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ABSTRACT y . - ,
. Real test data of unknown structure were analyzed
using both a unidimensional and a multidimension.l latent trait model
in an attempt to determine the underlying components of the test. The
models used were the three—parameter logistic model and a L -
multidimensional extension of the two-parameter logistic model. The
basic' design for the analysis' of the data was to start with the
unidimensional model, evaluate the fit of the model to the data, then
increase’ the dimensionality of the model and perform the same
analyses. The dimensionality of ‘the mgdel was to be increased until
deviations from fit were acceptably small. Once acceptable fit was .

obtained, the item parameter estimates were to be analyzed to -

determine the structure 6f the ability components required by the
test. The results of the analyses indicated that a two~dimensional
solution yielded no better fit than a unidimensional solution,
although the test data were selected to be multidimensional. From the
resilts of the analyses it was cong¢luded that the data had a-
difficulty factor that was suff&iciently great as to dominate the
other, intended factors. (Zuthor)
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There are <nany sxtuatlons in the practige of testing in which data are
collected from ‘tests that measure more than a single trait. Indeed ="
strong argument can probably be made that dimensionally complex measuring
devices are the rule rather than the exception. If the items in the test °
are dlchotomously scored the analysis of these data poses special problems,
since the nethodology for the analysis of these datd is not well developed.
The purpose of this paper is to demonstrate the capabilities of a relatively
new -methodolygy that has been developed in the last 23 yearxs specifically
to analyze test data. This methodology is variously called item response
theory (IRT), item characteristic curve theory (ICC), or latent: trait *
theory. In addltlon to the usg of the already well known one-dimensional
IRT models, this.paper will lntroduce the use of.a mult1d1menslona1 extension
of the two-parameter 1oglst1c model (M2PL) that is a spgcial case of an
extremely geKEral model proposed by Rasch (1961). Using these analysis
"models, an attempt will be made to describe a set of tes? data of unknown
structure and determine the underlying components of the testp,

’ N Design of the Analysis T

The data that were analyzed in this study were selected from the responses
of individuals,to items from tests available at the American College Testing
Program (ACT). Bob'Brennan selected the response data used in the.study
specifically for this symposium. He was instructed to prouuce a
multidimensional data-set from the résponses to existing tests that would
serve as a good check on the capabilities of several.multidimensional
analysis techniques. The result was a set of 2794 dichotomous response ' '
strings of 50 items in length. No information about the characteristics of
the data was given to the participants of the symposxum before th1s
presentation other than that given above. ’ e

»

-
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The basic design for the analysis of the test data was to start, with a -
one- -dimensional model, ovaluate the f1t of the model to the data, then .
increase the d1mens10na11ty of the model andQ& rform the same analyses , .
until deviations from fit became negligible. gnce acceptable fit was
“ obta1ned the itelh parameter estiimates that were compyted using the mode
would then be-analyzed to determine the structure of ﬂhe ability compene?ts
required by the test., :
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- . Two different one-dimensional models were used in the study. The

first was ghe three pa:gpétgr logstic model (3PL) (Birnbaum, 1968) given by
P . the equation P

. s -

-

Dai(ej - ?i) )
= ba(6. -7 * (D
, . ) L 1+e i*7] i o “\_

>

N

t, ’ ) P(x:fj = 1 Iai’bi’er’ej) = ci'+‘(1 - ci)

~

"where R(ij=1|aiﬂbi,ci,6j) is tﬂ¥ probahiiity gf a correct response éo Item
. 1 by pér§on i, Xij i the item score (0 or 1)’obtained by ﬁerson j on_Iteﬁ
i, a, is the item discrimingxion paramater, bi is the item‘diff;culty
parameter; c; is’ the 19yer asymptote, 0. is the ability of Person jsuDis ~

“the constant 1.7 required to make the fuhction similar/to the normal ogive
model (Lord, 1952), and e is the constant 2.718.... )

. L : )
\ [ *

The second one-dimensional model that was, used in the study.was the e
two-parametey logistic medel (2PL) (Birnbaum, 1968) given by , .
? * - i 2 ' )
4 ’ . ! . : ., h ’ + 3
e . . N edi . aiej . r <
POy =1 lajudgs6p = i+ap,.> . @
X . ) l1+e J

