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Abstract

Using semi-structured clinical interviews and teaching experiments, a long-term

case study was undertaken with a boy with severe math learning disabilities. Despite

organic brain dysfunction, Adam had many informal math skills, including an ability to

add by counting-on. He differed from his peers, however, in efficiently deploying some

informal skills, and this helped to account for some school math difficulties. In terms

of formal math ability (e.g., execution of the addition algorithm involving carrying),

Adam was quite deficient. Many weaknesses in formal skills could be traced to a weak

grasp of part-whole relationships and base ten notions. Instruction which built upon

informal strengths and which explicitly linked understanding with procedural knowledge

appeared to be helpful. Over the course ot the case study, there seemed to be

considerable improvement in affect, and this may have played an important role in

Adam's cognitive growth.
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The Case of Adam: A Specific Evaluation

of a Math Learning Disability

Math learning problems are widespread, and P.L. 94-142 mandates individual

educational plans including specific learning objectives for children with (math) learning

disabilities. Yet, little is known about the specific nature of math learning difficulties

or math learning disabilities. While there have beenin recent yearssignificant

advances in our knowledge of the normal development of mathematical thinking (e.g.,

see Gelman & Gallistel, 1978; Ginsburg, 1982; and Resnick & Ford, 1981), insufficient

attention has been devoted to a psychological analysis of children's difficulties with

school mathematics (Ginsburg & Allardice, in press). Unfortunately, research which

directly studies deficiencies in academic knowledgeespecially in the area of

mathematical thinkingis sparse (Allardice & Ginsburg, 1983; Torgesen & Dice, 1980).

This case study, then, was undertaken to examine the specific strengths and weaknesses

of a child with a severe math learning disability in order to better understand the

nature of math learning problems.

A cognitive psychology of mathematics is a rapidly expanding field of research.

This approach holds the promise of providing a foundation for a theory of math

instruction which considers the interaction of the structure of the subject matter and

the nature of human thinking (Resnick & Ford, 1981). It is this cognitive approach to

analyzing children's mathematical thinking which provides the theoretical framework

for this case study.
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It appears that mathematical learning begins quite early in children of normal

Intelligence and that most preschoolers have a surprising range of mathematical

competencies (Gelman & Gallistel, 1978; Ginsburg, 1980). Knowledge of math may be

conceptualized in terms of three systems, which in older children and adults operate

concurrently (Ginsburg, 1982). Intuitive knowledge is often perceptually based and does

not employ counting or symbolic mathematics. It is our earliest forni of mathematical

thinking. For example, children as young as three years and from various social classes

and cultures are capable of using perceptual cues such as area, density, and length to

compare sets and judge which has "more" (Estes & Combs, 1966; Ginsburg & Russell,

1981; Posner, 1978). This strategy is often successful because perceptual cues frequently

covary with numerosity (e.g., the longer row of candies frequently has the greater

number).

Quite early, the child begins to develop a more reliable, informal means of coping

with quantitative problems: counting-based procedures and concepts. Various models

of the development of counting skills and principles have been described (Gelman &

Gallistel, 1978; Klahr & Wallace, 1976; Schaeffer, Eggleston, & Scott, 1974).

Preschoolers even learn counting strategies to add and subtract (e.g., Ilg & Ames, 1951;

Starkey & Gelman, 1982). Initially, this involves using concrete supports such as blocks,

fingers or marks (e.g., Steffe, Thompson, & Richards, 1982). Later, children use

increasingly sophisticated mental counting procedures to compute sums and differences

(e.g., Baroody in press-a; Carpenter and Moser, 1982; Woods, Resnick, & Groen, 1975).

A particularly economical mental addition procedure is counting-on from the larger

addend (e.g., "2 + 3: 3; 4 (1 more], 5 [2 morelso the answer is 5") (Groen & Resnick,

1977). Bley and Thornton (1981) note that counting-on may be extremely difficult for

learning disable children because, after locating the starting point, they may have great

difficulty figuring out the next number. In school, children are introduced to



-4-

symbolic, codified (formal) mathematics. This includes written work and is more

efficient for dealing with problems involving large numbers. According to Ginsburg

(1982), children often learn formal math in terms of their informal knowledge. A gap

between school or formal material and a child's informal knowledge may result in rote

learning or learning problems.

Resnick (1982) notes that school mathematics learning can proceed on twothough

not necessarily interconnectedlevels. Children can learn (1) computational procedures

or algorithms and (2) mathematical concepts. Learning procedures without an adequate

conceputal basis (rote learning) sometimes leads to learning problems. On the other

hand, conceptual learning promotes problem solving (e.g., Wertheimer, 1945). For

example, even first graders will use such principles as commutativity (the order in

which addends are added does not affect the sum) and the addition-subtraction

complement principle (if 6 + 6 = 12, then 12 - 6 = 6) to short-cut computation effort

(Baroody, Berent, & Packnian, 1982; Baroody, Ginsburg, & Waxman, 1983). Conceptual

knowledge, then, gives meaning to procedures and permits flexible use of procedures.

Base ten representation provides a conceptual base for much of elementary school

math (cf. Resnick, 1982, 1983). That is, it provides the underlying rationale or meaning

for many procedures. Moreover, it gives children flexibility and facility in dealing with

a wide range of mathematical tasks: writing numerals, comparing or ordering larger

numbers, computing (especially that involving carrying or borrowing), and estimating

(Payne & Rathmell, 1975). Yet, it seems that manyespecially learning disabled

children have difficulty making the transition from counting-based (informal) views of

math to base ten (formal) representations. The consequences are inefficiency, rote

learning of formal skills, and/or math learning problems (cf. Beards lee, 1978; Hazekamp,

1978). Indeed, the cognitive and emotional handicaps that result may plague some

individuals throughout their school careers and adult lives.
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A deficiency in base ten representation may.manifest itself in a variety of ways.

