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The Nature of the Problem

Rasch (1960f., in t book on stochastic item &response mode;, set

out a "structlYi'al, model for test items" which subsequently came 'to

4

. bear his name. In this book, Rasch discussed the model 's basic

assumptions in some detail and began to exp,lore its mathematics.

Updating his notation somewhat to conform with current usag,e, the)
Rasch model can more simply be written:

-(a _

Probabilitypvi e "
J (a -8.1 + e v

, )

where Xvi , the outCome of perso v attempting item i, is one if the

response is correct, zero otherwise.

the abinty of person v and

difficulty of item I.

-
a is a paradeter describing

is parameter descrtbing the

In most applications, use of the model involves using a large

nuMber of obser4d X values,'" often= arranged in a persons-by,items

matrix, to estimate the values of - a for the set of people being

tested, and 8 for the items in the test. In the 1960 book, Rasch

.makes only hesitant- steps towards procedares for estimating a and

8 because of limitaiidns in the computational facilities available
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to him, and his own preference for simple, graphical methods and

.1 N4

intuition. However, he did 'sketch out an analytic procedurei (p.

178-181) for obtaining maximuM :likelihood estimates of both the

cr's .and the. 'S's. Unfortunately, this procedure depended on "a

mastery of the coefficients i2}4 that is not yet.at the 4dis sal of

the author" in which the, persons by items mattix is analyzed. These

'coefficients represent the number of different but Ooisible.pa terns

of ones and zeros in the matrix that Would yield the observed marginal

values. Rasch offered some formulae for calculating the coefficients4

based on summingelementary symmetric functions, and the method was

successfully,demonstiated by Wright as early as' 1965. However, the

number of calculations required to determine the elementary symmetric

functio increases as k4 where k is the number'of item in the test.

Wright points out that this makes the method prohibitively expensive

even with the speed and capacity of modern computers, ind also

inaccurate because round-off errors accumulate during Ve calcula-

tions. In practice this estimation procedure waS limited to tests of

not more than about ten items. Moire recently GustafssoR (1977) has

reprogrammed the algorithm such that it can handle up to 60 or 70

items satisfactorily. It still remains, however,Ivery expensive when

compared to other approaches.

From 1969 on, Wright and-varicssociates at Oicago developbd

.a*streamlined procedure based only on le marginals of the observatiom
1

matrii. The X values, based on the item responses, that led to the

A.
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A

marginals were used only fr che&ing the fit^ ofthe data to the

model. The preferred statistical method wds again that of maXimum

likelihbod. While initial estimates of the 6's are.held constant,

the, ce 's are adjusted to maximize the likelihood functionfor the

marginals. !Then the a val

r
s dre held fixed while the 6 's are

adju ted. ,The cycle repeats iNtu il convergence is kifielAd (Wright,

, -

Mead, & Bell, 1979). However, it was pointed out that this approach

4 X

( bed UeON) prodmcgi biased estimates, because the ability
k

, p rameters and theirierrors of estimate have not been conditioned out

In.

the/Item difficulty calibratir (and vice(versa) as they had been

g.och procedure. described above. Wright and Douglai. (1977)

proposed a simple-correction factor which effectively removed most of

the bias and the Result was a fast and efficient estimation algorithm

that Could accurately recover the. parameters used to ,generate

artificial data. The algorithM yields standard errors for all the
le

parameter estimates as byprOducts-of the calculation,,and-lends itself

I-
to several tests of ,fit of the data to the model. For the last

. decade, it has been the method used in most RAsch scaling ex4rcises

throughout the United States and in a number of other countr'ies-.

In educational applicalions this algorithm's main ,shortcoming
1*

is its inability to handle missing data in an appropriate fashion.

More specifically, the algorithm requires a complete rectangular

persons-by-items matrix in which each element is a one (representing a

correct response) or a zero (representing an incorrect response).,

, a.



