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ABSTRACT

Parametric analysis of covariance was compared to analysis of covariance
with déta transformed using ranks. Using a computer simulation appro§ch the
two strategies were compared in terms of the proportion of Type I errors made
and statistical power when the conditional distribution of errors were: :
a) normal and homoscedastic, b) normal and heteroscedastic, c),nSn-normal
and homoscedastic, and d) non-normal and heteroscedastic. The results indi-
cated that parametric ANCOVA was robust to violations 6f either normality
or homoscedasticity. However when both assumptions were violated tgg observed
o levels underestimated the nominal ¢ level wﬁen sample sizes_were small
and ¢ = .05. Rank ANCOVA led to a slightly liberal test éf the hypothesis
when the covariate was non-normal and the errors were hetgroscedastic. Prac-

tical significant power differences favoring the rank ANCOVA procedure were ,

observed with moderate samplé sizes and skewed conditional error distributions.
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Parametric ANCOVA vs. Rank Transform ANCOVA When Assumptions
of Conditional Normality and Homoscedasticity are Violated
Data obtained from research studies based on the pretest-posttest ran-
domized control group design (Campbell and Stanley, 1963) are frequently
analyzed using analysis of covariance with the pretest as the covariate and
the posttest as the dependent variable. This analysis strategy assumes that
the data meet the following conditions:
i) . Fhe relationship between the pretest and the,posttgst is linear;
2) The relationship between ‘the prétest and the dependent variable
is the same for all groups (homogeneity of regression slopes);
3) The poéttest scores are independent of each’'other both between
and within groups;
4) Within each group the distributi;n of posttest scores for each
valye of the covariate “#s normal (conditional norﬁality);'
5) Within each group the variance of the dependent variable is the
same for each level of the covariate and the conditional vari-
ances are equal for all_groups (homoscedasticity).

The robustness of analysis of covarid¥ce to violations of these assump-

éfggzﬁhas not received the same level of attention as the robustness of the
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ééé-tes ;ﬁnd analysis of variance. Furthermore, statistical power, under
‘,.:A: 2aE A

variations of assumptions, has received little attention. Elashoff (1969)

and Glass, Peckham and Sanders (1972) have reviﬁged the limited;literéture
on the robustness of ANCOVA. The present paper focuses on the effects of
violating the assumptions of conditional normality and homoscedasticity on

a) the probability of Type I errors and.b) statistical power.
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Box and Anderson (iEE?) studied analytically the effect of conditional
non-normality on the ANCOVA F-test and concluded that the robastness of ANCOVA
to a violation of this assumption was dependent on the shape of the distribu-
tion of the covariate. Witﬁ a normal covariate, violating the assumption has
little effect on the F-test but when the covariate is non~normal violating
the assumption may lead to a non-robust test. Atiquallah (1964) reached a
similar conclusion using a different‘analytic approach. Since both Box and
Anderson and Atiquallah .used analytic techniques in studying the effect of
non-normality on the ANCOVA F-test, their results do not provide an indica-
tion of the magnitude of the error in terms of the probability of a Type I
error.

In studying the effect of violating the homoscedasticity assumption,

~ Potthoff (1965) found that the robustness of ANCOVA depended on the sample
sizes and the variance of the covariate in the comparison groups. When the
sample sizes are equal and the variance of the covariate is the same across

comparison groups ANCOVA is robust to the violation of this assumption. If
«f,\ >

the sample sizes are unequal and/or the variances are unequal then ANCOVA is

|
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sensitive to violations of the homoscedasticity assumption. The greater the

discrepancies in sample sizes and/or covariate variances thg;more sensitive
b
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the F-test.

When distributional assumptions are violated nonparaé%rric strategies
are often suggested. This suggestior is made even when traditional paragEtric
strategies are robust to the violations since the nonparametric procedures can
be more powerful when assumptions are not met (Blair & Higgins, 1980). 1In the
case of analysis of covariance several nonparametric approaches have been sug-

gested (McS?eeney & Porter, 1971; Puri and Sen, 1969; Quade, 1967). In the
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present paper the‘approach suggested by McSweeney and Porter is considered
because of its computational simplicity and because previous investigations
comparing this approach with Quade's approach have indicated that the two
strategies provide similar results with respect to both the probability of a
Type I error and power. (Conoverv& Iman, 1982; McSweeney & Porter, 1971).

