
e , ‘e - .
. . : o Py <.
¥ " ! Ca -
L
b .
- S
[
ey . K
T [
. RN\ gA S
. IE P
: -) Y .
R
. ,- 3
. . .
——
¢ -
- Lt ° .
o »
- T - & 5 e .
- e
“. o4 .": . ‘ - A

Tag
‘T". .

&t

LT e T pagees

P

. ,9,‘_!6.,1 Nane Inspection R R k T
- 8,16, 2.- Basicfeaures. Informal reviews constitute a thorough inspection
* - mechanism. used .to detect errors: in system components. a@ docunentation.
. Several inspections are _g %lly_.conductedior_eachr—item—as——it —progresses——
—Wh the lifecycle. commonly recognized inspections.are conducted
..during the design and progranming #stages and -are -referred to as design
inspecticns and code inspections. - However, - the inspection concept may. be .
applied 0 any functiohally -cd@plete part of a system’ during any or all phases
of . the lifecycle“.and . are. typified by utilization of checklists and ‘summary:
reports Another "unique feature -6f an. inspection is the use of . data\fran past‘
: inspections to stimulate future detection of categories of errors. .- B

* B.16.3. Information input. The input. réquired for each inspection falls into
three main categories: . relevant project docunents backup docunentation,n and -
inspection checklists. o . . AT w‘ ;

i T : Es "mese are - docunents prMuE:'ed by the o
development team’ to: describe?ﬁ‘: ‘System.- “The specific documents’ nequired are
dependent upon the 1lifecyclephasesx rently in progress, “For- “example: . -an -
inspection conducted during the design phase would necessitate availability of'

; Functignal Specifications or System/Subsystem Specifimtions._ SR

b Backup docunentation. This’ s type of input is docunentation whictf L
is not usuafly contractually required;, yet preparation of which is necessary
-) support - systems development-or othemise record project - progress.» Specific o

* types. of 'backup . “doctmengation vary by the phase.in which the inspeetion-is -

-.conducted. Data dictionaries- and cross-reference . tables are examples of
backup* documentation - utilized during a design inspection. Program 1istings'~‘
are an example of code inspection backup docunentation.- _j'..,.;* :] ; P

o Checldists Each member of the *inspection team uses a checklist
-for - review preparation and during the course of the inspection itself “The -
- #checklist content . may—. vary “based -~ the particularg application being
inspected and is updated.- fram™ feedback of “other:recent’ msppctions. For
example, ‘a. checklistito be- employed. during a code inspection of a COBOL
progran component would contain itens 1ike _ o ,

- ~0 Are specialized p ter controls used to enhance canponent -_read‘_abi_lity
“ (CuBey use ‘of. EJECT or SKIP. cannands)? : L Eee R
" o Does each procedure have only one* exit and entry? I -
- o Are IF-THEN-ELSE statements indented in a logical fashion?a N
.0 Are file, record and data names ‘representative of the infomation they
.- . contain and do ‘they conform-to: established naming conventions? - ~ -
' o Are coments etp t and accuraoe? s

-1-.-

_. .\ - -'.- M

d
!w‘ '.‘.) ..

P - - . . . e

- g Y . . f

4.16.4. Information “output. lhe 1nformation output associated with*
inspection .is ' either related to inspection planning and scheduling or-

' inspection results

' required -for '~ each inspection task; and: a -summary of the“status of the item :
vbeing renewed (mcludmg any prev:.ous inspections conducted) : SEUET

>

- . ___vion—schedule—memo 'Ihe—memo—is~_produced—upon— notifimtion—
from managenent “‘that an inspection should be forthcoming. -The memo defines
the roles and responsibilities’of -each- inspection’ team member; estima

b Problem Deﬁnition Sheet/Error Description Sunnary ‘lhis b e rm is

=used to record - information- about -each detected error. r:It descr bes the

location, nature, and classification of the errors.
-

Sumnary Report A Swmary Report -is used to docunent correction"-..}

- of all errors reported during an inspection. "Data recorded oh the report is

tabulated and becomes part of cumulative error. statistics which can be used to
improve the- development and. inspection pms::,:se& B »_ . _ OV
: d. Manag :gf; Reports ‘l'hese ep’orts are -the ‘means’ by : .
management is info ut the types: of~'~ ez;rors being detected and the

- of resources being expended to correct them.> The information from theSe .

reports highlights frequent sources of- errors, . prov1d1ng input to management .

. for ﬂzture updates to the inspection checklist

4.16.5. Outlineofmethod L .

. .. BRoles and“ ResponSibilities. ‘Ihe group of people responsible for.
the inspection results are usually called an inspection team and are given

- responsibilities based upon their contribution. to the item ‘being inspected \

The 1leader -of the group is responsible for all.process planning, moderating,

" reporting, and ‘follow-up activities.’ The" designer /implementer- (per

‘participate in.an inspecti

responsible for building the item) and the tester of the item being ins _
are also members of the £, spection team. - D_hnagemen:“ do'es-_ not nor'x'nally‘ o

i
\:; e . . o : R

b. .. The Process. There are five baSic steps imrolved in every

inspection: plamning, preparation, inspection meeting, rework and- follow-up.

The first inspection for-a particular item contains another step.) overview

Presentation. These steps are sumarized below. SE

b2

¥ers ’4; -k

Hhile these steps should not vary ﬂmctionally for- inspections* conducted at :
different development phases, the responsibilities of the individuals on the -
inspection team will necessarily vary slightly. - This -occurs because the

primary responsibility ~ for the item shifts as the lifecycle Erogresses. For -

-example, during a design "inspection, the designer is 'th€ focal point.g.
However, ~ during . a code inspection or document inspection, the implementation

- is the focal point.

" 1. Planning.. Set up inspection schedule and assémble inspectiqn team .
2. Overview Presentation (conducted only for the- first inspection of the
item during the development process) Distribute applicable Product

. . e P e dm W Tt s - . -
e N R Rt T . . e

to inspected :
3 Preparation. Team members read and 'review docunentation andf
' .Questions. L
—4.—Ihspection~ueeting —Conduet—detailed—deseription—of—th&xten&;—notmg—aﬂ
- errors detected.. Use checklists to ensure. ingpection canpleteness ‘and
" Problem Definition Report to summarize errors&iii
5. Rework. Estimate time to correct errors and:f ment the. corrections.
6 Follow-up. .Verify that all errors have been’corrected using Problem
--Definition Sheet-as a. checklist Canplejae Sumnry and Managanent
Reports T

‘ -‘l& 16 6. Exanple. The follouing is an ex@ple of a design inspection of ‘a -
sof'tware: component or iten which defines the roles and responSibilities of -the
-inspection” team members. Upon decision of ‘management to0 conduct .a_'design -

-~ inspection, the selected -leader initiates process planning by identifying team

* members ‘and their roles and. responsibilities. If this:is the first inspectidn .-
for this item (i.e., there has been no requirements inspection), the leader
next-. schedules an overview presentation. The project and backup docunentation)

- (i.e., ‘Functions Specification, system flow charts,’etc.) are distributed and

" the. item designer \1eads the- tean through a high Ievel description of the item

- After thepresentation each ‘team member reads and reviews - the distributed o
— documentation -~and 1lists= any questions. 'I'his 1ist of prepared questions is
often given to the leader and/or designer prior to the inspection meeting.

(At the designer inspection meet‘ing the impl@entergleads the team.

‘detailed descriptioniof - the design of the item being inspect

~ décumentation_facilitates the descriptionm and cl ies points

“brought up. .‘The checklist is used by .each team- ‘to help ideAtify. errors

. and enforce standards. - The problem definition: sheet is prepared .
E leader at the end of. the inspettion..: The item design will ‘either be approved-

- as~-is, approved with modifications, or rejected. - In the last two cases, . the . .

problem definition sheet is given. to the designer and the correction process '

. o

..At the start of this rework proeess an estimate is made by the 1eader and -
‘desigrier specifying time required foFecorrection. - This estimate is enteréd on.
the Problem Definition Sheet and-is provided to management. Management ‘can

- then make a judgment as to whether their project schedule. wil¥®be affected,

" Necessary changes to the item are made “and the item is eiﬁxer reinspected or

' 'submitted to. follow—up procedures. J el

B -.--_ M - ~

’ _"_leader and . designer to veniﬁ/ that - axl errors have been analyzed and -
corrected. The reader then fills- out the Stmary and lhnagement ﬁeports and -

submits them to management e 4 \

...
-

- lt 1 6. 7. Effectiveness. Since the. cost to correct an error- increases rapidly
as the developnent process progresses, detection of errors by early use of
: .inspections is an attractive prospect IR T AR -

R] e - ,.,'< LS I ., ,\:'» Page 71 ‘.-”

._.»_; QTR D -

_ Stu\dies have /Been carried out which 1nd1cate that inspections are an effective :
" .« method:"of 7 "increasing. . product quality (reliability, = usability and

maintainability). Expera.ence With: the. technique - - indicates _that. it. is"
- effective -on -projects of. all- sizes. .The. best. results- ‘are generally achieved, T
: when the mspection leader 1s experienced 1n the insp_e_c_t:on pr:ocess. L

sy Sane of the best quantltative:r:esults of the use of mspections have ccme fran -
-~ . "IBM, : which ‘has been studying the “use- of the technique for a nunber of years.
._: One study, ‘detailing and canparin e beénefits of mspections and structured
- walkthroughs, findlcated 23% higher programmer productivity with inspectiofis’
than with walkthroughs. No data. was :available ' documenting the amount “of -
 increased programmer productivity attributable to mspections alone, . The -
_study -also.reported 38% .fewer errors in the running - code than 1f solely ‘
agplying walkthroughs as an -error detection mechamsm. Lo _ v

'I'he qualitative benefits attributable to the use ‘of 1nspections are_
substantative. 'l‘he follom.ng list 1s 111ustrat1ve of some of these pos:.tive
ef fects' .
. . . . ? 'g . \ . .‘_)] t -". . .
.o Progr.ams which are less complex R ' L o
0 ‘Subprograms which . are written :m a consistent style, complying with -
o established standards: . . o e
- o Highly visible systems development . ’, . . '
. 0 More“reliable estimating and scheduling . ” ‘ ST
- . o Increased education and experience ofvall mdividuals 1nvolved in the ::;
- .. inspectioh process - s S S
o Increased user satisfaction -
o Improved documentation . - o _ : R
.0 Less dependence on key personnel ﬁor cr:.tical;i skalls 7 : .

- 4,16.8. Applicability Whlle the most coumorﬂy used mspections are for -
design and code, the . technique is noﬁl' ted -to these phases and can be. |
applied during all phases, for most types of —applications (i. e., "bus:.ness,
SClentlflc, etc“)*en large’ or smala pro.;ects. .

q, 16 9. Learning. The experience of the mspection leader is’ essential to .
the success of the effort. A correct attitude about the process is essent1a1
? to all involved,. 1nclud1ng the appropriate managers. - Many excellent ‘texts
“‘about .. mspections (and other types-of reviews).are in existence which should
supply the required level of detail as well as discuss scme team psychology‘ :
1ssue's pertment to: inspection conduct. - . . _—

A

4, 16 10 ‘Costs. _The methiod requires no special tools or equipment 'I‘he main
.- cost mvolved is : that - of human resources. . If inspections are conducted in
accordance with the resource guidelines ‘expregsed - in most’ references, the
costs cof inspections "are negligible compare: with expected,,,gretur‘ns. It
should be kept in. mind" that follow-up: inspections correct "previously
&etected errors can increase the original cost estimation. Most references
-suggest that inspection meetings should last no longer than 2 hours,. . and ? _
e(as

reasonably be kept .to 15 minutes. Preparation time can amount to:as littl

1/2 hour and should not require longer 'ghan 1/2 day per mspection.) i
: .)) f_.) : .) _ ‘Q

(1) "Code Reading Struct.ured Walkthroughs and.w Inspections"' IBH,

IPTO Support Group, Horld Trade Center Postbus 60 Zoetermeer, Netherlar!ﬂs
f-__lh::eh_la'?ﬁ —

'.‘--. -

{:‘- L.

reduce errors in :

(2) FPGEN H E. "Design and Code Inspect‘fons to
ProsranDevelopment" m&mm:nal No. 3, 1976

Cs o (3) FREEDMAN, D.P. and msmssm G M.,, "Ethno . Iechnicai‘faevie«
mm EﬂlnoteCh’ Ian’1977. Lo - N ’

. R 0’
£

é?.
-©

(ll) "Systenatic Software Develognent and Haintenance (SSDM)" -~BCS
Docunem: #10155 February 1977 o

T :..: et Au

- &
. - -
° . .
- ~
[~ Rt ~
b -
-

. . 3
. . a .
5. , t ‘ : g
N w . . A
B s e 3 P -t
- . tove o o
3; . P %? » B -
- S .
= Gy - * -
e o
) ST PR I .
e i o
- . - il .
\ =
. ~ 4
- K °
. . o ; .
. B o : i
v. " &S . = N
< . , o .
N -~ .S":V' =
- o
Iy - . e
! 3
: “ !
R
PR
- : P it .
- ° Bt S
- 3 <

P

o P . K . . I
. '__|) e |) .~

..w'

control and/or analyze ‘the dynamics of .a \ ogram - during execution. The

o cap_abilities -provided by these tools are 1 used to* st in identifling_and

v

. s

isolating progran errors.. These- capabilities\allow \khe user to: .

L Q suspend progran execution at anyf poznt t’o examine -pr ram. status, S
*. 0. interactively dump, the values of selected variables: and memory locations, _.
o modify the computation state of an. executing program, - Lew
. 0 trace the’ control flow of anrexecutmg progranu G T
ll 17.3.. Infomation :mput. Interactive test aids require as. input the source .
" code " that is ‘to - be executed and' the commands that: indicate which testing -
- ‘operations are. to ‘be” performed by the tool: during execution. - Included in the

R . commands - are indiwtions of which- program. statements are to be affected by the..

tool!s. operation. Commands can- be 'inse;ted*in .the ‘source code and/or . entered

- interactively by the user during progm executibn at preselected break. ' _'

.'DOints o R

: specific execution tpoints or a display of control flow during execution.

sE'r Set. the value of a speciﬁed variable. AR

' ,SAVE. Save the present state of execution.

AY.17.4, Information output 'Ihe information output by an ’*interactive test L
"~ _aid is’ a-.display of. requested information:during. the execution of-'a program. -
This information may include :the.:contents of: seleéted storage cells ‘at -

4, 17 5. Outline of method 'J:he ﬂmctiqns perfomed by an interactive te) e
aid are detennined by the conmnds input to it. Sane camnon ccmnands’
_described below. s o 0y _ S

‘ BREAK Suspend program execution wherra particullar statement 13 E —u, -
: : executed or a particular variable is altered S

DUMP: Display the contents of specific storage cells, e g., variables,
N i:nternal registers, other memory locations. S s
TRACE. Display control ﬁow during program execution through printed
traces of: - ;
0 statement: executions (using statement labels or line
numbers), .. R _ o
0 subroutine calls, or ;. e ' "
0. alterations of -a specified variable. v -

»

W

s

’ CONIEN’IS Display the contents -of certain variables at the execution of a -

' specific statement. R ,-_,. o

' .."RESTORE° Restore execution to a. previously SAV "

Invoke a subrOutine.

. A e

'-CALL

.
B) ‘1

M .
ey A0
B 0

. B . P
AR - . . .
. X R .
.) - ,

-

| EXECUTE: -Resume 'pro_gr‘an éxecqtib;i{_at' a

. . . Co . , S - * |
. EXIT: -Te’minategt_'ocessing. ‘ ' S SN 3 .

>

 These camands allow camplete user control over the caiputation state of -an’/@
. executing program. It allows the tester to inspect or ‘change -the value-‘of -any =
vari~§m_e at any point during execution, T S Wy

 The capabilities of special interactive testing aids can also be found iNvmany
implementations of interpreters and campilers for such languages as BASIC, ;
. FORTRAN, COBOL, and PL/I. oL R s

%.17.6. Example. A critical section of code’ within a- routine is to be
-tested.” The- code camputes the values of three(variables, X, Y, and Z, which .

later serve.as inputs to other routines. - To -ensure that the values’ -ass?gned :
- to-X, Y, and Z have -been correctly camputed in this section of code, an” * -
_interactive tf(s‘ging aid is used to test the code. . - - .. ' e

 Two BREAK cairiads are initially inserted into the code. A BREAK -command. is
" inserted immedfately before the first statement and immediately after the last
Statement of the section of code being tested, To display the valie of X, Y,
and Z, a CONTENTS command is placed before the second BREAK cammand. The
~ Program containing the above-mentioned code is ‘executed. - When the first.BREAK -
~ command is encountered, execution is halted and a prampt, is, issued. to the user .
- requesting that a command be entered. A SAVE command is typed by the user dn > -
. order .| to save the present state of execution. Then SET command is entered to
' get the values of two variables, A and B, which are used to compute the values
of X, Y, and Z. The EXECUTE" command is then issued to ‘resume program
execution. ' o LT T T T -
At the end of execution of the evant section of .code the preinserted
CONTENTS command -displays the. uted he d |
BREAK command allows time for these values to bevexamined and gives -the user
the opportunity to .enters new , At this time, a.BESTORE command is = -
entered that will. restore the computation . state ‘to. tjsCestate that was
previously saved by the SAVE.command, . For “this ‘example,” e s '
returns to that which followed the first. BREAK command, .allowing the code
--‘under’ analysis to be tested with different. input values. Different values for . =~ -
"A and B are entered.and the.contents of X, Y, and Z aré observéd -as before. -
- This - process = is ‘repeated several times using carefully selected values for A -
and B and the corresponding values of X, Y,“and Z are closely examined -each
“time.. If-. results of: several- camputations look suspi¢ious, their input and . . -
'w_tgut-'values are noted ‘and.the code.is more thoroughly examined. The program °. -
‘is.;finally terminated by entering the EXIT commiind at one of the two pogsible
‘break points, . =; R e PP 4
’ - R . ’ . * v-;___ TS . .‘5-'.; R 'v ; . ' s - . R
4.17.7." Effectiveness. To be an effective testing toal, ‘an‘interactive test
-aid. should, 'be used with & disciplined strategy to guide the testing process.
- The tools can be easily miSused if no testing methodology 'is ‘combined with
theiruse. ~ - v T P (R

e

»

. L 4

5?

- . . s . .

o, R . - - 3
. b . .
. T -) 8"‘ - ~,..
N - 4 4 .
3 o "_c - b

-y

. r e T < :

o ll 17,8 Applicabiliﬁy- Inter;active test aids can be applied to gpy

| source code.. “Most ‘existing- tools, however, ‘are- language depemdent el
,éoperate oorrectly onlﬁor specified languages) . e '. _ .

: '_18 17 9 Learmng. Aminimal amount of learning «is required to use thes.e

- tools. ‘It is: comparable to the learning required in using a text’ editor.
_Hwae:,_if.the—tool-is—to—be—used—mosbezfieient&y-—sme&eamm —is—requ:rred——
in utilizing the tool with ‘an: effective testigg strategy. :

.....

au 17 10. Costs Progran&_. e‘xecuting%under an mteractive »*test aid wi&l]

.@require = more computing. r 3 v v ﬁé:nog for diaggostic
tables) than if executed 0D ration, ‘l‘hé ‘egst is gependent on "the.,.

B For ~‘€xample, *those- "Based on -<intérpretive”
fferent . fran’those dlgyen by monitorfcalls. B

AN L ‘,

:,"'-';.f%aga-u. e L

wm Frreterences. - e L IR

' % MYERS, Glerford, "The -:}uiﬁ:Qf oz Softwareipa Testing,
swiley-In science, New York 1975. S :4'- L _
s (2) "Sperry Umvac Series 1100 FORTRAN éASC%%rogranmeg} Refererke n ,
Sperry Rand Corporation 1979 h] | .

. .(3){IAYLOR, R.N., MERILATT, R.L., and OSTERWELL, - E.d., "Ihtegrated:'
- Testing ‘and Verifiwtion _.System, for_ »ResearEh Mght f_,tware -~ Desigh
Docunent 1" NASA CR 159095 July 31 1979 S G .

.' -3

by
"\ . ‘it

' :’?‘.

‘;{4 18. Na"nie Interface Checker s e _

RS 18 2 Bas:.c features. Interface« 'cheokerso gsalyze the consistency and
. cempletéress of the 1nf6ma,tfon and control f‘low between components modules
'_.orproceduresofasystem Thdes e e & . S

a. a formal represenmtione’of system requiranents or

© . b..a formal representatﬁn of. system design or. . - -1
» L \c. 2 progranr coded in a’ high-levelzlanguage. R e
" naga Inf
S r'evealed. e infomation canmbe prov:.ded as error messages included with;g? g
. 'Source listing or as. a separate report :, o : R R

ll 18.5. . Outline of method. Interface checkers are f‘ully autcmated tools

. .which- analyze a canputer processable form of a software system- requirements .