In practice this causes problemS':

(a) when, as in survey designs based on jpatrix sampling or in

the use of an 'item bank, i1 is deliberately planned that

'different students should attempt.different items,

(b) when the intention is to-collect a complete set of data, but

fOr various reasons (e.g., incorrectly assembled testT;

student fllness, errors in coding or data processing) gaps

occur in the set of data Or pared for statistical analysis, °

(c) when the collected.data s is complete but it ig desired tes.

edit it selectively (e.g., to remove xtovious guesSes) before

the analysts is carried out.

This paper is directed towards a strategy for overcomingethese

prbblems.

The Separation of Ability and Difficulty Parameters.

In his 1960 text; .Rasch also described a method of .estfmation

based on the comparison of two or three,itims at a time (p. 171174).

'He ga4e credit for bis'covery of the algorithm to G. Leunbach, tJrhe Head

Of the Stitistical Unit in 'the Danish. Institute for Educational

Research. The main thrust of this algprithm is the manipulation of

the data matrix in i*der to separate out the information needed efor

the estimation of the item difficulty parameters 6. Conditioaing

out the ability parameters CY in this wayavoids the biasing of the

parameters described above. In fact, thig^ procedure corresponds

closely to conventional practice in the natural scienceg': the

calibration of instruments, independent of the bbjects,to which they

1'

are eventually to be applied, precedes their use for measurement.



The algebraic presentatton of this "spairwise" algorithm has been

updated to conform.to current notation, but it follows the logical

sequence used by Rasch.

The Pasic.model we shall use is

e(av )
Prob [Xvi = 1] =

where X, 'av and bi are as defined dn page I:

For many purposes it,is sinipler to rewrite equation 1 as

prob [Xvi

Prob Pv..; =1)1=

e:

eav+ *6'

which leads tO the "odds" (i.e., PA(1-P)1 of A correát response

Odds [XVI = 1] = v-60

Consider now the possible outcomes when person v attempts two

items i and). Note that the focal independence assumption of the .

Rasch model requires the responses to the two items be independent,

Four separate cases need to considered.

S.



Case (i) - both items rrect

prob [avi = , avj= 1]
&iv

Case (ii) - both items incorrect

.Prob.[avi .= avj = 0]
e6

a 16
e v-pe

a6i

ev+ e6i

Case (iii) -item i crrect; item j incorrect
,

Prob [ j. = 1, avj = ()]

&iv

eav+ e
6i

4 le
6i

ev+ es;

16
Case (iv) - item. i incorrect; item j correc:t' Nit4"

t.

e61 eav )

Prob [avi = 0, avj = 1]
ePv+ eav+ei

'The first two cases hold little iriterest. A moment's reflection
aft.. ,

reveals that the infwmation they provlde about the ability of person

v is distinctly limited, and they provide no information at all about

4

the relative difficulties of items i and j. .

10

41g
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iVes (iii) and (iv) are'samewhat diffePent.

restricted to theie far both of whicif

ay + ayti

I-em wet can write

prob[avi+avrl

it

If attention

ea v( el5i+e6I )
eav a+ef)(ectv+e6i

If, perefore, we know that person v scored exactly one onAhe

item pair (i, ), then we can write conditional probabilities:

Prob

a

( ea',...e6i)(eav+e5i )

- (e6Ce151)

ii
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and similarly

Prot[ava=1 avi+avri] e6i

(e6Ce6i )

w

'kt.

The .ability parbieter av has been eliminated entirely from

\khe,3t<'two expressions. If we know ;that an individual scores just one

on any item pair, the probability that -it was one rather than 'the

other that was answered correctly' depends sOlely on 'the relative,.

di f icul ty of the two, i tems'.

The' fundinental importance of this separation of the a and 6

parameter sets (by means o( conditional robability) to the whole
. .

process 'of measurement has been eloquently 'desc ibed by Rasch (1977).

