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ABSTRACT

Parametric analysis of covariance was compared to analysis of covariance

with data transformed using ranks. Using a computer simulation approach the

two strategies were compared in terms of the proportion of Type I errors made

and statistical power when the conditional distribution of errors were:

a) normal and homoscedastic, b) normal and heteroscedastic, c). non-normal

and homoscedastic, and d) non-normal and heteroscedastic. The results indi-

cated that parametric ANCOVA was robust to violations of either normality

or homoscedasticity. However when both assumptions were violated the observed
cA,

a levels underestimated the nominal a level when sample sizes were small

and a = .05. Rank ANCOVA led to a slightly liberal test of the hypothesis

when the covariate was non-normal and the errors were heteroscedastic. Prac-

tical significant power differences favoring the rank ANCOVA procedure were ,

observed with moderate sample sizes and skewed conditional errv distributions.
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Parametric ANCOVA
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Parametric ANCOVA vs. Rank Transform ANCOVA When Assumptions
of Conditional Normality and Homoscedasticity are Violated

bata obtained from research studies based op the pretest-posttest ran-

domized control group design (Campbell and Stanley, 1963) are frequently

analyzed using analysis Of covariance with the pretest as the covariate and

the posttest as the dependent variable. This analysis strategy assumes that

the data meet the following conditions:

1) lbe relationship between the pretest and the,posttest is linear;

2) The relationship betweenthe pretest and the dependent variable

is the same for all groups (homogeneity of regression slopes);

3) The posttest scores are independent of each'other both between

and within groups;

4) Within each group the distribution of posttest scores for each

value of the covariate'is normal (conditional normality);"

5) Within each group the variance of the dependent variable is the

same for each level of the covariate and the conditional vari-

ances are equal for all groups (homoscedasticity).

The robustness of analysia of covarilhce to violations of these assump-

Al2;;Nas not received the same level of attention as the robustness of the

-t-teselnd analysis of variance. Furthermore, statistical power, under

variations of assumptions, has received little attention. ElashofE(1969)
-

and Glaas, Peckham and Sanders (1972) have reviwed the limited'literature

on the robustness of ANCOVA. The present paper focuses on the effects of

violating the assumptions of conditional normality and homoscedasticity on

a) the probability of Type I errors and,b) statistical power.
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Box and Anderson (i9'62) studied analytically the effect of conditional

non-normality on the ANCOVA F-test arid concluded that the robustness of ANCOVA

to a violation of this assumption was dependent on the shape of the distribu-

tion of the covariate. With a normal covariate, violating the assumption has

little effect on the F-test but when the covariate is non-normal violating

the assumption may lead to a non-robust test. Atiquallah (1964) reached a

similar conclusion using a different analytic approach. Since both Box and

Anderson and Atiquallah.used analytic techniques in studying the effect of

non-normality on the ANCOVA F-test, their results do not provide an indica-

tion of the magnitude of the error in terms of the probability of a Type I

error.

In studying the effect of violating the homoscedasticity assumption,

Potthoff (1965) found that the robustness of ANCOVA depended on the sample

sizes and the variance of the covariate in the comparison groups. When the

sample sizes are equal and the variance of the covariate is the same across

comparison groups ANCOVA is robustto the violation of this assumption. If

the sample sizes are unequal and/or the variances are unequal then ANCOVA is

sensitive to violations of the homoscedasticity assumption. The greater the

discrepanciesinsamples#tsand/orcovariatevariancesthe,more sensitive

4
the F-test.

When distributiOnal assumptions are violated nonpara4tric strategies

are often suggested. This suggestion is madt even when traditional parametric

strategies are robust to the vlolations since the nonparametric procedures can

be more powerful when assumptions are not met (Blair & Higgins, 1980). In the

case of analysis of covariance several nonparametric approaches have been sug-

gested (McSweeney & Porter, 1971; Puri and Sen, 1969.; Quade, 1967). In the
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present paper the approach suggested by McSweeney and Porter is considered

because of its computational simplicity and because previous investigations

comparing this approach with Quade's approach have indicated that the two

strategies provide similar results with respect to both the probability of a

Type I error and power. (Conover'& Iman, 1982; McSweeney & Porter, 1971).

McSweeney and Porter (1971) suggested that a nonparametric analog to the

traditional parametric analysis of covariance could be achieved by separate

transformations of the covariate and the dependent variable, substituting

ranks across treatment groups for the original observations. The ranked data

could then be analyzed using the same procedures as those used with parametric

ANCOVA. The resulting test statistic has an F-distribution with the same de-

grees of freedom as those associated with the parametric ANCOVA test statistic.