McSweeney and Porter (1971) suggested that a nonparametric analog t; the
traditional parametric analysis of covariance could be achieved by separate
transformations of the covariate and the dependent variable, substituting
ranks across treatment groups for the original observations. The ranked data
could then be analyzed using the same procedures Qs those used with parametrlc
ANCOVA. The resulting test statistic has an F-distribution with the same de~-
grees of freedom as those associated with the parametric ANCOVA test statistic.
McSweeney and Porter compared the‘parametric ANCOVA with rank transformed

|

ANCOVA and found that when the parametric agsumptions‘were met the rank trans-
form approach was only slightly less powerful than the parametric ANCOVA. The

difference in power between the two approaches was greatest when a moderate to

strong relatiodship existed between the. covariate and the dependent variable.

Although they did not consider comparison of the two approaches when the

assumptions of conditional norma&igy or homoscedasticity have béen violated
" they suggested that the ranking procedure may be more powerful.

Conover and Iman (1982) conducted a small simulation study comparing
parametric ANCOVA with the rank transform approacﬁ when the conditional dis-
tributions were: normal, lognormal, exponent%al, uniform and Cauchy. They
found the rank transform approach to be roéust to violations of co;ditional
non;normality while the parametric AﬁCOVA strategy led to either an increased

or reduced probability of Type I errors. In terms of power the ‘results

. e e
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indicaéedrthaé par;megéi;%ﬁﬁ&6VA lost powér with the lognormal and Cauchy dis-
tributions but was more powerful whgn the c;nditional dfstrfgutions were normal
or uniform. Conover and Iman considered only situations involving 1) a covariate
having a normal d%stribuﬁion, 2) sample size of 10 for each group of 4 groups, and
3) the effects of extreme conditional non-normality. The present study extended
Conover and Iman's investigation to include both normally and non-normally dis-
tributed covariates and to include several degrees of heteroscedasticity. Fur-
thermore, the present investigation considered less extreme violations of the

normality assumption and also the combined effect of both heteroscedasticity and

non-normality.

Method

Design
The simulation had 5 factors: 1) form the conditional‘distf{bution,

2) strength of the posttest-covariate relationship, 3) Heteroscedasticity of
the conditional distribution, 4) form of the covariate distribution, and

5) sample size. Details on the levels of these factors are given below. All

ted

combinations-of-all levels were not
will be indicated after describing the factor levels more specifically.

Form of the conditional distributions. Six distributionslﬁere employed

as conditional digtributions, a normal dfitribution and 5 non—normaliﬁ%stri- o
butions. Table 1 presents descriptive statistics calculated on a sample of
100,000 scores from_each of the 6 distributions as well as the ﬁ}gyortion of
observations fgupa 1, 2, or 3 standard deviations from the mean. . These re-

sults were oéfgined using the Statisticgr Analysis System (1979). Generat%on

of the data is described in- detail belgr.
.. ’
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Strength of the posttegt-covariate relationship. Two levels of

strength of relationship were employed. For the homoscedastic condition
. p the Pearson product moment correlation, was either .3 or .7. For the
heteroscedastic condition n, the correlation ratio, was either .3 oy o7

Variance of the conditional distributions. In addition to the homo-

scedastic case, 3 levels of heteroscedasticity were employed. Data were
generated so that the conditional variances increased as the value of the
scovariate increased. The increase in conditional variance was the same
for both g?oups. To give an idea of the extent of heteroscedasticity

b considered igvthe gimulation, Table 2 reports the conditional‘vari;nces
'fAr'S points on the covariate scale under the 3 heteroscedastic co;ditions.
This table applies only to normally distriputed covariates. For non-

normal covariates different conditional variances were associated with

L — ¢ty five scalz points. Had the same conditional-variances -beenasso=
ciated with these scale points for non-normal covariates, it would not

have been possible to compare different coVafiaEe digtributions while

- -
“ o4 '

maintaining a common correlatibn ratio. At the first level of hetero-

gscedasticity and_with n = .7 the conditional variance one standard , -~

- om om e e em wm ws em e e @ em AP em P em em M e wm
s

deviation above the mean (51) was 1.5 times as large as the conditional

variance one standard deviation below the mean (49), {.612/.418‘5 1.5].
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Fo? extreme heteroscedasticity (level III) the conditiénal variance one
;tandard deviation above tge mean was 7.5 times the conditional variance
one standard deviation below the mean [1.590/.209 = 7.5]. The rate of
change of the conditional variances was approximately the same whenn = .7

orn=.3.

