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Abstract

The data analysis problem posed by a repeated measures design that

includes a single observation on a covariate for each subject is con-

sidered. The current paper discusses how best bo capture a possible

dependence of the effect of the within-subject factor on the level of

the covariate. Procedures originally explicated by Rogosa (1980) for

dealing with heterogeneity of regression in the between-subjects case

are extended to this repeated measures situation. We conclude that such

pick-a-point and simultaneous inferential procedul:es not only provide

more powerful overall tests of the within-subject effects but also per-

mit a thorough analysis of the attribute-by-treatment interaction

implied by a significant regression of the within effect on the covari-

ate.



ANCOVA and Repeated Measures: Dealing with Heterogeneity of Regression

Since almost by definition educational researchers are interested

in examining progress, it is not surprising that repeated measures

designs are among the most commonly used in educational research. In

addition, individual differences are frequently a component if not the

focus of educational studies. It is therefore important that research-

ers be facile at analyzing designs that incorporate both repeated neas-

ures and individual difference variables. Unfortunately, this is an

area in which there has been confusica and controversy regarding

appropriate methods of analysis.

Although it is well known that the repeated measures design itself

"controls" for individual differences in level of performance on the

dependent variable, it has not generally been viewed as a vehicle for

specifically examining individual differences. It is possible however

to combine a repeated measures analysis with an analysis of covariance

as a means of incorporating individual difference variables. Recent

papers on the subject by Ceurvorst and Stock (1978), Delaney and Maxwell

(1981), and Algina (1982) have clarified some of the issues involved in

using such an approach. But these papers have not made clear how best

to capture the possible dependence of the effect of the repeated meas-

ures factor on the characteristics of the individual taking part in the

study. Thus, our principal concern in the current paper is with

describing how one can most effectively utilize the information avail-

able when an individual difference variable or covariate has been

included in a repeated measures design.

Naturally, the conclusion one draws about what analysis is most

approDriate depends upon the assumptions made at the beginning about the
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structure of the problem. In the traditional univariate approach to

analyzing repeated measures designs (Keppel, 1982, p.367 ff), in addi-

tion to the restrictive assumptions made about interrelationships among

the dependent variables, it is also typically assumed that the slope of

the regression of the dependent measure on the covariate is the same for

all measures (cf. Ceurvorst and Stock, 1978). Thus when computing

"adjusted effects" the same adjustment would be made on each ce the

dependent measures, and in contrasts assessing the within-subject effect

such adjustments would drop out entirely.

An advantage of the multivariate approach to repeated measures

designs (e.g. McCall & Appelbaum, 1974) is that the interrelationships

among the dependent variables as well as between each dependent variable

and the covariate are not constrained. One implication ce this assump-

tion is that it is possible to make adjustments, via analysis of covari-

ance ,(ANCOVA), of effects involving the within-subjects factor (Delaney

& Maxwell, 1981). such effects are assessed in the multivariate

approach by forming combinations ce the dependent variables to represent

contrasts of interest in the levels of the within-subject factor(s).

Testing whether the grand mean(s) of the new variable(s) equals

zero assesses the main effect of the within-subject factor. Further, a

covariate can be included in the model to remove variability in the

trend variable(s) predictable by these previously observed individual

differences among subjects. Delaney and Maxwell (1981) showed that,

under the typical ANCOVA assumptions, one can thereby achieve a valid

test of the within-subjects factor that will generally be more powerful

than the unadjusted test. However, it was noted that the proportional
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reduction in error variance will usually not be as great as in the

between-subjects design, in part because cd the unreliability common to

difference scores. In order to correct an erroneous example of this

type of analysis offered by Ceurvorst and Stock (1978), the technical

point was also noted that the covariate needed to be "centered" or

expressed in deviation score form in order for the estimate of the

intercept in the ANCOVA situation to correspond to the estimate of the

grand mean in the unadjusted test.

In our previous paper we mentioned the fact that the regression of

the trend variable on the covariate could be viewed as an indication of

an attribute-by-treatment interaction (MI). However, we did not

develop this point in detail, and now see the need for procedures to

specify the nature of the ATI. Fortunately, a set of analytic pro-

cedures developed Bor dealing with heterogeneity of regression in

between-groups designs can be fruitfully extended to the repeated meas-

ures case. It is th primary purpose of the current paper to detail how

this can be done. The paper will begin with consideration of the sim-

plest possible within-subjects design with a covariate, and then deal

with more complex designs.