McSweeney and Porter compared the'parametric ANCOVA with rank transformed

ANCOVA and found that when the parametric assumptions were met the rank trans-

form approach was -only slightly less powerful than the parametric ANCOVA. The

difference in power between the two approaches was greatest when a moderate to

strong relationship existed between the.covariate and the dependent variable.

Although they did not consider comparison of the two approaches when the

assumptions of conditional normality or homoscedasticity have been violated

they suggested that the ranking procedure may be more powerful.

Conover and Iman (1982) conducted a small simulation study comparing

parametric ANCOVA with the rank transform approach when the conditional dis-

tributions were: normal, lognormal, exponenl:eal, uniform and Cauchy. They

found the rank transform approach to be robust to violations of conditional

non-normality while the parametric ANCOVA strategy led to either an increased

or reduced probability of Type I errors. In terms of power the'results

6
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indicated that parametric, COVA lost power with the lognormal and Cauchy dis-
t

tributions but was more powerful when the conditional dfstributions were normal

or uniform. Conover and Iman considered only situations involving 1) a covariate

having a normal distribution, 2) sample size of 10 for each group of 4 groups, and

3) the effects of extreme conditional non-normality. The present study extended

Conover and Iman's investigation to include both normally and non-normally dis-

tributed covariates and to include several degrees of heteroscedasticity. Fur-

thermore, the present investigation considered less extreme violations of the

normality assumption and also the combined effect of both heteroscedasticity and

non-normality.

Method

Design

The simulation had 5 factors: 1) form the conditional distAbution,

2) strength of the posttest-covariate relationship, 3) heteroscedasticity of

the conditional distribution, 4) form of the covariate distribution, and

5) sample size. Details on the levels of these factors are given below. All

eomb-inat-isnss-we-re--not

will be indicated after describing the factor levels more specifically.

Form of the conditional distributions. Six distributions Were employed

as conditional distributions, a normal di'ltribution anfl 5 non-norma1 distri-

butions. Table 1 presents descriptive statistics calculated on a .sataple of

100,000 scores from.each of the 6 distributions as well as the A7ortion of

observations found 1, 2, or 3 standard deviations from the mean. These re-

sults were obtained using the Statistical' Analysis System (1979). Generation

of the data is described in-detail below.
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Insert Table 1 Here

Strength of the posttest-covariate relationship. Two levels of

strength of relationship were employed. For the homoscedastic condition

p the PearsOn product moment correlation, was either .3 or .7. For the

heteroscedastic condition ri, the correlation ratio, was either ,3 of .7.

Variance of the conditional distributions. In addition to the homo-

scedastic case, 3 levels of heteroscedasticity were employed. Data were

generated so that the conditional variances increased as the value of the

/covariate increased. The increase in-conditional variance was the same

for both groups. To give an idea of the extent of heteroscedasticity

considered in the simulation, Table 2 reports the conditional variances

for 5 points on the covariate scale under the 3 heteroscedastic conditions.

This table applies only to normally distributed covariates. For non-

normal covariates different conditional variances were associated with

--ttm ive gcml I. ditiana'-vari

ciated with these.scale points for non-normal covariates, it would not

have been possible to compare different coVatiate distributions while

maintaining a common correlation ratio. At the first level of hetero-

scedasticity and_with n . .7 the conditional variance one standard

Insert Table 2 Here

deviaiion above the mean (51) was 1.5 times as large as the conditional'

variance one standard deviation below the mean (49), 1.612/.418 = 1.5].
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For extreme heteroscedasticity (level III) the conditional variance one

standard deviation above the mean was 7.5 times the conditional variance

one standard deviation below the mean [1.590/.209 = 7.5]. The rate of

change of the conditional variances was approximately the same when n = .7

or r = .3.

Distribution of the covariate. The six distributions employed for con-

ditional distributions were also used as distributions for the covariate.

Sample size. All comparisons involved tigo groups. Both equal sample

sizes and unequal sample sizes were studied. For equal sample sizes, data

on either 5 or 15 subjects were-simulated for each group. For unequal sample

sizes, data were simulated for 5 subjects in ope group and 10 in the second

group.