L *

where di is the 1ogisti§_intercept term’ equal to -biai and all of the gther '

syrbols are defined as above. The model i%@thation,Z is given in the .
slope:inteffepp fexm rather than with the usual exponent, ai(ej-bi), S0 as

to be more readily compared with the mul;idimensioﬁal model,

1

The multidimensional model uséé in this study is a special case of the

general Rasch model (Rasch, 1961). It is also a multivariate extension of
the. two-parameter logistic model (M2PL). The M2PL model is given by the

equation
. v . | ,
edi +a, Qj. ' .
o Pl =1 Igi,di»_fij) = d, +a, "8, (3)
4 ‘e . ' . l + e . -i. -j A\

where §i~is a vector of discrimination-parameters ‘for Item i, 6. is a

vector of ability Eérameéers for Person j, and the other symbols are defined
above. "’ ’ '

. N . .
The fit of the models to the data used in this study was determined

using the residual covariance matrix. 'This matrix was obtained by computing

thdk covariance between“the differences between the item response and the y

‘predicted probability of cotrect respdnse based on the item and person

parameters estimated from the data. The distribution of the residual )

covariances was then compared to the distribution\expected if no relationship
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were present ‘between the items. If the dlstrlbutlons were suff1c1ent1y
different, it was hypothe51zed that added dimensions were needvd 1n the
model to exp1a1n the responses. . .
e~
In addition to the direct analysis of the real data, supplementary

‘analyses were performed on simulated test:data that were, generated to have A

.

statistics are given'ip Table 2. This table contains several noteworthy N

the same three-parameter logistic item parameters as the real data.* These
analyses were performed .to serve d% a unidimensional basis for comparlson
in 1nterpret1ng the analyses performed on the rea{ data.
£

Descr1pt1ve statistics were also computed on the item and person
parameters obtained frdm the IRT analyses. These statistics included the
means, standard dev1at10ns, and correlations between the parameter estimates.
Where appropriate, dlStrlbutlonS of the item parameters were constructed.

« ~ - .
. . . Relults t ' ) .
» . - - »
One-Dimensional Analyses . ' . !
Two dlfferent IRT models were used, to analyze the test data assuming a .

one-dimensional latent space. These models were the. three- -parameter logistic -
(3PL) model and thé two-parameter ‘logistic (2PL) model. °‘The results<of the

3PL analysis to both the real and simulated data will be presented first. . ' .

Three-Parameter Logistic Analysis The 3PL analysis of the real data @ "

was performed using the 1982 version of LOGIST (Wingersky, Barton, and .

‘Lord, 1982) The item parameter estimates obtained from the analysis and ~ .
trad1t10na1 item statistics are presented in Table 1. Note’ that ‘the items ’

were originally arranged on the test agcording to the proportion of correct, |,
responses. This order is.also maintained by the 3PL b-parameter estimates \

except in the,cases where the a-parameter estimates are small, or the . )
c’parameter estimates are large. The magnitude of the item parameter estlmates

are typical of those found on a standardized test, with the exception of

Items» 16, 18, 30, and 32, which have unusually h1gh c-parameter estimates.

An ana1y51s of the dlstrlbutlon of the, a- and b-parameter estimates indicated

that the a-parameters tended to have a few more’ low values than expected,

and that the b-parameters had an essentlally rectangular dlstn‘{utlon

The correlatlons between the parameter estimates and  traditional item . '

correlations’. First, the correlation between the a- parameter estimatds and

the biserial correlatlon discrimination index ié only .02. The small ., -
magnitude of this correlation is quite unusual, since;for unidimensional ' )
test data these values should be quite highly" relateds, The unusual nature

of this correlation is .further emphasized by the fact that both the a- -va'lues

and the rp1s” -valués are correlated with the proportlon corredt d1ff1cu1ty . .
index (P) but the correlations are opp051te if sign. The correlations _/

1nd1cate that the a-parameter and rBIS are related to independent components

of the variation in P. . ’ !

a R . ) ... 4
. A ~ *
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o ", - "Table 1

.. (LOGIST 3PL Item Parameter Estimate
“for the AERA Sympgsium Data:

\ - . ) ‘e . v N ‘o e
~ yj . S T .
. ' / . Parameter . ) . ’ -
. }/t.e_’m{' @t b P R "BIS N
o ] * . S s o * ¢ )
1 " .65 . <2.64 - .16 ’ 93, .51
2 46 _ -2.3%. .16 . .86 - .39
3 X -2,10 £16 ¢ .86 . .46 ,
4 98 | - ~1.41 : .16 .86 " .66
5 .88 .=1.30 .16 . .83 \ .61
6 .33 . =2.49 .16 7 ¢ .82 . .34
7 .96 . -1.03 "~ _ . ..16 80 ., -4 .64
8 1.10 ) ©oRa96 o 16 .79 1 . . 69 .
9 1.07 - - .96 .16 Lot .68
10 . .52 -1.45 116 ’ .79 , A
11 .83, - .99 160 7 17 . .60
12 .93 - .86 RS T T .76 : .62
13 .71 L= .92~ ~16 . .76, “ . .58 -
14 .60 . =1.08 - .16 ¢ .75 .50
15 v W13 ‘ - .90 .16 . 75 7T .56
16 29 11 .50 74 IR
- 17 .21 .7 - .79 ‘ .03 ° 73 . W15
18 1.11 A2 " .50 - .72 48
19 - .68 .= .79 0, 16 <72 s .54
20 40 ’ -1.11 .16 _ 71 .38 .
21 .91 © = .57 .16 ~ .70 62 ~
22 1.08 - .50 . 216 ‘ .70 .67
23 S ler .- 66 6 70 - 52 '
24 .56 “ 162 . Zae .68 Y . \>
25° 1.32 =22 .23 R Y B .67 .
‘ ]
-l ‘ . !
>
‘
4 AY
¥ ] ) . &
A 3
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‘/ .
Table I (Continued)

~ LOGIST 3PL Item Parameter Estimate

I

Ve for the AERA Symposium Data
../ . AR .,‘ .“‘ Lt ' . .
P . . -Parameter .. -
Item a ) b _ ) C. p LR1s
.26 1.00. - .23 .19/ .65 .62
277 « .69 . - .36 -+ .16 .64 .52
28 .. .72 <20 16 .63 .55
29 - .02 . o= .25 .13 .63 .66
30 - 1.10 . .93 ° .43 .57, - 237
31 1.13 .09 4 17 .56 .63
32 .64 1.47, . A .56 .28
"33, .82° 15, .15 .54 . .56
34 .85 . , 41 .22 .53 .52
35 . .91 26 ° .14 .52 .58
36 ~ 1.0 A .13. 46 .62
T 31 .7 .- 1.38 . £ 32 46 .34
38 1,08 : S 222 b .50
39 62 420 .05 N .51
40 . .84 * .59 .12 .43 .54
41 .53 . 1.27 14 .37 .38
42 1.30 1.22 R X .37 .46
43 1,04 1.15 . .18 .34 .46
A 2.00 127 ©.23 .33, .37
45 1..00 . 1.33 .14 .29 .43
46 117 - 1.85 ° .21 27 0 .28
47 .83 . v 1.45 - . .09 .26 .45
~48 1.19 - 1.64 - - %15 24 .36
49 1.31  ° ©1.89 - .17 .23 .29
-50. 1.50 2.57 R .15 .13
x . .91 .= 410 .18 .60 .50
SD .31 ‘122 . .10 .20 .13
. L )
. . ‘ ‘\\

S
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: ’ ’ Table 2 *
. - ‘
. - Correlations Between 3PL Item Parameter Estimates . S
. and Traditional Item Statistics
-
/ ) »
. Item Statistics . . .
. ' ' S ‘ : ~N\
a b c ' P BIS.\\
a .7 .21 -.46% .02
t,L :
b ¢ N 24 ~. G4 ) 7.50%
- / , - . ] . l
c . .03 -.30%
P ’ - 54%
"BIS ‘ ' : '

- )5 [ .
Note: The corr=lations with asterisks are significant beyond the .05 level.

[
+*

Other correlations of interest are the ~.3C correlation between the
c-parameter value and the Ipis values, and the correlation of .54 between ‘

6

the a- and b-parameters. Neither of these correlations are surprising.
Items with high guessing levels would be expected to have low values for
BIS’ and the a- and b+paramzters have been found to be correlated in other

~

studles. : : .

