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The Nature of the Prob1em

Rasch (1960f in la book on stochast1c item response mod set

out a “structﬂ'ra1 mode1 for test items“ wh'ich subsequent1y came %o

¢

<. bear his name. In this  book, Rasch d1scussed the mode1 S bas1c

assumpt1ons in some detaﬂ\ and began to exp1ore its mathemat1cs.

13

Updating h'is notation somewhat to conform with current usaie, the

Rasch model can more s1mp1_y be written: . .i . o L —r

L ) e(av-sl)f\ ! '. ) . ‘ » \
Probabﬂity[xvi = 1]:'\ T s E

» {1 . e(av'ai

R . . . . "
¢ ' ! ' )
. . -~ -
. .

where Xv1, the outcome of - persog:v attempt1ng item i, is one if the

response 1s correct zero otherwise. Qy is a paranfeter describ'ing

the ?bﬂmty of person v and, {4 is §parameter describing the \
. - T ) [N N

difficulty of item i. .' : . -

'In‘ ﬁmost app'1,1'cat1'ons, use of the model involves using a large ,

number of observed X vaTues,’ often- arranged in a persons-by-items

matrix, to.estimate the values of o for the set of people being

tested, and 6 for the 1tems in the test. - In the 1960 book, Rasch
/

.makes on1y hesitant" st‘eps ‘towards procedﬁres for - est1mat1ng a and

' ¢
60 because of - 11m1ta1;"idns in the computat1ona1 facilities available
u“ . .

i . . prg
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o to him, and. his own preference for simple, graphical methods and
intuition. ‘However, "he did ‘sketch out an analytic procedurey (p.
178-181) for obta1n1ng maXimum%'1fhe11hood estimates of both the

{!'s .and the. “§'s. Unfortunately, th1s procedure depended on “a

';' mastery'of the coefficients { } .that 1s not yet-at the ‘dishosal of
'the author" in which the persons by items matrix is anaLyzed. Thes;,
:coeff1c1ents represent the number of d1fferent but poss1b1e patterg;/
of ones and zeros in the matrix. that would yield the observed marg1naf

va1ues. Rasch offered some formulae for calculating the .coefficients
¢

based on summ1ng e1ementary symmetric funct1ons and the‘method was"

successfu11y,demonstrated by Wright as early as 1965. However, the
number of calculations required to determine the elementary symmetric
funct1on§ increases as k% where k is the number ‘of 1tems in the test.

Wright points out that th1s makes the method proh1b1t1ve1y expensive

even with the speed and capac1ty of modern computers, and also

1naccurate because round-off errors accumu]ate,dur1ng ghe calcula-
t1ons. In pract1ce this est1matfon procedure wasplimited to tests of
not more than about ten 1tems.v More recentlu Gustafsson, (1977) has
reprogrammed_the algorithm such that it can handle up to 60 or.ZO
very expensive when

% €

items satisfactorily. It still remains, however,
compared to other approaches. ° | « ' .

From 1969 on, Wright and<var1ous\assoc1ates at Chicago deve]oped

——

a- stream11ned procedure based only on t?e marginals of the observat1on

matr1x. ~The X va1ues, based on the item responses, that led to the o

'/
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,marginaIs were used only fé‘r‘ cheadng the’ fit of --the data to the

'adju ted.. ,The cycle repeats u

~artificial data. The aIgor1thm y1e1ds standard errors for all the“

I3

modeT The preferred statistical method was aga1n that of max1mum

14k ehhood. While initial est1mates of the O0's are.held constant,

the, a's are adjusted to maximize the 11ke11‘hood function ‘:fof' the

marginals. Then the «@ va1tma‘re held fixed while the &'s are -

i1 convergence is ﬁ1ev€d (Wr1ght

‘Mead, 4& BeH '1979). However, it was po1nted out that this approach

\
bed UCON) producef biased est1mates, because the ability

+

‘]'n,, e Rasch procedure. descr1bed above. Wr1ght and Doug]as (1977)

proposed a simpIe'corr‘Ection factor which effgctively removed most of

the bias and the result was a fast and efficient estimation algorithm

v 0

that could accurate]y rec‘over the’ parameters used to ,.generate

parameter estimates as byproducts of the ca1cu1at1on ;and -1ends 1tse1f‘ .

to several tests of .fit of the data to the model. For the last
decade', it has been the method‘ used in most Rasch scaHng exercises
throughout the United States and in a number of other countr1es'
S
In educat1ona1 appHcamons th1s a1gor1thms main | shortcoming
is 1ts 1nab111ty to. handle m1ss1ng data in an appropr1ate fashion.

