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Multidimensional item response theory (MIRT) models have been available
for 3t least twenty vears {Bock and Airtkin, 1981; Mulaik, 1972; Rasch,
1861; Samejima, 1974; Sympson, 1978), but little use has been made of these
procedures. The reasons for- the lack of use are threefold: (a) practical
computer programs for estuimating the parameters of the models were
unavailable, (b} examples of the application of the models were not .present
in the literature to stimulate interest, and (c) information was nmot available
on how te interpret the results of the procedures. Some gains have been -
made in the first two of the deficient areas. Programs for the estimation .
of “the parameters of at least one class of MIRT models are now available.
{Back and Aitkin, 1981; McKinley and Reckase, in press) and several
applications of the models have appeared in the literature (Beock and Aitkin,
1981; McDonald, 1967; McKinley, 1983; McKinley and Reckase, 1983). However,
guidelines for the interpretation of the results of MIRT models are still
not available in the literature. The purpose of this paper is to present
some initial guidelines for the interpretation of the item parameters and
to relate the parameters to the traditional measurement concepts of item
dafficulty arnd discrimination. .

Three approaches will be taken in presenting the guidelines for the
interpretation of the results of the application of the MIRT modelss :
First, the form sf the item response surface (IRS) for three different MIRT ;
models will be presented and the effect of the model parameters on the . H
shape of the surfaces will be indicated. Second, the concepts of item i
dafficulty and item discrimination will be defined for the MIRT models and
will be related to the IRS. Finally, the interpretation of the model
parameters will be discussed and guidelines will be given for the use of .

parameter estimates.

The Multidimensiofal Item Response Theory Models
. o

Three different MIRT models will be used as .examples in this paper to
shew the ggheralizability of the concepts presented. The models used are:
{a) a multidimensional extension of the two-parameter logistic model (M2PL)
(McKinley and Reckase, 1982); (b) a multidimensional extension of the .
three-parameter logistic model (M3PL) (Sympson, 1978); and (c¢) a
multidimensional extension of the Rasch.model. (M1PL) (Mulaik, 1972).
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Although these three models are generalizations of a single class of IRT

models, they are all distinctly different models and no one of them is a
special case of any of the others.

The M2PL model is a special case of a general model presented by Rasch
{19e1). The equation for the model is given by '

‘ ’ di + Ei‘EJ s
3 = —t 1 :
POy, = 1la,,d;,8,) = T W
l+e .

g

where P(Xij = I.Lgi, d, 8 ) is the probability of a correct response to
ltem i by Person j, a; is a vector of discriminatioh parameters for Item i,
di is a scalar dlfflculty parameter for Item i, and G is a vector qf
ability parameters for Person j. Both the a.- and’ SJ-vectors have ‘the same

number of elements which is dependent on the dimensionality of the data -
being modelled. Note that there is only one difficulty parameter in this
model, but a number of discrimination parameters. The model has this form
because it was found to be impossible to estimate multiple difficulty
parameters when using this model (McKinley" and Reckase, 1982).

The M3PL is an exten51on of the three- parameter logistic modegl presented N
by Birnbaum (1968). This model is glven by '

. ‘ : 2] - b
< : S eD‘aik( jk T Py
=11 3.) = + (1L -~ c, 2
P(Xij l*éi)éincisgj) Ci (1 Cl) K=l Daik(e_k _bik) ( ) . y
: ' l+e J :
L\

€

where b is a vector of difficulty parameters, and N is a scalar parameter
indicating the lower asymptote of- sthe IRS. The other symbols are defined
above. :

The MIPL model is an extension of the unidimensional Rasch model
(Rasch, 1960). This model is of the form .

P(xij = l|gi,6 ) =

& D (5. Fe.) S

where & is a vectcr of item easiness parameters. The elements of this

vector are. of opp031te slgn to the uéual difficulty parameter.

v
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The Item Response Surface Defined by the Models

In order to gain a better understanding of the characteristics of each
of these three medels, two plots of ‘the item response surface defined by
each of the models will be presented for cases limited to two dimensions.
The plots have been produced using item parameters thac have been selected
to accentuate the effects of the parameters on the shape of the surface.