. ~

In order to determine whether the 3PL model f1t the data reasonably
well, the residual covariance matrix- was computed . This matrix contains
the covariance between the residuals for each item and every other item. 1In
order to interpret this matrix, a frequency distribution was constructed
,u51ng the values from above the, main diagortal of the matrix. This distribution ,
is shown in Figure 1. Descriptive statistics for the distribution are also
shown in Figure 1. .

As can easilyxge seen from the figure, the distribution »f residual
covariances is quite positively skewed, and the majority of the values fall
between 0 and -.1. This range contains approximately 77% of the values.

If. the data truly fit.this unidimensional model, ;2 would have expected
a symmetric distribution around zero with a standard deviation of approximately
.019. The standard deviation of the observed distribution is .037, substantially
larger than this value. . :

4
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Figure 1 '
Freiuency Distribution of the Residual Covariances-
for the 3PL Model Applted to the Real Data
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Since little background information‘is available on how to interpret
the residual«covariance matrix; a simulated data set was produced for the
purpose of obtaining comparative analysis results based on unidimensional
data. This data set wds geherated using the 3PL model and the itam parameter
estimates obtained from the analysis of the ACT data. A total of 1000 *

simulated ekaminees were generated for this“pgrpose. , “

[
-~

e

. A new set of parameter estimates was determined from the simulated

test data using the LOGIST program, and these estimates were compared to

those used to generate the data and also to traditional item statistics '
‘computed on the data. These cdkrelations:ar® shown in Table 3. The pattern

of correlations bbtained from the analysis of the simulation data was vefy
similar to that obtained'from the real data. - The only ‘change in the pattern

of significant'correlations is that for the simulation data, the a-parameter
and c-parameter estimates were correlated while they were nét for the real data.
Since the magnitude of the two correlations is fairly similar (.21 vs. .33)

this may be a chance result. Note that the coxrelation between the a-parameter
estimate and the item-biserial correlation is” low for these data, just as

it was for the real data. This result may indicate that the unexpectedly

small magnitude of this correlation is an artifact of the particd}ar range

of difficulty and discrimination present in this data-set.

; Table«B

-

(]

Correlations Between the True Item Parameters,
[Estimated Item Parameters, and Tradition Item Statistics

for the Simulated Test Data _ -
. Itgh Séatistiés ..
- )
a b ' c est. a est. b estc.® P rpIs
- - -

v US4% 200 L69%  S4% -.00  -.4T% .05 '
b . - 22 . 42% ., 98% 08 =.94% - 4l .
c. ' 23% 14y L75%, =01  -.30%
ést. as * 475 .38%  -.29 10 3
est. b , . .08  -.92% - 30%
est. ¢ P ‘ , 14, -.33%

P L S AL
rBIS . - v oyl

) ' 2 [y A
Note: The cdbrrelations with astericks are significant beyond the .05 level.

-
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The frequency distribution for the résidual covariance matrix for the

simulated data is given in Figure 2 along with the descriptive statistics.
¢ The distribution is fairly symmetric around -:01 and does not have the 1ong‘
positive tail present in the distribution for the real data. The standard’
deviation of the residual covariances is .03, exaqtly what would be predlcted
based on a hypothesis of no linear relatlonshlp among the residuals. ' This
should be contrasted with the b1g differences between the expected and
observed standard dev1at10ns for ‘the real data.

Two-Parametes Log1st1c Analysis The 2PL analysis of thie real data’
was performed us1ng "the 0G program (McKinley and Reckase, in press),
which was written specifically for test analysis using the M2PL model.
Since the 2PL model is the ynidimensional case‘of the M2PL model, the
program applies equally well for A2 one~dimensional solutiom. The item
parameter estimates for the 2PL ﬁqdel are given ,in Table 4. In addition to
the a- and d-parameters of the model, this table presents the b-parameter
estimates for those 1nd1v1dua1£ that arc.' more familiar with that form of
the 2PL model ) ‘

.

