
DOCUMENT RESUME

ED 2.33 687 IR 010 777

AUTHOR Hecht, Herbert
TITLE The Introduction of Software Tools. Final Report.
INSTITUTION SoHaR Inc., Los Angeles, CA.
SPONS AGENCY National Bureau of Standards (DOC), Washington, D.C.

Inst. for Computer Sciences and Technology.
REPORT NO, NBS-SP-500-91
PUB DATE Sep 82
NOTE 43p.
AVAILABLE FROM Superintendent of Documents', U.S. Government Printing

Office, Washington, DC 20402 (1982-360-997/2207,
$4.75).

PUB TYPE Guides - General (050) -- Reports -
Research/Technical (143)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS Check Lists; *Computer Programs; Computer Science;

Guidelines; Management Information Systems; *Man
Machine Systeiñs; Occupational Information; *Program
Implementation; Programing; *Public Agencies;
Purchasing; *Selection

IDENTIFIERS Scientific Computer Programs; *Software Evaluation;
*Software Tools

ABSTRACT
This publication provides guidance for the

introduction of computer software tools within, agencies of the United
States government or within other installations.where there has been

 little or no prior use of software tools. From a survey of'current
tool usage, it Is concluded that the greatest obstacles to effective
use of software tools.are encountered in organizations employing
fewer than 40 programmers, and the needs of these environments are
therefore emphasized. Specific needs for software tools in
programming for management information systems (MI-S) and for
scientific applications are discussed. Measures are described to
overcome organizational obstacles to use of tools, to deal with
problems arising from the tools, and to reduce the difficulties posed
by existing computer installationsa Also described are the
responsibilities of software management, software engineers, and
toolsmiths (who make minor modifications to tools and the computer
environment as necessary). Steps required for the successful
introduction of toóls are then presented, organized both by the
function, responsible for their accomplishment, and the time schedule
in which they must be completed. Work to be performed in each step is
described in detail. A list of 14 references and the agenda and
attendance list from a related workshop conclude the publication.
(Author/ESR)

Computer Science
and Technology

NBS Special Publication 500-91

the Introduction
of Software Tools

Herbert Hecht ••

SoHaR Incorporated
1040 So. La Jolla Avenue
Los Angeles, California 90035

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued September 1982

NATIONAL BUREAU OF STANDARDS

The National Bureitu of Standards' was established by an act of Congress on March 3, 1901.
The Bureau's overall goal is to strengthen and advance the Nation's science and technology
and facilitate their effective application' for public benefit. To this end, the Bureau conducts
research and provides: (1) à basis for the Nation's physical measurement system, (2) scientific
and technological services for ,j idustry and government, (3) a technical basis for equity in
trade, and (4) technical services to promote public safety. The Bureau's technical work is per-
formed by the National Measurement Laboratgry, the National Engineering Laboratory, and
the Institute for Comgputer Sciences and Technology.

THE 'NATIONAL MEASUREMENT LABORATORY provides the national system of
physical and chemical and materials measurement; coordinates the system with measurement
systems of other nations and furnishes essential services leading to accurate and uniform
physical and chemical measurement throughout the Nation's scientific community, industry,
anck commerce; conducts materials research leading to improved methods of measurement,
standards, and data on the properties of materials needed by industry, commerce, educational
institutions;.and Government; provides advisory and research services to other Government
agencies; develops, produces, and distributes Standard Reference Material%; and provides
calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities2 — Radiation Research — Chemical Physics —
Analytical Chemistry — Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology .and technical ser-
vices to the public and private sectors to address national needs and to solve national
problems; conducts research in engineering and applied science in support of these efforts;
builds and maintains competence in the necessary disciplines required to carry out this
research and technical service; develops engineering data and measurement capabilities;
provides engineering measurement traceability services; develops test methods and proposes
engineering standards and code changes; develops and proposes new engineering practices;
and develops and improves mechanisms to transfer results of its research to the ultimate user
The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering2 — •Manufacturing
Engineering — Building Technology — Fire Research — Chemical Engineering2

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts
research and provides scientific and technical services to aid Federal agencies in the selection,
acquisition, application, Ind use of computer technology to improve effectiveness and
economy in Government operations in accordance with Public Law 139-306 (40 U.&.C. 759),
relevant Executive Orden, and other directives;tcarries out this mission by managing the
Federal Information Processing Standards Program, developing Federal ADP standards
guidelines, and managing Federal participation in ADP voluntary standardization activities;

.provides scientific and technological advisory service* and assistance to Federal agencies; and
provides the technical foundation for computer-related policies of the Federal Government.
The Institute consists of the following centers:

Programming Science and Technology--Computer Systems Engineering.

'Headquarters and Labbratories at Gaithersburg, MD, unless otherwise noted;
mailing address Washington, DC 20234.
'Some divisions within the center are located at Boulder. CO 80303.

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal
Government for computer science and technology activities. The programs of the
NBS Institute for Computer Sciences and Technology are designed to provide ADP _
standards, guidelines, and technical advisory services to improve the effectiveness
of• computer utilization in the Federal sector, and to perform appropriate research
and development efforts as foundation for such activities and programs. This:
publication series will report these NBS efforts to the Federal computer community as
well as to interested specialists in the acádemic and private sectors. Those wishing
to receive notices of publications in this series should complete and return the form
at the end of this publication.

National Bureau of Standards Special Publication 500-91
Natl. Bur. Stand. (U.S.), Spec. Publ. 500-91, 41 pages (Sept. 1982)

CODEN:)(NBSAV

Library of Congress Catalog Card Number: 82.600577

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1982

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, C.C. 20402
Price $4.75

(Add 25 percent for other than U.S. mailing)

• ABSTRACT

From a survey of current tool usage it is concluded that the greatest
obstacles to effective use of software tools are encountered in
organizations employing fewer than 40 programmers, and the needs of
these environments are therefore emphasized.. Specific needs for•
software tools in programming for management information•systems'and
for scientific applications are discussed. Measures are described to.
overcome organizational obstacles to use of tools, to deal with
problems arising from the tools, and to reduce the,difficuities posed
by existing computer installations.

Steps required for the successful introductión of tools•are'orgbnized
in two ways:• by the function respónsible for their accomplishment, and
by the time schedule in which they Must be completed. The detail work
to be performed in each step is described.

Key words: computer environments; software; software engineehng;
software management; software quality; software tools; toolsmith.

TABLE OF CONTENTS

PAGE

1. EXECUTIVE SUMMARY 1

:2. INTRODUCTION 3

•'3., CHARACTERIZATION OF USER ENVIRONMENTS 5
3.1 Classification of Environments 5
3.2 Selection of Target Environments 6

. 3.3 The Smaller MIS Environment 8
3.4 The Smaller Scientific.Environment' 10

4. USER TOOL NEEDS 12
4.1 Organizational Factors in Tool Needs 12
4.2 Application .Factors in Tool Needs 16

 4.3 Needs of Other Environments 19
4.4 . Resources for Tool Selection 20

5. DEVELOPMENT OF EVENT SEQUENCES 21
5.1 Purpose of Event Sequences. .21
5.2 _Recommended Event Sequence 24

REFERENCES 34

APPENDIX - WORKSHOP ON PHASING OF
SOFTWARE TOOLS 35

SECTION 1

EXECUT I YE SUIVARY

This publication is intended to provide guidance for the introduction of
software tools for agençias of the U. S. Government and for computer users at
large. It is primarily aiméd at installations where,there had been little or no
use of software tools previously. In a survey of software tool usage it was
found that the size of-the programming group had a significant effect on the
extent of tool usage, with organizations of less than 40 programmers much less-

likely to be tools users. To provide help to these smaller organizations in the
introduction a¡id use of software tools Is therefore one of the goals of this
document.

Difficulties in the introduçtion of tools can arise in three areas:

Organizational obstacles.
Problems arising from the tools.
Obstacles in the computer environment.

Organizational obstacles can be reduced if a•responsible management level is
involved in the introduction of tools. Those who commit the resources for tool
acquisition and use should participate actively in the relevant decisions.
Their involvement in the following Is particularly important:

1. Identifying the goals-to be met by the tool (or by the technique supported
by the tool), and assigning responsibility for the activities required to
meet these goals.

2. Approving a detailed tool acquisition plan that defines the resource
requirements for procurement and In-house activities.

3. Approving procurement of tools and trailing if this is not explicit in the
approval of the acquisition plan.

4. Determining after some period of tool use whether the goals have been met.

Problems arising from the tools can be avoided by a careful, methodical
selection of tools. In' particular, .distinct contributions to the tool selection
are specified for software management and the software engineer. Software
management is assigned responsibility for:

1. Identifying tool objectives.

2. Approving the acquisition plan (higher approvals may also be required).

3. Defining selection criteria.

4. Making the final selection of the tool or the source..

The software engineer is responsible for:

1. Identifying candidate tools.

2. Applying the selection criteria or preparing technical sections for
a Request for Proposals (RFP).

3. Preparing a ranked list of tools or sources.

Further, the ultimate user of the tool should be involved in reviewing either
the list of candidate tools or, for formal procurement, the tool requirements.