More spec1f1ca11y, the algor1thm requ1res a complete rectangu]ar

'&persons -by~items matr1x in wh1ch each e]ement is a one (represent1ng a

¢ d

- conrect response) ‘or a zero (represent1ng an 1ncorrect response)."

L
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In practice this causes prob]em§:
(a) when, as in survey designs based dn?matrix sampling or in - . | 4

'the use’ of an ‘item bank , itr is de1iberate1y p1anhed that
d1fferent students should attempt.d1fferent 1tems,

(b) when the 1ntent1on is to co11ect a comp1ete set of data but
for various reasons (e.g., 1ncorrect1y assemb1ed tests,
student i11ness, errors in coding or data prpcessing) gaps
occur in the set of‘data‘pr'pared for statistical ana1ysis,'° . -

(c) When the co11ected_data 3 is‘compWete but it is desired’Ur\

edit it se1eétive1y (e.gw, to remove abv}ous guesses) before

‘n
the analysis is carr1ed out. _
4 . L §
_ ) ' This paper is directed towards a strategy for overcom1ng£these : .
* problems.  ° ' a m

The Separat1oﬁeef Ab111ty and D1ff1cu1ty Parameters.

In his 1960 text, Rasch also descr1bed a nethod of estimatnon

- L

. based on the compar1son of two or three items at a time (p. 171 174).
" He gaVe credit for discovery of the algorithm to G. Leunbach, the Head
‘of the Statistical Unit in “the Danish; Tnstltute for Educational
o Research. The ;ajn thrust o}-this aTQQrithm is the manipuiation Off
the data matrix in Order td separate out the ipformatien needed (for
! the-estimatian of tﬁe Ttem dtfficu1ty parameters ‘zé . Cond}tignﬁng' .
| _out the ab111ty parameters ¢1 in this waytavo1ds the biasing of the
parameters descrjbed above. 4 In fact, this procedure corresponds
c1ose1y ‘to coﬁventiona1‘ practice\ in the natural science§: the
ca1ibration of instruments, independent of'the opjects,to-which they

P

+ are eventually to be applied, precedes their use for measurement.-

=3
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. The algebraic presentatTon of this "pa1rw1se" algorithm has been

updated to conform to current notat1on, but it follows the 1og1ca1

L4

sequencé used by Rasch. : &

The bas1c mode1 we shall use 1s

o (a,8) . : .
, Prob[x~=1]='———(—° - : ‘ :
A ‘ he“"s') T S ) .
; . where X, ‘oy and 4 are as def1nqd d'n page l

\ ,‘ . o . N
For many purposes it is s1mp1er to rewr1te equat1on 1 -as _

¢

Prob | Xyq = 1| = ’ -——. ‘e.“v S | | 3 )
' [‘”- ]- S ‘ . L4

| : ~ N . e

! '( 5rol; [Xv-i‘ = 0]= Tss'—

‘ .. . . 1 )

which leads to the "odds" .e., P/\(%-P)i of a correct response

_ Odds [Xv1 =.1]‘= \e( v$i)

o ) )

/ , " Consider now the poss1b1e outcomes when person v attempts two i\

'J _1tems iand j. Note that the 1oca1 1ndependence assumpt1on of the . -~ .
Rasch model requ1res the responses to the two items be 1ndependent‘ ,

v Four separate cases need to considered. -

B o \ .