’

Both ,the d- and b-parameter egtimates from the 2PL analysis roughly
maintaid the order of the: items as shown by the proportlon correct difficulty
values shown in Table 1. _The_a-values also seem to be related to the
d1ff1cu1ty of the 'items in that the higher discrimination parameter estimates
were ‘obtained for the easier items, The correlations of the 2PL parameter

estimates and the'3PL and traditional statistics, shown in Table 5, sugport

this observation. The 2PL a-parameter estimates are correlated .66 with
the d-parameter est;mates, -.54 with the b-paramete£>est1mates, and .5
with the p-values. \
~ ' . a
The 2PL a-parameter estlmates are clearly more closely related to the
traditional concept of item discrimination than dre the 3PL adparameter '
estimates. The 2PL a-parameters correlate .95 with rpis @ and only .09 wit

‘the 3PL a-parameters. The difference in thé two IRT d1scr1m1nat10n estlmates
seems to be mainly in the values gomputed for the hard items and those wit
high guessing. Items 16, 30, 42, 44,~46, 48, 49 and 50 are good examples

of the differences present 1n the two types of estimates.

. . "
The 2PL a~-parameter estimates also correlated with the 3PL c-parametedr
estimateés. The ~-.34 correlation obtained is consistent wich the' idea that

items with high guessing levels should be low discriminators. The d- paramet £

estimates correlate highly with the 3BL b-parameters and the.p-values.
There are also smaller correlations with the measures of discrimination. |
The frequency distribution and the descriptive .stat'istics for the 2PLE
residual covariance matrix are shown in Figure 3. The distribution looks
- very similar‘to the 3PL residual covariance matrix and the descriptive
statistics are virtually identical. Based on these results, the two models
v, would be considered to fit the data equally well.

|
1
|

|
|
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Figure .2
Frequency Distribution of the Residual Covariances L .
for the 3PL Model Applied to_the Simulated Deta Y
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Table 4 . ' A,

MAXLOG 2PL Item Parar;leter Estimat:.e
for the AERA Symposilim Data

A

Parameter '
! *
j .
- Item a - d b4 .
— ~ . f
1 1.35 3.20 -2.37
2 .82 2,05 ~2.50
3 .97 . 2.10 -2.16
4 1.93 2.72 -1.41
5 1.66 2.29 -1.38
6 .59 -1.59 ‘ ~2.69 S *
7 Yo1.66 « "1.97 -1.19 -
8 2,02 2.18 -1.08
9 1.90 2.09 -1.10 %
10 0.88 1.51 -1.72 . ¢
11 \ 1.41 1.65 -1.17 - : .
12 1.58 1:67 -1.06
. 13 . 1.29 . 1.48 - -1.15
14 1.01 1.35 : ~%.34 , .
15 * 1.22 1.40 < =1.15 .
- 16 .94 1.24 -1.32
©17 . 2.30 1.85° - = .80
18 . .89 1.12 ©-1.26
19 1.12 1.19 - -1.06
20 .63 .99 . -1.57 : . \
21 . 1.48 "1.22 . - .82 §
22 * 1,75 . 1.32 -~ .75 . : ‘
23 ) 1.07 1.04 . - .97 - , ‘
.24 .87 .87 ~1.00 )
25 1.69 1.11 ‘ - .66 )
26 _ 1.44 .86 . = .60
27 , 1.06 L .T5,, - .7
28 1.09 " ..69 - .63
29 1.61 ~ .80 ' - .50
30 . - .58 ° 31 - .53 ’
31 . 1.51 " .40 - .26 .
. 32 .35 .25 . - .71 -7
33 . 1.10 .22 : - <20
34 e o .97, 15 - .15
35 ' 1.21 A0 - .08
.36 1 1.33 -. 17, .13 >
37 46 . S E 41 -
38 . . .92 -, 260 .28 -
39 .96 -, 27 ‘ .28
40 . 1.06 - = ,33 .31
‘ Y
N N ld
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Table 4 (Continued)