Obstacles in the computer environment are primarily due to the great diversity
of computer architectures and operating system procedures, and to the lack of
portability of most software tools. Activities associated with the introduction
of tools can only modestly alleviate these difficulties. Guidance is provided

for:

1. A methodical process of Identifying candidate tools and selecting among
these on the basis of established criteria, including a definition of the
computer interface. This will avoid some of the worst pitfalls associated
with "borrowing" a tool from an acquaintance or procuring one from the most
accessible tool vendor.

2. The assignment and training of a toolsmith who can make minor modifications
to both the computer environment and the tool. This Is expected to provide
relief where there are version-related or release-related incompatibilities
with the operating system, or where the memory requirements of the tool
exceed the capabilities of the installation. In the latter case, remedies
may be provided by removing tool options or by structuring the tool program
into overlays;

As part of this work, an event sequence for the introduction of tools has been
developed that identifies specific tasks, the assignment of responsibilities for
the tasks, and the order in which they have to be carried out.

SECTION 2

INTRODUCTION

This publication is intended to provide guidance for the introduction of
software tools for agencies of the U. S. Government and for computer users at
large. It Is primarily aimed at installations where there had been little or no
use of software tools previously. In a survey of software tool usage it was
found that the site of the programming group had a significant effect on the
extent of tool usage. with organizations of less than 40 programmers much less
likely to be tools users [HECH81]. In particular, organizations of less than 40
programmers were found to need help in. order to acquire and employ software
software tools successfully, and the requirements of these organizations are
given special emphasis.

Many of the difficulties reported by novice users with software tools can be
overcome by systematic practices in the selection, acquisition, and preparation
for use of software tools. This report first derives the need for specific
guidance in the introduction of tools by examining a number of programming
environments, and then describes the practices suited to these environments.

Section 3 charaterizes user environments in terms significant for the
introduction of software tools. In this characterization, two environments were
identified that wilC benefit most from formal guidance for the introduction of
tools, and a vignette of each of these is presented in the final parts of
Section 3.

Tool needs for various user environments are described in Section 4. First, a
fairly broad discussion of organizational and applicati n factors that govern
tool needs Is presented. Then, based on these considerations, a generic
(features based) identification of tool needs for the two target environments Is
made. Needs of other environments are also discussed, and' special attention is
focused'on the integration of tools. The final part of Section 4 covers
resources for the selection of tools. The recent publication of a report on
software development tools by NBS/ICST is of major assistance in this area
[H0UG82]. The generic software tool nomenclature used in the present report Is
taken from [HOUG81] which in turn incorporates major portions of a Software Tool
Taxonomy [REIF80].

The time phasing aspect of the introduction of tools is described in Section 5
by means of event sequences. The purpose of event sequences is discussed in
general terms, and the specific event sequence for the introduction of software
tools into the smaller programming environments is then developed. The events
are classified by area of responsibility and precedence relationships. and each
of the required events is described In detail.

A preliminary draft of this document was discussed at a Workshop on Phasing of
Software Tools which was held at NBS on 18 May 1981. The agenda and the
attendance list are reproduced in the Appendix. The participants contributed

many constructive comments which have been incorporated into the present
version. Written comments were received from several individuals who could not
attend the workshop; these contributors have been listed as "reviewers" in the
Appendix.

The author wishes to acknowledge the contributions of collaborators in the
preparation of this document. Myron Hecht analyzed the survey results which
form the basis for Section 3, and Donald J. Reifer classified tool needs as
reported in Section 4. Much helpful guidance in the conduct of this study was
received from the technical monitor for the contract, Mr. R. C. Houghton, Jr..
Continued encouragement and many helpful suggestions were furnished. by Dr.
Martha Branstad, the ICST Software Quality Program Manager.

SECTION 3

CHARACTERIZATION OF USER ENVIRONMENTS

This section considers the characterization of user environments along lines
that are significant for the introduction of software tools. The starting point
for this characterization is the classification of software tool users which Is
summarized In subsection 3.1. The selection of target environments for the
introduction of software tools, based on this classification, is described in
subsection 3.2. The smaller classes of management information system (MIS) and
scientific programming environments are identified as most in need of outside
assistance in tool usage, and vignettes typical of each of these environments
are presented in subsections 3.3 and 3.4, respectively.

3.1 CLASSIFICATION OF ENVIRONMENTS

A Survey of Software Tools Usage [HECH81] considers the effect on tool usage of
a fairly large number of environmental factors. including:

Size of software. organization.
Type of organization (private, Government-support. Government).
Applications (scientific, MIS) and language.
Development environment (batch,'interactive).
Prógram running environment (batch, interactive, real-time).
Computer type.
Involvement in tool development.

The first and last factors were found to have a significant effect on the extent
of tool usage. The type of organization was not found to be a major determinant
of the'extent of tool usage in this survey. The other factors had some effect
on the types of. tools that were used but not on the extent of tool usage (or the
effect was masked by correlation with primary determinants of tool usage).

In the following discussion the extent of tool usage is classified Into three
levels:

Level 0 Minimal tool usage - only tools normally provided with the operating
system were in use (assemblers. loaders, compilers, debug aids, and
interpreters).

Level 1, Intermediate tool usage - special purpose tools suited for the mission
of the organization but without explicit effect on software quality
were In use. Examples are simulators. file managers. and elementary
precompilers.

Level 2 General purpose tool usage - general purpose tools, involving static
and dynamic analysis features. were deliberately acquired or developed
in order to enhance software quality and productivity. This group
represents the highest level of tool utilization identified in the,
survey.

By interpreting the level index (0, 1, or 2) as a number, an average level of
tool utilization can be computed for groups of-tool users. The average level of
tool utilization as affected by the size of the organization Is shown in Table
3-1.

TABLE 3 - 1 LEVEL OF TOOL UTILIZATION

Size of Organization Avg. Level of
Tool Utilization

Small - up to 14 programmers 0.8

Medium - 15 to 39 programmers 0.8

Large -'40 to 99 programmers 1.4

Very large - over 100 programmers 2.0

The term programmer Includes analysts, programming supervisors. and programming
trainees but not computer operators, librarians, or other support personnel.
The above data are based on a survéy of 22 organizations. Tool developers were
not included in this population..

3.2 SELECTION OF TARGET ENVIRONMENTS-

. As can be seen from Table 3-1, the use of general purpose software tools was
considerably less prevalent among small and medium software organizations than
among the large and very large organizations: In all size classificatjons there,
was representation of private, Government, and Government-support organizatións
(the three ciassifkations for type. of organization considered in this study).
No évi dence was found that the organization type affects the level of tool
usage, but because of the small sample size this is regarded as only a tentative
conclusion.

These data indicate that small and medium s6ftware organizations will represent
the target environment that stands to benefit most .from the availability of a
comprehensive methodology for 'the, introduction of software tools. In addition
to the low level of current tool usage shown in Table 3-1, the following factors.
indicate, that small and medium organizations need outside assistance in the
introduction of tools: '

1. Their awareness of tools in general, and their knowledge about specific
tools suited to their needs, are frequently much less than that of larger
organizations.

2. Their knowledge of tool acquisition and installation practices tends to be
inadequate to permit them to obtain the full benefit from available tools.

3. Even when suitable tools are obtained and installed, these organizations
frequently cannot mobilize the resources required for optimum tool
utilization, such as training, start-up efforts, and change in practices to
fully utilize a tool.

A further consideration (which partly encompasses all of the above) is that a
given level for effort in developing a methodology for the Introduction of tools
,can be expected td provide much more significant and measurable results, if that
effort is targeted at organizations at the smaller end of the size range.

The above does not imply that large, and even very large, organizations cannot
benefit from further developments of methodology for the introduction of
software tools, and specifically from efforts in that area undertaken by
NBSJICST. The needs of these environments are further addressed In subsection
4.3 of this report.

The neeli for outside assistance for the development of a suitable introduction
methodology is shared by small and medium size organizations. There are only
minor différences In the details of the application of the methodology between
small and medium size organizations, and to avoid long titles the term "smaller"
will henceforth designate the two groups collectively. Within the smaller size
groups, the introduction methodology will focus on Government organizations
although. as will be explained shortly, most of the introductory practices are
not expected to vary significantly as a function of the organization type. The
reasons for focusing on Government organizations are:

1. The demand for uniformity of software practices in Government agencies Is
expected to increase, and tools can be of assistance in providing and
enforcing this uniformity. Hence, a greater need for tools is expected to
arise in this environment.

2. Government agencies usually have a greater need to control procedural
aspects of software development, and many tools address that need very
specifically.

3. There are a large number of tools currently in Government inventory, and
some, of these are resident on computers that can be accessed by other
Government organizations via terminals. Experience with tools may be
shared, and help with tool problems may be furnished more readily among
Government agencies than within the private sector or between Government
and private organizations. Thus, the opportunity for tool usage is greater
among Government organizations.

4. Successful use of a tool in a Government organization is likely to become
generally known (via professional organizations, computer user groups,
etc.) whereas smaller private organizations may wish to restrict the
dissemination of this information for competitive reasons. Thus, the
ripple effect can be expected to be greater If Government organizations are
addressed as the primary target for the tool introduction methodology.

Except for the factors mentioned above, the activities and level of effort
required for the introduction of tools are not believed to be significantly
different among private. Government-support, and Government organizations. The
greater availability of tools may appear to confer a material advantage on
Government organizations but at present this has not been a cause for increased
usage. The annual licensing fee for a typical tool is of the order of $ 1,000.
and purchasing costs are five to ten times that amount. These are usually not
the dominant expenses in the introduction of a software tool. A large number of
tools are in the public domain and copies can be obtained at nominal cost from
computer vendors, universities, and some organizations which specialize in this
field. Thus, although the terminology used in' the following may be specific to
Government organizations, the general concepts are believed to be broadly
applicable.

