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ABSTRACT

Recently several school districts and states have implemented

programs testing for minimum competency in the basic skills. The

test data are to be used to diagnose a student's deficiency and to

provide for instructional remediation. Several technical and prac-

tical issues related to these monitoring programs are discussed and

solutions are provided in this report.

The first part of this report deals with ways to report basic

skills test data which would facilitate the identification of student

weaknesses. Under study are the technical aspects associated with

the reporting of objective-referenced data. An exploration is then

made into the use of patterns of errors in responding to basic skills

test items to possibly improve various score reporting processes. In

addition, the feasibility of using these patterns to construct instruc-

tionally equivalent test forms is discussed. Finally, an approach is

presented to project budget requirements and allocation of resources

in school districts or states in which instructional remediation is a

corollary of a basic skills assessment program.

This work is geared to the needs of planners of statewide or

districtwide basic skills assessment programs and to other people

such as students, parents, and teachers who would benefit from test

interpretations which are detailed yet simple. Procedures which

enhance the identification of weaknesses in the acquisition of basic

skills, particularly among disadvantaged students, will undoubtedly

contribute to the mission of testing for instructional purposes and

for program evaluation.
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CHAPTER 1

A GLANCE AT THE SOUTH CAROLINA
BASIC SKILLS ASSESSMENT PROGRAM

1. Introduction

In attempting to reverse the decline in the level of student

achievement over the last decade, several states have implemented

statewide testing programs assessing minimum competency in the basic

skills. Many of these programs aim to insure that high school

graduates possess a minimum level of academic achievement and have

acquired the skills required to function effectively as adults in

American society by requiring high school students to pass an

examination. When used in this mannerthat is, as high school exit

examinations--minimum competency examinations do not have the posi-

tive connotation of some other basic skills assessment programs such

as the one implemented in the State of South Carolina. This program

is specifically designed for continuous monitoring of the acquisition

of basic skills (namely, reading, writing, and math) across succes-

sive grade levels. The results of this type of continuous monitoring

program are used to diagnose a student's deficiencies in the basic

skills and to provide for instructional remediation.

The purpose of this introductory chapter is to provide an

overall description of the South Carolina Basic Skills Assessment

Program (BSAP) and some of its major technical works. It is within

the framework of the BSAP that the research supported under the

auspices of the National Institute of Education was conducted. The

NIE works will be described in detail in the subsequent chapters.

2. A Brief Description of the South Carolina BSAP

On July 14, 1978, the South Carolina Legislature enacted legis-

lation establishing the South Carolina BSAP. The program is aimed at

the establishment of statewide educational objectives in the basic

skills (namely, reading, writing, and math) along with minimum

3
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standards of student achievement for kindergarten through grade

twelve. The program consists of two separate testing components.

First, a readiness test is to be administered to all public school

students at the beginning of grade one to assess the student's

readiness to begin the formal school curriculum. The results of the

readiness test are to be used to provide appropriate developmental

activities in the first grade. In addition, the school district is

to advise the parents of any student not indicating readiness for

first grade work to secure a complete physical examination of that

child. Second, criterion-referenced tests are to be developed in

reading and math for grades one, two, three, six, and eight and

writing exercises for grades six and eight. The purpose of these

tests is to diagnose student defi'ciencies and to aid in determining

instruction needed by the student in order to achieve the minimum

.statewide standard established for each grade level. (An adult

functional competency test is also to be administered at the end of

grade eleven.)

Readiness Testing

For beginning first graders, the readiness test chosen was the

Boehm/Slater Cognitive Skills Assessment Battery (CSAB) published by

Teachers College Press of Columbia University. The selection was

made in conjunction with the identification of the kindergarten

objectives. The readiness test was field tested in the spring of

1979 using a sample of kindergarten students. Prior to testing, the

kindergarten teachers' judgements on the readiness of the students

were also solicited for the purpose of setting ehe passing score.

Since no longitudinal data were yet available in 1979 on the CSAB

for South Carolina first graders, judgements by a cross-section of

South Carolina kindergarten teachers were used as a proxy for the

actual performance of first graders during the school year. The

cutoff score was set at 88 out of a maximum of 117.
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Basic Skills Assessment

With full participation of all parties concerned with public

education in the state, the South Carolina basic skills objectives

in reading and math were identified. These Objectives were delib-

erately formulated to be broad in scope, yet still measurable. In

addition, they were so selected that, with effective instruction,

the objectives could be achieved. Thus sensitivity to instruction

was a major factor employed in the framing of each objective.

The objectives in reading for each of the grades one, two,

three, six, and eight are stated in six categories: decoding and

word meaning (DW), main idea (MI), details (DE), analysis of litera-

ture (AL), reference usage (RE), and inference (IN). In math, the

objectives are clustered in five categories: operations (OP), con-

cepts (CN), geometry (GE), measurement (ME), and problem solving (PS).

The development of the reading and math tests was contracted

with the Instructional Objective Exchange (I0X), Los Angeles,

California. Test items were field tested in the spring of 1980, and

the first forms were administered statewide in 1981. For each subse-

quent year, new forms are developed and administered. As planned,

all test forms have items of similar content; in addition they share

a number of common items. This was deliberately done so that varia-

tions in item characteristics and student ability can be observed

from year to year.

3. Setting Passing Scores: Descriptions
of Three Approaches to a Set of Data

There are a variety of ways to set passing scores for a basic

skills assessment program or minimum competency test. Most procedures

can be classified either as content-based or data-based. Variations

of content-based procedures have been proposed by Nedelsky, Angoff

and Ebel; they typically focus on some type of subjective judgement

regarding the content of items or objectives to be measured by the

test and expected performance of an examinle at the borderline of

achievement.
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Data-based procedures for standard setting, on the other hand,

use the examinees' item responses. Most of them rely on an external

classification of examinees in contrasting groups and seek passing

scores which are, in some sense, consistent with the external

classifications.

In the context of the South Carolina BSAP tests for grades one,

two, three, six, and eight, the setting of passing scores was based

on a combination of student responses and teacher judgements. Since

all standards are judgemental, the credibility and fairness of those

who make the judgement determine the extent to which the resulting

passing scores are acceptable to the public. For the BSAP tests, it

was felt that teachers who had been teaching the students for almost

a year would be in the best position to make judgements regarding

the performance of students in the academic areas under study.

During the May 1981 statewide BSAP testing, samples of approxi-

mately 3000 students were selected for each of grades one, two,

three, six, and eight and for each of the areas of reading and math.

A few weeks prior to testing, teachers were asked to classifieach

student's achievement in each subject area as Adequate or Non-

adequate. In the case of uncertainty, the student was to be classi-

fied in the category ofUndecided. Table 1 reports the descriptive

data regarding the achievement in reading for the groups Adequate,

Non-adequate, and Undecided; the corresponding data for math are

compiled in Table 2. For all grades and subject areas, the BSAP

means and medians are in the expected direction; that is, for each

situation the Non-adequate group has the smallest mean or median and

the Adequate group has the highest mean or median. Thus there is a

high degree of relationship between BSAP test scores and teacher

judgements. Since the BSAP tests are deemed to have adequate content

validity, this level.of correlation indicates that teacher judgements

were made on a basis similar to ..he content measured by the test. It

may be recalled that these judgements were made independently of the

test scores.
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TABLE 1

Descriptive Statistics for Teacher-Judgement Samples,
May 1981 Statewide Testing, Reading Tests

Combined Non-adequ-te Undecided Adequate
Grade Subject Statistics sample* group group_ group

1 Reading N 2923 892 194 1779
Mean 26.08 19.13 22.85 29.99

Median 27 18 22 32

SD 7.76 5.95 5.97 5.91

2 Reading N 2675 862 136 1636

Mean 26.80 19.83 24.39 30.68
Median 30 18 25.5 33

SD 7.92 6.82 6.71 5.62

3 Reading N 2725 1025 96 1537

Mean 27.57 22.42 24.24 31.24

Median 30 23 26 33

SD 7.17 6.99 7.13 4.66

6 Reading N 2677 1012 117 1422

Mean 24.36 18.50 23.01 28.54

Median 25 18 24 30

SD 7.56 6.27 4.83 5.58

8 Reading N 2624 824 135 1626

Mean 24.40 17.99 24.76 27.68

Median 26 17 26 29

SD 7.84 6.80 7.05 6.19

Including students with no recorded teacher judgement.
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TABLE 2

Descriptive Statistics for Teacher-Judgement Samples,

May 1981 Statewide Testing, Math Tests

Grade Subject Statistics

Combined Non-adeouate Undecided
sample* group group

Adequate
group

1 Math N 2923 589 161 2125

Mean 25.32 20.69 24.05 26.74

Median 27 21 25 28

SD 4.16 4.61 3.90 2.87

2 Math N 2672 629 139 1866

Mean 25.87 22.71 25.09 27.00

Median 27 23 25 28

SD 3.72 4.25 3.02 2.85

3 Math N 2722 838 105 1714

Mean 22.65 19.29 21.55 24.38

Median 23 19 22 25

SD 4.70 4.42 4.53 3.87

6 Math N 2681 1057 124 1437

Mean 16.61 12.21 16.56 19.97

1 Median 16 12 17 20

SD 6.34 4.68 5.07 5.42

8 Math N 2631 1040 140 1418

Mean 13,/1 10.11 14.71 15.73

Median 12 9 14.5 15

SD 6.48 4.74 6.64 6.55

Including students with no recorded teacher judgement.
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Three approaches were considered in the setting of passing

scores via teacher judgements. They are subsequently described as

the Contrusting Group procedure, the Equal Percent Failing procedure,

and the Undecided Group procedure.

Contrasting Group Procedure

In this procedure the group Undecided is ignored, and the pass-

ing score is chosen to be the test score at which a maximum number of

students are correctly classified. Let N
1

(x < c) be the number of

Non-adequate students with scores less than c; let N
2

(x > c) be the

number of Adequate students with scores of at least c. Then the

passing score is the value c at which the sum N
1
(x < c) + N

2
(x >c)

is the highest.

Equal Percent Failing Procedure

The Equal Percent Failing procedure focuses on the proportion of

Non-adequate students and seeks a passing score which yields a similar.

proportion of statewide students who would fail the test. Since all

test score distributions are dizerete, the Non-adequate proportion

(based on teacher judgements). and the proportion of students who

fail the BSAP test usually cannot be made exactly equal. However,

since the BSAP aims at helping Non-adequate students, it would make

sense to err in the direction that would,help to identify these

students; hence if two consecutive test scores may be used as the

passing score, the higher one would be the more appropriate choice.

Undecided Group Procedure

Another feasible way to set passing scores for the BSAP tests

is to.focus on the Undecided Group and to set the passing score as'

the median score of this group. This practice presumes that the

category Undecided is comprised of students who are on the borderline

between adequacy and non-adequacy; and the typical Undecided examinee

would be right on,the cutoff score separating students who pass the

Atest from thOse who fail it. The thedian is preferable to other
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summary measures such as the mean because of its resistance to

outlying observations which are common in statewide testing programs.

4. Setting Passing Scores: Results from Three Approaches

Tables 3-5 present the passing scores compiled from each of the

three procedures previously described. Along with the passing scores,

other descriptive information is also provided. This information is

listed under Columns 4-7 and is described as follows.

Column (4): Statewide percent of failing students

Column (5): Percent of failing in Non-adequate group (one

type of correct decision)

Column (6): Percent of passing in Adequate group (another

type of correct decision)

Column (7): Percent of correct decisions

There is an additional column in Table A.

Column (8): Percent of Non-adequate students based on teacher

judgement

It may be noted that the EquaZ Percent Failing procedure results

in passing scores which are equal to the corresponding Contrasting

Group passing scores in one situation and higher in the remaining

nine situations. Except for one case, reading in grade three, the

Undecided Group passing scores are at least as high as the Contrasting

Group passing scores.

Except for the math test of grade eight, all three procedures

appear to provide passing scores which are intuitively defensible.

The passing scores of 11 and 12 provided by the Contrasting Group

and Equal. Percent Failing procedures for the math test of grade eight

appear too low considering that, with four options per item, the mean

chance score is 7.5 and`the standard deviation is 2.4. The passing

score of 15 provided by the Undecided Group procedure seems more

acceptable.

In ihe remainder of this introductory chapter as well as in all

subsequent chapcers, the Undecided Group passing scores will be used

for various illustration purposes. (They will be referred to as

statewide'passing scores or standards.)
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TABLE 3

Passing Scores Based on the Contrasting Group Procedure
and Relevant Descriptive Statistics

Grade
(1)

Subject
(2)

Passing
Score
(3)

Percent
Statewide
Failing

(4)

Percent
Failing
in Non-
adequate

(5)

Percent
Passing

in

Adequate
(6)

Percent
Consistent
Classi-

fications

(7)
1 Reading 22 30 69 89 83
2 24 34 '72 89 83
3 28 40 71 84 79

6 23 t 41 74 85 80
8 20 28 60 89 79

1 Math 22 16 56 93 85
2 23 19 42 92 80
3 20 27 54 88 77

6 15 42 70 82 77

8 11 38 62 74 69

TABLE 4

Passing Scores Based on the Equal Percent Failing
Procedure and Relevant Descriptive Statistics

Percent Percent Percent
Percent Failing Passing, Consistent Percent

Passing Statewide in Non- in Classi- Non-
Grade Subject Score Failing adequate Adequate fications adequate
(1) (2) (3) (4) (5) (6) (7) (8)

1 Reading 23 34 73 86 82 33.3
2 25 36 74 87 82 34.5
3 28 40 71 84 79 40.0
6 24 45 78 81 80 41.6
8 22 35 69 80 79 33.6

1 Math 24 26 70 87 83 21.7

2 25 31 63 83 78 25.2
3 22 39 68 79 75 32.8
6 16 47 76 78 77 42.4
8 12 43 69 69 69 42.3
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TABLE 5

Passing Scores Based on the Undecided Group Procedure

and Relevant Descriptive Statistics

Grade

(1)

Subject
(2)

Passing
Score

(3)

Percent
Statewide
Failing

(4)

Percent
Failing
in Non-
adequate

'''. (5)

Percent
Passing

in
Adequate

(6)

Percent

Consistent
Classi-
fications

(7)

1 Reading 22 30 69 89 82

2 26 38 77 84 82

3 26 33 61 89 78

6 24 45 78 81 80

8 26 49 83 69 74

1 Math 25, 32 77 82 81

2 25 31 63 83 78

3 22 39 68 79 75

6 17 53 81 73 76

8 15 57 83 54 66

5. Overall Procedure for Item Calibration

At a very early phase of development of the BSAP tests, the

Rasch model was chosen as the general framework for all technical

works. The decision was made primarily because the Rasch model is

the logistic model which is most consistent with the tradition of

using the number of correct responses as the test score. For each

test administered in 1981, all items were calibrated on samples of

approximately 2600 students each. These are the samples used in the

setting of passing scores (see Section 3). The mean difficulty of

items in each test was (arbitrarily) set at zero; these items defined

a common ability scale for all the subtests covering the objectives.

(As may be recalled, there are six objectives in reading and five

objectives in math.) The results of the Rasch calibration for the

reading tests are reported in Table 6 and those for ihe math tests

are listed in Table 7.

For items which were not part of the 1981 test forms, the Rasch

difficulty values were obtained from the field test data collected
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TABLE 6

Rasch Item Difficulty Values for Reading in 1981

Item
Objective Sequence Grade 1 Grade 2 Grade 3 Grade 6 Grade 8

DW 1 -1.365 -2.313 -1.991 -0.405 0.505
2 -1.446 -2.953 -1.053 -1.223 0.370
3 -1.704 -0.394 -0.452 -2.268 -1.271
4 -0.994 -1.578 0.610 0.527 -1.523
5 -1.682 0.571 -0.638 -1.511 -0.280
6 -1.169 0.482 -0.226 0.197 0.168

MI 7 0.547 0.034 0.371 1.476 0.189
8 0.260 0.316 0.463 0.425 -0.302
9 -0.300 0.848 0.845 0.617 0.349

10 -0.324 1.066 0 0.761 0.353 0.000
11 -0.561 0.965 0.857 0.579 0.293
12 -0.450 0.953 0.543 0.506 0.747

DE 13 0.615 -0.072 -0.160 -0.387 -0.181
14 0.976 -0.098 -0.885 -0.910 0.293

15 0.824 -0.084 -0.188 -0.447 -0.275
16 0.598 0.249 0.306 -0.591 -0.092
17 0.580 -0.250 -1.192 -0.126 -0.750
18 0.959 -0:777 -0.788 0.091 -0.788

AL 19 1.199 0.726 -0.646 1.124 0.927
20 1.103 0.492 -0.700 0.822 -0.106
21 0.461 0.199 -0.130 1.036 0.027
22 1.169 0.064 -0.692 0.850 0.753
23 0.776 0.721 2.327 1.330 0.825
24 1.645 0.726 1.797 1.097 0.948

RE 25 -1.279 -0.716 0.810 -0.531 -0.710
26 -0.216 -0.323 0.179 -1.204 -0.167
27 -0.433 0.352 -0.142 -0.964 0.315
28 -0.665 -0.298 0.082 -1.524 -0.361
29 -0.292 0.124 0.239 -1.175 -0.891
30 -0.068 -0.150 -0.801 -0.392 -0.748

IN 31 0.139 -0.164 -0.268 0.267 -0.205
32 0.376 0.132 0.234 0.538 0.244
33 0.262 -0.044 0.506 -0.209 0.319,
34 -0.090 0.185 0.130 0.785 0.325
35 0.226 0.482 -0.571 0.924 0.687

36 0.320 0.532 0.461 0.323 0.364
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TABLE 7

Rasch Item Difficulty Values for Math in 1981

Item

Objective Sequence Grade 1 Grade 2 Grade 3 Grade 6 Grade 8

OP 1 0.918 0.772 -0.115 -1.274 -0.285

2 0.475 0.659 0.765 0.023 -0.479

3 0.710 0.582 0.497 -0.721 -0.471

4 0.972 2.288 -0.016 -0.084 -0.623

5 1.168 0.713 0.612 -0.304 -0.316

6 0.938 -0.054 1.179 1.122 -0.176

CN 7 -1.618 1.970 -0.177 1.037 G.782

8 0.029 -0.449 0.821 0.675 1.621

9 -1.053 0.135 -0.658 -0.570 -0.135

10 -1.174 -0.437 0.377 -0.120 -0.144

11 0.409 0.495 1.064 1.074 -1.065

12 4.012 -0.019 -0.507 -1 406 0.638

GE 13 -0.106 0.251 0.041 -0.848 0.281

14 0.540 0.445 -0.138 -0.107 0.290

15 -2.711 -0.675 -1.265 -0.195 -0.434

16 -2.007 -1.507 -1.516 0.665 0.699

17 0.318 -1.799 -1.094 1.045 0.928

18 0.253 -0.490 0.415 1.926 -0.392

ME 19 0.230 0.797 -1.003 -0.607 0.791

20 0.645 0.795 -0.766 -0.179 -0.578

21 -0.284 -0.414 -0.006 -0.011 -0.762

22 1.241 -1.667 -1.791 0.734 -0.069

23 -1.547 -2.147 0.501 -0.176 0.657

24 -1.817 1.696 1.793 0.965 -0.595

PS 25 -0.176 -0.965 -0.473 -0.200 0.603

26 -0.106 -0.551 -0.264 -0.663 0.512

27 0.406 -0.408 0.388 -0.870 -0.488

28 -0.258 0.772 0.175 -0.237 0.237

29 -0.454 -0.337 0.471 -0.872 -0.891

30 0.051 -0.403 0.688 0.143 -0.137
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in 1980. At this pilot test administration, three test forms were

assembled at each grade level for reading (Forms R1, R2, and R3), and

another three test forms were put together at each grade level for

math (Forms Ml, M2, and M3). Form R1 contained all items (including

those subsequently used in the 1981 test forms) in the two objectives

of main idea (MI) and decoding and word meaning (DW), Form R2 con-

t ned all items in details (DE) and analysis of literature (AL), and

Fo R3 contained all items in inference (IN) and reference usage (RE).

As fcir math, Form M1 consisted of all items in concepts (CN) and

opera ions (OP), Form M2 consisted of all items in geometry (GE) and

measu ement (ME), and Form M3 consisted of all items in problem

solv g (PS). The number of students who responded to each pilot

.form in each grade ranged from 282 to 439 with an average of

in the reading area. As for the matn subject, the number of

examinees ranged from 262 to 461 with an average of 395. (The field

test design also included Forms R4 and M4, which consisted respec-

tively of items taken from each reading objective and from each math

objective. However, due to the availability of the statewide 1981

data, student responses to Forms R4 and M4 were not needed in the

item calibration process.)

