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1. Introduction

1.1. Overview of GLISP
GLISP is a LISP-based language which provides high-level language fcatures not found in ordinary LISP.

Thc GLISP language is implemented by means of a compiler which accepts GLISP as input and produces

ordinary LISP as output; this output can be further compiled to machine code by the LISP compiler. GLISP

is available for several LISP dialects, including Inter lisp, Mac lisp, UCI Lisp, ELISP, Franz Lisp, and Portable

Standard Lisp.

The goal of GLISP is to allow structured objects to be referenced in a convenient, succinct language, and to

allow the structures of objccts to be changed without changing the code which references the objects. GLISP

provides both PASCAL-like and English-like syntaxes; much of the power and brevity of GLISP derive from

the compiler features necessary to support the relatively informal, English-like language constructs. The

following example function illustrates how GLISP permits definite reference to structured objects.

(HourlySalaries (GLAMBDA ( (a DEPARTMENT) )
(for each EMPLOYEE who is HOURLY

(PRIN1 NAME) (SPACES 3) (PRINT SALARY) ) ))

The featurcs provided by GLISP include the following:

1. GLISP maintains knowledge of the "context" of the computation as the program is executed.
Features of objects which are in contcxt may be rcfcrcnced directly; thc compiler will determine
how to rcfcrence thc objects given the currcnt context, and will add the newly referenced objects
to the context. In the above example, thc function's argument, an object whose class is
DEPARTMENT, establishes an initial context relative to which EMPLOYEES can be found. In
thc contcxt of an EMPLOYEE, NAME 'and SALARY can be found.

2. GLISP supports flexible object definition and reference with a powerful abstract datatype facility.
Object classes are easily declared to the system. An object declaration includes a definition of the
storage structure of the objcct and declarations of properties of the object; these may be declared
in such a way that they compile open, resulting in efficient object codc. GLISP supports object-
centered programming, in which processes are invoked by means of "messages" sent to objects.
Object structures may bc LISP structurcs (for which codc is automatically compiled) or Units in
thc uscr's favorite representation language (for which thc user can supply compilation functions).

3. Loop constructs, such as (FOR EACH <item> WITH <property> DO ...) , are compiled into loops
of thc appropriate form.

4. Compilation of infix expressions is provided for the arithmetic operators and for additional
operators which facilitate list manipulation. Operators are interpreted appropriately for Lisp
datatypcs as well as for numbers; operator overloading for user-defined objects is provided using
the message facility.
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5. The GLISP compiler infers the types of objects when possible, and uses this knowledge to
generate efficient object code. By performing compilation relative to a knowledge base , GLISP is
able to perform certain computations (e.g., inheritance of an attached procedure from a parent
class of an object in a knowledge base) at compile time rather than at runtime, resulting in much
faster execution.

6. By separating object definitions from the code which references objects, GLISP permits radical
changes to object structures with no changes to code.

1.2. Implementation
GLISP is implemented by means of a compiler, which produces a normal Lisp EXPR from the GLISP

code; the GLISP code is saved on the function's property list, and the compiled definition replaces the GLISP

definition. Use of GLISP entails the cost of a single compilation, but otherwise is about as efficient as normal

LISP. The LISP code produced by GLISP can be further compiled to machine code by the LISP compiler.

GLISP functions are indicated by the use of GLAMI3DA instead of LAMBDA in the function definition.

When the Lisp interpreter sees the GLAMBDA, it calls the GLISP compiler to incrementally compile the

GLISP function. The compiled version replaces the GLISP version (which is saved on the function name's

property list), and is used thereafter. This automatic compilation feature is currently implemented in Interlisp

and in Franz Lisp. In other dialects, it is necessary for the user to explicitly invoke compilation of GLISP

functions by calling the compiler function GLCC for each one.

To use GLISP, it is first necessary to load .the compiler file into Lisp. Users' files containing structure

descriptions and GLISP code are then loaded. Compilation of a GLISP function is requested by:

(GLCC 'FN) Compile FN.

(GLCP 'FN) Compile FN and prettyprint the result.

(GLP 'FN) Print the compiled version of FN.

In Interlisp, all the GLISP functions (beginning with GLAMBDA) in a file can be compiled by invoking

( GLCOMPCOMS <f i 1 e>COMS ), where <f i 1 e>COMS is the list of file package commands for the file.

Properties of compiled functions are stored on the property list of the function name:

GLORIGINALEXPR Original (GLISP) version of the function).
GLCOMPILED GLISP-compiled version of the function.

1The original definition is saved is EXPR in Interlisp.
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GLRESULTTYPE Type of the result of the function.
GLARGUMENTTYPES Types of the arguments of the function.

Properties of GLISP functions can be examined with the function (GLED '<name>), which calls the Lisp

editor on the property list of <name>: (GLEDF '<name>) calls the Lisp editor on the original (GLISP)

definition of <name>.

1.3. Error Messages
GLISP provides detailed error messages when compilation errors are detected; many careless errors such as

misspellings will be caught by the compiler. When the source program contains errors, the compiled code

generates runtime errors upon execution of the erroneous expressions.

1.4. Interactive Features of GLISP
Several features of GLISP are available interactively, as well as in compiled functions:

1. The A function, which creates structured objects from a readable property/value list, is available
as an interactive function.

2. Messages to objects can be executed interactively.

3. A display editor/inspector, GEV, is available for use with bitmap graphics terminals.2 GEV
interprets objects according to their GLISP structure descriptions; it allows the user to inspect
objects, edit them, interactively construct programs which operate on them, display computed
properties, send messages to objects, and "push down" to inspect data values.

2GEV is currently implemented only for Xerox Lisp machines.
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2. Object Descriptions

2.1. Declaration of Object Descriptions
An Objeci Desert'', lion in GLISP is a description of the structure of an object in terms of named

substructures, together with definitions of ways of referencing the object. The latter may include properlies

(i.e., data whose values are not stored, but are computed from the values of stored data), adjectival predicates,

and messages which the object can receive; the messages can be used to implement operator overloading and

other compilation features.

Object Descriptions are obtained by GLISP in several ways:

1. The descriptions of basic datatypes (e.g., INTEGER) are automatically known to the compiler.

2. Structure descriptions (but not full object descriptions) may be used directly as lypes in function
definitions.

3. The user may declare object descriptions to the system using the function GLISPOBJECTS; the
names of the object types may then be used as lypes in function definitions and definitions of
other structures.

4. Object descriptions may be included as part of a knowledge representation language, and are then
furnished to GLISP by the interface package written for that representation language.

LISP data structures are declared uSing the function GLISPOBJECTS3, which takes one or more object

descriptions as arguments (assuming the descriptions to be quoted). Since GLISP compilation is performed

relative to the knowledge base of object descriptions, the object descriptions must be declared prior to GLISP

compilation of functions using those descriptions. The format of each description is as follows:

(<object name> <structure description>
PROP <property descriptions>
ADJ <adjective descriptions>
ISA <predicate descriptions>
MSG <message descriptions>
SUPERS <list of superclasses>
VALUES <list of values>

The <object name> and <structure description> are required; the other property/value pairs are optional, and

may appear in any order. The following example illustrates some of the declarations which might be made to

describe the object type VECTOR.

3Once declared. object descriptions may be included in INTERLISP program files by including in the <file>.COMS a statement of the

form: ( GLISPOBJECTS <object-name? <object-namen>)
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(GLISPOBJECTS

(VECTOR (CONS (X NUMBER) (Y NUMBER))

PROP ( (MAGNITUDE .((SQRT X*X + YoY))) )

ADJ ( (ZERO (X IS ZERO AND Y IS ZERO))
(NORMALIZED (MAGNITUDE = 1.0)) )

MSG ( (+ VECTORPLUS OPEN T)

(- VECTORDIFFERENCE) )

) )

2.1.1. Property Descriptions
Each <des cripti on> specified with PROP, ADJ, ISA, or MSG has the following format:

(<name> <response> <propl> <value?. <propn> <valued>)

where <name> is the (atomic) name of the property, <response> is a function name or a list of GLISP code

to be compiled in place of the property, and the <prop> <va I ue> pairs are optional properties which affect

compilation. All four kinds of properties are compiled in a similar fashion, as described in the section

"Compilation of Message'.

