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Multidimensional item response theory (HIRT) models havebeen available
for at least twenty years 1(Bock and AiLkin, 1981; Mulaik, 1972; Rasch,
1961; Samejima, 1974; Sympson, 1978), but little use has been made of these
procedures. The reasons'for.the lack of use are threefold: (a) practical
computer programs for estimating the parameters of the models were
unavailable, (b) examples of the application of the models were not.present
in the literature to stimulate interest, and (c) information was not available
on how to interpret the results of the procedures.. Some gains have been ,

made in the first two of th.e deficient areas. Programs for the estimation
of,the parameters of at leaSt one class of MIRT models are now available.
(Bock and Aitkiu, 1981; McKinley and Reckase, in press) and several
applications of the models have appeared in the literature (Bock and Aitkin,
1981; McDonald, 1967; McKinley, 1983; McKinley and.Reckase, 1983). However,
guidelines for the interpretation of the results of MIRT models are still
not available in the literature. The purpose of this paper is to present
some initial guidelines for the interpretation of the item parameters and
to relate the parameters to the traditional measurement concepts of item
difficulty and discrimination.

Three approaches will be taken in presenting the guidelines for the
interpretation of the results of the application of the MIRT Modelso
First, the form of the item response surface (IRS) for three different MIRT
models will be presented and the effect of the model parameters on the .

shape of the surfaces will be indicated. Second, the concepts of item
difficulty and item discrimination will be defined for the MIIIT models and
will be related to the IRS. Finally, the interpretation of the model
parameters will be discussed and guidelines will be given for the Use of
parameter estimates.

The Multidimensional Item Res onse Theor Models
\-

Three_different MIRT models will be used as examples in this paper to
show the generalizability of the concepts presented. The models used are:
(a) a multidimensional extension of the two-parameter logistic model (M2PL)
(McKinley and Reciase, 1982); (b). a multidimensional extension of the "
three-parameter logistic model (M3PL) (Sympson, 1978); and (c) a

multidimensional extension of the Rasch.model-(M1PL) (Mulaik, 1972).

Paper presented at the annual meeting of the Americ.'n Educational Research
ASsociation, Montreal, April 1983. This research was supported by Contract
Number N00014-81-K0817 from the Personnel and Training Research Programs of
the Office of, Naval Research. Printed in the U.S.A.
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Although these three models are generalizations of a single class of IRT
models, they are all distinctly different models and no one of them is a
special case of any of the others.

The Mal, model is a special case of a general model presented by Rasch
(14ol). The equation for the model is given by

d +
-3

P(xij = 119.7.,d1,2j) = e
d + a '8

1 + e

(1)

whereP(X.j =1. a
i

, d.
,

6,) is the probability of a correct response toi 1

Item i by Person j, ai is a vector of discrimination parameters for Item 1,

d1 is a scalar difficulty parameter for Item i, and 8. is a vector of
-1

ability parameters for Person j. Both the a - and'0 -vectors have the same

number of elements which is dependent on the dimensionality of the data
being modelled. ,Note that there is only one difficulty parameter in this
model, but a number of discrimination parameters. The model has this form
because it was found tO be impassible to estimate multiple difficulty
parameters when using this model (McKinleyand Reckase, 1982).

The M3PL is an extension of the three-parameter logistic model presented
by Birnbaum (1968). This model is given by

P(x. ,b
i
,c-

ik
(9
jk

- b
ik

)

e
= ci + (1 - ci) 'IT

Da
k
(

j
- b

ik
)k=1 i

1 + e

(2)

wherebisavectorofdifficultYparameters,andc.is a scalar parameter

indicating the lower asymptote of-the IRS. The other symbols are defined
above.