Even when the method is, not used in parameter estimation, it is the

fact that the model permits the separation that qualifies it for

membership in the class' of "specifically objective" measurement

models--meeting the criteria Arawn .up by Thurstone as long ago as

1928. a

The 4probability of having, a correct fesponse to item i, given

the two resporises to iterns i and one is right and one is

wrong, cap be estimated by observing the re'Sults'of a ltarge number of
f 0

people, who attempt these two. items. If we definkbij to be the number

of people who respond correctly to i .and in,correctly to j, (with bji

similarly defined) then we .can write,

bij
) bij bi;

Ars

4

is an ,estimate of Problavi=ry a,vi-favel]
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since this cQnditional probability does not depend on the av and is

the same for all people in the group.

i.e.,

b-- + b..
JI

bij

estimates

bij Jai - oi )
or estimates e

bji'.

which is to say that

- 6.1Y1s estimated by log bij - logtbji.

U

For every pair of items in a test, we can calculate the val es of

A

bij and bji 'end hence obtain an estimate of the relative djfficul y of

0

the two items concerned. This is more than sufficient information to

estimate the relative difficulties of all the items.

The UCON approach described at the beginning makes progress by

summarizing the original matrix of l's and O's into a (k+1) bY k

matrix, where for each of (k+1) possible raw scores, the number of

correot responses to each of k items is recorded. By contrast, the

PAIR approach works by summarizing the /original matrix into a 011%, k

matrix of bij values. However, as can be seen in Figure 1,- eech

4
summary matrix contains only k(k-1) useful values for the esttmation

procedure since two rows in the UCON summary matrix have fixed values,

and the leading Iflagonal entries of the PAIR summary are always emptY.
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Figure 1:

Data Reduction Strategies for Rasch Parameter Estimation

1

2

3

Persons

item

items
1 2 3 . . .

n. k. r

a
ij

22k. nk nk

1

the number of people
in score-group j who
responded correctly
to item i.

P # correct responses to item i.

: Score-group Summarization
No%

,

1

2

.3

item

-

k

. .
item

. k

1
_

the nuMber of people

1

who responded
correctly to item i
and incorrectly to
item j.

lb : Pair-wise Item Summarization
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T4ere is of course an analogous matrix of couats,describing the

relative abilities of, the persons, by ing them two at a time

and looking only at those items which bne got ri ht and the other got

wrong.c This effectively eliminates 6 from the data, and produces a

summary matrix with information about the persons. 'In practice this

hsis been little explbred for two reasons. First, there are typically

more persons than items in a set of test data, so the p&son-person
41D

summary produces a larger matrix with smaller cell entries. Second,

since the ultimate goal is usually to measure the persons individually

in term4 of their performance on the items,,it seems logical first to

process the data in order to obtain the best possible calibration of

the items, and then to apply these calibrations to the measurement of

the persons. Nevertheless the Qomparison of the measurements obtained

by the different methods holds considerable theoretical interest and

deserves detailed investigatio in the near, future. In this paper,

however, I shall concentrate on the prior calibration of the items

before any measurement of persons is attempted.

Estimating the Di4iculty Parameters

To calibrate a set of items from a matrix of observatiOni a

complete matrix B is constructed with elements bij as defined above.

Note that the matrix of observations need not be complete.. An

individual who' is exposed to- items i and j gets an opportunity to

contribute to bij or bji, and thus to the estimation of Si and

(5j. It is not necessary'for this individual to attempt all (or

indeed any) of the other items in the set. This Is the aTgorithm's

great strength tn practical applications.



-The practical solution to the est'nh)ion task of item parameters

with the pairwise approach, described by Rasch (1960) and first

demonstrated by Choppin (1965) at a meeting of the Midwestern
6

Psychological 'Association, amounted to tkking the logarithms of the

off-diagonal elements in the B matrix and summing them to get row and

coluMn marginals. The difference of the sum of the ith row and the,

ith colUmn is

Gi = log(bli) + log(b2i) + log(b31) + + log(bki)

.4

- [1 og(bilr+ log(bi2) + 109(b13) + +. log(bik)]

:E
b--

1811,k 1 J

which estimates

(6i dj)
or k5 - D

is4k

where D is the sum of Si over all j.