2.1 .2. Supers Clescription
The SUPERS list specifies a list of superclasses , i.e., the names of other object deScriptions from which the

object may inherit PROP, ADJ, ISA, and MSG properties. Inheritance from superclasses can be recursive, as

described under "Compilation of Messages".

2.12,1talues Description
The VALUES list is a list of pairs, (<name> <val ue>) , which is used to associate symbolic names

with constant values for an object type. If VALUES are defined for the type of the selector of a CASE

statement, the corresponding symbolic names may be used as the selection values for the clauses of the CASE

statement.
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2.2. Structure Desc riptions
Much of the power of GLISP is derived from its use of Structure Descriptions. A Structure Description

(abbreviated "<sd>") is a means of describing a LISP data structure and giving names to parts of the structure;

it is similar in conccpt to a Record declaration in PASCAL. Structure descriptions are used by the GLISP

compiler to generate code to retrieve and store parts of structures.

2.2.1. Syntax of Structure Descriptions
The syntax of structure dcscriptions is recursively defined in terms of basic types and composite

which are built up from basic types. The syntax of structure descriptions is as f011ows:4

1. The following basic types are known to the compiler:

ATOM
INTEGER
REAL
NUMBER
STRING
BOOLEAN
ANYTHING

(either INTEGER or REAL)

(either T or NIL)
(an arbitrary structure)

2. An object type which is known to the compiler, either from a GLISPOBJECTS declaration or
because it is a Class of units in the user's knowledge representation language, is a valid type for
use in a structurc description. The <name> of such an object type may be specified directly as
<name> or, for readability, as (A <name>) or (AN <name>).5

3. Any substructurc can be named by enclosing it in a list prefixed by the namc: (<name> <sd>) .
This allows the same substructure to have multiple names. "A", "AN", and the names used in
forming compositc types (given below) are treated as reserved words, and may not bc used as
names.

4. Composite Structures: Structured data types composed of other structures are described using the
following structuring operators:

a. (CONS <sd1> <sd2>)
The CONS of two structures whose descriptions are <sd1> and <sd2>.

b. (UST <sd1> <sd2> <sdn>)
A list of exactly thc elements whose descriptions arc <sd1> <sd2> <sdn>.

c. (LISTOF <sd>)

types

4The names of the basic types and the structuring operators must be all upper-case or lower-case, depending on the case which is usual

for the underlying Lisp system. In general, other GLISP keywords and user program names may be in upper-case, lower-case, or
mixed-case, if mixed cases are permitted by the Lisp system.

5Whenever the form (A ...) is allowed in GLISP, the form (AN ...) is also allowed.
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A list of zero or more elements, each of which has the description <sd>.

d. (ALIST (<name1> <sdi>) (<namen> <sdn>))
An association list- in *hich the atom <namei>, if present, is associated with a structure
whose description is <sdi>.

e. (PROPLIST (<name1> <sdi>) (<namen> <sdn>))
An association list in "property-list format" (alternating names and values) in which the
atom <name.), if present, is associated with a structure whose description is <sd.>.

f. (ATOM (BINDING <sd>) (PROPLIST (<pnamel> <sd1>) (<pnamen> <sdn>) ))
This dcscribes an atom with its binding and/or its property list; either the BINDING or the
PROPLIST group may be omitted. Each property namc <pnamei> is treated as a property
list indicator as well as the namc of the substructure. When creation of such a structure is
specified, G LISP will compile code to creatc a GENSYM atom.

g. (RECORD <recordname> (<name
1
> <sd

1
>) (<name

n
> <sd

n
>))

RECORD specifies the use of contiguous records for data storage. <recordname> is the
name of the record type; it is optional, and is not used in some Lisp dialects.6

h. (TRANSPARENT <type>)
An objcct of type <type> is incorporated into the structure being defined in fransparent
mode, which mcans that all fields and propertics of the object of type <type> can be directly
refercnccd as if they were properties of thc object being defined. A substructure which is a
namcd type and which is not declared to bc TRANSPARENT is assumed to be opaque,
i.e., its internal structurc cannot bc seen unless an access path explicitly names the
subrecord.7 The objcct of type <type> may also contain TRANSPARENT objects; the graph
of TRANSPARENT object references must of course be acyclic.

i. (OBJECT (<namel> <sd1>) (<name > <sdn>))
(ATOMOBJECT (<namel> <sd1>) <namen> <sdn>))
(LISTOBJECT (<name1> <sd1>) (<namen> <sdn>))
Thcsc declarations dcscribe Objecis, data structures which can receive mcssagcs at runtime.
The three types of objects arc implemented as records, atoms, or lists, respectively. In each
case, the system adds to the object a CLASS datum which points to the name of the type of
the object. An object declaration may only appcar as the top-level declaration of a named
object type.

6RECORDs are implemented using RECORDS in Interlisp, HUNKs in Maclisp and Franz Lisp, VECTORs in Portable Standard
Lisp, and lists in UCI Lisp and ELISP. In Interlisp, appropriate RECORD declarations must be made to the system by the user in
addition to the GLISP declarations.

7For example, a PROFESSOR record might contain some fields which are unique to professors, plus a pointer to an EMPLOYEE
record. If the declaration in the PROFESSOR record were (EMPREC (TRANSPARENT EMPLOYEE)), then a field of the employee
record, say SALARY, could be referenced directly from a variable P which points to a PROFESSOR record as 0:SALARY ; if the

declaration were (EMPREC EMPLOYEE). it would be necessary to say 13: EMPREC :SALARY.
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2.2.2. Examples of Structure Descriptions
The following examples illustrate the use of Structure Descriptions.

(GLISPOBJECTS

(CAT (LIST (NAME ATOM)
(PROPERTIES (LIST (CONS (SEX ATOM)

(WEIGHT INTEGER))
(AGE INTEGER)
(COLOR ATOM)))

(LIKESCATNIp BOOLEAN)))

(PERSON (ATOM
(PROPLIST.

(CHILDREN (LISTOF (A PERSON)))
(AGE INTEGER)
(PETS (LIST (CATS (LISTOF CAT))

(DOGS (LISTOF (A DOG))) ))

) ) )

The first structure, CAT, is entirely composed of list structure. An CAT structure might look like:

(PUFF ((MALE . 10) 5 CALICO) T)

Given a CAT object X, we could ask for its WEIGHT [equivalent to (CDAADR X)] or for a subrccord such

as PROPERTIES [equivalent to (CADR X)]. Having set a variable Y to the PROPERTIES, we could also ask

for the WEIGHT from Y [equivalent to (CDAR Y)]. In general, whenever a subrecord is accessed, the

structure description of the subrecord is associated with it by the compiler, enabling further accesses to parts

of the subrecord. Thus, the meaning of a subrecord name depends on the type of record from which the

subrecord is retrieved. The subrecord AGE has two difTerent meanings when applied to PERSONs and

CATs. The second structure, PERSON, illustrates a description of an object which is a Lisp atom with

properties stored on its property list. Whereas no structure names appear in an actual CAT structure, the

substructures of a PROPLIST operator must be named, and the names appear in the ctual structures. For

example, if X is a PERSON structure, retrieval of the AGE of X is equivalent to (GET 'IMP X ' AGE ). A

subrecord of a PROPLIST record can be referenced directly; e.g., one can ask for the DOGS of a PERSON

directly, without cognizance of the fact. that DOGS is part of the PETS property.

2.3. Editing of Object Descriptions
An object description can be edited by calling ( GL EDS TYPE ) , where TYPE is the name of the

object type. This will cause the Lisp editor to be called on the object description of TYPE .
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2.4. InteractiveEditingofObjects
An interactive structure inspector/editor, GEV, is available for the Xerox 1100-series lisp machines. GEV

allows the user to inspect and edit any structures which are described by GLISP object descriptions, to "zoom

in" on substructures of interest, and to display the values of computed properties automatically or on demand.