Distribution of the covariate. The six distributions employed for con-

ditional distributions were also used as distributions for the covariate.

i Sample size. All comparisons involved two groups. Both equal sample
sizes and unequal sample sizes were studied. For equal sample sizes, data
on either 5 or 15 subjects were-simulated for each group. For unequal sample
sizes, data were simulated for 5 subjects in one group and 10 in the second
group. .

Condition combinations for five subjects in each cell. Had all combina-

tions of the remaining four factors been simulated the design would have been
a 4 (degree of heteroscedasticity) x 6 (form of the conditional distributions) x

6 (fo;m of the covariate distribution) x 2 (strength of relationship) completely

~

Aode

crossed Factorial. ~Of these 288 cells, the 120 cells involving combinations

of conditional distributions A throﬁgh E in Table 1 and conditions I and II

in Table 2 were not simulated. Thus, we did AOt simulate data for the moder-
ate degrees of heteroscedagtiéity in combination with:the non—normél éonditional

Q;stributions.

(Conditions combinations for other sample sizes.hfpewer combinations were
simulated for sample sizes other than five in each group. The combinations
simulafédgfor the equal n conditions (1§~in each group), and the unequal n

condition (S“in~6ne group and 10 in the other) were different. Table 3 sum—:%k

marizes the conditions which were considered. An asterisk (5) is .used to
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indicate which conditions were studied when sample sizestvequalled 15. For

cases with sample sizes of n, = 5 and n, = 10 a number symbol (#) is used.

|
l |
} It might also be noted that when sample sizes equalled 5, all cells in the

|
|
table were studied. ’ <

Generation of the data -

The method for geherating the posttest data differed slightly depending
on whether the conditional distribution was homoscedastic or heteroscedastic.

For the homoscedastic case the equation for generating the posttest data was

Y=cj+pX+E\/1-p2 . (1)

<}or the null case cj was zero for both groups. For the non-null Ease 1 was

zero while cz'was .5. For all cases X was distributed with a mean 50 and

variance one while E was distributed with mean zero and variance one. The

e A gk i ) s o s e

coetficient p was eifher .3 or .7 depending on the strength of relationship ~

being simulated. For a normally distributed covariate a standard normal

variable, z., was genera;ed using the normal function of the Statistical

1

Analysis System (1979). X was then generated by adding 50 to z For

1.

normal conditional distributions a standard normal variable, Z,, was generQ

-~

ated an was_set equal to z

9 NonLnorﬁhi vagiggles were generated using

a prodedure developed by Fleishman (1978). This procedure transforms a

standard normal variable to a variable with mean zero, variance one and known
’ ~
skewness and kurtosis. The skewness and kurtosis are controlled by choosing

[}

b, ¢, and d in the equationm,

gw_ﬁ ““,Awi- -c_.+ bz + cz2 + dz3.

10

.
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For the non-normal conditional distributio‘kg\ﬁf/was simply set equal to w.

For the non-normal covariate X was generate& by adding 50 to w.