By contrasting the two surfaces that are being presented for each model, an
intuitive grasp of the effect of the parameters can be obtained.

M2PL

The IRS's for the M2PL model are shown in Figure .. The parameters
used to generate these plots are given in Table 1. Notice that the surface
in Figure la tends to rise closer to the (-3,-3) point. than the surface in
Figure 1b. This is a function of the difficulty of the two items. For an
examlnee popuiation in which 6;, and €, are distributed N(O, 1) with pe 8,

a 1arger proportion of the examinees will abtain a correct response to Item
~la than to Item 1b. This fact is reflected in the d- -parameter for the

item. The d-parametex for Item la is much larger than that for Item 1lb,

indicating that Item la is easier for the population described above. Item
. la may not be easier for every population, however. For example, for a

population concentrated at (3,-3) on the 6 plane, Item lb is easier than

Item la. A deﬂ\nltlon of item difficulty that addresses this issue w111 be .

presented later®in this paper. . :

Table 1 ' : 3

Item Parameters Used to Generate the Surfaces -
for the M2PL Model

Parameter
Item . 51 ‘ a, ‘ d
la .5 1.5 1.0
1b 1.75 .25 . -1.57

A second characteristic of tbz IRS for the M2PL model can be noticed
in Figure 1. In Figure la, the surface increases more quickly parallel to
Dimension 2 than to Dimension 1. For that item, 4 is much larger than a;.

" These parameters control the steepuuSS of the surface. For Item 1lb, the
surface increases very slowly parallel to Dlmen51on 2 For that item, a,
is much smaller than ay .

M3PL

~The IRS's for the M3PL model are shown in Figﬁre 2. The parameters
used to generate the plots for this model are given -in Table 2.  One obvious

| 4
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Figure 1

Examples of Item Resbonse Surfaces
for the M2PIL Model




Figure 2

Examples of Item ﬁesponse Surfaces -
for the M3PL Model

= 1.75 b

Figure 2a

Parameters '
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difference between the two plots- shown in Figure 2 is that the lower asymptote -
for the two surfaces are quite different. The lower asymptote is controlled . -
by the c-parameter, which has a value of .1 for Item 2a and .5 f:r Item 2b.

The surface cannot drop below the value of the c-parameter on the probability
scale. : : f

L4

Table 2

< a N ' .
Item Parameters Used to Generate the Surfaces
for the M3PL Model

-

S ’ ' " Parameters

ITtem - a; C a, by b, .
2a .5 L5 . -.5 -1.5 - .1
2b v 1.75 .25 0 .=2.0 .5

A second, quite obvious difference in these two plots is the general -
_shape. The surface for Item 2a increases fairly quickly along both the 0,
and 6, axes, while the surface for Item 2b increases mainly along the
8,-axis. These results are due to a combination of the effects of the a-
‘and b~vectors. The a-parameters control the rate of increase of the surface
in the area around the point defined by the b-values. . For Item 2a, the
curve increases more quickly along the 8, dimension than the 6; dimension
because a; is much larger than a;. The opposite is true for Item 2b.

MIPL : o

The IRS's for the MIPL model are shown: in Figure 3. The parameters
used to generate the plots for this model are given in Table 3. These two
plots almost look like mirror images of each other because of the reversal
in the signs of the e-parameters for Item 3a and Item 3b. Although the
.curves along the 6;- and 6,-axes are of the .same shépel they are shifted to
different locations by the selection of the e-parameters. Figures 3a and
3b are merely showing a different segment of the same surface. The point
on the surface at (-1,.5) on Figure 3a is the same as the point on the surface
-at (1,-1.5) on Figure 3b. The two surfaces differ only by a translation.

t a .
. ! ’




Figure .3

Examples of Item Response Surfaces
for the MIPL Model

Figure 3a
Parameters

-el‘= 1.0

e =-,'.5
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. Figure 3b

Parameters

el = ~1.,0

;e =  1.5




8
4 )
Table 3’
Item Parameters Uéed to Generate the Surfaces M
. for the M1PL Model .
-~ 4 »
Parameters
Item o ey s es
3a 1.0 - .5 ( \
3b -1.0 1.5 '
Definition of Item Difficulty and Discyimination !