Note that the model, and equation 7 which we Wkve derived from it, has

nothing to sky about the absolute value of the parameters, only their

relative magnitude. If we have a set of a's and 6's which satisfy

equation 1, then the new sets produced by adding a censtant'to all the

old values will also satisfy the equation. ,No A!=ebsolute" zero is

it
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defined An the ability or difficulty scale, and -it h#,..s become_

oee
conventional to a bitrarily fix the mean 6-valne for a particular set

of items at p, since this jr19es the algebra. Parameters can

laterbe adjusted to other zero points, and indeed other units, if so

desired., -
t

But taking D = 0, we have tile estimation equation

Gi = 101

or 611=

This approach, which Is simple and effective'when the values of

bij are large and fairly homogeneous, breaks down completely when one

or more values of bij (i j) are zero, since the logarithmic function

is not then defined. This appeared to be a major stumbling block,

Ance zero values in the B matrix are met quite often in practice, and

led to the approach'almost being abandOned.

However, Choppin (1962) pointed out that Rasch's discussion of

item triplets (Rasch, 1960, p. 173) can be extended.

If , e(si
-6 ,)

b.,
estimated by- __IL_

b.

can be estimated by
,

, then it can also be

b

bij

ki

b e(6k..6i.,

A better estimate yet is obtained ny pooling information across

items (i.e., by summing over the double sObscript in both top. and

bottom of the expression). This gives
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2] bjk.bki' 4b

1
.

674.
k j

bki:Abik

=

whiere b*ij are the elements of B* the square of the original summary

matrix B.

In general B* w4ll not contlin off-diagonal zero elements, unless

the .tems are inadequately linked in the sample design (when the'

compl ete simul taneous stimation of thefr di fficul ties is

impossible). Squaring the original B matrix is thus a way of avoiding

the probl em of \ zero entries , and leads quitkly to a set of
,

A estimates. 0. e

A major ,drawback, hoWever, is that tile manipUlatiorc demonstrated

in the preceding two paragraphs is only valid for data sets that "fit"

the model. In practice some misfit may be expected to occur, and it

is impgrtant to know about it. The method outlined above will Produce

6 estimates from virtually any set of test data, and experience

suggests that the B* matrix is closer to the stucture 'prescribed by

the model than the original B.

In general , this approach to parameter estimation (which

corresponds to ,a lest squares procedure) is not recommended except

where strong a priori evidence suggests that data will conform well to

the requirements of the model.

Maximum Likelihood Estimation.
AP

t A mo-re satisfactory method of unqvelling the information stored

in the B matrix is that of maximum likelihood. Suppose that in matrix
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.B, nij individuals score exactly one on.the item pair (i, i), so that

. ,

we can write:

n.. =
ij Ji

Now. 'for any individual in this group, the Orobability that he

gets item i right and item j wrong is:

e.

and conversely, the probability that i is wrong and j is right is:

From"the binomial theorgm, the probability of the nij individuals

dividing into exactly bij and bji subgroups is:

n (b. S +13- )
e Jt t

bi ! bji ! esi+esi

and the likelihood of the entire B matrix,

elements is:

iven a matrix N of nij
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-

..! b..!
(esi e'Sj

n.. 'e(bijisj+bjesi)
P [BIN]

b
ij

The problem now is to find a set of 6i's which maximize the

value of this function. This maximumAnd the maximum of its logarithm

occur at the same point, so for simplicity we may wr:ite the log

1 ikel i hood;

it WAj

L = C (bijaj bjiai) 1. b.. + b.. log (e6i + e'sj)

*Pour

..P .

t wherei,C is a function of the b 's but not of the .

/. 31_For miximum likelihood = 0 for each i
as,

i.e. 0 = aLz= _-
doi

or E bjl. = E

.(bii+bji)
(e61 +e`si )

(b.. + b..)
1.] Ji

(Wi + Wi)

20
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before, it is necess'ary to insert an additicinal linear

constraint on the set of 6 's since it is clear that adding any

constant value to all the 6's in the above equations.wouldinot

change the nature of the solution. Rasch scaling deals inifelative

difficulty rather than absolv0 difficulty and no zero point on the

scale can be' uniquely defined. However, once the 6-value for one

. item has' been fixed (if necessarily arbitrarily) then all the other

6's can be defined by relating them to the,firsi. .The -usual

,coristriint is lo put the sum of the 6-values equal to zero.