For the heteroscedastic cases the posttest data was generated using the

¥

\ Y= +@X+ E,/ﬁ(z1 + 5)F (2)

The number k was chosen so that the average conditional variance would

equation

be 1 -~ pz. This permitted the correlation ratio to be either .3 or .7
[ ]
depending on whether p = .3 or .7. The number r was chosen to control the

1° X and E

_.. rate of idb§ease of the conditional variance. The .variables z
were generated as described in the previous paragraph. Tht use of equation

(2) implies that regardless of whether 2y is transformed to a normalv or non-
normal covariat®, the same conditional variance is‘associated with the normal

transform and the non-normal transform of a particular value of z This

1.
2
in turn assures that the average conditional variance is 1 - p~ for both the
normal and non-normal covariate. ‘
A
~
A
* L]
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Results -

N
The investigation generated data for several hundred situations in which

the assumptions of conditional normality and homoscedastieity were violated
) to. varying degrees. Since it is not practical to report all -of these results,
the findings ate summarized in various forms. The adequacy of the observed
oroportion of Type I errors was judged es acceptable when any result was less
than two standard.errors above, ot below the‘theoretical probability of~a
Type I error. The standard error for a proportion is equal to ([p(l-p)]/N)%.
“\For p = :05 the standard error for 1000 replications equays .007 whige' for

p = .01 the standard erro#'equals .003, .6bserved proportions outside the prob-
~ability intervals of (:9}6, .064) at* the .05 level and (.004, .016) et the

.01 level were therefore‘considered as, unaocebtable.

"The results are reported in two sections and each section is divided into
two parts. The first part of the first section presents the effects of con-
ditional non-normality on the proportion of observed Type I errors. .?he second
part of the section compares the power of the'non-pafametric’approach to ANCOVA?
The second section presents the egfeqts of heteroscedasticity and the combined
effect of non-normality and heteroscedasticﬂdf The first part of this section

reports the effects on Type I errors and the second part compares the power,

4

of the two analysis strategies. °

Conditional non-normali¥z

Type I errors. Considering the equal and unequal n conditions there were

21 conditions involving a homoscedastic, normally distributed error. Table 4
reports the estimates that were above the uppér bound of the ptobabilit& inter-

vals for nominal o levels. of .0l and .05. (Ng estimates were below the lower

. .

12 . T
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bound.) The results relevant to ANCOVA are a check on the simulation since

all assumptions were met for these 21 conditions. The values above the upper

bound for o levels of .01 and .05 are probably attributable to sampling e%ror.
For the R-ANCOVA there were 3 values above the upper bound when a was .0l.
The values .021 and .017 occurred with n = 5 in each group, the moderately
leptokurtic (condition C in Table i) covariate distribution and p equal to
.3 and .7 respectively. Although not conclusive, the results suggests the RS
rank transform approach may be slightly liberal for ‘small samgle sizes and
a'ﬂgﬁtokurtic%}ly distributedw;ovariate\for nominal @ = .01.
There were 19 cases involving a non-normal homoscedastic conditional
distribution and a normally distributed covariafe. OQut of these 19 cases
the parametric ANCOVA and the rank transformed ANCOVA each had one estim;ted
liberal and one estimated conservatiée a for the nominal o of .0l. Neither
had an estimated a outside the probability interval for nominal « "= .0;.
This result is consistent with Box and Andergon’s (1962) and *Atiquallah's
(1964) conclusion that for a normally dist{ibuted covariate, the analysis of
covariance is robgst to violations of tﬁe a;sumption of cbnditional normality.
Table 5 presents stem and leaf diagrams of distributionms of estimated «
lévels for conditions involving non-normal covariates a;d conditional distri-
butions, nominal a = .01,_nl,= n, = 5, and p = .3 and .7. The table indicates
that rank ANCOVA ié'somewhat iiberal for both p = .3 énd p= .7, but is more

liberal for the former -situation.




¥ Parametric ANCOVA
11

When the nominal o was .05 neither analysis éhowed a tendency to be liberal or
conservative. (These results are not presented in a table.) With p = .3 all 25
actual o levels fell in the probability interval for the parametric ANCOVA, while
only one of 25 fell above EPe upper limit of the probability interval for the”
rank ANCOVA. For p = :gyghe corresponding frequencies are zero and three. For
n = 15 in each group there were 6 combinations of non-normal covariates and non-
normal conditional distributions for each of p = .3 and p = .7. None of these
conditions resulted in estimated actual levels outside the bounds of the prob-
ability intervals for nominal o = .0l or a = .05. There were 6 combinations for
the unequal n condition with p = .7. None of these resulted in actual o levels
outside the probability interval for nominal & = .01 or- ¢ = .05.