Among the smaller Government organizations, the survey found differences in
tool needs that indicate that administrative and scientific environments may
best be treated separately for some aspects of the introduction of software
tools. A demonstrable difference is in the types of tgois needed (in turn
dictated by the languages used); the most widely encountered tool in smaller
scientific organizations Is a FORTRAN preprocessor. whereas COBOL environments
frequently use, optimization tools that have no direct counterparts in the
scientific environments. A more subtle difference exists in the overall
attitude towards tools. Scientific programmers (specifically engineers and
scientists doubling as programmers) know about tools and may be conscious of
some of the advantages that they confer, but are Interested primarily (sometimes
exclusively) in solving scientific or engineeering problems. They are only
slightly motivated to devote any effort toward the enhancement of software
quality. Programmers and.first level supervision in the smaller administrative
or MIS (Management' Information Systems) environment may be only vaguely aware of
tools but are highly motivated to improve the quality of their software,
particularly its maintainability.

The following subsections provide vignettes of the smaller MIS and scientific
environments, respectively,` that particularly emphasize factors pertinent in the-
introduction of tools.

3.3 THE SMALLER MIS ENVIRONMENT

The term MIS environment is Intended to include all programming for fiscal,
administrative, housekeeping, and record-keeping functions. The predominant
language is COBOL but a fair amount of assembly language programming (In
application programs) is also in use. ALGOL and PL/1 are used occasionally in a
few agencies.. Practically all system programs used by the smaller MIS
organizations are written in assembly language.

By our definition, a smaller organization may include up to 39 programmers, but
the representative Government organization in this category rarely involves more
than 25 or 30 programmers. It is typically a field office or a central
programming organization for a specialized agency or function within an agency.
There are two levels of supervision. The lower one deals with a specific

programming area (systems, disbursals, security,, etc.) while the major
responsibility of the upper supervisor is to maintain liaison with tire
headquarters organization which generates the requirements and funding for the
office. Very few. if any,of the smaller Government MIS organizations can make
it a major assignment for one of their employees to provide guidance in software
technology and programming practices. Some of this guidance might be provided
by, headquarters organizations, and thus will be relayed through the highest
supervisory level. But without a specific local designee who provides
follow-up, much of the impact of headquarter guidance will be lost.

The range of programmer skill levels encountered in MIS organizations is broader
than that prevalent in scientific environments, primarily due to the use of

programmer trainees by the MIS organizations. The formal training of the
programming trainees consists of in-house courses, technical school courses, and
approximately 1 year of attendance at a community college. They are trained for
program writing rather than software design or broader aspects of computer
science or software engineering. There is also little involvement in standards
or professional activities among the MIS organizations. indicating few
opportunities for a continuing, broadening education of the programmers in this
environment.

The primary activity of the smaller MIS organizations frequently is program
maintenance. The programs undergo almost constant change due to:

Changes in legislation.

Changes in administrative procedures.

Major organizational restructuring.

Program or functional improvement.

Correction of errors.

Offices have backlogs that range up to 1 year. Maintenance is a slow and
' difficult process because of the lack of good documentation (a facTor that
transcends this environment), the low skill levels, and the lack of good tools.
When available. tools may be used very effectively, e. g., the use of a file
manager for configuration management of the programs, or full employment of the
features of a sophisticated editor.

In general, the smaller Government MIS organizations do not lack motivation for
tool use and make use of available tools. Frequently, however, they lack both
the knowledge and the resources to use tools more effectively. They will
benefit from outside assistance in all of the areas identified in 3.2 above.

As far as tool needs are concerned, the MIS environment presents some unique
problems, e. g., the lack of portability of most COBOL programs. and the
run-time inefficiencies caused by most commercial COBOL compilers. The first
problem prevents agencies from sharing application programs. even where the
purpose served and the records to be generated are identical, unless they also
have the same computer. The lack of portability is more of an obvious problem

in this environment than in the scientific one because many applications are
common to practically every business environment: payroll, budgeting physical
asset management, and billing. Among Government agencies there are further
commonalities due to Government regulations, interaction with the General
Services Administration., and requirements of the Office of Management and
Budget. In addition to the obstacles which the lack of portability represents
to the interchange of programs, it also creates great problems if a computer is
being replaced by a more capable model from a different manufacturer.
Conversion activity due to replacement of a central computer complex can extend'
over several years and represent resource expenditure comparable to the hardware
cost.

The run time inefficiencies of COBOL compilers could be tolerated in the past
(at least in some cases) when computer programs were used to generate periodic
hard copy reports which would then serve as the user's primary data base. The
predominant practice today is to update these reports continuously and to make
them available to the user on interactive terminals rather than in printed
format. This puts a much higher premium on efficient execution of programs
because of the more frequent access and the need for a rapid response to user
requests. To meet the demands of the current environment, either more computers
have to be installed or the efficiency of the object code has to be improved.
The latter approach has some obvious limitations, but within these it is a much
more cost-effective way of improving the performance of a' computer complex.
Optimization programs of several types are available to deal with this problem.
These are not commonly in use in smaller organizations of any type but they are
frequently encountered in larger MIS organizations.

3.4 THE SMALLER SCIENTIFIC ENVIRONMENT

The typical size of the smaller scientific software development group is also 25
to 30 programmers, and two levels of supervision are involved. The lower
supervisory level tends to be application oriented but the top supervisory
function operates much more autonomously than in equivalent MIS agencies.
Though constrained by budgets that are determined at,a"higher managerial level,
the second level scientific supervisor typically assumes full responsibility for
the technology employed within his or her organization. Where this supervisor
takes an interest in software technology, structured programming supported by
appropriate tools Is likely to be used. On the other hand, If the Interest of
the supervisor Is confined to a scientific specialty (simulations, engineering
analysis), software technology can be a very low priority item.

Most programmers in the smaller scientific environment have an engineering or
science degree but their formal training In programming may not be very
advanced. Frequently, it consists of undergraduate computer or programming
courses, supplemented by on-the-Job training and an occasional extension course.
In some groups at least one Individual has a degree in computer science or a
related field. The motivation of individual programmers is governed by the
needs of their application. In the simulation field, which represents a
significant part of the smaller scientific programming community, the code tends
to be bound to a specific facility. Although most programming is in FORTRAN,
there may be frequent recourse to assembly routines to speed up the execution.

As a rule, structured programming Is not used in that.envirbnment although
individual programmers may be experimenting with It.

Engineering and scientific analysis programs are sometimes distributed outside
the originating organization. and in those cases portability is a recognized
requirement, at times enforced by a portability analyzer. Structured and
modular programming is used more frequently than in the simulation field but is
seldom formally required. Another characteristic of the engineering or
scientific analysis environment that affects tool usage is that many programming
tasks are of less than 3 months duration, and much of that time Is spent on
analysis of the underlying problem rather than on program design or
implementation. This discourages the use of tools that require much set-up time
or a lengthy learning period.

The emphasis in the scientific programming environment Is more on the generation
of new programs as contrasted with maintenance. Some maintenance activities,
such as the addition of a major feature to a simulation, or the extension of the
capabilities of an analysis program, are regarded as creative and desirable
assignments. More typical maintenance activities, such as modifying a report
format, adapting a program to a change in hardware configuration, or correcting
Interface problems are regarded as less desirable assignments and are given to
junior personnel as "training".

Supervisors regard the documentation and detailed maintenance as problem areas.
Although these are recognized as essential elements of the organization's
overall assignment, the senior programmers take little interest In them, and a
good methodology is not available for breaking them down into tasks that could
be efficiently handled by less experienced personnel or by personnel not
involved In the direct programming. Some smaller organizations make effective
use of general purpose development tools to strip headers and comments from
programs and to transform these into documentation. More typical is the
approach where supervisors, in some cases second level supervisors, assume the
major responsibility for the review of documentation.

A very significant part of the overall activity in the simulation field is
version control. New assignments frequently consist of assembling existing
modules, some with minor changes, into a new configuration. File management
systems can be used very effectively to assist In this process. Editors and
preprocessors (usually without extensive analysis features) are other typical
tools currently used In this environment.

By and large the scientific programming organizations have the technical ability
to acquire and install software tools. They may lack specific information on
tools suitable for their environment, the resources for the introduction, and
frequently also the motivation to devote part of their effort to software
engineering. Because of the recognized difficulties in documentation and
maintenance, the second level supervisors will be particularly receptive to
tools that can simplify the work In these areas.

SECTION 4

USER TOOL NEEDS

This section discusses those aspects of user tool needs that are pertinent to
the development of guidance for the introduction of tools. Subsection 4.1
considers organizational factors of tool needs that are largely independent of
the application area. This' is followed in subsection 4.2 by a detailed
identification of tool features desired in'the target environments described in
Section 3. Even experienced tool users can be faced with severe problems in the
adoption of new tools, and the needs that arise in this connection are addressed
in subsection 4.3. The final part of this section describes resources available
to the potential tool user for selection of specific tools to meet the needs
characterized in the earlier parts.