Condition combinations for five subjects in each cell. Had all combina-

tions of the remaining four factors been simulated the design would have been

a 4 (degree of heteroscedasticity) x 6 (form of the conditional distributions) x

6 (form of the covariate distribution) x 2 (strength of relationship) completely

7

CroiSed factOrial. Of these 288 cells, the 120 cells involving combinations

of conditional distributions A through E in Table 1 and conditions I and II

in Table 2 were not simulated. Thus, we did not simulate data for the moder-

ate degrees of heteroscedasticity in combination with the non-normal conditional

distributions.

Conditions combinations for other sample sizes. ,',Fewer combinations were

simulated for sample sizes other than five in each group. The combinatiOns

simulated for the equal n conditions (15 in each group), and the unequal n

conditioM (5 im one group and 10 in the other) were different. Table 3 sum-

marizes the conditions which were considered. An asterisk (*) is,used to

9
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indicate which conditions were studied when sample sizestrequalled 15. For

cases with sample sizes of n1 = 5 and n2 = 10 a number symbol (#) is used.

It might also be noted that when sample sizes equalled5,all cells in the

table were studied.

Insert Table 3 Here

Generation of the data

The method for generating the posttest data differed slightly depending

on whether the conditional distribution was homoscedastic or heteroscedastic.

For the homoscedastic case the equation for generating the postfest data was

Y c. + pX + Evil - p2 . (1)

<Yor the null case c
j

was zero for both groups. For the non-null case c
1
was

zero while c
2
was .5. For all cases X was distributed with a mean 50 and

variance one while E was distributed with mean zeto and variance one. The

coefiIcient piias aEhei:j or :7-depending on-the strength Of-refitiondhili

being simulated. For a normally distributed covariate a standard normal

variable, z
1,

was generated using the normal function of the Statistical

Analysis System (1979). ic was then generated by adding 50 to zl. For

normal conditional distributions a standard normal variable, z
2'

was gener-

ated anE was,set equal to z2. Non-northal varia les, were generated using

a procedure developed by Fleishman (1978). This procedure transforms a

standard normal variable to a variable with mean zero, variance one and known

skewness and kurtosis. The skewness and kurtosis are controlled by choosing

b, c, and d in the equation,

w st -c + bz + cz2 + dz
3.

10
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.For the non-normal conditional distributio s E was simply set equal to w.

For the non-normal covariate X was generated by adding 50 to w.

For the heteroscedastic cases the posttest data was generated using the

equation

Y = c. +4/X + Ev/k(z1 + 5)r
J

(2)

The number k was chosen so that the average conditional variance would

be 1 p
2

. This permitted the correlation ratio to be either .3 or .7

depending on whether p = .3 or .7. The number r was chosen to control the

rate of in ease of the conditional variance. The.variables z
1,

X and E

were generated as described in the previous paragraph. Thb use of equation

(2) implies that regardless of whether z1 is transformed to a normalwor non-

normal covariaee, the same conditional variance isassociated with the normal

transform and the non-normal transform of a particular value of zl. This

in turn assures that the average conditional variance is 1 - p
2

for both the

f

normal and non-normal covariate.

11
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The investigation generated data for several hundred situations in which

the assumptions of conditional normality and homoscedasticity were violated

to. varying degrees. Since it is not practical to report all.of these results,

the findings are summarized in various forms. The adequacy of the observed

proportion of Type I errors was judged as acceptable when any result was less

than two standard errors al?over or below the'theoretical probability of a

1

Type I error. The standard error for a proportion is equal to ([p(1-p)]/N)1/2.

For p = :05 the standard error for 1000 replications eque1s .007 whil.d for
1

p = .01 the standard err4equals .003. Observed proportions outside the prob-

ability intervals of (.036, .064) ato the .05 level and (.004, .016) at'the

.01 level were therefore considered as unaccePtable.

The results are reported in two sections and each section ,is divided into

two parts. The first part of the first section presents the effects of con-

ditional non-normality on the proportion of observed Type I errors. The second

part of the section compares the power of the'non-parametric'approach to ANCOVA.

The second section presents the effeots of heteroscedasticity and the combined
5

effect of.non-normality and heteroscadasticiAr. The first part of this section

reports the effects on Type I errors and the second part compares the power,

of the two analysis strategies. '

Conditional non-normality

Type I errors. Considering the equal and unequal n conditions there were

21 conditions involving a homoscedastic, normally distributed error. Table 4

reports the estimates that were above the upper bound of the p:robability inter-

vals for nominal a levels,of .01 and .05. (Ng estimates Were below the lower

12
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bound.) The results relevant to ANCOVA are a check on the simulation since

all assumptions were met for these 21 cqnditions. The values above the upper

Insert Table 4 Here

bound for a levels of .01 and .05 are probably attributable to sampling error.