GEV is described in a separate document.

2.5. Global Variables
The types of free variables can be declared within the functions which reference them. Alternatively, the

types of global variables can be declared to the compiler using the form:8

(GLISPGLOBALS (<name> <type>)

Following such a declaration, the compiler will assume a free variable <name> is of the corresponding <type>.

A GLOBAL object does not have to actually exist as a storage structure; for example, one could define a

global object "MOUSE" or "SYSTEM" whose properties are actually implemented by calls to the operating

system.

2.6. Compile-Time Constants and Conditional Compilation
The values and types of compile-time constants can be declared to the compiler using the form:9

(GLISPCONSTANTS (<name> <value-expression> <type>)

The <name> and <type> fields are assumed to be quoted. The <value-expression> field is a GLISP

expression which is parsed and evaluated; this allows constants to be defined by expressions involving

previously defined constants.

The GLISP compiler will perform many kinds of computations on constants at compile time, reducing the

size of the compiled code and improving execution speed." In particular, arithmetic, comparison, logical,

conditional, and CASE function calls are optimized, with elimination of dead code. This permits conditional

compilation in a clean forth. Code can bc written which tcsts the values of flags in the usual way; if the flag

values are then declared to be compile-time constants using GL1SPCONSTAN1'S, the tests will be performed

8(
GLISPGLOBALS <natal> . . . <name n> ) is defined as a file package command for Interlisp.

9
(GLISPCONSTANTS <name

1
> ... <name n>) is defined as a file package command for Interlisp.

10Ordinary Lisp functions are evaluated on constant argumentS lithe property GLEVALWHENCONST is set to Ton the property list of

the function name. This property is set by the compiler for the basic arithmetic functions.
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at compilc time, and thc unneeded codc will vanish.



13

3. Reference To Objects

3.1. Accessing Objects
The problem of reference is the problem of determining what object, or feature of a structured object, is

referred to by some part of a statement in a language. Most programming languages solve the problem of

reference by unique naming: each distinct object in a program unit has a unique name, and is referenced by

that name. Reference to a part of a structured object is done by giving the name of the variable denoting that

object and a path specification which tells how to get to the desired part from the whole.

GLISP permits reference by unique naming and path specification, but in addition permits definite

reference relative to context. A definite reference is a reference to an object which has not been explicitly

named before, but which can be understood relative to the current context of computation. If, for example,

an object of type VECTOR (as defined earlier) is in context, the program statement

( I F X IS NEGATIVE . . .

contains a definite reference to "X", which may be interpreted as the X substructure of the VECTOR which is

in context. The definition of the computational context and the way in which definite references are resolved

are covered in a later section of this manual.

In the following section, which describes the syntaxes of reference to objects in GLISP, the following

notation is used. "<var>" refers to a variable name in the usual LISP sense, i.e., a LAMBDA variable, PROG

variable, or GLOBAL variable; the variable is assumed to point to (be bound to) an object. "<type>" refers to

the type of object pointed to by a variable. "<property>" refers to a property or subrecord of an object.

Two syntaxes are available for reference to objects: an English-like syntax, and a PASCAL-like syntax. The

two are equivalent, and may be intermixed freely within a GLISP function. The allowable forms of

references in the two syntaxes are shown in the table below.

"PASCAL" Syntax "English" Syntax Meaning

<var> <var> The object denoted
by <var>

:<type> The <type> The object whose type
is <type>

Xproperty> The <Property> The <property> of
or <property> some object
<var>:<property> The <property> of <var> The <property> of the

object denoted by <var>

These forms can be extended to specify longer paths in the obvious way, as in "The AGE of the SPOUSE of
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the HEAD of the DEPARTMENT" or "DEPARTMENT:HEAD:SPOUSE:AGE". Note that there is no

distinction between reference to substructures and reference to properties as far as the syntax of the

referencing code is concerned; this facilitates hiding the internal structures of objects.

3.2. Creation of Objects
GLISP allows the creation of structures to be specified by expressions of the form:

(A <type> with <propertyl> <valuel> , , <property? = <value?)

In this expression, the "with", =", and "," are allowed for readability, but may be omitted if desiredn; if

present, they must all be delimited on both sides by blanks. In response to such an expression, GLISP will

generate code to create a new instance of the specified structure. The <property> names may be specified in

any order. Unspecified properties are defaulted according to the following rules:

1. Basic types are defaulted to 0 for INTEGER and NUMBER, 0.0 for REAL, and NIL for other
types.

2. Composite structures are created from the defaults of their components, except that missing
PROPLIST and ALIST items which would default to NIL arc omitted.

Except for missing PROPLIST and ALIST elements, as noted above, a newly created LISP structure will

contain all of the fields specified in its structure description.

3.3. Interpretive Creation of Objects
The "A" function is defined for interpretive use as well as for use within GLISP functions.

3.4. Predicates on Objects
Adjectives defined for structures using the ADJ and ISA specificatiOns may be used in predicate

expressions on objects in If and For statements. The syntax of basic predicate expressions is:

<object> is <adjective>
<object> is a <isa-adjective>

Basic predicate expressions may be combined using AND, OR, NOT or -, and grouping parentheses.

The compiler automatically recognizes the LISP adjectives ATOMIC, NULL, NIL, INTEGER, REAL,

ZERO, NUMERIC, NEGATIVE, MINUS, and BOUND, and the ISA-adjectives ATOM, LIST, NUMBER,

11Some Lisp dialects, e.g. Maclisp, will interpret commas 2S "backquote" commands and generate error messages. In such dialects, the
Commas must be omitted or be "slaihilled".
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INTEGER, SYMBOL, STRING, ARRAY, and BIGNUM12: user definitions have precedence over these

pre-defined adjectives.

3.4.1. Self-Recognition Adjectives
If the ISA-adjective se 1 f is defined for an object type, Me type name may be used as an ISA-adjective

to test whether a given object is a member of that type. Given a predicate phrase of the form

" X is a V ", the compiler first looks at the definition of the object type of X to see if Y is defined as

an ISA-adjective for such objects. If no such ISA-adjective is found, and Y is a type name, the compiler

looks to see if se 1 f is defined as an ISA-adjective for Y , and if so, compiles it.

If a self ISA-adjective predicate is compiled as the test of an If, While, or For statement, and the tested

object is a simple variable, the variable will be known to be of that type within the scope of the test. For

example, in the statement

(If X is a FOO then (o- X Print) ...

the compiler will know that X is a FOO if the test succeeds, and will compile the Print message appropriate

for a FOO, even if the type of X was declared as something other than FOO earlier. This feature is useful in

implementing disjunctive types, as discussed in a later section.

3.4.2. Testing Object Classes
For those data types which are defined using one of the OBJECT structuring operators, the Class name is

automatically defined as an ISAadjective. The ISA test is implemented by runtime examination of the

CLASS datum of the object.

12where applicable.
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4. GLISP Program Syntax

4.1. Function Syntax
GLISP function syntax is essentially the same as that of LISP with the addition of type information and

RESULT and GLOBAL declarations. The basic function syntax is:13

(<function-name> (GLAMBDA (<arguments>)
(RESULT <result-description>)
(GLOBAL <global-variable-descriptions>)

(PROG (<prog-variables>)
<code> )))

The RESULT declaration is optional; in many cases, the compiler will infer the result type automatically.

The main use of the RESULT declaration is to allow the compiler to determine the result type without

compiling the function, which may be useful when compiling another function which calls it. The <result-

description> is a standard structure description or <type>.

The GLOBAL declaration is used to inform the compiler of the types of free variables. The function

GLISPGLOBALS can be used to declare the types of global variables, making GLOBAL declarations within

individual functions unnecessary.

The major difference between a GLISP function definition and a standard LISP definition is the presence

of type declarations for variables, which are in PASCAL-like syntax of the following forms:

<variab 1 e>:<type>
<variabl e>:(A <type>)
<variable>,<var iable>,...:<type>
<variab 1 e>,<vari abl e>,...:(A <type>)

:<type>
(A <type>)

In addition to declared <type>s, a Structure Description may be used directly as a <type> in a variable-

declaration.