4.1 ORGANIZATIONAL FACTORS IN TOOL NEEDS

The objectives of toot- usage (and hence the objectives of many tool features)
are determined largely by the user's organizational environment and by the
management level that authorizes tool acquisitions. Because these
considerations hold for all application areas, 'they are discussed at the
beginning of this section. For a tool to be readily accepted. it must help in
areas of concern to the, management that authorizes the acquisition and
introduction activities. Thus, if management considers program documentation to
be a particularly critical area it may be difficult to obtain authorization for
the Introduction of test tools. The organizational entities that may be
involved in the acquisition and use of software tools are described under the
headings of:

Software Development Organization,
Project Management, and
Functional Management.

4.1.1 Software Development Organization

The term development is used in a broad sense that includes all the activities
directly involved in generating and maintaining programs. Practically all
software development organizations desire tools that:

Increase productivity.
Reduce skill.requirements.
Automate routine aspects of software design.
Help in software maintenance.

To some extent the last three Items are individual facets of the first. At the
present time there are few tools that are specifically aimed at a reduction of
skill requirements. The creative and cognitive skills required for designing a

sound software structure are not easily packaged into a software tool. However,
the automation of routine tasks is a very widely addressed tool objective.
Because they relieve creative personnel from tedious aspects of design, coding,
and testing, these tools compensate partly for the lack of those that reduce the
skill levels. They also contribute to increased productivity. Examples of such
tools are editors and precompilers used for the preparation or conversion of
source files, formatters for the preparation of reports, and sort/merge
programs. The most common tool features that automate, routine tasks are
editing, formatting, comparison, translating, and scanning. Tools that help in
software maintenance include most of those cited for the automation of routine
tasks plus file managers or library systems. In addition, maintenance may make,
use of special functions in editing or scanning tools, e. ,g., to locate
variables or to strip code from a source file. The latter feature is useful for
creating documentation from the program comments.

All of the tool functions and features enumerated here are of direct benefit to
the software professional, and there is seldom any difficulty in introducing
them at the working level if they provide a reasonably friendly user interface.
Line management in the software development organization may need to be
convinced that the cost of the tool acquisition and Introduction will be
recovered over a reasonably short time span. Note that the use of these tools
is largely independent of emphasis on standards that may prevail in the using
organization.

Where standards are in use, additional tools will be desired that either
facilitate or enforce compliance. Among the former are program design language
processors, and among the latter are code auditors. Environments that emphasize
standards usually also demand discipline in the procedural aspects of software
development such as version control, access to test cases, etc. File managers
and library systems will be found helpful in enforcing this discipline. Tools
that support standards will be readily accepted, by a standards-minded line
management. The professionals who have to use the tools may regard them with
indifference or even hostility. Part of this is due to apprehension about
having one's work scrutinized by "Big Brother", and part is due to obstacles to
innovation (deviation from standards) which these tools may present. It Is
therefore important that tools of this type have a particularly good user
interface so that potential complaints about their use can be minimized. Some
tools, such as auditors, can be combined with the compiler so that they are
automatically invoked when a new source file is submitted. This integration
makes more efficient use of the computer and at the same time avoids problems at
the user interface.

That they support or enforce standards Is a particularly pertinent factor in
connection with the introduction of software tools to Government agencies.
Beyond the benefits that always attend uniformity of design practices.
Government agencies will find it easier to interchange both programs and
personnel if common standards can be adopted. Some of these benefits transcend
the usual concerns of the software development organization. The broader
aspects of tool usage to support software standards are discussed under
Functional Management in 4.1.3.

Because Government agencies can have access to tools developed or in use by
other Government organizations, they may particularly benefit from the
appointment of a local tooismlth -- a person expert in tool usage who may be
able to make software or, m i nor hardware modifications that permit a tool to be
used in a new environment. The role of the tooismith was introduced several
years ago as a specialist within a software development team in these words
LBR0075]:

(The team leader) needs a toolsmith, responsible for ensuring this adequacy
of the basic service and for constructing, maintaining, and upgrading
special tools -- Mostly Interactive computer services -- needea by his
team. Each team will need its own toolsmith, regardless of the excellence
and reliability of any centrally provided service, for his job is to see to
the tools needed or wanted by his (team). without regard to any other
team's needs. The tool-builder will often construct specialized utilities,
catalogued procedures, and macro libraries.

The designation of a dedicated toolsmith within each team may be a higher degree
of specialization than can be warranted in smaller software organizations.
However, within each software environment that makes use of a single computing
facility such a specialist will be found very effective and certainly very
valuable for the Introduction of new tools.

4.1.2 Protect Management

Project management directs the software development on behalf of the ultimate
user. It is usually more interested in the functional and interface aspects of
the programs than in structural or standards aspects. Where project management
is funding the acquisition of software tools, there may be heavy emphasis on
tools that have an immediate payoff in terms of project objectives. Some of
these tools may be software development tools but the nature of these is project
dependent and can not be predicted.

There are, however, some software tools that make a direct contribution to
project management, and this area of tools usage is expected to be expanded in
the near future. Some programs of this kind ire general purpose scheduling and
reporting algorithms that share more of the characteristics of application
programs than those of software tools. Others. however, are very specific to
the software area and extract information from the software as it is being
developed. These are appropriately described'as software tools for project
management and are further described below.

Software library systems have already been mentioned In the previous heading as
tools that can support disciplined development and aid in software maintenance.
For project management they can furnish the identification and date of the
latest revision, current file size (number of statements), and change in size
over a selected time interval. Either by themselves or in conjunction with the
operating system log, these tools can also furnish reports on the total number
of runs, the number of statement changes, the number of different test cases
submitted, and the number of compilation failures or aborted runs. All of this
information can be furnished in hard copy or interactively on a terminal. In

either format, tools furnish these data more conveniently and at a fraction of
the cost of manual methods.

Idols for cost estimation are also important for the project management area.
Develbpment cost. life cycle cost. and computer cost aspects can be estimated by
means of software tools. Development costs are estimated by automating an
estimation algorithm such as [DOTy77]., Life cycle costs can be developed as an,
extension of the development costs, stich as in the ESD model [JAME77 , or from
data.on a system under development such as [PUTN78]. Computer cost aspects are
estimated by sizing and timing tools. Whlle the Jury is still out on the
accuracy of the cost estimates generated by these tools at present, there Is
little doubt that their use promotes systematic collection of software cost data
and a methodical approach to software costing.

Since the emphasis In this report is on the introduction of tools to smaller
programming environments, it should be noted that not all project management
tools need to be very large systems. Management will frequently derive
considerable benefits from small programs that automate follow-up on action
items, receipt of deliverables from vendors, etc. Programs of this type can be
applied inmany environment regardless of size.

4.1.3 Functional Management

In organizations where software is being developed for more than One project,
the individual development groups usually report to .a common management level
which Is referred to here as the functional management or computing function
management.' Because personnel must be periodically reassigned to new projects,
functional management will usually be interested in uniformity of practices
among projects so that retraining can be minimized.. Computing function
management can thus be expected to be standards-oriented and to support the
introduction of tools that enforce standards. This management level is usually
inclined to take a long range view and may favor the acquisition of tools that
primarily•eenefit later software Iifecycle phases. e. g., requirements analyzers
(although these are used during the definition stage, the major benefits are
usually reduced maintenance costs during the operation phase).

Functional management is usually also involved in another important aspect of
the Introduction of software tools: it must furnish or allocate the facilities
for the execution of the tools. Very few computing facilities have excess
capacity. and this is.particularly true for Government computing facilities.
Therefore, the management of the computing function may object to the
Introduction of tools,that extend the execution time or that add Job steps to
frequently.run programs. Where a tool has a significant adverse impact on
throughput, the benefits of that tool in areas of concern to functional
management should be highlighted: increased programmer productivity, adherence
to standards, or improved software quality.

Because tool integration avoids repeated reformatting and multiple data
retrievals, it reduces computer usage and supports the goals of functional
management. It Is at this management level that the greatest recognition of the
benefits of tool integration efforts can be expected.

Functional management will also be interested in tools useful for the management
of the computing facility, e. g., those that allocate charges to users. that
report on the operation of the current facilities, and simulation tools that aid
in planning of improvements. The features of instrumentation, resource
utilization, simulation, and statistical analysis support the capabilities of
such tools.

4.2 APPLICATION FACTORS IN TOOL NEEDS

The following discussion focuses on the needs of the two environments that were
identified In Section 3 as the primary,targets for the introduction of software
tools: the smaller MIS organization and the smaller scientific programming
organization. In the studies leading to the definition of tool needs, six
application areas were considered: business-oriented batch systems. management
information systems, office automation systems, online transaction driven
systems, real time command and control systems, and scientific or engineering
programs. It was found that the tool needs of the first four of these were very
similar, and this entire group is encompassed by the discussion in 4.2.1 below.
Also, the software tool needs of the last two categories were identical, and
these are described in 4.2.2 below. Within this subsection it is assumed that
the tool types and features required for the general software development
organization [4.1.1 above] are provided, and therefore only the supplements
dictated by the specific application areas are discussed.