This set of k equations in k unknowns can be solved by various

iterative techniques. Two that have been found to work well iR

practice are:

(n+no
= log (Eb.i.)- log(

j

and the Newton-Raphson proCedure: #4

j (b.:+b..)

)7..1411'

b. 6. 8- -"
14 (e '4.e71 )

+6.1 )
IJ JI e

( eisi+445j )

21
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-N

In general an efficient procedure has proved to be to set the

initial °6-values all equal to zero, and then to apply the first

iterative set of equations three or four times. Thakproduces a sdt
. 4

of- reasonably, good approximations which, when used with the

Newton-Raphson equatiOns, leads rapidly to convergence and a solution

for the various 6's.

A great-advantage of the maximum likelihood procedure is that it ,

can be used to generate standard errors for the estimated parameters

(rendall 81 Stuart, 1969). The variance-covariance matrix V is the

inverse of a matrix who$e elements are:

et.

asiaoj

evaluated,at the maximum likelihood solutisn. In practice, however, a

Simpler 4proximation

s =

seems adequate, and is recommended for routine use.

S

2 2
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(Estimating the Ability Parameters

If Id (t = 1, k) are:the set of scored responses for person v, .

whose total test score tyv, and whose,ability parameter Is cry; then -

we may write:

where the summation runs over theAset .of items- attempted by person v.

The likeljhood of the response Xvi according to the model is:

exvi (a.-61

-at
e (a

)
v

since Xvi takes, values ond and zero accordingly as the response is

right or wrong.

From this, the likelihood function. for the, entire set of

respon(es 010) for person v is:

exv. (-si)
ri

,Irt° Juv-61

23
,
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The logarithm of thi; fubction:

.a -IXvi6i

* i

=
v v

- I Xvi, d

kit

4

kor the ML solution, dL
0.. It should be noted that in this

doc

case the . 8's are regarded a$ alreadi known, so that pv.is the

only parameter to be estimated.

0 =
dt
day

(a
e

-6-)
v* "

Jcsv-Si.)
"Yr

This equation does not contain the item_ response (Xvi). It

demonstrates a result, already obtained by oth,r writers, that the

ability estimate depends not upon the particular pattern of item

responses obtained, but only upon the "total score." r iS a

sufficient statistic for ability, and the Conventional practice of

lk
using total scores as measUres has a logical fbundation.

The equation

Can be solved for ov-

,

r =, v
1 e

(a -8' . )

!

e(av

0 ,a
fto(1
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IN/

I

, The score on the test takes values 0, 1, 2, ... k. Each of

the k terms on the right hand- side of the equation lies between.trand

1 for real values of Xvi and o. Note that there .air.e..no solotions

for , r = 0_and r = k. For these values the likelihot function haS.

no maximum, and this could have'been anticipated.- If an indiviiimal

responds correctly to every item (i.e., rv = k),

information on which to base any upper bound for an a

thenwe. haie no

bility estimate.

Similarly, if-every item is affswered incorrectly, thereare no data to

suggest just how low the level of ability might be.

Note that once a set of items 'has been calibrated, (i.e., the

6't have been estimated), it is possible to estimate an ability

parameter for each possible score on the test, regardless'of whether

or not any individual actually obtains such a score. If a test is

constructed by selecting items from an already calibrated item,bank,

then ability param ters for all possible scores on the'new test can be

'.

.

calculated even bef he test is used.

The standard err rs of the ability parameters, corresponding as

they do to the standard error of measurement, are u ally of more

interest than the standard errors of the item ifficulties.

Furthermore, they ire typically considerably larger, since the ability
,

parameter estimates are based upOn only k observation (usually

betWeen 10 and lpo) whereas'item calibration iktypically based upon

4
the results offat least several hundred individuals.

-
In general, if we assume. that the 0 s are established with, some

precision, the standard errors of the a's can be developed from the
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, Alig likelih,po'd
)
ftinction.