Power. Table 6 presents the first, second, and third quaétiles of the poéer
/ .

differences between the rank and parametric ANCOVA for combinationg of p and «.
It also presents all power differences that were greater than .05. As the re-
sults indicate, with a few exceptions minimal power differences occurred when the

errors wére ‘homoscedastic. An exception to this generalization was observed

however in cases involving the leptokurtic conditional distribution (E).

Q

\4
Table 7 reports all power differences for p = .3, and a conditional distribution
following distribution E. With n; = n, = 15, all conditions resulted in at’least
9% increagse in power for R-ANCOVA over ANCOVA. In all six situations involving

Ve
n; =n, = 5 power differences less than 5% were observed. These results suggest

that with equal group frequencies of at least 15 and a skewed and leptokurtic

-

. ‘ *
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distribution, a significant power advantage accrues to the rank ANCOVA. It
also might be noted that the differences of .091 %3d .112 occurred with a normal
covariate and so the results are not dependent on deviations from normality for

the covariate.

Conditional non-normality and heteroscedasticity

Type I errors. Table 8 presents the est}mated actual o levels that were

_outside the probability intervals for nominal a's of .01 and .05. The table

suggests that patggetriézANCOVA was robust to the assumption of homoscedasticity

when this assﬁmption alone was violated. In situations involving the violatioms
of conditional normality and homogiédasticity the parametric approach had a
tendency to be conservative when the sample sizes were small (nl =n, = 5) and-

@ = .05. The rank ANCOVA strategy on the other hand had a tendency to be liberal
in situations involvingheteroscedastic conditional distributions and when the
sample sizes were small, a = .0l and n = .3. This was true for both normal and
non-normal conditional distributions. In situations involving a normal covariate

: and the combined conditional non-normality with heteroscedasticity both parametric

ANCOVA and R-ANCOVA provided appropriate actﬁal probability of Type I errors.

Power. Table 9 reports power differences for conditional distributions

. D and E with various combinations of group frequenpies, n, ¢, and E?variate

distributions. Inspection of the Table 9 indicates that when there were 15
subjects in each group a practical power advantage accrued to the rank ANCOVA

for p= .3 and .7, a = .01 and .05; and both conditional distributions.
R ]

- ) . >
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The advantage appears to be greatest with conditional distribution E. Distri-
bution D was a skewed distribution. Distribution E was a leptokurtic and
skewed distribution. However the frequencies reported in Table 1 suggest

that the predominant characteristic pf a plot of distribution E was its
gkewness. This suggests that’ékewness combined with heteroscedasticity and

an equal group frequencies of at least 15 will result in practically important
power advantage for the rank ANCOVA. Table 10 reports the median, maximum,
and minimum power difference for all jevels of o and n and conditional dis~
tributions A, B, and C. Clearly\ghe power differences are minimal for

these conditional distributions.

Conclusions

The results of the analysis indicated that the parametric analysis of

covariance was robugg,tﬁjviolatiags of either the conditional normality or
e fongl

homoscedasticity assumption. In gi{;i@ions where both assumptions w%fe
viqlated h;wever, and the covariate has a non-normal distribntion, the
parameﬁric ANCOVA exhibited a slight tendency to lead a conservative test
of the hypothesis when the sample size was small -and the nominal level of

significance was .05, These results are not consistent with those reported

by Conover and Iman (1982). In that study the researchers found that

__.xhe~pérame;zigV§BC0VA led ;9”g~conqgryative hypothesis test when

e .____1

©
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the conditional error distribution was lognormal or Cauchy. Conover and Iman

did not consider violations of the homoscedasticity assumption. The discrep- -

ancy in findings might be explained by the difference in the degree to which

the conditional normality assumption was violated. The Cauchy distribution
‘.considered by Conover and Iman had paréme?E?s of 0 and 1 for the median and
scale respectively. With these parameters the distribution is the t-distri-
but{?n with 1 degree of freedom. Conover and Iman therefore considered a
far more leptokurtic distributien than the one considered here. The lognormal
distrib;tion studied by Conover and Iman had parameters of e2 and ea(ea - 1)

for the mean and variance respectively. With these parameters the distribu-
tion has skewness of 414.36 and a kurtosis of 2.64 x 1010.