4.2.1 Tool Needs of Smaller MIS Organizations

One of the distinctive tool needs of this environment arises from the use of
COBOL and the inefficiencies of COBOL compilers that were mentioned earlier
[3.3]. A sizeable number of commercial tools have been developed to improve the
performance of COBOL programs. Two specific techniques have been found
particularly helpful in this area: modifying the object code for improved
performance (the significant tool feature for this is optimization), and
determining and simplifying the parts of the program which account for the bulk
of the run time (the significant tool feature for this Is tuning). Of course
both of these can also be used together. Tuning is part of the dynamic analysis
function. It generally requires instrumenting the program, I. e., the insertion
of code that counts the number of accesses to the program segments of interest.
Once this is done, other attributes of the programes structure and performance
can also be evaluated, and such options are provided In several of the
optimization tools. In connection with the introduction of tools into the
smaller MIS organization, it is suggested to avoid such additional capabilities
in the tool initially because they extend the run-time of the instrumented
program, and they make the user interface more complex than it needs to be.

1. Tools can be used very effectively to aid in program conversion (e. g.. when a
new computer is being installed) which can present many problems in the smaller
MIS environment. Over 270 conversion tools are listed in a publication of the
Federal Conversion Support Center [FCSC80]. Trie listing includes tools that
facilitate conversion (e. g., translators), as well as programs that may
eliminate the need for conversion (e. g., emulators).

Because of the heavy involvement of the MIS applications area in the
manipulation of data structures. tools that simplify data base updating and
restructuring are another specific need of this environment. While program
libraries and general purpose file management systems mentioned in 4.1.1 can be
of some help for updating, specialized systems for data base management are
preferred. A number of these are commercially available, and they frequently
combine access control, archiving (or providing an audit trail), auditing for
completeness and reasonableness of the inserted data, and restructuring with the
update capability. Data encryption Is offered as an optional feature of some
tools but is not considered essential for the smaller MIS environment.

4.2.2 Tool Needs of the Smaller Scientific Programming Environment

Just as the use of COBOL is responsible for some specific tool needs in the MIS
environment. the use of FORTRAN, the current leading language in the scientific
programming environment, has in the past also been a strong motivator for
specific tools, in this case pre-processors for structured languages.
Pre-processors frequently represent the most advanced software tool in the
inventory of smaller scientific programming organizations. Even though
pre-processors will continue to be used, it is suggested that a forward looking
program for the introduction of tools to the smaller scientific programming
environment not emphasize this tool type unduly. One'of the reasons Is that, in
scientific programming for the defense-connected sector, FORTRAN is being
replaced by languages which inherently support structured programming practices,
and another reason Is that suitable control constructs are evolving for FORTRAN
[ANSI78]. But more fundamental is the need to educate the scientific programmer
in the smaller organization to the benefits of a methodical approach to program
development of which structured programming is but a part.

This need can be met by a general purpose development tool package that takes
the drudgery out of some of the routine programming steps. One such package,
described in the professional literature [KERN76]. is in the public domain.
This approach, which is cited only as an example. involves a number of
independent utilities that can be invoked individually or interactively by means
of a command line processor to do editing, file management, formatting, and
pre-processing. The efficient application of the tools poses an intellectual
challenge' that may be particularly motivating for scientific and engineering
personnel who are the programmers in this environment. Software tool packages
patterned along these lines are in use in some smaller scientific environments,
and the user reaction seems to be favorable.

Once a scientific programming organization Is committed to a disciplined
development approach (and as previously explained some of the smaller
organizations are already at that point), needs for many static analysis
features may arise. including code auditing, completeness checking. consistency
checking,- error checking, and statistical analysis. Tools with these
capabilities will be particularly desired for design analysis programs
supporting critical applications (nuclear industry, aircraft structures) and for
simulations which furnish output to physically active equipment (e. g., moving
base flight simulators). At present, smaller organizations may find it
difficult or impossible to acquire these tools in a useful format. Once a
general purpose development tools package is in use, the additional checking
tools can be developed in-house. Commercial sources may become interested in
adding checking functions to an established basic tools package.

Real-time command and control systems pose additional requirements that may
require dynamic analysis features. At present, this applications area Is
primarily served by large organizations that make extensive use of tools. the

4.2.3 Summary of Tool Features Determined by the Application

Table 4-1 lists common and application-dependent tool features. The first
column lists features desired by all software development organizations as
described in 4.1.1. The features shown in the table are the ones most desired
by new tool users. The selection Involved some Judgment regarding the
priorities that exist within the software development organization and its user
community. Thus, that error checking Is found in the scientific column but no+
in the MIS column does not imply that this feature Is not suitable or not
important in the MIS environment. It does mean that most smaller MIS developers
will place a lower priority on error checking than on the features listed in the
MIS column.

TABLE 4 - 1 FEATURES DETERMINED BY THE APPLICATION

Features Needed For

Common MIS Programming Scientific Programming

Editing Optimization Auditing (Code)
Scanning Tuning Completeness Checking
Formatting Restructuring Statistical Analysis
Comparison Auditing (Data) Error Checking
Translation Consistency Checking
Management

4.3 NEEDS OF OTHER ENVIRONMENTS

Although large and very large software organizations are in most cases already
users of general purpose software tools, they may benefit from programs aimed
at improving access to tools, standardization of tool interfaces. or
establishing minimum requirements for tool documentation and diagnostics.
Because these organizations (which will be collectively called "larger") have
multiple general purpose tools in inventory, the integration of tools is
particularly pertinent for them. There are at present no clear indications of
the direction that tool integration should take. However, there Is a
considerable effort being devoted to the area of programming environments within
NBS and elsewhere, and tool integration is an important aspect of these
activities [BRAN81. IEEE81].

The integration of tools provides two primary benefits: a simplified user
interface and reduced utilization of computer resources. The simplified user
Interface is achieved by requiring less file manipulation for converting the
output of one tool into an input for another, by consistent tool calling
conventions, input commands, and output formats, and by the capability for
invoking processing by several tools with a single command string These
benefits will in turn simplify documentation and training and in general improve
the user acceptance of a system of multiple tools.

The reduced utilization of computer resources is partly due to the factors just
enumerated, particularly the avoidance of file manipulations, and partly due to
the possibility of combining computer-intensive operations such as parsing and
searching which are, now carried out separately. As mentioned in 4.1.3, the
managers of the computing function will particularly appreciate these latter
benefits. The reduction in running time and storage requirements together with
the benefits due to the simplified user interface promise a high payoff for
efforts in the tool Integration area.

A significant step for the integration of tools developed by different sources
is represented by the NBS/ICST study of compiler-based tools [BRAY81J. The
association of the tool with the compiler provides access to at least two
(source and object) and sometimes three (parsed code) representations of the
program, and also makes the data and structure checking features of the compiler
available to the tool. A possible disadvantage of this approach is that a
compiler pass may be required in order to invoke a tool. The adherence to a
single (or at least compatible) file format for multiple tools can be readily
enforced by compiler basing.

The integratión of tools is very significant for extending tool usage in
environments where general purpose tools are already in use. It Is of lesser
importance for the introduction of tools to environments that had no prior
experience with genera l purpose software tools, and it Is therefore addressed
here in only a limited way.

A topic partly contained within the area of tool Integration is the
standardization of tool commands and output formats. The lack of

standardization Is particularly obvious and disadvantageous in editors and
related tools (including word processors). These are among the most widely used
tools, they are frequently the medium through which the input to other tools Is
processed, and there is better agreement than in most other areas on the
functions which the tool is required to furnish. There is thus ample motivation
to standardize but very few concrete accomplishments.

There are at present many different methods for cursor positioning, different
commands for deleting characters, words, or lines, and different procedures as
well as commands for string search or substitution. These inconsistencies cause
errors, necessitate multiple training periods, and certainly constitute a
deterrent to tool usage. In view of the basic need for an editor in the use of
many tools, the lack of standardization of editor commands Must be regarded as
an obstacle to the introduction of tools.

4.4 RESOURCES FOR TOOL SELECTION

In subsections 4.1 and 4.2 a number of generic tool types and features have been
identified as suitable for the introduction of tools to specified organization
and application environments. The present subsection discusses the additional
steps necessary for the actual selection of a tool.

Catalogues of software tools are available from the commercial tool developers,
computer manufacturers,and computer users' groups. For obvious reasons, the
offerings in each of these are restricted although the restriction imposed by
the last of these may be an appropriate one If only the computer type addressed
by that users' group is available as a tool host and if the group has conducted
a comprehensive survey of suitable tools.

A recent publication by the National Bureau of Standards Is particularly helpful
for the introduction of tools to smaller programming environments [H0UG82]. It
contains cross references by tool classification (function) and features which
makes it especially suitable for use with the tool Identifications used In this
report.

Once a tool that meets the functional requirements is identified, the main
section of the catalogue must be consulted to see whether the tool is usable on
an available computer, whether it handles an appropriate source language (or
other input format), and whether it can be obtained in a suitable implementation
language. Other considerations are the licensing arrangements, availability of
documentation and training, and the computer resource utilization.

Some difficulties are usually encountered that must be resolved by language
conversions (of either input or the tool) or'other tool modifications.
Consultation with a toolsmith will be valuable in this connection. Government
agencies will want to know whether other agencies are currently using the tool,
and a central tool usage catalogue will be a beneficial facility. Access at a
remote computer can be a very effective first step in a detailed evaluation of
the tool. Hosting problems may be overcome by remote access even on a longer
term basis.

SECTION 5

DEVELOPMENT OF EVENT SEQUENCES

While the preceding sections have discussed the tool needs in selected
environments, this section describes the detailed events that will lead to
successful use of tools. The first subsection describes the purpose and
rationale for an event sequence. and the second subsection recommends a specific
event sequence for the smaller MIS and scientific environments.