- specification, des1gn specificztion orzgodé. The method* ‘for each. of the three
-representations <~ requirements,” des:.gn, and eode — will be illustrated bElow
by examming j;he 1nterface check:.ng cap bilities of three ex:.sting toolg ~

1 a.’Statement Analyzer)). is-%an
o) Basmally, PSL/PSA ~describes
. processes ‘and - outpuﬁs - Both’

e ated 'reﬁrenents specificatfon
: tem requiremients as-a ~system of - i

information -and . control flow-are repri¥
& performed by ~PSA consists’ of. ‘ensuring Y that Tall
e - SQ v.processnand‘x§hat".$all' "Proc;
-requirenegts Speci _ tion ax:e, theret‘ore, _eas:LIy

Ihe~Dés1gn Assertion Consistency Checker (‘ilACC) (2) 1s‘a tool which . analyzes

V,module :mterfaces based on a design which contains. 1nf'ormat19n descr!fb ngy . for v

. each module, ‘the fature of . the -inputs . and~outputs. *This i “orm3’ ion. is e

- Specified using . assertiops to indicate thenumber and order’ of inputs,@@;a

" ".types, units (e.g., feet or radians) acceptable ranggs “and: so-‘om. DACC"

.fv,bhecks module calls against the assertions -in<-the: called:. module for ™
consisﬁency produces a cons:.stency report' 1ndicating which ass@tions 4

HOM (3) :Ls a static analysis tool which 1s pr" . used “for checking
'-_.'Fortran :programs for .. -adherence to a portable subset of Fortran language :
but it also performs subprogram interface checking. "PFORT matches actual with.
N dunny arguments - and - ehecks for unsafe references, such ‘as n raints being :
passed as arguments. . S = v Ce

. ‘4 - ¢ . . .

s use data 3 anplete-
ted gc

'..- _w‘. o

i,';Interface checking capabilities can also -be. mcluded w1th1n -a particular
- language's compiler as well, . For example, ‘Ad2 . (4) provides “a, parameter -
: passing mechamsm whereby parankters aré identified to:be input’ or output or.
input/output Moreover, data’ type and constraints. (e. 8., range and prec¢ision)
must_n mateh’ between the - actual arguments and the formal parameters (in
--‘.non-generic subprograns). ' . . R

-

.4‘,

"
. _‘—.’

° modulesyhich are used but not defined, ._ if Ca

>

T
2

o\incorrect nunber of arguments, ~ % . . .- LA sk

LG

. - o.data:type mismatcRes.between: actual ‘and .formal parame‘ter,s, SeTowly

—o—data—constraint—misnatchegbeweenmtuarand*fomarparaneters, T
o aam usage anqnalies. . R . ©
‘ e '-»_-_;f,__ '., : -‘- ‘.:‘._ "._:.r,'_ R

Ty 18.6 Exanple. _:.

'>- . o _ Q%
',_.

utilizes a file acecess- systen to retrieve records containing" data used in the,

(r'

Fyts b Errbr. The primary recor,d. retrieval snhroutine is always pas?ed a

sl

- .st@tement number.in the calling program which. i to Feceive .control in.csse an S
s:wabnormai file procepsing error occurs. sz is*: the 1last . argument in <the @

© ey "

i i (’a,

.1ist -of ‘the subroutine call. . One program, however,fails: to- supply

‘e _ap
o ‘argumens,.” The cghpiler ismot ‘able.to detect the .efror: - . Moreover,

-

, "Applicntion. : A §tatistical analy31s package mtten 1n Fortran :

analysis.,. - ‘*# _ R ,.,y B L

-

ran _implemehtation .is.sbc that no execution “time error .

" oceurs’ untii? réturq,‘tofme unspecifiedastaten lmbé?‘aegs attempted ab,

s S o
§éov‘erg 'mis error can easily be detected by .using

"‘-;in 1 ace ch : er' :at,—either the design (e.g. u?gﬁ&)r ordcggégg_ phase ge tg;% . ,g}g
;an can- le
4 '°‘*5z

. 'PFORSY of th& Softigarh '.developnent activity Bo
, incorrect nmlpers of. Ertuneﬁts. : T

—~$ 1&;7. @ffeetivenesé Interface checkers are. very effective at detecting a*_ g *

class of_ ‘errors which <can be: difficult to isolate if 1ef’l'? to testing.. 'Ihey
. geberally more cosk. effq\g:tive if prov1ded°as a capability within another
FXh. as a canpile’r dfta flow analyzer .or a ‘req"* renents/gpsign

FSHEh:
,_’ tion toolr Cl R ‘ ¢ S e

f Applicability.,__. 'Ihe method is Senerally appllcable..,_ s,

4.9 Learning @e use. of interface checkers requires only a very minimal :

1eaMnth L L L : i

Wt

which time- ‘ 31 P&Sh&. R S : S w*;p' e PR .

r"" .

A

v&\.

-

'?""'lt 18.10. Costs. - Interface checkers are quite inexpensive to use_,\usixally -

mich 1ess than the cost’ of a campilation. -

.

. 18 11 References..

_© . .".(1) TEICHROW, D. .and HERSHEY III, E.A., "PSL/PSA: . A Cimputer-Aided
o Technique for Structured Documentation and Analysis of Information Ppéessing
'~--Systens" IEEE Inanaac.tignﬁ gn S&ﬁmar_e Ensin&ing SB-3, 1977(41-48)

(2) "BOEHM, ‘B., McCLEAN, R. and . URFRIG, Dy "Scme Experience with

»

| Autcmated Mdes 16 the Design of ' Large-scale Reliable Sofhfare"-".IEEE;_ i

ng, SE-1, 1975 (125-133). - 2.

T R TR
,,‘A._ . L e -
.- .

.
-

O

ERIC

Aruitoxt provided by Eic:

“é—'«

Lt

(4) nPreliminar'y Ada Reference Man@,n.--

6‘51381'1: A, (Juneg 1979)

and HA[.L AD.’

e PEORT v
me12 BellLaE:-»lhrch 975 :

e . Y . s - - 3 . - -:.'_:

v . -\../‘ —_'. "
42191+ Nam&? mtaugpgnaiysis.

. ‘;ll 19.2. Ba31c featur:es, Mutation analysis i8% 'l’technique fox: detecting'
ﬁ.._,.'errors iq & _program. and for determmmg ‘the thoroughness with which the:
‘Bas ‘been .tested. It . entails studying e behavior of “a - large .-
- of programs which have been systematically derived fran the,

'" e ~

Py Information Jﬁutsg' The bas:Lc mput requmted by mutation analy31s is'
A .ori source program . .and a ‘coliection of test data sets on:whicbp the %
pmgran tes correctly, and which the user consmers to adequately and
g tho;wgh]g testtheprogram IR S ~=*. . Cl

i 19.4 Information outputs. The ult:unate output of mutation analys_ . As
. collection: of test data sets and good.assurance that the collection i%:: aet:
‘adequate to thoroughly test the program. -It is important to. Mderstanﬁ“mt i
the ' miutation analysis- process may very Well have arrived at this: final state
’ only after having exposed program. egrors and madequacies 4in the\origmalA test -
,‘:qata set collection. “‘Hemce}. it is not unreasonable - 'm consig@r: errors-
- -detected, new program understanding, and: aqfrtionai test data' sets. so be
uinfomation outputs of the mutation analysis. process. .- N o

.' i uﬁ"g . % Y

g .5. -Outline of,;nethod. 5 The essential approach taken in the ,_mutas.ion

-1} ys% of a program;:.s tmproduce- ﬂ‘mthe program-a 1arge set o;; versts o

‘m 'ved from a ‘trivial tr, sformation of ‘the ~origifal, -and’ “to.

i -each:-versich to testing by the&gilen collection of test data sets.. Bl
-“thé ‘natiire of - the.transformations, it.is eéxpected: that ‘the derived ' verekdfs .
“ will #pe" Bssentiglly “différent pro'grams* from ‘the original. .Thus, the- testihg*~
" regimen.should demonstrate that each is’in.fact different;" Fai}pre ‘to:to. 50 ":
- invites suspicion ‘that™th ‘the collection .of -test data sets is madequaﬁe];pis 5, .",
. USually léads to greater _understanding’ of; :the ‘progmani and either’ the‘de setions
_ of. errors or an improved collection of test,daﬁgesets or ‘both. R

.-n ;

&Y centr% feafure of mutation analysis is “the mechamsm for creating the o
- prégram mutations —- the derived versions- of the original . program,.: The set.of
mutations which . is ‘generated and tested is . the set of all .programs- which .- :
differ from the original only in‘a. :lnall number- (generally Tor2) of textual L
details, ‘such as a change -in an oper‘étor, ‘variable _or’:constant. "Research ;-
‘appears to indicate that- larger nunbers of changes contribute 11tt1e or W :
additional diagnostic power. . S e D e ,

'Lhe basis for this procedure 1s the Ccmpetent Programner" assunp ons which
state ‘that (program ° errors - are not random phenamena, but rather kesult from ,
lapses- of MO or concentration. " 'Ihus, an erroneous pr .-sho_uld ‘be -
- expected to ‘differ fram -the ‘correct one Only in a i L
Hence, " if the original program- is mcorrect, then the
created " by making:a small.nunber .of the 'small tex
_ Should include the:-correct program. . A thor ugh. ook
“would reveal --behavigral: -di,fferenees e AL
ahd the derived correct—-en ,,- '-"j;

3

) 'Hence, mutation analySis entails determining whether .each: mutant behaves L
.diffgrently from the -original. --If so, the mutant is considered incorrect If
. hot,” the mutant must be studied carefully. It is entirely. possible that . tne‘?
mutant is in fact- functionally equivalent to she. original program. If so, it
" identical behavior -is’ .~clearly - benign. - If ‘not, the mutant is highly
- ~significant, as it certainly indicates an madequacy in the collection of test
T data sets. It may, furthermore, ‘Indicate an error - in’ “#he - original. - program .
which -previously - went. undetécted b¥cause of inadequate testing.: Mutation ‘i'.
~analysis facilitates the detection of such-errors by autamatical ¥y’ raising the '
. -probability of each such. errcr:and then demanding Justificati’on for’ concludz;)
" that each has not in fact been committed. . Most nmtabions quicklg manifest
different behavior under exposure to dny reasonable pest data -set’ collection, _
- and. thereby demonstrate the ‘absence of: the error correspondingci:o the mutation
5 they -were created. ' This forces detailed -attenticw.on those mutants -

$Behave 1dent1cally to the original and e’éhus fo'rces attention on - any

| -aclv_N____-‘;,errors.h . - T :
If all .mutations of the original pro; _.r:eveal different ex 1on t;ehavior,
% uately tested and rrect m.thin the

¥:then the program is considered to B¢ fi'acfeq
limts Of the "Canpeten't Progrm" ass"mptlon. . 7~ ".,_

4.19. 6 Example. Consmer the Fcrtran pr%ram, figure y, 19 6~ ; whicb coun
-the nunber of negative and 'non-negative. nunbers in array A. U T

.o-‘“‘\—&

'»,SUBRaJTINE coum' (A, NEI; NONN&})\ T -,_-_" Sl
R ~DIMENSION A(S) o O AU P
R o NEG=O -~

T, NONNEG=0s'

;. .‘*‘j. o O , g C ERE
' aAE E Figure 4 ﬂ6-1 Subroutine Count L S
. and the collection of test data sets produced by initializing A m turn t0° | ?,

S DS R g :
Hutants might be produced based upon the following alterations° A TR L

- a. Change an occurrence of any variable to any other variable, e. g., LN

=l

- - E 88 Jﬁ ‘,: ~_'" :

S U S SR S ©t : Page81. .

. :

,o ‘qz-,i““i, ".' o :. e ,.p .

PP | . e
End. of an oper:atora to arﬁther operator* B SR ’2'%
2 L - I

A
]

o euBegnt T = , |
F ‘..~NEB,+"1'“‘I:O NH} bod 1 . -f"". o ;1.', . ' '-"\ -
. NEG+.1 to NEG = 1 R =~e' AR .
ACD).GT.0 to A(T).GE.O " s.—-,-e,s, T
Q& 1(1).2.‘1‘;0 to A(I) Ns.o’ o X ‘ ,_'_',r-s* - :

mus “the: set- otf B "single slferation” mutants would nsist &
" containing exactly .ohe, 3of - 'the above chﬁges. = The." set of ak
. alteration® mutants wouchconsist of all prograns containmg "a. Ypai

abovechanggs g e X R e

Clearly many such mutations are radicallﬁifferent and would ‘quickly. mamzfest

.Gbviouily -différent -behavior.. For exaiple, in changing variable I,to A (or o
CVidaatersa). the program is.rendered uncompilable by most compilers. Similar‘ly o
. : "NEG-O" to. "NEI}-1" causes-a different outcane for test case L

Significaqtly, chafiging: A(I)Gr.o-rst% ACD).GE.0 or -A(D).LT.O - to A(I) .LE.O

produces no. difference . in run-time behavior on any of the thife test data

. sets, 'Jhis rivets attention on these mutants, and subsequently on™ the issue _ 3

. of . how- to . count - zéro entries.* " One - rapidly realizes that the. collection of

" test data sets was inadequate in. that &t .did. not’ mclude any ;g-o mput :
' values. Had :u: included one, it would ‘have m&eated that° T .

.] v’f i
CooT IF (A(T).GT.0). NONNEG=NONNEGH! shiould have been
% - IF (ACT),GE.0) NONNEG=NONNEG+1.. .

‘Dms, mutation analysis has pointJ out botb this error and this weakness 4'
the, collection of test data sets. After changingsthe program and dbllectiof,
‘-all mutants will behave differently strongly raiség -our . con{‘ldence in. the
correctness of the prograx. ; . o

8, 19.7 Ef_fectiveness. }btatfoﬁ* analysi:-—ea-n/é ‘an effective technique for j
deﬁecting errors, -buf it must be:understood that it requires cogbining an
sightful. human with good autamated. tools.. Even-then it must be unders

What . it “is°a ‘reliable techni‘que'for-demo __ating the absence only if al
possible mutation errors, (i e., those involvdl alteration, interchanging,

°

y AN
- _' - f [} 2 . -/
. . . . Y - . T‘r’ ..
° - 89

progran has an enormous number of mutations, each
“éxereised:bysthe test data.sets; and evaluated. On. T

. appear. ‘to_.entail thousands ‘of - ed:.t Funs,:; canpilationg

_—tools—have~—been——buﬂt—howeve&whxch—ope -
- representatiorr of the original progrim. ‘This. represén%ati
efficiently. ‘transformed into the various mutations, and also

Clever

on’is- readily and

serves as” the.

special:*g,finternal—

.-bagis - for. very rapid‘simulation ‘of the mutants® executions, thereby avoiding -

. the need for, compilation and loading-of each mutant

3 'lhis tool set st111 does not bypass the need for hunans, houever. . Hunans nn:st‘ :

tﬂi« ,carryl. out the job of scrutinizing mutants which behave 1dentically to .

- the. original gram in order to determine whether the mutant is equivalent or
whether the co ection “of test data sets is inadequate il

o

At ‘the end of a-‘successful mutation analysw,.fmany' errors . may

uncovered,; and - the collection of test data sets has certainly been. made very - '
tﬁoroug& Whethe*r the absence.of errbrs has been e established, however, must - .
- ‘be: - copsidered . relati_ge to the "Com it” Programmer” asSumption. Under this

asanptibn -clearly -allserrors: ‘o ¥ mutation sare detectable by mutation

analysis thus, «the absence of diagnostic messages or- findings indicates the =
.'-absed!:e of these “er¥ors, - Mutation: ‘analysis' ‘cannot," however, assur:e the

A'i‘absence of errors which cannot be modeled as mutations.

418 19.8 Applicab“ility Mutation an§y31s zs apparently applicable to any'

-~ algorithmic” solut:v.on specification. As previousl¥% mdicated,- it car’’ only be -

- ‘considered. effective when. supported by -a body of soph;.sticated tools.. Tools -
. enahling analy31s of Fortran- and: COBOL source ?t “exist. . There 1s,
DSU

---£prthérmore, nho reason why tools. for -other coding ages, ‘as . well as

S

- algorithmic design languages?could not be built ,

PR
SR

ll 19.9. Learnmg This

““become” familidr with . thes 3ok Josophy and goals of - this novel approach:
. addition¥it appears that the.mot'e familiar the .analys_t _
- algorithmic - solution s ications,. the more ‘be. -
t data

'I'hrs is because the analyst may ‘well hive to yze a ooﬂection of -
ts to determine how to ‘augment it, and may ave to analyze two progr to .
detennine whether they are equivalent o

y, 19 10 Costs In view of the previous discussion,- it is 1:fportant to
recognize that sigmficant amounts. of ' human analyst time are ikely to be

necessary to do mutation analysis. The ccmputer time required is not likely
' tools- described earlier are available. -
" consult \t,he fol_lowing references for

to 'bé excessive if the’ sophistica
The interested reader is urged

* .

) ‘que requires the potential mutation analyst to -,

R ,,.:-. ~ .« Page 83,'

HQ‘,‘-—-.

(1) Dzum.o ﬁA., LIP'I‘ON B3 _and SAYWARD, F.G.,. "ngran,rmtatiiam
A ﬁew Approach - to- "Program . ~ng"" Infotech .S.tat&:of_thgmﬂmr_tm
Software Testing, V2 INFOTEC 1979, pp. 107-127. A~ -’

(2) LIPTON, R.J. and SAYWARD, {F.G., "Me 'Status of"'Research on. |
Brosram Mutation" .Digest of the Hm:ka,hqp on m Iesjzingandles_t'

oz:t_Laudendale,—Fl\ar—1 .,:— 3 J_JlJo v
N =

1
\'h‘:t)

A J

i

‘.
S

1

e | - . . - A-‘ ‘

 4.20.1. Name.. Peer -'Rev'iesg;

84.20.2; BZic Features. A upeer reviar "is a process” by uhich proJec
personnel perform a detailed study and ‘evaluation of - code,- documentation;; Gay
specification. The term peer review refers to product. evaluations*which
condticted 1ty.. individuals of equal rank,,. responsib _'_‘_“ . Sim
" the , overall - &ategory ‘of ‘a peer review. Code: r '
walkthroughs and. inspections are examples'of peg
formality, participant roles and responsibili [
regyired o

4, 20 3 Information input 'Ihe input to a parti B peer review will vary
#slightly ‘depending on ‘which form of ‘peer . review is being conducted. . In
general, each of "the forms of peer=revie§ require that: ‘some .sort’ of review .
. package is assembled Yand distr;l .- This ‘package commonly contains~aiL .
. summary of the requirement(s) whic are the basis for the product being
reviewéd. Other, common inputs -are differentiated by the stage of-the -
“lifecycle currently in process., For example, input’ to a peer. review during
‘the- coding phase would consist of program listings, design specifications, .
progranning -standards and a sumary of results frém . the ‘design peer review
- previously held on the same product.- Common input to particular forms of peer .
review are-. described below. - (A summary of t.he methodology for each of these ~
-\reviews appears in Section 5.) ., e e ¢
s - '-a_s.';.
T 2 Code-Reading Review. S
. @ 4*‘ ' o - . - , '-_’_‘ _-;;) - &
o Canponent requirenents e LT T S B
- o Design" sﬁectgzations - . a >
., 0 Program 1i o [T
oProgranning standards L : o . g ‘ d o)
.o 3

put produced and inpu‘@

b Round-Robin Reviews. _

o Canponent requirenents o .]
© Design or. ,code specifications .
o 4,9 gr _an li\stings (if during coding phase) R .,

- oConiponentrk(\ nents _' S, L C
* "0 Design or code ifications. Q‘q e
.& Program listings (if ooding phase walkthrough) S

Product standards -
.isack-up documentation (i.e., f’lowcharts HIPo chartsg
da; tionaries, ete.)

fiﬁ list (derived by participants prior to review)

o, S ;,gs . S S j
d. Inspections. - ‘ \ N '<~,l-',--,..;'*
v" B A R .
3 _.\o, Componknt @uirenents) e

—G R ign oode specifiwtions e |

\ e T
i SN - .
. B é . I : : . 4

<

. - (. — PRk
_".th: . - Lo PRNE)
« __"‘.. . . : LU
feie . .
" =
.
e H

o Program llstlngs (if” during codmg phase) R R
X rod "standards " . e

4,204, . ormaﬁon output The output fx:an a _peer_neuew_mr <47
*revieH—Ohe ‘output common to each form of a peer review is g "isign or
-consensys about the product under review.. This is usutally in the f°r'm of:"a -
group .approval. of the -product as, ' is, an- ‘approval with I eGclrluended

modifications, or a reJectlon (and rescheduled rev1ew date)._.- -

i Speciﬁc output from peer rev1ews descrlbed m Sectlon 5 are ‘as follows 9
'-,_. a.. Code Readmg Rev1ew and Round-Robln Rev1ew. ;& ‘Zs’ﬁi\‘ S
* o Informal documentation of detected profms S TS

‘0 ‘Recammendation to- acce_gt or reJect revieved product :
o D:Lscrepancy List 7 . L SR

..,l

b Walkthrough T R 4
o 0 Actlon Llst (formal documentataon of prob}anso -
. o Halkthrough Form (contaz.mng review sunnary and group decis:l.on)
T\. | .c. ey . : .v._‘\-:-‘u.. L . :—:;-, . . N | o
%p o{ns ’.Schedule ,and "Memo. (def:.m.ng md1v1dua& roles, SO L
W oM hilities,; ~agenda and ‘Schedute) - L Lt o
‘ ng'Oblem' initigm Set- . . gim - e w
_ Sufmary” report {docunentlng error. correctlon status and [Eha
,,,-:f'_ related statistics. on. the er)'brsj ¥ PR r o/
-0 Management report (descrtbing errors, problems and car(ponent Bk
' status) " C . o . P _ '._"'_‘ '_.':a_- i
4 20 5. Outl:me of method. ° The peer revi,ew methodology and pet'ticlpant
responsibilities vary by. form of revieéw, Smmaries of these methodol%8les are -
provided in the later part o} thJ.s sectlon- : Habrever, there are a fed features
'cannontoeachmethodology . ,,, ol SRR o :
_ s st , . R
For. example? mos' : ;ev1ews are not attended by management (An eXGeptlon
is' made in circumstances where the project manager is also a desigper, coder - -
or tester — usually om very small pro,:ects) The presence: oﬁ,,mnagement tends
to - inhibit participants, . since thiy. feel. that.: they areipenginahl being
evaluated. This would: contrary to the - intent of peer rev1ew°s' #that' -
studying the product 1tselﬁ .- e SRR ¥ L
-~ - Q& .
Another common feature is the assembly and distnbution .of p;&.]ecf’ rev1ew .
materials prior to thé.conduct of the. peer . rev1ew._ s: allows part: °¥pants
o spend same amount of time r.ev1ew1ng the data o beq f@etter’ﬁrepﬂ‘ﬁ for ",
the review. R R R
. ~ - o \[) » .—__.67.’ a_
. L e i

.. Page 86 o

o .(

e end of most peer rev1ews the group arrives at a decision about the.
= status of qthe review. product This decision is usua;ly coumunicated to

Host reviews are‘gponducted in a~group organizatiggn as opposed to individually
i .V_;V;._?_cipants or. ~ygthe project team itself. ‘While:this may seem an obvious:
ture, ane_discussion.ﬁﬁost_oz:gamzations_doing*softxr:are—
devetopment and/or maintenance employ, same variation of a team approach Scme '
team organiza’tions are described below.. = : _ kS
e .