Type declarations are required only for variables whose subrccords or properties will be referenced. In

general, if the value of a variable is computed in such a way that the type of the value can be inferred, the

variable will receive the appropriate type automatically; in such cases, no type declaration is necessary. Since

GLISP maintains a context of the computation, it is often unnecessary to name a variable which iS an

13 PROG is not required. In Lisp dialects other than Interlisp, LAMBDA may be used instead of GLAMBDA.
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argument of a function; in such cases, it is only necessary to specify the <type> of the argument, as shown in

the latter two syntax forms above. PROG and GLOBAL declarations must always specify variable names

(with optional types); the ability to directly reference features of objects 'reduces the number of PROG

variables needed in many cases.

Initial values for PROG variables may be specified, as in Interlisp, by enclosing the variable and its initial

value in a list14:

(PROD (X (N 0) Y) )

However, the syntax of variable declarations does not permit the type of a variable and its initial value to both

be specified.

4.2. Expressions
GLISP provides translation of infix expressions of the kind usuAlly found in programming languages. In

addition, it provides additional operators which facilitate list manipulation and other operations. Overloading

of operators for user-defined types is provided by means of the message facility.

Expressions may be written directly in-line within function references, as in (SQRT X*X + Y*Y ) , or

they may be written within parentheses; parentheses may be used for grouping in the usual way. Operators

may be written with or without delimiting spaces, except for the "-" operator, which must be delbnited by

spaces.15 Expression parsing is done by an operator precedence parser, using the same precedence ordering as

in FORTRAN.16 The operators which arc recognized arc as follows:17

Assignment 4- or :=
Arithmetic + - /
Comparison = = <> < <= > >=

Logical AND OR NOT

Compound 4-+ 4-- +4- 4-

14This' feature is available in all Lisp dialects.

15The "-" operator is required to be delimited by spaces since "-" is often used as a hyphen within variable names. The "-" operator
will be recognized within "atom" names if the flag GLSEPMINUS is set to 1'.

16.tile precedence of compound operators is higher than assignment but lower than that of all other operators. The operators t

+.* are right-associative: all others are left-associative.

17In Maclisp, the operator / must be written //.
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4.2.1 . Interpretation of Operators
In addition to the usual interpretation of .operators when used with numeric arguments, some of the

operators are interpreted appropriately for other Lisp types.

4.2.1.1. Operations on Strings
For operands of type STRING, the operator + performs concatenation. All of the comparison operators

are defined for STRINGs:

4.2.1.2. Operations on Lists
Several operators are defined in such a way that they perform set operations on lists of the form

( L ISTOF <type> ) , where <typ e> is considered to be the element type. The following table shows

thc interpretations of the operators:

<list> + <list> Set Union
<list> <list> Set Difference
<list> * <I ist> Set Intersection

<I ist> + <element> CONS
<element> + <I ist> CONS
<I ist> <element> REMOVE
<element> <= <I ist> MEMBER or MEMB
<I ist> >0 <element> MEMBER or MEMB

4.2.1.3. Compound Operators
Each compound operator performs an operation involving the arguments of the operator and assigns a

value to the left-hand argument; compound operators are therefore thought of as "destructive change"

operators. The meaning of a compound operator depends on the type of its left-hand argument, as shown in

the following table:
Operator Mnemonic NUMBER LISTOF BOOLEAN

Accumulate PLUS NCONC1 OR
Remove DIFFERENCE REMOVE AND NOT
Push PLUS PUSH OR
Pop pop18

As an aid in remembering the list operators, the arrow may be thought of as representing the list, with the

head of the arrow being the front of the list and the operation (+ or -) appearing where the operation occurs

on the list. Thus, for example, adds an element at the end of the list, while adds an element at the front

of the list.

IS For the Pop operator, the arguments are in the reverse of the usual order, i.e., (TOP STACK) will pop the top element off
STACK and assign the elemint removed to TOP.

2t,
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Each of the compound operators performs an assignment to its left-hand side; *the above table shows an

abbreviation of the operation which is performed prior to the assignment. The following examples show the

effects of the operator "++" on local variables of different types:

Source Code Compiled Code

INTEGER 1 ++ 5 (SETQ I (IPLUS I 6))

BOOLEAN p 4-4- Q (SETQ P (OR P Q)) .

LISTOF L 4'4' ITEM (SETQ L (NCONC1 L ITEM))

When the compound operators are not specifically defined for a type, they are interpreted as specifying the

operation (+ or -) on the two operands, followed by assignment of the result to the left-hand operand.

4.2.1.4. Assignment
Assignment of a value to the left-hand argument of an assignment operator is relatively flexible in GLISP.

The following kinds of operands are allowed on the left-hand side of an assignment operator:

1. Variables.

2. Stored substructures of a structured type.

3. PROPerties of a structured type, whenever the interpretation of the PROPerty would be it

left-hand side.

4. Algebraic expressions involving numeric types, provided that the expression ultimately involves
only one occurrence of a variable or stored value.19

For example, consider the following Object Description for a CIRCLE:

(CIRCLE (LIST (START VECTOR) (RADIUS REAL))
PROP ((PI (3.1415926))

(DIAMETER (RADIUS*2))
(CIRCUMFERENCE (PI*DIAMETER))
(AREA (PI*RADIUSt2))) )

Given this description, and a CIRCLE C the following are legal assignments:

(C:RADIUS 4- 5.0)
(C:AREA 4- 100.0)
(C:AREA 4- C:AREA*2)
(C:AREA 4-+ 100.0)

19For example, ( X 2 « 2 . 0 ) is acceptable. but ( X X « 2 . 0 ) is not because the variable X occurs twice.
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4.2.1.5. Self-Assignment Operatorsw
There are some cases where it would be desirable to let an object perform an assignment of its own value.

For example, the user might want to define Property List as an abstract datatype, with messages such as

GETPROP and PUTPROP, and use Property Lists as substructures of other datatypes. However, a message

such as PUTPROP may cause the Property List object to modify its own structure, perhaps even changing its

structure from NIL to a non-NIL value. If the function which implements PUTPROP performs a normal

assignment to its "self' variable, the assignment will affect only the local variable, and will not modify the

Property List component of the containing structure. The purpose of the Self-Assignment Operators is to

allow such modification of the value within the containing structure.

The Self-Assignment Operators are +4-, +44, +44-, and 4-4, corresponding to the operators 44-, and

respectively. The meaning of these operators is that the assignment is performed to the object on the

left-hand side of the operator, as seen from the structure containing the object.

The use of these operators is highly restricted; any use of a Self-Assignment Operator must meet all of the

following conditions:

1. A Self-Assignment Operator can only be used within a Message function which is compiled
OPEN.

2. The left-hand side of the assignment must be a simple variable which is an argument of the
function.

3. The left-hand-side variable must be given a unique (unusual) name to prevent accidental aliasing
with a user variable name.

As an example, the PUTPROP message for a PropertyList datatype could be implemented as follows:

(PropertyList.PUTPROP (GLAMBDA (PropertyListPUTPROPself prop val)
(PropertyListPUTPROPself

(LISTPUT PropertyListPUTPROPself prop val)) ))

4.3. Control Statements
GLISP provides several PASCAL-like control statements.

"This section may be skipped by the casual user of GLISP.
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4.3.1. 1FStatement
The syntax of the IF statement is as follows:

(IF <dondition > 77/EV <action 22> ... <action >
ELSEIF <condition

2
> MEN <action 22> ... <action21

>

ELSE <action
m1 '> <action

mk
>)

Such a statement is translated to a COND of the obvious form. The "THEN" keyword, is optional, as are the

"ELSEIF" and "ELSE" clauses.