. -
- . +




Case (i) - both items gorrect
- P “_

“ ) . - l »
: . . - e%v e%v
Prob [avi =1, ayj'= 1] = - - - :
‘ . ~ . v eav+e6' eaV:eGi ) ‘ \\ . ' \
Case (i) - both items incorrect ~ * _. . ) ?“
) . 8 8 Y '
. - e K.
Prob,[avi =0, ayj=0 = —3 °
- & P J J ) eav +e6i. eav+ esj o |
Case (iii) --item i correct; item j incorrect - v '
‘ eV e i . . .
- Prob '[avf'=- 1, ayj = 0] = o —— :
/ T g e R
> ,, -‘ . : o . ‘f " ‘ ,- .
Case. (iv) - item i incorrect; item j correct \m . ‘
’ D ) -"' ,, 5 4 .' ;
& e | ~

Prob [av1-=0, av-=1] = - _
. J eav+ eé' deav * esj

— ‘The first two cases hold little interest. A moment s ref]echon L

RS

reveals that the 1nformat(on they prov;de about the abﬂH:y of person

v is distinctly 11m1.ted, and they provide no information at all about

‘the relative difficulties of items 1 and j. e -
. 4 ;
1
,"\ ~
- g
“
v '
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#&gses (111) and (iv) are’ somewhat different. If attention is
& : °

~

restr1cted to these two,\ far both of wh1ctfL

. o ayj + a"i :1 | - | . - . | . |
\ﬁen .- L O/ . L}
t we' can write ‘ - -. : . .

el®v *§ ) el ¥8i)

Prob [avi +ayj=1 ] =
4 . N ! - . .

+ . .
\eﬂe‘)(e ‘e ’) (vei)e™well). I )

1 T L €le ‘;ed' ) .
( ehe ey %)

e
e .. -

LS , . .
!

therefore, we know that person \J scored exactly one on #the

o If, N
. item pair (1,\\then we can write cond1t1ona1 probabihtjes

Y

k]

8
g L et
' ( e°“'+e6‘)(e°“'+e61 )
Gveesi 6‘) . o
L I o - | (e e')(e ‘_e ) : .
\ ) .
I\ .
b / = esl _ &3{ '
} ) (e6i+e§i~) _ )
-~ ( - R ".*‘t
. B _
.
) ) )
. - * li y




$

* and similarly’

N . ‘ ,. ! | ‘ B / '
- ) ) . L esi . . ) : &.'
Prob [avj‘:l I,‘ av1+avj=1] = (-e—_;
. +e!

[

‘ }
\‘theee/two express1ons. If we know that an individual scoreés JU§t one

,on ‘any 1tem pa1r, the. probabﬂ1ty that ~it ‘was one rather “than the

M)

other that was answered correct1y dEpends so1e1y on “the relative..

dif 1cu1ty of “the - two 1tems. _
The fundamental 1mportance of th1s separat1on of the @ and 6
,parameter sets (by means of’ cond1t1ona1 p{aia’t\nhty) to'(3 the whole

process of measurement has been e'quuent1y descnibed by Rasch (1977)

Even when the method 1s not used in parameter est1mat'ion, 1t is the:

fact that the mode1 germ1ts the separat1on that qua11f1es it forq

membership '1'n'the class’ of "spec11’1caﬂy~ objective" measurement

models--meeting the criteria .drawn .up by Thurstone as Tong ago a\s
. ] . : : -

1928, : L L e T

The ,probab111ty of hav1ng a correct
\WE\ the two. responses to items 1 and

wrong, cap be est1mated by observ1ng the re5u1ts of a Large number of

N ~ f

people who attempt these two items. If we ,deﬁlne. bjj to be the number

one. 1s r1gh; and one is

of  people who respond correct1y to i and 1ncorrect'|y to j (with bji‘

51m11ar1y def1ned) then we can wr1te, .

:
& - - -
. R . a . s .
. L , . . . had

~

. b1j o el ) N
. , : - as an .estimate of Prob'[av1=1/‘ av1+avj:=1] -
AR bii + bij o . e
, ‘ 1J ji . - A .
o W+ e C A
e ; BN i ) .

' The- ab111ty para}eter Lay . has been e11m1nated ent1re1y from -

'vesponse t% item 1, g1ven’




L]

¢ . ~ | |
since this copd1t1ona1 _probability does not depend on the @y and is

the same for all peop1e in the group.

T.e., __J___ ~ estimates e’
bi‘j + bji - . ‘ e‘S',‘_eG
. bij | .
or —_ ~ estimates’ é(§, - &)
- bji - ‘

which is to say that
g (j(J - 8;)is estimated by log bij - Tog bji-

" For every pair of items in ;test we can calculate the vaﬁis'of
- bjj and bjy and hence obta1n an estimate of the ‘relative dj ff1cu1 y of
the two items concerned. This 1s’more than suff1c1ent 1nformat1on to
estimate the relative difficulties of all the items.