' o Conventional Tean A senior: progranmer directs the efforts of one or
.7 more less experienced programmers. - e
‘. » O“Egoless Team:= Programmers who. are of about equal experip % share
. # - product: responsibilities. e - N
0 Chief agrograxmer Team+= A highly qualified senior progr mmer:'leads the -
o effartsipf other team-members; for which specific roles andlf - S
- resSpon ’bil:bﬁes have been ass’g’ﬁed (i €., baok-up prog Iré

composed of a subsetof the pro,]ect':_

At E'ed by. the. form of ‘review =be1ng held . ; [
“fhe benefits of ‘peer reviews -arf.-
group acts

;respoﬁsibil'/ }
i ‘Be'lm. . :lh
"Iist

'~o Group/Review B the 1nd1v1dua1 des:Lgnated by management with S
- ‘planning, debecting, organizing and coordinating responsibilities.)
: :-_i'lsually has responsibilities after the review to ensure that
‘recommenddtions are implemented.’- .

0 Designer - the ind1v§ual responsible. for the specification

' of theproduct a for its implementation. ' .
. 0 Implenenter the vidual respons: for -developing the product
acpording 4@ theé‘plan detailed by the des:.gner. '
o Tester - "individual. responSible for testing the product as developed
by the :unplementero
o Coordinator -.the

dividual designated with planm.ng, directing,)

- .organizipg and ating responsibilities. .
o Producer»- the ipdividual whose product is under review. . . .
o Recorder ‘ghe individual responsible for documenting the. review = o

activities during the review. :
® User Representative - the individual responsible for ensuring that the

user's requirements are addressed. .
© Standards R resentative - the individual responsible for; enéuring that
&4 - product ds are conformed fo:.= ..,
0. Mdintenance Representative - the mdeVidual who will be responsible for
updates or corrections to the installed uct. .- '
. O Others - individuals with specialized skills or responsibilities which .

contribute during<the peer review, ' . - o G 2T
9l.'-’. ' ."o.‘ . .) ‘ -0';. e ' ‘) 2
VoL ~ o o : 9 - . L) . . .

,f‘lhi]:e"the forms ofpeer ?GVié&:_s hav sanesimilaritlesand ally “involve:
designation. of participant roles’and responsibilities,. they are different in °-:

_ .application., The remainder of- this.section will summarize the- application .-
. Tethods associated with the forms of peer reviews previously introduced. - -

.

“*-" 3. Code Reading Review. ' Code reéading - is line-by-line study and .

evaluation .of program source code..- It is g _.\' ¥-performed—on-sourcecode—
which-has™ ‘been compiled and “is free 'of .Syntax ‘errors. However, same

organizations practice code reading on uricompiled source.listihgs or-hand .
o e

written code on coding sheets in order to remove syntax a

. to code. entry. ‘Code reading is commonly practiced o r d ‘-
-~ ode and becames cost ineffective when performed od Frdcode. - .}

~~ The optimum size of the code reading Feview: - teasfy thre.é@to'ﬁfour " The -
* producer sets up ‘the review and is responisible for team leadership. . wo.or
- three programmer/analysts ar€ selected “by - the producer 'based upon their
experience, . responsibilities .with interfacing programs; or other specialized: -
. s]dll.. R e " " "-" e E .‘ - » ‘4 oo s ormenl L s \

-

T . . R
‘..

.~ The producer’, distributes the review input (see section 4,20.3) about two . day

- line.of code checking forfeatures '
‘usable, -reliable :and, meif
~ ‘performed: . readgng fogffum

.. of hiow the! program’ module works,” its structure,. what functions :it perférms,
and uhetfier i follows; established stendards,. Asstning that fiuee g oo

. -depicts :the - structure *of 7 a:¥.program - camporient, ;a” reviewer reading - for
_understanding . would ré&view. thé modules sin:the the followis

. 2'1; ,2’2; 3’0; 3’ 1.,-9' 3-%.313- N - ":.:’i""v

in~. advance. - During the review the producer’ and' the review

Co 2.
+ N o] -

) B . . —:_;:‘ - . . ‘ .-r .‘.'..,\."’;’{?;::"-v_-:‘ T \ o i b “
. .. Figure 4.20,5-1 A‘-'Progx_'an-s_g?udtgrg T Teoe
In contrast to this top-to-bottom approach, reading for verification implies a.
bottam-up- review/of ghe code. - e .camponent depicted above would be perused . *
in the following order:: 3.3, 3.2;:3.1, 3.0, 2.2, 2.1, 2.0,” 1.0.. In this ..
manner. it is: possible. to. produce. a dependency: list. detailing parameters,.
-control switches, table pointers, and internal and external: variables used by
the - compgnent. The 1ist can then be used to ensure hiqgarphicalf}-ggnsistency',"r -,
o o o " Lo SO YEaA .

. <

P

data availability, variable 1n1t1ation, etc Rev:.aders point out any problems
_or- errors detected while reading for understanding or verification during the :

ER review. - o

_'Ihe team. then makes an 1nformal decision about the acceptability of; the code
7>+ product and may recamnend changes. The producer notes suggested mddifications
< and is ‘responsible for all.changes to the source code._;_Sugges_,“)

“evaluated by ‘the producer: and heed not ‘be . mplemented “igthe pr'o'ducer
"detemines that they are invahd SO A :;-__A . L ‘%
S A 3 . B 3
Ihere is no mechamsm to ens‘ure tl;at change 1s 1mplementecﬁbr %‘_follow up on
therev1ew.‘ LT e T s _ o R]_,

. b Round-Robin Rev:l.ew. A round-robin review is a peetr. rev;i.ew wher,e |
each partlc:epant is given “an equal ‘and similar share of the product beihg

- reviewed to study, prfesent and lead m its evaluation..,- L. S a

. —rb _..‘N... ; ‘_'

*a round-robin review can beé. given durmg afy phase'of the. product - lifecycle .

dhid: is™ also useful . For . %oel{nentation review. “In- addition, there sare
“Variatiens ‘of the: round-robi reviéw which . incorpordte .same of . thes best .:
’ ~features'=~ from™ other - peér ‘review.” “forms. but continue to use the altet%ating‘ -
< »revieu leader approach ‘For . example, during a - romd-robin mspection, " eg '

' t:lc:.pants o ig. e e — _ '. S

‘.'Six. \ “The: meeting is scheduled by, the producer, who ‘also: distri‘butes ~scome high
~level documentation as described in section 327 The producer. ‘will- either be:

- the -first - review -leader or mll assigh: this responsibility "to. another L
participant The temporary leader w:Lll guide the dther participants {who: - may |

* be impl ementers, ‘designers, - test,ers, users, mamtenance representatives& ete.) -

prough the first unit of work. ~This unit may be.a module, paragraph;-Yine of’
“Code,. inspection item, or. .other unit of .manageable size. A1l participants
'(including thé.leader) hawe the opportunity to. commen the aunit beforethe '_
" _next leader begms ‘¢hé "evaluation.. of the next unit. The:: leaders ‘are .
responsmle for noting major -eomments _raised about-their piege: .of . work - At -
_the end .of .the - eview all the, ma,]or cannents are sumarized and" the group'

31tem ~op -the mspectﬁ:n‘ checklist IS maue the responsi%lity oﬁ alternating a

e ccmon mxnber of peOple :mvolved in this type of peer. revieia is four to’ '."

decides whether o ot to approve vthe product vNQ formal mechanism -for rev:.e.v,_ -
follawupi'uSed. I ST R

Walkthrouéhs.; 'Fh1s t?pe of peer review~1s %ore foz:mal than the 4
Sding ‘review 3:‘ round-r:or.::ug° ~revie.v. » Distf?nct “roles - and
ilities are ‘assigned | ‘prior ‘t5Sreview. . Prereview_ preparation is -
‘and - g - -more; sformal’ ~approach to -problem documentation is stressed:
eature of this review 'is that it is ‘presented -by the producer. -

mn au'&-»\ »
b g m,‘gsg

7) ;vcomon walkthz:o‘ughs are those héld «.during design and code, yet
Tgecently . they are beihg applied to specifications docunentation and test

r.-‘ . ".“,',. - "’)’.ﬁg -

e

'l'he,.producer sc‘hedules ‘the review and assembles and distributes 1np1.ft as

] -

“"described “in, section, 3.” In most cases the producer selects the walkthrough .. -

K partieipants (aithough sanetimes th:.s is done by management) and notifie& then

. . . - e
: '.' N t‘ R . . - -~ " : . . 'o . e .
. AN L N . . - . ~y -5 e, . - e R ,
t B . T e . ‘ § . N S R . . . R et
SR e . .o-. S P T U
T . . T - P .t ° . Celt T .

-

A o v o . .) M
- . a

of ‘their 'roles and responsibilities.‘ The walkthrough~is usually conducted ..
" with less than seven participants and lasts not more than 2. hours. If -more .
‘time is needed a break must be given or .the product should be reduced in size. “_
~ Roles usually. included in.a walkthrough are producer, coordinator, - recorder;, .
and representatives: of user, maintenance and’ standards organizations. _" .
The review is opened'by the coordinator, yet the producer is responsible for
leading the group through'-the product. In the case. of design and.code
walkthrough, the producer simulates' the operation of the . component, allowing
each participant to comment based upon his area of specialization. A.list of
problems is kept and at tiie end of the review each participant signs the . list
_ -or ‘other walkthrough form indicating whether the product is accepted as-is,
accepted with recommended changes, or rejected. Suggested changes are made at
the.'discrgpion of the producer. There is n¢ formal means of follow up on the -
review comments. However, if the walkthrough review is' used for products as
.they gvolve ' during the .lifecycle (i.e., specification, design, code and tbst
walkthrough), comments fram past reviews.can be_ discussed at the start of the
next review. ° : : T S , .

, d. Inspections, £a§pections are the most formal, commonly used form
of. peer review. The key feature of an inspection is that it -is driven by the
use of checklists to facilitate error detection, These checklists are updated -
as statistics indicate that certain types -of efror are occurring mare or less
frequently ‘than in- the past. The most commonly held types of inspections are

A conducted on the product design:and code, although inspections may .be used -
during any lifecycle phase. Inspections.should be short since they are often
quite. intensive. This means that the prodyct component to be reviewed must be

. of small size. Specifications or.design which will result in 50-100 linés of
code are normally manageable. - This..translates into an inspection of 15
minutes to 1 hour, although complex -camponents may require as much as 2 hours.
In any event, inspections of more than 2 hours are generally‘less. effective
and should be avoided. Twq or three‘days prior to the inspection the producer
‘assembles input as described in section 3 and gives it to the.coordinator for
distribution. "Participants are expected to study and make comments on the

' materials prior to the review. . . oo R

. The review is lead by a partibipan{ other than the producer, - Generalli, " the
indfvidual who will have the greatest involvement in thé next phase of the
product lifecycle is -designated ' as ‘reader. For example, a requirements “
inspection would likely be lead by a designer, a design review. by an -

‘implementer, and so forth. The excéptégp to this occurs for a code inspection
which is lead by the déesigner. The inspection is organized and coordinated by
an individual designated as the grotip leadey on coordinator.

The reader ‘goes through the product component; q;ing'the checklist as a means
to identify common types of errors as well as standards violations. A primary
goal of an inspection is to identify items which can be modified to make (the
component more. understandable, maintainable, or usable. Participants .
(identified earlier-in this section) discuss-any issues which they identified
in preinspection study.))

. 4

-~

'-met:

: C 'Pasé"3i90;'

_At the ,end ‘of the mspectlon an aocept/regect dec:Ls:Lon is made by the oup. -
‘and the - coordinator. - -sumnarizes' all’: the' errors and’ problems detec and
prondes this Iist.to all. partlclpants -The -individual whose work: was { under
-review (des1gner, implementer, teste,r, ete. ')’ uses the 1ist to make revisions
to the component. ' When. revisions: are: 1mp1emented the coord1nator -and
producer go through a mimreview usmg the pnoblem l:Lst as a checkllst '

The coord:.nator then completes Management and Sunmary Reports The Sunnary":'. :'
jreport is used to update checkllsts for subsequent 1nspectlons. TG)

Ty, 20 6 Example. The follo.ung 1s an example descrlblng a code reading;.‘lf.-..'

o
* -

: Three days prlor to estimated canplet:ton of- codlng, the. producer of a pr‘ogram,
component begins preparation for a code reading review. - The component is
composed of 90 lines of FORTRAN code and associated comments. ‘The producer.
. obtains copies . of the - source 1listing, and requirements and design

specifications for the component and d:Lstr:Lbutes them to three peers,
‘ notlﬁung them of the rev1aa date and place. . . _

Each, reviewer reads the code for general understandmg, rev1ew1ng a maJor} :
“function and »its shpporting functions ,prior to rev1ew1ng the next maJor'
function (see section 5). . 4

o
-

One reviewer notes an exceptlon to the programming standards, Another thinks
that the data names.are. not meaningful:. The third has found several comments-
which inaccurately represént the funct:Lon they describe. Each reviewer makes
a.note of these points - as well as any comments about the structure of the
component. Next, .the requirements are studied to ensure that éach requirement
is addressed by the ccmponent It appears that the requirements have all been .

\ - . R

The .code reading -review is led by the producer. _ After a brlef descrlpt:l.on of
the component and its interfaces, the producer leads the rev1ewers through the
code. Rather than progressing through the component from top to ‘bottam, the
decision -is made to perform code-reading fram the botteam up. This form of
code-reading is used to verify the component's correctness (see sectlon 5).

As the code is being perused, one of the reviewers is made respons:Lble ‘for
keeping a .dependency 1list. As .each variable is defined, referenced or
modified, a notat:Lon is made on.the list. — _ _ e -

The. ver1f1catlon code reading uncovers the use of a variable prlor to its.
definition. This eyror is documented on an error list by the producer. In
addition, each of the problems detected earlier during the code readlng (as
performed by each individual) is dlscussed and documented.

At the end of the review, the error list is summarized to the group by the
producer. S:ane none of .the problems are major, the participants agree to
"accept the code with the agreed to minor modifications. The producer then-
uses the error/problem list for reference when making modlflcatlons to the

component - . «
4

-l

= Page 91

’ -

-

- 8.20.7. Effectiveness. Studies . have been ‘conducted which idéhtify the

-

following qualitative benefits the forms of peer.reviews.
-© higher Statis visibility, . . . o,

- 0 decreased debugging.time, R R
'0-early detection of design and analysis errors which would be much more _ -

~ - costly to correct in later develoopment phases, . ey

©' identification of ‘design or code inefficiencies, .. -
O ensuring adherence to standards, r o G
O increased. pfogram ‘readability,) - T e
© increased uger satisfaction, .) . e o
O communicatign of new ‘ideas or technology, i .-

© increased mdintainability.

s
.

"Little data is’ available- which identifies the quantitative . benefits
attributable to- the use .of'a particular form of peer review. However, one -
. Source estimates that the number of errors in production programs was reduced -

- by a factor of ten by Utilizinngalkthroughs. Another source estimates that a

- pProject employing inspections achieved 23% higher programmer productivity than
with walkthroughs. No data was available. indicating the amount” of increased °

progr?mmer productivity attribuﬁaple to the "inspections.-alone. _ _
4.20.8.- Applicability. Peer reviews afgﬂ‘applicable to large or _Smail
. Projects. during all development phases and are not limited by project type or .

complexity. ’ -.'v s - L . e . : . ‘) :

4.20.9. Learning. None of the peer reviews discussed require extensive

traininé .to implement. They- do . require familiarity with the concept and

methodology involved. Experience has shown that peer reviews are most
: successful .when the individual with responsibility for dire¢ting the review is
'knowledgeablq/aboutfthe process and its integdgd results, - . :

.4.20.90. Costs. The reviews require no special tools or’equipmeht.. The main
cost inVolved is that of human resources. .If the reviews are conducted in
accordance with the resource guidelines expressed in most references, the cost
depends’ upon the number of reviews required. Mostsrefergnces suggest that
peer reviews should be no longer than 2 hours, preferrably - 1/2 . to 1 - hour.

- Preparation time cap amount to as little as 1/2 hour and should not require
longer than 1/2 day per review. ' _ .
" ; 5 . - e
4.20.11, References. - , -

.1 . i - , \ . .
(1) "Code Reading Structured Walk-Throughs and Inspections”, .IBM IPTO"
Support Group,World Trade System Center, Postbus 60, Zodtermeer, Netherlands,

March 1976. | | e T

¢

- (2) FAGEN, M.E., "Désign and Code Ihspections' to -Reduce Errors .in
. Program Development™, IBM Systems Journal,No.3,1976." , ‘ "

oo) _ : ‘
(3) %OURDON,'Ef, nStructuréd Walkthroughs®, Yourdon Inc., 1977. ~

l . . . 1

%3

v 7
v .

. Page 92
e FREEDMAN, D.P. and WEINBERG G.M., "Ethho - Technical Review
Handbook n 1977 ’ Ethnotech Inc. e P T S

(5) -DALY, E.B., . "Management of :Software - »Develdment",_.-"_IEEE .
Iransactions on mr_e Engimx:mg May 1 977. ' ;sr .
.. (6) SHNEIDERMAN Ben, "Software Psychology - Hunan Factors in Computer |

and Information Sysi:e!ns,u Wmthrop Pu?)hshmg, 1980 :

e . i
~ . -
< *~ &
o
1
-
-
- .
: v
3
3
-
.
!; - -_.l.
‘e /\/ .

Sy

s . .
[Coer . ' - -
v Lo : . . _ ; i .

4.21.1. 'Name.’ Physical-Units Checking.'

. 4.21.2. Basic features. Many (scientific, engineéring, and “control) programs
* perform computations whose results.are interpreted in terms of physical units, -
% such. as feet, meters, watts, and “joules. Physical .units checking” enables
.Specification and .checking of wunits in sprogram camputations, in ‘a manner -
. similar to dimensional analysis, Operations between variables which are not : -

.commensurate, such as adding gallons and feet, are detected.

- B.21.3. Information input. .- Units -checking requires three things to be

.- Specifted within a program: 1) . the set of elementary units used (such as.

feet, inches, acres), 2) relationships-between—the elementary units (such as

feet = 12 inches, 4cre = 43,560 square feet), and 3) the association of 'units

~ with program variables. The programming language used must . support . such
s Specifications, or the program must be Preprocessed-by a units checker.