Russell (1981) found that math impaired children had difficulty dealing with larger

values including difficulties with their multiples (e.g., "How many tens in 100?" or

"Hundreds in 1000?"). Deficiencies in base ten representation may, moreover, result in

problems with our written number symbolsin writing numerals the way they are

spoken (e.g., writing 203 for "239 (Ginsburg, 1982). One of the most significant deficits

displayed by math impaired children is weakness in basic number fact knowledge,

especially with larger problems (Kilmer, 1980; Russell, 1981; Smith, 1921). Difficulty

with the larger sums may be related to a failure to discover heuristics. This may be

due, in part, to not seeing teens as composites of ten and units. For example, a child

who appreciates that ten liare,equal to one 10 can take a problem such as 9 + 7 = 16,

decompose 16 into 10 + 6, and over a number of 9 + N problems, "see" that the sum is

always 10 + (N - 1). As a result of this process, the child abstracts the "9 + N = 10 + (N -

1)" heuristi& (cf. Resnick, 1983). Furthermore, base ten notions provide the underlying

rationale for (written) addition and subtraction computational procedures. A failure to

appreciate or connect this conceptual knowledge to procedural rules often results in

difficulty with written computationespecially that involving zeros, carrying, and

borrowing (r.q. Hazekamp, 1978). This difficulty is usually manifested as systematic

errors or "bugs" (see Brown & Burton, 1978; Buswell & Judd, 1925; Ginsburg, 1982;

Resnick & Ford, 1981). Finally, the abilities to compare larger numbers and make

estimates are enhanced by base ten concepts (Traf ton, 1978). A lack of conceptual

knowledge may produce wild guessing or a refusal to estimate (and hence the possibility

of being wrong).

Various authorities (e.g., Briars & Larkin, 1981; Resnick, 1982; Greeno & Heller,

1983) hypothesize that the part-whole schema (an understanding that the whole is the

sum of its parts) underlies a base ten concept and other basic principles such as
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addition-subtraction complement principle. For example, among the terms 6, 4, and 10,

10 is always the whole and 6 and 4 are parts. This holds whether the problems is written

6 + 4 = ?, 6 + ? = 10, ? + 4 = 10, 10 - 6 = ?, 10 - 4 = ?, 10 - ? = .4, 10 - ? = 6. Resnick notes

that part-whole schema is available at least in its primitive form before school and that

systematic application to quantity is the focus of early school math.

From case study work, Ginsburg (1982) concludes that school math is more likely

to make sense to children it if builds upon their informal knowledge and skills. Case

studieseven with children experiencing great math learning difficulties (Baroody, in

press-c; Ginsburg, 1982)and formal studies with lower class children (Ginsburg &

Russell, 1981) have found informal strengths upon which to build. Resnick (1982, 1983)

undertook intensive, long-term teaching experiments with a number of children to

demonstrate that an informal approach was useful in promoting an understanding of

base ten. The training focused on representing written numerals in concrete form

(using Dienes blocks, chips, bundles of sticks, or money). Instruction on computational

routine using informal methods was also undertaken. -This involved representing

addition and subtraction problems in written and concrete form. Most of the children

benefitted from the base ten instruction. Several children demonstrated deep

understanding of the written code. For example, one boy demonstrated insight when

comparing 9 with 90 indicating that the latter was larger because the 9 "doesn't even

have a ten." Interestingly, there was little correlation between knowledge of the base

system and learning of the calculational procedures. Resnick concluded that instruction

need to explicitly link the concepts of the base system with the procedures for

calculation. This mapping technique was undertaken in a new case study (Resnick, 1982,

1983; Resnick & Ford, 1981). Leslie, a nine-year-old, had difficulty with borrowing. As a

result of instruction, which in part modeled the borrowing algorithm with Dienes blocks,

Leslie learned and remembered the algorithm. Moreover, she then quickly learned a

subtraction procedure using expanded notation.



The case study of Adam permitted an extensive and longitudinal investigation of a

child suffering from a severe math learning disability. Since other case studies had

uncovered informal strengths among children having math learning difficulties

(Ginsburg, 1982), the first objective of this base study was to check for informal skills

and concepts. For example, was a child with a severe disability capable of the fairly

sophisticated mental addition procedure of counting-on? A second major goal was to

gauge the extent of the formal skills and concepts the child had acquired andmore

importantlywas capable of acquiring. For instance, could he use conceptual

knowledge to short-cut computational effort or appreciate and apply base ten and part-

whole notions?

Method

Procedure

The case study used the semi-structured clinical interview method. Tasks or

problems were posed to Adam and often followed by flexible method of questioning.

Such a procedure is especially well suited to exploring the richness of a child's

mathematical thinking (Buswell & Judd, 1925; Ginsburg, 1981). Ginsburg (1981, p. 5) notes

that, while such a method has its limitations, it is the most appropriate means "to

discover the cognitive processes actually used by children in a variety of contexts." To

enhance motivation, most of the testing was done in the contexts of games and

activities. Feedback or instruction was usually given during these games or activities.

The test information and training procedures were shared with Adam's parents and

teachers and incorporated in his IEP. Thus, training procedures were often reinforced

at home and in school.

This report summarizes the first 28 sessions with Adamspanning about 14

months. Each interview lasted between 45 to 90 minutes. Some were conducted in

Adam's school; most were at the author's home. Most of the interviews were
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videotaped in total or in part and then transcribed. Notes were taken on non-video

taped interviews or interview portions. The interviews began in February, 1981. There

were a total of 14 sessions during the spring of 1981--the last on June 2 5. The

interviews resumed on August 15, 1981. There were a total of 6 sessions during the fall

of 1981. 'From January to March, 1982, there were a total of 7 sessions.