For the R-ANCOVA there were 3 values above the upper bound when a was .01.

The values .021 and .017 occurred with n = 5 in each group, the moderately

leptokurtic (condition C in Table 1) covariate distribution and p equal to

.3 and .7 respectively. Although not conclusive, the results suggests the

rank transform approach may be slightly liberal for'small sample sizes and

tokurtic4lly distributedpavariate for nominal a = .01.

There were 19 cases involving a non-normal homoscedastic conditional

distribution and a normally distributed covAriate. Out of these 19 cases

the parametric ANCOVA and the rank transformed ANCOVA each had one estimated

libexal and one estimated canservative a for the nominal a of .01. Neither

had an estimated a outside the probability interval for nominal a -= .05.

This result is consistent with Box and Anderson's (1962) and Atiquallah's

(1964) conclusion that for a normally distributed covariate,the analysis of

covariance is robust to violations Of the assumption of conditional normality.

Table 5 presents stem and leaf diagrams of distributions of estimated a

levels for conditions involving non-normal covariates and conditional distri-

butions, nominal a = .01,.n1. = n2 = 5, and p = .3 and .7. The table indicates

that rank ANCOVA is somewhat liberal for both p = .1 and p - .7, but is more

liberal for the former.situation.
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Insert Table 5 Here

When the nominal a was .05 neither analysis showed a tendency to be liberal or

conservative. (These results are not presented in a table.) With p = .3 all 25

actual a levels fell in the probability interval for the parametric ANCOVA, while

only one of 25 fell above khe upper limit of the probability interval for the-

rank ANCOVA. For p = .7 the corresponding frequencies are zero and three. For

n = 15 in each group there were 6 combinations of non-normal covariates and non-

normal conditional distributions for each of p = .3 and p = .7. None of these

conditions resulted in estimated actual levels gntside the bounds of the prob-

ability intervals for nominal a = .01 or a = .05. There were 6 combinations for

the unequal n condition with p = .7. None of these resulted in actual a levels

outside the probability interval for nominal,a = .01 or. a = .05.

Power. Table 6 presents the first, second, and third qualkiles of the poiwer

differences between the rank and parametric ANCOVA for combinationp of p and a.

It also presents all power differences that were greater than .05. As the re-

sults indicate, with a few exceptions minimal power differences occurred when the

errors wgre'homoscedastic. An exception to this generalization was observe4

however in cases involving the leptokurtic conditional distribution (E).

Insert Table 6 Here

Table 7 reports all power differences for p = .3, and a conditional distribution

follawing distribution E. With n
1

= n
2
= 15, all conditions resulted in at'least

9% increase in power for RANCOVA over ANCOVA. In all six situations involving

n
1
= n

2
= 5 power differences less than 5% were observed. These results suggest

that with equal group frequencies of at least 15 and a skewed and leptokurtic

1.4
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distribution, a significant power advantage accrues to the rank ANCOVA. It

also might be noted that the differences of .091 end .112 occurred with a normal
.

covariate and so the results are not dependent on deviations from normality for

the covariate.

Insert Table 7 Here

Conditional non-normality and heteroscedasticity

Type I errors. Table 8 presents the estimated actual a levels that were

TT

outside the probability interVaIS for-notinal a's of .01 and .05. The table

suggests that parametric ANCOVA was robust to the assumption of homoscedasticity

when this assumption alone was violated. In situations involving the violations

of ,conditional normality and homoscedasticity the parametric approach had a

tendency to be conservative when the sample sizes were small (n1 = n2 = 5) an&

a = .05. The rank ANCOVA strategy on the other hand had a tendency tri be libera1

in situations involvingheteroscedastic conditional distributions and when the

sample sizes were small, a = .01 and n = .3. This was true for both normal and

non-normal conditional distributions. In situations involving a normal covariate

and the combined conditional non-normality with heteroscedasticity both parametric

ANCOVA and R-ANCOVA provided appropriate actual probability of Type I errors.