At each grade and for each subject area, Rasch item calibrations

were carried out separately for the three pilot test forms. By use

of appropriate sets of linking items, the Rasch difficulty values of

all items not included in each 1981 test form were then positioned

on the ability scale defined by the items which constituted the 1981

test form. The linking items were selected from the set of items

which appeared on both the 1981 test form and each of the three

pilot test forms. Two criteria were used in the selection of the

linking items. First, the linking items must not show gross depar-

ture from the Rasch model. Second, in the bivariate plot of the two

estimates of Rasch difficulty levels (one based on 1980 field test

data and the other based on 1981 statewide test data), the linking

items had to stay close to a regression line with unit slope.
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6. Conversion from Raw Scores to Scale Scores

When expressed in raw test scores, the statewide passing scores

do not remain the same for all tests. In addition, test security

ngcessitates the use of different forms each year. Although every

effort is made to insure that these forms are comparable both in

content and in difficulty, there is no guarantee that raw test scores

from comparable forms are strictly equivalent. Taking these factors

into account,'it was felt that a common scale score system would be

the best way to express the student achievement in various subjects

across various grade levels. In a testing program where items are

already calibrated, it is possible to set a common scale score system

for all test forms. Although it is a matter of arbitrary decision,

the 1981 BSAP test scores are reported t.n a scale score system in

which the statewide passing scale score is held at 700 for all situa-

tions; in addition, the standard deviation is set at 100.

Latent trait models may be used in the construction of scale

scores for any test. Let e be the latent trait (ability) for an

examinee and P(0) be the item characteristic (operating) curve for

an item. Then P(0) is the probability that the said examinee will

answer the item correctly. For a test with L items, each with the

item characteristic curve (icc) Pi(8), i = 1,2,...,L, the test

characteristic curve (tcc) is the sum

E
L
(0) = E P (0).

i=1

(1)

This is the number of correct responses to be expected from an

examinee with ability e.

On an L-item test, the raw score (number of correct responses)

is an integer on a scale extending from 0 to L. For a raw score r,

let 6
r
be the ability on the ability continuum defined by the test.

For the raw scores of 1,2,...,L-1, the ability Or is the solution er

of the equation EL(Or) = r. Strictly speaking, when 7 = 0, er

and when r = L, er = +co. To avoid having a scale score of infinity,

2,1
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one may linearly extrapolate the tcc at 61 to get the value 6
0

and

at 0L-1 to get the value 6
L

. Linear extrapolation yields the abilit)

and

6
0

= 6
1

- 1/EL -(6
1

)

L
= 6

L-1
+ 1/E-(6 )

L L-1

In these formulae EL represents the derivative of E-(6) with respect

to e.

For the special case of the Rasch (one-parameter logistic)

model, the icc is given as

Lcs

P(6) = e6 /(1 + e
6-8

) (4)

where d is the difficulty of the item. For this case, we have

E-(6) = E P.(6)-(1 - P
i
(e)) (5)

'

i=1 1

hence 1/EL -(6
1

) is the square of the standard error of measurement at

6
1
and 1/E-(6

L-1
) is the square of the standard error of measurement

L

at 6
L-1.
Let c(6) be the cutoff ability and a(6) the standard deviation

of the ability distribution derived from each BSAP test administered

in 1981. For each test in each grade level, the scale score for the

raw score r (=0,1,2,...,L) is given as

scale score = 700 + 100(6
r

- c(6))/a(6). (6)

In subsequent statewide BSAP test administrations, new test

forma will be assembled for each grade and in each of the areas of

reading and math. Each form corresponds to a tcc; this curve pro-

vides a way to convert each raw score r into an ability Or. Once

this is done, the formula 700 + 100(6r - c(6))/a(6) will be used to

determine the scale scores for the new test form. The cutoff ability

and standard deviation c(6) and a(6), computed from data of the 1981

statewide BSAP, will be held constant across ail new test forms.
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7. Scale Scores Conversion for the 1981 BSAP Tests

The Rasch item difficulty values for the BSAP tests administered

in 1981 were previously reported in Tables 6 and 7. The statewide

frequency distributions established at the raw score level are

reported in Tables 8 and 9. The constants c(e) and a(8) for each

test are listed in Table 10. Tables 11 and 12 present the scale

scores for the 1981 BSAP tests. As may be recalled, for each test

at each grade level, the scale scores are linear transforms of the

Rasch abilities; the constants defining the transformations are set

up so that, for 1981, the passing score is 700 and the standard

deviation is 100.

8. An Historical Note

The passing scores based on the Undecided Group procedure

(Table 5) were recommended as statewide passing scores for the South

Carolina BSAP in the memorandum dated October 23, 1981, from Huynh

Huynh to Dr. Paul Sandifer. Dr. Sandifer was director of the Office

of Research of the South Carolina Department of Education.. After

lengthy discussions within the department, the passing scores were

recommended to the South Carolina State Board of Education, which

adopted them in the meeting of March 1), 1982. They were finally

passed to the South Carolina Legislature, which had 120 days to voice

rejection of the recommended passing scores. Without any formal

rejection within the 120-day period, the rlcommended passing scores

became legal statewide passing scores. (Due to fluctuation in the

difficulty of items used in subsequent years, all the raw passing

scores were located at 700 on the scale scores; the passing score of

700 has become the legal statewide passing score for all BSAP tests.)

9. An Early Trend in Student Performance

on the BSAP Tests

Table 13 reports the percent of students in grades 1, 2, 3, 6,

and 8 who met the statewide passing score of 700 for the school

years of 1980-81 and 1981-82.
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TABLE 8

Statewide 1981 Raw Score Frequency Distribution
Reading

Score Grade 1 Grade 2 Grade 3 Grade 6 Grade 8
0 2 1 0 7 10

1 5 0 4 2 11

2 5 1 3 12 9

3 9 2 3 20 19

4 10 2 3 34 41
5 15 7 5 72 103

6 19 23 16 141 190

7 48 49 66 229 314

8 81 91 141 356 450

9 192 194 233 557 667

10 334 325 359 640 775

11 464 560 547 828 863

12 622 803 690 914 1032

13 807 1120 819 1144 1037

14 1015 1334 849 1221 1101

15 1183 1447 936 1346 1164

16 1320 1471 971 1501 1279

17 1509 1366 943 1512 1317

18 1582 1322 914 1610 1429

19 1680 1181 934 1684 1421

20 1713 1095 998 1729 1454

21 1708 1017 1023 1813 1545

22 1722 970 1030 1842 1632

23 1628 976 1155 1832 1708

24 1617 1060 1269 1818 1661

25 1493 1107 1378 2015 1839

26 1497 1150 1575 2074 1807

27 1435 1330 1715 2047 2019

28 1521 1574 1988 1988 2061

29 1539 1689 2272 2105 2198

30 1642 2031 2636 2214 2359

31 1876 2362 3020 2297 2394

32 2058 2891 3546 2267 2683

33 2509 3338 3910 2224 2568

34 3514 4030 4190 2050 2516

35 4186 4259 3882 1676 2096

36 4953 3391 3002 862 1201
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TABLE 9

Statewide 1981 Raw Score Frequency Distribution
Math

Score Grade 1 Grade 2 Grade 3 Grade 6 Grade 8
0 4 0 1 11 17

1 1 0 0 17 71

2 1 2 1 57 235

3 2 1 1 148 598

4 0 0 3 332 1163
5 3 1 5 716 1733
6 ''-. 3 5 9 1130 2424

7 6 12 17 1487 2811
8 12 25 58 1799 2875

9 36 29 97 2070 2988

10 54 56 202 2203 2825
11 93 97 329 2358 2499
12 151 120 523 2422 2425

13 234 185 780 2413 2173

14 268 246 1044 2437 2033

15 444 378 1295 2410 1883

16 559 485 1578 2546 1891

17 744 640 1844 2349 1777

18 899 859 2249 2452 1653

19 1155 1002 2455 2416 1575
20 1437 1197 2681 2244 1537
91 1685 1508 2990 2169 1458
22 1986 1910 3135 1918 1408
23 2357 2251 3384 1771 1327
24 2862 2906 3517 1689 1156

25 3536 3446 3677 1454 1094
26 4537 4253 3760 1139 1052
27 5521 5082 3728 971 841

28 6741 6366 3475 766 653

29 7264 6825 2707 514 467
30 4853 5634 1435 213 185
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TABLE 10

Cutoff Points c(e) and Standard Deviations a(8) of Ability
of Students in che 1981 BSAP Administration

Subject Constants Grade 1 Grade 2 Grade 3 Grade 6 Grade 8

Reading c(e) 0.542 1.099 1.076 0.834 1.033

c(8) 1.72S 1.619 1.563 1.382 1.399

Math c(e) 1.963 1.924 1.156 0.292 -0.009

(JO) 1.507 1.371 1.181 1.176 1.238
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TABLE 11

BSAF Scale Scores for 1981
Reading Tests

Raw Score Grade 1 Grade 2 Grade 3 Grade 6 Grade 8

0 381 314 318 275 285

1 A42 383 385 352 359

2 485 432 433 407 412

3 512 463 462 441 444

4 532 486 483 466 468

5 548 505 501 487 487

6 562 521 516 504 503

7 574 534 529 520 517

8 585 547 541 534 530

9 595 558 551 547 542

10 605 568 562 559 553

11 614 578 571 571 563

12 622 587 580 582 573

13 631 596 589 592 583

14 639 604 598 602 592

15 647 612 606 612 601

16 654 620 ,614 622 609

17 662 628 622 632 618

18 670 635 630 641 627

19 677 643 639 651 635

20 685 651 647 660 644

21 692 658 655 670 653

22 700 666 663 680 662

23 708 674 672 690 671

24 716 683 681 700 680

25 724 691 690 711 690

26 733 700 700 722 700

27 743 709 710 733 711

28 752 720 721 746 722

29 763 731 734 759 735

30 775 743 747 774 749

31 788 757 762 791 765

32 804 773 780 810 784

33 824 793 802 835 807

34 850 821 832 867 839

35 893 866 881 921 891

36 953 930 949 996 965
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TABLE 12

BSAP Scale Scores for 1981
Math Tests

Raw Score Grade 1 Grade 2 Grade 3 Grade 6 Grade 8
0 230 201 200 278 331
1 303 279 290 367 415
2 356 336 354 430 475
3 389 371 394 469 512

4 415 397 424 498 539

5 436 419 448 522 561

6 454 438 469 543 580
7 470 ' 455 488 561 596

8 485 470 505 577 612
9 499 485 521 593 626

10 512 498 536 607 639

11 524 511 550 621 652

12 536 523 563 635 664

13 547 536 577 648 676

14 559 548 590 661 688

15 570 559 603 674 700

16 581 571 616 687 712
17 592 583 629 700 724

18 603 595 642 713 736

19 614 608 656 727 748

20 626 621 670 741 761

21 639 634 684 756 775

22 652 649 700 772 789

23 666 664 717 789 805

24 682 681 735 808 822

25 700 700 756 829 841

26 721 722 779 853 864

27 749 749 809 883 891

28 786 784 848 923 928

29 848 841 912 988 989

30 933 920 1001 1078 1074
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TABLE 13

Percent of Students Meeting Minimum Statewide Standards
in 1981 and 1982

Subject Year Grade 1 Grade 2 Grade 3 Grade 6 Grade 8

Reading 1981 70 62 67 55 51

1982 72 69 69 62 52

Math 1981 68 69 61 47 43

1982 68 64 68 51 41
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CHAPTER 2

A COMPARISON OF THE RASCH AND TWO-PARAMETER LOGISTIC
MODELS IN THE CONTEXT OF DECISIONS MADE FOR EACH
OBJECTIVE IN A BASIC SKILLS ASSESSMENT PROGRAM

1. Introduction

As explained in the introductory chapter of-this final report,

the South Carolina Basic Skills Assessment Program (BSAP) consists,

in part, of reading and math tests to be administered to public

school students near the end of grades 1, 2, 3, 6, and 8. Each read-

ing test focuses on six objectives: decoding and word meaning (DW),

main idea (MI), details (DE), analysis of literature (AL), reference

usage (RE), and inference (IN). Each math test measures student

performance in five objectives: operations (OP), concepts (CN),

geometry (GE), measurement (ME), and problem solving-(PS). For.each

test there are six items per objective; thus each reading test con-

sists of 36 items and each math test is comprised of 30 items.

The main purpose of the testing program is to determine whether

or not each student has met statewide performance standards in each

of the eleven basic skills areas. In addition, diagnostic informa-

tion regarding each objective is to be provided to facilitate the

planning of remedial instruction for those students who fall short

of the statewide minimum performance. Due to the small number of

items covering each objective, student performance in each objective

is categorized only as Adequate or Non-adequate. 'Also, adequacy

classification for each objective is to be based on the statewide

standard set for the test of which the objective constitutes a

component.

This study will describe two latent-trait approaches to

adequacy classifications for the BSAP objectives. One procedure is

based on the one-parameter logistic (Rasch) model; the other one

relies on the two-parameter logistic (2PL) model. Both techniques

will be applied to the 1981 BSAP tests and the results will be

compared.

27
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2. Overall Procedure for Objective Adequacy Classification

Consider a test of L items; each item is scored zero or one and

had an item.characteristic curve (ice) described by the function

P(6). This quantity P(6) is the probability that an examinee with

ability 6 will answer the item correctly. Let the test score be the

number of correct responses. Then the test characteristic curve

(tcc) of the test is the expected number of correct responses that

an examinee with ability e will make on the test. It is given as

E
L
(6) = E P.(6)

j=1

where P.(6) is the icc of the j-th item. Let c be the passing

(cutoff) score on the test; that is, c is the minimum number of

correct responses that an examinee must have in order to pass the

test. The corresponding cutoff value on the ability (0) scale is

the value
c
which satisfies the equation EL

(e
c
) = c. This value

may be found by using an appropriate iteration procedure such as the

Newton-Raphson technique.

Now let the L-item test be divided into m subtests of length

L L
2'

...,L
m

. Each subtest measures one objective. Without loss of

generality, let the first subtest consist of the first L
1

items.

The tcc of this subtest is given as

L
1

E
1
(6) = E P

j
(6).

j=1

At the cutoff ability 0, the expected number of correct responses

on the first subtest is E
1
(6

c
). Let c

1
be the smallest integer

which is larger than or equal to E1(6c). Then cl may be takenas

the passing score on the first subtest. By the same procedure, the

expected number of correct responses Ei(6c), I = 2,...,m of the

remaining subtests may be determined. For each subtest, then, the

passing score ci may be taken as the smallest integer which is equal

to or larger than E1(6c).
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The procedure presented above rests upon two assumptions.

First, all items in the test tap the same ability dimension; hence

the subtests may differ only in terms of difficulty. In other words,

any content variation among the objectives does not bring in any

extra ability factor; the variation in content reflects only the

difficulty level with which each objective is placed on the common

ability dimension. Second, the cutoff ability set for the common

ability dimension applies to the test as well as each subtest.

It may be noted that the sum of the expected numbers of correct

responses El (Oc ) + E2 (Oc) + + E (A ) is exactly the test passing
m c

score c. However, when each c
i
is equal to the value of E

i
(A

i
)

rounded upward to the nearest integer, the sum cl + c2 + + cm is

in general higher than c. Thus, students who bareZy pass all the

objectives may have total test scores substantially higher than the

(minimum) test passing score. This indicates that the pacsing scores

for the objectives computed this way may be somewhat more stringent

than are needed.

. Another way to set passing scores for the objectives is to

round each E
i

(E)
c

) to its nearest integer r
i
under the constraint that

r
1
+ r

2
+ + r

m
= c. Although this rounding-off procedure does

not hold constant the cutoff ability for each objective, it does

guarantee that students who barely pass the objectives will barely

pass the test. In addition, a student who barely passes some objec-

tives and barely misses the remaining ones will not meet the test

passing score. In the remaining part of this chapter, the r
i
's will

be referred to as constant-sum passing scores.

3. Iterations for Cutoff Abilities

This section will describe the Newton-Raphson iteration process

for determining the cutoff ability ec. All items are presumed to

have been calibrated; hence item difficulty and, where appropriate,

item discrimination are known.
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In the context of the Rasch model, each item is characterized

by its difficulty 6 and its icc is given as

P(e) = exp(e-6)/(1 + exp(e-6)).

To solve the equation for the cutoff ability ec, let

Ne) = 1 = 1/(1 + exp(8-6)).

In addition, let

F = E P.(e)'- c
j=1

and

G = E P (0)Q (e).
j=1

Then with e
c
as the current approximate cutoff ability the Newton-

Raphson updated cutoff ability is ec - F/G. When c is not a zero

or perfect score, a good starting value for ec may be taken as

log(c/(L-c)).

In the two-parameter logistic model, each item is described by

its discrimination a (a scale index) and its difficulty 8 (a location

index). The icc is given as

P(e) = exp(a(e-e))/{1 + exp(a(e-8))1.

To apply the Newton-Raphson procedure in solving the equation

E
L
(e

c
) c for the cutoff ability e

c
, let

Q(e) = 1 - P(e) = 1/{1 + exp(a(8-8))).

In addition, let

F = E P (e)
j-1

and

G = E a4P4(e)(1j(e).

j=1

Then with 8
c
as the current approximate cutoff ability, the updated

value is e
c

F/G. As in the Rasch case, an initial value for e
c

marlie taken as log(c/(L-c)).
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4. Item Calibration via the Rasch
and Two-Parameter Logistic Models

As described in Chapter 1, the Rasch model was chosen as the

general framework for all technical work. The decision was made

primarily because the Rasch model is the logistic model which is

most consistent witt- the tradition of using the number of correct

responses as test scores. For each test administered in 1981, all

items were calibrated on a sample of approximately 2600 students

using a version of BICAL3 available at the University of South

Carolina. The mean difficulty of items in each test was (arbitra-

rily) set at zero; these items defined an ability scale which was

held in common for all the subtests covering the objectives.

Tables 14-18 report the results of the Rasch calibration process.

To set the ground for adequacy classifications based on the two-

parameter logistic model, the LOGIST program was used to determine

the discrimination and difficulty parameters for the items in each

test. As in the Rasch model, the item parameters in each test auto-

matically determine an ability scale; this scale is treated as the

common ability scale underlying the responses to items in each

objective. The results of the LOGIST runs are documented in

Tables 14-18.

5. Adequacy Classification for BSAP Objectives

On the basis of the item parameters reported in Section 4 and

of the statewide passing scores listed in Table 5 of Chapter 1,

cutoff ability values (0c) were computed using the Rasch and the

two-parameter logistic (2PL) models for each reading and math test.