The UCON approaoh described at the bég1nn1'n_g ‘mvakes“ progress by
summar1z1ng the original matrix of 1l's and* 0'§ ﬁnto a (k+1) b&k
matrix, where for each of (k+l) possible raw scores, the numbeC: of
correct responses to each" of k items is recorded. By contrast, the

PAIR approach works by symmarizing the 'original matrix into a k‘hk

matrix of bij va1ues. However, as can be seen in F'lgure 1, each

© summary matrix contains only k(k-1) useful values for the est1mat1on

- procedure since two rows in the UCON summary matrix have fixed values,

and the leading diagonal entries of the PAIR summary are always empty.

-
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Figure 1:
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Data Reduction Strategies for Rasch Parameter Estimation

itéms .
. 123... ok :
P .' ‘ 1 - . B B . . ...
T X

- R 3 ' . N

o | X=1 (correct)

. xvi T .
: 1 | X=0(incorrect)
’ ] \/

oot
Toe .
N
i\ : . .

Persons |

N .\
Q - . , 5
N
1
. ~ .
N
Raw _
S . 1 . : . .
‘e c123... tem. L 123... 1item ..k
o 0700 . .. - ... 0 . 1o ...
1 : - 210 ..
2 . ) 3t. . 0.
3 the number of people 9 e o0
b | in score—-group j who &0 .
. ’ aij responded correctly 9 .
. to item 1. S > _
. : the number of people
- item who responded
@ ‘ : bi' " correctly to item 1
§ J and incorrectly to
- itenm j.
. . u ]
. =
.- .
. H ) N
k—Z - ~ ) ~ g
k-1 o .
k nk'nk ny, . g, g k

Pi= # correct responses to item i.

\
la : Score-group Summarization

ERIC

~

lp : Pair-wise Item Summarization

[
ey

A ruiToxt provided by ER




-1l -

~
3

Y - . .
There is of course an analogous matrix of counts describing the

relative abilities of, the persons, by cﬁiETHEﬁ{i: them two at a time
and Tooking oh]y at those items which one got right and the other got

wrong.’ This effectively eliminates & from the data, and produces a
summary matrix u{th information about fhé persons. *In practice this

'hgsobeen little explored for two reasons. First, there are typically
more persons than items in a set of test data, s0 the person-person
m . . N

summary produces a larger matrix with smaller cell entries. Second,

since the ultimate goal is usually to measure the persons individually

in terms of their performance on the items,- it seems logical first to

pfocéss the data in order to obtain the best possible calibration of

" the items, and then t? apply these calibrations to the measurement of
the persons. Nevertheless.the Comparison of the %gasurements dbtaingd
by the different methods holds considerable theoretical interest and
deserves detailed 1hvest1gatio ﬁq the near: future. In th1s.papér,

"however, I shall concentrate on the prior calibration of the items
before anylmeasurement of persons>1s attempted.

Estimating the Dfﬁ*icul;xﬁParameters

To calibrate a set of ‘items from a matrix of observations: a

complete matrix B is constructed with elements bjj as.defined above.
4 ' - ‘

individual ‘who is exposed to- items i and j gets an opportunity to

contribute to bjj or bjj, and thus to the estimation of 64 and

6j. It is not necessary”for this 1nd1v1dﬁa1 to attempt all (or

indeed any) of the other items in the set. This is the alTgorithm's

great strength in practical app11cati6ns.