4.21.4. Information output. - The information output depends upon ‘the specitic -
capabilities.. of the language processor or preprocessor.. At @'minimum, all
operations' involving variables which are not commensurate are detected and
reported.. If variables are commensurate, but not identical (i.e., they are
. the same type .of quantity, . Such "as _units of . length, but one- ‘requires .
application of:- a scaler multiplier to place it in the same units as the
~other), the system:may ‘insert the required. miltiplication into the code, or’

- may only report what factor must be applied by the programmer. .

4.21.5. Outline of method. The specification of - the input items is the
extent of - the gctions: ‘required- by the user.” Some systems may allow the
association of a units expression with. .an expression within - the actual-
program. Thus, ode may write LOTSIZE (LENGTH * WIDTH # square feet) as a
boolean expression, -where the product of LENGTH and WIDTH must be in units of .
" square feet. The process’.of enswfing;that LENGTH * WIDTH is in square'feet is - .
the responsibility of.the processing system. - . . s

4.21.6, Example. -A short program in Pascal-like notation is shown. for .
computing the volume and total surface area:of a right circular cylinder. The
program requires as input the radius ‘of the. circular base and the height * of
the cylinder. Because of peculiarities in the usage enviromment of: the
program, ‘the radius is specified in inches, the height- in feet; volume _is
required in ‘cubic feet, and the surface area in acres. Several errors are.
present in the program, all of which would be detected by the units checker.

llduing, comments are made éxplaining the.- progj-a;l,\the errors) it -

In the
contains) ‘and how “they .would be detected. The comments are keyed by line
‘number the program. : ' . .
Line_ —_— . Comment,
2 . All variables in the program which are quantities will be
expressed in térms of these basic units. , -
3 . These are the relationships between the units known to the -
'~ . units checker, ‘ ; ’ } "
5=10 . Variable radius is in units of inches, height is in units

of feet, and so forth.

’

. 4
-

. .) L, | R o . .:v.- _o.r'. . . . ‘. . | « e Page-gu -
. . / L - e -

.12 U Inpuﬁ{values;are read intQ~variab1é§;fédius and height. . . -
e < 13 - Lateral surface must be expressed in square feet.. (RADIUS/12) -
" v " isin feet, and can be so verified by the chiecker.’ :

15 ¢ Lateral-surfdce-and top-surface are both expressed in' square
L feet, thus their sum is in square feet, also. Area is
expressed in acres, however, "and the checker will issue: v

- - . a message to the effect that though the two sides are-- * -

-* commensurate the conversion factor of 43,560 was omitted -
v .- from the right side of the assignment. o .
S) " Thechecker will detect that the.two sides of the assignment

. - ~ aré not commensurate, The right side is. in units of feet
R quadrupled, the. left is in feet cubed. P
+ (1) program cylinder (input, output) ;. S e

(2) elementary units inches, feet, acre; . - - T

(3) units relationships feet = 12 inches; acre’= 43,560 feet®#2; ° -
(4) constant pi = 3.1415927 : L o : .
- (5) var radius (inches), - T 3 o R
0 (6) height (feet), - : ' : .
AT volume (feet##3),

(8) area (acre), . S .
(9). © lateral-surface (feet¥*#2), L : :
. (10) - top-surface (feet¥*2): real; - L , R
(11) begin : I . : .
(12) read (radius, height); , S _ .
(13) - lateral-surface := 2*pI*(radius/12)*height; - .
(14) . top-surface := PI¥ (radius/12)%%2 ' SR
- (15) area :=-lateral-surface + 2% top-surface; -] [
©-(16) volume := PI ¥((radius®*3)*height); = _ o ‘
-A17) .. write (area, volume); . _)
(18) end; ~ . .

4,21.7. Effectiveness. The effectiveness of units checking is limited® only
by the capabilities of thé units processor. . ; .

 Simple units checkers ma only be able to veérify that-.two variables are
comunsurate, but not determine if préper conversion factors have been applied. ™
That is; a relationship such as 12 inches = feet may not- be fully used in | .
checking the computations 'in a statement, such as line 13 of the example. /
' There we asserted. that (radius/12) would be.interpreted as converting inches
"to feet. The checker may riot support this kind of analysis, however, to avoid
ambiguities with expressions such.as "one-twelfth of the radius.” o

. 4.21.8. Applicability. Certain application areas, such as engineering and
scientific, .often deal » with, physical: units. In others, however, it may be

" difficult to find analogies to physical units. 1In particular, if a‘ program
deals "only in one type of quantity, such -as dollars, the technique would not
be useful. " . ’ . : . .

. e . - . ! L3
" Units checking can be performed during all - stages of software development,
beginning with requirements specifications. ° . -

.
[
L4

,102' : - -

"N -

- B ' s — : :"‘;A-Pége‘Qs _

N

'4.21.9. ' Learning- Dimensional ‘analysis, is- réodmonly - taught in first year
.. college physics on statics; conversion frém English to metric units is common -
{ = throughcut society. Direct application of these prindiples in programming, .

-using a " units | checker, shauld require no additional, training™ beyond
" understanding the capabilities of the. specific units checker ‘and the-means - for:

" specifying units-related information. F St .

4.21.10. . Cost. . If the units checking capabilities are\pcorporatéd directly -

in a compiler its usage cost should be negligible.. If a preprocessor is used,

Such systems are-typically much slower than%-compiler (perhaps operating at
.- -1/10 compilation speed), but- only a single analysis of the program is
. Fequired. ., The analysis is only-repeated when the program is changed.. ToE

-

-4.21,11.- References.’ ., < I

" 7 -I__-(1) KRR, Michael and LOVEMAN III, David B., "Incorporation of Units .
"into Programming Languages",CACM,Vol. 21,No.5, PP. 385391, May 1978.

-~
.
e » -~ . . . E: £ PN
.~ 4 Qar : ot % -) t L
’ ﬁ . - .
. 0) . - - .
¢
L
‘ ’ 4
~
1 A .
. ~~o
» \ T
- -
r -
L%
.1. .
- — —_
¢ s)
- ; & \
22 e ‘
S -
. <
. . -
> - . "
hd . /_
. ’ ‘ . Vi
~ -
- - \ —_
* . s y .
J
- . ’ - . -\
o
. * v
L [- -
L.
AS

Page 96

. l14.22_.1,._'N:alne: Regression Testing ' - S
l12.‘«1'2 Basic features. Regfession testing is a technique whér':eby spurious.
errors caused by system modifications or corrections may be-detected. - o

| 4,22.3. ~;,Ii'1fomhati<'>nf mput Regréssiqn'testfﬁg requires ‘that a set of system
test cases be maintained ‘and :.available throughout thé entire life of the
system. The test cases should be complete enough so that all of the systemt!s-
functional. capabilities’are thoroughly tested. If available, agceptag_fce_ tests -

-

‘'should be used to form the base set of tests.

In'addition to the individual test cases themselves, detailed descriptions - or
samples of the actual expected output produced by each test case must alse be -
supplied and maintained. . . : '

§.22.4, Information ‘output. | The output fram regression teéting-‘is simply \the
output .produced by the system from the execution of each of the-individual
“test cases. When the output from prévious acceptance. tests has . been kept,
additional output from regression testing should be ‘a comparisow of the before -
. and after executions. B ’? S
4.22,5. Outlirie of method. Regression testing is the process of retesting
the' system in. order to detect errors which may have been caused by program
changes. The technique requires the utilization of a set of test cases which -
have been developed (ideally, using functional testing) to test all of the
‘System's functional capabilities. If an absolute determination of portions of
the system which .can potentially be affectéd by_a given change can be made, -
then only those portions need to be tested. Associated with each test case-is
a- description or sample of the correct ‘output for that test case. When the
tests have been executed, the actual output is compared with- the expected
output for correctness. As errors are detected during the actual operation of.
the system which were not detected by regression testing, a test case " which
could have uncovered the error: should be constructed and included with the
"existing test cases. X uj[Lo ? o :
Although not required, tools can be ‘uséd to aid in performi#g: regression
testing. . Automatic test harnesses can be used to assist the managing of test
cases and in controlling the test execution.- File comparators <c¢ih often be
"useful in verifying actual output with exgected.output. ‘Assertion processors
. are also useful in verifying the correctness of the output for a given test.

SYa Sz

~

4.22.6." ‘Example. : . -

a. Application. A transaction processing system contains a ‘dynamic
data field editor "“which provides a variety of input/output field editing
capabilities, - Each transaction is comprised of data fields as yepecified by a
data element dictionary .entry. The input and output edit routine used by each

- data field is specified by a fixed ideptifier contained .in a data field
descriptor in the dictionary entry. en a transaction is input, each field
is edited by the appropriate input editor routine as Ypecified in the
dictionary ‘entry. Output editing consists: of utilizigg outpul-editor routines
to format the output. .) . : v

S R DTS . e SR
T . 7._ L;; ~P§83 97
]]] o ’ e 3;_ -. ~' " 7 T 2
b. Error. in 1nput ed1t routlne to ed1t numerlc data flélds was?‘
modified to perform a fairly restr1ct1ve range check -needed by . a~part1cular ,
transaction program. Current system docﬁmentatlon indicated - that. this
particular edit routine was only being “used by " that 51ngle ctlon.
program. However, the documentation’ was inot up-to-date in that” other, -
highly " critical, transaction program a¥so used the routine, often wi data "
falling outside of the range check needed by the other program. R

¢. Error dlscovery. Regres51on testlng would uncover (he error glven -
that a sufficient set of”™ fUnctlonal tests were wused for performing the, -
testing. If only the transaction program for which the modlflcatlon was made .
were tested, the error would not have been dlscovered unt11 actual operat;on.

4,22.7,+ Effectlveness.' The- effect1Vehe S of the’ techn;que depends upon the
quality of the data used for performing the regression testlng. If functional
testing, i.e. tests based on the~functlonal requirements, 'is used to* create ”
the test data, the effectiveness 1S'hlghly effective.. The burden and expense
associated w1th the technlque, particularly for small changes, can g appear to -
be prohibitive. It is, however,'.often quite straightforward te determlne*J-
which functions can be potentially affected by a given change. In such cases, :
the extent of the testlng can. be reducéd toa more tractaSle size. - .

-

" 4,22.8. Appllcablilty. This method is generally appllcable.

4,22.9, Learning. No speclal tra1n1ng is réquired fh order to apply the
technique. If tools are used in®* ~support of regression testing,. however,
knowledge of their use will be required: Moreover, successful application of
the technique will require ' establishment of procedures and the management
control necessary to ensure adherence to those procedures. : . o

~

4,22, 10. Costs Since testlng is requlred as ‘a result of system :
modifications anyway, no additional burden” need result because of the method
(assuming that only the necessary -functional capabllatles are retested). The
‘use of tools, however, to supporf it could increase the cost but it would also

- increase its effectiveness. °

-~

M22.11. References.
N . ‘“ v."

(1) PANZL, David J.;. Miutamatic Software Test Drivers, " Computer,

, (2) FISHER,K.F.,"A Test Case Selection Method for the Valiﬁatlon of -

Sof tware Malntenance Modification",IEEE COMPSAC, 1977 \

co (3) FISHER,K.F.,RAJI, F.,and CHRUSCICK A.,"A Methodologx,for Re~testing
Modified Software" Na&unal Isles.qnmum.cangns Conference, New Orleans LA. ,Nov o

1981,
o . L

N '. | | h 1()55 _ - «

’. | : \ . 3 .‘ ! '[7.:‘01', .I ‘ A ‘ . '. . - Page 98 "

- 4 23. . Name.. Requ:.rements AnaIyzer./ . : - -
. . . .

4 .23. 2 Basic features. The requlrements for a system will’ normally be :
specified 'using same formal language which may be graphical- and/op- textual in

nature. A requ:.rements analyzer can ‘chéck .for syntactical errors in the..
requlrements specifications and then produoe .a ‘useful analys1s of" the

:relationships between system 1nputs, outputs, processes, and' ‘data. Loglcal ‘

'. 1ncon51st cies ¢r ambiguities in the specifications can also be 1dent1f1ed by -
the requ1rements analyzer. , ‘ . . . ¢ -

'4 23 3. Informatlon 1nput The form and content of the 1nput will vary -
greatly for - diffe éent requirements languages. . Generally, there “Will be -
requ1rements regarding what the. system must produce’ (outputs) and what types
‘of inputs it must accept. .There will usually be specifications. descrlblng the
types of processes: or f‘unctn.ons which the system must apply td the inputs in
order: to produce the outputs. Additional requirements may coricern timing and
'volume of inputs, outputs, and » processes as well as. " performance - measures
regarding such: - ‘things as response time and re11ab11~ity of operatlons The -
form of the 1nputs to the requlreme?ts analyzer -is specified "by the
requiremen specification language and varies considerably for different
languages. me cases all inputs are textual -whereas soame languages’
.utilize all gr phical inputs .from a display termmal (e.g., boxes mjight.
represent processes and a?rows ‘between boxes - might represent informatlon
“flow R -

l& 23.4, Informatlon output .Nearly ail analyzers ,produce error reports
showing ° syntactlcal .errors or .- inconsistencies in the specifications. For
- example, the-syntax may require that the outputs fram a process at Vone level
of system decomposition must include all outputs from a decompos1t10n of that

‘process’at a more. detailed level. Similarly r each system output _there
should be & process which produces thatsbutput. oAny dev1at10ns frcm these -
rules would result in error diagnostics. : ps v '

Each requlrements analyzer produces a’ representatlon of the system Wthh
indicates static: relatLOnshlps ‘among system inputs, outputs, processes, and
data. Some analyzers also represent dynamic relationships and provide an

. analysis of’ them._ Thls may Re- a,precedence relationship, e.g., process A must
execute b®ore process:B., It may,alsq include - information. regarding how often
a given process ‘must execube. in order to - produce ' the volume of output

v requ1red Some analyzers produce a detailed representation of relationships
\ between different :data items. This output can sometimes be used for °
. ‘developing a data base for the system. A few requirements analyZErs go even
further and provide a mechanism for s1mulat1ng -the requirements using the

. generated system representation including the performance and timing

. requirements. . " .) L a—

a
4.23.5. Outlire of method. The user must provide the requirements
spec1f1cat10ns as input for the analyz‘gr The analyzer carries out the
.n sis in an automated manner and provides it to the usér who must theh
rpret the results. - Ofteri the user can request selected types of outputs,
e ., an alphabetical 11st of all the processes or a. list of all the data L
items of a glven type.. Some analyzers can be “used either 1nteract1vely or in

-~ E
.
. . . i
,
)

' -

-a batch mode.-: Once the requirements specifitations are con51dered acceptable,

~

Pése" '99*_ :

a few analyzers Provide the capability for- simulating the: requirements.’ It is.

" necessary . that the data structure and data values generated: fram -the .

requirements . specificatiens be used as‘igput-to the s1mulation otherw1se the '

-51mulation may not truly represent the requ1rements oo ; . Coe
R .23. 6 - Example. Suppose that a process called PROCESS B: roduces two files

named HZ2 and H3 fram an’ input.file name . M2. ‘(The purposes of the filés are
" irrelevant to-the discussion.) Suppose also that. -PROCESS D/ :acéepts. Files H2
- and . H3 as\input ‘and produces Files:J3 and J6 output. . Invaddition, PROCESS G
is a subprocess Q PROCESS D and it accepts File H3 as 1nput and produces File
, J6. . Then the~pseudo spec1f1cation.statements -figure 4., 23a6-1 might be used

to describé the requirements. -(Note- that these requirements are close to
‘de51gn, but this is often the case.) - ‘

PROCESS B~ SRR o
e T > ' . "[.k/" ‘ \
USES FILE M O T “
"PRODUCES FILES H2, K3~ DR | e
PROCESS D LT
.- . - | .. . ’.) - .. . | , %

°

USES FILES H2, H3 o : o -
. PRODUCES ?Iuss J3, %6 . STy
9) -] : - : . . ‘
'PROCESSG - /A A . .
. SUBPROCESS OF PROCESS D° L

USES FILE H3 e
PRODUCES FILE, J6 o

.

PO

g -

[L 4

> _ : |
Figure 4.23.6-1 Requirements Specification Statements ’“

The requirements specifications imply a certain precedence of operations,

e.g., PROCESS D cannot execute until PROCESS B has produced files H2 and H3.
Detailed descriptions of what each process does would* normally be dincluded,
but aré” omitted. for brevity. The . requirements ‘analyzer would probably
generate a diagnostic since the statement for PROCESS D fails to indicate that
it includes. the subprocess G. A diagnosE}c would ‘also be generated unless
there are other statements which specify that/file M2, needed by. PROCESS B, is

-

avallable as an existing file or else'is produced by some other. ppocess.:y_~
Similarly, othér processes must be specifiedwhich. use files J3- and’''J6-'as -

input- unless' they eare- sp®ified as files to:. be .outpiit from’ the System.
.Otherwise, additional diagnostics would, be.generated. It can be seen that

same of thé checksst are similar to data. fiow analysis for a computer program. i,

. -) e

T T 1 VA cLT T

R l"r\‘.,, : : K2 " o ‘. L y - e L S L el "'ﬁ_‘ '.Page 100 i
PR ,".' . : ‘.-— / -. .:\"_.._-',F:_ . -'._~.‘;._.‘..'-a‘;' . S : . \, "'_ ‘ ’ N
s -M N ..~" - - - .-_. . ‘;‘,,._‘ K fcb . . . _, . . '. . . y
‘*’However, for large sxstéms the analysls of requlrements becomes very colnplex
Cif- requlrements for timing ‘and performance are 1nc1uded, and if timmg “and
~~volume ‘analysis Vare to be carried out. . (Volume, -analysis - .is ; concerned with -
~‘such:- thmgs as.>"how often varlous processes must execute if. the system is to-
accept and70r prodUce k-3 speclfled volune of - data in a slngle gJ.ven perlod of
. t:_.me.) : . 4"* .

-

[NPUSEENEE

. - - E Y
4 . . S ,~
» -t

ll 23 7. Effectlveness. . Sane requlremen& -analyzers are very. effectlve for
malntalmng accurate ‘requirements .specifications.~ For large systems ‘with a
-large ‘number. of requlranents ‘they are essential. On. the other- ‘hand, tmost
. ex1st1ng. requlrements analxzers are rather, expenslve to obtaln and use, and
they may not be cost effectlve for de\ielopment of small systems. .

- 4,23.8.. Applicablhty Requlr,ements analyzers .are . .appllcable for wuse 'in -
developlng most Systems. They Are— part:.cularly usefui for .d@nalysis of
: requlrements for large and. complex systems. - S o '

- 4.23. 9. Learning. Most requlrements ana,lyzers requlre a conslderable amount

of tralnlng of perso%q £

ll 23, 10 Cost Most u1rements analyzgf’s are- expenslve “to- obtaln and ‘use.
~.They - generally require a large amount of storage w;t’nm a compute\l and 'so can’
only be used on Jlarge computers. o L S

h -

. ,.

ll231‘l References. . ; : : " '.‘
(1) ALFORD, Mack w., "A Requlrements Englneerlng Methodoloy for Real-

Tlme Processmg _Requirements," TRW Softwares §_ez:_1_es, TRW-SS-76-07 Systens .
Englneerlng and Integratlon DlVlSlOn, September 1976. 7 < L ~

L (2) TEICHROEW, Daniel, "A Survey of Languages for Statlng Requlranents
for Computer-Based Information Systegs,™ The University .-of
Er__ﬁd_mg_ ﬁ ch_e Fall icmt Qqnmm: L‘&_rcr.cu 1972,pp»12o3-122u

\ q .
= T M ° et o
. “ .
\ T . X
’ N B
. " ' -
.’ - X
. e: .“"
‘ - g .
R - 3 . ¢ I} o [
. - v - N
. g N " .
JO FER - - L . »
Y - . . : . X
. - Y P L) B .
T P Lt 4 LT v 14 -
e - ’ — Ta Y
- .o -5. . » = -
5 . . -
. 3 X . el '.\1 3
N Lot L i
“ ~ . Si' 5';.. 5 (-
N «, tesN
2 ‘.,’-’I.E‘, . el . g
- PR ‘e oo T T
. K R .
= 3 I, - -,_k- o
- =» : o Py
N . v 4 Ve
) L . - L4
- e ’ : - - - > L4
o e - - . N E
] o f ? X .
KE : . i. ’ : 4 &
L ’ '_“ e . - ! ‘ . o bar k- v 4
R) ‘ . e . - . M
LY . -t T, - < -
U . 1 U ﬁ‘
“ ' o @)
.

st T T Pageton

R 24 1 Nane. Reqmranents Tracmg._ '_"- T ' :. h - T .. - .