MAXLOG 2PL Item Parameter Estimate

for the AE%A Symposium Data .
| \
Parameter ——
\
/
Item, a d b
Y]
D)
41 .60 - .57 .95 ,;(
42 .81 - .60 7 T4 )
43 ¢ 81 - .74 91
A .65 - .79 1.22
45 * .80 -1.00 1.25
~46 .43 -1.04 2.42
47 .81 -1.04 1.51
48 .58 -1.24 2.14
49 .46 -1.30 2.83
50 I .19 -1.79 9.42
\ - \”1 T~ * l N N
X 1.10 T __ .69 - .26
SD 47 1LIT—~ 1.83
Table 5 - "
¢
Correlations Between the Tradition Item Statistics - Kj}
and the 2PL and 3PL Parameter Estimates N
for the AERA Symposium Data .
N
' . Item Statistics\\‘\‘ - :
2PL-a 2PL-d  3PL-a  3PL-b  3PL-c  .P BIS O
{
2PL-a .66% .09 - .54% - 34% .59% . 95%
: 2PL-d . - .38% - 93% - 04k ogk 5%
, /"',3,
L ) 3PL-a 54% Y SN L .0
' 3PL-b - .24 - 34 - .50 |
| 3PL-c .03 - .30%
| P 54%
/ “BIS . C
1 M 1" \/5\4\\ »
o Note: The correlations marked b§ asterisks are significant
ERIC beyond the .05 level. 13
. y




Figure 3
)

Frequency Distribution of the Residual Covariances
for the 2PL Model Applied to qtf.Real Data
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TworDimenséonal Analysis

s %

Since the standard deviation of the residual covariance matrix was
larger than would be expected if the models fit the data fcr' both the 3PL .
and 2PL models, it was assumed that a higher dimensicnal solution was
required. The M2PL model was, theréfore, rune on thbe AERA symposium data
assuming a two-dimensional solution. The item parameter estimates from
this analysis are given in Table 6. Notice the d-parameter estimates still
decrease uniformly with the increase in the item number, showing that the
item difficulty estimates are still closely related to the p-values. A
cursory study of the a-parameter estimates will show that in many cases
they are very Yimilar. The estimation program does not place any constraints -
on the relationship of the two dimensions being estimated and as a result,
all of the a-parameters could be the same if the data being analyzed so
indicated.

™~

- ) Table 6 ‘ \
Item Parameters from a Two-Dimensional
MAXLOG Analysis of the. AERA Symposium Data

‘9 = ¥
. / N\
Parameter
i . }"
Item . a : ag -, "‘?ﬂmw'J,
-
.1 1,05 . 1.39 2.72
S22 ..95 1.56 2,01
3 .89 1.30 1.90
4 1.94 2.37 2.04
5 1.65 2.00 1.77
6 y .85 .80 1.54
7 1.91 2.38 ' 1.55
8 .36 2.50 1.56
9 2.31 2.50 1.55
10 1.00 1.83 1.49
11 1.63 2.50 1.53
12 1.71 2.22 1.30
13 1.55 2.04 " 1.24
14 1.21 1.70 1
15 1.54 2.01 1
16 1.34 1.44 1
17 2.50 2.50 1
18 1.47 1.44 1
19 1.43 2.08 1
20 , .78 1.04
21 N 1..80 2.47
22 2.50 2.50
23 1.41 - 1.70
24 1.08 1.41
25 2.50 2.50
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Table 6 (Continued) '
AN

Item Parameters from'a Two-Dimensional
MAXLOG Analysis of the AERA Symposium Data

- ~ .

N\ . Parameter
Iterri él 32 d
26 1.88 , 2.41 64
w27 \ 1.20 2.26 _ .66
28 ' 1.40 2.04 .56,
29 . " 2.50 2.50 .60
. 30 . 1.14 ©.97 - .29 .
31 . 2.50 2.50 ] 25 .
32 .48 .48 .23
33 ¢ 1.98 2.04 .13
34 1.64 . 1.65 .08
35 ) 2.50 2.50 ' .01
36 . 2.50 2.50 - .24
37 .62 .64 - .21
38 1.86 1.70 " - .30
39 1.37 1.59 - .33
40 : 1.58 ) 2.34 - .46
41 | .94 1.04 - .60
42 1.86 T 1,377 . - .66
43 1.36 1.24° - .76
b4 1.77 .99 - .94
45 1.37 ~ 0 1.25 . -1.02
46 1.30 1.42 -1.27
47 1.31 . 1.24 -1.23
48 1.01 .75 R -1.28
49 1.08 . 40. ‘ -1.48
50 .38 .03 -1.86
X 1.54 - 1.70 .50
SD .57, .70 1.06

]