Note that the matrix of observations neéd-ggglbe comp]eté{- An

Ry o
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‘The practical solution to the est'ﬁEBion task of item parameters

-

with the pairwise approach, “described by Rasch (1960) and first
demonstrated by Choppin (1965) " at a meet1ng of the M1dwestern
3

Psycho1og1ca1 Assoc1at1on, amounted to taking the 1ogarithms of the

off-diagonal e1ements in the B matrix and summing them to get row and

colurin marginals. The difference of the sum of the ith row and the

ith column is

Gi = Tog(by;) + Tog(by;) + Toglbgj) + ..o + Toglbyi) Yy
- ‘ B

- [1og(b11Y-+1og(biz) + log(bs3) + ... +_1dg(bik)]

ii

' bjj
. z 109( ji )
jelk b1J

v

which estimates

idi )
z (8 - &) or ké; = D
/ ,'lvk
where D is the sum of §; over all J. -

Note that the mode1, and equation 7 whicﬁ we Wave derived from it; has
nothing to say about the absolute value of the parameters, only the1r '
re1at1ve magnitude. If we have a set of a's and 6 s which sat1sfy
equation 1, then the new sets produced by adding a constant to a11 the

old values will also satisfy the equat1on. INo Mabsolute” zero is

.9
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. .
defined son the( ability or difficulty scale, and -it has become _

“ .
conv_ent1ona1 to akbitrarily fix the mean &-value for a particular set
of items at-ﬂo, since this s/mvﬁés the a19ebr'a. Parameters ca,n'

later be adjusted to other zero points, and  indeed other units, if SO
desired. .-
_ ' ¢ . “ -
But taking D = 0, we have the estimation equation
6i = k§, },/’“,.
(. | Gy

Looor T \

This approach which is's1mp1e and effect1ve' when the values of
bﬁ are large and fa1r‘1y homogeneous, breaks down comp]etely when one
or more values of bjj (i # j)are 2e10,. since the logar1thm1c functien

is not then defined. This appeared to be a major stumbling block,

Snce zero values in the B matrix are met quite often in 'pi"act1oe, and -

led to the approach'almost being abandoned. -
However, Choppin (1982) po1nted out that Rasch's d1scuss1on of
'item tr1p1 ets (Rasch, 1960, p. 173) ‘can be extended. '

If, e(‘s‘-d‘) can be estimated by _J_ , then it can a'lkso be
b,.
. b. bk1 ‘ : ij :
estimated by —ik_ . e( 826,48, =6, )
| bj  Dik {T . }

A better estimate yet is obtained by pooling information across

jtems (i.e., by summing over the double s@bscript in both top. and

‘"bottom of the expression). This gives

A\ - k
N

.




A\
Ko . “* ‘ ‘ ,
&y 2 Oyk-Pyi T | A
. "k PR - .
’)‘ » " v . Z bkj-b,ik 1J

v

thre b*ij are the el ements of B* the Sqnare of the original summary - '»

matrix B. ' : )
- * In‘'general B* will not contain off-d1agona1 zero elements, unless
the Rtems are 1nadequate1y linked in the sample design (when the”

simul tan,eous /Jst1mat1 on

complete of their di ff1cu1 ties s
1'mpossib1’e)'.. Squar1ng the original B matrix is thus a way of avoiding
the prob]em of , zero entr1es,' and \Ieads qu&k]y to a set of
5 estimates. : o . ’el

/) [

e

g ~ A major drawback, however, is that the man1pu1at1on demonstrated

LI

in the preceding two paragraphs is only valid for data sets that “f1t“ )

the mode]. In pract1ce some m1sf1t may be expected to occur, and 1t

is 1‘mp9rtant to know about it. The method outlined above will produce

é estimates from virtually any set of test data, and experience

v suggests that the B* matrix is closer to the stucture"prescribed by
the model than the original B.

In to

N L]

v .
corresponds to a least squares procedure) is not recommended except

genera1 , this approach parameter estimation

where strong a priori evidence suggests that data will vcon'form well to

',
the requirements of the model.

)

Maximum Likelihood Estimation. -

€ A more 's‘atisfactory method of un%avelh'ng the information stored

N ‘

.SUpp.o'se that in matrix

in the B matrix is 'that of maximum 1ikelihood.