: .éll 2 Bas1c features. Requiranents tracmg providgs-a means of verlﬁ'mg
that: the . software of a- ‘system_addresses each requirement of . that System and-

'-,;'_ that . the testmg of. the software produc‘es adequate and oappropriate responses
to those requlranents. v i i S K)u-‘ s o

5 ll 24 3.‘ Informatlon 1nput The 1nformat10n needed to perform requ1rene‘nts
tracmg cons1sts of “a ‘set of-: .System’ requlranents and the software whlch

- embodles the capab111ty to aatlsfy the requlranents Lo .

: . . L " .‘v - ,
4 2u 4, Informatmn output. . 'Ihe 1nfogmat10n output by requlréhents tracers
.tis - the :¢orrespondence - -found between- the - requlrangnts of a system and the
. software that :.s mtended to reallze these requlranents _ S C

B, 24 5. Outllne of method Requ1ranents tracmg gent;rally@serves two maJor
- purposes The. f1rst is to ensure that each spec1f1ed requirement: of a. ‘system
. is: addressed ‘by ‘an ‘:Ldentlflable element .of - the system software. ‘The second.is -

“"to - ensure ‘that the testing of that ' software produces . results whlch are
adequate responses m sat1sﬁ'1ng each of these requlranents.~ SR i
A coiﬂlon techm.que used to ass1st in mak:mg these assurances 1s the use of
. test.. evaluatxon matrlces. 'mese matrices. - represent a_ visual- .scheme of
1dent1ﬁ1ng wh:,ch reqmranents of 'a system have been = adequatély and .
- appropriately. addressed and wh:Lch have not._‘ There are two basic forms of test
- evaluation matrlces. "The first form 1dent1f~‘1es amapplng that ‘exists bemeen
. the’ requ:.ranent speciflcatlons of " 'a system and the ‘modules of that system. - -
+'This.matrix determines whether each requirement is realized by same module . in
-+ the ‘system, ‘and, conversely, whether each module is directly associated with a '
spec:.flc system requirement. If the matrlx réveals that a requirement is not ,

\addressed»by any module, then that requlranent ‘has probablybeen. overlooked in
"~ _the software des1gn act1v1ty. If a module. does not. correspond’ to any -

--requz.rement of the system,: -then that module\ls superfluous to the system. In

- either case, the. des1gn of the software must- be :further scrutlm.zed, and the
‘system .. must @ be’- modlfled accondlngly. - to effect an acceptable-
requlrements-des1gn mappmg. e ‘ _ o ' :
_.‘The . ond Form of: a test evaluatlon matrlx prov1des a s:l.m1lar mappmg, except
" -the g exlsts between the modules of a system and the set of test cases
““performed ‘on the system. . This matrix determines which modules are invoked by
.-each .test. case. Used with _the previous matrix, it also determines which

requirements will be ‘demonstrated to - be 'satisfied by the ‘execution of ‘a
particular test’ case in the test plan. During actual code’ development it can
' .-be used.to .determine ‘which ° requlranent speclflcatlons will rélate -to a
- 'part1cular modulé. In this way, it is poss1b1e to-have ‘each module print out
“.a -‘message ‘-during. . execution of . a- test. - indlcatmg which . requiranent is

.-referenced by -the execution of thls module.\ The- code mo'dule 1tse1f may also

: .contam cannents about the appllcable requlranents _ _ .

g ,'If these matrlces are to.be used' most effectively m a requlrenents tracmg"»
. cactivity, v the two matrices .. should:-bé used together. .The second matrix is.
xbullt rlor to software developnent .After the software has been developed‘i".

- 4

e i O e A . . S . A . : ” - .
.x._?) T - Ll s . i“ﬁ
. e . feen
L H T e e . . 3 o DT).
L. L . . . e . - . M ¢
R el e - L A

L 4‘_ S Page 102

.."j-'.‘._and “the test cases have been deSigned (based upon this matrix) it is
necessary to deternnize whether the exgcution of the test plan will . actually_ _
demonstrate satisfaction of " the - requirements ‘of ‘the software system. By -
. analyzing’ the results of- each- ‘test’ case,, the first.matrix can ‘be constructed -
. . to ~.determine the relationship that ‘exists be'meen the requirements and .
__sofmanuea_ity. _ . , - - — S

The first matrix is mainly useful for analyzing ‘bhe functional requiremants of -
elal ‘system, However, -the second ‘matrix.)is also yseful in analyzing the
- ‘performance,’ 1nterface, and- design requirements of ‘the system, in addition” to -
' _.the functional requiranents Both -are. often used in’ support of a more general--}=~'j
.. requirements -tracing acti'vity, that, of .preliminary ‘and -critical design
... reviews,.: - This'is a Pprocedure used’to ensure verification of the. traceability
of all the above mentioned requirements to _ the design of ~ the’ System, - In -
- "addition . to- the -uise:. of test evaluation matrices, these design reviews may. ‘
. inc¢lide the. tracing of -individual subdivisions .in-the sof'tware design. document <
~back to applicable specifications made in the requirements docunent { This is
oan ‘constructive technique used to ensure verification Cof> requirements :

,'_-traceability ce e e T
‘7'4__.24.6 Example. R ‘:._5' '-_ ‘ B
: Application. A new payroll system is to be tested ong the
-_requirements of this system is. the specification that all employee of age 65 -
or Oldel‘- . . - N) . . N T oL ' PO . -
. | 1 receive semi-retirenent benefits and - e TR

2. have their social security tax rate readjusted _

"To ensure that these particular requirements are’ appropriately addressed in |

the system software, test evaluation matrices have been constructed and filled
-out for the system _ , . Co . B :

. b. Error. An aniss1on in the* s’ofbdare causes the social security tax
- rate off mdividuals of age 65 or older to remain unchanged ‘

S Error discovery. The test evaluation matrices reveal that the
requirenent that . employees of age 65 . or, older. have théir.social- -security tax =
~ rate-adjusted has not been addressed- by the payroll program. 'No module in.the'
. Systein - had been designed to respond to this specification. . The sof’ware is ~
.- revised accordingly to accommodate this r uirgnent, tand a -best "evaluation ° -
matrix is used .. to ensg*e that the add module is tested in the set of test' -
' cases for the systen AR ? UL,

Y .24 7., Effectiveness. Requirements tracing is a: highly effect:we technique
+ - in discovering errors: -during- -the design and. coding ‘phases of software
: rdevelo;men This technique has- proven to be.a valuable aid .in verifying - the . -
s canpleteness,~ ‘consistency, ~ and testability— of _.software. If a system
" requirement is modified, - it "also :provides -miich - assistance".in _retesting -

‘ software by clearly indicating which modules {nust be rewritten and retested.
Requirements tracing can be a very effeetive technique‘ in detecting errors’

. . B . ‘. . S -
' ..',- S o". . .- . e Te ’ . ’
e >~ T RN e - .. " A «
0 - -s L - L -\._"— : iU . oA ot
L= T e Vo T e - s T . Do e
. N S . = wel . .

-

early in the sof:tware development cycle whlch could othermse prove to be very

- _expensive if dlscovered later. , iy o T

4,24, % Appllcablllty ThJ.s technlque is generally appllcable in large -or
)small system testing and for all tybes of . canpuhng applications. However, if -
_thé system requirements - themselves are not clearly specified and documented, -

—proper—requlrements tracing can be very dlfﬁcult to accompllsh 1n any

aple.catlon. S R , . N

ll 24 9. Learm.ng.» Knowledge and a clear understandmg of the requlrements of
- the ; system is essential. More complex systems will. result in a correspondmg '
1ncrease in. requ:.red learnmg.v . _ _ _.?:,..3 _

-

ll 2ll 10. Costs N6 spec1al tools or equlpment are needed to carry out this.
technlque if done - ‘manually. The major cost in requirements traclng is that .
associated with human labor expended. Regu;rements tracing is often a feature ’
of re,quz.(ement’s analyzers whlch are expensg.ve to obtaln and use. ' A .
y 24 11 Beferences.. : ”_‘ . y, ST o .

(1) "THREADS A FunctlonaI Approach to; ProJect Control "Q_qnpit_ez
§£1gn__es _gx:p., EL Segundo Callforma 975. . ! _-

T (@) HE'IZEL w .Ce ‘"An Exper’ tal Analysxs “of - Program Verlflcatlon_
’ Methods," m e Um.ver31ty North Carolma, 1976

\ ,} s

e o T T .7 Page 104

" LN 25 1. "Name- Sqftware monitors. . , .

- 4.25.2, Ba%ic features.. These tools monitor the execution: of ‘a program in -
~order to 1locate - and: identify poss:.ble areas of mefficiency in the program. -
- Execution data is obtained while the program executes: in its normal
.enviromment.’ “At -the ‘end of execution, reports are generated by the monitor .

—sumxarizing—the"resource usage eﬁ'the program.
4,25, 3. Information input. Softmare monitors require as input the program ,
source code to be executed and any data necessary for the program to run.
Certain commands must ‘also .be: _provided by the user in specifying the
: information to be extracted by the moni tor ,and in specifying the format of the-

'generated output reports These cannands may specify

o what is to be measured Ce. g., execution times, I/O usage, core usage,
" paging activyity,- program waits), . - ‘ el S
" ..o the specific modules to be monitored, . o :
, “'0 the frequency that data. 1$ to be extracted during program execution

& ' - (sampling interval), - ~

- o.the titles, headings, content - of each output report

‘ 'o the units used to. construct graphs, .

‘ ether the graphs are to be displayed as plots or histograms

.25 ll Information output " The output of a sof tware monitor is.a set of one .
.or more reports - describing the execution: characteristics of the program. .
Information that ‘may be contained in these reports is given below. - o

oA sunnary of all the sample ‘counts made during data extraction,
. .e.g., the number of - .saimples taken where the program was executing
- instructions, waiting for the campletion of an I/0 event ‘or otherwise o
. ‘blocked from execution. = D .
" 0 A '&mary of the activity of each load module.
o An instruection location. graph' that gives the percentage of time spent
- for. eachc group of instructions partitioned in memory. . .
. 0 A program timeline that traces the path of .control through time.
~..0 A control - passing summary that gives ‘the number of times control is .
. passed from one module.to another. .
. 0 A wait profile showing the nunber of waits encountered for each
- group of instructions. - | ,
. 0-A paging. activity profile that. displays pages-in and pages-out for
' each group of instructions., . o

-

This information is often represented in histograms and/or plotted graphs. T

4 25 5. Outline of method Sof'odare monitors typi‘cally cons:Lst of . two-

' processing units. The First wnif runs the program being monitored and
" collects data ‘concerning the execution chraracteristics of the program, The

: second unit reads the oollected data and generates reports fran it. T

| A software monitor monitors a pnogram by determining its status at periodic
intervals. ‘The period ‘between samples . is usually controlled through an -
'elapsed interval timing facility of the operating system Samples are taken,

'.,112f!‘

s
-~

~.from. the entire address. range addressable by the -executing task. Each Sample

- may contain an indication of the status of the program, ' the load module in
‘which+ the, activitx_\\.hagj.detected-, and ‘the absolute-location of the instruction -
- being executed: x&na\ll Sample intervals increase samplihg accuracy but result -
" in & corresponding i\r:creése,iﬁ’ the overhead required by the CPU..

~ The statistics ‘gathered- by :the - data extraction unit are- collected - and

sumarized 'in .reports ' génerated - by the data analysis unit. References to "

.~ program locations in these réports will be in terms '‘of absolute, addresses.’ :

- However, inordér+to relate the absolute locatiohs to source statements in the

" program, the reports also provide a means to locate in a campiler listing the
source_ statement +that corresponds to that Anstruction. In this way, sources’
of waits and program locations that use significant amounts of CPU time can be
identified directly .in the source code; any performance improvements to the
\pProgram will occur at these .identified statements. - - S

Sqftnaré monitors. are similar to another ‘tool usekd to mqr;itor. program
e‘x'gc’u_tion, test coverage analyzers. -Test coverage analyzers keep track of and
report on the number of times that certajn elementary program constructs in. a
program have been traversed during a sequence of tests. During the monitoring
of a'\program,sboth tools count. the frequency that certain events occur. After -
program exdMition, ' both generate -reports 'summarizing "the data collected.
However, use these tools Serve different functions,*they are different. in
their techfiques of gathering information and in the type of information each -
collects. Test coverage analyzers are used to measure the campleteness of a -
Set of program tests, while software monitors measure the resource Misage of a
program as :2 means of evaluating program efficiency. . As an. evaluation of -
program efficiency requires consideration of execution time expenditure, -
software monitors utilize a:strict timingmechanism during the collection of
‘data, This is absent .in“monitors such as test coverage analyzers which are
not used-to evaluate programdperformance. ST e e

4.25.6. Example. . : = - o
- - 'a. Bpplication. A program that Solves a .set ‘of sifultaneous
equations. is constructed. The program first generates a set of cdeﬁ‘iciénts.<:

and -a right hand side for the system being solved. It then proceeds to ‘solve

A

. -the system and output the solution. . . . oy

"7 " b, Error. In'the set of calculations reqjuired to solve the system, a =
' row . of coefficients’is divided constant and-then subtracted from another

row of* coefficients. The divisions dre.performéd-within a nested DO-loop but
'should. be moved outside the inne st . doop, as dividend and- divisors:

- Within the loop do not change. : < . y/-\
k) . . S, ’ : S

c. -Error discovery. The performance of the rogram\i - evaluated -
through the use of a software monitor. Examination of the output reveals that

. the program spends almost 85% of its time in a particular address \a\nge. o
‘Further " analysis shows 'that 16.65%, of all CPU time is used by a single -
instruction. A compiler listing of the program is used to locate . the sourc
statement that’ generated this instruction, which is found to be the statement
containing the division instruction. Once the location of the inefficiency is

Y

Page 106 /

dlscovered, it is. left to the progranmer to.determlne whether and how the code
canbeopt:.mzed T T . o ,’
4, 25 7. Ef‘fectlveness Software momtors are. valuable tools -in 1dent:|>Lfy1ng

performance problems i‘n a“-program. - 'I‘nelr overall effectlveness, however, is’
* .dependent upon the quallty of theu’ use. R . N

4.25.8. Appllcablllty Software mom.tors ‘can be applled to any k1nd of
progran in any progranm.mg Ianguage.) T .) _
4,25, 9. Learmng. 'Ihere are :no: spec1al learmng requ:n.rements for the use of
. software monitors. In order to use the tools effectlvely, however, the input:
parameters to the monitor must be carefully selected in determining the most
relevant . reports to be generated Once the. areas of a program which are most
1neff101ent have been 1dent1f1ed J.t requlres skill. to modlfy the program to
- improve its performance. ' o _

4.25. 10 ~Costs. ‘The largest cost “in- us1ng a software monitor is that
incurred - by the CPU to extract the ‘data’. during execution. In one
;1mplementatlon, extraction of data resulted in an increase of user program CPU
- time "by. 1% :to 50%. Storage requ:tﬂ‘enents also increase in order to provide..
menory for dlagnostlc tables. and the necessary program modules of the tool

4,25, 11, References. . B

(1) "Problem Program Evaluator (PPE) User Gulde," Boole and Babbage, :
Inc., Sunnyvale, Callforma, March, 1978. Lo

_ (2) RAHAPDOR’H{Y c.V. ,and KIM K.H., "Software . Momtors A1d1ng
" Systematic Testing and Their Optional Placement " Proceedings of the First -

National Conference on SsﬁuaLEnsm&nms IEEE: Catalog ‘No.. 75CH0992-8C,
&Septenber, 1975. . T A

Page 107 |

7 W.26.1< Neme. Specification-Based Functional Testing.'

'4.26.2. Basic fetures. Functional testing'can be used 'to gererate system

+ test/data fram- the information in requirements and design specifications. It

- is used to test both the overall - functional - capabilities of . a system and
. f;mc7£i-ons which originate.during. system design.” e e
4.26.3.” Information input. . . NG

S A : requires . the availability, of
" detailed requirements: and désign specifications and, in particular, ‘detailed. ..
. descriptions of input-data, files and data - bases. Both . the concrete and
-~ algebraic, abstract” properties of all data must be’ described.. Concrete -
- properties’ include type, value ranges and bounds, record structures, and .
« bounds on file data sfrudture and data base dimensions.. Abstract properties

/include subclasses of ~datg, that . correspond . to - different -functional

/capabilities in- the systeml -and subcomponents.. of compound data items- that
. i correspond to separate .subfun L

a.. Data iinfo?méti’on". '-Ihew tééhniqde _

ctional activities in the system. °
/-~ b.. Function infc"a'i"ma‘tion./'“ ‘The requirements and design’ specifications
/ must also describe the different functions implemented in the system.

!:: Requirements functions correspond. to the overall functional ca’pa'bilities of a
' . system or to subfunctions which are visible at the requirements stage and are
" necessary ‘to implement overall capabilities. -Different . overall ~ functional
capabilities. correspond to conceptually distinct classes of operations that .
can be carried-out using the system. Different kinds of subfunctions can. also]
be identified. Process descriptions in . structured specifications,. for
.. example, describe data -transformations which are visible at requirements. time
. and which correspond to requirements subfunctions. Requirements ‘subfunctions
+also occur implicitly in data base schemata. - Data. base functions are used to .
.. reference, update and create data-bases and files, = L o
- The.designer of a system' will .have to .invent both general and detailed.
functional constructs in . order ".to - implement’ the functions in requirements
-.specifications. Structured design techniques .- are-'particularly -useful for
. identifying and. documenting design functions. Designs are represented as. an
abstract hierarchy of functions."-The functions at the top of . the hierarchy
denote the overall. functional capabilities ' of a program or system and may
“correspond to requirements functions. Functions at.lower levels correspond to
the. functional capabilities required to implement the higher level functions, -
~ General- design .functions often correspond to 'modules .or' parts. -of programs .

which are identified as. separate functions by | ts.. Detailed design -
functions may be invented during ‘the programming sta ¢ Fsystem' gevel"opnent

- and may correspond ‘tq single 1ineS of code. .

4.26.4, ' Information output. . The output -to be examined ds on 't

of the tested function. '~ If it . is a straight inpu it function, then

f;:g::put' values are examined.. The testing of other classes. of functions may
volve the examination of the state of ‘a data base or file. S o

. 1

. C115 A

e _,-- S oo, Page 108

- A ‘-".’ -',-'___ \'{,i. . ‘ - T - 4 .-‘.
4 26 5.. Outline of method. 'lhe basic idea in ,functional testing is . to_.‘,
identify Pfunctionally :important” _classes of data. The two' most important, -
‘-classes of data are extremal yalues and. mgl values. Different - kinds of "
,sets of data’ have different kinds oi‘\extrenal values and different classes of -
- special values must be used to test different kinds of ﬁmctions. : T

L

Extrenal values.'. The - S lest kinds .of extremal values are _

ssociated with elementary-data 1 . —If a variable is constrained to take
values which lie in the range (a,b), then the extremal values are a and b, .
' -a variable is:constrained to. take ‘on_values fram:a small set of discrete-
values then each ‘of those values can be thought of as’an. extrenal case,. .

'me construction of extrenal wses for data structures (e.g., group data . =
-items) ‘can be more: compliczted It is necessary to construct -extremal values.
of :both-the component elemen@ry parts of the data structure as well as its
~ dimensions. The data structure can-be treated as a single- quantity In this -
" case, .when it takes on an extremal value all of its: elements take on that -
: value. It is also possible to consider its components as a -set of values in
.Which one, 'more; or -all of. the ‘components have extremal . values. The :;
construction of extremal - values for files and data bases is similar to. that
‘for data structures. Files with extremal _dimensions contain the .smallest -
possible and largest possible number of records. If’ the records are variable
= sized they contain records of the smallest and largest dimensions. . -,:_ A

b.. -Special values. 'Ihere appear to be two- kinds of special values ‘
" that- are important - for data processing programs. -‘The first is useful for
testing functional capabilities -in which' .data - is .movedy ‘around .from one
location - .to . another, as in a transactioxhupdate program. Functions of this -

- type should be tested over distinct-sets of data (i.e., - values. in different__ g
7 files, . records, variables-or data structure: elements should be different) in-,

order to detect the transfer of the incorrect data from.the . wrong - JI
~into the wrong destination. The second kind of special.data is u 1 for. _
-.testing logical functional capabilities that carry out: different operatiol s on’

the basis ‘of relationships between different data items." It is important to)

. test functional ‘capabilities of this. .type over special values suchas tho: in .
which sets of data that enter into the comparison are all the same._-_f TR

Additional kinds of special values are important for seientific _programs or_.-_'.-‘_.
programs which - do -arithmetic calculations. They include: zero, positive and--
negative values "close" to zero, and 1arge negative and positive values.