4.3.2. CASE Statement
The CASE statement selects a set of actions based on an atomic selector value; its syntax is:

(CASE <selector> OF
(<case > <action 22 > <action 21>)
(<case2> <action22> ... <action 21

>)

ELSE <actionmi> ... <action mk>)

The <se 1 ector> is evaluated, and is compared with the given <case> specifications. Each <case>

specification is either a single, atomic specification, or a list of atomic specifications. All <case>

specifications are assumed to be quoted. The "ELSE" clause is optional; the "ELSE" actions arc executed if

<selector> does not match any <case>.

If the type of the <selector> has a VALUES specification, <case> specifications which match the

VALUES for that type will be translated into the corresponding values.

4.3.3. FOR Statement
The FOR statement generates a loop through a set of elements (typically a list). Two syntaxcs of the FOR

statement are provided:

(FOREACH <set> DO <action1> <actionn>)

(FOR <variable> IN <set> DO <action1> <actionn>)

The keyword "DO" is optional. In the first form of the FOR statement, the singular form of the <set> is

specified; GLISP will convert the given set name to the plural form.21 The <set> may be qualified by an

adjective or predicate phrase in the first form; the allowable syntaxes for such qualifying phrases are shown

below:

21For names with irregular plurals, the plural form should be put on the property list of the singular form undir the property name
PLURAL, e.g., ( PUTPROP 'MAN ' PLURAL 'MEN).
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<set> WITH <predicate>
<set> WHICH IS <adjective>
<set> WHO IS <adjective>
<set> THAT IS <adjective>

The <predicate> and <adjective> phrases may be combined with AND, OR, NOT, and grouping parentheses.

These phrases may be followed by a qualifying phrase of the form:

WHEN <expression>

The "WHEN" expression is ANDed with the other qualifying expressions to determine when thc loop body

will be executed.

Within the FOR loop, the current member of the <set> which is being examined is automatically put into

context at the highcst level of priority. For example, suppose that the current context contains a substructure

whose description is:

(PLUMBERS (LISTOF EMPLOYEE))

Assuming that EMPLOYEE contains the appropriate definitions, the following FOR loop could be written:

(FOR EACH PLUMBER WHO IS NOT A TRAINEE DO SALARY 4-4- 1.60)

To simplify the collection of features of a group of objects, the <action>s in the FOR loop may be replaced

by the CUSP-like construct:

. . . COLLECT <form>)

4.3.4. WHILE Statement
The format of the WHILE statement is as follows:

(WHILE <conditiOn> EN) <actionl> <actionn>)

The actions <act ion1> through <acti one> are executed repeatedly as long as <con dit ion> is true. The

keyword DO may be Omitted. The value of the expression is NIL.

4.3.5. REPEAT Statement
The format of thc REPEAT statement is as follows:

(REPEAT <action1> ... <actions> UNTIL <condition>)

The actions <act i on1> through <act i one> are repeated (always at least once) until <cond i t i on> is

true. The value of the expression is NIL. The keyword UNTIL is required.
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4.4. Definite Reference to Particular Objects
In order to simplify reference to particular member(s) of a group, definite reference may be used. Such an

expression is written using the word THE followed by the singular form of the group, or THOSE followed by

the plural form of the group, and qualifying phrases (as described for the FOR statement). The following

examples illustrate these expressions.

(THE SLOT WITH SLOTNAME = NAME)
(THOSE EMPLOYEES WITH JOBTITLE = 'ELECTRICIAN)

The value of THE is a single object (or NIL if no object satisfies the specified conditions); THOSE produces

a list of all objects satisfying the conditions.22

221n general, nested loops are optimized so that intermediate lists are not actually constructed. Therefore, use of nested THE or

11 1OSE statements is not inefficient.
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5. Messages
GLISP supports the Message metaphor, which has its roots in the languages SIMULA and SMALLTALK.

These languages provide Object-Centered Programming, in which objects are thought of as being active

entities which communicate by sending each other Messages. The internal structures of objects are hidden; a

program which wishes to access "variables" of an object does so by sending messages to the object requesting

the access desired. Each object contains23 a list of Selectors, which identify the messages to which the object

can respond. A Message specifies the destination object, the selector, and any arguments associated with the

message. When a message is executed at runtime, the selector is looked up for the destination object;

associated with the selector is a procedure, which is executed with the destination object and message

arguments as its arguments.

GLISP treats reference to properties, adjectives, and predicates associated with an object similarly to the

way it treats messages. The compiler is able to perform much of the lookup of selectors at compile time,

resulting in efficient code while maintaining the flexibility of the message metaphor. Messages can be defined

in such a way that they compile open, compile as function calls to the function which is associated with the

selector, or compile as messages to be interpreted at runtime.

Sending of a message in GLISP is specified using the following syntax:

(SEND <object> <selector> <argi> <argn>)

The keyword "SEND" may be replaced by '14-". The <selector> is assumed to be quoted. Zero or more

arguments may be specified; the arguments other than <selector> are evaluated. <object> is evaluated;

if <object> is a non-atomic expression, it must be enclosed in at least one set of parantheses, so that the

<se 1 ector> will always be the third element of the list.

5.1. Compilation of Messages
When GLISP encounters a message statement, it looks up the <selector> in the MSG definition of the type

of the object to which the message is sent, or in one of the SUPERS of the type.24 Each <selector> is paired.

with the appropriate <response> to the message. Code is compiled depending on the form of the <response>

associated with the <selector>, as fo1lows:25

2 3typically by inheritance from some parent in a Class hierarchy

241fan appropriate representation language is provided, the <selector> and its associated <response> may be inherited from a parent

class in the class hierarchy of the representation language.

251f the type of the destination object is unknown, or if the <selector> cannot be found, GLISP compiles thd (SEND ...) statement as if

it is a normal function call.
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1. If the <response> is an atom, that atom is taken as the name of a function which is to be called in
response to the message. The code which is compiled is a direct call to this function,

(<response> <object> <argl> <argil>)

2. If the <response> is a list, the contents of the list are recursively compiled in-line as GLISP code,
with the name "self" artificially "bound" to the <object> to which the message was sent.
Because the compilation is recursive, a message may be defined in terms of other messages,
substructures, or properties, which may themselves be defined as messages.26 The outer pair of
parentheses of the <response> serves only to bound its contents; thus, if the <response> is a
function call, the function call must be enclosed in an additional set of parentheses.

The following examples illustrate the various ways of defining message responses.

(EDIT EDITV)

(SUCCESSOR. (self 4- 1))

(MAGNITUDE ((SQRT X*X Y*Y)))

In the first example, a message with <selector> EDIT is compiled as a direct call to the function EDITV. In

the second example, the SUCCESSOR message is compiled as the sum of the object receiving the message

(represented by " se 1 f") and the constant 1; if the object receiving the message is the value of the variable J

and has the type INTEGER, the code generated for the SUCCESSOR would be (ADD1 J). The third

example illustrates a call to a function, SQRT, with arguments containing definite references to X and Y

(which presumably are defined as part of the object whose MAGNITUDE is sought). Note that since

MAGNITUDE is defined by a function call, an "extra" pair of parentheses is required around the function

call to distinguish it from in-line code.

The user can determine whether a mess.ige is to be compiled open, compiled as a function call, or compiled

as a message which is to be executed at runtime. When a GLISP expression is specified as a <response>, the

<response> is always compiled open; open compilation can be requested by using the OPEN property when

the <response> is a function name. Open compilation operates like macro expansion; since the "macro" is a

GLISP expression, it is easy to define messages and properties in terms of other messages and properties. The

combined capabilities of open compilation, message inheritance, conditional compilation, and flexible

assignment provide a great deal of power. The ability to use definite reference in GLISP makes the definition

and use of the "macros" simple and natural.

26Such recursive definitions must of course be acyclic.
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5.2. Compilation of Properties and Adjectives
Properties, Adjectives, and ISA-adjectives are compiled in the same way as Messages. Since the syntax of

use of properties and adjectives does not permit specification of any arguments, the only argument available

to code or a function which implements the <response> for a property or adjective is the se 1 f

argument, which denotes the object to which the property or adjective applies. A <response> which is

written directly as GLISP code may use the name se 1 f directly27 , as in the SUCCESSOR example

above; a function which is specified as the <r es p on s e> will be called with the se 1 f object as its single

argument.