(which

[ 4

-

~N
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- ) B, njj individuaTS score exactly one on-the item pair (i,'}), so that
. ! ] - N . ? L .o
we can write: , C

| : n, . =bd + b, ' . / .
// AR ::% bJ1 : ~ )

Now for any individual in th1s group, the ﬁ?obab111ty that he

7

//' ‘ gets item i rlght and item j wrong is: ' ,
) - e
) i ' _ ,
: P eGj
- ‘ 5 6

e+e’ ‘ ‘

- _and converﬁe]y, the probability that i is wrong and j is right is:

« From™ the binomial- theordn, the probab111ty oﬁ ‘the n,j individuals
dividing 1nto exact1y biJ and in subgroups is: ' '
“. ) . L %' -
W\QHQL‘, elbii & +by 5 ) ‘ <.
byt Piil (Suelyi . -

and . the likelihood of the entire B matrix,
[

;iven. a matrix N of njj .

elements is:
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The problem now is to find a set of . '84's which maximize the
value of this function. This maximum,.qnd_ the maximum of its logarithm
occur at the same point, so for -s'impHci,ty we may, Wr'"jte the log -

3

likelihood: | - §
i ihizf | s e
= - - o @ K] : i i j '
L=C+ Z(b 6J+b 6) z(b1J+bJ1)'|og (e + e°)
» _ ,
R ’ ' .
where/C is a funct1on of the'b 's but not of the &'s.
For maximum 1ikelihood -g-;— =0foreachi .
vy i
c ' - .
. j l + e .
i.e. = .a_... = Z Z (b bj1) (a11 1.)
o (e% +e% )
£
oy i (b-ij . bj-i) esi . | K . ,
or iji = Z CPT , (a1l 1)
wk .
.20 “
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'YAS before, it is necessary to insert an additional Tinear

, -7
constraint on the set of &'s since it is €lear that adding any
constant value to all the 6's in the above eQuations.won/not

change the nature of the so1ut1on Rasch scaling dea1s 1r1‘£e1at1ve
'\d1ff1cu1ty rather than abso1u§é d1ff1cu1ty and no zero point on the
scale can be uniquely defined. However, once the 6-value for one
. ~item 'has been fixed (if nmecessarily arbitrarily) then all the.othen
. 6;5 can bé defined by :re1attng thém to the. first. Thet—usua]
Pconstréint is to put the sum of the g-values equa{ to zero.

This set of k equat1ons in k unknowns can be so1ved by various
miterat1ye techn1ques. Tyo that have been found‘ to . work well

practice are: '

N
(n+1) i - n(bi '+bji1') )
5 = Tog (Z bIjg)- log Z—J————Gi -
_ (eM+e? )
- i
and the Newton-Raphson proéedure:“. Lo J S
, ~
’ (b +b

' 6
RCE0 b PR ) PR 13 Z e +e h
: 5| = 5' - k(
: (b:.+b. Ja'Si +§

E: ij 3i
. 7_—
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In general an efficient p;'ot:edu'r'e has prdved to be to set the

initial ©s - val ues‘m equal to zero, and then to app1tyr t'h,ef_fq'rsf. ’

iterative set of equations three or four times.. Thish produces a sét -

4

L \ Sy, ¥
of  reasonably good approximations which, when used with the
* . .

Newton-Raphson equations, leads rapidly to convefgence and a solution -

for the various  &'s. - | P

A great advantage of the maximum likelihood proceduré is that it
can be used to ggnerat'e standard errors for ;he_esti’mated’parame,ters'
(Kendall & Stuart, 1969). * The variance-covariance matrix V js the

o

¢
inverse of a matrix whose elements are:

L 98,99

.

eval ualted_at the maximum 1ikelihood ‘so1ut1'gn. In practice, however, a

o

- * F L -
simpler approximation

N : ) . . . ca

seems adequate, and is recommended for routine use.

A

o \Aﬁ
[_yazl;] : N . f |
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{Est1mat1ng the AbﬂLy parameters - . \/

If Xyi (i = 1 k) ane the set of scored responses for person Vs . -
whose total test score N\N, and whose ab111ty parameter is ay; then -

!

Vo -~ we may write:
. o )
. LY - . B
~ . ' R rV - Z XV1 n '
o ] 5

. ‘ SRR “ S
< where the summation runs over the set of items attempted by person v.

The 1ikelihood of the response Xyj aecord1ng\to the model is:

- . ' LN
.oa

v exvi (av"‘si')..

since Xyj takes' values one€ and ‘zero accordingly as the response is

-

right or wrong.

o v .
- -

From this, the likelihood function. for the, entire set of

;'esponées (Xyj) for person v is:

( | i xVi (GV-Gi) SR
. ' n -—2=— . R
[ * : l*éav-si)' ' w
[ o ) . )
° &
k‘ ¥
N L
r
T * .