Adam

Adam was 10. years - 11 months (birthdate of 3/2 3/70) when the interviews began in

February, 1981. He comes from an intact family of high socio-economic status. His

father has a professional occupation, and his mother is a former teacher. He is the

eldest of three sons. His first brother is apparently quite bright, and the second is a

baby, without any apparent developmental disabilities.

When Adam was 5 years old, his parents became concerned about his slowness,

lack of coordination, and sullenness. Examination revealed a normal verbal IQ (96) and

a depressed performance IQ (74)producing a full scale score of 84. Organic brain

dysfunction was indicated: Adam's EEG was abnormal. The neurological disturbance

was focused in the right temporal lobe. Indeed, Adam suffered from minor psychomotor

seizures, which is usually related to a circumscribed temporal lobe disturbance. Adam

continues to receive medication to control the seizures.

Adam was officially classified as learning disabled. He was severely disabled in

reading (G.E. = 2.0, Woodcock Reading Mastery Test, Form A, 5/18/81 at grade 4.9) as

well as in math. For example, he had comprehension difficulties including temporal

sequences and the passive voice. His last two KeyMath grade equivalent scores were

2.4 (5/19/80, grade 3.9) and 2.7 (5/28/81, grade 4.9). The most recent achievement test

(the Stanford Achievement Test administered 10/81) yielded a total math score in the

2nd percentile (concepts, 2nd percentile; computation, 1st percentile; applications, 18th

percentile). The most recent IQ test (WISC-R, 3/29/80) produced results consistent
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with earlier results: verbal IQ = 100, performance IQ = 77, and full scale IQ = 87. He

appeared to have age appropriate vocabulary and abstraction ability. Finally, his

learning difficulties were not primarily the result of emotional problems.

When I first saw Adam, he seemed quite reticent, unhappy, and very passive. He

seemed to have difficulty learning the math games and often appeared confused and

unsure of himself. He appeared to have little enthusiasm or interest in anything.

Indeed, he played our math games rather mechanically.

Informal Math Ability

Results and Discussion

Given the apparent severity of Adam's math learning disability, competence in

informal math concepts aud skills could not be taken for granted. Therefore, a

systematic examination of informal abilities was undertaken. The preliminary sessions

focused on an ability to generate count sequences, count (enumerate) objects, make

numerical comparisons, and use counting algorithms to perform arithmetic operations.

Testing revealed important strengths and weaknesses in Adam's ability to

generate count sequences. He was proficient in generating the standard count sequence

at least to 101. This is a basic skill which is necessary for nye sophisticated informal

skills (e.g., enumerating objects) and performing informal arithmetic computations

(e.g., adding via counting-on). Adam could count backwards from 20, but he was not

consistently correct or fluent. This inefficiency disruped his informal substraction

ability (discussed below). He had mastered some skip counting, but other repetitive

patterns were difficult for him (cf. Bley & Thornton, 1981). Adam could efficiently

count by fives at least to 100. He could count by tens to 100, but not beyond. An

ability to count by tens is a prerequisite skill for efficient adding by tens (e.g., "30 and

10 is 30, 40" or "42 and 10 is 40, 50 and 2") and estimating. His inability to count by tens

beyond 100 helped to account for the tremendous difficulty he had with problems.
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involving numbers greater than 100. For example, for a problem such as 100 + 30,

counting by tens (100; 110, 120, 130) permits a child to deal with the problem in an

efficicnt manner. Adam, however, had to count by ones (100; 101, 102, 103...130). ThN is

a cognitively taxing-approachtedious and subject to error. Adam could count by twos

up to about 10 or 12. Thereafter, the process was not automatic. That is, he would

produce a term (e.g., "121, count by ones silently to himself 0131, and then announce

the !text term ("14"), etc. However, he could count by threes to only 6 and by fours to

only' 8. Limited ability in such count sequences has important consequences for

informal multiplication. Specifically, it limits the use of "skip counting" to multiply

(e.g., for 4 x 3, counting by fours three times: 4, 8, 12) (Rathmell, 1978).

Adam was competent in enumerating objects and in determining the larger of, two

numerals (e.g., 2 vs. 1, 5 vs. 6, 3 vs. 4, 9 vs. 8, etc.): Especially with quantities greater

than ten, neither skill was entirely automatic. To compare, for example, 16117, 23/22,

35/36, or 108/107. Adam appeared to first ponder the relevant portion of the count

sequence- and then made a judgement. Both enumeration and numerical comparison are

basic tio learning and:executing informararithmetic (e.g., adding via counting-on from

the larger requires a judgment of which addend is larger).

In terms of informal arithmetic, Adam did use a counting-on algorithm

proficiently to solve addition problems. For a problem such as 5 + 7, he would start

with 7 and continue the count sequence as he enumerated or kept track of the smler
gp.

addend (7; 8 [is 11, 9 [is 2], IOUs 3], U(is 41, 12[is 5]). This double count was often

facilitated by using his fingers to keep track of the smaller iddend (the second count).

Subtraction was handled by several informal strategies with varying success.

Adam occassionally used a "separating from" strategy, the most basic informal

subtraction strategy. For the problem 9 - 5, for example, he drew 9 marks, crossed out

5 (11112ft), and counted the remainder to determine the difference. Note that the

,



"separating from" strategy models a "take away" notion of subtraction (Carpenter &

Moser, 1982).

