DOCUMENT RESUML

ED 228 045 - SE 040 921

AUTHOR Schoenfeld, Alan H.

TITLE Theoretical and Pragmatic Issues in the Design of
i Mathematical "Problem Solving" Instruction.

PUB DATE. Apr 83 - : : '

NOTE - 36p.; Paper presented at the annual meeting of the

_ American Efucational Research Association (Montreal,
Quebec, Caiada, April 11-14, 1983).

PUB TYPE ‘ Viewpoints (120) -- Speeches/Conferencé Papers (150)
‘EDRS PRICE MF01/PC02 Plus Postage.
DESCRIPTORS *College Mathematics; Critical Thinking; *Educational

Theories; Higher Education; *Mathematics Education;
*Mathematics Instruction; *Problem Solving; *Teaching
Methods -

ABSTRACT . )
This paper considers the nature of "understanding” in
matliematics, and of instruction designed to foster it. The first part

is theoretical, presenting an argument that there are (at least)
three qualitatively different components to competent mathematical
performance: (1) possession of the appropriate set of cognitive
+ mwresources,” (2) the ability to select appropriately from the
resources potentially at one's disposal, 'and use them with some
efficiency (i.e., good "control"” behavior), and (3) possession of a
_"mathematical perspective" that establishes the context within which
resources are selected and used. Examples are given to show that the
absence of any of these can- cause failure in students. The second
part ‘is practical, and the focus turns to "positive" behavior.
Suggestions are made for (1) solidifying resources including a focus
on representations and the use of heuristic strategies, (2) inducing
more efficient "control" behaviors, and (3) uncovering inappropriate
(anti-mathematical) perspectives in students, and working towards
replacing them with perspectives that support the development ‘and
utilization of mathematical skills. (Author) - '

G

**********************************i************************************ .
*# “Reproductions—supplied-by EDRS_are ‘the best that can be made *

* * -from the original document. . *
***************************f%**************************************ﬁ***




= SEOH09R/

_L

@)

ED2280L45

Aruitoxt provided by Eic:

> U.S. DEPARTMENT OF EFUCATION ’
. - : NATIONAL INSTITUTE OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION h

J CENTER (ERIC) °

This document has been reproduced as
receves from the person of otganization

N orgInAting 1t

' Minot changes have been made 10 improve
reproduction quahty

® Pownts of view or opitsions stated in this docu-
ment do not necessanly rep-esent official NIE
position ot pohicy.

Theoretical and Pragmatic lssues -~

in the Design’of Mathematical '"Problem Solving' Instruction

s

- “Alan H. Schoenfeld ¢
Graduate School of Education
and Department of Mathematics
The University cf Rochester
. ‘ Rochester, NY 14627

“PERMISSION TO REPRODUCE THIS

MATERIAL HAS BEEN ZRANTED 8Y

x TO THE EDUCATIONAL RESOURCES
, INFORMATION CENTER (ERIC).”

¥

Running Head: !ssues in Instruction

Papef presented &t the 1983 Annuél Meeting of the American Educational
Research Association, Montreal, Canada, April 1983. .




L

\ .
i Theoretical and Pragmatic lssues
|

in the design of mathematical "problem solving'’ instruct.on

Alan H. Schoenfeld
Graduate School of Education.
and Department -of Mathematics
The University of Rochester .
Abst}act ‘ “
This paper considers the.nature of "understanding' in maghemati;s, and
of instruction designed to foster it. The first part [s Eheoreticaf, pre:
sentihg an argument that there are (at least) three qualita;ively different
components to competent mathematical performance: (1) possession of the
appropriate set of cognitive 'regources,' (2) the ability zo select appro-
t priately from the resources potentially at one's disposal, anﬁ use them with
some efficiency (i.e., good ‘control’ behavior), and (3) pogsession of ‘a
\”mathematical perspective' that establishes the context within which resources
are selected an& used. Examplés are given to show that "the absence’of any of
these can céusé failure in.students. The second pa;t is practical, and'the'
focus turns to ''positive'’ behavior. Suggestions a;e made for (1) solidifying
resqurcesfincluding_é focus on representatioﬁs and the use of héuristic strate-
gies (2) inducing more efficient ''control” behaviors, and (3) uncovering inap;”
propriate (anti-mathematical) perspectJYeS in students, and working towards re-

&

. placing them with perspectives that Eupport thé development and utilization of

mathematical SKilTs? : S —
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Theoretical and Pragmatic Issues

‘In the Desion of Mathematical "Problem Solving" Instruction

Introduction

| first offered an yndergraduate course in mathematical problem

solving at Berkeley in 1976, and .have periodically of fered various

{ncarnations of it since thén. The most recent version is in progress

) this semester at Rochester. While many of the’idea§ underlying the course

_and many of the problems | use are the same as they were seven years ago,
: ) 7

many things are different as well. | would like here to describe the. .