5.1 PURPOSE OF EVENT SEQUENCES

The management of any significant project requires that the work be divided Into
tasks for which completion criteria can be defined. The transition from one
task to another is called an event, and to permit orderly progress of the
activities, here the introduction of a software tool, the scheduling of these
events must be determined in advance. A general outline for such a schedule is
provided by the event sequence described in the next subsection. The actual
calendar time schedule will depend on many factors which must be determined for
each specific tool use (particularly on the time required for procurement of the
tool and training) . One of the formats used for the event sequence is
consistent with the Critical Path Method (CPM) of project schedullog and can be
used with that technique for the development of an optimum calendar time
schedule.

Most of the activities included in the event sequence are obviously necessary
but a few were included specifically to avoid difficulties encountered in
previous tool procurements. Quite frequently tools were obtained 'through the
side door' without adequate consideration of the resources required for the
effective employment of the tool and without determination by a responsible
manager that the tool served a primary need of the organization. Tools acquired
in this manner were seldom used in an optimal way and were sometimes discarded.
Experiences of this type are not conducive to gaining widespread acceptance of
tools In the smaller programming environments where the activities required for
the introduction of tools will, under the best of circumstances. impose a severe
drain on resources. A key feature of the proposed approach is, therefore, that
tool usage willte initiated only iii response to an expressed management goal
for software development or for the entire computing function.

Difficulties in the introduction of tools can arise in three areas:

Organizational obstacles
Problems arising from the tools

Obstacles in the computer environment

The individual activities described below as well as the ordering of the event
sequence are designed to eliminate as many of these difficulties as possible.
They are most effective with regard to the first category and probably least
effective with regard to the last category. The need 'for involving a reponsible

management level in the tool introduction has already been mentioned, and this
Is Indeed the key provision for avoiding organizational obstacles. "Responsible
Management” is that level that has the authority to obligate the resources
required for the introduction process. The scope of the resource requirement
will become clearer after all introduction activities have been described.
Because the criterion for the selection of the management focus is its ability
to commit funds, this management level is hereafter referred to as funding
management. In some organizations this may be the project management as defined
In 4.1.2, in some it maybe functional management as defined in 4.1.3, and in
yet others it may be an agency or department management not specifically
Identified with a computing function. It should be involved i n at least the
following activities associated with the introduction of tools:

1. Identifying the goals to be met by the tool (or by the technique supported
by the tool), and assigning responsibility for the activities required to
meet these goals.

2. Approving a detailed tool acquisition plan that defines the resource
requirements for procurement and in-house activities. •

3. Approving the procurement of tools and training if this is not explicit in
the approval of the acquisitlon plan.

4. Determining after some period of tool use whether the goals .have been met.

Additional organizational obstacles must be overcome by actions of the software
management (local management of the organization that will introduce the tool).
A pitfall that must be avoided is assigning the details of the tool acquisition
as a sideline to an individual who carries many other responsbilities. Even in
a small software organization (up to 14 programmers), it should be possible to
make the tool introduction the principal assignment of an experienced individual
with adequate professional background. This person is referred to as the
software engineer. In medium size organizations (15 to 39 programmers) several
individuals may be involved in software engineering tasks (not restricted to
tool usage), and this may constitute a software engineering function.

Further, the event sequence includes activities of a toolsmith who will not be
the same person as the software engineer in most cases. The former assignment
requires expertise in systems programming and specialized knowledge of the tool
to be introduced. The duties of the software engineer involve planning project
management, and obtaining cooperation from a variety of individuals and
organizations. Where there is a software engineering function, the toolsmith Is
typically a member of it.

Obstacles arising from the tools themselves ere expected to be avoided in the
event sequence by a careful, methodical selection of tools. In particular,
distinct contributions to the tool selection are specified for software
management and the software engineer. Software management is assigned
responsibility for:

Identifying tool objectives.

Approving the acquisition plan (it may also require
approval by funding management).

Defining selection criteria.

Making the final selection of the tool or the source.

The software engineer is responsible for:

Identifying candidate tools.

Applying the selection criteria (in informal procurement)
or preparing RFP inputs (in formal procurement).

Preparing a ranked list of tools or sources.

Further, the ultimate user of the tool is involved in the recommended event
sequence in reviewing either the list of candidate tools or, for formal
procurement, the tool requirements.

This distribution of responsibilities reduces the chances of selecting a tool
that (1) does not meet the recognized needs of the organization, (2) is
difficult to use. (3) requires excessive computer resources, or (4) lacks
adequate documentation. The repeated exchange of information required by the
process outlined above will also avoid undue emphasis on very short-term
objectives which may lead to selection of a tool on the basis of availability
rather than suitability.

The obstacles to tool usage that reside in the computer environment are
primarily due to the great diversity ot computer architectures and operating
system procedures, and to the lack of portability in most software tools.
Activities associated with the introduction of tools can only modestly alleviate
these difficulties. The event sequence provides the following help in this
area:

1. A methodical process of identifying.candidate tools and selecting among
these on the basis of established criteria. This will avoid some of the
worst pitfalls associated with "borrowing" a tool from an acquaintance or
procuring one from the most accessible or persuasive tool vendor.

2. The assignment and training of a toolsmith who can make minor modifications
to both the computer environment and the tool. This is expected to provide
relief where there are version-related or release-related incompatibilities
with the operating system, or where the memory requirements of the tool
exceed the capabilities of the installation. In the latter case, remedies
may be provided by removing tool options or by structuring the tool program
into overlays.

The event sequence described below is conceived as a procedure generally
applicable to the introduction of tools to Federal agencies falling into
pertinent programming environment categories. For this reason, a systematic
reporting of the experience with the introduction process as well as with the
tool is desirable. The evaluation plan and the evaluation report specified in
the event sequence support these goals.

5.2 RECOMMENDED EVENT SEQUENCE

The event sequence described in this subsection is applicable to both the
smaller MIS and scientific programming environments. The general scope of the
introduction activities and their sequence are identical for the two
environments. Because of differences In tool requirements, personnel
qualifications, and organizational structure, some differences in the content of
the Individual events will be, expected. The event sequence addresses only the
introduction of existing tools. Where a newly developed tool Is introduced, a
considerable modification of the activities and their sequence will be
necessary.

The recommended event sequence allows for two procurement methods: informal
procurement (e. g., by purchase order) or formal procurement by request for
bids. Obviously, the latter is much more time consuming but it may lead to the
procurement of better or cheaper tools. Acquisition of tools from the General
Services Administration or from other Government agencies should follow the
informal procurement steps even when there is no procedural requirement for
this. As mentioned above, tool acquisitions which do not obtain the concurrence
of all affected operational elements frequently do not achieve their objectives.

The presentation of the event sequence in Table 5-1 Is tailored to tools which
are being introduced for the first time into a user community which shares
software support information (e. g., a Federal agency or a private sector
company). As a result. some steps are shown which can be combined or eliminated
where less formal control is exercised or where plans or modifications required
for the introduction of a tool are available from a prior User. The event
sequence is intended to•cover a wide range of applications, and it was
constructed with the thought that it Is easier for the tool user to eliminate
steps than to be confronted with the need for adding some that had not been
covered in this volume.

The key functions which contribute to the introduction of tools are listed
across the top of Table 5-1, and events for which each function is responsible
are listed in the column under it. The preferred order of tasks for each
function can thus be directly found from this table. The precedence
relationships between events is shown in graph form in Figure 5-1. This figure
will be found particularly helpful for scheduling activities by the Critical
Path Method and. for the general development of a project schedule. The
numbering of events is the same in Table 5-1 and Figure 5-1. A detailed
description of each of the numbered events, and of the activities associated
with it, is presented following the table and figure.

TABLE 5 - 1 EVENT SEQUENCE FOR TOOL INTRODUCTION

FUNDING SOFTWARE SOFTWARE TOOL
MANAGEMENT MANAGEMENT ENGINEER USER

1. Goals
2. Tool Objectives

Acquisition, see A or B below

3. Procure tool A 4.Evaluation plan
A 5.Toolsmlthing plan-S
A 6.Training plan participates

7. Receive tool
8.Acceptance test

9. Orientation
10. Modifications-S

11. Training
12. Use

A A 13. Evaluation report
14. Goals met?

A. Acquisition Activities for Informal Procurement

A Al. Acquisition plan
A2. Selector' criteria

A3. Ident. candidates A4. Review
A5. Score candidates

A6. Select tool

continue with step 3 above.

B. Acquisition Activities for Formal Procurement

A B1. Acquisition plan
B2. Technical req'mts B3. Review

A A B4. Generate RFP
B5. Issue RFP B6. Proposal Evaluation

B7. Select source

continue with step 3 above.

A = Approval required S = Toolsmlth responsibility

FIGURE 5 - 1 PRECEDENCE RELATION FOR EVENT SEQUENCE

A or B
see
below

B. FORMAL PROCUREMENT
A. INFORMAL PROCUREMENT

EVENTS

1.Goals
2.Tool objectives
3.Procure tool
4.Evaluation plan
5.Toolsmithing plan
6.Training plan
7., Receive tool
8.Acceptance test
9.Orientation
10.Modifciations
11. Training
12.Use
13.Evaluation Report
14.Goals met?