The present study did not consider as extreme violations of assumptions
as Conover and.Iman. The rationale behind the levels of skewness and kurtosis
chosen in the present study was based on Fleishman's (1978) argument that
simulation studies should reflect distributions commonly found with real data.

Furthermore Fleishman points out that Pearson and Please (1975) found that

most distributions they examined had skewness less than .8 and kurtosis between

. -.6 and +.6. The present stu&y considered distributions similar to as well as
distributions slightly more extreme than those considergﬁ by Pearson and Please.
Since researchers generally do not report the skewness or kurtosis of their
data it is difficult to determine'how closely the distributions reflect actual
data. However scores on the Metropolotian Achievement Test for the math and
reading subtests were.,obtained for grades 1 through 10 on approximately 1500’
students per grade. The skewness of these distributions ranged between -.55
and .05 and the kurtosis ranged between 1.37 and -.34. It was therefore

concluded that the distributions considered in the present study were probably

ERIC 171
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similar to those found by investigators_in actual research studies.

The robustness.of parametric ANCOVA found in ﬁzigpfasent study should

¢
not be interpreted to mean that ANCOVA is always robust to violations of
-

N

assﬁﬁptions.~.$3?s study considered only moderéte departures from the normal-

ity assumption; furthermore parametric ANCOVA may not be robust if the

distrigfyional assamptioni are violated in different ways for the two groups.

Havlicek and Peterson (1974) found this result in studying Student's t-test.-

The rank transformation approach to ANCOVA was found to be robust when

the covariate hag a-normal distribution and the errors were non-normal. These

findings are‘cgafistent with Conover and Iman {1982). However when both the

covariate and errors were non-normally distrtbuted, the sample. sizes were L )

small (n1 =n, = 5), a was .0l, and the strength of the covariate-posttest

relationship was weak (p or n = .3), the rank ANCOVA tended to lead to a

liberal test. Under all other conditions invo%ving gon-normal covariates

and conditional distribution the rank ANCOVA was quite robust.

When the conditional distributions were homoscedastic and either normally ‘

-

or non-normally distributed the power differences, with one notable exception,.

Pl

were generally quite sﬁall. With a correlation of .7 and with n = 5 in each

group the paramétric.ANCOVA was slightly more powerful. However under the

other equal n conditions studied (p = .7, n; =n, = 155 p = .3, n1'= n, = 5

p=.3, n, = n, = 15) the rank ANCOVA tended to be slightly more powérful.

The only exception to the generally small power differences occurred when the

conditional distribution appeared markedly skewed and p was .3.

When the conditional distribdtions were heteroscedastic similar results

occurred. Except when the conditional distribution appeared to be skewed,

the power differences were small. However practiqéily iﬁﬁ6?f§nt power
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differences emerged with the skewed conditional distributions. The differences
'were larger with 15 subjeéts in each group than with 5. The differences also
lncreased as the degree of skew increased, but were fairly similar for both
n=.3and n=.7. This findiné is especially significant since the rank

ANCOVA appeared to have an actual o level near to thé nominal ¢ level under

-

the conditions described above so the Z;yer advantage is not an artifact of a

non-robust procedute. Thé finding of greater advantage in power associated

with the rank transformed ANCOVA when sample sizes were moderate (n = 15) is
consistent with the results reported by Blair and Higgins (1980) in their
comparison of the Wilcoxon t-test with Student's t-test. In that study they

’\found very little difference in power between the two procedures when sample

sizes were small but with moderate (9, 17; 18, 18) or large (27, 81; 54, 54)

4
’ <

samples, greater power was associated with the nonparametric approach.

The poyer findings in the present study suggests it may be fruitful to

% .

conduct further simulation studies to determine the boundary conditions, on
o

.

combinations of skewness, heteroscedasticity, strength of relationship and

gample size that’results in a practicallyimportant power advantage for the
rang ANCOVA. Unequal group frequencies should be included since the failure
for a power advantage to'emerge in our study for‘hnequal group frequencies
may well be due to the fact thét the total frequency was only 15. It may

also be useful to include several degrees of group differences so that

empirical power curves can be constructed.