Thé logarithm of thig fuhction: -
. , , . N .

_(z vi%v ZX\” ,) - z' 109(1 +e( -8 ))
| (avrv - Z‘*Xvisi)»- i]og(p+e(o;-6,\))~

—
!

- M

-

\

Eor the ML solution, %Ev = 0. It should be noted that in this

case the - 5's are regarded. as already knoWn, so that  wy.is the

only parameter to be estimated.
"' - .

Th1s equat1on does not conta1n the 1teme response (Xyi). It
demonstrates a result, a1 ready obta1ned by oth&r writers, ‘that the
ability est1mate depends not upon the particular pattern of item
responses obtained, but on1y upon. the "tota1 score." ris a
suff1c1ent stat1st1c for ability, and the‘ Convent1ona1 practice of
using total scores as measires has a logical f/Oundatwn.

14

P ’ . 7
i

. . (a -G ) .
The equation ry = z e v
' " 1605 )

-

can be solved for Qy-

e
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. The score on the test takes va1ues 0 1, 2, "... k. Each of

*

the k terms on the r1ght handvs1de of the equat1on 11es bemween ) and
" l
1 for ‘real ‘values of X,j and &j. Note that thiere .are.no soldtions

8,
wo b

for = Ohand r
no maximum, and this could have - beert ant1c1pated.- If an individual
- ~ 8 f’ El

responds correctly to every’ item (i.e., ry = k), .then~ we. have no'.

,
.

information on which to baselanM upper -bound for an abiTity.estimate.

Simi]arly, if-ever& item is,answered'incorrectIy, thereﬁare'no data to

suggest just how low the 1eve1 of ability might be. - N t 8

Note “that once ‘a set of items has been ca11brated (1 e., the
‘i

6's have been' estimated), it 1is possible to estimate "an ab11ity

parameter for each possible score on the test, regardless  of whether

or not'any individual,actua]Tyfobtains such a score. If a test-is E
,.constructed by selecting items'from an a1readj calibrated‘item,bank,
_ then ability param ters for all possible soores on -the new test can be
- calculated even beiol |

e;fhe test is used. .
The standard errdrs of the ab111ty parameters, correspond1ng as

%
they do to the standard error- of measurement, are usyally of more

1nterest than the standard errors of the item - 1ff1cu1t1es.

Furthermore they are typically cons1derab1y 1arger, s1nce the ab111ty

parameter estimates are based upon on]y h observat1on > {usually

between 10 and 190)-whereas~item calibration is typically bpased upon

b
% 1
. H

i

H

" the results offat least severa1 hundred 1nd1v1duals.

~

In genera], if we assume that the o‘s are estab11shed w1th some

precision, the standard_errors of the «a's can be developed from the

-

k. For these va1ues the 11ke11hody funct1on has,'-




dggg hkehh.pod funct1on.
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Then the standard qrror of measurement for an 1nd1v1dua1 who
L

receives an ability estimate, « for his responses to items with

[3 . -
difficulties 6f is: L AN

‘The secondvdiffer_'ential reaches a maximum value of"l‘_ "when all
g -~ 7

.@
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‘the &°'s are equal ‘to ay. In practice, if the 6's are all fairly

close to ay (i.e., if the items are all closely matched to the

person'’s ability), then the second differentia1' remains close te

- E_. and so the standard error is given approx1mate1y bXJF’ 1og1ts,‘

4

in general, however, we can write
1 ]

2 .
Sa, > \/_'F_ logits

whatever the distribution of the é6's.