On other problems (e.g., 12 - 6), he used a "coYinting:down" strategy (counting
/

backwards while using a second count to keep track of the subtrahend): 12; 11[1 less],

10[2 less], 9[3 less], 8[4 less], 7[5 less], 6[6 less]-6. For larger problems (e.g., 22 - 11

or 19 -15), he attempted to use a counting-down strategy, but appeared overwhelmed by

the difficulty of the double count involved. Note that the number of steps in the double

count of the counting down procedure increases as the subtrahend get larger (6 steps in

the case of 12-6), 11 steps in the case of 22-11 and 15 steps in the case of 19-15). In

the case of the larger problems then, Adam was faced with generating a long backward

counta procedure that was less than automatic. He was faced with simultaneously

keeping track of a long subtrahend count that ran in the opposite direction: The

demands of generating this large and difficult double count simply overtaxed Adam's

working or short-term memory.

Indeed, Adam later mentioned to his parents that subtracting by counting

backwards was too hard and that he would rather count forward. He did, sporatically,

use a "counting-up" strategy (e;g., 10-7: 7; 8(1), 9(2), 10(3) 3). This strategy is often

discovered after the countingi-down algorithm (Woods, Resnick, & Groen; 1975) and

models the missing addend definition of subtraction (Carpenter & Moser, 1982).

Eventually, children realize that the various subtraction strategies are interchangeable

(Carpenter & Moser, 1982) and use them selectively. Note that the counting-up strategy

is more economical than counting-down for basic problems in which there is a small

difference between minuend and subtrahend (e.g., for 9 7, counting-up requires a two

step double count while counting down requires one of seven steps). However, for basic

Problems in which there is a large difference between minuend and subtrahend,

counting-down remains the more efficient strategy (e.g., for 9 - 3, couhting down
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requires a double count of three steps while counting up requires one of six steps). By

third grade, many children discover this pattern and choose the most economical

strategy to solve assigned subtraction problems (Woods, Resnick, & Groen, 1975). Adam

had not yet shown this selectivity in the service of economy. Attention to such details

may depend on executing the strategies efficiently. That is, as execution of the

counting-down and counting-up strategies becomes more automatic, more attention can

be given over to examining the results and comparing one strategy with another. Adam,

in fact, might well benefit from explicit instruction on the interchangeability of the

two strategies and when best to employ them. In any case, Adam's dislike of

subtraction, which seems to be shared by children in general, may stem in part from the

difficulty of executing the more meaningful and often used counting-down algorithm.

Initially, Adam did not appear to understand multiplication. He was, therefore,

introduced to multiplication by means of an informal strategy. The problem 4 x 3, for

example, was solved by putting out four fingers and placing three blocks before each of

these fingers. The blocks were then tallied for the ansWer. With practice, Adam

mastered this informal procedure. Moreover, soon after it was introduced, Adam began

to short-cut the multiplidation procedure. For instance, for 3 x 6 tie might put out

three fingers, put out six blocks for the first finger only, count the blocks ("1-6"), and

then counted the spaces where the other blocks would have been placed ("7-12," "13-18).

For problems like 4 x 3, he very soon abbreviated the strategy by using a known addition

fact (4 + 4 = 8) in combination with counting-on (8; 9, 10, 11, 12). For 5 x N, Adam very

quickly realized that he could count by fives, which he was quite capabre of, to

generate the answer.

While he appears to have learned an informal procedure for multiplication, it is

not cleareven nowthat he really appreciates the equivalence of multiplication and

repeated addition (e.g., 4 x 3 = 4 + 4 + 4). Thus his understanding of multiplication

remains suspect and needs continued emphasis.
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Conclusions

In sum, the initial clinical interviews reveal at even a child with a severe

math learning disability had informal skills and concepts upon, which to build (cf.

Ginsburg, 1982). In terms of informal skills, Adam differed from others his age

primarily in terms of the efficient deployment of a number of these skills. In the case

of counting backwards, the lack of automaticity contributed to difficulties with his

informal (counting-down) subtraction procedure. Indeed, while he had several informal

subtraction strategies, all required considerable effort and consumed much of his

attention. This may help to account for the fact that Adam has not yet reached the

point where he chooses the most economical strategy for a given problem. Adam

appeared to have a major weakness in more advanced informal knowledge. It did not

appear that Adam had developed an informal procedure or understanding of

multiplication. Taught a multiplication procedure in an informal way, Adam not only

learned the procedure, but intelligently invented short cuts for it. The connections

between his informal multiplication procedure and his informal semantic knowledge of

multiplication and addition do notas yetseem well established.

Formal Math Ability

Addition

Basic Facts. To date, Adam knows very few basic addition combinations

automatically. For example, some doubles (3 + 3, 4 + 4, 6 + 6, 7 + 7, 9 + 9) and sums to

ten (6 + 4, 7 + 3, and 8 + 2) are still not automatic. N + 0 and N + 1 facts are produced

quickly as are a few doubles (2 + 2, 5 + 5, 8 + 8, and 10 + 10). The doubles 5 + 5 and 10 +

10 may have been learned through familiarity with our money system. The double 8 + 8

was apparently learned because of a nursery rhyme song by his mother.

Several attempts have been made to help Adam see patterns in the number facts

and learn heuristics (e.g., the doubles + 1, 10 + N = N + teen, etc.). While he usually
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picked up the pattern during a training session, lasting improvement in number facility

has yet to be achieved.

The evidence of this case study is consistent with the view that difficulty in

learning the number facts is not due to a deficiency in long-term memory ability

(competence), but rather to performance factors (e.g., Hallahan, Lloyd, Kosiewicz,

Kauffman, & Graves, 1979; Torgesen, 1980). When important to him, Adam appears to

remember information well. For rample, Adam was taught a procedure for using the

Apple computer to add. It was pointed out that the first step was to type in a "?",

whichas an upper case letter requires a "shift" key. Adam was then given the

problem 1 + L He typed in 1, located the "+" key, and asked "Do I need to 'shift'?"