#  From an anzlysis of Figures 1 thru '3, it is clear that the parameters

of the models have a direct influence 6n the shape of the IRS's. However,

the relatlonshlp between the ghape of the surface and the pdrameter values

is not always simple. 1In order to clarify ‘the relationship, the common
psychometrlc concepts of 18 difficpity and discrimination will be genmeralized

~to the MIRT models. The relatlonshlp between these concepts and the parameters

will clarify the meaning of the. parameters. ~ : .

Definition of Item Difficulty

IS ! ) . °

. For unidimensional item response models, the difficulty of an item is
defined as the point on the ability scale below the point of inflection 'of
the item characteristic curve. This point cah be .determined mathematically
by solving the second derivative of thesitem response function with respect
tn 6 for zero. For the MIRT mocdels, item difficulty will be defined in the
same way--as the root of the second derivative of the %tem response function.
However, in the multldlmensLonal case the second derlvunzve yields,a matrix
of the form

At}
i

52p 52p 52p ...
56,2 56,6 56,0, .
82 8% . . . .

50,8, 58452

.

HE I |
and a solutlon may not exist for which all the elements are equal to zero.
This is equlvalent to saying that the point(s) of inflection may be different
depending on the direction relative to the axis that is taken_ along the
surface. Therefore, the second directional derivative (Kaplan, 1952; p. 124)
will be used to define the multidimensional difficulty of an item. For the
two-dimensional case, the second directional derivative in dlrectlon o, .

with respect. to the 0,-axis is given by

.. . ! . ) 9
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In most cases this deflnxtlon yxelds one or more functions as a result,
rather than a single value. Examples of the use of this deflnxtzon will
uow be given using the three models presented above. :

e

M2PL If P(X ; =1} a; .di, 6 } is.set equal to P for the sake of

;;;;;
_v

convenience, the secand dzrectxonal derzvat;ve of P with respect to the
8-ve¢tar in the two dxmensxandl case is equal %o :

?aﬁp = 812P(2P2 - 3P + 1) cos?a + &,aaP(ZPZ - 3P + 1) sin a cos o
i £ . T -
. , F(5)

+a 2P(2P% - 3P + 1) sin®a

1
.

, for the M2PL model. To determlne the dlfflculty of the item, the second

¢ directional derivative is set’ equal to zero and sclved for the appropriate
values of ¢. The solution yields P = 0, .5, and 1. Since P = 0 and 1 are
degenerate casés that occur when 8 = - and +% respectively, only P = ,5°
defines the difficulty of the item using this model. Thus, the d1ff1culty
"of an/ item for the M2PL model is defined by the intersection of the IRS
with 2 plane parallel to the @~plane at P = .5. Tke equation for the
1nt945ect10n for the two—dxmensxonal case of thlS model is given by

. + g . x - N
A agpfyy b agpfyy = 0 ©

This is the equation for a straight line. The dashed line on Figures la

and 1b shows the difficulty line for the two items shown. When a person's
position ‘in tk ©-plane is behind’that line, the probab111ty of g correct
response is greater than .5. If it is in front of that line, the probability
15 less than .5. . '

*

M3PL If P(X = lfgi, b., ¢., 6 ) is set e%ual to P and the first

=i’ i
term in the prcduct is set equal. to Pl and the second térm is set equal to
» Py, the second directional derivative of P with respect to P for the two-

dimensipnal case is given by
-

. T = (1-cla?PP (2P° -3P +1) cos‘a
: a 1 12 1

+ -@)aaPP(l-P)Q1-"F) sinacosa C e
(1 -claalPC( 2 q0 T (7

+ (1 - c)dzzP P (2P * - 3P + 1) sin”a
1 2 A Z

® four the M3PL model. To determine ‘the difficulty of the item, the second
directional derivative .is set equal to zero and solved for the appropriate
values of a;, b,, and g5 The solution is much more complicated for the .