 Functional testing requires thiat tests be constructed in-wifch the inpit ‘data
is . extremal, non-extremal and special as well:as tests’ that result in progran_.; o
output that is. extrenal nomextremal or. special Lo L o

b2, 6 Emplé* T AL :I- e e T

v

Testing of requirenents ﬂmctions. _ :-_j
- a. ,Application. . A canputerized dating system was built in which a

sequenﬁ.al file' of potential ‘dates -was. maintained.” “Each client for the- .
serv:[ce offered would suunit a oompleted q'ﬁestionnaire which was used to find

Y . c

Exanple"

. oL ot e e L £ s Y-l ST e
. v - - Co. . N B . ’ B T ST o - : AP Page 109
. . L L. - . _. - . -' L Co T

. }. o o

.> '. . oLt ’ 5 .
'the ﬁve most compatz,ble dates., Certaa.n crlterla had to'be sat:.sf,ied before .
any potentdal data was selected -and. it is poSs1ble that no. date could be f‘ound

) fcr a- chent\or less than fJ.ve dates found . _ S S ;

. "~ ’ S0 i S L -

T A ror. An'errdr J.n’the file processmg Iogic mses the progran -
. to Select -last. potentlal date 1n the' sequential f11e whenever there 1s no :

W

"potentzal da for “'c11ent ‘, R - oy

)

- T' ‘ >
000 c, Erh;r dlscovery. The nunber of dates which ‘are’ found for each

- cldent’ is a jon of the output data -and. has extremal 'valueg 0-and- 5. If -
- the’ 'lfmd da ctional capability of the. system is-tested over data for . -
- .a-client qu: WhJ.Ch ho. date should exist then the presence of‘ the error will, be
J'~revealed._ _ . s . .

Example .2. Testmg oi‘ detalled deslgn functlons. :

Lan Appllcata.on. The des1gner of the caandatmg system in
' Example 1 decided to process ‘the file of potentlal dates for a client by ¢
reading in .the records in sets of ‘50 ?'ecords each.. - A simple f‘unctlon was

: designed to compute the nunber of record subsets

o b Erro? 'I‘he nunber of‘ subsets ﬂmctlon returns the value 2 when
there are- less than 50 records in the flle.. “ : . - Ll

‘c.. Error dlscovery. The error will " be dlscovered if, the des;gn
. functlon 'is - tested over. the extremal case for.which is should generate the -.*
minimal output value-1. " Note that this-.error. -is _not revealed (except by

.“chance)* when ' the. program is tested at the requ:.rements specifications level,.
It will: also not necessarlly be revealed" ‘unless - ‘the code 1mplemeating the

" design function is tested mdependently and not 1n combmatlon with the rest
ofthesystem... , _ . A T O

2.y .26.7 - ‘Effectlveness Stud1es have been carrled out which indicate
.functional testing to be highly ‘effective; - Its use’ depends on. speciflc ‘
'”'.-descrlptlons of :System input and output data and- a complete 1ist. of “all"
*functional capablhtles \ - The method . is. essentially ‘manual :.and sanewhat
B 1nfonnal CIfa formal language could be designed for descr:.bmg all input -and-
: output data sets then a 'tool could be used to check the canpleteness of these .
‘descrz.ptlonsl .Butomated. generation . of extremal ‘non-extremal ~ and special
cases. might be. dlf’flcult smce no r1gorous procedure has been developed for

:th:.spurpose. . _. S e e T

_"For many errors it is necessary to- cons:.der canbinatlons .of”. extrenal - NON--
‘extremal ‘and. special’ values: for: "funct:.onally related". 1nput data variables.
: In order to avoid combinatorial . explosions, combinations must be restri€ted to .
"a -small number. of -variables, _ Attempts have been made to 1dent1f‘y important -
cambinations (see references) but there are no absolute rules, wonly -
:---suggestlons and guldelines. S e , o

i

‘~-‘. ; ﬁ :) e ’ . LT 4,.~ e _ . _"j-‘:'.' - FP -..-. c -
'34.26.9." Learning. It is : h&eSsaﬁ} " to -develop some’,expertise with -the .
identification of extremal . and special casés.and to avoid the combinatorial
explosions that may occur when combinations of extremal and special yalues_for
- different- data items are considered.. It is also necessary to become “skilled
~in-the identification of specifications functions - althbugh this process is..
. simplified ' if a systematic approach is followed for the representation of
. requirements and design. . . ' S S

*

' 14.26.10. - Costs. The'method_ requires no--special tools or equipment and
.contains no hidden excessive tests. . . = - T
'u_:26.1-1"'-uﬁefefj.encé§. R 5 L - _ o
. (1) OWDEN, Wiilian. E.; "Funetional Progr: n Testing," " IEEE
- Iransactions o) 'Software Engineering, SE-T, March, 1980. .~ .- .

.- - (2) . HOWDEN, ~William --E., - "Functiobal - Testing - " -and ~ Design. -
Abstractions,"Journal ‘of Systems and Software, Vol. 1, 307-313,1980. - " -

" _(3) MIERS, lenford,” "me ' Art’ of Software . Testing,n
Wiley-Interscience, NewjYork,~1975. ° ' : e

. . R .
. D . :
- ! : . . . C
N - a - PR
. - .
.. . B ‘e,
.
- . .
..
e

‘e .

_ o T Y page

R - A 1. Name. Symbollc executlon. _ _ o

.27, 2 Basic features. Symbol1c executlon 1s app11ed to paths th;ough
prograns It can .be used -to’ generate expressmns wh1ch descr1be the
cunulatlve effect ‘of - the- computations th.Ch oceur in-a. program path. It can.
-also be ‘used to genera'te a system of- pred1cates describing the. subset of the
~input domain which causes a specified path to be traversed. The user is

——eXpected—to— verlfy—me—cOWectness—oﬁme output which is generated by .
, syxnbollc execution in the same: way that output- is verified ‘which -has’ been
_- generated by executing a program over actual values. "It is used as a basis -

for data flow analys1s and proof” of correctness. . - ‘ ~

: 4273 Informatlo:zg\t R - o M
"+ a., Source 'I'he method requ1res the ava11ab111ty of the program_ '

" source ‘tode. | _ _ L .

. f ., b Program paths. 'Ihe path or paths through the program which -’ are to
be symbollcally' ‘"evaluated: . must -be specified.. " ‘The paths may be spec1f1ed
directly by the: user or, J,n sane symbol1c eva.luatlon systems, selected L

. c. Input values. » Symbollc va.lues must be asslgned ‘to each of .the. ..
"1n'put" —varlables for the path or.. paths which are. to be symbol1cally' '

, evaluated The user may .be respons1b1e for selecting- these. values or the’

symbollc evaIuatlon system whlch 1s used may select them autanatlcally. -

u 27 zr Informatlon output ' e

S

E

R Values of varlables.» The var1ables whose fma.l symbollc va.lues
are of mterest must- -be - specified. Symbolic.’ executlon Will restilt in the -
generatiqn of : éxpressions which- describe the v
terms of the dunny symbolic values ass1gned to- nput variables. ... L

A system ‘of" pred1cates. Each of :the' br%ch—predlcates wh1ch occur'

es . theése var1ab1es in

along ‘a. program “path constrams the - dhput- Which -causes that path to’ be"_-__'
.followed. .The’ symbollcal]y eva.luated system of predlcates for ‘a path.

descrlbes the subset of‘ the 1nput domam that ‘causes. that path to be»followed o

4 27 5. -OutIme of method o e T
‘ '::- Symbollc executlon Symbollc va.lues are symbols standlngvfor sets
of values .rather than."actual - ~values.- ~The symbolic execution of. a path -is

: carrled out by symbol1cally executmg the" sequence of - ass1gnment statements_'

' occurnng -in - the. path. Assignment . statements are’ symbollcally‘ executed by

symbohcaily evaluatmg ‘the - expressions -fon” ‘the ' right -hand -side ‘of " the . -
_assigmment.. - ;he , resulting’ symbolic value becomes the fiew. symbolic: value ‘of =7
the var:.able on the left hand side. . "An ar1thmetlc or. loglcal expressmn is.
" symbo" bolically. “executed by subst1tut1ng the symbol1c va.lues of the var1ab1es 1rr S

the express1on for the var1ab1es. [AP R

'. 'ﬂ‘_,'

T Page-11_2’{

The . branch conditions or branch predi S wmch occur in conditional‘
. branching' statements can be symbolically ecuted to. form symbolic predicates.
‘The . symbolic ' system “of. predicates -for\ a . path «an be.. constructed - by -
symbolically executing‘ both assignment statements and bpanch predicates during-
the symbolic™ execution . .of thg ‘path. -~ The . -symbolic system " of predicates
‘consists - of - the sequeénces Cf- symbolic predicates that ‘are generated by the
exeéution of -the branch predicates. ez _ _ —

o~

A Symbolic execution systems All symbolic execution systems must
contain facilities for: selecting program paths to be symbolically executed
Symbolically executing paths,: and generating the required symbolic output

Three types of pat,h selection techniques have been used- interactive, static’

. and - autamatic, - In the’ interactive. approach “the symbolic ‘execdtion system is
constructed so that control returns to the user each time-it isnecessary. to\
;make a decision as to. which branch’ to' take - during ‘the symbolic ‘executioh of a‘ -

program. In the stitic' approach, .the ‘user. specifies- the: paths he: wants
executed in: advance. In the: automatic. approach, the symbolic execution- system o
attempts to execute .all those program 'paths having - consistent symbolic system -
of predicates A system of predicates is cons:;stent if it has a solution. . :_' ; j

‘The details of symbolic execution algorithms m diff‘erent systems are. largely
techm.wl Symbolic “execution . systems. may differ in other than. technical)
details ‘in ‘the types of symbolic output they generate.- Same-systems :contain;

- for- ‘example,: facilities -for:. solvmg ‘Systems - of - ‘branch’ predicates.. Such
Systems are capable of ~automatically: generating test data for selected program:

- paths. . (i.e., ‘program. input ‘data“which w1ll °cause the path to be followed when
the progran is executed over that data). A c T

l& 27 6. E:xample.,f:'ff -

‘ - Application, A FORTRAN program @lled SIN j:as written to compute
the s1ne function usmg the McLaurmKseries. R) _ . e
PREDICATES' - o _..: g Vo N e AT .
(x**snzo) GE E coE L E B R -
(X**7/5040).LT. e 't G e n RS g R e
ourpur Do e T e e T T
SIN = 7SUM’ —-(X*‘3/6) --(X**5/120) B ST I R I
Symbolic output for SIN ST R O S ,

: Figure ll 27.6-1 Symbolic Execution Example 2 B
P b Errors. The) program ,-contamed three errors, including
aminitialized variable, ‘the. use.of the -expression -1**(1/3) mstead of _
(-1)%%(1/2), and the" failure to add I the last,, terl_n computed ‘in the Series’ on-to.
the final computed sum. T e L

.s ; . ; 7
£ T e T ""'_. »ﬁ*ﬂ T
S ST T o -
.. < . TR - KX e -
TR -~ - 12 SR 1 % .
B - o -l ¢ 0, rS
= M,

. - - R L T A e LEWENG S s
MR S e J R . A N oy
S S e T e e \
- . - , . s 5 - AR
* e . .o .
.

s Diféerent ‘pgths through SIN correspond to different 'nunbek of. iterations - ,of
~ the -loop the - program that is used to compute terms in the. se;é.es. The* "
- Symbolic output in Tigure 4.27.6-1 was generated - by symbolically evaluating
the path that involves exactly three iterations of the 1oop. . - N

‘.

B .. " c. -Errof discovery 'me errors in "the 'program - are discovered by

' canparing the symbolic - output with -the standard formula for the McLaurin.
1ic__evaluator that . Was___| used_ to__ genenatei_the_output__

represe‘nts the values. of yariables that have been _unhinftialized with a -
question mark and the name’ of “the variable.:" .-The ' error. invblving the
=1)%%(1/2) P results in the" generatio of the same rather than.
-alternating jsigns in th€ series sum. The failure to use ‘the: last computed
term can \detected by -comparings; the predicates for the symbolically !
path with the symbolic 6utput value for SIN. = . o

4, 27 7 Effectiveness. Studies have been carried out which mdicate thatn'
-symbolic’ evaluation is useful. for discovering a variety of errors -but that,
~ except in a small humber of cases it 'is not more effective than the canbined. .
. use of other methods such as dynamc and static analys:.s (.. , o

“One of the primary uses of symbolic evaluation is in raismg the confidence oy
level of a user in a program. Corréct symbolic. output expressions confirm.to -
~ the user that ‘the code carries out the desired computations. : It is. especially

useful for nonprfgranmer users. - . S o A

. .27 8 Applicability 'me method is primari\ly useful for prograns written
in languages which' ‘involve - operations that can be represented in a concise
formal way.. Most of the symbolic evaluation systems that have been built' are.

- for -use: with ‘algebraic- ‘programming - language .such - as "FORTRAN and PL-1,
Algebraic ’prograns involve caomputations that can be easily represented .using.;
arithmetic .expressions, - It..is difficult to gene,rate symbolic output from g
programs.which involve complex. operations with "wordy" representations such as
‘the. REPLACE and MOVE. CORRESPONDING operations in COBOL A R I

AN

, ll 27 9. Learning. It takes a certain amount of practice to choose paths “and T
parts .of" paths for symbolic: evaluation. The user- must. avoid” the. selection:of
-long’ paths or parts of paths that result in: the generation of expressions ‘that -
are so large - that they are unreadable. If the> 'symbolic evaluation system ‘
'being used _glves the user control. over the types of expression -simplification.
“ that - are carriéd out,then. he: must learn to use: .this in a way that results in
the generation of the most revealing expressions.

4 27 10. Costs Storage and execution time costs for symb’olic evaIuation .
have been calculated in terms of program size, path length, rumber of. Jprogram: 3
. variables and-~ the cost of ihterpreting (rather than compiling and. executing) as.

prosranxaath ST e E
'me storage required for symbolically evaluating a path of‘ length P in a :

~ program with . S statements containing N variables is estimated to.be on the
‘order of .-10(P+3+V) (2); Let'Ct be-the cost of ‘preprocessing a -program for *. |
interpretation, ‘€2 -the cost of” mterpreting a -program path Cons is .the oost_'_..
of checking tt@ consistency (i e., solvability) of .a system of symbolic‘-

N - . v‘ T
B . -,

el Bt
LRTR
4 .

PR S

LU e e Page 11&

. '*Q‘.-’ .. : _'. .

Statiment; - Cons and Cond are, expressed ‘in-units of" .the'cost i,nt.erpretin'g'a
staténen_t_ 1n ‘&:program.’:. The:. ‘cost.” (in’. pxeeution time) of: symbolically

"-'."-execut.ing,_a progan path:is: estimated to be. on: the
Cona/10 + Cond/’lOO) (*) I S

T

.27 11 References. ,-_'-._' L e

e SR
A hel AL

predicates’ and Qond is the cost’-'of'evaluating @ corfdition m &, c@nditional

order“of C1: +\.C2 (1 «r E w7

P

—4”‘—crrnmnsn “Willian 'E, , " ~Eva1uatlon of, the Effectiveness“’ of

Symbolic Testing, SQm!ar_e:Enac_tige andﬁmnenge,B 1978 e
%7 (2) HOWDEN, William E. J#mSymbolic Testing - Design Techmques,‘ cS'é{;'s e

* and Effectiveness ", _(J_._.?;t mnamgm; m‘_ gmgnge N!I‘IS PB-268,517 ’ Spril}gfleld
virginiaO .."r‘.

33y ‘o, Williem ., "Symbolic Testing and the DIssgct - Symbolig :

" Evaluation Syﬂsf " mrnammm on &ﬁaane Engineening SE-3, 1977: -
h—»-_-__(ll) J C. y "Symbolic E.xecutlon and Program \il‘esting,'_' _GAQM

192—1976 _____ - Vo . . . ot ..,..

R (5) CLARKE L.A., nA. System toGenerate Test Data and Symbohcally
. Execute mym,"mmmngmmﬂngmmms&z 1976 &

- " "~ '
)
" v i
. . L4
. - . .
. N y o . . -
- .o ”, W .e
; L A
. - P . <
» . e *
e L -
- ‘.:\ D ER

- . ‘ e T e P CoeT
: T T gy

-
L4

K'Y

-
"

' L | pageﬂs

4,28, 1. Name Te'Bt coverage ,analyzers ‘ Cie

RS

R— 28 2‘r BaSic features.- :l'est coverage analyzers monitor the execution of a “
program - during program te§ting in order. to measure. the' completeness of-a:set.

of prograﬁ ‘tests. - Completeness is ‘measured in: terms of the branches, o

- statements or. .other elementary - program constructs wh;ch are used during thei
executidn of the program over the tests. S T _

."

' '_li 28 3._ Information input. Test coverage analyzers use the program 'S0 'ce
‘code -and a set of program-tests- to generate. test - covérage.. reportSi o
. _Sophisticated- covegrage ‘analyzers- . may . also- .involve : input - parameters that

L describe which of several alternative coverage measures are to be used

.. 4.28. u Information output. Typical output consists of a report which
'describes the relevant feature of -‘the program which has been- mexercised® over -

& sequence of tests. Branch: coverage.analyzers keep track of -and. report .on -

the number of times that each branch in a.program ‘has been traversed during a
“sequence of tests (1)... -A program: branch 'is -any.transfer of ‘control " fram -one -
- program statement ‘to another, either through @xecution of.-a: control transfer

: instruction or through normal sequential flow of control fran one statement to .

Different kinds of coverage analyzers will ,report different kinds of :

- information. Analyzers which. masure coverage in terms of pairs. of branches,
. 1loop: iteration patterns or: elementary program functions have been proposed but
- brareh - ‘coverage - anaIyzers are-the: most widely used.. In.,addition to coverage -

: »information, ‘analyzers may also- record. and print variable range and ‘subroutine , -

- call - information. -'The minimum and maximum values assuned by each ‘variable in -
a program, . the~min1nnm1 and maximum number of times. -that' loops -are iterated
during’ the executions of a 1oop, and a record of each subroutine call may be

»-reported : L . T
R Y ' T A

o Bx:anch _analy_zex:s Branch coverage analyzers typically consist of
. tdo parts, .'a - preprocessor. and-a postprocessor. . The:, preprocessorrinserts

"probes" into ‘the: program for which test coverage analysis is required. -

. P

" The probes call subroutines or update matrices that record the execution of
the . part of the program containing the: priobe. 'l'neoretical studies have -been

- carried out to’ determine the minimum number .of probes required to determine -
which. . branches are executed during a program execution. The probes ‘may also.~

" record- information for determining minimal and max1mal variable values, loop -

; iteration counts' and subroutine calls.. - ___,:,_T;f*’.':- ;

:: ‘The information which is generated by program .probes has to be processed
"~ before : test ' coverage reports :can be genérated:: Ifa’ sequence of tests has
. been carried out, the information -from- the different tests. has to - be " merged. ._

The processing of the information generated by probes«during program testing L

is processed and reports are generated by the coverage analyzer postprocessor.

e T R e Pase 116
; _ "‘b &mc_tj.gn analyz_ex:s Function analyzers are based on. the idea that
(3, each program construct i.mpIements one or more elementary functions. Loop-
_-constructs, for- example, “Involve functions which determine: if- a loop is to’ be. .
. “entered, “when.. it .is .to be ‘exited; how many times it-is-to be iterated, : the.
initial” value of ‘the loop index variable (if ‘present) and. subsequent values of

" the: loop index; It --is possible to define camplete sets. of tests. for these. .
'*functions which will .cause the furiction toact: -incorrectly” on —at - l'east -one. -

. test if - the function contains one of a predefined set .of- possible ‘functional "

- errors (2). - Test. coverage analyzers -can be built which keep track of the data.

. ~over which: constructs ~are" executed and- ‘'which.. report on. “the. functional

completeness of ithe data used in ‘the. execution of : the: constructs " ‘Funetion.

coverage ‘analyzers ‘can’ be’ constructed - using the preprocessor probe ‘insertion

-and . postprocesso_, ~ generation approach used for branch _.coverage .

* analY?ers. Y = B - - : . ~ : . s

4286

b

“a) Appliga_tm A quicksort progran was constructed which contains a
branch to a- _Separate part of the progfam code. that -carries out an: insertion E
-Sort.” The quicksort Part of the: code branches to: the - insertion sort. » The
quicksort part of the code branches ‘to the insertion sort wheneyer: the size '
the original list to be Sorted orfor .a séctionof the originAl list'.is . “below
same . threshold value. . Insertion sorts are.more. _effective- than- quicksorts for .

- small lists' and sections of J.ists -because of.the snall‘er constants in their

'. execution time formlae. S : :

R b. ~Emc The correct threshoId value is 11. Due to a typographical
error; the branch -to "the’ ‘insertion-sort is made ‘whienever the length of ‘the . -
~original list, or the section of the 1ist currently being processed, : is less

‘1\

than Ol' Qual? w One. e . \ ‘\ _‘ A] ?-l;fv X T o » "“;'
. c.. Error .dimea Parts of the inser ion sort code are not _
executed unless the 1list or-1ist section’ being ‘is: of 1ength greater

- than one. 'Examination of the cutput fram a ‘branch - coverage -analyzer: will :~
“reveal that parts the program are never executed, regardless of the’ program
~ tests whith are u This will: alert and draw the attention of the
programner to the presence of the error. S oL N e ; BRI
S 1, A R
f’It is. interesting to note that ts: error is not discoverable by the. examination L
of: test output data alone since the program will still correctly sort lists.