Throughout the paper we will be making the assumption typically

made in ANCOVA that the covariate, X, is fixed. This does not mean that

the values of X must be specified ty the experimenter in advance, but

rather that the inferences are made to subpopulations of subjects having

the same values on X as those observed. If this assumption is not made,

then certain of the parameter estimates of interest will be less precise

(see Algina, 1982). The only distributional assumptions we require are
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that the residual errors associated with the trend variable be indepen-

dently and identically distributed as normal random variables, or in the

case of noltiple trend variables, that they jointly follow a multivari-

ate normal distribution.

Totally Within Design

Consider first the simplest possible repeated measurement design

with a oovariate. Assume a single score is available for each of a

group of subjects on a oovariate, X, as well as on each of two dependent

variables, Yl and Y2. Yl and Y2 must at least be commensurate and will

typically be scores on the same conceptual variable assessed at two dif-

ferent points in time. For example, an investigator might assume a

linear relationship between a child's age 00 and performance on a

problem-solving task, with problem-solving being assessed before and

after instruction to yield two scores, Y1 and Y2. The primary questions

of interest in such a design would likely be whether there is an effect

of instruction (and/or practice) and whether this effect depends on the

subject's age. That is, is there a main effect of instruction, and is

there an interaction of instruction with age?

One might view the problem as involving the comparison of two

regression lines, that of Y2 on X and that of Yi on X. Denote these

regression models as follows:

Y
2
-a

2
+b2 x+e2-

'

Y1 al blx el'
(1)

where we use a lower case x as a reminder that the covariate should be

expressed in deviation bcore form. Here of course the subscript
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designates the dependent variable; were it to designate groups of sub,

jects then a test of the interaction of age with instructions would

correspond to the test of heterogeneity of regression in a between-

groups ANCOVA. In the present context however since the same subjects

serve in both conditions the errors, el and e2, will be correlated and

any test must take this into account. The appropriate correction is

easily accomplished by simply computing differences between the observa-

tions in the two conditions, i.e. YD = Y2 - Y
l'

and using this as the

dependent variable. Use of such a variable is prototypical of the "mul-

tivariate approach" to repeated measures (McCall & Appelbaum, 1974).

Then we have the single regression model

y..1 = bpx ep (2)

Note that bp = b2 - bl and ap = a2 - al. Further, since X is such that

x = O a.0 = = Y2 - Since Iep = (1 - rxy ) (Yp - -%)
2

, one can
2 2

perform a test of the within-subject main effect (by testing for whether

ap is equal to zero) that will likely have greater power than would the

unadjusted best. Admittedly, because of the unreliability of difference

scores and the fact that typically covariates will predict even true

change considerably less well than final level of perfomance, the gain

in power resulting from using the covariate will typically be less than

in between-subject designs with the same variables. Nonetheless, there

are conditions where b , and hence the gain in power in the within-
IxYp

subjects analysis, will be substantial (Delaney &Maxwell, 1981).

Two points about such a test are deserving of comment. First, the

test involves a conditional inference. Statistical inferences are
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restricted to subpopulations having the particular same values of X.

The test just described which concerned the mean of the subpopulation of

D
values having an X score equal to 3 is illustrative of such a condi-

tional inference. This test of the significance of the change for a

typical individual will usually be of most interest. However, as Rogosa

(1980) has made clear one could "pick-a-point" other than Tc at which to

perform the significance test. For some investigators this flexibility

will not be an attraction - simply the benefit of increased power of

testing the within-subject factor will more than offset the cost of res-

tricting the inference to a conditional one. This would almost cer-

tainly be the case in situations like the example given above where the

ages of the children would in fact likely be chosen in advance, and thus

making an inference conditional upon those ages would be the intent of

the investigator.

The second point concerns an issue about which varying opinions

have been expressed by methodologists. We have said that the regression

of the difference score on the covariate, e.g., as indicated by a test

of bb in (2) above, needs to be substantial in order for there to be

substantial benefit from using the covariate. However, a substantial

regression here means that there is violation of "the assumption of

homogeneity of regression" in that it indicates a difference between bi

and b2. Some have argued in this context, e.g., Algina (1982), that the

unadjusted test of the within main effect is preferable to the adjusted

test, in part because the latter goes against the principle that the

main effect of a factor is meaningful only when it does not interact

with other factors. Mule a world with no interacticns would be simpler
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(and duller), ignoring them when they exist is not the optimal strategy.