The M1PL model is an extension of the unidimensional Rasch model
(Rasch, 1960). This model is of the form

n (8 +
i

e.
k
)

P(x. = lle.03 ) = k=1

jk

ij + e
ik

)

1 + 1: e
k.1

(3)

wheree.is a vector of item easiness parameters. The elements of this-1

vector are of opposite sign to the utual difficulty parameter.
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The Item Response Surface Defined by the Models

In order to gain a better understanding of the characteristics of each
of these three models, two plots of the item response surface defined by
each of the models will be presented for cases limited to two dimensions.
The plots have been produced using item parameters thac have been selected
to accentuate the effects of the parameters on the shape of the surface.
By cOntrasting the two surfaces that are being presented for each model, an
intuitive grasp of the effect of the parameters can be obtained.

M2PL

The IRS's for the M2PL model are shown in Figure 1. The parameters
used to generate these plots are given in Table 1. Notice that the surface
in Figure la tends to rise closer to the (-3,-3) point.than the surface in
Figure lb. This ig a function of the difficulty of the two items. For an
examinee popuiation in which 01, and e2 are distributed N(0,1) with p = 0

8182
a larger proportion of the examinees will obtain a correct response to Item
la than to Item lb. This fact is reflected in the d-parameter for the
item. The d-parameter for Item la is much larger than that for Item lb,
indicating that Item la is easier for the population described above. Item

. la may not be easier for every population, however. For example, for a
population concentrated at (3,-3) on the 0 plane, Item lb is easier than
Item la. A definition of Item difficulty that addresses this issue will be .

presented lateein this paper.

Table 1

Item Parameters Used to Generate the Surfaces
for the M2PL Model

Parameter

Item a1 a2

la .5 1.5 1.0
lb 1.75 .25

A second characteristic of tbe IRS for the M2PL model can be noticed
. in Figure 1. In Figure la, ,the surface increases more quickly parallel to

Dimension 2 than to Dimension 1. For that item, p2 is much larger than al.
These parameters control the steepness of the surface. For Item lb, the
surface increases very slowly parallel to Dimension 2. For that item, a2
is much smaller than a .

M3PL

The IRS's for the M3PL model are shown in Figure 2. The parameters
used to generate the plots for this model are given in Table 2. One obvious
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Figure 1

Examples of Item Response Surfaces
for the M2PL Model

Figdre la

Parameters

a
1

= .5

a.\2 = 1.5

d = 1.0

Figure lb
Parameters

al = 1.75

a2 7 .25

= -1.5
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Figure 2

Examples of Item Aesponse Surface's
for the M3PL Model

a
1

Figure 2a

Parameters

.5

=1.5

c = .1

bl = -.5

b
2
= -1-5

Figure 2b

Parameters

a
1
= 1.75

a
2

.25

c = .5

b
1

= 0

b
2
= -2.0
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difference between the two plots- shoWn in Figure 2 is that the lower asymp.tote
for the two surfaces are quite different., The lower asymptote is controlled-
by the c-Tparameter, which has a value of .1 for Item 2a and .5 far Item 21)
The surface cannot drop below the value of the c-parameter on the probability
scale.

Table 2

4

Item 'Parameters 1lEed to Generate the Surfaces
for the M3PL Model

'Parameters

Item a1 a

2a .5 1,5 . -.5 -1.5 .1
2b 1.75 .25 0 ,-2.0 .5

A second, quite obvious difference in these two plots is the general
shape. The surface for Item 2a increases fairly quickly along both the 01
and 62 axes, while the surface for Item b increases mainly along the
01-axis. These results are due to a combination of the effects of the a-
and b-vectors. The a-parameters control the rate of increase of the surface
in tile area around the point defined by the b-values. For Item 2a, the
curve increases more quickly along the 62 dimension than the 01 dimension
because a2 is much larger than al. The opposite is true for Item 2b.

M1PL 0

The IRS's for the M1PL model are shown in Figure 3. The parameters
used to ge-lerate the plots for this model are given in Table 3. These two
plots almost look like mirror images of each otherbecause of the reversal
in the signs of the e-parameters for.ltem 3a and Item 3b. Although the
.curves along the 01- and 02-axes are of the.same shape, they'are shifted to
different locations by the selection of-the e-parameters. Figures 3a and
3b are merely showing a different segment of the same surface. The point
on the surface at (-1,.5) on Figure 3a is the same as the point on the surface
.at (1,-1.5) on,Figure 3b. The two surfaces differ only by a translation.

es
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Figure 3

Examples of Item Response Surfaces
for the M1PI, Model

0

Figure, 3a

Parameters

1 ' 1.0

e
2 .5.