v

. i | - E
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M3PL model than for the M2PL model. - The solution for the line of infle¢tion
is dependent on the angle of approach to the slope relative to the 8-axes.
If the line of inflection is detersined parallel to the 8,-axis (a = 0°),
the solution is given by the equation 6, = ba. The projection of this line
on the 8y, 8; plane is a straight line parallel to the 8,~axis. If the

line of inflection is determined parallel to the 8j-axis (a =90°), the
solution is given by the equation 8y = by. The projection of this line on
the 8,, 6, plane is a straight line parallel to the 8,-axis. In‘hoth

cases, the lines of inflection divide the’ 8y, 8, plane into two regions,

_one hav{ng a relatively low probability of a correct response, and the

other having relatively high ptobability of a correect response. The lines

of inflection for" Items 2a and 2b are shown as dashed lines on Figure 2.

MiPL The second directional derivative for the MIPL model is given\Zy

-

- , (8 +e) ( (8 +e) ) .
_ ?g*Pla e ! "1 14+ 2 -2 cos?a

6 +e) (B +e)
1 1 o 2 2 gin e cos & - @

N e ) (8 +ee )) _ :
+e 2 2 \1+ e ! 1./ sinZa '

3

- 2e

To determine the difficulty of an item using this model, the second directional
derivative is set equal to zero and solved for the values of e, - Different

funﬁtions are obtained as solutions for this model depending on the angle

-of approach to the surface relative to the Bi-axis. If the direction is

taken as parallel to the 8i-axis, (¢ = 0°), the solution is given by the
function, 6; = -e,. If the direction taken is paralle? .c the O3-axis
(¢ = 90°), the solution is given by the funtion 8; = -e;y. 1% the direction
of solution is halfway between the 8y and 6, axes (& = 45°), rYe solution
ig ’

'S

%

e(P1ter) , o (Bateq) | (9)

3

The solution for o = 0° and @ = 90° are shown as dashed lines in Figure 3.
Note that just as with the other two models, the lines of inflectidh d¥vide
the §-plane into a region with low prob:ability of response and a region
with a high probability of response. 1In this case, the low probability
region is the quadrant nearest (-3, -3) and the high probability region is
the quadrant near (+3, +3). ' '

Definition of Item Discrimination

Im the unidimensional IRT models, the item discrimination is related
to the slope of the ICC at the point of inflection. In the multidimensional

case,; the discrimination can be defineélff the same way, b. % the direction




11
;

/

~

of the slope relative to the 0 .xes must be specified. The slope may by
quite differenl dependirig on the direction in which it is determined. The _

. value of the slope at the line of inflection can be determined by evaluating
the first directional derivative at the points on the line of inflection.
The first directional derivative for the two dimensional case is given by

3

o p o SP - o) S .
»aP 551 cos o + éaz sin o £16)

¢ ¥
wher:: o is the angle with the 8y~axis. Generally the slope is of greater
interest when o equals 0° or 90° than for other angles, since these cases
" indicate,the usefulness of the item for measuring ability on the . 0; and 9,
' dimensiens, respectively. Any other direction can also be used, however,
to determine the discriminating power of the item for weighted composites

of 8y and 8,. , ' )
M2PL The directional derivative for the M2PL model is given by the , ¢
: equation ' , ! N
: ﬁ -
= 4 ' '
VaP = qlp(l - P} cos a + aOP(l - P) sin a. {113

L

When the derivative is determined for « = 0°, the slope is given by aP(1~P}..
Since. the line of inflection is defined by P = .5 for this model, the slope
in a direction parallel to the 8;-axis is equal to a;/4 all along the

. difficulty line. This Kact shows that the discrimination of the item
relative to 6, is dependent on a;. Likewise when a = 90°, the slope at the v
line of inflection is az/4. The a, parameter controls the discriminmation

- of the item relative to the 6,-dimension.