Y, 28. 7. Effectiveness. Research results confirm that test coverage analyzers’ ,,’
~‘are a’.necessary. -and important ‘tool ‘for ‘software validation. Prgiously
assumed "complete" test sets for production software .have been found test :
:less than 50% -of - the branches in a program (1). .The use of test coverage.
analyzers reveals the inadequacy of such test sets. I _ ,

: Studies indicate that although test coverage .of all parts of a program is
important it is-not enough to simply test all’ branches, or. even ‘all program
paths, A 1arge percentage of . errors are only detectable when. a program. is .=
~.tested ‘over extremal cases or special' values that are. closely. related to the
flmctions performed in the program ’mere appear to be three situations in

e

~€‘ uhich branch coverage is effective in finding errors. The first is that in
. 'which an error in: part of a. program is. so destructive that any -test that
causos‘—that—‘part—-of——th ~pr : xecuted—w&l—result—in—incorrect——
output. ‘The second is that in which parts of & _program are never used during
. ‘any . progran execution, ‘‘and “the third that in which’ unexpected” parts.of a o
_ progran are used during some- ‘test. Other kinds of errors require additional .
test selection techniques, .such. as. junctional testing. - ,-~_* | e

ll 28 8. Appli@bility Test coverage analysis can be - applied to any kind of
‘/progran in, any program:.ng language. e _

-

. 4.28.9." Learningv" There are no special learmng requirements for the use vof
. ‘test. coverage . analyzers. "~ Once a- set of tests has been found to be inadequate
it requires "skill to.generate data that:will cause the unexercised features of
-"-..the progran to be used during program execution. } . :
.28 10. tosts. Test coverage analyzers can be mexpensive to use. The
mjor expense is the capital .cost for the- tools It is estimated that the®
: cbnstruction of A ‘test coverage tool requires a 'level of effort which is more
*. than ~that" ..requi"," " for & ‘parser ‘but -less -than twice- that ‘effort. "-The major -
. part of- ‘test coverdge analyzer' consists -of. the parser that ds used to
- ‘;determine probe insertion points for a program. A
"7151 - . L :- ”.',' ‘A_ ’ ',.‘ .”, - ..,

n;-,-'.-.".-- . . : ’

. S oo . -
.....-.-- . - R - . . M

o .28]1.’ References.;

| (1) SIUCKL, Leon G.; "Mutamatic Generation of - Self-metric Software," n
B,r_%.. Jﬂammmimgnmmmnmm ,9ll (1973)., o --’.‘.zf__

(2) H(HDEN William. E., “Canpleteness Criteria for Testing_ E:lementary :
Prosram F\mctions, ummmﬁmm _oiﬂathematm DM—212-IR, .

- May 1980. i SR R . R
e (3) GANNON, Carolyn,"Error Detection Using Path Testing and Static
Analysis" gmnum:,Augu A979. - SR

,-; - PERSE

- BT 'a; v

~. : Y

SNy

ll 29 1 Name, Test data generators._

-

.- 4, ll 29 2.,.Basic_£eamres.__1est_datagenerators-are—tools—which—generate—test——
" -data to exercise.a target program, They may’ generate data .through analysis of .
. . the progran itself or through analys1s of .the expected input.to the program in
-its ‘normal ‘operating - environment. _Test data. generators may- use nunerical
. integrators and random number generator‘s to create the data o R

oy, 29 3. Infomation 1nput Test data generators requ1re as 1nput'
.. . a. the program .for which data is ‘to- ‘be; generated or - -

“'b.ra quantifiable description of the: domain oft p0351b1e 1nputs to .

. the ‘Program from which. the test data generator lS to produce LT e

s representative values. -'__ ST

» - 3 N -

'~'ll.29.ll." Information output The output produced by test data generators is a”
set ' of data that can be used effeetively to detect execution-time errors-in a- ¥
program, .- It is generally: -intended” -that such test data cause the, program to be .

-~ thoroughly - exercised . when exécuted. . It is, also- desirable to have this input
.- data be repx‘esentative -of* the actual. data used in: real program operation ’1n
“.order- to- properly evaluate results wobtained from program execution. L y

(4]

L .4 29 5., Outline ot‘ method Test data generators generate test data for a-
i {Program - in & systanatic, deterministic manner. There are- two major methods o
~‘§urrently used toien&at&testdaw. — Both method's .can bef‘ 1mp1emented ‘as

y autcmated tools.-; o - U '

v .- ‘_ ,T.-.'—' O .“o v -,

One method of test data generation -analyzes the structure of a program and .
. based " upon “this- analysis, generates a:.set of- test data whicht vill drive
- execution along a canprehens1ve set of program paths This method attempts to
'+ maximize ‘the - structural - coverage achieved during - execution with the derived
o ﬁ.'data. . Though this approach requires -a-detailed, rigorous. structural .analysis
.'«of a “ program :(which is often’ quite. difficult, if not. imposs1b1e) tools have
>‘been developed. which aid in the automation of this analysis. : 'mere are tools"
which .can - analyze a program and identify certain structural elements in that
progran Data is then autcmatically generated that w111 drive execution
through each of these program elements. R _ SR

.

. If 1t is des1rab1e ta increase the coverage achieved by ‘the" test data there
. also’ exist .tools which use.autamated program-analysis to aid- in acccmplishing
“this, - ‘After- monitoring program ‘execution with the generated’ data, it. may be

:_7" possible to. increase the ‘current ;’structural ‘coverage achieved* “by using

» .automated ‘tools which ass1st~1n determming how to alter: the.. curfent .Set . of*-

“test data as’ necessary to: ‘calse’ different branchingfconditions to occurs:. Test

. .data _generators that create stest-data based upon _the amount of™ structural

" coverage .that -.the - ‘data will’ ‘achieve_are- ‘generally very sophisticated tools.

5‘—Much reséarch and development work is. currently being done 1n this area. :

. A~ second approach to generating test data 1s ~based upon analys1s of the

possible “inputs:- “to.:a- program’ ‘under real operational usage:- . 'Ihis technique

- ‘requires more knowledge ‘of " the; software” for ‘which' input. data “is'- to be "

.. generated -than: the previous ‘u:.echn.‘w;ue.;~ However, "in ‘this~approach. the. output - |

generated frcm program execution provides more meam.ngﬂﬂ. results to t:he user ‘\

-

' ‘Page 1.19 :

B ?-' during testing. . One - such tool that utilizes this technique examines the -‘ |

. domain of all possible input - .values. to ‘a - program under normal " program
_ .:operation - and partitions this domain into’ mtuallLexclusive subdomains._jor__

~each ‘'subdomain there is an. ;asgociated -probability that a sequence of - actual -
p _‘input -values - will -belong: to = that partition. - Data - is ‘then generated by
. sampling from. each subdomain with the distribution of sampling - determined by
" the :_subdomain's. -associated probability, Autamated tools have been built to
,assist in- computing these probabilities and in sampling fran the appropriate
partitions. * s e

: v'-‘l'his techm.que attempts to mirror. the intended operation of a program by .
~ generating - test data which is representative ‘of its operational input -This .
" mode of progran testing can be very, useful -during a preliminary ‘period” of
software operational . use, Using. - this technique, reasonably accurate

R predictions can be made on the software's performance in real operation.

#.Other test data generators exist which use.less sophisticated: ‘techniques than s

:"‘_._-;.,those ‘described above. = Many of them generate data based upon commands given.
A the user and/or from data descriptions in a program,.such. as in -a. COBOL.
' .-\::;.progran's data. definition section.. This is mainly a COBOL oriented technique

“'in which the test data ‘is’” mtended to simulate transaction inputs in a .'

e database_ management si'gzation., lhis technique, however, can.be adapted to

.-

g %ther environnents._.. AL d-'i SRS o .,m,__-w'__.-.d.-.---.- . --_-.--.Q.‘
4.29.6. Exam le. - Test data is required for a.new payroll program. _ A test -

 data” generator_ is -used to. generate'data normally contdined in the payrdll®

records of each employee on th'e payroll. ’Ihe data ‘fields in these records
consists of"-'-" ' " . S . : L

'oi Employee 1dent1fication nunber ‘
o Employee: name:” -
0 ,Indication.pf hourly or Salariedr employee

Salary, rate (if salaried) e e

‘Hourly. rate .(if hourly). RS S e
.. "o Number"of:hours worked. during last pay period T a
T ‘Number of tax- exemptions; declared - e e T

CrTe Federal withholding ‘tax. rate’ T e ; :
e Social- security tat rate_____ e
Lo Harital status B

. ,A file of records containing this information is created _ the test data

generator. .For-each-field in .a record, ¥ value with the app opr,iate -data. type
 is randomly generated (e.g., alphanumeric - for. Employee« Name,, integer for
. 'E’mployee Identification ber, real -for Federal Withholding Tax Rate).-

© file is then: reformtted in.an organizatios that is acceptable to the' payroll
- Systém as’ input.™. The. generated test data will then be fed to the payroll

. I'_“progran to be- tested o _ . o)

ll 29 7." Effecta.veness. The overall eﬁfectiveneés of autanated test data
generators in use -today is- generally poer:. - 'Ihough these tools: permit the .
- .generation of more test data than - ‘any-» human tester coiild - create, (thereby
devising more test casesl a burden is. created on: the ht:man tester to evaIuatee o

-«

L :

; : M ERE TR SN -

] e . R et e D AT .'::.‘_ ,-'.Q.-":
. . . o A - - S

. R B . 2_ A . <t . PEC R \J o
. R S . ! L : . JRVP e e,
- [P . . : - e . . . PO
. et - - '. S . . - . D TE S

" all “l:he testresults obtained fran pr execution WIth the generated data
o Unfortunately, test data generators: Ehoenselves do ‘not have -a facility by which -
.-_to verify these: test: results._In_addition,_most_of_the—test—data—generators——*

- 1n - use - today -‘create data ‘in- a manner which is totally: insensitive .to. the
:;ﬁmctional pecuIiarities of .a program " The -data’ may often be ~meaning1ess in:

- content. - It may focus testing ‘upon.-an unimportant ‘portion of the program and-
-totally :ignore critical portiohs. A" human ‘tester, - however, often has a.

- certain * intuition'about which program areas need°to be more/thor ghly tested

than others and. so creates his test data’ accordingly. The : ‘T{gﬁl‘ ignorance -

_ of test data’ generators in determining which data items wo offer” the most

potential in- discovering errors: is- the m,Jor facj:or behind their current

ineffectiveness in program testing CoT T

4 29.8 Appliwbility. Test data generators are generally applicablez for any'
system requiring input data for operation. o _ o
o

.29 9. . Learning. - For fhose test data. generators which only require as input
the source. program - for which test data'is desired very little learning is -
required to .use. these tools. The user. interface with the tool will always be
~the -same, “and the' “User Han -for' the - tool -should provide sufficient
information’ for its operation. . For those data geherators - .which - ‘create: data
.;based upon the domain of expected inputs to the program, much.more learning is
required. -It is .hecessary to. acquire ‘same knowledge ‘about “the application
environnent and’ operational usage of the sofbdare so that representative 1nput

data can be generated S PR Do]
4.29.10. -Costs. Autanated fest “data - - generators * are’ generally - quite -
expensive. s is primarily due to the relatively infrequent® use ‘of these

tools in actual’ testing environments. The initial costs in- building. pst.data
generators .have - very rarely- been offset by benefits:. .obtained in usj g them,. - -
. As yet, the’ ‘derived utilization of. the ‘more - sophisticated tools -that exist
. have-. not justified™'their edst.i. -Accopdingly Yy test data generator / are among
j themost costly testing tools that exist today S T

4 29 11._ References.; L S ,._' ’ N

. (41) GI:.ARKE L. A., "A System to Generate _frest Data and Symbolically
ExecutePro_ ns, . JEEE Jk:ansacngnsgn&mgaxg” ,

",.‘u‘.

and COHEN,»-M.; Cl, Mlest:. Data Gen
Workable Quality Control,” Parf. I an

2- and;_-3- ":february and March 1972« Ve

B e el ce o oo B - .
',, " . . . ~ EE . . : oLt o . v
b

4 30 1. Name 'rast support facilities.,; e ,,

‘environment ‘under:- .which ‘the software wills normally operate. . A ‘test-- bed -
" permits-full control of inputs and ccmputer characteristics, allows processing -
of intermediate outputs wi destroying ‘simulated execution :time, " and
- allows. full’ test “repeati®¥lity -and ‘diagnostics. - To -be effective, the

site used ‘to-itest a component Tof software._ This test site sinnlates the

controlled circunstances of the test ‘bed must- truly represent the behav:;or of

the system of which the software is a part

' 4 30 3. Information input The 1nformation input - .test wd is the
software; for which 'a' testing environnent is to be simulafed and which will .

. later'be’ installed in a real system. o o .~. y.u..,-;;.\,f o
uon output The information output by a té’st bed are’ the

- 4,30.4," Inform
results obse'"ed through execution ‘of ' the software installed in the test bed:

- aad te as intended in-its real environnent.
3 30 5. Outline ofmethod. Test beds provide an enviroanem; in‘”‘* which to

. monitor the operation of. software prior: to installation in'a real. system To.

i

'1:hreema,]orfactors°° B A

" be of value,’this“enviromment must realjstically reflect those- properties of

- the - system. which will affect or be affected by - ‘the operation:.of:the: software.

Hwever, the test bed should simulate only those “components - ‘in ¢ -the" system

“which the software’ requires as-a ‘minimom interface with: the system. - This will.

germit testing to focus only on the software component for which the test bed
s built. . . SRR .

Test beds are built through the cons:Lderation- of and~ proper balance between,

.y : W

0 the amount q("ff‘;realism required by the test bed to properly reflect the

: ~; - -operation- ‘of *system- properties, Wi i N
" "~0 resources available to'build:the: tes} bed Zand' - :

o the abﬂitrof the test bed’to focus onlir on the software being

sted
J__‘

n-is° used as:.a preliminary means “of determining whether the :

Test beds come in many forms, depending on the 1eve1 of testing desired For ..n

single module. - testing, a -test bed may- consist merely of test data and:a ‘test
* driver, ‘A test driver is a program: which ‘feeds: ‘input data - to the’ program
“module being tested, causes the module’ to be executed _and”“collects the output
generated during: the. .program- execution. < If.a" ccmpleted out’ non-final version

. of" softuare i8'to ‘be’tested; the test bed may. also include stubs. “A’stub is'a-

w

o dtmuy ‘routine ‘that simulates ‘the operation .of "a:module that’is invoked. within..
; ‘a_- test. - Stubs ‘can " be as:simpleas: routines that automatically return on a.

call or: they can’ be more canplicated and return simulated'results. The final

: version. of -~the software ~may - be: “Tinked. ~with other: software subsystems in~a - ;-
larger total’ systen - The test bed for-one’ ccmponent in-the system may-consist:" -
of those system components which directly interface with the ccmponent being_ AT

AL

Do :A-; Page 122 '

As illustrated in the above examples, test beds epermit the testing of~ g
component of-a, systan without requiring the availability of the full, complete
, system 'L'ney merely- supply-the- inputs required by the. software » _component: - to_._
"—“be. “executed - and. provide ‘a-repository for. outputs to.be. placed for. anaIysis o
In addition, test beds: . may _contain” monitoring devices which', collect and
display intermediate outputs during program execution. . In this way, test. beds
~ provide the means ‘of . observing the .operation of .software as a component - of* a"
system ‘without - requiring the availability of other system eanponents which =
may be. mreliable.; Il e . : SR e

.. 8,30.6. Example. The federal goverrment has Just distributed to all American

corporations new ‘tax ‘rates. to. be imposed on the earnings of all employees

' beginning at-the start.of next: year. Due to these new tax rates,. Company .~ XYZ

-hass had to revise its current payroll program so that it will acconmodate the
neu federal regulations by Banuary 1. : N , L el

: In order to test this new progranr' : test bed 1s being constructed to simulate
' the operation of theé: payroll systeti. < To simulate the inputs to this- system -a
" . test file. of. data containing all theé .information ‘nécessary- for: the ‘system o

operate is': createéd. - The file consists “of "3, record of" information for each
employee in the company Each record contains the followmg data' N
o Fmployee ident&fitation nunber RV N

... . o Employee name: a0
: o:Indication of : hourly' or salaried employee
- 0 Salary- rate- (if. salaried) . _ _
. G Hourly rate (if. hourly)- ST ' e
..+« '0_Number of .hours ‘worked during last pay period S T

- o Nutber: of .tax: éxemptions declared S -‘ oy
o Federal: withholding tax rate sl -, L.
.0 _Seocial - security tax rate S .

‘o Marital status - .o

A test driver controls the execution— of the payroll program. : It, v feeds the <
. above - -data, tos the .program. in the proper- format.-. At the end- of program.

. execution, the ‘driver: B) ates ,thef_check-writing i facility of.. ~thé . payroll =
] _system in the following It directs.the& output of the payroll program ..
- toan- i

: it file. . The’ output consists of & record of data for each company
. - employees. \Eagl _y'record contains the following information.v L _ _

less .deductions RS S o

, The test driver then dunps- this information fran the output file onto .. a
fhardcopy device so that the output can t.be. analyzed and ver‘ified for b
"".« .30 7. Effectiveness. -The \useof test beds has proven

;,;ﬁi.ef'fective -and - widely * used/technique to test the operation’ of " :
) use g:f..test drivers, in particular, is one of the most widely us

'y . AU .
‘. v ".'.. et '.' T R REEEI A"”' -.'*"11 "-‘5.‘ o ';,',;.’,.".;',3- RN e
; ; P P R R ATY TE Lyl T)
™ AR - . .) B
- .. : R ot - . S ’
EEIRC A \1 o
= - NS c 3
: A30- : i
o T ¥ o

R ,, SR
"4,30; 8 Appliwbility 'l'his method is generally ¥ applicable, frcm single

module to’large systan testing and for all types of canputing applicatiOns. v

" .30.9. Learnim CIn order to buildxan effective test bed 4t is necessary--

" to - develop. a solid. understanding -of - thé software and its: dynamic operation’in
~a system. ‘This mderstanding ‘should aid in determining what: parts.of the test
. bed " deserve -the . most :.attention “during its construction.. In. addition, -
Taiowledge of ‘the ¢ nature-of a'. program - in . a. system ' is" required in "
- gathering: useful:.: termediate outputs during progran execution and in prqperly :

f'emining, these results o _ S

.30 10 Cost .The. amount of realistn desired in a test bed will be the
1argest -factor affecting cost “Building.a realiStic test.bed may require the .
-purchasing of new hardware "and the development of-additional 'sof tware in order -
“to properly -simolate an. entire system.- addition, these added resources may.

"be: so. specialized that ‘they may: seldan, 7 -ever, - -be ‘used -again in - . other
applica;tions. e IR, this way,. very sophisticated test beds may not prove to be
_.highly cost-eﬁf’ect:tve. wi s .