.

it
, , '..., i i

L =, a rN3-4.-4' X
vl
.d. - log 1 +4ay-6,?]

v v , ,

757' e(avzi )
1"7"4 1+ e.(av-6i

)

(2.-6-f + e v )
J1 2

Then the standard error of measbrement for an individual who

receiVes an ability estimate, av for his responses to items with

. fr.

6.1 is:

d
2
L

dae

-k
The second differential reaches a maximum value of 'when all

4
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the 6's are equal to cmv. In practice, if the 6's are all fairly

close to cmv (i.e., if the items are all closely matched to the

person's ability), then the second differential remains close to

and so the standard error is given approximately by logits;

4 -Vk

in general, however, we can write

2
Sa > nr: logits

v Nti%

whatever the distribution of the 6's.

Tests of Fit

Control of the model ,by validating its conformity to the

structure of a particular data set, within pre-specifiable limits, has

been difficult to achieve with the PAIR method of parameter

estimation. The most frequently uset approach has been the non-random

splitting of th'e original data set 'into two parts tased on some

characteristic ofthe persons, calibrating the full ,set of items for

each part of the data separately, and plotting the results against one

another. This is inexpensive, straightforward, and has considerable

utility although it lacks mathematical elegance. A division of the

sample of persons' into high performers and low performers at the

medfan raw score is the most severe test of the anticipated invariance

of item difficulty parameters. It focuses directly on the assumption'



of equal discriminating power for all items in the set, and the

associated though contrary threat, ability-related random guessing.

Since the same set of item parameters is being estimated for both high

and law.ability groups, and the mean difficulty in each case is being

fixed at zero, the model predicts' that within the limits of sampling

error the same item ddlibrations S'hould emerge from each half of the

analysis. Figure 2 demonstratei typical results from two multiple-

choice achievement tests, one of which fits the model very well and

one of which shows considerable evidence of guessing.. Experience with

plots of this type shows that they can be very informative, and Figure

3 shows a somewhat simplified guide to their'interpretation.

Of course other splits can be used to generate these plots. For

example, to test for the presence of sex biai'°within a test it is

possible to plot calibratioh obtained from males against those

obtained from females. The plot reproduced in Figure 4 contains item

- difficulties for a mathematics test calibrated for groups of students

who studied two different'turricula. Analysts of the discrepancies

from the predicted straight line showed how ah pattern of learning

produced by the new curriculum was different from that of the old (and

these differences were not in accord with the intentions of the

curriculum development team. Choppin, 1977).

A more detailed control 'of the model requires going back to the

original persons7by7items data matrix -and estimating the 'Probability

of a correct response 'for each person/item interaction based on the
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Figure 3: Guide- to Interpretation
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estimates of ci and . When these probabilities are compared to

the observations, a matrix of residuals is generated. ThA topic has .

been well covered in Mead. (1975) and "Wright and Stone (1979) and will

not be further devAlloped here:

Rasch (1960, p. 174) suggested that the examination of iVem

triplets might offer an effective control of the model, but this has

not proved to be the case. Recently, however, it has been noticed

that the comparison of the B and 8* matrices offers a

b44
concise test of the local independence assumption. The ratio 41

b
ij

estimates (6r-6,j) 114aq7 all other items, whereas .IL estimates

ij

-r44

only through the comparison of i and j to the other items. If there

exists a local contextual effect (e.g.., if item 15 is easier than it

would otherwise be because it comes immediately after item 14), then

the b and b* values should show it. This comparison is accomplished

by a ,C4 statistic. The method holds considerable promise since

the aibmption of local independence has been strongly attacked as

unrealistic (Goldstein, 1979). A number of studies of athievement

test data in which items are administered in different orders and with .

or without other groups of items suggests that the local independence
0 ,

assumption is often well' met in practice, .although other evidence

(Tang, 1982) suggests that 4n a test of reasoning skills iuch as a

31
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4.

progressive matrices test, the context is extremely important. It

seems probable that the (B,B*) comparison will be 'used for testing

local independence even when parameter estimation is fachieved through

UCON or maximum likelihood PAIR.

4
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