Each e
c
value was then held constant for all objectives which form

the test. Based on the item parameters and the Ac values, the

expected numbers of correct responses E
i
(A

c
) were subsequently

determined for each objective. These values were first rounded

upward to the rounded-upward passing scores ci. Then they were

rounded to the nearest integers under the constraint

r
1
+ r

2
+ + r

m
= c; these are the consant-sum passing scores.
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TABLE 14

Rasch and 2PL Item Parameters
for Reading and Math, Grade 1

Reading Math

Name

Rasch
a

2PL
Name

Rasch 2PL

a a

DWO1
DWO4
DW10
DW14
DW16
DW20

M103
M107
M109
MI10
M119
M120

DE02
DE09
DE12
DE13
DE19
DE20

AL02
AL03
AL08
AL09
AL19
AL20

RE04
RE07
RE08
RE09
RE15
RE16

1NO2
1N05
1N08

IN10
1N13
1N17

-1.365
-1.446
-1.704
-0.994
-1.682
-1.169

0.547
0.260

-0.300
-0.324
-0.561
-0.450

0.615
0.976
0.824
0.598
0.580
0.959

1.199
1.103
0.461
1.169
0.776
1.645

-1.279
-0.216
-0.433
-0.665
-0.292
-0.068

0.139
0.376
0.262
-0.090
0.226
0.320

1.870
1.355
2.000
0.819
1.939
1.506

1.985
1.027
1.080
0.909
1.160
1.504

0.744
0.620
1.048
0.858
1.241
0.859

0.549
0.692
0.811
1.057
0.689
0.519

0.996
1.748
1.333
1.362
0.844
0.861

0.307
0.548
1.066
1.888
0.728
1.049

-1.249
-1.441
-1.337
-1.582
-1.330
-1.262

-0.536
-0.703
-1.015
-1.094
-1.123
-0.969

-0.546
-0.300
-0.359
-0.535
-0.509
-0.301

-0.139
-0.197
-0.640
-0.159
-0.422
0.309

-.1.670

-0.842
-1.015
-1.994
-1.120
-0.937

-1.738
-0.845
-0.698
-0.778
-0.825
-0.6,5

0PO4
0P08

OP11
0P12
0P13
0P21

CNO5
CNO7
CN14
CN16
CN19
CN20

GE03
GE11
GE02
GE18
GE19
GE21

ME04
ME05
ME09
MEll
ME12
ME21

PS06
PS18
PS19
PS04
PS05
PS17

0.918
0.475
0.710
0.972
1.168
0.938

-1.618
0.029
-1.053
-1.174
0.409
4.012

-0.106
0.540
-2.711
-2.007
0.318
0.253

0.230
0.645

-0.284
1.241
-1.547
-1.817

-0.176
-0.106
0.406

-0.258
-0.454
0.051

0.493
1.075
0.696
0.430
0.623
0.699

1.156
1.003
0.767
0.698
0.339
0.010

0.091
0.401
1.211
0.858
0.504
0.566

0.502
0.888
0.437
0.350
0.942
2.000

0.935
0.983
1.186
1.196
1.456
1.208

-1.267
-1.121
-1.193
-1.341
-0.848
-0.956

-2.251
-1.434
-2.462
-2.695
-2.443
79.288

-11.967
-1.949
-2.709
-2.913
-1.901
-1.810

-1.971
-1.065
-2.848
-1.176
-2.459
-1.886

-1.598
-1.515
-1.100
-1.494
-1.464
-1.311

3.)
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TABLE 15

Ras,h and 2PL Item Parameters
for Reading and Math, Grade 2

Reading Math

Name
Rasch

6

2PL
Name

Rasch
a

2PL
a s a s

DW10 -2.313 0.547 -3.501 0P05 0.772 1.347 -0.971
DW13 -2.953 0.383 -5.639 OP10 0.659 0.827 -1.291
DWO2 -0.394 1.190 -1.089 OP11 0.582 1.531 -1.030
DWO3 -1.578 2.000 -1.424 0P14 2.288 0.404 -0.004
DW15 0.571 0.411 -0.967 0P19 0.713 0.693 -1.387
DW20 0.482 0.764 -0.706 0P20 -0.054 0.722 -1.972

M105 0.034 0.134 -4.418 CN18 1.970 0.184 -0.805
M107 0.316 0.362 -1.391 CN15 -0.449 0.770 -2.186
M108 0.848 0.481 -0.580 CN10 0.135 0.937 -1.560
MI10 1.066 0.606 -0.330 CNO4 -0.437 1.467 -1.551
M113 0.965 0.368 -0.568 CNO6 0.495 0.829 -1.396
M117 0.953 0.613 -0.420 CN20 -0.019 1.413 -1.353

DE05 -0.072 1.227 -0.918 GE04 0.251 0.811 -1.607
DE06 -0.098 1.352 -0.923 GE06 0.445 0.863 -1.414

DE07 -0.084 1.507 -0.880 GE08 -0.675 0.619 -2.738
DE08 0.249 1.206 -0.742 GE13 -1.507 0.912 -2.642

DE12 -0.250 1.277 -1.000 GE14 -1.799 1.538 -2.070
DE22 -0.777 1.159 -1.314 GE15 -0.490 0.848 -2.063

AL04 0.726 1.217 -0.473 ME03 0.797 0.426 -1.865

AL07 0.492 1.160 -0.615 ME09 0.795 0.667 -1.340
AL12 0.199 1.078 -0.799 ME11 -0.414 0.493 -3.043

AL13 0.064 1.641 -0.796 ME13 -1.667 0.897 -2.789

AL15 0.721 0.770 -0.531 ME15 -2.147 0.502 -4.919

AL18 0.726 0.777 -0.523 ME21 1.696 0.380 -0.814

RE01 -0.716 1.091 -1.312 PS19 -0.965 0.989 -2.184

RE02 -0.323 0.823 -1.246 PS04 -0.551 0.718 -2.391

RE05 0.352 0.700 -0.835 PS14 -0.408 1.003 -1.829

RE09 -0.298 1.223 -1.034 PS15 0.772 0.872 -1.201
RE14 0.124 1.005 -0.853 PS07 -0.337 0.841 -1.985

RE17 -0.150 1.332 -0.926 PS02 -0.403 0.803 -2.122

INO1 -0.164 1.987 -0.889
1N04 0.132 1.459 -0.790
1N07 -0.044 1.215 -0.917
1N13 0.185 0.777 -0.915
1N16 0.482 1.944 -0.648
1N17 0.532 1.230 -0.597
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TABLE 16

Rasch and 2PL Item Parameters
for Reading and Math, Grade 3

Reading Math

Name
Rasch

6

2PL
Name

Rasch
6

2PL

a a a a

DWO8 -1.991 0.010 -166.350 OP02 -0.115 0.807 -1.233

DW14 -1.053 0.835 -1.803 OP07 0.765 1.245 -0.453

DWO5 -0.452 0.988 -1.287 OP08 0.497 1.257 -0.631

DWO7 0.610 0.815 -0.668 OP12 -0.016 0.591 -1.403

DW15 -0.638 0.935 -1.426 OP15 0.612 1.056 -0.573

DW16 -0.226 0.975 -1.138 OP20 1.179 0.632 -0.243

M105 0.371 0.518 -1.128 CN16 -0.177 0.752 -1.326

MIll 0.463 0.764 -0.799 CN13 0.821 0.708 -0.498

M113 0.845 0.766 -0.506 CNO8 -0.658 0.644 -1.920

M114 0.761 0.709 -0.613 CNO1 0.?77 1.053 -0.732

M117 0.857 0.602 -0.594 CNO5 1.064 0.441 -0.370

M120 0.543 0.596 -0.877 CN20 -0.507 0.275 -3.604

DE05 -0.160 1.341 -0.977 GE01 0.041 0.188 -3.633

DE06 -0.885 1.941 -1.243 GE08 -0.138 0.223 -3.523

DEll -0.188 0.792 -1.238 GE09 -1.265 0.638 -2.495

DE12 0.306 0.256 -2.150 GE18 -1.516 0.856 -2.203

DE18 -1.192 1.945 -1.346 GE19 -1.094 0.719 -2.144

DE20 -0.788 1.438 -1.276 GE20 0.415 0.010 .-48.215

AL02 -0.646 1.476 -1.188 ME01 -1.003 1.030 -1.657

AL05 -0.700 1.426 -1.249 ME08 -0.766 0.494 -2.468

AL13 -0.130 1.226 -0.994 ME04 -0.006 0.227 -3.128

AL14 -0.692 1.745 -1.183 ME15 -1.791 0.670 -2.867

AL17 2.327 0.079 4.213 ME20 0.501 0.386 -1.213

AL19 1.797 0.010 6.265 ME21 1.793 0.348 0.683

RE05 0.810 0.685 -0.557 PS06 -0.473 0.954 -1.368

RE07 0.179 0.820 -0.972 PS11 -0.264 0.360 -2.449

RE10 -0.142 0.658 -1.376 PS12 0.388 0.493 -1.135

RE14 0.082 0.593 -1.262 PS13 0.175 0.589 -1.206

RE17 0.239 0.632 -1.073 PS17 0.471 0.996 -0.682

RE20 -0.801 1.360 -1.289 PS21 0.688 0.990 -0.534

1N04 -0.268 1.685 0.977

1N08 0.234 0.984 -0.860

1N09 0.506 0.814 -0.739

1N13 0.130 1.282 -0.845

1N14 -0.571 1.119 -1.290

1N21 0.461 0.814 -0.769

3
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TABLE 17

Rasch and 2PL Item Parameters
for Reading and Math, Grade 6

Reading Math

Name
Rasch

a
2PL

Name
Rasch

a
2PL

a a a a
DWO7 -0.405 1.222 -0.903 OP01 -1.274 0.442 -1.888

DW09 -1.223 0.794 -1.676 0PO4 0.023 0.944 -0.202

DW11 -2.268 1.660 -1.643 OP11 -0.721 0.720 -0.856

DW12 0.527 0.614 -0.480 0P16 -0.084 1.051 -0.623

DW17 -1.511 1.576 -1.354 0P18 -0.304 0.955 -0.431

DW18 0.197 0.912 -0.615 0P21 1.122 0.564 0.846

11101 1.476 0.648 0.368 CN15 1.037 0.353 1.136

M106 0.425 0.844 -0.471 CN13 0.675 0.609 0.376

MIll 0.617 0.507 -0.441 CNO1 -0.570 0.831 -0.663

M112 0.353 0.700 -0.562 CNO4 -0.120 0.675 -0.353

M117 0.579 0.656 -0.405 CN11 1.074 0.331 1.247

M121 0.506 0.622 -0.473 CN19 -1.406 1.270 -1.065

DE01 -0.387 1.012 -0.959 GE01 -0.848 0.397 -1.452

DE05 -0.910 1.284 -1.149 GE08 -0.107 0.229 -0.772

DE06 -0.447 1.191 -0.924 GEll -0.195 0.415 -0.568

DE08 -0.591 0.785 -1.231 GE14 0.665 0.562 0.418

DE15 -0.126 0.837 -0.860 GE19 1.045 0.806 0.625

DE17 0.091 0.789 -0.733 GE21 1.926 0.517 1.833

AL02 1.124 0.456 0.096 ME01 -0.607 0.671 -0.775

AL03 0.822 0.944 -0.196 ME10 -0.179 0.482 -0.483

AL11 1.036 0.432 -0.012 ME05 -0.011 0.522 -0.263

AL14 0.850 0.559 -0.181 ME14 0.734 0.545 0.488

AL17 1.330 0.451 0.307 ME19 -0.176 1.049 -0.326

AL18 1.097 0.736 0.032 ME20 0.965 0.754 0.595

RE04 -0.531 0.941 -1.094 PS07 -0.200 1.176 -0.331

RE07 -1.204 1.147 -1.368 PS10 -0.663 1.200 -0.622

RE08 -0.964 1.031 -1.293 PS01 -0.870 0.953 -0.823

RE14 -1.524 1.036 -1.636 PS04 -0.237 0.509 -0.521

RE17 -1.175 0.610 .1.969 PS12 -0.872 0.809 -0.899

RE19 -0.392 0.947 -0.979 PS19 0.143 0.531 -0.113

INO1 0.267 0.968 -0.553
1N07 0.538 0.931 -0.382
1N09 -0.209 1.220 -0.802

1N14 0.785 1.038 -0.214
1N15 0.924 0.791 -0.124
1N21 0.323 1.218 -0.492
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TABLE 18

Rasch and 2PL Item Parameters
for Reading and Math, Grade 8

Reading Math

Name
Rasch

8

2PL
Name

Rasch
6

2PL

a a a a

DW06 0.505 0.755 -0.399 OP05 -0.285 0.766 -0.005

DW07 0e370 0.408 -0.750 0P09 -0.479 0.615 -0.157

DWO9 -1.271 1.232 -1.375 OP10 -0.471 0.567 -0.170

DW10 -1.523 4.706 -1.356 0P13 -0.623 0.319 -0.530

DW16 -0.280 1.973 -0.883 0P19 -0.316 1.091 -0.046

DW21 0.168 0.737 -0.667 0P21 -0.176 0.512 0.154

MI03 0.189 0.719 -0.651 CNO2 0.782 0.620 1.040

MI04 -0.302 1.059 -0.864 CNO4 1.621 0.708 1.650

MI05 0.349 0.334 -0.892 CNO8 -0.135 0.893 0.097

MI13 0.000 0.496 -,1.025 CN16 -0.144 0.499 0.188

MI17 0.293 0.468 40.755 CN19 -1.065 0.826 -0.545

MI21 0.747 0.889 10.186 CN21 0.638 0.922 0.748

DE01 -0.181 0.791 0.907 GE01 0.281 0.453 0.711

DE03 0.293 0.790 -0.545 GE03 0.290 0.598 0.559

DE04 -0.275 1.020 -0.873 GE07 -0.434 0.546 -0.111

DEll -0.092 0.797 -0.834 GE11 0.699 0.338 1.551

DE14 -0.750 1.021 -1.165 GE14 0.928 0.561 1.270

DE17 -0.788 0.744 /-1.400 GE16 -0.392 0.598 -0.072

AL02 0.927 0.410 ;

i

-0.059 ME06 0.791 0.016 30.624

AL04 -0.106 1.064 -0.741 ME03 -0.578 0.571 -0.282

AL10 0.027 1.053 ) -0.669 ME10 -0.762 0.665 -0.400

AL13 0.753 0.678 -0.214 ME12 -0.069 0.665 0.238

AL20 0.825 0.742 -0.149 ME18 0.657 0.620 0.936

AL21 0.948 0.845 -0.044 ME19 -0.595 0.724 -0.240

RE01 -0.710 1.160 -1.087 PS03 0.603 0.930 0.693

RE05 -0.167 0.968 -0.811 PS09 0.512 0.760 0.715

RE07 0.315 0.660 -0.584 PS08 -0.488 0.98? -0.160

RE17 -0.361 0.774 -1.053 PS11 0.237 0.265 1.063

RE18 -0.891 0.967 -1.292 PS17 -0.891 0.574 -0.592

RE21 -0.748 0.956 -1.193 PS20 -0.137 0.359 0.273

1NO3 -0.205 0.656 -1.041

1N06 0.244 0.661 -0.652

1N08 0.319 1.231 -0.451

IN10 0.325 0.770 -0.546

1N13 0.687 0.572,1-0.295
1N20 0.364 0.808 -0.499



37

The results of these computations are reported in Table 19 for

the reading tests and Table 20 for the math tests. An.asterisk (*)

indicates a disagreement between the Rasch and 2PL passing scores.

Among the 66 cases under study, there is complete agreement between

the Rasch and 2PL rounded-upward passing scores in 58 cases and a

one-point disagreement in the remaining eight situations. As for the

constant-sum passing scores,othe Rasch and 2PL.models provide

identical results in 54 cases and a one-point disagreement in 12

cases.

It may be noted that the rounding-upward process yields a pass-

ing score of six (the perfect score) on a number of objectives. This

occurs mainly for the reading tests in grades 1 and 2. Taking the

fallibility of test data into account, these (perfect) pissing

scores may be somewhat more demanding than is typically necessary,

especially for very young students.

In summary, for the BSAP tests administered in l98lithe Rasch

and 2PL models provide subtest (objective) passing scores which are

identical in the majority (about 80% to 90%) of situations. Due to

the fact that test scores are taken as number of correct responses,

the passing scores must be integers and can be obtained either by

rounding upward or by rounding off to the nearest integer under the

constant-sum constraint. The constant-sum passing scores are less

demanding than the rounded-upward passing scores; they are pertiaps

more amenable to acceptance by teachers and other school personnel

who have to deal with the basic skills assessment program.

6. An Historical Note

The rounded-upward and constant-sum passing scores based on the

Rasch model were reported to the staff of the Office of Research of

the South Carolina Department of Education in a meeting in February,

1982. It was recommended by Huynh Huynh that the Rasch constant-sum

procedure be used with the constraint that the passing score for each

objective be at least three (half of the number of items in each

4o
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TABLE 19

Rasch and 2PL Expected Number of Correct Reeponses E )

at True CutOff Abilities and Passing Scores
m c

for BSAP Reading Objectives

Grade

Cutoff
Ability

6E ( )m c
Rounded-upward Constant-sum
Passing Scores Passing Scores

Rasch 2PL Objective Rasch 2PL Rasch 2PL Rasch 2PL

1 .542 436 DW 5.23 4.82 6 5* 5 5

MI 3.95 3.79 4 4 4 4

DE 2.68 2.99 3 3 3 3

AL 2.26 2.79 3 3 2 3*

RE 4.38 4.09 5 5 4 4

IN 3.50 3.52 4 4 4 3*

2 1.099 .030 DW 4.98 4.75 5 5 5 5

MI 3.57 3.52 4 4 3 3

DE 4.66 4.68 5 5 5 5

, AL 13.87 4.04 4 5* 4 4

RE 4.65 4.48 5 5 5 4*

IN 4.26 4.54 5 5 4 5*

3 1.076 .119 DW 4.92 4.71 5 5 5 5

MI 3.64 3.82 4 4 4 4

DE 4.89 4.96 5 5 5 5

AL 3.88 4.36 4 5* 4 4

RE 4.34 4.30 5 5 4 4

IN 4.34 3.86 5 4* 4 4

6 .834 .060 DW 4.76 4.64 5 5 5 5

MI 3.26 3.39 4 4 3 3

DE 4.61 4.40 5 5 5 4*

AL 2.69 3.08 3 4* 3 3

RE 5.11 4.74 6 5* 5 5

IN 3.57 3.76 4 4 3 4*

8 1.033 .416 DW 4.62 4.74 5 5 4 5*

MI 4.14 4.02 5 5 4 4

DE 4.71 4.57 5 5 5 4*

AL 3.66 3.89 4 4 4 4

RE 4.82 4.70 5 5 5 5

IN 4.05 4.09 5 5 4 4

Note: * indicates disagreement.

L'
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TABLE 20

-Rasch and 2PL Expected Number of Correct Responses Em(ec)
'at True Cutoff Abilities and Passing Scores

for BSAP Math Objectives

Grade

Cutoff
Ability

E
Rounded-upward Constant-sum

m
(e

c
)

Passing Scores Passing Scores
Rasch 2PL Objective Rasch 2PL 'Rasch 2PL Rasch 2PL

1 1.963 .737 OP 4.49 4.61 5 5 5 5

CN 4.70 4.76 5 5 5 5

GE 5.35 5.05 6 6 5 5

ME 5.17 5.06 6 6 5 5

PS 5.30 5.52 6 6 5 5

2 1.924 .342 OP 4.39 4.68 5 5 4 5*

CN 4.86 4.95 5 5 5' 5

GE 5.45 5.32 6 6 6 5*

ME 4.94 4.80 5 5 5 5

PS 5.37 5.25 6 6 5 5

3 1.156 .329 OP 3.93 4.32 4 5* 4 4

CN 4.28 4.31 5 5 4 4

GE 4.97 4.61 5 5 5 5

ME 4.49 4.380 5 5 5 4*

PS 4.33 4.384 5 5 4 5*

6 .292 .115 OP 3.67 3.66 4 4 4 4

CN 3.19 3.33 4 4 3 3

GE 2.86 2.92 3 3 3 3

ME 3.25 3.24 4 4 3 3

PS 4.03 3.85 5 4* 4 4

8 -.009 .287 OP 3.56 3.36 4 4 3 3

CN 2.63 2.78 3 3 3 3

GE 2.67 2.78 3 3 3 3

ME 3.13 3.08 4 4 3 3

PS 3.02 3.01 4 4 3 3

Note: * indicates disagreement.
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objective). This condition insures that the passing score for each

objective is sufficiently above the chance score that would be

obtaioned by randomly guessing at the answers. Thus, the final

passing scores for the BSAP objectives were obtained by rounding

off the values Em
(8

c
) to the nearest integers under the condition

that the results summed up to the statewide passing score and that

each one of them was at least three. Table 21 reports the passing

scores for eacb BSAP objective for the 1981 test administration.

TABLE 21
ip

Passing Raw Score for Adequacy Status
in Each Objective--BSAP 1981

Grade

Subject Objective 1 2 3 6 8

Reading DW -5 5 5 5 4

MI 4 3 4 3 4

DE '3 5 5 5 5

AL 3 4 4 3 4

RE 4 5 4 5 5

IN 3 4 4 3 4

Math CN 5 5 4 3 3

OP 5 4 4 4 3

ME 5 5 5 3 3

GE 5 6 5 3 3

PS 5 5 4 4 3



CHAPTER 3

A MINIMAX APPROACH TO SETTING MULTIVARIATE PASSING
SCORES FOR SUBTESTS WHEN THE PASSING SCORE

OF THE TOTAL TEST IS KNOWN

1. Introduction

In Chapter 2 a comparison was-made.on the use of the Rasch and

two-parameter logistic models in setting passing scores for each

objective in the South Carolina BSAP. At each grade level, the BSAP

reading test consists of six six-item subtests-measuring the objec-

tives of decoding and word meaning (DW), main idea (141), details (DE),

analysis of literature (AL), reference usage (RE), and inference (IN).

Far each BSAP math test there are five six-item.subtests focusing on

the objectives of operations (OP), concepts (CN), geometry (GE),

measurement (ME), and problem solving (PS). With the passing scores

for the (total) reading and math tests at various grade levels

already determined (see Chapter 1), the problem was to determine the

passing score for each objective. The simultaneous setting of pass-

ing scores would be consistent in some sense with the passing score

for the total test of which each objective was a part.

,When the Rasch and two-parameter logistic models are used,

strong assumptions are made on the relationship between the-patterns

of item responses and the examinee's ability. Moreover, in their

current forms, logistic models assume that all test items tap the

same unidimensional trait or ability and that item responses are

coded as zero or one.

In many testing situations some of these assumptions may riot be

fully justified or feasible. For example, it may not be easy to

document on the basis of content that math objectives such as con-

cepts (CN) and problem solving (PS) can be conceptualized as parts

of a common trait. In addition, many testing situations require

the giving of partial credits or the scoring of test items on a

scale other than from zero to one. For these cases, each item

41
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response cannot be coded as zero or one; hence they cannot be framed

within a typical binary logistic model.

Where test data are available for a group of examinees, the

translation of the overall passing of a test to each of its objec-

tives (subtests) may be accomplished within a (pseudo) decision

theoretic framework. The purpose of this chapter is to describe a

minimax approach to setting simultaneous passing scores for subtests

when the passing score for the entire test is known in advance. The

approach will be illuminated via its application to the South

Carolina 1981 BCAP tests and the minimax objective passing scores

will be contrasted with those based on the Rasch model.