-
. ST T .
v -l o K g . s -y
- - SO R N T rj. - LEL e s .. ’,_'._ e

.30 111. References. . ‘E\ﬁ_ :"j 'j_"). ST . |
. CI) HARNIC!(R.D., "The Advanced*i‘argeting Study," SA&B&_’IR_’L‘I_‘L&& 7
'A..Volvme 1' June1971. | ' .
(2) EANZL’, D"Ja, "Autcmatic Software Test Drivers, A 'IEEE _mp_u;_e:
‘ April ‘1978 e A R e - o

iy

.
l

LA
c A

et Ce B

O

. .31.2. : Basic i‘eatm-es‘.“ ‘ Walkthroughs (WT) constitute a structured series of
—peer reviews ot a sys‘tem ‘component used to-enforce . standards detect ‘errors;
* ‘and mprove developmerit visibility and. system quality. ~They may be - ‘conducted 5
. during. any - of: the' Iifecycl’e Phases: and may-falso be.applied to' ‘documentation.
An-identifying feature’ of :a WT-is ' that it s generally “presentéd . by theo
‘creator: or producer of:'the material being reviewed rather:thah-an. independent
or third: party. In”addition, because of the presenter's ~advance. .- preparation
and “his - familiarity‘ with the material less preparation by, other members is
required. RS _ ”
l1313. Informationinput T _
. salkthrough .Package. 'lhis set of material's includes all necessary
backup docmentation -for:the WT. Examples of - materials made available include
‘(but are not 1imited “to) module:flow:charts, ‘system:floW charts; HIPO-. char%s
-(or: other " high-level . rrepresentation . schemes), -and - module : tings. +.0ther+
- important materials:may inciude - ‘sections* of' the. Functional i cation,
'’ System/Subsystem Specification and ‘Database : Specification: _{as applicable)
-.which pertain to the componént- inder * review. Often, copies of ép icable
standardsarealsopartoftheWTinput T T E e _j
£ 1.b.7 Qzestions List Sane organizations which pr ta.ce a more- formal
: version of a*WT require reviewers to submit the.compgnent to the presenter
prior to the H'r. 'lhis énables. -the presentor to be betteér prepared to _.respond
to the Questions at the WT. - o e ¥ 2N

\61 5, Information.output.' ‘, :

V. ’ . _.-
- . . 3
B -

: c;

RIS i
o : .
2
L

aaaaa

_ S Ection List During the WT a list of problems and questions 187 '
recorded. This action 1ist is distributed to a1l participants and is used by
the producer (reviewee) as the basis for subsequent changes to the component

. b. Walkthroughs Form. During the course of the WT this form. is
completed by -:-an.. individual -with. recording responsibilities. " The form)
_identifies participants ‘and. their responsibilities, ‘the ‘agenda for the WT, the' -
“decision of..the WT.(acdept as-is, revise, revise. and schedule another WT), and
1s signed by all: par'ticipants at the end,of t’e WT LR _

o o
RIS

C e . : ‘I'he group of.- : individuals :
participating' in ‘a WT are usually referred to as reviewers..: The leader of the
WT is'cdlled the coordinator. Jhe coordinator 'is.responsible for WT planning;
organization, -and | distribution ‘of terials. " The U’l‘ is crolled to order,
moderated and sunnarized by the coordinator - .

be = reviewed during the: WT. In most” 'caSes, the produéer 5. is generally
.responsible. for selecting the’ coordinator and review team (in-most’ situations,
scmetmes management may perform this function) and providing the W‘r package

T e

BV e TF) LR
o " '.. . " DRREN LA . T} Toe
. by oML el dpe a AT - B

mterials tq the coordinator. During the W'r tbe producer initially provides a_.,_ a
general“' description ‘of, - the module). . then, -leads the" ~-reviewers ‘through a -
detailed ‘stepsby-step- description of tbe ‘module, - After the WT - ‘the producer -
%I@objectively—considwev' = e*action Iist‘and‘ make changes to T
‘ _.‘--his ,product s he d‘eems approp;iate. S L ',..M_ L R

'lhe revi:ewers are ccmposed of individuals from varying backgrounds and ﬂ-llfill .
responsibil‘itfes ‘based” upon’ -their area of specialization. . Some- roles which -
“are fulfilled are those °of recorder -and -representatives of the usér, standards -
and ‘mainténance - groups In general, these partic ts are. responsible for o
. being fam$l sar- with, the: material being.presented, submit®ing comments prior- to

-*the - review," an&'Iistening ‘and contributing’ du,ring the WI. At the end of the

', ‘review each’ mzst cast a yote indicating whether the “module - is . acceptable,

needs revision, or is rejected ' --_;,,: L ‘. j-_f"’, '_ s

& R I ”

-l N g e

Because of the organization which each is representing, -Scme- specific’ |
_-responsibilities: . are ' associdted -With. each. reviewer. . "In ‘addition (;6 :
¥ contributing to the ‘WT; - the" recorder ‘must *‘make ‘written note.. of

participants assembled and the action items which result fran t.he reviav.

d The user" representative is often involved during early HT's of amodule (i e.,
_during - requirements analysis - -and - "design). His responsibility is to ensure *
>‘that the. proposed solution is usable and does, in i‘act., meet' the needs of his :
organization. el " : : ‘

The standands representative, 'referred to by "somé’ sources as a !'standards s
bearer, #:. is.‘ respohsible for- eheclcing/that thev‘product being reviewed.adheres s
. toorganization*standards. In ‘same- .cases, . he may.. be asked to provide input to
*a request to deviate frcm a standard. -)

7&

';

e

«. P
__.,.. =

o - '..' - «.’._

'l’ne .mintenance representative *refer’red ‘tO‘ Uy some 43 sources as the -
"naintenance dracle,, . must view the product fran ‘the standpoint of the group.. !
uho will ‘be required. to maintain the: product. Items which. may " be . of - prime- .. .

ncern” to - ‘this individual are documentation and program coments, program A
‘ ﬂmctionality on modularity, naming,.conventions, and data decomposition. ' :

: lhe Process.. Many organiZations practice walk-throughs which", _
differ radically in: formality - The -process deseri ~.in the following‘.)“ o
paragraphs -falls at the midpoint betueen -these -extrenes. There are four- basic S
steps in tbe process..e_. R . e e //

BN Scheduling When the work item module is very near completion P

o (including docunentation), ‘the producer notifies. management.and selects : . ..

:the WT participants ‘The ‘WT date s agreed .uponand facilities are. - -

. * scheduled. " The WT.should not exc ed 2%ours and is best is kept* to‘d.‘ess;' .
‘ + than 1-hor. This implies that the work’ “item is 6f menageable-Size. . -

. 7 Sources: suggest the following" guidelines for-wWork package’ size' e

SO & 5-10 pages -of specifications for a- requirements L PR o

9o "1-5 structure charts (or HIPO diagrams) for a preliminary or R

LA

“detailed design WT;. o
50-100 lines of oode for a_code or test WT. e

. : _.oducer collects appropriate information for use
*the-HI ‘and” gives 1t to the ‘¢oordinator for distribution. Each ,

‘eviewer studies the materials, making a note of -questions:or or“'ccmnen

Host_ sources’ éstimate that.a maximm. of: 1‘ hour prepax:atio,,_by _neﬁ& L

I R
T

X
-~ -

After ‘th coordinator opens the review, the

- prb ducer: uses test data ‘tosimilate the operationof . the' component

~.

“Each specification, design phrase, orline: of . code is reviewed The _.',',
: ‘recorder: docunents coments* or questions usng the action list. Each
=7 - reviewer ‘signs ‘the’ Halkthnohgh “documenting’ the -decision of. thes v
c° ox o meeting. (accept~product as,-is, accept with modification; or- reject)..« _—
-« - The recorder provides a ‘copy of action.Iist. to all participants and o
A .supplies a copy oi‘ the Walkthr.ough Form to managément. L TE L a

w PR

oL "-'..4. Re-Work Ihe producer: reviews each action item making product»_
i changes as he feels necessary. .'He may-decide:to. implement all,” part .
7.+ ~~mor none:of the. suggested ‘changes. ‘NO follow-up is held to ensure thatg_-__,. .
= Suggestions are ‘dncorporated; it is ‘assumed- that' the’ producer is in the--
e -best position, toifmake implementation decisions. - Major items -on the i
R action list_ - sunnarized at the -next: R‘l‘ for the module. oo

.....

ll .31, 6 Example. On .week"pr;lor o ccmpletion o£ coding of a: module_ ,of
+ 75-100 --lines, - the producer - ‘notifies his line. manager of the need for-a. W,
Upon mana t approval ‘the prodicer selects a coordinator., (one:of * the lead
*analysts. f‘rom ‘the. development .shop),. a standards representative A{from
Quality Assurance group); a’ mdintenance’ repre,sentative (from “‘the . Pr¢ on
Program ~organization); -and” ‘a user: ‘represéntative (from the’ group requesting
' ;. Three days prior to- the inspection ‘he” notifies - the .coordinator
. ‘planned - WT and - suggested participants. At ‘this time he: gives the
...coordinator _copies: ‘of : the " program . -listing . (including _comments), - 4, -
o systems-lével 'flowchart depictihg how: it interfaces with other . modules, .a data
: ﬁdictionary,“a set of ‘test’data “ items, . -and .a . section . fram. the E\mctional
Specification‘ detailing th '-_user requirement associated with the module. _,A;; S

The coord p 'in' atot". notii’ies the ‘seléeted participants receives their comnitment
" to. attend and distributes toieach a: copy of the materials furnished by the
p!‘Oduce!‘. s D IR LA . o e _:, ,

Each participant reviebas 3‘!ihe materials. > Th
“two - instances:.of - deviations’ fran puinst standards and notif‘ies - ~the~
~.coordinator- (who - turn notifie : '_ prodiicer).. : The " "user- representative
Yverifies “that the code’ addresseﬁ;{;eactr d"'signed _aspect> by’ reviéwing the
: *proceedings of ‘the. previous design WT'g He is. satisfié “that each..: _requirement -

- has. ‘been . addressed and notifies: . the coordinator thatrhe finds no. errors and o5

T The wT begins with .a briei’ introductionvi'by' the. 000 rdinator, whe then tux':nstthe Qo
revigw over to’ the producer.. He“uses'. the system flowchart to:giveva sumnary, -
of the mnctions ‘of themodule and proceeds tov go line-by-line through, }”the j'

R Page 127

, code using the selected test data Upon reaching the lines of concern to the
standards representative, a’ brief discussion .oeeurs “to. explain the reasons for .
*'the ‘deviations from: standar 'In this instance, the revieuers are’ "satisfied -
- that ‘the devi'ations a;:e;;us fieds - : l:,the—~action—list
- and: the mee'dng proceeds .The: maintenance representative points outone line -
~of. highly camplex code and’: ‘suggests ‘that it be broken' up into: two less complex .
| -Steps. Agreement cannot be inmediately reached so the suggestion is added to
the action list.v S . . P

At the end of the. module review the coordinator seeks a” decision frcm the o
reviewers. about the module. They- agree to give their approval,,providing that
the’ suggested changes ‘are made and- that" the. producer w:[ll further investigate

" the . effect . of , breaking up the ~ ccmplex line of code. Each signs the
Walkthrough form and —the meeting«i' '-_-adjourned. e "“f',f‘v' - e

‘me recorder distributes a copy of the action to all panﬁcipants The
- .producer makes the changes he- feels are necessary.. He'runs a benchmax:k of .the -
. module with the complex code ‘and again with the cbde broken down. -Since _.no -
significant loss of efficiency resulted, he modifies. the code, ‘Ihe modules is .

’) :

‘;-

. ‘now ready\ for unit. test which may be followed by another WT s
ll 31 .'[s Effectiveness. Studies have been conducted which identify the
following qualitative benefits of Walkthroughs A AP E R -
Lo hisher status visibility ‘;. -. o ;""A o _‘ _-f‘-'-f-:_' ""-
©0 decreased debugging ‘time . o S PR ‘ o
"o early detgetion of design’ and analysis err_ rs: which would besmuch more
. ""“-,‘ costly. t6 correct-in: later’ “develoment phas g i e

.. o identification of" design or.code ineffici ci,es N e
© . . o:‘ensuring” ‘adherence’ to standards S v REIEE
3 , .0 mcreased program readability . _
T L0 increased ‘user- satisfaction . =~ f‘;
- ‘o“communication. of new ‘ideas or technolog T PR
RN 0 increased maintainability T e J\ U R
: Little data is “available which identifies “the . quantitative benefits
'"attributable “to. ‘the use ‘of Walkthroughs.~ JHmever, one ‘source estimates that o
.the number of errors in production programs was reduced ”by a f.,'actor of ten, '.

5,31, 8, Applicability, The Walkthrou’gh iS\ applicable to 1a1'g"e or. small"' %
) pmjects during all deye10pment phases’ and is not 1:lmited by project type or-t-

X A

iy 31 9.' Learning. The Wallcthrough does not require special training ‘
" impIement. - _However, ~ experience has: shown that ' the effectiveness of j\:he .
; '.Halkthrough iﬁcreases ‘as. the<WT experience of the reviewers increases

=

831,904 rcosts The WT requires rio specisl ‘todls of equipment to implenent..

oy

-‘The direct costs are equal to the expense associated with the hunan resources

' Page 128,

, Bér,” MSéftuare Psyehology.
and Infomuon Systems, " Winthrop. Publishing, :1980

ERIC

Aruitoxt provided by Eic:

: method satisfying coverage criteria tha Fequi e, .for-'_':-
each- decision point, each possible branch be executed at least onee... AR

,f CAUSE-EFEECT GRAPHIM; test data selection techhique. The .1nputs and outputs

- of the: progran are determined through analysis of .the requirements. - AT minimal

4 | .set of- inputs ‘is: chosen avoiding the testing sof multiple inputs which cause
identical output " DR o St

COHPLETENBS , ;the properi';y &at all necessary parts of- the entity in. question
are included. Ccmpleteness -of -afproduct, is often used to express the fact
‘ttnt all, requirements have be%n met by the product : E

CONSISTENCY :! the property of' 1ogical coherency moung constitutarrt parts' .
Consistency my also Bb expressed as adherence to a given set of. rules. ML

CORRECTNBS. the extent to which soft;vare is free from design and codmg ’
defec'ts i.e. J%‘au‘.‘tt free.. It is.also the extent to which- software meets its

Specified r_"eguirements and \gser fobJectives. _ (JEEEE Software Engineering 3 :
mmmaqwi L S Do s L ,.”V

DESIG& BASED FUNCTIONAL TESTIM} the appliwtion of~ test data derived through‘ -
func,tional analyﬁis (see ., FUNCTIONAL TFSTDE) extended to include design :
__func ions aswell as requirenent mnctions. _’- o L R

-wa‘.,

; pode which sets up an environnent and mlls a module for test

. involves execution or: simulation of a development hase
It detects errors by analyzing the response of a product “to; f"-‘. £

,5' BKTRB‘IAL 'IEST DATA° test data that is ai: the extremes, or boundaries, o.'. the o
j. domain of an" input variable or which produces results at the boundaries of an‘ S
?output domin _ e R

3FORMAL§~ ANALYSIS° ' uses rigorous mathenatiwl techniques to analyze the;-f
algorithms of a- solution.. -The-. algorittnns may be analyzed for numerical E
properties, efficiency, and/or oorrectness : .

e I ., . .. R . .
_— .- " . . . [P

"5§;ﬁf}figﬁ 13(\ f$f?Wffﬁf:

:"'

FUNCTIONAL TBSTING application of test da'w derived fran the specified

ﬂmctional requirements without regard to the final program structure. 4' - _,"_ :

INSPECTION. a- mnual analysis technique in which the program (requinements
design, ~or . code). _.is examined in ‘a. very formal and disciplined manner to '

discover errors.

INSTRUMENTATION’ the insertion of additional code 1nto the program in - order '
to collect 1nformation about program behavior durﬁxg program execution. o :

' INVALID INPUT (TEST DATA FOR INVALID INPUT DOMAIN) test data that 'és.
outside the domain of the program's ﬂmction. v R

PATH 'I‘ESTING a test method satisﬁ'ing coverage criteria that each logical
“ path ~through the program . be tested.. Often paths through the program are -

grouped mto a finite set of cla‘sses, : one path fran each class is then
L ‘k » . - . e e ¢ [

1 PROOF OF - CORRECTNESS the use of techniques of: mathematical logic to J.nfer |
t. a relation between ‘program” -vagiables assumed . true at program: entry.
implies that another relation between _program variables holds at program exit

: REBRESSION TESTING._ testing of a previously validated‘program which has been
modified for extens:.on or correction. L : . ,

SDIULATION S use of an. executable model to represent the behavior of an
ob:ject. During testing the computational hardware, the 'external environment
and even code segments may be simulated) g . R

SPECIAL TEST DATA: -- test data bas on input values that are likely to require

special handling by the’ program. _‘:_-.;,g: _

g STATEMENT mmn ‘a. test me‘thod satisfying the criterion that each statement
ina program be executed at least .once- during prpgram testing. . ,

STATIC ANALYSIS. di;rect analysis of the form and -structure “of . a product '
“without. executing the product It may be applied to. the requirements, design
or code. RO IR ET W T z. ¢

' STRESS 'msrmc “see BOUNDARY VALUE‘. ANALYSIS. . I

Vﬁl‘UB. special code segments that when mvoked by . a code segment under test
. will . simulate the behavior of designed and specified modules not yet

-

':.’constructed ER - o - , :
,_;«.SYMBOLIC EXECUTION' an analysis technique >that derives a symbolic expression .
for. each progran path R S PRI . - o .

_'v"I'EST DATA‘SET setof input elements used 1n the testing process. .

-

o Pegens

_.\...

‘IBT DRIVER. . a pr“ . .am whlctr d:trects the ex ution of»another-prggram agalnst
“a’ “eolleéction™of st data - sets;* - zJsually, : the ‘test drlver records and .
- organizes the output generated as the tests are: run R
1;Esr aaam:ss see TEST DRIVER. e T + e
g — = — \ ~7 N ?)‘.‘ T T
L ;TESTING examination of the behav1or of a program by executing the program on
'sample data sets el co T T T

. v..VALID INPUT (TEST DATA FOR' A‘ VALID INPUT DOMAIN}' test data that 1ies within
'the domain of the ﬂ:lnction represented by the program. , , . i

.VALIDATION - determnation \of the correctness of the fJ.nal program or software
- ‘produced from a deklopment proJect w1th respect to the user needs and
‘ requirements. ":. N i"' S . : Co e

r.‘v

_'-i-VERIFICATION. in general “the demonstration of consistency, canpleteness, and
correctness ‘of .the. software at each stage ,.and between each stage of the
) -development llfecycle. o - ot e e SRR : .

: WALKTI-IROUGHﬁa manual analysls techm.que $n wh:l.ch the module author describes

" the module's strpcture and log1c to an’ aud:.enee oﬁ colleagues.
. o

-

‘,v

e R S ST - N el

,~NOTE Host of the defmitlons above are from. T el T T

- ADRION, W.R.,BRANSTAD,M.A.,and CHERNIAVSKY, J. C.,"Valldatlon, Verlflcati "
 and Testmg" NBS Special Publicaiton 500-75. L] 07

-
- . -
b Y 2
.1’ . - A
., L

- - .

- o IRy :
‘)

[u:s, DEBT. OF cewl.. B PUBUCA;?N OR E Z.Yufoming Orzan. Report NO 3- PUb"“‘h“ D“‘ ":_;;
- BIBLIOGRAPHIC DATA - A TRERORTNQ:. Lt oa 1 Ghptenbe 1982
-. SHEET (See instaictions). T eptem r
4. TITLE AND SUBTITLE L X
Computer Scuence and Te : A
Patm‘cz_a*B,_Pouel T. Edltor S T e S I L
+J6. PERFORMINGORGAN!ZATION(U joint or other than. NBS"seeInstn:Ctlons)u e cm,J/Gmt Noi . .
S o v . - TwEet v
=) NATIONAL BUREAU OF STANDARDS ~ Boeing ebmputer Servi ces Co. ~NB79SBCAO] 02 -
.DEPARTMENT OF couusncs - Seatt'le WA 93|21, Lo : Type of Report& Peflod x:bymd
nsmns'ron, D.C.’ 20234 L AT & AR S
A Te " J‘) .‘ ._ - . '.d- L . e . . . ;T:S)‘ l .1- __.-__,‘ ‘ . -
i = \ ./"v: -
- R - r‘.;x; .
o~ . .) - Ter N '~,‘ . : -“.’7 . e L L ‘
A - e e T e e T .
3 £ SUPPig.‘!ENTA’RY NOTES " =" "7 - R L g . =000
L:Lbrary of 'Cangr&ss Cata.l.og Card Nu:tber 82—600589 o -
l:j Document describesa computer program; SF-I%S FIPS Software Summary. is’ amched. - ' R B
'11. ABSTRACT Mooword or less factual -summary of most s"gnlﬂ cant informauon. If document includes a signlficant
. b:bhography or hterature suwey. mentton it here)) e oo Vi
Th1 rty ¢echn1ques and tools “for vahdatwn verifi cat1on and testmg (V‘ V&T) are I

descrlhed Each-. descm ptmn dncludes the bas1c features of the technigue or too'l
the-input, the output, an- example, an assessment: of the effectweness and usab1hty,

N
W

RS
JENVY

12. KEY WORDS (Six“to-twelve entries; q{phabet:cal order; capitalize only proper names; and separate key words by semtcolons)
automated software toels; dynamic analysis; formal analysis; software test1 ngs -

. software venﬁcatwn stat1c ana'lyS1s test coverage, va11dat1on V. V&T techmques,.
V,V&T tools. , R o

' 13. AVAILABILITY. *-

‘ PRINTED PAGES
gUnhmxted o K 1 '-""138
. I For Officiel Distribution.’ Do Not Release ' NTIS . R - R
[__;a Order From Supenntendent of Documenw. .S. Govemment Prnnnng Offxce. Washnng‘:on. D.C.

15. Pri Ce—

| ‘1'4. NO, OF .

apphcabﬂﬁ:y, an estimate of bhe learmng t1me and trainring, an estmate of needed K

resources and references.:}_,-- - % =
. . : & s 3y : ’ j_. ’F .
. N ‘ BT 13 ' § -
» - 6 o . 7 : ' -

HQD.'S- GOVERNHENT PRINTING OFFICE: 1932—360 997/224l

] m Orde(, From'National Techn_ical information Service (NTIS),‘ Springfield..VA. 22I6I R . e
AR B S uscomoc 6043-P80