"major change in my perspective, which establishes the context for the .

balance of this paper.
When I began teaching ‘''problem SOIV|ng” | took that phrase, broadly

L

construed, as an operatlona] definition of understandlng you understand

how to- thlnk mathematically when you are resourceful flexible, and effici-
ent in your ability to deal with new problems in mathematlcs. To be

resourceful and flexible, .students needed (- th0ught) to be famlllar wjth

a broad range of general problem soIV|ng strategies, known as heurlstlcs.

To be efficient, they—needed;coaching—in—how_to_ﬂmanage” the resources at

their disposal. My .course tried to provide both - and in some ways} still

does. Consistent with the operational view expresséd above, the ''acid test''

for its success was that, after |nstruct|on, the students should show marked

improvement on a collection of problems not related ;o the ones they. had
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studied in the c?urse. (A later version of the course passed the test,
with flying colors; see Schoenfeld, 1982.)

The early versions of my problem solving course reflected/a positi-
vist, “cognitiQe éngineeriég” perspective: one proceeds by modeling an
“ideal" way to solve problems (that model usually, butvnot necessarily,
based on experts' perfsrmaﬁce),'and then~training students to perform in

accordance with the model. As the acid test indicates, such courses can

>

be 'successful.
My notion of success has changed in récent years. More accurately,
: my notion of mathematical understanding-(and. ther=fore, of what | was ~
téaching in the coufse) has changed. Th}s changeiwas induced largely by
the part of my research that called for detai[ed examinations of my
students' prob]em solving performance before they entergd my course. My
students were, by most measures, the Succesées of our educational system.
' .
[ Virtually all qf them had‘completéd at least one semester of calculus (many,
three) with grades of B or'better betore enrolling in my course. Their
enrollment itself indicated that they were partial to mathematics (it was

an optional course, fulfilling no requirements) and relatively confident

about their abilities (it had a reputation for beina difficult). Video-

tapes of thesé'studentsl problem solving performance TFevealed—some
unpleasant~realities. fhey pointed to serious misunderstandings about
mathematics, and often to deeply held anti-mathematical ﬁéfspeéti&és in

these "successful'' students. : In some cases they indicated that students

could work quite functionally in domains™ about which they understood .

o
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virtually ﬁotB}ng. 'In others they indicated. that the students ‘'knew' a

v

great deal that went unused because they felt that knowledge to Be use-
less. At a theoretical level, the research indicated that my earlier -
notion of "problem solving' as an operational definition of 'understanding"
was a gross simpljfication: one's behavior in problem solving is a com-
plex combination of (lj the cognitive: resources potentially at one's dis-
posal, (11) the ability oné has to ''oversee'' the selection and erloyment
of those resources, apd'(IJl)'the §et'of béliefs one has about the di§ci-

pline, the environment, the task, and oneself - the beliefs tha-, in
S ’ ) T !

. essence, détermire the context within which one selects and deploys the *

L]
cognitive resources potentially accessible ‘in Long Term Memory. The next

section . this paper provides a brief characterization of these categorieg,
R ,
and of the rules that they play in “underétanding.” With this as theoretical

backdrop, we then discuss some practical issues related to instruction.

(g

+
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Three Categories of Understanding*

Figure 1 outlines the contents of this section. There is an enormous
literature on the first.category, a substantial and growing literature on
the second, and a sparse literature on the third. | believe that they are

all critical components of understanding, and’ of problem solving performance.

»

Insert Figure 1 about here

4

rd

This category is quite broad, comprising the range of facts and pro-

cedures potentially available to an individual problem solver for implementa-

tion. In a characterfzation of experts' problem solving, Simon (1979)

describés the key.issues as follows: (a) how much knowledge does an

expert or -professional in the domain have stored in LTM (Long Term Memory) ,
and (b) how is that knowledge ‘organized and' accessed so that it can be

. * £
brought to bear on specific problems?" A third question-is implicit: (c) how

is éhat knowledge represented, and how does the nature of the reprasentation

affect access and implemeﬁtation?