5.3. Declarations for Message Compilation
Declarations which affect compilation of Messages, Adjectives, or Properties may be specified following

the <response> for a given message; such declarations are in (Interlisp) property-list format,

<p r op1><v al u el> . . . <p ropn><v aluen>. The following declarations may be specified:

1. RESULT <type>
This declaration specifies the type of the result of the message or other property. Specification of
result types helps the compiler to perform type inference, thus reducing the number of type
declarations needed in user programs. The RESULT type for simple GLISP expressions will be
inferred by the compiler; the RESULT declaration should be used if the <r es pon s e> is a
complex GLISP expression or a function name.28

2. OPEN T
This declaration specifies that the function which is specified as the <response> is to be compiled
open at each reference. A <response> which is a list of ZLISP code is always compiled open;
however, such a <response> can have only the self argument. If it is desired to compile open a
Message <response> which has arguments besides self, the <response> must be coded as a
function (in order to bind the arguments) and the OPEN declaration must be used. Functions
which arc compiled openvnay not be recursive via any chain of open-compiled functions.

3. MESSAGE T
This declaration specifies that a runtime message should be generated for messages with this
<selector> sent to objects of this Class. Typically, such a declaration would be uscd in a higher-
level Class whose subclasses have different responses to the same message <selector>.

27The name self is "declared" by the compiler, and does not have to be specified in the Structure Description.

28Alternatively, the result of a function may be specified by the RESULT declaration within the function itself.
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5.4. Operator Overloading
GLISP provides operator overloading for user-defined objects using the Mcssage facility. If an arithmetic

operator is defined as the' selector of a message for a user datatype, an arithmetic subexpression using that

operator will be compiled as if it wcre a message call with two arguments. For example, the type VECTOR

might have the declaration and function definitions below:

(GLISPOBJECTS
(VECTOR (CONS (X INTEGER) (Y INTEGER))

MSG ((+ VECTORPLUS OPEN T)
(4-4- VECTORINCR OPEN T)) ) )

(DEFINEQ

(VECTORPLUS (GLAMBDA
(A VECTOR WITH X

(VECTORINCR (GLAMBDA
(U:X V:X)
(U:Y V:Y) ))

(U,V:VECTOR)
U:X + V:X , Y = U:Y + V:Y) ))

(U,V:VECTOR)

With thesc definitions, an expression involving the operators + or 4-+ will be compiled by open compilation of

the respective functions.

The compound operators (4-+ +4- 4-- -4-) are conventionally thought of as "destructive replacement"

operators; thus, the expression ( U U + V) will create a new VECTOR structure and assign the new

structure to U, while the expression ( U 4-+ V) will smash the existing structure U, given the definitions

above. The convention of letting the compound operators specify "destructive replacement" allows the user

to specify both the destructive and non-destructive cases. However, if the compound operators are not

overloaded but the arithmctic operators + and - are overloaded, the compound operators are compiled using

the definitions of + for 4'4" and +4-, and for 4-- and Thus, if only the + operator were overloaded for

VECIOR, the expression ( U 4-+ V) would be compiled as if it were (U U + V).

5.5. Runtime Interpretation of Messages
In some cases, the typc of the objcct which will receive a given message is not known at compile timc; in

such cascs, the message must be executed interpretively, at runtime. Interpretive execution is provided for all

types of GLISP messages.

An interpretive message call (i.e., a call to the fimction SEND) is generated by the GLISP compiler in

response to a message call in a GLISP program when the specified message selector cannot be found for the

declared type of the object receiving thc mcssagc, or whcn the MESSAGE flag is sct for that selector.
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Alternatively, a call to SEND may be entered interactively by the user or may be contained in a function

which has not been compiled by GLISP.

Messages can be interpreted only for those objects which are represented as one of the OBJECT types,

since it is necessary that the object cont'ain a pointer to its CLASS. The <selector> of the message is looked up

in the MSG declarations of the CLASS; if it is not found there, the SUPERS of the CLASS are examined

(depth-first) until the selector is found. The <response> 'associated with the <selector> is then examined. If

the <response> is a function name, that function is simply called with the specified arguments." If the

<response> is a GLISP expression, the expression is compiled as a LAMBDA form and cached for future use.

Interpretive execution is available for other property types (PROP, ADJ, and ISA) using the call:

(SENDPROP <object> <selector> <proptype>)

where <p ro p type> is PROP, ADJ, or ISA. <proptype> is not evaluated.

29The object to which the message is sent is always inserted as the first argument, followed by the other arguments specified in the
message call

3i)
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6. Context Rules and Reference
The ability to use definite reference to features of objects which are in Context is the key to much of

GLISP's power. At the same time, definite reference introduces the possibility of ambiguity, i.e., there could

be more than one object in Context which has a feature with a specifted name. In thi3 chapter, guidelines are

presented for use of definite reference to allow the user to avoid ambiguity.

6.1. Organization of Context
The Context maintained by the compiler is organized in levels, each of which may have multiple entries;

the sequence of levels is a stack. Searching of the Context proceeds from the top (nearest) level of the stack to

the bottom (farthest) level. The bottom level of the stack is composed of the LAMBDA variables of the

function being compiled. New levels are added to the Context in the following cases:

1. When a PROG is compiled. The PROG variables aie added to the new level.

2. When a For loop is compiled. The "loop index" variable (which may be either a user variable or a
compiler variable) is added to the .new level, so that it is in context during the loop.

3. When a While loop is compiled.

4. When a new clause of an If statement is compiled.

When a Message, Property, or Adjective is compiled, that compilation takcs place in a new context

consisting only of the self argument and other message arguments.

6.2. Rules for Using Definite Reference
The possibility of referential ambiguity is easily controlled in practice. First, it should be noted that the

traditional methods of unique naming and complete path specification .("PASCAL style") are available, and

should be used whenever there is any possibility of ambiguity. Second, there are several cases which are

guaranteed to be unambiguous:

1. In compiling GLISP code which implements a Message, Property, or Adjective, only the self
argument is in context initially; definite reference to any substructure or property of the object is
therefore unambiguous.30

2. Within a For loop, the loop variable is the closest thing in context.

3. In many cases, a function will only have a single structured argument; in such cases, definite

3°Unless there are duplicated names in the object definition. However, if the same name is used as both a Property and an Adjective,
for example, it is not considired a duplicate since Properties and Adjectives are specified by different source language constructs.

3
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reference is unambiguous.

If "PASCAL" syntax (or the equivalent English-like form) is used for references other than the above cases,

no ambiguities will occur.

6.3. Type Inference
In order to interpret definite references to features of objects, the compiler must know the types of the

objects. However, explicit type specification can be burdensome, and makes it difficult to change types

without rewriting existing type declarations, The GLISP compiler performs type inference in many cases,

relieving the programmer of the burden of specifying types explicitly. The following rules enable the

programmer to know when types will be inferred by the compiler.

1. Whenever a variable is set to a value whose type is known, the type of the variable is inferred to be
the type of the value to which it was set.

2. If a variable whose initial type was NIL (e.g., an untyped PROG variable) appears on the left-
hand side of the operator, its type is inferred to be ( LISTOF <type>), where <type>
is the type of the right-hand side of the expression.

3. Whenever a substructure of a structured object is retrieved, the type of the substructure is
retrieved also.

4. Types of infix expressions are inferred.

5. Types of Properties, Adjectives, and Messages are inferred if:

a. The <res pon se> is GLISP code whose type can be inferred.

b. The <r espon se> has a RESULT declaration associated with it.

c. The <respon se> is a function whose definition includes a RESULT declaration, or
whose property list contains a GLRESULTTYPE declaration.

6. The type of the "loop variable" in a For loop is inferred and is added to a new level of Context by
the compiler.

7. If an If statement tests the type of a variable using a self adjective, the variable is inferred to
be of that type if the test is satisfied. Similar type inference is performed if the test of the type of
the variable is the condition of a While statement.