Asked what he thought, Adam demonstrated transfer by responding, "Yes." Eleven

more trials followed, in which Adam occassionally forgot to use to "shift" key but

spontaneously corrected himself. One week laterwithout any further practice or

reminders f rom myselfAdam remembered the procedure for having the

microcomputer compute addition sums.

Several things may contribute to Adam's number fact deficits. First he may not

have a rich network of rules and principles to produce or to permit the discovery of

heuristics for producing number combinations economically (Baroody, in press-b;

Baroody & Ginsburg, 1982). Faced with the burden of memorizing many apparently

isolated facts, Adam may not "see" sufficient merit in undertaking such a chore.

Commutativity Principle. Adam not only appreciated the commutativity principle

but, when given the opportunity, used the principle to short-cut computation effort.

Shown pairs of problems such as 9 + 4 and 4 + 9, 42 + 9 and 9 + 42, 5 + 4 and 8 + 5, and 7

+ 45 and 23 + 8 very briefly and in random order, Adamwithout computingconcluded

that commuted pairs (such as the first two pairs) produced the same sum and problems

such as the last two produced a different sum. Afterward, while checking the
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correctness of his judgments, Adam noted for several commuted pairs that they

produced the same answer because they were the same but were just in different order.

Another task measured the use of principles to short-cut computational effort. Adam

was presented with a series of addition problems (e.g., 4 + 2, 2 + 6 + 4, 4 + 6*, 4 + 3,

3 + 4 , 3 + 1, 3 + 0, 2 + 7, 7 + 2 , 13 + 6, 6 + 13*, 15 + 0, 6 + 15). After a problem .was

solved and its sum recorded, it was put in a "used" pile abut 10 cm. to the right of where

the next problem was presented. Thus, the previous problem and solution could be

viewed simply by shifting the eyes or turning the head slightly. In the case of

commuted trials (starred problems), the effort of computation could be avoided by

looking at the previous problem and using its answer. Such a response would suggest use

of the commutativity principle. For the first two commuted trials encountered (2 + 4

and 4 + 6) Adam did not use the short-cut, but counted to determine the solution.

Thereafter, however, he used the commutativity principle consistently to short-cut

computation efforteven on problems involving two digit addends (e.g., 13 + 15). These

data are consistent with other research (I3aroody, 1982; -Baroody & Gannon, 1983;

Baroody, Ginsburg, & Waxman, 1983) which has found that commutativity is readily

abstracted from informal adding experience and is widely appreCiated by young

children.

Written Computation. Initially, Adam did not know the standard algorithm for

addition with carrying. For example, in interview #5 (3/9/81), Adam was given the

problem 66 + 4 and produced an answer of 610. Note that he did not carry but simply

wrote down the sum of the one's place addition. Given a verbal problem "66 stamps and

4 more is," Adam used a counting-on procedure to arrive at the correct answer of 70.

Over the course of the case study, a number of informal approaches were used to teach

the carrying algorithm. One technique involved juxtapo§"mg his own familiar, informal

(counting-on) efforts with attempts to use the unfamiliar written, carrying algorithm.
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Other approaches were done in connection with teaching base ten representation,

described below. Adam became **lite proficient in executing the standard carrying

algorithm with addends of two and three digits.

Subtraction

Basic facts. Few basic subtraction combinations were automatic. The first

interviews during the spring of 1981 revealed that Adam often even responded to N - 0

problem (e.g., 8 - 0) ineorrectly with an answer of "0" (N - 0 = 0 bug). A year later,

Adam had mastered the N - 0 = N rule (and N - N = 0 rule), but otherwise had few

automatic subtraction factsincluding differences of one (e.g., 5 - 4, 6 - 5, 7 - 6, etc.).

Addition-Subtraction Inverse and Complement Principle. Except for the N + 1/N-1

problems, the addition-subtraction inverse principle (the addition of N can be undone by

the subtraction of N and vice versa) does not seem to be entirely secure. For example,

in a modified version of Gelman's (1972) magic task, Adam was shown a pan with 7

blocks. The interviewer ("Mr. Magic") then covered the pan with a cardboard sheet and

surreptitiously removed two blocks.

A (Adam): Five

I (Interviewer): I thought there were seven in there. Wirt did Mr.

Magic do?

A: He took two.

1: I took away two. And how would I restore what was there originally?

How would I get back to 7?

A: In a magical way.

I. How can I get from 5 back to 7 again?

A: 6, 7, (fingers move two times] two.

Adam seemed to know that in a general sense, addition could be undone by subtraction.

However, except for additions (reductions) of one, he often compute to determine how
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many had to be taken away (added) to restore an original set. These results are

comparable to those obtained by Gelman (1977) with preschool children, who appeared

to appreciate that addition and subtraction cancel each other and who could accurately

make "repairs" of +1, but who were imprecise about larger inverse problems.

Until the inverse principle becomes clear, checking by using the inverse operation

(e.g., 35 - 17 = 18 by adding the difference and the subtrahend) may only be performed

perfunctorily. That is, Adam may learn the mechanics of checking, but until the

inverse principle is firmly understood, he will not understand why this procedure works

and he may not apply the procedure to real-life situations.