2. The Minimax Procedure for Setting
Multivariate Passing Scores

Consider now a test for which the test score is represented by

Y. The test is divided into k subtests with the subtest (objective)

sco denoted as Thus Y = xi + x2 + + xk. Let c

be the know passing score on the entire test. The problem at hand

is to determine, simultaneously, k passing scores r = (ri,r2,...,rk)

for the subtests i such a way that these subtest passing scores are

consistent in some s se with the overall passing score c.

A preliminary obse ation may be made. Since the subtest scores

sum up to the total test s ore, it appears desirable to have the

r = (ri,r2,...,rk) such that he sum ri + r2 + + rk is exactly c.

This will insure that any examinee who barely passes each of the

objectives will barely pass the entire test. This constraint will

be maintained throughout the remainder of this chapter.

To set the stage of the minimax framework, let pi(ri) be the

proportion of examinees who are classified in the same way by the

entire test and by the i-th subtest. In other words, pi focuses on

examinees for whom Y < c and x
i
< r

i'
or Y > c\and x

i
> r With

P denoting the probability of a given type of occurrence, pi may be

written as

P(Y < c,xi < ri) + P(Y > c,xi > ri).
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For each set of simultaneous passing scores r = (r r
2'

...
'

r
k
) let

pmin(r) be the minimum of the pi values computed for the k subtests.

In other word

Pmin(E) min Pl(r1)d)2(r2),"Pk(rk)

Within the minimax framework, the optimal simultaneous

passing scores r = (ri,r2,...,rk) for the subtests correspond to the

vector rn = (r r
2'

...
'

r
k
) such that the minimum probability p (rn)

min -
is the largest among all the probabilities p

min
(0 computed for all
-

possible configurations of r. Thus the minimax approach seeks to

maximize the minimum probability of consistent classification between

the total test and each of its subtests. (This is actually equiva-

lent to minimizing the maximum probability of inconsistent classifi-

cation between the total test and each of its subtests.)

The minimax approach can be implemented in a variety of ways.

When each subtest score can take only a limited number of different

values arid when the number of subtests is not large, one may look at

the entire region of r = (rl,r2,...,rk) in which ri + r2 + + rk = c,

compute pmin(r) at each r, and then search for the point En at which

this probability is the largest. The search can be accomplished in a

fairly straightforward manner with the availability of a high-speed

computer.

3. Illustrations Based on the South Carolina
Basic Skills Assessment Program

The statewide passing scores for the 1981 BSAP reading and math

tests are listed in Table 5 of Chapter 1. At each grade level and

for each of the tests of reading and math, students were classified

in two groups. The Failing group consisted of students with scores

smaller than the statewide passing score. The Passing group was

comprised of examinees for whom test scores equaled or exceeded the

overall passing score. For each objective, the frequency distribu-

tions of the Failing and Passing groups were compiled and reported

in Table 22 for the reading tests an6 in Table 23 for the math tests.
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TABLE 22

Frequency Distributions of Scores in Reading Objectives
for the Failing and Passing Groups

Frequency at score

Grade Objective Group 0 1 2 3 4 5 6

1 DW Failing 14 42 93 138 152 237 257

Passing 0 1 0 12 t8 268 1674

MI Failing 51 128 203 254 176 97 24

Passing 1 5 41 93 229 435 1189

DE Failing 101 246 315 195 60 16 0

Passing 11 72 166 243 298 380 823,

AL Failing 123 292 295 168 41 14 0

Passing 15 91 215 311 371 401 589

RE Failing 25 119 164 237 200 102 86

Passing 1 10 23 58 155 314 1432

IN Failing 40 149 282 250 163 45 4

Passing 0 10 53 142 320 557 911

2 DW Failing 4 15 68 203 309 305 107

Passing 0 0 0 15 116 470 1066

MI Failing 34 102 290 312 184 63 8

Passing 4 21 93 183 318 507 541

DE Failing 39 124 240 246 189 128 45

Passing 0 0 6 21 76 278 1286

Failing 98 230 294 221 120 39 9

Passing 0 1 32 84 214 364 972

RE Failing 25 100 207 269 213 147 50

Passing 0 0 4 31 119 395 1118

pi Failing 71 214 261 222 133 88 22

Passing 1 0 6 32 129 391 1108

3 DW Failing 2 29 102 213 262 191 69

Passing 0 0 4 17 130 437 1271

MI Failing 58 158 229 216 140 53 14

Passing 1 21 102 184 243 454 854

DE Failing 34 78 129 150 203 175 99

Passing 0 0 2 13 89 483 1272

AL Failing 35 106 185 244 196 91 11

Filming 0 3 11 67 550 679 549

RE Failing 22 104 184 233 197 98 30

Passing 0 4 11 78 203 575 988

IN Failing 46 160 228 192 126 85 31

Passing 0 3 7 53 158 467 1171,
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TABLE 22

Frequency Distributions of Scores in Reading Objectives
for the Failing and Passing Groups

(continued!)

Frequency at score

Grade Objective Group 0 1 2 3 4 5 6

6 DW Failing 21 60 163 269 311 255 89

Passing 0 0 0 21 143 443 911

MI Failing 101 273 374 266 117 31 6

Passing 1 20 76 214 403 444 360

DE Failing 63 126 181 249 240 210 99

Passing 0 1 13 44 124 453 883

AL Failing 161 354 355 213 71 13 1

Passing 6 46 167 313 373 377 236

RE Failing 22 60 103 196 293 315 179

Passing 0 0 2 11 74 355 1076

IN Failing 142 304 311 237 120 43 11

Passing 3 7 50 143 268 390 657

8 DW Failing 76 94 200 332 329 219 69

Passing 0 1 6 38 186 442 668.

MI Failing 88 191 309 326 242 137 26

Passing 0 0 27 113 280 459 462

DE Failing 65 137 253 267 272 226 99

Passing 0 0 1 30 159 401 750

AL Failing 149 276 398 295 160 38 3

Passing 0 7 45 145 294 416 434

RE Failing 79 120 197 249 308 248 118

Passing 1 0 6 28 108 375 823

IN Failing 119 242 331 290 233 87 17

Passing 0 6 24 85 241 436 549
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TABLE 23.

Frequency Distributions of Scores in Math Objectives
for the Failing and Passing Groups

Grade Objective Group
Frequency at score

1 2 3 4 5 6

1 OP Failing 29 108 192 244 218 104 51

Passing o 10 69 206 530 1165

CN Failing 7 16 7 152 328 349 37

Fassing 0 0 0 21 211 1121 627

GE Failing 6 8 34 124 212 272 290
Passing 0 0 2 19 114 322 1532

ME Failing 4 13 60 148 276 298 147
Passing 0 0 0 10 100 501 1369

PS Failing 14 48 100 164 179 197 244

Passing 0 0 1 11 41 266 1661

2 OP Failing 16 65 177 175 183 141 31

Passing 0 0 16 69 204 619 982

CN Failing 8 15 76 158 243 216 72

Passing 0 0 4 19 121 623 1123

GE Failing 7 6 24 60 177 249 265

Passing 0 0 0 4 48 292 1546

ME Failing 8 3 29 125 243 292 88

Passing 0 0 0 17 169 604 1100

PS Failing 8 9 29 103 138 281 220

Passing 0 0 0 7 66 310 1507

3 OP Failing 69 182 232 240 164 90 33

Passing 1 11 35 152 282 499 737

CN Failing 20 67 205 276 259 150 33

Passing 0 1 16 75 301 640 684

GE Failing 5 15 41 137 ;6t2 373 177

Passing 0 0 2 37 18 636 854

ME Failing 6 17 82 246 384 226 49

Passing 0 0 3 69 341 720 584

PS Failing 30 114 176 237 257 149 47

Passing 1 6 30 101 240 467 872
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TABLE 23

Frequency Distributions of Scores in Math Objectives
for the Failing and Passing Groups

(continued)

Frequency at score
Grade Objective Group 0 1 2 3 4 5 6

6 OP Failing 83 297 378 319 180 78 13

Passing 0 11 51 148 292 418 418

CN Failing 86 314 444 344 123 35 2

Passing 0 10 105 259 430 335 199

GE Failing 108 325 465 337 101 12 0

Passing 4 39 215 367 322 228 163

Failing 152 355 384 284 128 42 3

Passing 6 20 107 171 365 393 276

PS Failing 115 226 273 317 264 124 29

Passing 0 4 18 93 227 505 491

8 OP Failing 160 366 510 362 165 67 11

Passing 2 16 53 132 198 317 301

CN Failing 368 549 468 190 57 9 0

Passing 1 35 115 247 278 217 126

GE Failing 314 519 491 251 64 2 0

Passing 2 45 144 248 269 212 99

ME Failing 190 436 494 360 126 33 2

Passing 5 16 92 193 300 304 109

PS Failing 212 486 503 310 108 21 1

Passing 4 26 105 220 257 231 176
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These tables serve as base data for the computation of the probabili-

ties pi(ri) of consistent classification between the total test and

its i-th objective subtest. Let N be the number of students who took

the test, N
F
be the number of Failing students for whom the scores

are less than r on the i-th objective, and N be the number of

Passing students for whom the scores are at least ri on this objec-

tive. Then the probability pi(ri) can be estimated by the quantity

(N
F
+ N

P
)/N.

It may be recalled that each objective is measured by a subtest

of six items. Thus the range for each ri consists of all integers

extending from 0 to 6. The search for th optimal simultaneots

passing scores r° was confined to the set of vectors r at which the

sum r
1
+ r

2
+ + r

k
was equal to the Overall passing score.

Tables 24 and 25 report the optimal minimax simultaneous passing

scores for the BSAP objectives in reading and math, the pi values

(reported in percents) computed at these optimal passing scores, and

the corresponding Rasch-derived passing scores reported in Chapter 2.

An asterisk (*) is placed at the objectives for which a discrepancy

exists between the minimax and Rasch-derived passing scores.

Among the 55 situations under consideration, there is complete

agreement between the minimax and Rasch-derived passing scores in

39 cases. As for each of the remaining 16 cases, a discrepancy of

one unit separates the minimax passing score from the one derived

from the Rasch model. There is no apparent relationship between

these discrepancies and the extent to which items in the correspond-

ing objectives fit the Rasch model.

4. Discussion and Conclusion

A minimax scheme has been described for the simultaneous deter-

mination of passing scores for subtests (objectives) when the passing

score for the whole test.rti-known. The subtest passing scores are

set up in such a way that there is maximum agreement between the

pass-fail classifications based on the objectives and those classi-

fications based on the whole test.
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TABLE 24

Minimax and Rasch-Derived Simultaneous Passing
Scores for 1981 BSAP Reading Objectives

Grade Objective

Minimax
Rasch-Derived
Passing Score

Passing
P %

Score i
( )

1 DW 5 81.4 5

MI 4 85.1 4

DE 3 82.2 3

AL* 3 81.4 2

RE 4 83.6 4

IN* 3 82.1 4

2 DW 5 79.7 5

MI* 4 79.1 3

DE* 6 84.1 5

AL 4 89.4 4

RE* 4 83.4 5

IN* 3 82.4 4

3 DW 5 84.9 5

MI 4 81.1 4

DE 5 86.1 5

AL 4 86.1 4

RE* 5 84.5 4

IN* 3 83.7 4

6 DW 5 81.1 5

MI 3 80.8 3

DE 5 81.7 5

AL 3 80.8 3

RE 5 78.4 5

IN 3 82.5 3

8 DW* 5 80.5 4

MI 4 79.5 4

DE 5 80.6 5

AL* 3 79.4 4

RE 5 80.9 5

IN 4 83.0 4
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TABLE 25

Minimax and Rasch -derived Simultaneous Passing
Scores for 1981 BSAP Math Objectives

Grade Objective

Minimax
Rasch-Derived
Passing Score

Passing
%Score P ( )i

1 OP 5 85.0 5

CN 5 78.9 5

GE 5 76.3 5

ME 5 81.0 5

PS 5 83.1 5

2 OP* 5 82.8 4

CN 5 83.9 5

GE* 5 78.9 6

ME 5 78.9 5

5 78.6 5.PS\
'---

3 OP* 5 77.9 4

CN* 5 78.9 4

GE 5 71. 5

ME* 4 73.2 5

PS* 3 73.3 4

6 OP 4 82.1 4

CN 3 77.0 3

GE 3 73.6 3

ME 3 78.0 3

PS 4 80.2 4

8 OP 3 74.6 3

CN 3 84.7 3

GE 3 80.9 3

ME 3 76.2 3

PS 3 78.4 3

tor
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As applied to the reading and math objective subtests of the

1981 South Carolina BSAP, the minimax procedure provides passing

scores which are identical to those derived from the Rasch model in

about 70 percent of the cases. For the remaining 30 percent of the

cases the discrepancy between each minimax passing score and,the

Rasch-derived cutoff score is one unit on each of the six-item sub-

tests. Thus for all practical purposes, the minimax procedure and

the Rasch model provide essentially the same passing scores for

subtests similar to those of the South Carolina BSAP.

This study clearly demonstrates that in the setting of passing

scores for subtests the minimax procedure is a viable alterhative to

a procedure based on latent trait models such as the Rasch when both

approaches are applicable. Unlike latent trait models, the minim&N

approach does not impose strict assumptions on the way in which

examinees respond to the test items and is applicable to simple 0-1

or more complex scoring schemes. The minimax approach is population

dependent in the sense that it requires the administration of the

entire test to a group of examihees. Latent trait models, on the

other hand, rely on very strong assumptions about the nature of the

test responses and require binary°scoring for the test items. As

long as test items have been calibrated, latent trait models can be

used to set passing scores for subtests without the administration

of the entiretest to a group of examinees.

In a large (statewide or districtwide) testing program where the

psychometric characteristics of binary test items are known in advance

and when tests are to be administered to a large group of examinees,

it is recommended that the minimax procedure and a suitable latent-

trait scheme be used tide by side in establishing passing scores for

subtests. If the resulting cutoff scores are essentially the same,

either of the two sets of passing scores may be chosen as final

cutoff scores for the objectives. If they differ, it seems worth the

effort to look carefully at the data and to explore the nature of the

relationships among the subtests.



CHAPTER 4

REPORTING TEST SCORES AS PERCENT OF CORRECT RESPONSES
AND CONSTRUCTION OF UNIT ITEMS IN A POOL

1. Introduction

In the previous two Chapters, ways to classify student

achievement on each objective are described. The classification is

binary; that is, achievement in each objective is assessed only as

Adequate or Non-adequate. Thus, for each test, passing scores are

set simultaneously on each objective (six in reading and five in

math) so that these passing scores are consistent with the overall

passing score on the test. The purpose of providing information on

each objective is to pinpoint the weaknesses of students who do net

meet the statewide minimum standard in reading or math.

In a number of situations, it may be informative to report the

percent of correct responses in each objective. When only one test'

forM is used across years, the proportion of correct responses may

be determined by dividing the number of correct responses by the

number of items in each objective (six for the South Carolina BSAP).

However, due to factors such as test security, different forms may

be needed for different test administrations. Due to differences in

item content and/or difficulty, these forms are not strictly equiva-

lent. In other words, the same raw score (or percent of correct

responses) may not bear the same meaning across different test forms.

Hence, if test scores are to be reported in terms of percent of cor-

rect responses, procedures must be developed to take into account

.variation across different (alternate) test forms.

2. Proportion of Correct Responses in the Item Pool

Rather than using the proportion of items a student answered

correctly on an objective (subtest), it may be.more meaningful to

relate his/her responses to the pool of items from vihich the subtest

for the objective was assembled. Thus, for patterns of student

53
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responses, an estimate is.made of the proportion of items in the

pool (which define the objective) which would be answered correctly.

In this way, all percents of correct responses are expressed in

terms of the items forming the item pool; thus a given percent would

share the same meaning across different (alternate) forms even if

these forms are not strictly equivalent.

Formally, let the- item pool for a given objective consist. of

M itens with item characteristic curves P (0), i 1,2,...,M. From

this pool, L items are selected to form the (sub)test for the objec-

tive. Without loss in generality, let us assume that these L items

are indexed by i = 1,2,...,L.. The test characteristic function for

the.item domain is

M
Em(e) = E P1(9);

1=1

for the subtest, this function takes the form

E
L
(0) = E P (0).

1=1

For an examinee with x correct responses on the subtest, the equa-

tion E
L
(6
x
) = x will yield his or her ability e . At this ability,

the expected numiiier of correct responses in the item pool is

Em(ex); hence the expected proportion of correct responses in the

pool is Em(0
x
)/M. For the special case of x = 0 or L, the abilities

are 8
0
= -= and 6

L
= +°3; hence the expected proportions of correct

responses in the item pool are respectively 0 and 1.

This procedure requires a priori calibration of all items in

the pool;.this may be done via the Rasch framework or most other

latent trait models.

3, Illustration Based on the Rasch Model

As an illustration, let us consider the DW objective of the

reading test for grade 1. There are 21 items in the pool; their

c)
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Rasch difficulty levels are listed in'Table 26. For the 1981 BSAP

test administrations, DW items included were DW01, DW04, DW10,

DW14, DW16, and DW20. At the.raw DW test scor,es of 1, 2, 3, 4, and

5, the ex abilities are -3.024, -2.098, -1.394, -.689, and .238. The

corresponding expected number of correct responses in the pool and

their percents (listed in parentheses) are 3.56 (17%), 6.77 (32%),

9.88 (47%), 13.05 (62%), and 16.52 (79%). At the raw score of zero,

the percent of correct responses is zero; the percent is 100 at the

maximum raw score of 6.

TABLE 26

Item Pool for DW Objective, Reading, Grade One

Item Rasch Item Rasch Item Rasch
Name Difficulty Name Difficulty Name Difficulty
DWO1 -1.365 DWO8 -1.441 DW15 -1.922
DWO2 -1.667 DWO9 -1.503 DW16 -1.682
DWO3 0.677 DW10 -1.701 DW17 -1.701

DWO4 -1.446 -0.070 DW18 -2.595

DWO5 -0.421
.DM11

bW12 -2.595 DW19 -1.922

DWO6 -0.924 DW13 -1.102 DW20 -1.169
DWO7 0.243 DW14 -0.994 DW21 -0.686

4. Psychometric Characteristics of the Unit Item
of an Item Pool

When objective-referenced test scores are reported ag percent

of correct responses via the use of an item pool, it may be meaning-

ful to conceptualize this pool as consisting of 100 uniform items

(or unit items); thus the objective is psychometrically dividedcInto

100 homogeneous uniis, each measured by one unit item, and all unit

items are psychometrically identical.

With the pool consisting of M items, each with item character-

istic curve P (0), the (pool) test characteristic function is given

as

Em(e) = E

i=1



Thus, within the context of latent trait models, the unit item

defining the pool has the item characteristic curve given as

w(e) = Em(e)/M = E Pi(e)Pn.
i=1

Since each P 1(6) is monotonically increasing, the function w(e) is

also monotonically increasing; however, w(e) may not share the same

functional form with each P.(e).

Let F(6) represent the distribution of the ability for a given

population of examinees. Then, for the i-th item, the proportion of

examinees who answer the item correctly (p-value) is given by the

integral

pi = fl1(e)dF(6).

The p-value of the unit item is the integral fir(e)dF(8); thus it is

equal to the average

In other words, when the latent trait model fits the data adequately,

the traditional difficulty (p-value) of the unit item is simply the

mean p-value of all the items in the pool,

When each P
i
(e) follows a Rasch-or two-parameter logistic model,

the function w(e) is probably fairly close to a two-parameter logis-

tic function. Let

exp(a(6 - 6)/{l exp(a(6 - 0)}

so that

00)) = exp(a(6 - 0)

or

a(6 - B) = logar(e)/(l -

Thus the item parameters a and $ of the unit item may be determined

by fitting a straight line to the function y(6) = log{.11.(8)/(l - n(0))

at the ability values ex, X m (It may be noted that at

ex, w(ex) x/14')
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Applied to the DW item pool listed in Table 24, the ordinary
4

least square method yields the parameters a = .875 and 8 = -1.181

for the unit item of the pool. When the test scores x = 1,2,...,20

on the DW pool are expressed in terms of percents of unit items

answered correctly, the discrepancies between the actual percents

100ff(Ox) and the percents fitted via the unit item 100ff(Ox) do not

exceed 2 percent.

It may be observed that the use of the Rasch model presumes

that all items in the pool share the same degree of discrimination.

However, when the pool is to be represented by its unit item, this

unit item may or may not share the same level oc discrimination.

For the data of Table' 26, all items have a discrimination value of

one; however, the unit item has the factor .874 as its discrimination.