Insert Table 8 Here

Power. Table 9 reports power differences for conditional distributions

D and E with various combinations of group frequencies, n, a, and covariate
%

distributions. Inspection of the Table 9 indicates that when there were 15

subjects in each group a practical power advantage accrued to the rank ANCOVA

for p = .3 and .7, a = .01 and .05, and both conditionil distributions.

15
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1

The advantage appears to be greatest with conditional distribution E. Distri-

bution D was a skewed distribution. Distribution E was a leptokurtic and

skewed distribution. However the frequencies reported in Table 1 suggest

that the predominant characteristic of a plot of distribution E was its

skewness. This suggests thatikewness combined with heteroscedaSticity and

an equal group frequencies of at least 15 will result in practically important

power advantage for the rank ANCOVA. Table 10 reports the median, maximum,

and minimum power difference for all levels of a and ri and conditional dis-

tributions A, B, and C. Clearly.the power differences are minimal for

these conditional distributions.

Insert Table 10 Here

Conclusions

The results of the analysis indicated that the parametric analysis of

covariance was robust.,,t4 violations of either the conditional normality or

homoscedasticity assumption. In tpattons where both assumptions were

violated however, and the covariate has a non-normal distribution, the

parametric ANCOVA exhibited a slight tendency to lead,a conservatiVe test

of the hypothesis when the sainple size was smalland the nominal level of

significance was .05.. These results are not consistent with those reported

by Conover and Lman (1982). In that study the researchers found that

_the parametric ANCOVA led to a conseryative hypothesis test when

16



Parametric ANCOVA
14

the conditional error distribution was lognormal or Cauchy. Conover and Iman

did not consider violations of the homoscedasticity assumption. The discrep-

ancy in findings might be explained by the difference in the degree to which

the conditional normality asssumption was violated. The Cauchy distribution

considered by Conover and Iman had parame-als of 0 and 1 for the median and

scale respectively. With these parameters the distribution is the t-distri-

bution with 1 degree of freedom. Conover and Iman therefore considered a

farmoreleptokurtic distributiod than the one considered here. The lognormal

distribution studied by Conover and Iman had parameters of e
2

and e
4
(e

4
- 1)

for the mean and variance respectively. With these parameters the distribu-

tion has skewness of 414.36 and a kurtosis of 2.64 x 1010.

The present study did not consider as extreme violations of assumptions

as Conover and.Imag. The rationale behind the levels of skewness and kurtosis

chosen in the present study was based on Fleishman's (1978) argument that

simulation studies should reflect distributions commonly found with real data.

Furthermore Fleishman points out that Pearson and Please (1975) found that

most distributions they examined had skewness less than .8 and kurtosis between

-.6 and +.6. The present study considered distributions similar to as well as

distributions slightly more extreme than those considered by Pearson and Please.

Since researchers generally do not report the skewness or kurtosis of their

data it is difficult to determine how closely the distributions reflect actual

data. However scores on the Metropolotian Achievement Test for the math and

reading subtests were.obtained for grades 1 through 10 on approximately 1500'

students per grade. The skewness of these distributions ranged between -.55

and .05 and the kurtosis ranged between 1.37 and -.34. It was therefore

concluded that the distributions.considered in the present study were probably

17-'&
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similar to those..found by investigators,in actual research studies.

The robustness.of parametric ANCOVA found in the pcesent studysshould

not be interpreted to mean that ANCOVA is always robust to violations of

tssliptions. his study considered only moderate departures from the normal-

ity assumption; furthermore parametric ANCOVA may not be robust if the

distribu ional assumptions are violated in different ways for the two groups.

Havlic4 and Peterson (1974) found this result in studying Student's t-test.-

The rank transformation approach to ANCOVA was found to be robust when

the covariate hatika-normal distribution and the errors were non-normal. These

findings are4cwistent with Conover and Iman 1982). However when both the

covariate and errors were non-normally distr uted, the samplessizes were

small (nl = n2 = 5), a was .01, and the strength of the covariate-posttest

relationship was weak (p or q = .3), the rank ANCOVA tended to lead to a a

liberal test. Under all Other conditions invollving von-normal covariates

and conditional distribution the rank ANCOVA waS quite robust.

When the conditional distributions were homoscedastic and either normally

or non-normally distributed the power differences, with one notable exception,.

were generally quite small. With a correlation of .7 add with n = 5.in each

group the parametric ANCOVA was slightlymore powerful. However under the

other equal n conditions studied (p = .7, nl = n2 = 15; p = .3, n1.= n2 = 5

p = .3, nl = n2 = 15) the rank ANCOVA tended to be slightly more powerful.