- M3PL The directional derivative for the M3PL model ig given by the
; eguation ‘
q ’t
.2 iv’

VP=(l-c)Da PP (1l -P)cosa+ (L-c)DaPP (L-P) sin« {12}
112> g 12 2 |

ooa 2 1

‘ . )
where all the symbols have been defined at Equation 7. The slope of the
« IRS at this line of inflection when « = C® is given by (1-c)Da,P,y/4. Thus,
- for this model, the slope along the line of inflection, 8,°= by, is dependent
. ' on 8y, the parameter that controls the value of P,. The slope at the line
of inflection, 6, = by, when-a = 90° is given by (1-c)DagPj/k, which is
dependent on 8;. This means that, according to the M3PL model, the
discriminating power of an item for a particular dimension changes depending
on che level of ability on the bpther dimensions. As the level of“ability
on. the qther .dimensipns. increases, the Jiscriminating power on the first
dimension increases. For the two-dimensional case, as ability on the
" second dimension increases, the slope pardllel to 8, approaches (1-c)Day/4.
Similarly, the slope.at the line of inflection approachesﬂ(l-c)Da2/Q§for 0o
. . as 8, increases. ) ‘
L} 5 . W
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the MIPL model,
i on a parthcular dimension 3o dependent on the level of
ahilrty un the other dimensions. However, for the MIPL model, all items

are eguivalent ip therr diseriminating power for a particular combinatien
ot , ¥ e Ne diserimination parameter is present in the model. Note
that for the MIPL model, the poiRt of grestest discerimination om the 8-
- . 7
; : Y
dimencion eceurs when By = =, ﬁm‘@hat point, the slope 15 equal te g 4
“#
the value for fiy increases, the diseriminating power for the By = dimensio
decreases.  The same result can be obtained for the HBo-dimension.
RN M ” .
-

paper van-be used in much the bame way that therr unidimensiomal counfer-.
parts are=-items can be cempared on their drfficuity and items can be
selected for a test based on their discrumination. Howevey, before thooe
5 can be made of these characteristics of the items, a decision must be
made concerning which of the MIRT models to use.
and discrimnation for these moedels can e nsed to ass15t 18 making that
orsion. - : ‘

“T3¥. When @ = 90°, the siope of the surface aleng the

45 with the M3PL model, the dﬁ&@fzmamatimg;:>

G

mn

The definitions of dafficnity and diseriminatzon presented 1n thio e

The definitions of drfficuls

. s ? - o A '-,;§ o . " "o -
The definrtion @f,dafﬂn@ulgsﬁ@f the HIPL model 15 quaite different from
that for the M3PL or MIPL modelod In both of these latter @asé@, there 15

coneatially a

arture of this model.  No matter how high the ability is on one dimensios,
i . compensate fﬁr the lack of ability on the other dimension. The
=116 compensatory, and af a result, the difficulty of the 1tem

on the abality on all dimensions. “

3

‘el yields two dafficulty functions For a different reason
el.  The dimensions of this model affect each other in am
The tevel of ability on one dimension fixes the range of

5 Mynd e
The M5 izt

Py
5

than Lhe MAPL

Tl 3 ] WY .

etfect. of the other dimension. For example, :f.the sum of 8, and e, g 0
' Q '\\‘ ”\, . 2
-~ N \‘

: separate difficully parameter for each dimension berng.-measured.
iB the case of the M3IPL model, this fact 15 a vesult of the non-compensatory

o0
w

o=
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tor Dimension I, the minumum probability of a correct response for the

Tee., . persen on the item is .5. The second dimension can only determine how much
akove .5 the prebability will fall. The surface has the same shape at that
point as at any other pofint, but the range of the prebabylities has been
reduced.  Thus, the definition of difficulty at all levely of ability stays
the same. '

- For the M2PL, the discrimination of the item is defined as § constang for
-each dimeasion. For the M3PL model, the discriminating power of am item on
one dimension is dependent on the ability on the other dimensions. For
thiovmedel, the diseriminating power of an item on a dimension increases as
the ability on the other dimensions increase. For the M1PL medel, the

i discriminating power of an item on one JdimenSion is alse dependent upor the
abilaty level on the other dimensions, &x@{pb for this model, the discrimie-
tating powed on a dimeasion declines as ability en the other dimensions

LRECreanss . .

These three modeis vield clearly different defimitions of discrimination.
. - Before any of the models is applied, the user should be sure that the
characteristies of the model match the characteristics cf the data being
analyzed. The information presented hese sheould help in imsuring that the
sppropriate model i used for a particular application. ) :
| o
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The definmtion of digerimination for the three medels differ considerably.
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