Figure 3b

Parameters

el 1.0

e2 = 1.5
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Table 3'

Item Parameters Used to Generate the Surfaces
for the 111111. Model

Paramete

1.0
-1.0

Item

3a

3h
= .5
1.5

Definition of Item Difficulty and Discrimination

-P From an analysis of Figures 1 thru 3, it is clear that the parameters
of the models have a direct influence 6n the shape of the IRS's. However,
the relationship between the lhape of the surface and the parameter values
is not always simple. In or4er to clarify the relationship, the common
psychometric concepts of Aka diffic1.1.ity and discrimination will be,generalized
to the MIRT models. The relationship between these codcepts and the parameters
will clarify the meaning of the, parameters.

Definition of Item Difficult

For unidimensional item response models, the dUficulty of an item is
defined as the point on the ability scale below the point of inflection Cf
the item charactehstic curve. This point cah be determined mathematically
by slolving the second derillative of thepitem response function with respect
to 0 for zero. For the MIRT models, item difficulty will be defined in the
same way--as the root of the second derivative-of the Y.tem response function.
However, in the multidimensional case the second derivative yieldsta matrix
of the form

62p

se2et -6

os2
'62p

T176p

"03
2

62p
ojz ele

. . .

and a solution may not exist for which all the elements are equal to zero.
This ii equivalent'to saying that the point(s) of inflection may be different
depending on the direction relative to the axis that is takerkalong the
surface. Therefore, the second directional derivative (Kaplan, 1952; p. 124)
will be used to define the multidimensional difficulty of an item. For the
two-dimensional case, the second directional derivative in direction
with respect to the 01-axis is given byt
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In most cases this definition Yields one or more functions as 4 result,
rather than a single'value.', _Examples of the use of this definition will
now_be given using the three models presented above.

C;'
.

12PL If P(X = la., d.
3

6.) iS,set equal to P for the sake of

(4)

-
convenience, the second directional derivative of P with respect to the
0-vector in the two dimensional case is equal to

7
a

21:' ma a 2P(2P2 - 31, + 1) cos24 + c a P(2P - 3P + 1) sin a cos

(5)

+ a 2P(2P2 - 3? + 1) sin2a

for the M2PI. model. To determine the difficulty of the item, the second
directional derivative is set'equal to zero- and solved for the appropriat2

4

value's of P. The solution yields P = 0, ,5, and 1. glace P = 0 and I are
degen rate cases that occur when 0 = -0 and +00 respectively, only P
defin s the difficulty of the item using this model. Thus, the difficulty
of an item for the NM model is defined-by the intersection of the IRS
with

)

a plane parallel to the 0-plane at P =! .5. TLe equation for the
intersectien for the. two-;limensional case of this model is given by

d + 9 a 61113 i
(6)

This is the equation for a straight line. The dashed line on Fi:gures la
and lb shows the difficulty line for the two items,shown. When a person'S°
position'in t.17 0-Plane is behindDthat line, the probability of 4 correct
response is greater than..5. If it is in front of that line, the probability
is less than .5.

13PI. If P(X. = b., c., 0,) is set elual to P and the.first
ij -1 -1 1 -3

term in the product is set equal,to Pi and the second term is set equal to
P2, the" second directional derivative ofp with respect to P for the two-
dimensional case is given by

a
2? mc (1 - c)a 2? P (2P 2 - 31, + 1) cos2a

1 1. 2 1 1

+ (1 - c)a a P P (1-P)(1-)siflcLCOScL
. 1 2 1 2 2 (7)

c)a P (2P 2 - 31) 1) sin-a
2 1 2 2 2

6, for the 13P1, model. To determine'the difficulty ofl the item, the second
directional derivative,is set equal to zero and solved for the appropriate
values of a b. and c.. The solution is much more complicated for the ,_iv v_i