We would opt instead for conducting conditional tests in this situation,

and agree with Rogcsa (1980, p. 308) that one can meaningfully' interpret

the average distance between two regressic,. _Ines even when the slopes

differ.

Following Rogosa's notation, let the difference between the popula-

tion regression lines at a specific value cf X be denotedA(xi) which

may be written

A(xi) (a2 al) (132 bi)xi aD bDxi

and which is estimated by

D(xi) = aro + yi.

Denoting the residual variance in model (2) as

4°2 = (1 13!y
D
)4°YD (1 PXY

D
C22 2p12°1c2)'

where the numerical subscripts refer bo the original variables Yi and

YvthenthevarianceofthesamplingdistributionofD(x).may be1

expressed here as

2

02 02 I
x

2
= 1

+ ---1 (3)
D(x) n

Exi
_

and may be estimated simply by substituting for 4#2 the sample mean

square error from model (2), i.e.

2 2

82 = s2
2eD 2 aD

-

n - 2 n-2

B
D
x)

Since (3) will be a minimum when x is at its mean cf 0, one can inter-

pret the test of the intercept of model (2), as being an evaluation of

the difference between the two regression lines in (1) at the point

where the estimate of that difference has the greatest precision.

1 0
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Although one could perform and meaningfully interpret such a test

as one of the treatment effect for the average individual, typically one

would want to pursue further the nature cf the attribute-by-treatment

interaction implied by the regression of Yr) on x. Our earlier discus-

sion cf this general problem (Delaney &Maxwell, 1981) did not give suf-

ficient attention to this point. One would like to perform the

equivalent cf tests of the simple main effects of the treatment that are

frequently employed as follow-up tests of interacticns in completely

crossed factorial designs. This could be done here by constructing con-

fidence intervals around the conditional means, Dy ix., for the X values
DI I

observed in the study. The 1 - c( interval for this mean is bounded by

1
D(x) + N-2 ab(x)

(4)
.

Thus, analogously to the nonsimultaneous region of significance typi-

cally used in Jchnson-Neyman analyses of ATI's in between-subjects

designs, one can define a region composed of points on the X-axis for

which a Y D value of zero is outside the confidence interval at that x..
1

This would allow one to make statements about one's confidence of the

presence of the treatment effect for a particular value of X. Ncte that

because of the dependence of ab(x) on how far the particular X score is

from X it is possible that estimated values of ;iv ix which are larger in

absolute value than a significant ap may be judged nonsignificant

because of the widening confidence bands as you move away from I

Alternatively, one could opt for a simultaneous inferential pro-

cedure which would allow one to make statements about the reliability of

the difference between py ix and 0 for a whole set of X values. The

DI

Working-Hotelling formula for the confidence band for the entire
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regression line may be used so that there will be a known level of

assurance that all estimates of the conditional means are correct (Neter

& Wasserman, 1974, pp. 149-154). Here the simultaneous confidence

band would consist of the concatenation of the intervals each of which

is bounded by

D(x) ±W ap(x)

where

142 = 21$1*(

Between X Within Case

Now consider a repeated measures design that also involves a

between-subjects factor as well as a covariate. Again we will for sim-

plicity restrict the discrete factors to two levels each. The previ-

ously cited example could easily be expanded for this case. Assume that

children of various ages are randomly assigned either to a treatment

condition on designed ,co Tiotivate them to do well in the upcoming task,

or to a control condition (C) where the initial instruction is neutral.

As before, all children's baseline and final performance are then

observed on a problem solving task.

Now one might view the problem as involving four regression lines

YT2 1r2 bT2x eT2

YT1 bTlx grl

Y
C2

= a
C2

+ b
C2
x + e

C2

Y
Cl

= a
Cl

+ b
Cl

x + e
Cl

As before the numerical subscripts refer to levels of the within-

subjects factor, and the letter subscripts now designate levels of the

between-subjects factor. And, as Wfore, it is convenient to work with
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transformed scores to obtain the tests of interest. First consider the

between-subjects effects. Letting Ys = Y1 + Y2, then the between-

subjects effects could be assessed in the context of a model which

allows for heterogeneous slopes:

YST aST IDSTx eST

Y =a +b x+ e
SC SC SC SC

where bsT
bT2 bTl; bSC bC1 bC2; aST aS2 aS1;

and

aSC aC1 aC2.
Rogosa (1980) has fully developed such tests (these

are illustrated below for the within-effects) and the arguments for

them, which include the fact that any heterogeneity of slopes across the

levels of the between-subject factor results in the test statistic for

the conventional ANCOVA being distributed as a non-central F. If the

evidence for heterogeneity is sufficiently weak that you choose to

assume it non-existent, then the typical ANCOVA using a pooled within

group slope estimate could be used:

Y =a +bS x+ e
ST ST ST

Y =a +bS x+ e
SC SC SC

The analysis of effects involving the within-subjects factor would

as before utilize difference scores. TWo possible outcomes indicating

different kinds of heterogeneity are possible here. First a significant

regression of the difference scores on the covariate would indicate, as

we discussed in our treatment of the totally within design, an ATI

involving the covariate and the within subjects factor. In this event,

we would suggest evaluating the effect of the within factor, not only at

3E but also at different points along the X dimension, as outlined above.

The only difference would be in the degrees of freedom used to estimate
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residual error variance and hence determine the critical values of the

test statistics for the confidence intervals.

Secondly, a difference across levels of the between-subjects factor

in the slopes of the regression lines would indicate a three-way

interaction involving the between factor, the within factor and the

covariate. Not surprisingly, there are a variety of ways one could

proceed to specify the locus of the three-way interaction. Perhaps most

straightforward would be to use Pogosa's methods for testing the verti-

cal difference between two regression lines, keeping in mind that the

dependent variable for the analysis is itself a difference score across

levels of the within-subject factor. Thus one would be examining the

two within-group regression lines:

YDT aDT bDTx eDT

YDC
arc + bre + erc (5)

The difference between the sample regression lines at any point on X,

would here equal

D(x) (am 5r1c) (BDT Bioc)x
(6)

Non-simultaneous inference procedures would be used to assess the

difference at a particular value of x, such as the grand mean on x.

Here one would estimate the variance of the sampling distribution of

D(x).byusing the following expression:
1

a2 = s2
D(x.

1)

Ima - 2 - 2
(x. - (x. - x )

1 1 1 T
+

1 C
riT nc 2 2 -

where s
2
is the pooled residual error variance estimate from the model

in (5). The critical value of a t test of D(x) would now be based on

N-4 degrees of freedom. A significant difference would be interpreted

14
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to mean that for the subpopulation of people having that X score, the

within-subject effect in the treatment condition would be reliably dif-

ferent from the effect of the within factor in the control condition.

Simultaneous inferences for a range of values of X could be made

(Rogosa, 1980) by constructing confidence intervals centered at D(x)

and bounded by

D(X) + w (7)
- D (x)

where

1,72

The method just described for analyzing the three-way interaction

essentially examined the simple two-way interaction of the between and

within factors at particular levels of the covariate. Alternatively,

one could look at simple effects within the levels of a different fac-

tor.

For example, one might proceed by examining the stmple interaction

of the within-factor and the covariate at each level of the between-

subjects factor. This would involve tests made separately on the two

equations in (5), using the techniques for the totally within design

separately for each. This would allow specification cf the particular X

values for which a significant effect of the within factor was observed

for the treatment subjects, and a different set of X values for which

the within effect was observed for controls.

Finally, one might look at tests within levels of the repeated

measures factor. This would imply analysis of the regression of the

original dependent measures (instead of their sum or same other linear

combination) on the covariate. Tests cf heterogeneity of these regres-



Delaney & Maxwell -13- Heterogeneity

sion lines across groups would then be performed separately for each

repeated measure, and would be interpreted as simple interactions of the

between subjects factor with the oovariate at levels of the within sub-

jects factor. The choice among these methods of analyzing the three-way

interaction would be guided by considerations of what results are most

interpretable in the particular context of any study.

Extensions

Although we will not develop them here, the methods discussed in

this paper can be extended to larger designs. Nith just two levels of

the within-subjects factor, univariate tests Amilar bo those we have

discussed can be used with designs involving more between-subjects fac-

tors. The true multivariate situation arises when there are more than

two levels of the within-subject factor. In that case, methods utiliz-

ing confidence intervals for predictions in multivariate multiple

regression (see Finn, 1974, p. 121ff.) can be used bo generate analogous

procedures bo those discussed here.