The only exception to the generally small power differences occurred when the

conditional distribution appeared markedly skewed'and p was .3.

When the conditional distributions were heteroscedastic similar results

occurred. Except when the conditional distribution appeared to be skewed,

the power differences were small. However practically imp6i.ant power
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differences emerged with the skewed conditional distributions. The differences

were larger with 15 subjects in each group than with 5. The differences also

Increased as the degree of skew increased, but were fairly similar for both

n = .3 and n = .7. This finding is especially significant since the rank

.
ANCOVA appeared to have an actual a level near to the nominal a level under

the conditions described above so the po

'

er advantage is not an artifact of a

enon-robust prodedute. Me-f ginding of eatet advantage in power assdaWti

with the rank transformed ANCOVA when sample sizes were moderate (n = 15) is

consistent with the results reported by Blair and Higgins (1980) in their

comparison of the Wilcoxon t-test with Student's t-test. In that study they

found very little difference in power between the two procedures when sample
't..,

sizes were small but with 'moderate (9, 17; 18, 18) or large (27, 81; 54, 54)
.0

samples, greater power was assoCiated with the nonparapletric approach.

The poper findings in the present study suggests it may be fruitful to

conduct further simulation studies to determine the boundary conditions, on

combinations of skewness, heteroscedasticity, strength of relationship and

sample size thatiresults in a practicallyimportant power advantage for the

rank ANCOVA. Unequal group frequencies should be included since the failure

C.

for a power advantage to emerge in our study for unequal group frequencies

may well be due to the fact thlat the total frequency was only 15. It may

also be.useful to include several degrees of group differences so that

empirical power curves can be constructed.

19
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Table 1

Proportion of Random Variables Observed Within 1, 2 or 3 Standard Deviations of the
Mean and Summary Characteristics of the Six Distributions Studied

-

Standard Deviation
from the Mean

Normal
N

Platykurtic
A

Slightly
Leptokurtic

B

Moderately
Leptokurtic Skewed

Skewed and
Moderately
Leptokurtic

-00, -3.0 .08 .33 .62

-3.0, -2.0 2.17 2.11 2.09
r

-2.0, -1.0 13.95 19.62 11.89 9.71 18.02

-1.0, 0.0 33.90 30.22 35.50 37.67 37.81 63.35

0.0, 1.0 33.80 30.24 35.57 37.61 26.73 21.92

1.0, 2.0 13.87 14.83 12.13 9.91 13.16 9.36
.

2.0, 3.0 2.12
,

2.20 2.02 3.91 3.66

3.0, 00 .11 .30 .65 .39 1.69

Mean .0018 .0018 .0054 -.0054 .0050 -.0002

Variance 1.0036 1.0090 .9887 .9831 1.0043 .9913

Skewness
yr

.0046 -.0043
n -.0026 .0277 .7199 1.6928

Kurtosis -.1065 -1.0160 .7207 2.6584 -.1031 3:3159
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Table 2

Conditional Variances at Five Levels of X for Three Levels of
Heteroscedasticity When ii = .7 and q = .3

Levels of Heteroscedasticity

X = .7 n = .3 = .7 /1 = -.3 = .7 = .3

48 .306 .546 .098 .176 .028 .050

49 .408 .728 .233 .416 .117 .209

50 .510 .910 .455 .813 .358 .639

-51 .612 1.092 .787 1.404 .891 1.590

52 .714 1.274 1.249 2.230 1.926 3.537



Table 3

a,b
Summary of Conditions Simulated for n

1
n
2

15 and n1 a. 5, n
2

10

Error Distribution

Heteroscedasticity Shape

0
-

A

A.

Covariate Distribution

.7 .3

A

.7 .3 .7 .3 .7 .3 .7 .3 .7 .3

* I* 1 *

*
1 * 1 *

*
1

*
1

*

*
1

*
1

*

III A

III 0

* * * * * * ; *

a. All combinations of factors were simulated when n 1 .

b. A * indicates n1 n2 15, a 0 indicates n1 5, n2 10
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Table 4

Liberal Estimated a Values for Normal and Homoscedastic Conditional Distribution

A

Nominal Alpha'

Analysis .01 .105

ANCOVA .021 .071

R-ANCOVA_ .017, .018, .021

Note: For each combination of Analysis and Nominal Alpha, there were 21

conditions simulated.
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Table 5

Distributions of Actual a Levels for Nominal a = nl = n2 = 5,

Non-normal Covariates and Conditional Distributions

.