10*
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M3P1. model than for the M214. model. , The solution for the line of infleaion
is dependent on the angle of approach to the slope relative to the 0-aXes.
If the line of inflection is deter4iined parallel to the 01-axis (a = 00),
the solution'is given by the equation 02 = b2. The projection of this line
on the 61, 02 planeit a qtraight line parallel to the 02-axis. If the
line of inclection is determined parallel to the 027axis (a =900), the so
solution is given by the equation 61 = 1)1, The projection of this line on
the 01, 02 plane is a straight line parallel to the 62-axis. In*both
cases, the lines of inflection divide the'ei, 62 plane into two regions,
one having a relatively low probability of a correct response, and the
other having relatively high probability of a correct response. The lines
of inflection foeItems 2a and 2b are shown as dashed lines on Figure

M1PL The second directional derivative for the MIPL model is given y___....

(0

Pa,e 1

- 2e

+ e )( (0
1 kl+e

(0 + e ) (0

1
1 2

+ e )
2

9
cos-a

+ e )
2 sin a cos a (8)

(8 4. 92) (1+ e
(0 + )

1 1 sin2u

4

To determine the difficulty of an item using this model, the second directional
derivative is set equal to zero and solved for the values of ei. Different

functions are obtained as solutions for this model depending on the angle
.of 4proach to the surface relative to the,61-axis. If the direction is
taken as parallel to the 61-axis, (a = 00), the solution is given lay the
function, 02. = -e2. If the direction taken is paralle .c Ole 62-axis
(er = 90°), the solution is given by the funtion 01 -el. le.: the direction
of solution is halfway between the 61 and 82 axes (a 45°), #,),e solution
is

e
(61+e1)

+
e(62+ )

(9)

The solution for a = 0° and a = 90° are shown as dashed lines in Figure 3.
Note that just as with the.other two mOdels, the lines f inflectioli'dtvide
the 6-plane into a region with low probability of response apd a region
with a high probability of response. In this case, the low probability
region is the quadrant nearest (-3, -3) and the high probability region i5
the quadrant near (+3, +3).

Definition of Item Discrimination

,In the unidimensiónal IRT models, the item discrimination is related
to the slope of the ICC at the point of inflection. In the multidimensional
ease; the discrimination can be definedlip the same way, b_ the direction

11



of the slope relativeto the O'xes must be specified. The slope may bc.
quite differe4 depending on the direction in which it is:determined. The
value'of .the slope'at the line .of inflection can be.determined by,evalUating
the.first directional derivative at the points on the line of inflection.-
The first directional derivative for the two dimensional casg is given by

6P 6PV P x cos a + sin aa 60
6
0
21

( 0)

wher a is the angle with the 61-axist Generally the slope is ot greater
interest when a equals 00 or 90° than for other angles, since these cases
indicate,the usefulness of the.item for measuring ability 9n the.61 and 02
dimensions, respectively. Any other direction can also be used, however,
to determine the discriminating power of the item for weighted composites
of 61 and 82.

M2PL The directional derivative for the M2PL model is given by the
equation

VaP = a P(1 - P) cos ri a P(1 - P) sin a. (11)
2

When the derivative is determined for a = 00, the .slope is given by alP(1-11).,
the,line of inflection is defined by P = .5 for this model, the slope

in, a direction parallel to the 61-axis is equal to a1/4 all along the
difficulty line. This ikact shows that the discrimination of the item
relative to 61 is dependent on al. Likewise when a = 90°, the slope at the
line of inflection is a2/4. The a2 parameter controls the di,crimination

. of the item relative to the 82-dimension.