Tests of Fit , : T

Control of the model by validating _its conformity to the
structure of a particular data set; within pre-spec1f1ab1e limits, has
been d1tf1cu1t to achieve with the PAIR ,method -of parameter
estiﬁation. The most frequent1y used approach has beeﬁ«thevnon-random |
sﬁ11tting of the or1g1na1 data set “into two »parts 'based on some{
characteristic of- the persons, ca11brat1ng the full set of items for
each part of the data separate1y, and plotting the resu1ts against one
another; This 1s inexpensive, straightforward, and has considerable
ut111ty a1tnough it lacks mathematical elegance. | A division ef the
sample of persons into h1gh performers and low performers at the

median raw score is the most severe test of the ant1c1pated invariance

© of item d1ff1cu1ty parameters. It focuses d1rect1y on the assumpt1on'
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of equal discriminating power'. for all -items in the set, and the
associated though contrary threat, ability-related random guessing.
Since the same se't of item parameters 41s'be1vng estimated for both high
and lo'w-abﬂ1ty\ groups; and the méan difficulty in each case is being
fixed at zero, the model predicts that within the limits of sampling
error the same item cdlibrations should emerge from each half of the
analysis. Figure 2 demonstrates typical results from two multiple-
choice achievement tests, one of which fits the model very weﬁ and
one of which shows considerable evidence of g{uess1ng.' Experience with
plofs of this type Shows that they éan be very infarmative, and Figure
" 3 shows a somewhat simplified guide to their °1nterp.retat1von. |

O0f course other sths can be used -to generate thesé plots. For

-~ example, to test for the b{resence of sex biasswithin a test it is

possible ~to plot calibration obtained from males against those

obtained from females. The plot reproduced in Figure 4 contains item
‘difficulties for a mathematics test ca1v1brbated for groups of students
,who stud1ed two different?turricula. Analysis of the discrepancies
»from the pred1cted stra1ght 1ine showed how%é pattern of 1earn1ng
produced by the new curriculum was di fferent from that of the old (and '
these differences were not in accord with the intentions of the
cur'r1cu1um deve'I-Opmentvteam. Choppin, 1977). |

A more detailed control of the model requ1res going back to the
original persons-b_y 1tems data matr1x and est1mat1ng the probabﬂ'lty

of a correct response for each person/item interactien based on .the
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~ Figure 3! Guide to Interpretation

high
discrimination

| "GUESSING" .
N  REGION ] ©

item.calibrations for
low ability students

item calibrations fqr
high ability students

low
discrimination
N ‘
‘ .} \
Figure 4: athemat1cs Test, Item D1ff1cu1ty
¢ol ‘
:
$5 ;
2
E a
s].* , '
H
: /\\
1Y .
i &
\/ 451 2 - tr
b
=
¢ >
“40 4 'é
T
; -
) e
»q{ .
] R
‘I
rd
.I‘ .
. »1, @ Ttem difffculty in wits for Grade 7.Curriculun  puoils

) F o 4 - 0 s5 @

30 -




) - 27%=

.

estimates of d( and © 6 . When these probabilities are compared to
the observations, a matrix of residuals is generated. Th¥s topic has
been well covered in Mead.(1975) andiwr1ght_and Stone (1979) and will
not be further devgloped here.” . i~

Rasch (1960, p. 174) suggested tha; the exam1nat1oﬁ’ oﬁ'i}em
triplets might offer an effective control of the modei, but tﬁ1slhas'
not proved to b%'the_case, Recent1y,.however, it has been noticed

that the comparison of the B and B* matr1cés offers a

: : b
concise test of the local independence assumption. The ratio _gi
‘ ‘ b
. _ o b*j' ij
estimates (6.-6, roring all other items, whereas 1| estimates
(', ,/)/iqrm; g . (E |

only through the cqmpar1son of i and j to the other items. If there

exists a local contextual effect (e.g., if item 15 is eas1en than it .

would otherwise be'because it comes immediately after item 14), thén

. the b and b* v;1ues should show it. Tb1s comparison is accomp]jshed

by a x} statistic. " The hethod holds cons1derab1e promise since

the déﬁﬁmption of :1o¢a1 independence has been strongly attacked asv '
unrealistic (Goldstein, 1979). A humber'of studies of achievement \&\\\\
test data in which items are administered in different orders and with .

or w1thout,otheﬁ groupsgof items sqggeSts that the local independence
assumption is often well met ‘%n b;act1ce, ~a1thoughv other evidence

(Tang, 1982) suggestsAthat en a test bf reasoning skills such as a

~




progressive matrices test, the context is extremely important. It

/' seems probable that the (B,B*) comparison will be ‘used for testing

local independénce even when parameter estimation is'achieved through

UCON or maximum 1ikelihood PAIR.
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