Al. Acquisition plan
A2.Selection criteria
A3.Identify candidates
A4.User review
A5.Score candidates
A6.Select tool

81. Acquisition plan
B2. Technical req'mts
83.User review
84.Generate RFP
85.Issue RFP
86.Proposal evaluation
B7.Select source

1. Goals

The goals to be accomplished should be Identified in a format that permits later
determination (event 14) that they have been met. Typical goal statements are:
reduce average processing *me of COBOL programs by one-fifth; achieve complete
Interchangeability of programs or data sets with organization'Y; adhere to an
established standard for documentation format.

The statement of goals shall also identify responsibilities, in particular the
role that headquarters staff organization may have and coordination requirements
with other organizations. Where a decentralized management method is employed-
the statement of goals may have associated with it a not-to-exceed budget and a
desired completion date. Once these constraints are specified. funding
management may delegate the approval of the acquisition plan to a lower level.

2. Tool Objectives

The goals generated in event 1 are translated Into desired tool features (e.g..
see Table 4-1), and requirements arising"from the development and operating
environment are identified. Constraints on tool cost and availability may also
be added at this event. A typical statement of tool objectives for a program
formatter Is: Provide header' identification, uniform indentation, and the
faci l i ty of printing I i st i ng and comments separately for all FORTRAN X3.9-1978
and ABC Extended FORTRAN programs. Program must run on our ABC computer under
XOSnn. Only tools which have been in commercial use for at least 1 year and at
no less than N different sites shall be considered.

At this point the sequence continues with either Al or B1 below.

A. Acquisition Activities for Informal Procurement

Al. Acquisition Plan

The acquisition plan communicates the actions of software management both upward
and downward. The plan may also be combined with the statement of the tool
objectives (event 2). The acquisition plan should include the budgets and
schedules for subsequent steps in' the tool introduction, a justification of
resource requirements in the light of expected benefits, contributions to the
introduction expected from other organizations (e. g., the tool itself,
modification patches, or training materials), and the assignment of
responsibility for subsequent events within •the software,organization,
particularly the i4entification of the software engineer. Minimum tool
documentation requirements shall also be specified in the plan.

A2. Selection Criteria

The criteria shall include a ranked or weighted listing of attributes that will
support effective utilization of the tool by the user. Typical selection
criteria are: ,

Accomplishment of specified tool objectives.
Ease of use.
Ease of Installation.
Minimum processing time.
Compatibility with other tools.
Low purchase or lease cost.

Most of these criteria need to be factored further to permit objective
evaluation, but this step may be left up, to the individual who does the scoring.
Together with the criteria tmóst of which will normally be capable of a scalar
evaluation), constraints which have been imposed by the preceding events or are
generated at this step should be summarized.

A3. identify Candidate Tools

This is the first event for which the software engineer is responsible. The
starting point for preparing a listing of candidate tools is á comprehensive
tool catalogue, such as [HOUG82]. .A desirable but not mandatory practice Is to
prepare two lists, the first of which does not consider the constraints and
contains all tools meeting the functional requirements. The Cross-Reference by
tool features in the appendices of [HOUG82] will be found particularly valuable
in generating this list of candidates. For the example used in event 2, a
program formatting tool, 16 entries are found there. Some of these may be
eliminated by further review of their description in the body of the catalogue
te. g., because they don't process the specified FORTRAN dialects). For the
remaining viable candidates, literature should be requested from the developer,
and this is examined for conformance with the given constraints. At this point
a second list is generated, containing tools that meet both the functional
requirements and the constraints. If this list does not have an adequate number
of entries, relaxation of some constraints will have to be considered.

A4. User Review of Candidates

The user review's the list of candidate tools prepared by the software engineer.
Because few users can be expected to be very knowledgeable .In-the software tools
area, specific questions may need to be raised by software management such as:
"Will this tool handle the present file format? Are tool commands consistent
with those of the editor? How much training will be required?" Adequate time
should be budgeted for this review and a due date for responses should be
indicated. Because the user views this as a far-term task, of lower priority

. than many immediate obligations, considerable follow-up by line management will
be required. If tools can be obtained for trial use, or if a demonstration at
another facility can be arranged, It will make this step much more significant.

A5. Score Candidates

For each of the criteria previously identified a numerical score Is generated
on the basis of information obtained from vendor's I iterature. from
demonstration of the tool, from the user's review, from observation In a working
environment, or from comments of prior users. If weighting factors for the
criteria are specified, the score for each criterion Is multiplied by the

appropriate factor and the sum of the products represents the overall tool
score. Where only a ranking'of the criteria was provided, the outcome of the
scoring may be simply a ranking of each candidate under each of the criteriar
headings. Frequently a single tool is recognized as clearly superior in this
process.

A6. Select Tool

This decision is reserved for software management in order to provide review of
the scoring, and also to permit additional factors which were not expressed in
the criteria stop be taken into consideration. For example, a report might just
have been received from another agency that the selected vendor did not provide
adequate service. .If the selected tool was not scored highest, the software
engineer should have an opportunity to review the tool characteristics
thoroughly to avoid unexpected installation difficulties. The selection
concludes the separate sequence for Informal procurement. Continue with event
3.

$, Acquisition Activities for Formal Procurement

B1. Acquisition Plan

The plan generated here must include all elemeñts mentioned under Al plus the
constraints on the procurement process (e. g., set-aside for high labor surplus
areas) and the detailed responsibilities for all procurement documents
(statement of work, technical and administrative provisions in the Request for
Proposal, etc.).

82. Technical Requirements Document

The technical requirements document is an informal description of the tool
requirements and the constraints under which the tool Ras to operate. It will
utilize much of the material from the acquisition plan but should add enough
detall to support a meaningful review by the tool user.

834 User Review of Requirements

The user reviews the technical requirements for the proposed procurement. As In
°the case of event M, the user may need to be prompted with pertinent questions,
and there should be close management follow up in order to get a•timely
response.

84. RFP Generation

From the technical requirements document and the user comments on it, the
techñical portions of the RFP can be generated. Usually these include:

1. A specification of the tool as delivered. This 'should Include
applicable documents, a definition of`the operating environment, and
the quality assurance provisions.

2. A statement of work governing the tool procurement. This should
state any applicable standards for the process by which the tool is
generated (e. g., configuration management of the tool), and
dpcumentatlon or test reports to be furnished with the tool.
Tdälning and operational support requirements are also identified in
the statement of work.

3. Proposal evaluation criteria and 'format requirements. Evaluation
criteria are listed in the approximate order of importance.
Subfactors for each may be identified. Restrictions on proposal
format (major headings, page count, desired sample outputs) may also
be included.

B5,. Solicitation of Proposals

This activity is carried out by administrative personnel. Capability lists of
potential sources are maintained by most purchasing organizations. Where the
software organization knows of potential bidders, their names should be made
known to the procurement office. When responses are received, they are screened
for compliance with major legal provisions of the RFP.

B6. Technical Evaluation

Each of the proposals received in response to the RFP is evaluated against the
criteria previously established. Failure to meet major technical requirerQents
can lead to outright disqualification of a proposal. Those deemed to be in "the
competitive range" will be assigned point scores that will then be used together
with cost and schedule factors that are being separately, evaluated by
administrative personnel.

B7. Source Selection

On the basis of the combined cost, schedule, and technical factors, a source for
thdrtool is selected. If this was not the highest, rated technical proposal,
prudent management will require additional reviews by software management and
thet software engineer to determine that it is Indeed acceptable.

The source selection concludes the separate sequence for formal procurement.
Continue with event 3..

3. procure Tool

In addition to determining that the cost of the selected tool is within the
approved budget, the procurement process will also consider the adequacy of
licensing and other contractual provisions and compliance with the "fine print"
associated with all Government procurements. The vendor's responsibility for
furnishing the source program, for meeting specific test and performance
requirements, and for tool maintenance need to be identified. In informal
procurement, a perisid of trial use may be considered If this had not already
taken place under one of the previous events.

If the acquisition plan indicates the need for outside training, the ability of
the vendor to supply the training and the cost advantages from combined
procurement of tool and training should be investigated. If substantial savings
can be realized through simultaneous purchase of tool and training, procurement
may be held up until outside training requirements are defined (event 6).

4. Evaluation Plan

The evaluation plan Is based on the goals identified In event 1 and the tool
obectives derived from these in event 2. It describes how the attainment of
these objectives Is to be evaluated for the specific tool selected. Typical
items to be covered in the plan are milestones for installation, dates and
performance levais for the initial operational capability and for subsequent
enhancements. Where improvements in throughput, response time, or turn-around
time are expected, the reports from which these data are to be obtained should
be identified. Responsibility for tests, reports and other actions should be
assigned in the plan. A topical outline of the Evaluation Report should be
fisc I uded.

The procedure for the acceptance test is a part of the Evaluation Plan, although
in a major tool procurement it may be a separate document. It Iists the
detailed steps necessary to test the tool in accordance with the procurement
provisions when it is received, to evaluate the interaction of the tool with the
computer environment (e. g., adverse effects on throughput), and for generating
an acceptance report.

5. Toolsmithing Plan

The plan will describe the selection of the toolsmlth, the responsibilities for
the adaptation of the tool, and the training which will be required. The
toolsmith should preferably be an experienced system programmer, familiar with
the current operating system. Training in the operation and installation of the
selected tool in the form of review of documentation, visits to current users of
the tool, or training by the vendor must be arranged. The toolsmithing plan Is
listed here asanevent for which the software engineer Is responsible, and in
the discussion of further events it Is assumed that the toolsmlth will work
under the direction of the software engineer. The toolsmithing plan should be
approved by software management.