&
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Table 1

Proportion of Random Variables Observed Within 1, 2 or 3 Standard Deviations of the
Mean and Summary Characteristics of the Six Distributions Studied

—<
- \\ Skewed and
, Slightly Moderately Moderately
Standard Deviation Normal Platykurtic Leptokurtic = Leptokurtic Skewed Leptokurtic
from the Mean N A B C D E
-, ~3,0 .08 .33 .62
=3.0, <2.0 2.17 2.11 T209 B
-2.0, ~1.0 13.95 19.62 11.89 9.71 18.02
-1.0, 0.0 33.90 30,22 35.50 37.67 37.81 63.35
0.0, 1.0 “ 33.80 30.24 : 35.57 37.61 '26.73 21.92
1.0, 2.0 13.87 14.83 12.13 9.91 13.16 9.36
) 2,0, 3:0 2,12 R 2.20 2,02 3.91 3.66
3.0, = .11 .30 .65 .39 1.69
| Mean . .0018 .0018 ‘ . 0054 -.0054 .0050 L.0002
Variance 1.0036 *  1.0090 9887 .9831 1.0043 .9913
‘ .‘Skewness - .0046 -.0043 ° -.002; -.0277 -7199 .1.6928
| Kurtosis -.1065 ~1.0160 7207 2.6584 -.1031 ' 3.3159 o
| ,
) N o . 23
|
0 )0LZ24, T T
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Table 2

Conditional Variances at Five Levels of X for Three Levels of
Heteroscedasticity When nn = .7 and n = .3

-

Levels of Heteroscedasticity

I II 111
. X n=.7 n=.3 n=.7 n=-.3 n=.7 n=.3
e
48 .306 .546 .098 .176 .028 .050
49 .408 .728 233 416 .117 .209
50 .510 .910 .455 .813 .358 .639
51 612 . - 1.092 .787 1.404 .891 1.590
52 714 1.274V 1.249 2.230 1.926 3.537

24
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Table 3

¥

i

P
Summary of Conditions Simulated for n =0 = 15 and n - S, n, = 10

a,b

Covariate Distribution

ERIC

Aruitoxt provided by Eic:

25

Error Distribution A E
Heteroscedasticity Shape ) .3 ) .3 o7 .3 ) .3 .7 .3 o7 .3
* * *
e N i } )
—— M - . .
0 A
S
C -.-)U
E ,
D .
* * *
A ¢ § ] i .
s .
T D * L] *
1 - i H }
¢ E § * i | IR
I N
I1 N ©
111 N ’ * , * * * , *
III A
II1 B
111 c f f #
111 D ’ * * * * * ’ * * * , *
111 E , * * * * * , * * * , *
a. All combinations of factors were simulated when n =0, =5 - -
b., A * indicates n,=n,= 15, a # indicates n - S, n, = 10
Al o B - N




Liberal Estimated o Valueé for Normal and

Table 4

-

\N -

-~

Homoscedastic Conditional Distribution

Nominal Alpha'

-,

‘ Analysis .01 .05 —%
ANCOVA ge02 .071

R-ANCOVA

.017, .018, .021

Note: For each combination of
conditions simulated.

26

Analysis and Nominal Alpha, there were 21




Table 5 % ~
Distributions of Actual a Levels for Nominal o = .0L, n; =, = 5,
Non-normal Covariates and Conditional Distributions
%  Analysis .
- N ANCOVA - ,Rank ANCOVA
p _ Stem Leaf " Count Stem . . Leaf Count
302 - ‘ 02 6 i 1 ‘
- 02 - 02 | 01134 ‘ 5 v —
01 899 ; 3 i 01 ., 777778 5 .
01? 0001333456 10 01 - 1133355566666 14
00 555678889999 12 00
00 ' \ 00
.7 02 02 6 1
; ( ;
01 7 1 01 7789 4
01 011111222366 12 N 001124444556 12
© 00 77778888999 11 00 . 77789999 8 c
00 3 'l 00 .
s - < -

a’i‘he entries for the stems and leafs enclosed by the dotted lines are within plus dr minus two’
standard errormsof the nominal a = .0l. Stems should be multipliéd by .01. '