M3PL The directional derivative for the M3PL Model is given by the
equation

7
a
P = (1 - c)Da P II (1 - P ) cos a 4- (1 - c)Da P P (1 - P ) sin a (12)

1 1 2 1 *2 1 2 2

where all the symbols have been defined at Eipiation. 7. The slope of tfie
, IRS at this line of inflection when a = C° is given by (1-t)Di1P2/4. Thus,
for this model, the slope along the line of inflectiono 1)11 is dependent
on 62, the parameter t!lat controls the value of P. The slope at the line
of inflection, 02 = b2, whenoa = 90° is given by (1-c)Da2131/4, which is
dependent on 81. This means that, According to the M3PL model, the
discriminating power of an item for a partitular dimension changes depending
on ,.he level of ability an the other dimensions. As the level ornbility
on the other-dimensipns increases, the .:.:iscriminating power on the first
dimension increases. For the two-dimensional case, as abilitY on the
second dimension increases, the slope pardllel to 04 approaches (1-c)Da1/4.
Similarly, the slopeat tile line of inflection approaches,(1-c)Da2/4 ,for 02
as 01 increases.
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.s,, forf the MR.PL model, as with the M3Pl, modet, the diticriminat'Ang
7:1wei. et an item on a parMcular dimension io dependent en the levet of
ahiittv on the-ether dimensions. However, for the M1157 model, ail itemo
ife equivalent 'in their discrn.ting power.for a particular combination

discrimil.nation parameter is p.resent in the mode4 !iote1

tt-h4t tor the [VEn. model, the poiri.&,, of greatest discrimination on the 911-
)4metrJtoo occur& when ----a,, At. that. point, the slope equal to As

4
the value for increases',,thotclkscrfmanating power for the e- dtmeuslion
decreses, The oame reouit .C3N. he obtained for the 62-damension,
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7ni_w det:ilittous o d,ifficutty and discnation presented Mi. thtt)
acec eArd.be!ased an much-the '.3ame may that their nnidimensional couner-,
iiItto areitems can be compared on their difficulty and items can be
selected for a test based,en their discrimination. However, before these
ose.-3 can be made of these characteristics of the items, a decision must be
1,,Tfae concerning Which ef the MINT models to- uoe, The definitions of dzfftcultv
and discrimination for these modOs can he used to asslist to making that
4(5110)

0

The detznpAzon of.dffficu forthe M2PL node o (pate dtffet.ent from
toat for'the 13PL or M1PL models la both of thee latter cas'PS, there Zs
Leqtzally a Separate difficulty parameter for each dimenrion being4fleasured,
k-o the ca!-.Je of the M3PL model, this fact is a result of .the non-coMpensatory
uatotre qt this nok4 No_matter how.high the ability is on one dimehsen,

t. camet, compensate Nr the lack of ability onthe other dimension. The
Jo compensaeOry,-and ad a result, the diff iculty of the :Lin

depevAii cn tne_ability en ail dimensions,

The niPidel yields two difficulty functions fora different reason
tban t'lx M31-I ,The dimensions of this mOdel affect each ether in an
4nusuai way, Ybe ,level of abIlity en cuie,dimension fixes the-range of
eiteC:.y.:1 the otber dimension. For example,-i-fjhe sum of e: and.ei is 0

1:4



for nsoe. the minimum probability of- a. Correct, response for the
. person on the iteci is 5. The second dimension can onky 'determine how much

above .5 the probability will fall. The surface has the same shape at that
point. as at any other pdInt, but -the range of the probabilities has been
Tednced_ Thus, the definition of- difficulty- t all levelY; of ability stays
the saille

The'defi ttion at divrimination for t-he three modein differ cons .dera
For the M2PL, the discrimination of-the item is deri,hed as C constant for
.each.dimension. For the M3141. model, the,discriminating power, of an item on
onedimension is dependent on the.ability on the other dimensions.. For
thiolmodel, the discriminating power of an iteM -on a dimension increase
the.abilitY on the other dimensions increase. Fe-,1r the .M1.131. model, the
discriminating power of an item on oneJilme -on is also dependent upo' the
ability leve l. on ihe other .dimeusions, ex for this model, the discrim
noting peWee 02 a dimension declines as abity on the other dimensions
increases,

These liree models yield elearly differe t definitions of disc,rimin on.
Eefore any i the models is applied, the user should be sure t,at-the
,characteristi.es of the mode: match the characteristics of the data-bei g
araalyzed The information presented here should help in insuring thot the
appropriate model is used for a particular application
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