8. When possible, GLISP infers the type of the function it is compiling and adds the type of the
result to the property list of the function name under the indicator GLRESULTICYPE.

9. The types returned by many standard Lisp functions are known by the compiler.
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7. GLISP and Knowledge Representation
Languages

GLISP provides a convenient Access Language which allows uniform specification of access to objects,

without regard to the way in which the objects are actually stored; in addition, GLISP provides a basic

Representation Language, in which the structures and properties of objects can be declared. The field of

Artificial Intelligence has spawned a number of powerful Representation Languages, which provide power in

describing large numbers of object classes by allowing hierarchies of Class descriptions, in which instances of

Classes can inherit properties and procedures from parent Classes.. The Access Languages provided for these

Representation Languages, however, have typically been rudimentary, often being no more than variations of

LISP's GETPROP and PUTPROP. In addition, by performing inheritance of procedures and data values at

runtime, these Representation Languages have often been computationally costly.

Facilities are provided for interfacing GLISP with representation languages of the user's choice. When this

is done, GLISP provides a convenient and uniformlanguage for accessing both objects in the Representation

Language and LISP objects. In addition, GLISP can greatly improve the efficiency of programs which access

the representations by performing lookup of procedures and data in the Class hierarchy at compile time.

Finally, a LISP stmcture can be specified as the way of implementing instances of a Class in the

Representation Language, so that while the objects in such a class appear the same as other objects in the

Representation Language and are accessed in the same way, they are actually implemented as LISP objects

which are efficient in both time and storage.

A clean31 interface between GLISP and a Representation Language is provided. With such an interface,

each Class in the Representation Language is acceptable as a GLISP type. When the program which is being

compiled specifies an access to an object which is known to be a member of some Class, the interface module

for the Representation Language is called to generate code to perform the access. The interface module can

perform inheritance within the Class hierarchy, and can call GLISP compiler functions to compile code for

subexpressions. Properties, Adjectives, and Messages in GLISP format can be added to Class definitions, and

can be inherited by subclasses at compile time. In an Object-Centered representation language or other

representation language which relies heavily on procedural inheritance, substantial improvements in

execution speed can be achieved by performing the inheritance lookup at compile time and compiling direct

procedure calls to inherited procedures when the procedures are static and the type of the object which

inherits the procedure is known at compile time.

31aeanliness is in the eye of the beholder and, being next to Godliness, difficult to attain. I lowever, it's relatively clean.
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Specifications for an interface module for GLISP are contained in a separate document32. To date, GLISP

has been interfaced to oui. own GIRL representation language, and to LOOPS.33

32to be written.

331,00PS, a LISP Object Oriented Programming System, is being developed at Xerox Palo Alto Research Center by Dan Bobrow and
yMark Stefik.
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8. Obtaining and Using GLISP
GLISP and its documentation are available free of charge over the ARPANET. The host computers

involved will accept the login "ANONYMOUS GUEST" for transferring files with FTP.

8.1. Documentation
This user's manual, in line-printer format, is contained in [UTEXAS- 20 ]<CS . NOVAK>GLUSER. LPT .

The SCRIBE source file is [ SU-SCORE]<CSD .NOVAK>GLUSER . MSS . Printed copies of this manual can

be ordered from Publications Coordinator, Computer Science Department, Stanford University, Stanford,

CA 94305, as technical report STAN-CS-82-895 ($3.15 prepaid); the printed version may not be as up-to-date

as the on-line version.

8.2. Compiler Files
There are two files, GLISP (the compiler itself) and GLTEST (a file of examples). The files for.the

different Lisp dialects are:

Interlisp: [SU-SCORE]<CSD.NOVAKALISP .LSP and GLTEST .LSP

Maclisp: [SU-SCORE]<CSD.NOVAKALISP .MAC and GLTEST .MAC

UCI Lisp: RITEXAS-20j<CS.NOVAK>GLISP.UCI and GLTEST.UCI

ELISP: the UClversionplus[UTEXAS-20]<CS.NOVAK>ELISP.FIX

Franz Lisp: [SUMEX-AIM](NOVAK>GLISP . FRANZ and GLTEST. FRANZ

PSL: [SU-SCORE]<CSD.NOVAKALISP .PSL and GLTEST PSL

8.3. Getting Started
Useful functions for invoking GLISP are:

(GLCC ' FN) Compile FN.

(GLCP ' FN) Compile FN and prettyprint result.

(GLP 'FN) Prettyprint GLISP-compiled version of FN.

(GLED 'NAME ) Edit the property list of NAME.

(GLEDF 'FN) Edit the original (GLISP) definition of FN.
(The original definition is saved under the property
"GLORIGINALEXPR" when the function is compiled, and
the compiled version replaces the function
definition.)

(GLEDS 'STR) Edit the structure declarations of STR.

The editing functions call the "BBN/Interlisp" structure editor.
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To try out GLISP, load the GLTEST file and use GLCP to compile the functions CURRENTDATE,

GIVE-RAISE, TESTFN1, TESTFN2, DRAWRECT, TP, GROWCIRCLE, and SQUASH. To run compiled

functions on test data, do:*

(GIVE-RAISE 'COMPANY1)
(TP '(((A (B (C D (E (G H (I J (K))))))))))
(GROWCIRCLE MYCIRCLE)

8.4. Reserved Words and Characters
GLISP contains ordinary lisp as a sublanguage. However, in order to avoid having code which was

intended as "ordinary lisp" interpreted as GLISP code, it is necessary to follow certain conventions when

writing "ordinary lisp" code.

8.4.1. Reserved Characters
The colon and the characters which represent the arithmetic operators should not be used within atom

names, since GLISP splits apart "atoms" which contain operators. The set of characters to be avoided within

atom names is:

The character "minus" ( ) is permitted within atom names unless the flag GLSEPMINUS is set.

Some GLISP constructs permit (but do not require) use of the character "comma" ( , ); since the comma

is used as a "backquote" character in some Lisp dialects, the user may wish to avoid its use. When used in

Lisp dialects which use comma as a backquote character, all commas must be "escaped" or "slashified"; this

makes porting of GLISP code containing commas more difficult.

8.4.2. Reserved Function Names
Most GLISP function, variable, and property names begin with "GL" to avoid conflict with user names.

Those "function" names which are used in GLISP constructs or in interpretive functions should be avoided.

This set includes the following names:

A AN CASE FOR IF

REPEAT SEND SENDPROP THE WHILE
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8.4.3. Other Reserved Names
Words which are used within GLISP constructs should be avoided as variable names. This set of names

includes:

A AN DO ELSE ELSEIF
IS OF THE THEN UNTIL

8.5. Lisp Dialect Idiosyncrasies
GLISP code passes through the Lisp reader before it is seen by GLISP. For this reason, operators in

expressions may need to be set off from operands by blanks; the operator "-" should always be surrounded

by blanks, and the operator "+" should 'be separated from numbers by blanks.

8.5.1. Interlisp
GLISP compilation happens automatically, and usually does not need to be invoked explicitly. GLISP

declarations are integrated with the file package.

8.5.2. UCI Lisp
The following command is needed before loading to make room for GLISP:

(REALLOC 3000 1000 1000 1000 35000)

The compiler file modifies thc syntax of the character to be "alphabetic" so it can be used as a GLISP

operator. The character "/" must be "slashified" to "//".

8.5.3. ELISP
For ELISP, the UCI Lisp version of thc compiler is used, together with a small compatibility file. The

above comments about UCI lisp do not apply to ELISP. The characters " /" and " ," must be "slashified" to

"//" and "/ ,".

8.5.4. Maclisp
The characters "/" and " ," must bc "slashificd" to "il" and "/ , ".

8.5.5. Franz Lisp
Automatic compilation is implemented for Franz Lisp. The character " ," and the operators "++." and

"-+." must be "slashified" to 'A , ", "+ 4-", and " \+.", respectively. Before loading GLISP, edit something
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to cause the editor files to be loaded34. The Franz Lisp version of GLISP has been tested on Opus 38 Franz

Lisp; users with earlier versions of Franz might encounter difficulties.