¢
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%able 6

Distribution of Powg; Differences for Homoscedastic Errorsa

Power Differences |

o p Q ‘ Q, Q, > = .o; .
_ o1 N\ .3 .008 .013 .021 .091,.091,.106 . .
.7 -.007 -.002 ".003 )
.05 .3 .000 .005 ©.015 .067,.112,.108,.140
.7 -.022 -.013 -.005  =.059,-.067,-.068

Y]

2power differences calculated by subtracting power for parametric from power for
rank ANCOVA. BRach distribution is based on 48 conditionms.

v 2

-
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. Table 7
Power Differences with Conditionai Distribution E and p = .3
]
7
a i » nl=?12=5 . ‘ nl=n2_=]f§ -
.OJ .01@,.021,.021,.029,.0353,.044 .091,.091; .106
.05 / .028,.029,.031, .-035,.039,.045 .108,.112,.140
£
4
o
.}3
h ) i a N




Tablé 8

4

Summary of Estimated o Levels for Heteroscedastic Condtional Distributions

Nominal o
%)
. Number .01 -
Condition Description of Cases ~ ANCOVA R-ANCOVA CovA ¥ R-ANCOVA ‘
—
Normal and Non-Normal 47 .003/ /.017,.017,.019,.019
Covariate; Normal and . h 021a .
Heteroscedastic Condi- *
tional Distribution
Normal Covariate 17 /.018
Distribution; Non- )
Normal and Hetero-
scedastic Conditional.
Distribution
Non-Normal Cpvariate; )
Nén-Normal and Hetero-
scedastic Conditional
Distribution
. ( .

n=.3 n, = 5, n, = 5 25 . +/.017,.018,.018,.019 .033,.033,7034/ ,
n=.7 n,=5m,=5 25 /.017 .031,.032,.032,.033/ Y /.065
n=.3 n, = 15, n, = 15 10 ’ /.017 . .035/
N=.7 n, =15, n, = 15 10 . ) - .028/

1 2
n=.,7 ny 5, n, = 10 6 g

a These five estimate liberal a values involved n = .3 and n, =n, = 5 ) : 53]_ R




Table 9

Power Differences For Conditional Heteroscedastic Distributions D and Ea

F3

Covariate Distribution

Conditional
n n a Distribution A B C D E N
5,5 .3 .01 D 027 .027  .0.0  .029  .020  .023
.05 .042  .045  .030  .023 =-.003  .020
.7 .01 .004  .045  .023  .018  .015  .018
.05 .003  .016 .001  .053  .010  .013 __
15,15 .3 .01 .066  .044  .052 _ .059  .042  .065
.05 .100 .08  .,087  .067  .067  .120
.7 .01 104 .074  .067  .136  .136  .100
. .05 111 .096 .036 .161 .158 .161
5,10 .7 .01 -.008  .008  .003
.05 ) .007  .019 .27
5,5 .3 .01 E 009  .025  .033  .013  L027  .057
.05 .058  .069  .047  .058  .046  .057
.7 .01 .022  .017  .022  .021  .023  .007
.05 .015  .029  .031  .043  .023  .007
15,15 .3 .01 .213  .203  .201  .250  .189  .2p8
.05 i .264  .283  .272  .244  .274  .282
.7 .0t .18  .188  .223  .210  .209  .161
.05 228 .195  .220  .248  .224  .192
5,10 .7 .01 017 .023  .037
. .05 048  .063

066 -

L]

32

s

s calculated by subtraction power for parametric ANCOVA from power for Rank ANCOVA.
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Table 10

Distribution of Power Differences for Conditional Distributioﬂs A, B, and'“Ca

a n Number of Cases Minimum

.01 .3 2% .007
.7 2 . -.013
.05 .3 8 -.001

o7 8 -.034

<

Median

«

.023

.003

017

.019

Maximum .
.035
.021
.035

.007

3pifferences calculated by subtracting power for parametric ANCOVA from power for

Rank -ANCOVA.,

-