% Analysis

p Stem

ANCOVA

Leaf Count Stem,

,Rank ANCOVA

Leaf Count

.3 02

02-

02

- 02

6

01134 ,

1

5 -- -

01 899 3 01 777778 5

Ola 0001333456 10 01 1133355566666 14

00 555678889999 12 00

00 00

.7 02 02 6 1

02 02

01 7 1 01 7789 4

01 011111t22366 12 \ 01 001124444556 12

' 00 77778888999 11 00 77789999 8

00 3 1 00

aihe entries for the stems and leafs enclosed by the dotted lines are within plus or minus rwo'

standard erromof the nominal a = .01. SteA should be multiplied by .01.
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Table 6

Distribution of Power Differences for Homoscedastic Errorsa

a P
Q1 Q2 Q3

Power Differences
? = .05

.01 N .3 .008 .013 .021 .091,.09.4,100

.7 -.007 -.002 '.003

.05 .3 .000 .005 .015 .067,.112,.108,.140

.7 :.022 -.013 -.005 -.059,-.067,-.068

rf

a
Power differences calculated by subtracting power for parametric from power tor

rank ANCOVA. Each distribution is based on 48 conditions.



Table 7

Power Differences with Conditional Distribution E and p = .3

n
1
= n

2
= 5

. . 021 , . 021, . 029, .033, . 044

.05 / .028,.029,,.031,035,.039,.045

n1 n2 15

.091,.091, .106

.108,.112,.140

a I.
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Table 8

Summary of Estimated a Levels foi Heteroscedastic Condtional Distributions

Condition Desc'ription

Number
of Cases

Nominal a

.01

ANCOVA R-ANCOVA

--,

Normal and Non-Normal 47 .003/ /.017,.017,.019,.019

Covariate; Normal and,
Heteroscedastic Condi-
tional Distribution

.021a

Normal Covariate 17

Distribution; Non-
Normal and Hetero-
scedastic Conditiona
Distribution

Non-Normal 5pWariate;
Nem-Normal and Hetero-
scedastic Conditional
Distribution

COVA R-ANCOVA

n = .3
nl = 5' n2 5

25 .033,.033,.034/

n = .7
nl 5' n2 5

25 /.017 /.065

n = .3 n
1
= 15, n2 = 15 10 /.017

n = .7 n
1

= 15, n2 = 15 10 .028/

n = .7 n1 = 5, n2 = 10 6

a These five estimate liberal a values involved n . .3 and n
1

n
2
= 5

3ci
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Table 9

Power Differences For Conditional Heteroscedastic Distributions D and E
a

11 a

Covariate Distribution

Conditional
Distribution A

5,5 .3 .01 .027 .027 .0L0 .029 .020 .023

.05 .042 .045 .030 .023 -.003 .020

.7 .01 .004 .045 .023 .018 .015 .018

.05 .003 .016 .001 .053 .010 .013

15,15 .3 .01 .066 .044 .052 .059 .042 .065

.05 .100 .084 .087 .067 .067 .120

.7 .01 .104 .074 .067 .136 .136 .100

.05 .111 .096 .036 .161 .158 .161

5,10 .7 .01 -.008 .008 .003

.05 .007 .019 .27

5,5 .3 .01 .009 .025 .033 .013 1.027 .057

.05 .058 .069 .047 .058 .046 .057

.7 .01 .022 .017 .022 .021 .023 .007

.05 .015 .029 .031 .043 .023 .007
c

15,15 .3 .01 .213 .203 .201 .250 .189 .2)8

.05 .264 .283 .272 .244 .274 .282

.7 . .01 .186 .188 .223 .210 .209 .161

.05 .228 .195 .220 .248 .224 .192

5,10 .7 .01 .017 .023 .037

.05 .048 .063 .064

aDifferences calculated by pubtraction Power for parametric ANCOVA from power for Rank ANCOVA.
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Table 10

Distribution of Power Differences for Conditional Distributions A, B, and t
a

a n Number of Cases Minimum Median Maximum

.01 .3 24 .007 .023 .035

.7 24 -.013 .003 .021

.05 .3 8 -.001 .017 .035

.7 8 -.034 -.019 .007

a
Differences calculated by subtracting power for parametric ANCOVA from.power for
Rank ANCOVA.
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