8.6. Bug Reports and Mailing List
To get on the GLISP mailing list or to report bugs, send mail to CSD.NOVAK@SU-SCORE.

34some versions of the "CM U editor" contain function definitions which may conflict with those ofGLISP; if the editor is loaded

first, the CUSP versions override.
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9. GLISP Hacks
This chapter discusses some ways of doing things in GLISP which might not be entirely obvious at first

glance.

9.1 . ()1443rhioading Bash: Types

GLISP provides the ability to define properties of structures described in the Structure Description

language; since the elementary LISP types are structures in this language, objects whose storage

representation is.an elementary type can be "overloaded" by specifying properties and operators for them.

The following examples illustrate how this can be done.

(GLDEFSTRI)

(ArithmeticOperator (self ATOM)

PROP ((Precedence OperatorPrecedenceFn RESULT INTEGER)
(PrintForm ((GETPROP self 'PRINTFORM) or self)) )

MSG ((PRIN1 ((PRIN1 the PrintForm)))) )

(IntegerMod7

PROP ((ModUlus
(Inverse

(self INTEGER)

(7))
((If self is ZERO then 0

else (Modulus self))) ))

ADJ ((Even ((ZEROP (LOGAND self 1))))
(Odd (NOT Even)))

ISA ((Prime PrimeTestFn))

MSG ((+

(4-

IMod7Plus OPEN T RESULT IntegerMod7)
IMod7Store OPEN T RESULT IntegerMod7)) )

(DEFINE()

(IMod7Store (GLAMBDA (LHS:IntegerMod7 RHS:INTEGER)
(LHS:self ** (IREMAINDER RHS Modulus)) ))

(IMod7Plus (GLAMBDA (X,Y:IntegerMod7)
(IREMAINDER (X:self + Y:self) X:Modulus) ))

A few subtleties of the function IMod7Store are worth noting. First, the left-hand-side expression used in

storing the result is LHS:self rather than simply LHS. LHS and LHS:sclf of course refer to the same actual

structure; however, the lype of LHS is. IntegerMod7, while the type of LHS:sclf is INTEGER. If LHS were
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used on the left-hand side, since the operator is overloaded for IntegerMod7, the function IMod7Store

would be invoked again to perform its own function; since the function is compiled OPEN, this would be an

infinite loop. A second subtlety is that the assignmmt to LHS:self must use the self-assignment operator,

, since it is desired to perform assignment as seen "outside" the function IMod7Store, i.e., in the

environment in which the original assignment operation was specified.

9.2. Disjunctive Types
LISP programming often involves objects which may in fact be of different types, but which are for some

purposes treated alike. For example, LISP data structures are typically constructed of CONS cells whose

fields may point to other CONS cells or toATOMs. The GLISP Structure Description language does not

permit the user to specify that a certain field of a structure is a CONS cell or an ATOM. However, it is

possible to create a GLISP datatype which encompasses both. Typically, this is done by declaring the

structure of the object to be the complex structure, and testing for the simpler structure explicitly. This is

illustrated for the case of the LISP tree below.

(LISPTREE (CONS (CAR LISPTREE) (CDR LISPTREE))

ADJ ((EMPTY (self)))

PROP ((LEFTSON ((If self is ATOMIC then NIL else CAR)))
(RIGHTSON ((If self is ATOMIC then NIL else CDR)))))

9.3. Generators
Often, one would like to define such properties of an object as the way of enumerating its parts in some

order. Such things cannot be specified directly as properties of the object because they depend on the

previous state of the enumeration. However, it is possible to 'define an object, associated with the original

datatype, which contains the state of the enumeration and responds to Messages. This is illustrated below by

an object which searches a tree in Preorder.
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(PreorderSearchRecord (CONS (Node LISPTREE)
(PreviousNodes (LISTOF LISPTREE)))

MSG ((NEXT ((PROG (TMP)
(If TMP4-Node:LEFTSON

then (If Node:RIGHTSON
then PreviousNodes+4-Node)

Node4-TMP
else TMP-4-PreviousNodes

Node4-TMP:RIGHTSON) ))))

(TP (GLAMBDA ((A LISPTREE))
(PROG (PSR)

(PSR 4- (A PreorderSearchRecord
with Node = (the LISPTREE)))

(While Node (If Node is ATOMIC (PRINT Node))
(4- PSR NEXT)) )))

The object class PreorderSearchRecord serves two purposes': it holds the state of the enumeration, and it

responds to messages to step through the enumeration. With these definitions, it is easy to write a program

involving enumeration of a LISPTREE, as illustrated by the example function TP above. By being open-
.

compiled, messages to an object can be as efficient as in-line hand coding; yet, the code for the messages only

has to be written once, and can easily be changed without changing the programs which use the messages.
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10. Program Examples
In this chapter, examples of GLISP object declarations and programs are presented. Each example is

discussed as a section of this chapter; the code for the examples and the code produced by the compiler are

shown for each example at the end of the chapter.

10.1. GLTST1 File
The GLTST1 file illustrates the use of several types of LISP structures, and the use of fairly complex

Property definitions for objects. SENIORITY of an EMPLOYEE, for example, is defined in terms of the

YEAR of DATE-HIRED, which is .a substructure of EMPLOYEE, and the YEAR of the function

(CURRENTDATE).35

10.2. GLTST2 File
The GLTST2 file illustrates the use of Messages for ordinary LISP objects. By defining the arithmetic

operators as Message selectors for the object VECTOR, use of vectors in arithmetic expressions is enabled;

OPEN compilation is specified for these messages.

The definition of GRAPHICSOBJECT uses VECTORs as components. While the actual structure of a

GRAPHICSOBJECT is simple, numerous properties are defined for user convenience. The definition of

CENTER is easily stated as a VECTOR expression.

The Messages of GRAPHICSOBJECT illustrate how different responses to a message for different types of

objects can be achieved, even though for GLISP compilation of messages to LISP objects the code for a

message must be resolved at compile time.36 The DRAW and ERASE messages get the function to be used

from the property list of the SHAPE name of the GRAPHICSOBJECT and APPLY it to draw the desired

object.

MOVINGGRAPHICSOBJECT contains a GRAPHICSOBJECT as a TRANSPARENT component, so

that it inherits the properties or a GRAPHICSOBJECT; a MOVINGGRAPHICSOBJECf is a

GRAPH ICSOBJECT which has a VELOCITY, and will move itself by the amount of its velocity upon the

35The type of (CURRENTDATE) must be known to the compiler, either by compiling it first, or by including a RESULT declaration
in the function definition of CURRENTDATE, or by specifying the GLRESULITYPE property for the function name.

36For objects in a Representation Language. messages may be compiled directly as LISP code or 2S messages to be interpreted at
runtime, depending on how much is known about the object to which the message is sent and the compilation declarations in effect.

42
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message command STEP.37 The compilation of the message MGO STEP ) in the function TESTFN1 is of

particular interest. This message is expanded into the sending of the message se 1 f MOVE VELOCITY)

to the MOVINGGRAPHICSOBJECT. The MOVINGGRAPHICSOBJECT cannot respond to such a

message; however, since it contains a GRAPHICSOBJECT as a TRANSPARENT component, its

GRAPHICSOBJECT responds to the message.38 A GRAPHICSOBJECT responds to a MOVE message by

erasing itself, increasing its START point by the (vector) distance to be moved, and then redrawing itself. All

of the messages are specified as being compiled open, so that the short original message actually generates a

large amount of code.

A rectangle is drawn by the function DRAWRECT. Note how the use of the properties defined for a

GRAPHICSOBJECT allows an easy interface to the system functions MOVETO and DRAWTO in terms of

the properties LEFT, RIGHT, TOP, and BOTTOM.

37This example is adapted from the MovingPoint example written by Dan Bobrow for LOOPS.

31DIANSPARENT substructures thus permit procedural inheritance by LISP objects.