Inzzzz} to gain a better understanding of the parameter estimates
obtained from the two-dimensional solution, the estimates were correlated
with those obtained from the 3PL and 2PL analyses. These correlations are
shown in Table 7. The correlations between the ability estimates obtained
from the M2PL, 3PL, and 2PL models were also computed These correlations
are given in Table 8.
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. Table 7
Correlations eétween the M2PL, 3PL, and 2PL
Item Pargmeter Estlmates . .
/
Parameter Esﬁimates
\'
M2PL , 3PL - 2PL o
- ) ) t
Model Parameter "a; -.ag d ¥ d
a B¢ .16 80* .22 p
. & é
MZPL‘ . 32 - .52_‘-\_ 88* 55 '\
d ’ ‘ g 60% .99% ?
Al K ‘
a Seh 21 .09 -.38%
- i ) ) ~
3. . b 24 -\Qéf;\-.93'
c / -3 <04
2PL " a . v 66
ﬁ -
. a 3y l‘
I
Note: The correlations with asterisks are 51gn1f1cant
beyond -the .05 level.
- ’




) / " Table 8
Correlations between the M2PL, 3PL, ana 2PL
Ability Parameter Estimates . -
~, 1]
¢ ..'Parapeter Estimates , L
- // a: ’ <
. M2PL b 3PL 2PL 1
L~ ’ - . ,
~ . .
} Mofel Parameter 8, 6, - ;] . F -8
M2PL  _ 8, : -.91 . - .14 C .20
82 e ' .o 18, s 13 -
3BL © "0 s ~ “ .97
2PL .6 o
oo . A o - s

Note: Because of the large sample size, all correlatidns
are gignificant. .

~
N . . . . ¢
] - .

The correlation between the d-parameter estimates from the M2PL -
two-dimensional solution and the d-parameter estimates from the 2PL model
(.99) indicated that this parameter=is essentially the same for the two
models. The a-parameters have changed, however. While the a;- and
‘ ’ _az-parameter estimates were hlghly related to each other and to the 2PL

‘ - a-parameter estimates, they had Quite a different relatiofship with the
' item difficulty patameters and with the 3PL a-parameter’ estimat The
a;-parameter was<s®mewhat related to the 3PL a-parameter, whil the - —

ag-parameter was not. The ap-parameter was related to the d1ff1cu1ty

parameter estimates, while a; was not. It would seem then that the M2PL

a-parameters were dividing up the variation in the p4rameters of the 3PL
. . model. /Both a; and ap were related to the 3PL c-parameter.

»
L . Ld

The high correlation between the a;-,and aj-parameter estimates is of
special note. When these parameters are the same, it indicates that the .
tyo ability dimensions are requiréd in eqyal proportions in respopding to
the test item. If all of the a;-parameters were equal to the a,-parameters,
~only one dimension would be needed in the model -- that dimension would be
the sum of 6, and 8,. When a; and ap are different for an item, different
amounts of ability on each dimension are requlred

1

The correlations between the ability estimates gave very interesting
results, First, the M2PL ability estimates had a very high negative correlation
(-.91). This faCt, combined witl the similarity of the a-parameter estimates;
1nd1cates that the exponent of the model can be approximated by d +3161-a262

‘ ' ) ) 18 ‘ . o . ' . ) i
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Since a; and ap are equal in many cases and so are 8; and 02, ghg value of
the exponent is mainly controlled by the.d-parameter (the a10;-a20, term is
zero). This would seem to indicate that'the data have one predominant '
dimension shown by the change in difficulty of the items, and that the i
effect of the other dimensions is minor., ' ' ' P

A second interesting result is that the M2PL ability estimates have
relatively low relationships with the 3PL and 2PL ability estimates. The
are clearly an indicator of something different. - Thetability estimates ‘\
from the 3PL and-2PL moqgls are highly related to each other, as would be
expected. . e .

H .
The, fact that the M2PL item parameters and person parameters were
highly interrelated suggests that the data may be predominantly unidimensional.
To further check this hypothesis, the frequency.distribution of th# residual
fovariance matrix was formed for the two-gimensionhl solution for the M2PL
modgl. This distribution is shown in Figure 4. This distribution was alko
produced for the application of the M2PL model to the one-dimensional

simulation data inesorder to have a basis for comparison. This distribution ¢
is shown in Figure &. .