5. Potential Use of the Unit Item

Besides offering a unique description of the item pool, the

concept of the unit item may be useful when the test constructor

wishes to replenish the item pool without substantial changes in the

statistical characteristics of the pool. To accomplish this, a

two-parameter logistic (rather than the Rasch) model may be used to

represent the item characteristic function. Then potential new

items to be added to the item pool are those which match closely

the difficulty and discrimination of the unit item underlying the

pool.

5J
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CHAPTER 5

EXPLORING THE USE OF PATTERNS OF INCORRECT RESPONSES
IN SCORE REPORTING VIA THE BOCK MULTINOMINAL

LATENT TRAIT MODEL

1. Introduction

Over the years researchers have explored the possibility of

using the patterns of incorrect responses in multiple-choice items

to extract more information from the examinees' responses. Given

,the constraints of classroom management, tests designed for diag-

nostic purposes such as those used in the South Carolina Basic Skills

Assessment Program (BSAP) are relatively short. For these situations,

the use of the raw score (i.e., the number of correct responses)

would result in a loss of test data if more information could be

derived from the patterns of incorrect responses. If these patterns

are related to the ability level of the students and if they are

taken into account in the scoring process, the resulting test scores

may reflect more faithfully the achievement of these students.

A variety of procedures which consider both the correct option

and the various incorrect options have been proposed for the scoring

of tests with multiple-choice items. These procedures fall in two

broad categories, those etplaying weighted option scoring and those

using latent trait models.

In the first.category, a weight of one is assigned to the cor-

rect option and other appropriate weights are given to the incorrect

options. The score is then the sum of the weights of the options

selected by the examinee. For each incorrect option, the weight

depends on the seriousness of the error associated with this option.

The weights may be determined empirically via point-biserial correla-

tions or Guttman weights (see, for example, Claudy, 1978). They may

also he based on expert judgements (Davis and Fifer, 1959; Downey,

1979). Research on the effectiveness of these weighted option scor-

ing procedures has produced mixed results. None of the procedures

61
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seems to result in test scores which are consistently more reliable

or more valid than the raw scores.

The second category of test scoring based on responses to each

of the options employs various latent trait models. Models developed

by Samejima (1969, 1972) are appropriate for the analysis of items

in which the options reflect various degrees of correctness or

acceptability. For the scoring of multiple-choice items in which

the options are basically nominal, Bock (1972) proposed a model

based on a latent trait formulation of multinominal data. Both Bock

(1972) and Thissen (1976) provided illustrations based on real test

data. By use of the information function they stipulated that con-

siderable gains in test score accuracy could be accomplished for

lower ability examinees. Test information as defined by ajatent

trait model, however, reveals only an internal characteristic of the

test; that is, if the model describes the data adequately, the test

information will mirror the accuracy of the estimates obtained for

whatever latent trait underlies the item responses. Hence, test

information does not address the issue of the validity of test scores

derived from the model.

This chapter will focus on the practicability of using the Bock

model in scoring tests with multiple-choice items. It also will

address the validity issue regarding ability estimates derived frorly

this model. The research work was conducted using data from the

sixth grade BSAP tests of reading and math. Since the BSAP tests

for this grade are diagnostic, the conclusions reached in this study

would be restricted to this type of data.

2. Overall Description of the Bock Multinominal

Latent Trait Model

Consider a test with L multiple-choice items. When test scoring

uses the raw score (i.e., the number of correct responses), each

item is scored as one if the correct or best option is chosen; other-

wise, the item will be scored as zero. This scoring treats all
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incorrect options as equal and no provision is made for the

seriousness of the error associated with each incorrect option. The

latent trait model most congruent with number-of-correct scoring is

the Rasch model. This model asserts that on an item with difficulty

d, an examinee with ability 8 will give a correct response with a

probability of

P(x = 110,0 =
6)

1 + 6)

In the Bock model, the probability of selecting each of the

options is considered separately. The model presumes that at each

level of ability, the options have different Probabilities of

attracting the examinee. Thus, by taking these differences into

account, better estimates for the ability would be obtained.

Let in. 'be the number of options for the j-th multiple-choice

item. Let k. be any of these options. Then the use of the Bock

latent trait model presumes that the probability of selecting this

option be expressed as

exp(Z
jk (6))

m.

Z exp( Zjh (6))

h=1

where

(1)

Zjh(6) = Cjh + ajhe, h =

andcjkanda.are the two item parameters associated with the h-th

option of the j-th item (see Thissen, 1976, p. 202).

It may be noted from equation (1) that the probabilities asso-

ciated with all the options are expressed via the same functional

form; hence it is not possible to determine the correct option for

an item by inspecting the option probabilities.

As in most latent trait models, the item parameters are presumed

to be invariant across all subjects; in other words, they are

6
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characteristics of the items and not of the examinees. When data

are available, these parameters may be estimated (and the items are

said to have been calibrated). There are many ways to estimate item

parameters; the most commonly used are based on the maximum likeli-

hood procedure. In this procedure, the item parameters are deter-

mined in such a way that the observed data are most likely to have

come from the probability model underlying the estimated parameters.'

Bock (1972) described two estimation methods which are referred to

as the conditional and unconditional procedures. Via LOGOG, the

conditional estimation procedure has been implemented by Kolakowski

and Bock (1973). LOGOG is used in this study.

Once all items are calibrated, the LOGOG program can be used to

estimate the ability of (new) examinees who are not in the calibra-

tion sample. (It is assumed, of course, that the item parameters

previously obtained will be applicable to these examinees.)

3. The Two Purposes of this Stud

This study explores the feasibility of using the Bock model to

score tests consisting of a limited number of multiple-choice items.

Two questions are raised. First, does it make any difference whether

raw scores or the Bock ability estimates are used to classify stu-

dents? In other words, how strong is the relationship between the

raw scores and the Bock ability estimates for tests with a moderate

or small number of items? Second, how do the Bock ability estimates

(as compared to the raw scores) relate to an external criterion when

the criterion is used to validate the test or to set the passing

score on the test?

4. Data Base, Item Calibration, and Ability Estimation

The data base of this study consisted of sixth graders to whom

the BSAP tests of reading (2677 students) and math (2681 students)

were administered in the spring of 1981. Teachers were asked to make

judgements regarding their overall achievement in the above academic

6
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areas. Some descriptive statistics regarding these students may be

found in Tables 1 and 2 of Chapter 1. In addition to the item

responses and teacher judgements, other background information such

as race is available. It may be recalled that the teacher judgements

were solicited prior to the administration of the BSAP tests; hence

they are independent of the test data. There were three categories

of teacher judgements: Non-adequate, Adequate, and Undecided. These

judgements were used in the setting of passing scores for each of

the BSAP tests.

The data base was then split into two parts via systematic

sampling. The first part (one-third of the entire sample) was used

to calibrate the items and the second part (two-thirds of the entire

sample) served as the data base for the two research questicns raised

in the previous section.

The calibration was performed on the responses of 873 students

for the reading test and of 892 for the math test. For the LOGOG

program to run, the number of examinees choosing each option on each

item could not be too small. Considering this constraint for each

item, several options with low frequencies were combined in such a

way that the total frequency would be at least 10 percent of the

number of examinees in the calibration sample. This"process seemed

rather artificial since different options reflected different types

of errors and usually the combined options did not share any other

commonality than having low frequencies. However, this artificiality

was the price to pay for convergence in the LOGOG program.

LOGOG required rwo passings, a diagnostic run and a final run.

In the first run, examinees were sorted into 10 groups (fractile)

on the basis of the raw scores and initial estimates for the item

parameters were obtained. These estimates were then used as start-

ing values'for the final run in which examinees were sorted into

10 fractiles on the basis of the estimated abilities.

Tables 27 and 28 present the data which reveal the degree to

which the Bock model adequately describes the observed test data in
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TABLE 27

Chi Square Tests of Goodness-of-Fit fot4Bock

Abilities in Sixth Grade Reading

Item
Sequence
Number

Chi
Square

Degrees
of

Freedom Probability

01 21.6 16 >.05

02 8.4 8 >.05

03 17.5 8 <.05

04 32.9 24 >.05

05 6.0 8 >.05

06 8.3 16 >.05

07 26.1 24 >.05

08 47.7 24 <.01

09 40.5 24 <.05

10 43.0 24 <.01

11 25.4 24 >.05

12 19.0 24 >.05

13 38.9 24 <.05

14 445.3 16 <.01

15 16.3 24 >.05

16 56.1 24 <.01

17 45.7 24 <.01

18 20.0 16 >.05 c,-

19 30.4 24 >.05

20 28.8 24 >.05

21 35.0 24 >.05

22 51.0 24 <.01

23 41.3 24 <.05

24 36.2 24 >.05

25 30.5 24 >.05

26 23.4 16 >.05

27 20.2 16 >.05

28 30.5 16 <.05

29 8.2 8 >.Q5

30 20.5 24 >.05

31 23.6 24 >.05

32 40.6 24 <.05

33 22.9 24 >.051

34 24.7 24 >.05

35 34.7 24 >.05

36 31.0 24 >.05
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TABLE 28

Chi Square Tests of Goodness-of-Fit for Bock
Abilities in Sixth Grade Math

Item
Sequence
Number

Chi
Square

Degrees
of

Freedom Probability
01 19.0 16 >.05
02 19.8 24 >.05
03 25.5 24 >.05
04 16.3 24 >.05
05 30.5 24 >.05
06 21.0 24 >.05

07 25.7 16 >.05
08 24.0 24 >.05

09 16.9 24 >.05
10 21.4 24 >.05

11 45.6 24 <.01
12 28.9 16 <.05

13 26.2 24 >.05

14 33.3 24 >.05

15 18.3 16 .05
16 17.6 16 >.05

17 19.5 16 >.05
18 35.2 16 <.01

19 22.9 24 >.05

20 34.5 16 <.01

21 24.6 , 16 >.05
22 37.3 24 <.05

23 28.2 24 >.05

24 28.1 ,24 >.05

25 27.6 16 >405

26 34.5 16 <.01

27 30.9 16 <.05

28 33.0 24 >.05

29 47.6 24 <.01

30 26.2 24 >.05

6
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the calibration sample. A small chi-square statistic indicates good

fit whereas a large chi-square raises doubt about the appropriateness

of the model. For the reading test probably six items do not fit the

model whereas for the math test there are five such items (probabil-

ity less than .01). Since this study focuses on the feasibility of

using the Bock model for test scoring, there are no compelling rea-

sons to delete items from the test.

With all items calibrated, LOGOG was then used to compute the

ability estimates for the examinees not used in the calibration

process. There were 1728 examinees for the reading test and 1764 for

the math test. For each test, ability estimates were obtained for

the entire test and for each of the subtests covering the objectives.

(There were six objectives in reading and five objectives in math.)

Perfect or nearly perfect responses were observed for many

examinees, particularly at the objective level. For these cases,

successive LOGOG iterations resulted in estimates which drifted

toward either or-1-03. LOGOG then assigned the dummy estimates of

-31 and 31 to these two nonconvergent cases.

To bring the nonconvergent estimates of -31 and 31 in line with

the main body of the ability distribution, the minimum and maximum

ability estimates for the convergent cases were determined for the

entire test and for each of the subtests. For each case the smallest

ability estimate was substituted for the dummy value of -31 and the

dummy value of 31 was replaced by the largest ability estimate.

Although this replacement of the nonconvergent values of -31 and 31

had no substantial statistical justification, it was done so that all

examinees with perfect or near-perfect raw scores and those with zero

or near-zero raw scores would be studied simultaneously with exam-

inees in the middle of the raw score range. To delete cases with

the nonconvergent values of -31 and 31 from the data analysis would

grossly distort the testing framework within which the BSAP tests

were assumed to functipn. In addition, this study focuses only on

agreement between decisions based on the raw scores and those based

OLI
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on the Bock abilities. In this context all conclusions will remain

the same as long as the dummy ability -31 is replaced by any value

smaller than the cutoff ability and the dummy ability 31 is replaced

by any value larger than the cutoff ability.

5. Agreement Between Decisions Based on Raw
Scores and Bock Ability Estimates

As stipulated, the Bock model is able to tap more information

frpm the item responses than the raw scores at the lower end of the

ability continuum. If this is the case, pass/fail classifications

based on the Bock ability estimates would relate to those based on

the raw scores to a lesser degree for students at the lower end of

the ab41ity scale than for those at the upper end.

The above assertion, however, could not be verified directly in

this type of empirical study based on real data since the true abil-

ity of each student was not known. The assertion may be verified

partially by noting that most students in this study had been clas-

sified by the teachers in one of three overall achievement categories

(Adequate, Non-adequate, and Undecided). Though these classifica-

tions were made independently of the test data, they were strongly

reolated to the test scores (see Chapter 1). Hence they may be used

to sort students into groups which differ in overall ability. These

groups would then be used to assess the differential relationship

between raw scores and Bock ability estimates among groups with

varying levels of ability stipulated in the previous section.

As may be recalled from Chapter 1, the passing score for each

BSAP test was the median score of students for whom the teacher

judgements were recorded as Undecided. For the reading and math

tests used in this chapter, the passing scores are 24 and,17, respec-

tively, on the raw score scale. For each test, students were placed

in the passing group or the failing group based on ihese passing.

scores. As indicated in Chapter 2, pass/fail classifications were

also made on the subtests covering the individual objectives. This

ELi

t'i
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was done by translating the overall passing score into a cutoff score

on a suitable Rasch ability scale. This cutoff ability was then used

to compute the expected numbers of correct respon'46s on the subtests.

The results weresrounded to the nearest integers in such a way that

their sum equalled the overall passing score; these integers were

finally used as cutoff scores for the objectives.

To set the framework by which pass/fail decisions could be made

on the basis of the Bock ability estimates, the median ability of

the Undecided group was used as the cutoff ability for the test under

study. This cutoff ability was used to make pass/fail decisions on

the entire test as well as on each of the objectives. (This process

was not used strictly on the raw score scale because of the limited

number of Rasch ability estimates for the objectives.)

On each of the reading and math tests and on each of the objec-

tives, a pass/fail classification was made for each student on the

basis of the raw score and another pass/fail classification was made

using the Bock ability estimate. Agreement occurred if these two

classifications produced the same result for the student; in other

words, agreement occurred if the student was classified in the pass-

ing group by both the raw score and the Bock ability estimate or if

the student was classified in-the failing group by both these quan-

tities. The proportion of,students for whom these decisions are in

agreement is typically referred to as an agreement index; In

Figure 1 the agreement index is the proportion of students in the

pass/pass and fail/fail categories.

For all students not included in the calibration subsample, an

agreement index was computed for the reading and math tests and for

each of the objectives. Agreement indices were also computed for k

students in the Adequate and Non-adequate samples. The results are

compiled in Table 29.

The data clearly indicate phat for the entire tests of reading

and math, pass/fail classifications based on the raw scores and those
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Bock Ability Estimates

fail pass

Figure 1. Decision consistency of pass/fail
classifications based on raw score with clas-
sifications based on Bock ability estimates.

TABLE 29

Percent of Students Consistently Classified in the Same
Categories by the Raw Score and Bock Ability

Reading Math

Percent Consistency Percent Consistency

Non- Non-

Test Total adequate Adequate Test Total adequate Adequate

Entire Entire

test 95.5 95.6 96.2 test 94.2 94.5 94.2

DW 95.0 93.2 96.8 OP 81.3 77.1 85.0

MI 88.0 84.0 91.3 CN 79.2 74.8 82.0

DE 79.7 71.0 85.8 GE 63.6 66.5 61.9

AL 80.4 72.9 86.2 ME 82.0 80.5 83.2

RE 83.7 74.3 90.7 PS 89.6 87.5 91.8

IN 89.7 82.6 94.5

based on the Bock ability estimates are almost identical for all

students under consideration as well as for those in the adequate

and non-adequate subsamples. No differences seem apparent between

these two groups at the entire test level.

At the objective level, less agreement was obterved for all

cases except the GE objective of the math test. For the six reading

objectives,,the agreement indices averaged 79.7 percent for the Non-

adequate group and 90.9 percent for the Adequate group. For the

four math objectives (GE excluded), these averages were 77.3 percent

and 80.8 percent respectively.
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The data appear to indicate that as long as the test has

moderate length the Bock model and the use of raw scores produce

almost identical pass/fail decisions even for students at the lower

end of the ability continuum. However, when the test is short, pass/

fail classifications based on the Bock ability estimates and those

based on the raw scores appear to show less agreement for students

at the lower end than for those at the upper end.

6. Relationship Between Pass/Fail Classifications
and Teacher Judgemenfs

In order to shed light on the validity of the pass/fail deci-

sions based on the Bock model compared with the validity of those

based on the raw scores, the teacher judgements (Adequate or Non-

adequate) were used as an external validity criterion. There

appeared to be no logical defense for the use of this criterion

except that a teacher who had been teaching a student for almost

nine months should be in a position to make a summative judgement

regarding the overall achievement of the student. (No attempt was

made to assess the reliability of the teacher judgement.)

For each of the reading and math tests and for each of their

objectives, a four-corner table (Figure 2) was set up to record the

number of students classified as pass or fail by the raw score (or

Bock ability estimace) and asNon-adequate or Adequate by the teacher

Fail
Scoring
Method

Pass

Teacher Judgement

Non--

Adequate Adequate

Figure 2. Decision consistency of teacher
judgements with pass/fail classifications
based on scoring methods.
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judgement. Agreement occurred if the student was placed in the

corner "pass/adequate" or "fail/nonadequate."

Table 30 reports the agreement index between pass/fail decisions

and teacher judgements. The data clearly indicate that for both the

entire tests of reading and math, there is no noticeable difference

between the "validity" of pass/fail decisions based on raw scores

and the validity of those decisions based on the Bock ability esti-

mates. (For the reading test the agreement index is about 80 percent

and for the math this index is near 75 percent.) Validity, of course,

was judged by using the teacher judgements.

TABLE 30

Percent of Students Classified in the Same Categories
by Teacher Judgements and Scoring Methods

Reading Math

Test
Percent Agreement

Test
Percent Agreement

Raw Score Bock Ability Raw Score Bock Ability
Entire Entire
test 79.4 79.6 test 74.5 74.5
DW 74.3 73.4 OP 71.1 69.8

MI 72.3 70.9 CN 66.5 62.8
DE 73.3 69.8 GE 65.4 57.1

AL 72.5 69.4 ME 68.4 65.5

RE 71.9 66.7 PS 72.1 72.1

IN 74.6 70.5

Using the same criterion of validity, the picture changed con-

siderably for pass/fail decisions based on each objective. The use

of the Bock model resulted in pass/fail decisions less related to

the teacher judgement than those decisions based on the raw score.

For the six objectives of the reading test, the agreement index

averaged 73.2 percent for the raw scores and 70.1 percent for the

Bock ability estimates. For the five objectives of the math test,

these averages were 68.7 percent and 65.5 percent, respectively.

Under the situations considered in this study, it appears that

the use of the Bock model for a test with moderate length does not
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change the validity of the pass/fail decisions in any noticeable

way. On the other hand, if an external criterion such as teacher

judgement is acceptable, the Bock model applied to a short test may

result in pass/fail decisions which are less valid than those based

on raw scores.

7. Concluding Remarks

This study indicates that in the context of pass/fail decisions,

the use of the Bock multinominal latent trait model for moderate-

length tests does not produce decisions which differ substantially

from those based on the raw scores. Nor does the Bock model provide

pass/fail decisions which are more valid than those based on raw

scores when an external criterion such a teacher judgement is used.

On the other hand, for very short tests the pass/fail decisions

based on the Bock model may differ somewhat from those decisions

based on the raw scores. Thus, for very short tests, the ability

tapped by the Bock model appears to differ from the one implied by

the raw scores. Moreover, the Bock pass/fail decisions appear to

relate less strongly to an outside criterion such as teacher judge-

ment than those based on the raw scores. This anomaly makes it

difficult to interpret the nature of the trait that the Bock model

attempts to recover from the student responses.

This study demonstrates that when test data are used to make

pass/fail decisions on students, the Bock model does not result in

any differences from the use of raw scores when the test is of mod-

erate length. Considering the complexity in item calibration and

ability computations, the use of the Bock model does. not seem to be

justified. When the test is short, the Bock model appears to reflect

a trait which is in variance with the one measured by the raw scores

and reflected in an external criterion such as teacher judgement.

This makes it difficult to interpret the nature of the trait

revealed by the Bock model for these short tests. Thus, for these

situations too, the Bock model does not appear to be useful.

7 i
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Perhaps the Bock model may not be suitable for use with achieve-

ment items where a correct response exists. The functional form of

the probability that the Bock model assigns to each option does not

reveal any asymmetry regarding the correct and incorrect options;

perhaps this lack of asymmetry accounts for the lack of positive

results encountered. On the other hand, teacher judgements may not

have been a good external criterion for the judgement of the validity

of the trait implied by the Bock model. However, if the Bock model

provided better estimates for ability than other estimates based on

raw scores, this conclusion would have been tested against an accept-

able criterion which is independent of the Bock estimates.