A lack of basic addition fact facility might contribute to a weak grasp of the

addition-subtraction inverse and complement (since 3 + 2 = 5, then 5 - 3 = 2 and 5 - 2 =

3) principles (cf. Baroody, Berent, & Packman, 1982; Baroody, Ginsburg, & Waxman,

1983). These deficiencies in turn might account for the paucity of automatic

subtraction facts. A child who can efficiently call to mind addition combinations is

more likely to discover and use the inverse and complement principles. For example, a

child who computes 10 - 7 and arrives at a difference of"3 and who can quickly call to ,

mind that 7 + 3 = 10 may, over the course of computing various subtiaction problems,

abstract the complement principlei.e., see the relationships among the parts (addends)

and whole (sum) of addition combinations and their corresponding elements of related

subtraction problems (cf. Resnick, 1983). The child who does not mentally have readily

available the addition facts is much less likely to make this comparison and discovery.

This is especially true for a child whose attention is absorbed in executing a less than

pe"'"'
automatic counting algorithm for subtrac n. Moreover, a child who appreciates the

complement principle and who has immediate command of the addition facts (e.g., 6 +

= 12 or 6 + 4 = 10) can very quickly construct answers for basic subtraction

combinations (e.g., 12 - 6 or 10 - 6) (Baroody, in press-b; Baroody & Ginsburg, 1982).
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With a weakness in one or both abilities, the child must resort to less efficient

(counting) or less economical (rote) means of producing the basic subtraction facts.

Thus, Adam, may have little success "learning" the basic subtraction facts until the

basic addition Combinations and the complement principle are mastered.

Written Comaitatisi. Adam did not appear to interpret "difference" problems in

terms of subtraction or to appreciate that his written .subtraction algorithm was

applicable to such problems. Asked in interview #27 (3/3/82) what the difference

between our game scores of 30 and 8 were ("By how many did you beat me?"), Adam

responded, "20" (a rather good approximation by the way). Asked to figure out exactly

by how many points he beat me, and encouraged to use pencil and paper, Adam wrote 9,

10, 1 i, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 23, 24, 25, 26, 27, 28, 29, 30 and

announced, "30." Apparently he had attempted to count-up but did not engage the

second count necessary to compute the difference: 9(1), 10(2),
29(21), 30(22)_

-22. Upon questioning, he contemplated the problem and revised his strategy. As he

counted-up to himself he made marks to keep track of the second count (the

difference). After arriving at 30, he counted the 22 marks to obtain the difference

The interviewer then asked Adam about solving the problem by means of written

subtraction.

I: If we said ... the difference ... is [writes 301. Would that

- 8

give the right answer?

A: No,

I: Your score is 30 and my score is 8.

A: Oh, I thought it fNas 0.

I: Will this tell us the difference between our scores?

A: It's 8.
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Adath, then, did.not see the subtraction algorithm as relevant to "difference" problems.

Adamlike most childrenassimilated his written subtraction procedure to his

informal riotion of subtraction ("taking away") and the related informal procedures of

separating-from and counting-down. "Difference" problems may not be viewed as

"subtraction" problems but as a separate category of problems to be dealt with by the

informal counting-up procedure. Hence, Adam's conclusion that the written subtraction

algorithm was not relevant to the difference problem. Indeed, primary school children,

in general, only gradually see the interchangeability of subtraction problems and

informal strategies (Carpenter ac Moser, 1982). Future work with Adam should focus on

fostering these connections. For example, Adam might be asked to solve "difference"

via his written subtraction algorithm and compare the results with his informal

counting-up strategy.

In terms of the written algorithm involving borrowing, Adam has demonstrated 'Ps

considerable improvement in a year's time. When the interviews began, Adam had a

borrowing algorithm, but was unsure of when to use it. He sometimes borrowed when it

was not necessary. In the problem below, the minuend in the one's place was already

larger than the sulltrahend.
0

149

-15

Nevertheless, he borrowed from the ten's place, used a separating from strategy to

compute 19 - 5, put down the 4, carried the 1 and subtracted 1-1 in the ten's place. With

minuends in the teens, he sometimes engaged a borrowing algorithm:

12

- 9
3

2
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Indeed, he sometimes tried to borrow when he added. Moreover, his work was often

replete with "bugs" or systematic errors. The solution below involved two bugs. The

one's place subtraction involves subtracting the smaller N from the larger N, and the

ten's place involves the 0 - N = 0 bug. Overall, his initial perforMance did not inspire

optimism.

203

- 17

204

Nevertheless, efforts were madeas in the case of additionto relate formal

subtraction procedure to Adam's informal notions. This included using Dienes blocks to

model the borrowing algorithm (re: Resnick & Ford, 1981). Over the period of a year,

he learned to deploy his borrowing algorithm appropriately and effectively. Indeed,

given several addition problems and then a subtraction problem, Adam shifted easily

from a carrying to a borrowing algorithm. At the beginning of the case study, such a

change in problems often resulted in preservationcontinued use of the first procedure.

"Bugs" appeared much less frequentlyusually only when Adam was tired or not

concentrating. Under such circumstances, it appeared that Adam engaged a relatively

undemanding but incorrect "buggy" procedure rather than have no answeror expend the

effort to use his borrowing algorithms. Finally, Adam began to take pride in his

computational ability.

Base Ten and Numeration

Initial Diagnosis. When the case study began, Adam could not eiren label correctly

the one's and ten's place of a two-digit numeral. Except for 10 + 10, the addition

(subtraction) of ten to (from) any two-digit number including other decades (20, 30,

etc.) was computed via counting-son (countinr-down). Writing two digit numerals did not

appear to be a problem, but writing larger terms is still not automatic. In the
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eighteenth session (9/2/81), Adam wrote 1013 for "113," 1017 for "117," and 2002 for "202."

More recently (interview #22, 1/13/82), Adam wrote 1003 for "103."

A: That's not the right way, right...?

b One-zero-zero-three. That's the way it sounds, doesn't it?

A: Hmhmm.

I: Which one of these is correct [writes 103] 1-0-3 or 1-0-0-3?

A: 1-0-3.