A comparison of these two distributions with those for the unéﬁimensional
models does not show any reduction in the variation of the residual covariances.
In fact, the distrihution for the unidimensional data has a larger variance °
when the”M2PL model was used than when the 2PL model was used. This fact

may suggest that the estimation of more parameters induces greater amounts
of error in the parameter estimates. o

Although there was no reduction of varianges i\ the M2PL distribution
when comp?red to' the 3PL and 2PL distributions, there was a shift in the
mean. Both of the unidimensional models yielded a means residual covariance
6f -.01. The M2RL model had a mean residual cevariancé of .02. While this
difference’'is only .03, it is highly statistically significant (z = 26.25)
because of the large number of observations. This larger mean may mean a
poorer fit to the data for the M2PL two-dimensional model than for the 3PL
or 2PL model§%'Because of lack of experience in interpreting the residual >

. -

covariance matrix, this cannot be said for sure. g

-

‘The Identification of Item Clusters *

i

Oneyof the purposes for performing the analyses on the data supplied
for this symposium was to determine whether the M2PL procedure could be
used to sort items ‘into homogeneous clusters. Based on past experience
with the 3PL model (Reckase, 1977), it was felt that items that had high .
a-values on both dimensions of the M2PL solution would be good .measures of

* the dimensjon defined by ,the d-parameter. Those items that had low a-values

probably measured some other dimension, and other combinations of a-values -
may indicate other item clusters.' ‘ .

To operationalize the above ideas, a cluster analysis was run using
the two a-parameter estimates as observationg. The Euclidean distance was
used as a similarity measure. The BMDP1M ggéfon and Brown, 1977) program.
was used for the analysis.'ﬁThe cluster analysis resulted in four fairly
distinct sets of items, although more clusters could certainly be obtained
if they were thought warranted. The four clusters are shown in Figure 6.
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‘Frequency Distribution of the Regidual Cqvariances
for the M2PL Model Applied to.the Real Data
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Figure 5

Frequency Distribution of the Residual Covariances
for the M2PL Model Applied to the Simulation Data
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Figure 6

Groups of Items éased on a Cluster Analysis
of the M2PL Discrimination Parameter Estimates '
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« _ Two possible conc1u51ons .come to mind based on these results. .The

22 . 'y

»
.

The first cluster is made up of items that had high a-values on both
dimensions. This clubter is very tight and distinctively different than

the other itdm clusters present. The second cluster is made up of items

that had fairly high discrimination parameter estimates for the second

dimension, ‘and slightly lower values for the first dimension. Recall that

the second dimension was the one that had the a-values related to the item
dlfflculty level. )

The tfird cluster is composed of items that had middle range a-parameter
estimates on both dimensions. The fourth cluster is composed of items that
had relatively low discriminations on both dimensions. Item 50 was included
with this cluster even though it seems like an outliexr. It was the most
difficult item on the test. Although these clusters seem reasonable from a
statistical point of view, without knowing the content of the items it is
impossible to tell the variables that control cluster membership.

- ) - 4 N . . *

’ ‘ Discussion
When the ana1y51s of the AERA symposium test data was begun, the
anticipated result was that two or‘more relatlvely distinct ability dimensions

.. would be discovered and that the items on the test could be classified.into

content categorles based on which dimensions were required for su-~cessful

performance® This was not found to be the case. Rather than distinct
abi1i§$ dimensions, two highly correlated dlmep51ons were develdped.

Rather then f1nd1ng that the M2PL model fit the data better -than the .

unidimensional models, the f1t was found to be about equal 1f not worse.

\

first is that the estimation program for the M2PL model, or the model
itself is inadequate. Although this is certainly a possibility, the fact .
that the estimation procedures did a good job of recovering true parameters

in simulation studies and estimating parameters for fultidimensional test

data (McKinley, 1983) would argue against such an interpretation. .

The second conclusion that comes to mind is that the test data really
do hav predomlnantly one dimension and that the results of the analysis
reflect tha't fact. Even if the test does require multlple ab1;1t1es, this
fact may be clouded by ‘the range of item difficulty present in the items.
This may be a case similar to a test made up of three items: jump over a
string, define "precipitation," and solve a differential equation. Although
these items measure distinctly different skills, for -a population that
ranges widely in ability, the items will appear statistically to measure a
single dimension. We anxiously await the information about the nature of
the .data the we have been analyzing to determine which conclusion is correct.

»
"
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