References

Bock, R. D. Estimation item parameters and latent ability when

responses are scored in two or more nominal categories. Psycho-

metrika, 1972, 37, 29-51.

Claudy, J. G. Biserial weights: A new approach to test item option

weighting. Applied Psychological Measurement, 1978, 1, 25-30.

Davis, F. B., and Fifer, G. The effect of test reliability and

validity of scoring aptitude and achievement tests with weights

for every choice. Educational and Psychological Measurement,

1959, 2, 159-170.

Downey, R. G. Item-option weighting of achievement tests: Compara-

tive study of methods. Applied Psychological Measurement, 1979,

3, 453-461.

Kolakowski, D., and Bock, R. D. LOGOG: Maximum likelihood item

analysis and test scoring: Logistic model for item responses.

Chicago: National Educational Resources, 1973.

Samejima, F. Esiimatiog of latent ability using a response pattern

of graded scores. Psychometrika, Monograph Supplement, No. 17,

1969.

7:i



76

Samejima, F. A general model for free-response data. Psychometrika,

Monograph Supplement, No. 18, 1972.

Thissen, D. M. Information in wrong responses to the Raven Progres-

sive Matrices. Journal of Educational Measurement, 1976, 13,

201-214.

'71.;



CHAPTER 6

EXPLORING THE USE OF THE LOG-LINEAR MODEL
IN THE IDENTIFICATION OF GROUP DIFFERENCES

IN PATTERNS OF INCORRECT RESPONSES

1. Introduction

A major function of diagnostic testing and basic skills

assessment is to identify weaknesses of students for suitable reme-

diation. Typically, weaknesses are revealed through low scores; a

diagnostic profile for a student can be composed if there are enough

items to cover most major types of errors which need to be corrected.

Most basic skills tests such as those used in the South Carolina

Basic Skills Assessment Program (BSAP) are relatively short; there-

fore the use of raw scores (number of correct responses) does not

permit a detailed analysis of student deficiencies.

An analysis of the patterns of incorrect responses may be help-

ful in mapping remediation strategies for students who need help.

Due to the small number of items in mo!-t basic skills tests, such

analysis may not be suitable for each individual student. However,

if patterns of incorrect responses are related to identifiable stu-

dent characteristics such as overall achievement, ethnicity, sex,

or parental socioeconomic status, then students may be grouped on

the basis of these characteristics in such a way that each group

displays a different pattern of incorrect responses.46If this type

of analysis is appropriate, then a common remediation strategy can

be adopted for each group of students.

The search for patterns of incorrect responses among subgroups

of students may be of practical value to local schools or school

districts which, due to limited financial resources, cannot devise

individual remedial programs for all students who need help. A

feasible way would be to group studefits on relevant characteristics

(associated with the patterns of incorrect responses) and then to

provide for each group a common strategy for rectifying the errors

encountered in the acquisition of the subject area.

77
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If students are grouped by student characteristics for remedia-

tion purposes, then these characteristics must display a substantial

level of interaction with the errors made by students. For errors

which are used as distractors in multiple-choice items, the selection

of these student characteristics may be accomplished via an appro-

priate application of the log-linear model.

The purpose of this chapter is to provide illustrations of the

application of the log-linear model to the selection of student

characteristics which are relevant to the differential patterns of

incorrect responses in multiple-choice items. The illustrations are

based on responses of a large sample of sixth graders who took the

BSAP reading test in 1981.

2. The Log-Linear Model in the Context
of Analysis of Patterns of Errors

Consider a multiple-choice item with each distractor reflecting

a different type of error. Let E be the variable representing these

errors. (Hence each value of E corresponds to one distractor or one

type of error.) Let k = 1,...,K be the index which ranges over the

values of E.

As an illustration, let the student characteristics be denoted

as A (with a different values) and B (with b different values). Let

the i and j be the indices (subscripts) associated with A and B.

Within this context, the incorrect responses on the multiple-

choice item may be sorted inathree-wayAxBxEcontingency table.

Let fijk be the observed frequency (number of students) in each

(i, j, k) cell of the table. Let Fijk be the expected frequency of

this cell. Under the log-linear model, ln Fijk is the sum of

several parameters. In the f4ll model, a large number of effects

due to the factors A, B, and E and their interactions are considered.

For this case, ln F
ijk

takes the form

A B E AB AE BE ABE
ln Fijk = 0 + Ai + Aj + Ak + Aij + Aik + Ajk + Aijk.
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As in the case of traditional analysis of variance, linear constraints

are imposed on the parameters A. They are

A
EXi = EXJ = DI( = 0,

AB AB BE
EX. = Ex.. = = EX.1, = 0,

k -31"

and
ABE

EX =
ijk ijk

= EXAB
E

= 0.

The likelihood ratio statistic associated with this model is

2
= 2 E f

ijk
ln (f

ijk
/F

ijk
)

i,j,k

which is distributed asymptotically as chi-square with n - pF degrees

of freedom (df) where n is the number of cells and pF is the number

of estimated independent parameters. For the present situation,

n = Kab.

It may be noted that when the effects due to all the factors A,

B, and E and to all their interactions are parts of the full model,

the log-linear model provides complete fit to the data. For such a

case, G
2
and its df are zero.

If there are logical or practical reasons to consider factor A

as the major variable in classifying students for the purpose of

analysis of error patterns, then the interaction AE should be more

substantial than the two combined interactions BE and ABE. Thus,

the following restricted model may be used to describe the data

ln F
ijk

AA AB AE AAB AAE.

i j k ij ik

Under this model, the chi-square statistic is given as

G 121 = 2 E f
ijk

ln (f
ijk

/F
ijk

)

i,j,k

which is distributed asymptotically as chi-square with n - pR degrees

of freedom. Here, pR is the number of independent parameters to be

estimated under the restricted model.
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It follows from the previous consideration that, after

partialling out,the interaction AE (i.e., the contribution of factor A

to the explanation of the error variable E), the additional contribu-

tion of factor B to the explanation of the error Trariable E is given

as
r2 r2 r2

`jadd 7R `7F.

Under the null hypothesis of no additional contribution in the popu-

lation, G
2

add
is a chi-squaie with pF - pR degrees of freedom (see

Bishop, Fienberg, & Holland, 1974, Section 14.9.6).

When the full model includes all the factors A, B, E and their

2
interactions, G

F
= 0 and p

F
= n. In this case, the additional contri-

2

bution of factor B to the explanation of the error variable E is GR

which is the chi-square with df = n - pR. For the illustration

purposes of this paper, this full model was used. All computations

were carried out via the BMD computer program P4F (Dixon & Brown,

1981).

3. First Illustration: The Knowledge of Race Provides

No Additional Information on Item 32

As the first illustration of the log-linear model to analysis

of patterns of errors, two factors were used to group students:

overall achievement (A) and race (B). Overall achievement had two

categories, Adequate and Non-adequate. For race, the two categories

were Black and White.

The data base consisted of 2252 sixth-graders who responded to

the 32nd item of the BSAP reading test. They were students in the

sample used in the setting of passing score for the sixth-grade read-

ing test (see Chapter 1). This item had three incorrect options.

Prior to test administration, judgements on student overall achieve-

ment were solicited from teachers who have taught the students in

the sample. There were three categories of judgement, Adequate, Non-

adequate, and Undecided. The Undecided category was very small; it

was deleted in the analysis of patterns of errors.



81

Thus for the situation under consideration, the numbers of

categories are a = 2 for factor A, b = 2 for factor B, and k = 3 for

Factor E (which represents the three incorrect options). A total of

490 students did not respond to the item correctly; their frequencies

in the 2x2x3 cells of theAxBxEcontingency table are

reported in Table 31.

TABLE 31

Frequency of Responses for Item 32

A B (1) (2) (3)

Ready Black 15 27 77

White 28 54 143

Non-adequate Black 73 130 144

White 49 72 126

Traditional contingency analyses on the marginal tables yielded

the chi-square statistics of 26.23 (df = 2, p < .01) for the A x E

table, 11.18 (df = 2, p < .01) for the B x E table, and 43.26 (df = 1,

p < .01) for the A x B table. These analyses suggest a substantial

association between the two factors A (overall achievement) and B

(race). (The strength of the association may have been the result

of factors including the cumulative effect of access to educationai

opportunity and cumulative effect of generations of social neglect

on the part of black students.) With the two factors A and B highly

correlated, any level of association between the factors A and E

would also be reflected between the factors B and E and vice versa

Hence separate contingency analyses on the tables A x E and B x E

would provide results which are highly dependent upon each other.

A multiple contingency analysis for the tableAxBxEwould

be most meaningful since it provides a simultaneous consideration of

the effects of the factors A and B on the patterns of errors repre-

sented by E.



82

Table 32 reports the results of the log-linear analyses for the

data of Table 31 via seven models. Each of the models 2 through 7

contains the interaction of the error varialUe E with either A or B

or both A and B. Of the two models which fit the data reasonably

well (Model 4 and Model 7), Model 4 (qt = 6.86, df = 4, p = .14) is

the one which descrthes the data with the smaller number of terms.

TABLE 32

Results of Log-linear Fitting to Item 32

Model Terns Included df

Likelihood
Ratio G2 Probability

1 A, B, E, AB. 6 33.09 .00

2 A, B, E, BE 5 65.16 .00

3 A, B, E, AE 5 50.12 .00

4 A, B, E, AB, AE 4 6.86 .14

5 A, B, E, AE, BE 3 38.94 .00

6 A, B, E, AB, BE 4 21.90 .00

7 A, B, E, AB, AE,,BE 2 .70 .70

The data presented in Table32 clearly indicate that, after the

interaction between A (overall achievement) and B (race) has been

partitioned out, the additional inclusion of the interaction AE in

the model reduced the likelihood ratio G
2

from 33.09 to 6.86. This

reduction of 26.23 is a chi-square with 6 - 4 = 2 degrees of freedom

under the null hypothesis of no additional AE effects. Clearly, the

effect due to AE is significant.

With both the interaction AB and AE in the model, the additional

inclusion of BE reduced the G
2 from 6.86 to .70. This reduction of

6.16 (df = 2) is not significant

In summary, the log-linear analyses presented above indicate

that the association between race and the error variable can be

traced to the relationship between overall achievement and the error

variable. Hence for the item under study, te knowledge of the stu-

dent's race did not appear to provide substantial informAtion in

explaining the pattern of incorrect responseS displayed in the error

variable.
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4. Second Illustration: The Knowledge of Race
ProvidesAdditional Information on Item 4

To provide a second illustration an the use of the log-linear

model in the analysis or'error pattern, responses of sixth-graders

to the BSAY reading item'4 were used. A total of 917 chose one of

the three incorrect, options; their frequencies are listed in Table 33.

TABU 33

Frequency of Responses to Item 4

A B (1) (2) (3)

Ready Black 53 20 51

White 91 26 122

Non-adequate Black 161 72 86

White 106 34 95

Traditional chi-square analyses on the marginal tables resulted

in the chi-square values of 48.80 (df = 1, p < .01) for the table

A . B, 21.83 (df = 2, p < .01) for the table A x E, and 24.68 (df = 2,

p , .01) for B x E.

The data of Table 34 indicate that among all the models under

consideration, Model 7 is the only one which provides reasonable fit

to the data. This model includes both interaction terms AE and BE;

thus both factors A and B are needed to explain the variation in the

type,'i of errors students made on Item 4.

TABLE 34

Results of Log-linear Fitting to Item 4

Model Terms Included df

Likelihood
Ratio G2 Probability

1 A, B, E, AB 6 38.71 .00

2 A, B, E, BE 5 62.84 .00

3 A, B, E, AE 5 65.69 .00

4 A, .13, E, AB, AE 4 16.89 .00

5 A, B, E, AE, Br 3 41.31 .00

6 A, B, E, AB, BE 4 14.03 .00

7 AL.,12_E, AB, AE, BE 2 .49 .78
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5. Summary

This chapter focuses on the identification of student character-

istics which relate substantially to the types of errors displayed in

the distractors of multiple-choice items. The process may be imple-

mented by selecting a number of relevant student characteristics,

compilinvthe frequencies of students in the multiple contingency

table defined by those characteristics and the types of errors, and

finally by fitting an appropriate log-linear model to the table. Any

student characteristic which interacts with the types of errors would

be ,peeded to account fully for these errors; hence they would be

neded in the clas:Afication of students according to the type of

-/'
errors.

This study focuses only on the methodology of selecting student

characteristics which may be useful in describing the type of errors

made on multiple-choice items. It does not address the nature of

these types of errors. However, once a major student characteristic

has been found to account for a substantial part of variation in types

of errors made by students, one may take a look at these errors and

see if they can be sorted into a small number of categories. The

most common mistake made at each level of the snid student character-

istic may be reported; this information may be useful in the planning

of instructional remediation.
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CHAPTER 7

ASSESSING THE BUDGETARY IMPACT OF REMEDIATION
IN BASIC SKILLS ASSESSMENT PROGRAMS:

I. STATISTICAL CONSIDERATIONS

1. Introduction

A major purpose of diagnostic testing and basic skills assessment

programs is to identify students' strengths and weaknesses in certain

academic areas so that remedial instruction can be given to students

whose level of achievement is not up to par. Such areas typically

include reading, writing, and mathematics. In general, for each

basic skills area an overall test is given to assess the general

level of achievement. Each student's overall score is compared to a

predetermined passing score, with students scoring below the passing

score being judged as non-adequate. For these students, the various

subtests of the overall test are analyzed more thoroughly to identify

the sub-areas which need attention.

The South Carolina Basic Skills Assessment Program (BSAP) exem-

plifies the use of test data for diagnostic purposes. Near the end

of each school year, BSAP tests in reading and math are administered

to students in grades one, two, three, six, eight, and eleven. (In

addition, writing exercises are also given to students of grades six,

eight, and eleven.) There are six objectives in reading: decoding

and word meaning (DW), main idea (MI), details (DE), analysis of

literature (AL), reference usage (RE), and inference (IN). In math,

there are five objectives: operations (OP), concepts (CN), geometry

(GE), measurement (ME), and problem solving (PS). Except for grade

eleven, each objective is measured by a six-item subtest; thus each

reading test consists of 36 items and each math test is comprised of

30 items. For grade eleven, each objective is covered by a subtest

of 10 items.

At each grade level, a statewide passing score has been estab-

lished for the reading and math tests. (See Chapter 1 for grades

one, two, three, six, and eight.) By use of the Rasch constant-sum

87
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procedure, the overall passing score was then translated into a

passing core for each of the objectives assessed by the overall

test. The translation was carried out in such a way that the indi-

vidual objective passing scores are, in some sense, consistent with

the overall passing score. Using these passing scores, each student's

level of achievement on the overall test and on each objective can be

assessed. Performance is said to be adequate for test scores at

least equal to the passing score; otherwise it is deemed non-adequate.

For the South Carolina BSAP, the overall passing scores are used

to identify,students who might need additional instruction. Since

the amount ot remedial instruction depends on the number of objectives

yet to be mast*red, the cost of remediation varies from student to

student. It would be ideal if remedial instruction could be provided

to all students who need help, but the reality of budgetary con-

straints imposes a limit on the amount of additional instruction

available. Thus, in setting passing scores in basic skills assess-

ment programs, some concern should be given to the budgetary implica-

tions of choosing a particular cutoff score.

The issue of budgetary concerns in the setting of passing scores

has been addressed by Huynh (1980). The general model provided in

this study assumes that the cost of remediation can be assessed as a

function of the true ability of the student. Given the remediation

cost function (S(e) and the various probabilities associated with true

ability and observed score, the budgetary consequences associated

with a given cutoff score can be assessed. From the overall frame-

work, details are presented for the special cases in which normal

test scores follow either the beta-binomial model or the bivariate

normal model.

The model provided by Huynh (1980) may.be useful if remediation

is given for the subject area covered by the overall test. In the

context of basis skills assessment, however, remedial instruction is

typically contemplated for the objective(s) or sub-area(s) in which

the student appears to be weak. Therefore the previously mentioned
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model needs to be extended to cover the case of basic skills

assessment programs.

The purpose of this chapter is to provide ways to assess the

budgetary implications of the various decisions regarding the setting

of passing scores in basic skills assessment programs. The chapter

also addresses the Lssue of equitable allocation to lcialdhool

districts of funds designated for remedial instruction.

2. An Overall Framework

The chapter restricts the consideration of budE,etary implica-

tions to situations in which the academic area covered by the overall

test can be described by a unique latent trait. This restriction is

consistent with the use of latent trait models such as the beta-

binomial and the Rasch. (The beta-binomial model is a special case

of the Rasch; it presumes that all test items are of equal difficulty.)

As previously elaborated, the Rasch model has been used as the major
4

vehicle for dealing with the several technical issues associated with

the South Carolina BSAP.

Consider an academic area (such as math or reading) which is

assessed via an overall test of n items. The area is divided into

m sub-areas called objectives, each measured by A subtest of length

n1,...,nm. These lengths add up to n. Let c be the passing score

for the overall test. The passing scores for the subtests are cl,

c2,...,cm. As mentioned in earlier chapters, the subtest passing

scores are set up such that their sum is the overall passing score.

Underlying the responses to the items is the latent trait

which takes values in the sample space Q. For the beta-binomial

model, e is the proportion of items in the pool that the subject

answers correctly; thus e ranges from 0 to 1. In latent trait models

such as the Rasch, e is the value of the unobservable latent variable

which serves to explain the responses on the set of items. In gen-

eral, e is a unique function of the expected number of correct

responses and ranges over the entire real line.
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Let the overall test be administered to a population of subjects

and let the probability density function (pdf) of the latent trait e

be p(e). (For Bayesians, p(e) represents the prior pdf associated

with a given subject.) For the test score x, let f(x) and f(rle) be

the marginal pdf and the conditional pdf with respect to e. Likewise

the pdf's associated with each subtest score xj are denoted by fj(x)

and fj(xle). As in most latent trait models, the condition of local

independence will be assumed to be satisfied; hence joint probabili-

ties can be written as products of the relevant marginal probabilities.

It is now assumed that all subjects with scores on the overall

test score smaller than c will be provided with remedial instruction.

This additional instruction is given only on the objective(s) that

the student has not mastered. In other words, remedial instruction

will be given on the j-th objective if the subtest score xj is below

the subtest passing score cj. With m as the number of objectives,

the number of different remediation situations amount to 2m-1. For

example, there is one case where all the objectives are missed and m

cases where the number of missed objectives is either 1 or

m-1.

To form a complete solution for the budgetary problem posed in

this chapter, a complete description of the cost of remediation would

be required for each of the remediation situations. As an approxima-

tion to the reality of instruction, it is not unreasonable to assume

that the cost remains essentially the same for each remediation

situation involving a given number of objectives. This assumption

requires that the objectives be about the same level of difficulty.

It will now be assumed that, for a subject with ability e, the

cost of remediation on k objectives can be described by a non-

increasing function df(e). Thus forthe same number of objectives,

remediation will cost more for less able students than it will for

more able students.

For the subject with ability e, let Z.(e) be the probability

that the j-th objective has not been mastered. In other words,
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z.(e) = Pr(x. < c.10. (1)
J J

Let S
k
(8) be the probability that the subject misses any k objectives

among the m objectives. Then Sk(e) is the symmetric sum

u 1-u.

S
k
(e) = E E (2 (0) -1(1 z.(e)) (2)

j=1

where the vector u = (u u
m

) of O's and l's extends over the

region defined by ul + + um = k.

With
k
(e) as the remediation cost associated with k objectives,

the cost at the ability e is expected to be

D(e) = E ak(e)sk(e).
k=1

(3)

Over a population of subjects where p(8) is the pdf for e, the ex-

pected cost at the overall passing score c is

y(c) = fQ D(e)p(e)de. (4)

If the population consists of M subjects and if the passing score is

selected as c (and hence the subtest passing scores are cl,...,ck),

the expected cost will be equal to My(c).

3. Estimation of Parameters

By use of appropriate psychometric models, the functional forms

for the probabilities sk(e) may be obtained. For example, if test

scores follow the binomial model, then the pdf of x is

x. n.-x.

F.(x.18) = e J(1-8) j; (5)
J J x.

hence

z.(0) = E F.(x.10). (6)
J Jx.<c.

J J

By additionally assuming that the pdf p(8) belong to some well-known

family such as the beta family, this pdf can be approximated if there

are enough subjects taking the test.
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The specification of the various costs 61(0) probably would

require careful deliberation and judgement. As a first approxima-

tion, the cost ak(e) may be taken to be proportional to the number k

of objectives yet to be mastered. In addition, by imposing suitable

functional forms on the 6k(6), an approximation can be made which

reflects the actual cost of remediation in real-life situations.

The next section provides an overall result for the case where

the cost (5

k
(6) is a linear function of k.

3. A General Result When dk
(6) is Proportional to k

Consider the case where each cost function k
(6) is proportional

to k, namely

d
k
(0) = kh(6).