Examples

Table 1 contains two sets of hypothetical data that will be used bo

illustrate the procedures we have described. The data for Group C

correspond bo the example of the botany within design we discussed ini-

tially, i.e. two problem solving scores, Y/ and Y2, are available for

each of a set of children of different ages, X. The equivalent of a

matched-pairs t-test comparing the means cl Y1 and Y2 does not reach

significance, F(1,9) = 3.807, MSe = 34.044, p > .05. However, when the

test of this within-subjects factor is made more sensitive by including
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X-; as a covariate in the model, the adjusted test of the within effect

is significant, F(1,8) = 7.834, MSe = 16.544, p < .025. The sample

regression lines, which are shown in Figure 1 along with a scatterplot

of the data, indicate the form of the ATI that results in the condi-

tional test of the mean change being more powerful. The effect of the

within-subjects factor in Group C is seen to decrease as age increases.

Thus, further tests of the effect of the within-subjects factor at par-

ticular points on X would be of interest and can be conducted by forming

confidence intervals, as in equation (4) above, around the difference in

_ regression lines. These intervals are sketched in Figure 2 where the

solid lines indicate the boundaries of the non-simultaneous confidence

intervals and the dashed lines indicate the boundaries of the simultane-

ous intervals. Using non-simultaneous intervals one would conclude a

significant within effect at X values of 3, 4 and 5. Using simultaneous

bounds, so that assertions can be made at a specified c( about the condi-

tional means for all values of X, results in being able to conclude a

significant within effect only at ages 3 and 4.

We may now illustrate the between x within analysis by combining

the data just analyzed with that labelled Group T in Table 1. Scatter-

plots and regression lines for the Group T data are shown in Figure 3.

The regressions of the difference scores on X for the two groups are

shown in Figure 4. A standard ANCOVA of these difference scores would

have resulted in less sensitive tests of the within effects tnan the

unadjusted test, because there is no regression overall of the differ-

ence scores on X, F(1,17) = 0, i.e. there is no overall interaction of

the covariate and the within effect. However, this obtains because the
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simple interactions of the covariate with the within factor differ

across levels of the between-groups factor. A test for heterogeneity of

regression is highly significant, F(1,16) = 28.559, MSe = 11.699, p <

.001, indicating there is a prominent three-way interaction. As we have

indicated, a number of different approaches to further analyses are pos-

sible in this situation. We illustrate here the method of examining the

difference between the regression lines at different points on X. The

difference between these regressions (of the form of equation (6) above)

is indicated by the dashed line in Figure 4. Both simultaneous confi-

dence intervals (:f. equation (7)) and non-simultaneous confidence

intervals around this line would lead one to conclude here that the

effect of the within factor is significantly greater in the treatment

condition than the control condition for ages 5, 6 and 7. The simple

interaction of the between and within factors is non-significant for

ages 3 and 4. Finally, one might wish to fcalow up these tests with

still further analyses, e.g. of the "simple simple" effects of instruc-

tions at particular ages within levels of the treatment factor. These

could be carried out by constructing the appropriate confidence inter-

vals around the regressions of the difference scores on X, as illus-

trated in Figuze 2.

Conclusion

We have discussed a method of analyzing repeated measures designs

involving a covariate. Essentially, the method involves viewing the

effect of the within-subject factor as a linear functicn of the covari -

ate. We conc1L.,de that this approach to repeated measures designs per-

mits not only more sensitive overall tests of the effect of.the within-

18
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subject factor but also a thorough analysis of the ATI implied by a sig-

nificant regression of the within effect on the oovariate.

D
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Table 1

Data, Summary Statistics, and Sample Regression Equations

Group C Group T

X Y1 Y2 YD X Y Y
2

Y
D

3 10 20 10 3 10 17 7

3 12 22 10 3 13 17 4

4 21 32 11 4 16 23 7

4 25 30 5 5 20 25 5

5 30 35 5 5 28 39 11

5 36 30 -6 5 29 36 7

6 38 40 2 6 40 52 12

6 40 43 3 7 37 50 13

7 51 51 0 7 53 70 17

7 59 55 -4 7 62 80 18

Mean 5.0 32.6 35.8 3.6 5.2 30.8 40.9 10.1

S.D. 1.5 15.9 11.5 5.8 1.5 17.3 21.9 4.9

Regression Equation Regression Equation SS
SSerror error

Y2 = 35.8 + 7.45 (X- "Rc) 81.6 Y2 = 40.9 + 12.93 (X- ;) 716.0

Yl = 32.2 + 10.40 (X - 100.4 YI = 30.8 + 10.20 (X- TCT) 436.7

YD = 3.6 - 2.95 - ;) 132.4 Yip = 10.1 + 2.72 (X- Ty 54.8
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