6. Training Plan

The training plan should first consider the training inherently provided with
the tool, e. g., documentation, test cases, on-line diagnostics, HEt P. These
features may be supplemented by standard training aids supplied by the vendor
for In-house training such as audio or video cassettes and lecturers. Because
of the expense, training sessions at other locations should be considered only
where none of the previous categories Is available. The number of personnel to
receive formal training should also be specified in the plan, and adequacy of
in-house facilities (number of terminals, computer time, etc.) should be
addressed. If training by the tool vendor is desired, this should be identified
as early as possible to take permit training to be procured with the tool (see

step 3). User Involvement in the preparation of the training plan is highly
desirable, and coordination with the user is considered essential. The training
plan is normally prepared by the software engineer and approved by software
management. Portions of the plan should be furnished to procurement staff if
outside personnel or facilities are to be utilized.

7. Too l)tece l ved

The tool is turned over by the procuring organization to the'software engineer.

8. Acceptance Test

The software engineer or staff test the tool. This Is done as much as possible
In an "as received" condition with only those modifications made that are
essential for bringing it up on the host computer. A report on'the test is
issued. After approval by software management it constitutes the official
acceptance of the tool.

9. 9rlentatioq

When it has been 'determined that the tool has been received in a satisfactory
condition, software management holds an'orientation meeting for'all personnel
involved in the use of the tool and tool• products (reports:or listings generated
by the tool). The main purpose is to communicate as directly as possible the
objectives of the tool use, such as increased throughput or improved legibility
óf listings.' Highlights of the'evaluation plan should 'also be presented. and
any changes in duties associated with the introduction of the tool should be
described. Personnel should be reassured that allowance will be made for
problems encountered during the introduction, and that the full benefits of the
tool may not make themselves'felt for some time.

10. Modifications • .

This step is carried out by the toolsmlth in accordance with the approved
tooismithing plan. It includes modifications•of the tool itself, of the
documentation, and of the operating system. In rare cases some modification•of
the.computer proper may also be necessary (channel assignments, etc.). Typical
tool modifications- involve deletion of unused options, changes ln prompts or
diagnostics,. and, other adaptations made for efficient use in the prevailing
environment. Documentation of the modifications is an essential part of this
event. '

Vendor literature for the tool Is reviewed in detail and is tailored for the
prevailing computer envlronmeRt and for this, tool modifications Which have been
made. Deleting:sections which are hot-:applicable can be Just as useful as

 adding material that Is required for the specific programming environment.
Unused options,shell be clearly marked br removed from the mdnuals. If there Is
some résident software for which. the tool should not be used (e. g., because of
language incompatibility or coñfilcts in the ,operating system interface),
warning notices should be inserted into the tool manual.

11. Training

Training is a joint responsibility of the software engineer and the tool user.
The former is responsible for the content (in accordance with the approved
training plan), and the latter should have control over the length and
scheduling of sessions. Training is an excellent opportunity to motivate the
user to utilize the tool. The tool user should hâve the privilege of
terminating .steps in the training that-are not helpful and of"extending portions
that are helpful but in which greater, depth is desired. Training is not a
one-time activity. Retraining or training in the use of additional" options
after the Introductory period is.desirable. This also provides an opportunity
for users to talk about problems with the tool.

12. Use in the Operating Environment

The first use of the tool in thé.o' erational environment should involve the most
qualified user personnel and minimal use of options. The first use should not
be on a project with tight schedule constraints. Any difficulties resulting
from this use must be resolved before expanded service Is initiated. if the
first use is successful, then use by adâitional personnel and use of further
options may commence.

User comments on training, first use'of the tool, and use of extended
capabilities are prepared and furnished to the software engineer. Desired
improvements in the user interface, speed or format of response, and in
utilization of computer'resources are appropriate topics. Formal comments may
be solicited shortly after the initial use, after 6:months, and again after 1
year.

13. Evaluation_ Report

The oftwaré engineer prepares the Evaluatión Report, using the outline
generated in event 4. The user comments and observattons of the toolsmith form
important"inputs to this document. Most of all, it must discuss how the general
goals and the tool objectives were met.' The report may include, of course,.
observations on the installatibmand use of the tool, cooperation received from
the vendor In installation or training, and any óther'"lessons learned". Tool
and host computer modifications shall be described in the report. It may
contain a section of comments useful to future users of the tool. The report Is
approved by software management and preferably also by funding management.

14. Determihe If Goals Are Met

Funding management receives the Evaluation Report and determines whether the
goals established in event 1 have been met. This determination shall be in
writing and it shall include:

Attainment of technical objectives.
Adherence to budget and other resource constraints.
Timeliness of the effort.
Cooperation from other agencies.
Recommendations for future tool acqulsitions.

https://spe�d.or

REFERENCES

ANSI78 American National Standards Institute. "Programming Language FORTRAN -
American National Standard X3.9-1978"

BRAN81 Martha A. Branstad and W. Richards'Adrlon, "NBS Programming Workshop
Report", NBS Special Publication 500-78. National Bureau of Standards,
June 1981

BRAY81 Gary Bray et al., "Compiler-Based Programming Support Capabilities",
NBSIR 81-2423, January 1982

BR0075 F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, Reading MA,
1975

DOTY77 D. Doty et al., "Software Cost Estimation Study" (2 vols),
RADC-TR-77-220. Rome Air Development Center, August 1977

FCSC80 Federal Conversion Support Center. "Conversion Products/Aids Survey",
Report No. GSA/FCSC-80-01 (138 pp.)

HECH81 H. Hecht, "A Survey of Software Tools Usage", NBS Special Publication,
in preparation

HOUG81 R. C. Houghton, Jr., "Features of Software Development Tools", National
Bureau of Standards, NBS Special Publication 500-74. February 1981

HOUG82 R. C. Houghton, Jr., "Software Development Tools", National Bureau of
Standards, NBS Special Publication 500-88, March 1982

IEEE81 IEEE Computer Society, Computer, Special Issue on Programming
Environments, April 1981

JAME77 T. G. James, Jr., "Software Cost Estimating Methodology", JJAECON'77
Proceedings, pp. 22-28, Dayton OH. May 1977

KERN76 Brian Kernighan and P. J. Plauger. Sºftware Tools, Addison-Wesley,
Reading MA, 1976

PUTN78 Lawrence H. Putnam, "Example of an Early Sizing, Cost and Schedule
Estimate for an Application Software System", Proc. COMPSACI8, pp.
827-832, November 1978

REIF80 D. J. Reifer and H. A. Montgomery, "Software Tool Taxonomy", Report
SMC-TR-004. Software Management Consultants, Torrance CA, June 1980

APPENDIX .

WORKSHOP ON PHASING OF SOFTWARE TOOLS

NATIONAL BUREAU OF STANDARDS
Lecture Room B, Administration Building .

"Monday, 18 May 1981

AGENDA

0900 - 0930 We l come to NBS' M. Branstad, NBS

0930 - 1000 Software Automation Project and
Objectives of the Workshop

R. C. Houghton, NBS

1000 - 1015 'Coffee Break

1015 - 1100 Survey, of Software Tool Usagé H. Hecht, SoHag

1100 - 1215 Tools introduction Experience
NASA Langley: • S. Voigt
Naval Air Development Center H. Stuebing
NASA Goddard F. McGarry

1215 - 1313 Lunch

1315 - 1400 Guidelines for Phasing Software Tools
Into Development Environments

H. Hecht, SoHaR

1400 - 1445 Discussion Groups

1445 - 1500 Coffee Break

1500 - 1545 Evept Sequence for Tool `Introduction H.' Hecht, SoHaR

1545 - 1630 Discussion Groups

1630 - 1700 Wrap-Up

WORKSHOP ON PHASING OF SOFTWARE TOOLS

PARTICIPANTS'

Leo Beltracchi
Nuclear Regulatory Commission

Martha Brans+ad
National Bureau of Standards

Arthur F. Chantker
Federal Aviation Administration

Lorraine Duvall
IIT Research Institute

Sheila Frankel
National Bureau of Standards

Tony Green
Federal Trade.Commission

Herbert Hecht
SoHaR incorporated

Terry Heidelberg
Lawrence Livermore Laboratory

Larry Hoover
CRC

Raymond Houghton
National Bureau of Standards

Arnold Johnson
Federal Computer Testing Center

Linda Lawrie
US Army - CERL

Larry Lombando
Rome Air Development Center

Frank McGarry
NASA Goddard Spaceflight Center

Albert Moy
Federal Bureau of Investigations

Albrecht Neumann
National Bureau of Standards

Pat Powell
National Bureau of Standards

Carol Proctor.
Illinois Institute of Technology

Wray Sexson
Defense Mapping Agency

Al Sorkowitz
Department of Housing 8 Urban Devlpmt.

Janet Stearns
Defense Mapping Agency

Henry G. Steubing
Naval Air Development Center

Susan Voigt
NASA Langley Research Center

REVIEWERS

Plo De Feo
NASA Ames Research Center

Patricia (Santoni) Oberndorf
Naval Ocean Systems Center

Marvin Zelkowitz
'University of Maryland

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42