For this case, the expected cost at the ability 6 (Equation (3)) is

given as

(7)

D(6) = h(6)(S1(6) + 252(e) + + msm(e))

We will show that D(6) takes the following simple form

D(6) = h(6) E Z4(6).
j=1

Infact,lettherandomvariableB.,j=1,2,...,m take the value 1

withprobabilityZ.MandthevalueOwithprobabilityl-Z.(6).

(8)

Then the sum E B. represents the number of objectives that the sub-

j=1

jectdoesnotmaster.SincetheexPectedvelueofeach13.1-sZM )

the expectedvalueofthesumEB.is the sum EZ.(6). It may be

noted that the sum 51 (6) + 252 (6) + + mS
m
(6) is another form for

the expected value of the sum EB..

It follows from the above remarks that as long as the cost is

proportional to the number of objectives, computations for the ex-

pected costs due to remediation on multiple objectives will reduce

to the simple case considered previously by Huynh (1980).
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The following section illustrates the case of the beta-binomial

with linear costs.

4. Special Case 1: The Beta-Binomial Model
with Linear Costs

Consider now the beta-binomial model as defined by the following

pdf's:

f(xle) = (11c)8x(1-0,),n-x, x=0,1,...,n

and

(9)

8
a-1

(1-8)
5-1

p(e) B(5)
o < e < 1. (10)

a, '

The two parameters a and 5 may be estimated from sample data via one

of several estimation techniques such as the moment procedure or the

maximum likelihood procedure. Let x and s be the sample test score

mean and standard deviation. In addition, let a
21

be the KR21 relia-

bility coefficient as defined by

= -
21 n-1 2 I'

ns

(In the case of a negative an, simply replace the value computed

from Equation (11) by any positive reliability estimate.) The moment

estimates for a and are given as

a = (-1 + 1/a
21

)x

and

(12)

5 = -a + n/a
21

- n. (13)

As in Section 2, let us presume that the overall n-item test is

comprised of m subtests, each with n1,...,nm
items. In addition, let

the passing scores be cl,...,cm
on these m subtests. Thus the proba-

bilitiesZ.(0) deiined in the previous section are given as

c.-1
J

xj

n.-x.

z.(e) = E (njle(1-8) J 3.
x.

J

Moreover, let us consider the case where the costs of remediation

take the forms

(14)

9
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61(e) h(e) (YO-Y1)(1-0)

k
(0) = kh(e).

It follows from Equation (8) that the expected remediation cost for

a subject with true ability e is

D(o) = ((yoy1)(1e) + al) E z.(0).
j=1.

Over the population of subjects, the expected cost per student is

given as

Thus

y(c) = f
1
o(e)p(e)de

s-1

= f ((yoy1)(1-0) + de.
1 B(a,f3)

j=1

1
y(c) = EEjkY-Y)1301-1-x.r1-1-f3-2c.-1-1 )

B(a,E) . xj 0 1 3'
j=1. xj u

c. -1
m j

(15)
1

5. Special Case 2: The Basch Model
with Constant Costs

As indicated previously the Rasch model is used as the latent

trait model for the analysis of the South Carolina BSAP data. In

this model, the probability that a subject answers an item correctly

is a function of the difference between his ability (e) and the item

difficulty (6). This function takes the form

0-6

P(e) 0-6.
1 + e

The probability that corresponds to an incorrect response is therefore

1
Q(e) = ea

1 + e

Consider now an overall test of n items with item difficulties

Let the vector A = (A1,A2,...,An) denote the responses
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to thenitems.Eachresponsea.is either 0 or 1. For a subject

with ability 0, the probability associated with the value

a = (a
1
,a

2 n
) for the vector A is

where

and

a, 1-a.

P(A = ale) = Tr (P.(0))
(Q

.(e)) j

j=l
.1

P.(e) =
e-d.

1 + e

1
(e) =Qj .

e-d4

+ e

It may be noted that Equation (16) can be written as

n

P(A = ale) = 1.

J (e)
j=1 j=1

Qj

Thus, by letting

and

H = Tr cl..(e)

j=1

P.(e)

ye) j = 1 2 ... n
QJ '

it may be noted that

(16)

a.

P(A = ale) = H Tr k.(e)) J. (17)

j=1

When the test itemsql,ave been calibrated (e.g., when all the item

difficultyparametersd.are known), the pdf associated with the raw

score x = Ea. at each ability e is given as

f(x10) = E P(A = ale)
Ea.=x

or

a.

f(xl0) = H E Tr (.(e)) J

Ea.=x j=1

9

(18)
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In order to compute the probability f(xle) of Equation (18), let us

follow the notation used by Gustafsson (1980) and denote

a.

"&n) E /T (Ye)) j, (19)

Ea.=x j=1
3

so that

f(xi =

The y
x

functions of Equation (19) may now be computed via the follow-

ing recursive formula reported in Fischer (1974, p. 250)

Yx(&1"."&t-1) Yx-1(&1"."&t-1)

where 0 < x < t and t = 1,...,n._ _ .

As pointed out in Gustafsson (1980, p. 381), this formula can be

applied recursively to compute the probability associated with each

raw score x. Starting with yi() = &J. and yo() = 1, one more

variable can be added so that

Y
1
(&

2
) = Y

1
(&

1
) =

2
Y
0
(&

1
) =

1
+

2

(20)

and

Y2(Y&2) Y21) &21(1(&1) ° &2&l. Y2'

Likewise, with one additional variable, we have

&3Y0(&1'&2) F'2 &3'

Y2(&1'&2)

&3"1 &2) 12 4- 13 4-

and

Y3(&1'&2) &312(&1'2) ° &3Y2 &3.&2&3

The computation scheme described by the recursive formula (20)

may be used to compute the conditional probability f (x.le) asso-
3

ciatedwiththej-thsubtest.Theprobabilities2.(0) and S
k
(e) of

Section 2 can then be computed, and with the specification of the

cost functions dk
(e) and the density p(e), the expected cost per

student y(c) can also be computed for each passing score c.
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As pointed out in previous chapters, for a test with n previously

calibrated items, there are n+1 separate values for the true ability

latent trait. Each value corresponds to a given raw score. Strictly

speaking, the zero raw score corresponds to the true ability 00

and the perfect score raw score n corresponds to the true ability

e
n

= +0=. However, to facilitate various computations, both 0 and e
n0

-)

ave been equated t) two finite values obtained by suitable linear

e trapolation.

/

If historical data exist which provide the relative frequency

p(e) at each ability 0, then the marginal probabilities associated

with missing 1,2,...,m objectives can be computed. More specifically,

the probability of missing k'objectives is given by the sum

Wk = E
k h h

h=0

If costs are constant across students, then the expected cost for

each subject is equal to the sum

dkWk .

k=1

6. An Illustration for the Rasch Model
with Constant Costs

To illustrate the use of the Rasch model in studies of budgetary

implications, let us consider the BSAP math test for grade two admin-

istered in 1981. The test was calibrated on the basis of approximately

2600 students and the item difficulty estimates (listed in Table 7)

are reproduced An Table 34 of this chapter. As previously mentioned

in Chapter 1, the passing score for the overall test was set at 22.

The test consists of five objectives, namely OP, CN, GE, ME, and PS,

and their cutoff scores were set as 4, 4, 5, 5, and 4 via the Rasch

constant-sum procedure.

With a total of 30 items, the overall test score ranges from 0

to 30. The Rasch ability at each raw score may be computed via the

numerical approximation described in Chapter 1. The left side of
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TABLE 34

Rasch Item Difficulty Parameters
for Grade 3 Math Test in 1981

Item Difficulty Item Difficulty Item Difficulty
0P02 -0.115 CNO5 1.064 ME04 -0.006
OP07 0.765 CN20 -0.507 ME15 -1.791
OP08 0.497 GE01 0.041 ME20 0.501
OP12 -0.016 GE08 -0.138 ME21 1.793
OP15 0.612 GE09 -1.265 PS06 -0.473
OP20 1.179 GE18 -1.516 PS11 -0.264
CN16 -0.177 GE19 -1.094 PS12 0.388
CN13 0.821 GE20 0.415 PS13 0.175
CNO8 -0.658 ME01 -1.003 PS17 0.471
CNO1 0.377 ME08 -0.766 PS21 0.688

Table 35 reports the Rasch ability at each raw score along with the

number of students having this raw score.

The right side of Table 35 reports the probabilities Sk(0) that

a student with each Rasch ability value 6 will not master any of the

k = 1, 2, 3, 4, or 5 math objectives. The last line of Table 35

reports the mean Wk of each probability Sk(0) weighted according to

the number of students.

A variety of computations for remediation costs may be performed

from the probabilities in Table 35. For example, if the remediation

costs are constant across students and equal to dk for k objectives,

then the projected cost of setting the overall passing score at 22 is

5

the sum E dkWk. As an illustration, letting d1 = 10, d2 = 15,
k=1

d
3

= 18, d
4

= 20, and d
5
= 21, then the projected remediation cost

per student is 9.51.

7. Allocation of Resources to Schools

In a number of situations, resources are available at the state

level which need to be allocated to each school district within the

state for the purpose of instructional remediation. If instructional

remediation is to be carried out at the objective level and if the

cost remains constant across students and objectives, then the
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TABLE 35

List of Probabilities S
k
(e) of Missing k Objectives

Raw
Score

Rasch
Ability

Number of
Students

S (e) at k of
1 2

k
3 4 5

0 -4.747 1 0.000 0.000 0.000 0.000 1.000
1 -3.684 0 0.000 0.000 0.000 0.000 1.000
2 -2.928 1 0.000 0.000 0.000 0.000 1.000
3 -2.459 1 0.000 0.000 0.000 0.001 0.999
4 -2.107 3 0.000 0.000 0.000 0.004 0.996
5 -1.820 5 0.000 0.000 0.000 0.011 0.989
6 -1.572 9 0.000 0.000 0.000 0.024 0.976

7 -1.351 17 0.000 0.000 0.001 0.046 0.953
8 -1.150 58 0.000 0.000 0.003 0.080 0.917
9 -0.963 97 0.000 0.000 0.007 0.127 0.866

10 -0.787 202 0.000 0.001 0.017 0.186 0.797
11 -0.619 329 0.000 0.002 0.035 0.253 0.711
12 -0.457 523 0.000 0.006 0.064 0.319 0.610

13 -0.299 780 0.001 0.015 0.108 0.375 0.501
14 -0.144 1044 0.003 0.032 0.166 0.409 0.390
15 0.010 1295 0.008 0.062 0.231 0.413 0.286
16 0.163 1578 0.019 0.107 0.293 0.384 0.196
17 0.317 1844 0.040 0.168 0.338 0.328 0.123
18 0.474 2249 0.076 0.237 0.353 0.254 0.071

19 0.634 2455 0.131 0.302 0.333 0.177 0.036
20 0.799 2681 0.203 0.345 0.280 0.110 0.017
21 0.973 2990 0.286 0.354 0.208 0.059 0.006
22 1.156 3135 0.362 0.321 0.135 0.027 0.002
23 1.353 3384 0.413 0.255 0.074 0.010 0.001
24 1.569 3517 0.420 0.173 0.033 0.003 0.000

25 1.812 3677 0.375 0.097 0.012 0.001 0.000
26 2.095 3760 0.288 0.043 0.003 0.000 0.000
27 2.441 3728 0.181 0.013 0.000 0.000 0.000
28 2.904 3475 0.085 0.002 0.000 0.000 0.000
29 3.654 2707 0.021 0.000 0.000 0.000 0.000
30 4.711 1435 0.003 0.000 0.000 0.000 0.000

Weighted Mean = 0.202 0.147 0.118 0.093 0.062 IP



100

allocation of funds can be carried out on the basis of the total

number of nonmastered objectives by all students inthe district.

On the other hand, if the remediation cost varies a,:cording to

the ability level of the student and the complexity of the objective,

then the cost functions d
k
(B) may be specified at the state level and

the average cost per student may then be computed for each school

district. The allocation of budgeted remediation funds to each

school district may then be made proportional to the number of

students and the local cost per school.
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CHAPTER 8

ASSESSING THE BUDGETARY IMPACT OF REMEDIATION
IN BASIC SKILLS ASSESSMENT PROGRLIS:

II. INSTRUCTIONAL CONSIDERATION

1. Introduction

In the construction of multiple-choice test items for a basic

skills assessment program, considerable emphasis is put on the

selection of distractors which reflect major types of errors. When

this is done, the responses to the test items reveal not only the

overall performance of the student but also the major types of errors

which may need remedial instruction.

The seriousness of each error is probably a direct function of

the amount of remedial instruction needed to correct it. Some errors

are easy to overcome; others may demand more effort. Thus, in the

allocation of funds to schools or school districts for remedial

instruction, perhaps one needs to consider not only the total number

of students who do not meet the passing score and the number of non-

mastered objectives, but also the seriousness of the errors made by

these students.

This chapter provides an illustration of how the level of com-

plexity in remediation can be taken into account in the process of

budget allocation.

2. An Index for the Seriousness of Errors on a Test

Consider now a test which is comprised of n multiple-choice

items. For the i-th item, let ki be the number of alternatives; ki

may vary from item to item. For a group of students who do not meet

the minimum level of performance, let m
ij

be the number of students

who choose the j-th option on the i-th item.

Let us assume that it is possible to quantify the seriousness

of all the errors displayed in the incorrect options of the multiple-

choice items on a common scaZe. This common scale extends from zero

to a convenient maximum value C. Since the correct options of the

101
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multiple-choice items do not involve any error, their level of

seriousness may be equated to zero on this scale.

Forthei-thitem,letcii,j=1,...,k.be the seriousness level

of the j-th option. With M as the total number of incorrect responses

to the items of the test, the seriousness of error for the entire

test may be taken as

k.
n 1

= ( E E n .c .)/(MC).
i=1 j=1 iJ iJ

This index varies from 0 to 1. For a given group of students,

approaches 0 when all the individual levels of seriousness are close

to zero. On the other hand, when all these levels are near the maxi-

mum value C, E will approach 1.

3. First Illustration: Comparing the Seriousness
Level of the Reading Objectives of Grade Six

As mentioned in several previous chapters, the South Carolina

Basic Skills Assessment Program (BSAP) consists, in part, of the

administration of the basic skills tests in reading and math to

several grade levels. For the reading test, the six objectives are

decoding and word meaning (DW), main idea (MI), details (DE), anal-

ysis of literature (AL), reference usage (RE), and inference (IN).

Each objective is measured by a six-item subtest; hence the reading

test has 36 items altogether. For the sixth grade reading test

administered in 1981, the passing score was set at 22.

As an illustration of the use of the index e, let us focus on

the sample of students used in the setting of the passing score in

the 1981 test administration. In the sample, there are 938 students

who score below the passing score of 22. The left part of Table 36

reports the number of students in each oi.tion of the 36 multiple-

choice items. (For each item, there are a small number of students

with no response or unrecognized responses; these are not listed in

Table 36.)

The right part of Table 36 reports the seriousness level assigned

to each incorrect option on a scale from 0 to 5. The rating was done
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TABLE 36

Data for the Illustration of Section 3

Item Frequency in Option Seriousness of Option
Number 1 2 3 4 1 2 3 4

1 343 76 68 451 3 1 1 0
2 188 661 60 26 2 0 3 4

3 34 47 70 778 5 4 3 0
I4 292 350 112 174 1 0 1 4

5 95 667 62 107 3 0 5 4

6 366 118 87 352 5 3 4 0

7 177 112 239 408 0 4 5 3

8 296 312 198 119 3 0 5 4

9 345 135 202 251 0 5 3 4

10 201 279 338 119 5 3 0 4

11 334 194 253 155 0 5 4 3

12 317 257 162 188 0 5 4 4

13 456 203 183 96 0 1 1 1

14 79 211 560 82 3 3 0 3

15 107 232 131 459 2 2 2 0

16 184 519 137 86 2 0 2 2

17 166 423 160 183 3 0 3 3

18 235 226 76 391 3 3 3 0

19 191 313 128 305 2 2 2 0
20 253 224 232 217 2 0 2 2

21 206 192 283 236 4 4 0 5

22 338 276 171 141 5 0 4 4

23 241 205 217 263 0 3 3 3

24 306 175 242 203 3 3 3 0

25 128 172 509 126 3 3 0 3

26 79 103 631 114 3 3 0 3

27 175 63 112 585 4 5 3 0

28 78 100 703 54 4 3 0 4

29 41 178 678 31 4 3 0 4

30 134 125 471 188 5 4 0 4

31 319 310 138 165 0 3 4 4

32 134 249 270 267 4 3 0 3

33 225 393 186 111 4 0 5 4

34 213 258 236 215 0 3 3 5

35 194 270 254 203 3 3 0 3

36 225 279 165 244 4 4 0 4
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by two school teachers;-a diary of their discussion about the

seriousness of each error is included in the appendix to this

chapter. (Test security does not permit detailed descriptions of

the test items.)

Using the data in Table 36, the index for the seriousness of

errors was found to be .607 for DW, .723 for MI, .643 for DE, .637

for AL, .647 for RE, and .662 for IN. Thus, for the situation under

consideration, the error Seriousness for each objective may be

listed from the least serious to the most serious as DW, AL, DE, RE,

IN, and MI.

4. Second Illustration: A Consideration for Equitable
Budget Allocation for Remedial Irnstruction

The assessment of the seriousness level of the subtests for the

objectives as illustrated in the previous section may help to equit-

ably allocate the budget for instructional remediation to schools or

school districts. When instructional remediation is to be given to

each non-mastered objective, the formula for budget allocation per-

haps should be based on the total number of cases in which each

objective is missed and the level of seriousness of this objective.

For example, let us consider the allocation of remediation funds

to k schools. The funds are to be used for sixth graders who do not

meet the massing score of 22. Let us assume also that remediatiod is

conducted for each of the objectives missed by a student. Let

mij, i = 1,...,k and j = 1,2,...,6 be the number of students in the

i-th school who missed j objectives. In addition, let

j = 1,2,...,6 be the level of seriousness of the errors associated

with the j-th objective. Then the impact of remediation on the i-th

school may be taken as the sum

6

= E m
ij

c
j

.

j=1

An equitable budget allocation may then be accomplished by dividing

the total funds to each school in proportion to the indices Ii
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Numerical Example

Consider the allocation of remediation funds to four schools.

For each school, the number of times that each objective is missed

by a student is listed in Table 37. Granting that the seriousness

of each objective is given as in Section 3, the indices I
i

are 89.5,

153.5, 107.8, and 158.0 for the schools A, B, C, and D respectively.

If a sum of $100,000 is available, then, via the Ii index, each of

these schoolt would be allocated $17,590, $30,169, $21,187, and

$31,054 respectively. Had the budget consideration been on the

basis of the total number of missed objectives (last column of

Table 37), the funds allocated to the schools would have been

$17,413, $30,346, $21,639, and $30,602 respectively.

TABLE 37

Number of Times Each Objective Is Missed

Missed Objective
School DW MI DE AL RE IN Total

A 20 30 15 28 16 27 136
12 17 40 87 59 22 237
60 14 22 29 30 14 169
18 57 82 22 43 17 239

5. Use of e to Assess Instructional
Equivalence of Test Forms

Though the index E for the seriousness of errors is proposed

for studies of the impact of remediation in budget consideration, it

may also be used to assess the instructional equivalence of various

forms of a given test. When testing is carried out for diagnostic

purposes, content validity and the seriousness of the errors por-

trayed in the multiple-choice items are perhaps of major importance.

If this is the case and if alternate forms are needed, these forms

must display the same content area as well as the same level of

seriousness in the errors which are to be remediated. By using the

E index, one may assert whether these alternate forms are equivalent

in terms of the complexity of the errors which need further

instruction.
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Appendix

Summary of the Teachers' Discussion Regarding the Seriousness
of the Options in the Grade Six Reading Test

Decoding and Word Meaning (DW)

1. 3 A. sound similarity
1 B. random
1 C. random
0 D. correct response

In option A the child is confusing wealthy with healthy.
Remediation would require review of initial consonant sounds.
Options B and C could be remediated by stressing proper testing
procedures and discouraging guesswork.

2. 2 A. response to context
0 B. correct response
3 C. response to context
4 D. response to context

The difficulty in remediating options A, C, and D is directly
related to the plausibility of the answer.

3. 5 A. opposite
4 B. response to context
3 C. response to context

D. correct response

Option C is a plausible response which might seem logical to a
child. It can be remediated by stressing the need to read for de-

tails. Options A and B are both possible results of ingrained sub-
standard speech patterns. .However, option A, as a direct opposite,

would be more difficult to clarify.