Moreover, Adam was a reluctant estimator. Fo l. example, during session #20

(12/9/81), Adam punched into a microcomputer a series of addition problems (displayed

on a monitor). Before he was permitted to hit the "return" key to see the answer, he

was asked to estimate the answer. Adam made up the first problem 356 + 896.

b What do you think it will be?

A: It will have to be 12 and some other numbers. [Note: The "12" referred to

the sum of the one's column.]

I: How many?

A: Four. [Note: Adam may have realized that the sum of the ten's and

hundred's place would each produce two-digit sums.]

Adam made up another problem 56 + 7093, but could not make an estimate. He

attempted to mentally align the numerals in order to employ the standard addition

algorithm, but could not. With 57 + 25, he did not attempt to estimate the answer, but

employed the standard carrying algorithm and announced: "Eighty and some number."

A similar procedure produced 33 for 28 + 16 and 41 for 32 + 19. (The carried value was

not considered.) When asked to estimated 65 + 38, Adam responded, "10." This evidence

suggested that (1) Adam preferred to give exact answers rather than engage in the

inexact process of estimating, (2) he has very gale sense for large numbers, and (3) he

had great difficulty with mental arithmetic involving two-digit terms.
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Remedial Efforts. Remedial efforts focused on basic place value and base ten

concepts skills. Initial efforts were directed at (1) identifying the place names and

value of numerals up to three digits, (2) thinking of ten elements as a group (one 10), (3)

viewing double digit numbers as composites of ten(s) and ones (4) connecting concrete

representations of base ten and written numerals including the use of zero as a

p/aceholder, (5) performing mental addition with two digit terms starting with the

addition and subtraction of ten, and (6) appreicating the structure or patterns of base

ten written numbers systems. For the most part, the instruction built on informal

knowledge and made extensive use of games and activities (see, for example, Baroody,

in press-c). This instruction has had some success. Adam now can readily identify the

one's ten's, and hundred's place, spontaneously translate ten ones into one ten,

decompose double digit numbers into ten(s) and ones, and relate this to written

symbolism.

For example, in interview #17 (8/31/81), Adam was introduced to Egyptian

hieroglyphics (1 = 4, (1= 10, and e = 100) (re: Bunt, Jones, & Bediant, 1976). After some

work representing one digit numbers (e.g., translating 3 into 111), Adam was asked to

translate 10 into hieroglyphics. He proceeded to make ten marks. Later, he did write

(no") for the problem 11111 + 11W ("5 + 5"9, but made 13 marks for "10 + 3." Each time he

erred the interviewer pointed out that there was an easier way to represent the answer

and wrote the correct symbol. Thereafter, at least for numbers and sums to 99, Adam

picked up the system quickly. This training went on for three successive weeks and

then discontinued until session #22 (1/13/82)--four months later. During session #22,

after some preliminary review of the basic symbols, Adam correctly translated 6 and 24

into hieroglyphics. More importantly, he solved problems 7 + 6 and 12 + 9 and translated

their sums (13 and 21) immediately into the correct hieroglyphics (A 111 and nn 0. The

terms 13 and 21 were not treated merely as 13 or 21 units, but as composites of ten(s) and

ones.



-23-

Another example from interview #17 (8/31/81), involves a scoring procedure for a

miniature bowling game (adapted from the Wynroth curriculum, 1975). The scoring

procedure, in which strikes and spares are simply scored as ten, had been taught and

mastered the previous spring but not practiced in over four months trme when the

following transpired. With a score of 13 already (represented by 3 Dienes-like blocks in

the "one's dish" and a ten-bar in ten's dish"), Adam knoCked down eight more pins. He

counted out eight blocks anbadded attached Iwo blocks from his one's dish while iaying,

"8, 9, 10." Then he announced, "Now I have two tens, twenty." (Note that he equates

base ten and count representations.) He put the new ten-bar in the ten's dish and

related the dish with a numeral "2" and the "one's dish" with a numeral "1." Hence he

readily connected the concrete representation with its written symbol. Then later,with

a score of 26, he knocked down 9 more pins. He obtained the appropriate number of

blocks and made a new (third) ten-bar. Holding the new (third) ten-bar in his hand,- he

announced, "Thirty...[counted the remaining one's blocks] five." The following frame he

went through the scoring procedure to add 7 to his total announcing afterwarl: "42."

I: You have 42 there? How many tens?

A: 4.

I: How many ones?

A: 2

Adam, moreover, could operate in the opposite direction& Given a numeral, he could

indicate how many tens and ones it represented as w,ell as make the appropriate

concrete model with blocks.

While the skills described above are an important basis for base ten

representation, they do not guarantee a "deep" knowledge of this concept or its

effective application to mental addition, estimation, etc. (cf. Resnick, 1982). For

instance, Adam does not have a strong sense of the structure of our (base ten) number

system. Consider the following exchange during interview #26 (2/24/82).



I: What's the smallest one-digit numeral in our number system?

A: 0

1: What is the largest one-digit number?

A: 10

I: One digit.

A: 100

1: How many digits are in 100?

A: 3,

After several more guesses including 11, 12, and 21, the interviewer guided Adam to the

correct answer: 9. Asked then what the smallest 2-digit numeral was, he responded

correctly: %O." However, he again needed help to conclude that 99 was the largest 2

digit numeral. Adam had been exposed to the same kind of questions and help, each of

three previous weeks' (sessions #23, 24 and 25). Apparently, seeing the qrganization of

the bate ten system is a difficult step.