4. 1 A. response to context
0 B. correct response
1 C. response to context
4 D. structural similarity

Options A and C would seem plausible if the child did not read
the entire selection. This could be remediated by emphasis on care-

ful reading. Option D is a random choice based on similar structure
of the two words without careful reading. The chIld must be taught

that word similarity need not be related to meaning.

lo



107

5. 3 A. response to base without regard to affix
0 B. correct response
5 C. opposite
4 D. response to affix

In option A the child responded to the base word. The child who
so responds has mastered the concept of word-base. Remediation re-
quires a review of affix meanings and usage. In option D the child
responded to the affix rather than the base. This shows he has not
yet mastered the concept of word-base. Remediation requires a review
of the dature of word structure including both base and affix.
Option C may be the result of confusion of affix meanings. On the
other hand, it may result from total lack of knowledge of the word.
Reason for the mistake must be determined before remediation can
begin.

6. 5 A. opposite
3 B. response to base without rei,ard to affix
4 C. random choice
0 D. correct response

In option B the child responded to the base word. The child who
so responds has mastered the concept of word-base. Remediltion re-
quires a review of affix meaning and usage. In option C the child
did not know the word-base or meaning. Remediation requires vocabu-
lary building. Guesswork should be discouraged. The opposite mean-
ing in option A is a result of disregarding the affix. Remediation
requires a more extensive review of affix meaning and word structure.

Main Ideas (MI)

7. 0 A. correct response
4 B. unsupported
5 C. contradicted
3 D. narrow scope

8. 3 A. narrow scope
0 B. correct response
4 C. unsupported
5 D. contradicted

9. 0 A. correct response
5 B. contradicted
3 C. narrow score
4 D. unsupported

10. 5 A. contradicted
3 B. narrow scope
0 C. correct response
4 D. unsupported
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11. 0 A. correct response
5 B. contradicted
4 C. unsupported
3 D. narrow scope

12. 0 A. correct response
5 B. contradicted
4 C. unsupported
4 D. unsupported

A statement of narrow scope focuses on a minor detail of the
selection rather than the main idea. Remediation would include
reviewing the concepts of main idea and supporting ideas, possibly
by use of outlining the selection.

The selections do not contain sufficient evidence to corroborate
unsupported statements. Remediation would emphasize reading material
for accuracy.

Contradictive statements express ideas opposite to those in the
selections. This exemplifies minimal reading comprehension. Remedia-
tion would require extensive "reading for meaning" exercises.

Details (DE)

13. 0 A. correct detail
1 B. incorrect detail
1 C. incorrect detail
1 D. incorrect detail

14. 3 A. incorrect detail
3 B. incorrect detail
0 C. correct detail
3 D. incorrect detail

15. 2 A. incorrect detail
2 B. incorrect detail
2 C. incorrect detail
0 D. correct detail

16. 2 A. incorrect detail
0 B. corfect detail
2 C. incorrect detail
2 D. incorrect detail

17. 3 A. incorrect detail
0 B. correct detail
3 C. incorrect detail
3 D. incorrect detail
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18. 3 A. incorrect detail
3 B. incorrect detail
3 C. incorrect detail
0 D. correct detail

In each selection, all the given options are mentioned. There
is a key word or phrase in each stimulus to which the child should
respond. Since a major cause of failure to recognize important
details is reading too fast, remediation should include teaching the
child to read for comprehension rather than speed. "Reading for
meaning" activities and vocabulary development should be included in
remediation. In selections 14, 17, and 18 remediation should also
include training and exercises in the use of sequence skills.

Analysis of Literature (AL)

19.

20.

2

2

2

0

2

0

2

2

A.

B.

C.

D.

A.

B.

C.

D.

opinion
opinion
opinion
fact

fact
opinion
fact

fact

There is no var-ying degree of difficulty of remediation for the
incorrect responses to items 19 and 20. The problem involved is the
inability to distinguish between facc and opinion. The child needs
to be taught the difference between subjective and objective reason-
ing. Mastery of these reasoning skills would require extensive
reading practice using selections similar to these test items.

21. 4 A. inaccurate description of plot
4 B. inaccurate description of plot
0 C. accurate description of plot
5 D. accurate description of character

In option A the child has.made the mistake of focusing on a
detail in the selection, Option B is unrelated to the selection.
Although the child may have an understanding of plot, his lack of
comprehension skills caused him to select an inaccurate description
of plot. Remediation would encompass exercises in reading
comprehension.

If a child has not mastered the concept of plot, he may choose
option D. This presents a more serious remediation problem involving
the basic elements of literary composition.
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22. 5 A. accurate description of plot
0 B. accurate character description
4 C. inaccurate character description
4 D. inaccurate character description

Options C and D are inaccurate descriptions of Elizabeth's
character. Remediation for both of these options would involve more
careful reading with attention to detail.

Option A requires more extensive remediation because it shows
non-mastery of the concept of character, which is a basic element of
literary composition.

23. 0 A. onomatopoeia
3 B. no

3 C. no

3 D. no

24. 3 A. no

3 B. no
3 C. no
0 D. simile

Onomatopoeia and simile are figures of speech. An incorrect
response on item 23 or 24 would indicate that the child is not yet
able to recognize the stated figure of speech in context. Remedia-
tion in both cases involves further exposure to these figures of'
speech.

Reference Usage (RE)

25. 3 -A. incorrect ,xeference source
3 B. incorrect reference source
0 C. correct reference source
3 D. incorrect reference source

Options A, B, and D are incorrect reference sources and show a
lack of understanding of what a call number is. Remediation would
involve the teaching of library organization and the selection of
reference sburces.

26. 3 A... incorrect reference source'
3 B. incorrect reference source.
0 C. correct reference source
3 D. incorrect reference source

In selecting a reference source for this item, the child ahould
note the key word "pictures" in the stimulus. Remediation of options
A, B, and D would involve stressing the importance of reading for

O,
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information with attention to details. Additional_remediation on
the use of reference books such as encyclopedias and dictionaries
would be helpful.

27. 4 A. incorrect response
5 B. incorrect response
3 C. incorrect response
0 D. correct response

Choice of option C shows some thought. Remediation would
involve a discussion of topics and subtopics. Choice of option.A
shows possible inattention to detail. Remediation would involve
reading carefully with attention to detail. Choice of option B
would indicate a total lack of understanding of the use of a table
of contents. Remediation would entail a complete review of the use
of a reference source.

28. 4 A. incorrect response
, 3 B. incorrect response
0 C. correct response
4 D. incorrect response

The child who selected option B probably understood how to use
a chart. His mistake was likely a result of inattention to detail.
Remediation would employ practice in the reading and use of charts.

Remediation of options A and D would be more difficult since a
child who selected one of these options may lack a basic understand-
ing of how to read and use a chart.

** It may be that the use of chemical symbols could confuse
some children who were actually familiar with chart usage.

29. 4 A. incorrect response
3 B. incorrect response
0 C. correct response
4 D. incorrect response

A child who selected option B would have a fair understanding
of the use of a card catalog, but did not read all'the options
carefully. Remediation would entail extensive practice in the use
of the card catalog.

Remediation for options A and D would require a thorough review
of.the card catalog. Some remediation in spelling might be useful.
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30. 5 A. incorrect response
4 B. incorrett response
0 C. correct response
4 D. incorrect response

In choosing option D the child responded to the stimulus by
finding the correct topic but neglected to find the correct subtopic.
In responding with option B, the child found the correct subtopic
under the incorrect topic. While the reason for each mistake was
different, they would be equally difficult to remediate. Remedia-
tion would involve review of topic and subtopic. In choosing
option A, the child showed non-mastery of topic and subtopic.
Remediation would follow the same lines as that for D and B but
would be Are extensive.

**1The index sample used in item 30 may possibly have contrib-
uted to the confusion of those children who made wrong choices.

Inference (IN)

31. 0 A. correct comparison
3 B. incorrect comparison
4 C. incorrect comparison
4 D. incorrect.wmparison

Option B is the easiest mistake to remediate. The child should
be encouraged to read all descriptive materials carefully before
making a decision. Option D shows inattention to detail since'the
child has chosen an answer which directly contradicts the stimulus.
Option C shows a misunderstanding of the materials due also to inat-
tention to details. Remediation would require much more reading
practice with emphasis on attention to detail.

32. 4 A. contradicted cause
3 B. less likely cause
0 C. most likely cause (correct)
3 D. less likely cause

While options B nnd D are true statements, they do not respond
directly to the stimulus. Remediation would entail practice in
logical thinking with emphasis on the relationship between cause and
effect. On the other hand, option A makes a totally untrue state-
ment. Remediation would include exercises in reading with attention
to detail and discussion of the material read as well as a review of

the relationship between cause and effect.
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33. 4 A. contradictory
O B. most likely cause
5 C. unrelated statement
4 D. contradictory

Remediation of options A and D would involve reading practice
with attention to key phrases. Option C would require much more
extensive remediation along the same lines. There is little in the
article to support such a conclusion. Therefore a child who chose
this option would also need more instruction and exercises in
logical reasoning.

34. 0 A. most reasonable conclusion
3 B. unsupported conclusion
3 C. unsupported conclusion
5 D. contradicted conclusion

There is lack of information to support options B and C:
Remediation would involve teaching a child to draw conclusions based
on adequate information. -The fact that in option D the child has
chosen a contradictory statement shows that he/she requires extensive
reading practice with attention to drawing conclusions based on fact.

35. 3 A. less reasonable
3 B. less reasonable
O C. most reasonable conclusion
3 D. less reasonable

Options A, B, and D are equally difficult to remediate because
in each case the child drew a conclusion which was unsubstantiated
by the selection. Remediation would involve reading practice with
attention to drawing conclusions based on fact.

36. 4 A. incorrect outcome
O B. correct outcome
4 C. incorrect outcome
4 D. incorrect outcome

Since options A, C, and D are clearly unreasonable outcomes,
the child needs remediation in reading, deductive reasoning, drawing
conclusions, and predicting outcomes. Exercises might include group
discussion and asking open-ended questions.
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CHAPTER 9

A VIEW ON FUTURE PSYCHOMETRIC ISSUES
IN MENTAL MEASUREMENT

1. How Far Have We Come in Classical
Measurement Theory?

We have indeed come a long way since the dawn of this century,

when someone cared enough to put down the equation which says that

an observed test score has two additive parts, one reflecting the

true ability of the examinee and the other summarizing various

random factors conveniently referred to as error of measurement. We

then make several statistical assumptions about the nature of this

type of error and its relationship with the examinee's true ability.

These assumptions have rendered us ample opportunity to study basic

concepts such as reliability, standard error of measurement, validity,

and the 1 ke and to learn of the appropriate ways to estimate them.

Of course the very basic assumptions in the classical approach to

mental m asurement presume that testing is done to a grouppf exami-

nees; h ce, the interpretation of test results is to be accomplished

within the framework of a given group of examinees. In addition,

con pts which directly affect the selection of test items such as

em difficulty and item discrimination have to be defined for a

particular population of examinees for which the test is intended.

The population-dependent characteristics of items, tests, and

test score interpretation have come to bother many of us a great

deal. If this is not your case, of course it was Fred Lord's, whose

towering reign over mental measurement has been and will be felt for

many years to come. I still remember the cold days at Iowa and the

agony of referring to p-values as item difficulty and point-biserials

as item discrimination and accepting the fact that these item char-

acteristics vary from population to population.

Transcript of a taZk given by Huynh Huynh as part of the symposium

"Future Directions for Mental Measurement." New York: Meetings of

AERA and NCME, March 19, 1982.
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I have had and probably will have students come to ask me about

estimating test reliability in a pretest-posttest design. Always I

have told them not to combine the pretest and posttest data in

reliability estimation because the concentration of pretest scores

at one place and of posttest data at a second place would result in

an estimate which is very close to one. "But then what should I do?"

I should confess that I have not come up with any satisfactory answer.

2. Have We Beaten the Linear Model
for Test Scores to Death?

With the Hoyt discovery that the Kuder-Richardson Fotalula 20

reliability can be deduced from a two-way analysis of variance, there

have been numerous studies using a multitude of linear decompositions

for test scores. These studies are, of course, exciting because

they provide ways to identify various sources of errors which have

been lumped in one pot called error of measurement. Dependability

and generalizability are the name of the game.

While I have always admired the beauty of the analysis of

variance (and have messed around with it in the context of repeated

measures for a while) and have no doubt of its usefulness in describ-

ing the behavior of test data for a particular population, I feel

somewhat uneasy seeing its forces iushed on the modeling of item

responses. When item responses are simply coded as zero or one, I

wonder how we can explain wtth eyes open that zero.is actually the

sum of a number of uncorrelated components and one is also consti-

tuted of a number of unrelated parts.

3. So We Want to Look at the Item by Itself:
Why Not Insist on the Simple Rasch Model?

If we are not interested in item parameters which are population-

dependent, of course we have to look for item parameters which are

population-independent. Here come latent trait and item response

models. The beauty of these models has been recognized for some

time, but their full force did not venture into the educational
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testing enterprise until recently, when fast computers allowed the

execution of complex estimation processes.

We have at hand a variety of latent trait models from which to

choose. There are those of us who categorically argue for the Rasch

model; the reasons are that they provide "objective measurements"

like those in the physical world (length, time, and mass) and that

the estimation of item parameters can be accomplished independently

of the examinee's test score. There are others who accept the more

complex three-parameter logistic model because it provides more

flexibility in explaining the observed item responses.

But then, do we really have "objective measurements" in the

physical world? Is there a device which is called a universal ruler

that will give us an objective measure for the length of a table?

Perhaps yes, perhaps no. We are in constant motion in space and

time, and those of us who appreciate the beauty of the pioneering

work of Albert Einstein are probably still fascinated by the inter-

action between time and space, a phenomenon researchers in the

subatomic world have not ignored. Perhaps some day we will be able

to map the complexity of the human mind into a finite number of

dimensions; as for myself, I still believe in the infinity of that

white substance, in terms of both its rationales and contradictions,

and haVe never been sure about how that world of boundlessness would

find accommodation with as simple and finite a thing as a test item.

Most of us have been in contact with estimation concepts such as

unbiasedness, sufficiency, and maximum likelihood and have learned

to use them carefully. Although these concepts are inventions of

the very best of the statistical mind, they do not always provide

answers which are intuitively justified; so the insistence on a

particular model because it has some desiraliple estimation property

may not be the best course of human judgement. I still remember the

first time the normal distribution was introduced with all its sim-

plicity and ease in estimation. Here the population mean can be

estimated by the sample mean; here the population variance can be

116
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estimated by the sample variance, and the two estimates are

independent of each other. Upcn further study, I came to realize

that the normal distribution is the only situation in which this

type of independence exists. Of course, there are so many data sets

which do not conform to the famous curve discovered by Laplace and

Gauss many years ago, and of course we .cannot ignore them because we

have not yet achieved independent estimates for the unrelated traits

in the data.

4. Is There Life Beyond the Three-Parameter
Logistic Model?

Perhaps I have conveyed the feeling that I do not like the Rasch

model. Oh, no. The Rasch model is indeed a simple and, in many ways,

a powerful model which has done many of us great service. But in

sorting through the many technical problems concerning the South

Carolina Basic Skills Assessment Program, I realized that concerns

for content had to take priority over statistical goodness of fit.

So I have had to lay low my zeal for internal consistency so that we

can move on with all the data cranking. Of course, we can justify

the use of any model by carefully indicating that what we are doing

is only approximating and that some day, when more knowledge has

accumulated, we will do better in mapping the many intellectual

traits that are dear to us.

Perhaps the intellectual world is more complex than the three-

parameter logistic model. Why not attempt to think multivariate in

latent trait theory? Oh, yes, there is research in this area now.

Why not get away from using a parametric framework for the descrip-

tion of the item responses? Perhaps we need to make only the

smallest number of assumptions and let the best of you in the

audience take care of all the details.

Why not weaken the assumption of independence in the item

responses to a variation of exchangeability? Why not simply require

that various item characteristic functions be monotonic? A great
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deal of research has been done in monotone regression; these results

have yet to be expanded to the area of psychometrics. There is always

a longing to have estimates for item parameters which are in some

sense unrelated to estimates for the examinees. Why not try the

switched-sample procedure in which the sample is divided into, say,

two smaller samples, one subsample to be used primarily to estimate

item parameters and the other subsample for ability estimation? Since

item estimation and ability estimation are accomplished through two

Independent samples, perhaps all kinds of nice properties like con-

sistency can be documented.

5. Can We Achieve Objective Measurement
Through Order Constraints?

Perhaps there may be a time that we would feel comfortable to

insist that a given test must consist of items for which the item

characteristic curves do not cross. There is no reason to insist on

the Rasch model; many models can do this as long as we impose some

restrictions on the item parameters. Estimation of the item param

eters would then be approached from something like monotone regres-

sion or maximum likelihood under order constraints. This may be a

difficult problem, but a great number of details have been worked out

in mathematical programming. Perhaps now is the time when we take a

second look at various forms of item characteristic curves, impose

suitable order restrictions, and adjust canned computer programs

like LOGIST to these constraints.

6. Why Not Reformulate Generalizability Theory
Within the Context of Item Response Theory?

Now, if you are unhappy with linear decomposition with 0-1 item

data, why not try to formulate a generalizability theory within a

context of item response or multiple contingency table? Statisticians

have linearly decomposed the log of the likelihood function for years;

why not we in mental measurement theory? Values of the log likeli-

hood vary from minus infinity to zero, so at least we can feel at

ease in cutting the log likelihood in small pieces.
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7. On the Interpretation of Test Scores: Is There
a Test Out There by the Name "Criterion-Referenced"?

The educational measurement enterprise has been deluged with

endless writings on criterion-referenced testing in recent years.

(The pace has slowed down a bit, though.) I fully understand the

need to gear testing to very well defined educational objectives and

the need to interpret test scores within the context of individual

achievement, but is there a test which really bears the meaning of

the term "criterion-referenced" as originally proposed by Glaser a

few yenrs ago?

Perhaps not. The Glaser definition for a criterion-referenced

test attaches an'absolute interpretation to test scores; so by look-

ing at the test score, we can infer what a student can do or cannot

do. I spent some time in Pittsburgh in the summer of 1973 pondering

the definition and trying to see how a psychometric theory could be

formulated for this type of test. If I took the Glaser definition

seriously, then I would have to accept the assumption that student

performance constituted a linear ordering (or hierarchy). This is

consistent with the linear order implicit in the system of real num-

bers. However, how many educational accomplishments can actually be

put in a linear sequence?

8. On the Interpretation of Test Scores: What Can
We Accomplish via Decision Theory?

Most measures of educational performance are collected because

some decisions need to be made. This is particularly true in testing

programs which are designed for instructional purposes. So how do we

formulate a psychometric theory which takes into account this type

of conceptualization?

Two questions may be raised. First, what are some of the best

ways to tap the information contained in the test data? And next,

for a given decision situation, what is the best design for phe test?

There is no procedure of which I am aware that is the best for

all people under all situations and at all times. So what is best
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depends on the person's values and judgement at the time when the

decision is to be made. You have your own bias; so do I. Hence,

there seems to be no way to avoid a Bayesian approach when formulat-

ing a psychometric theory for decisions based on test data. Such

theory does require that you express the odds and ends of your

values and prior bias in some numerical form, then resort to criteria

such as maximum expected utility or minimum risk to solve the problem.

9. On the Interpretation of Test Scores:
How Is Life Without a Prior?

For a Bayesian, life does not exist without a prior; but then,

some of us may wish to express our values clearly and at the same

time do not believe in any subjective probability. Well, you can

certainly resort to optimizing criteria such as minimax. (For a

devoted Bayesian, do not even mention this dirty word because it

will force upon the decision problem the wor3t prior judgement.)

The minimax principle has been used successfully in many situa-

tions. Take the case of robust estimation and the Huber M-estimate:

It is actually a minimax solution within the context of contaminated

normal distributions.

However, life with minimax seems rather dull. You will take

only the action which has the smallest maximum risk. But then think

about life as a traveling experience: What happens if you only

choose the road on which the mountains are not the highest and the

rivers not the deepest? Some day, perhaps some of us will continue

the job that Wald started many years ago and will devise a way to

take care of personal values without prior judgement.

10. Epilogue

I hate to abruptly end the talk here, but the ways in which we

may approach psychometrics are almost unlimited. Advances in com-

puting technology, the extent to which test items are being shared

across school distriCt boundaries make possible a fresh look at some

of the concepts in measurement which have been dear to us.

120



.1

124

Some of the issues briefly referred to previously are not that

simple nor easily solved. Perhaps they are not that important at

all. But then, you never know.

We are in a country where freedom is our children's first word.

But freedom carries along with it the uncomfortable notion of doubt.

Having been quite sure about the first paper on mastery testing

written at. the University of 7ittsburgh in'the summer of 1973 and

now at the conclusion of this final report to NIE, I just wonder

whether educational testing or I myself have changed that much

during those years. But I have the privilege of having a new genera7

tion of students every fall. Though winters sometimes have been

harsh, springs always come with the early blossons of dogwoods and
-

daffodils. With the thoughts about these beautiful flowers and the

fresh memory of all the students who have passed through my offices

including VMC, EMH, LM, JCS, and JC, I am now at the very end of

this report.
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