Using base ten representation in the service of, for example, addition also appears

to be a major seep. While he could count by tens with facility and decompose numerals

into tens and units, adding and subtracting by ten was still handled by co ting-on,

Even problems such as 10 + 6 or 10 + 7 are still usually solved by counting. uring

interview #15 (8/25/81), Adam was taught a version of the card game 699" Briefly, the
* 4

object of play is to avoid discarding a card that puts the discard total over 99. Three

cards are dean to each player. Cards have their face value except A (which adds 1 or 11

to the discard total), 4 (adds 0, but reverses the direction of play), 9 (automatically

makes the discard total 99), 10 (deducts 10 from the discard tot41), J (adds nothing), K or

Q (adds 10). The player to the left oi the dealer starts by discarding, announcing the

new total, .and drawing a replacemT from the deck. Play continues until someone. ,.

loses (puts the discard total over 99). Adam used a countineon strategy for nearly all

14'
p
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his calculationsincluding plus or minus 10 calculations (e.g., 40 + 10, 53 + 10, 99 - 10).

However, over five months time, there has been significant improvement. During a

game of "99" in interview #22 (1/13/82), Adam responded to 13 + 10, 32 + 10, 86 + 10 by

counting-on. In each case, he held the +10 card. When asked by one of the interviewers

what, for example, 10 + 10, 83 + 10, or 96 - 10 was, Adam quickly responded with the

correct answer. Thus when expected to respond quickly, Adam used, MN + 10 and MN

10 rules effectively. The fact that he seemed to prefer counting-on suggests that the

rules are not yet completely automatic and trusted..

Affective Factors

Not only have there been important gains in Adam's mathematical thinking over

the course of the case study, there appeared to have been striking changes in his

personality. Adam appeared to have much more spark and seems much more capable of

enjoying himself. He seemed more willing to give others a chance to teach him and to

give himself a chance to learn. In brief, he seemed more comfortable with himself,

others, and mathematics. For example, in a recent interview (#28, 3/10/82), the

interviewer explained to Adam the rules for an estimation game, which involved the

addition of two digit addend and a time limit of two seconds. Adam's response was:

"Let her rip:"

More specifiCally, Adam appeared more Willing to assert himself, he was less

defensive, and he seemed to have more confidence in his abilities. In interview #22

(1/13/82), for example, Adam explained that adding 20 + 20 (horizontally and recently

introduced in school) is harder than adding 10 (vertiCally).

I: Why is it harder to do it this way [horizontally] than this way

[vertically]?

A: It's, um, it's like harder to carry and you get mixed up. And I)

don't know how to carry it so good.



I writes: 38

+17

A: Oh that's easy. [Adam proceeds to correctly use the carrying

algorithm.]

Thus, Adam demonstrated a willingness to discuss a problem that was bothering him,

accurately described his difficulty, and confidently employed a now familiar procedure.

Conclusions

While Adam's informal math ability were not greatly dissimiliar from other

children his age, formal math ability was obviously and extensively different. Even

basic applications of the part-whole schema to mathematicsthe focus of early school

math (Resnick, 1983)had not been mastered (e.g., basic addition combinations, the

addition-subtraction inverse and complement principles). Not surprising, then, Adam

had considerable difficulty with more advanced wAions of the part-whole schema such

as base ten representation. Lack of this semantic basis, in turn, helps to account for

the pervasive deficiencies in formal procedural skills (e.g., written addition and

subtraction computation procedures, writing three+ digit numerals, mental addition

with two+ digit addends, estimation). Indeed; this case study again demonstrates

Ginsburg's (1977) observation that written formal procedure are initially more

troublesome than children's mental, informal procedures (e.g., the response of "610" to

66 vs. "70" to the verbal problem "66 & 4 more"). There were a few exceptions to the

general lack of formal math knowledge. For example, Adam clearly appreciated the

principle of commutativity. Thii, however, was probably derived from his informal

-26-

addition experience.

Formal instruction which built upon informal ability (Ginsburg, 1982) and which

aplicitly linked semantic and procedural knowledge (Resnick, 1982) appears to- be a

useful approach. It has permitted Adam to invent short-cuts (e.g., for his multiplication
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procedure), achieve insights (e.g., "42" is a composite of four tens and two ones)as

well as learn basic procedures (e.g., carrying and borrowing algorithm).

While there are undeniable organic factors, much of Adam's forgetting,

inattention and perserverance may be symptoms rather than causes of his learning

problems (cf. Allardice & Ginsburg, 1983). These characteristics are reduced when

Adam is actively involved in instruction which is meaningful and interesting.

Though the progress Adam has made in the past year has been considerable, much

remains to be done. Two problems, which seem to characterize much of Adam's

mathematical knowledge, need to be addressed. The first is the apparent

nonconnectedness of many math concepts and procedures (e.g., different concepts of

subtraction with each other, with various informal procedures and with the formal

written procedure). The second is the weak sense of the base ten number system. For

example, while Adam can readily decompose a two digit numerals into tens and ones, he

must learn the mathematical significance of the transition from one to -two digit

numerals, two to three digit numerals, etc. His number sense of three digit and larger

values may depend on this conceptual knowledge. More recent work on mental addition

and estimation suggests that Adam is making strides in connecting his formal (basic

base ten) knowledge with his formal procedures. Progress in (mental and written)

computation, in turn, may enrich his conceptual knowledge (cf. Resnick & Ford, 1981).

In other words, growing computational and conceptual competence may feed each

other.

Finally, though not the focus of this report, affective factors appeared to have

played an importantperhaps the 'most importantrole in Adam's improvement. The

recognition and acceptance of his informal strengths by others may have been art,

important basis for Adam accepiing himself. Moreover, as he developed competence in

formal math, his estimate of himself and his abilities grew giving him confidence for
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new challenges (cf. Ginsburg, 1982). Adam's affective as well as cognitive growth were

made possible by a mutual effortthe cooperation of learning specialists, school

teachers, and parents.

-
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