To begin with, there is the question of what domain-specific knowledge

is accessible.to the problem solver. Does a student trying to solve a

*This section. takes liberally and extensively from my three in-press articles.
My purpose here is to be :summary-descriptive, and | have ‘not provided
extensive documentation for the positions summarized here; bibliographies are
given in the in-press papers. There are, however, three recent reviews worth
mention.that provide broad and deep coverage of the relevant literaturcs:

see the papers by the Federation of Behavioral, Psychological, and Cognitive

_Sciences; by Greeno and Simon; and by Nickerson.
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Three Qualitatively Different Categories of Knowledge and

Behavior Required for a Characterization of Human Probleh Solving

A

Category 'l: Resources (Knowledge poésessed by the individual, that can be
brought to bear on the problem at hand)
‘-- Facts and augorlthms ’ ‘ L s . -

-- Relevant competencies, lncludlng the use of routine

procedures, 'local dectsnon-maklng, and fmplenentnng

"local! heuristics.

Category 11: Control (Selection and-Implementation of Tactical Resources)

. o®

-~ Monitoring

--‘Assessment g .

--'Dec{s}on making ‘ ) o .
-=- Conscious &etacognitive acts

Category 111: Belief Systems (Not necessarily conscious determinants of “an

individual's behavior)

== About self ., | oy '\
--" About the environment
-- About the topic

-= About mathematics

figure T i

8.

L4 M e G
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straightedge-&nd-compass construction problem from plane geometry know ) R

that' the radius of a circle is perpendicular to the tangent line at the

point of tangency? Whether the student chooses to use that fact is * -

¢

-,

another fatter (see Category 111). But, clearly, solutions depending

on- that knowledge would evolve in radically different ways lf the students

did or did not "know'" it. The same holds for relevant procedures. Does .

the student know how to construct a perpendlcular to a line ;hrough a

given ponnt? If not, does the studert know that it can be done, so ‘that

deriving the construction is a possnbllltyl Or must that too be "dlscovered?"
Beyond 'possession' of factual and procedural knowledge comes the

qdestzsn of access to iit. The student may ''know'' a particulat fact, hut .

will the student ''see!' that it is relevant in a particular problem? . The

literature indicates that much ''routihe' expert performance in a variety

~ of domains is due to,the'possession~of problem ''schemata," which p}ovlde

.

more or less '"automatic'' responses to generic situations; See, e.g.,
-deGroot (1966). Experimental results in pysics (Chi, Feltovnch, and
Glaser, l98l) and mathematics (Schoenfeld and Herrmann, 1982) indicate

that experts see through the surface structure' of problems to perceive
'deep structure! similarities and approach the pruolems'accordlngly More-
over, students develop problem schemata that may or may not- be c0nS|stent
with those experts (Hlnsley, Hayes, and Simon, 1977; Silver, 1979), a

these schemata change with experience (Schoenfeld and Herrmann, 1982).

For a characterization of the role of schemata in students' mathematical

problem solving performance, see Silver, l.982. Again, issues of repre-

. -
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p . e . -y
sentation are a consistent thread throughout this literature (Greeno and

Simon, 1983).

One further class of resources consists of .Having access to, &nd

being ablecto implement, various problem'solying hescistics. | shall 1

not address here the differences between mathematics and other disciplines
(e g. physics) that accord heuristics a special status in mathematics, but

wi'll simply note that there is a falr body of research in mathematics
Ny

indiCating the role of heuristic fluency as a component ot fnathematical

d

S, )
competence. "The point | wish to make here is that the domain-specific

implementation of many such strategies is very much on a par withethe -

-

implementation o domain-specific schemata. ‘Consider, for example, the

following general strategy: 'To discover useful information about the
.

object you are trying to find, assume that you have that object and

determine the propertnes that .it must have.”. The ”plane geometry'" verslon

>

of the strategy |sn“Draw a figure to se€e what propertles it has,“ wh|ch is

-
a

quite similar to a domain- specific schema such as "look for congruent tri-
angles when trying to prove”certain quantltles are equal.'’ Such heurlstlcs,

like the facts, procedures, and schemata dlscussed abcve, comprise the set

of tools potentlally accessible to the problem solver.

" An inventory’ of these resources provides a cnaracterlzatlon of. what

the problem solver mtght be able to use in sclving a problem. Since we are

dealiog with the 'real behavior of students rathervthan’the {dealized

behavior of experts, there are no guarantees that these resources will be
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-called upon, even if it~is appropriate for the problem solver ta do so: -«

. ©
‘this is where this discussion diverges from S.imon's, as quoted above.

3
Whether the tools potentidlly accessible to the problem solver are .

P

selected:onvdiscarded, how such decisioks are made, and how such choices i,

t
Y

affect the problem solving pracess as a whole, are another category of

- o. v
behavior.

. ~

1+ Control J ) o

_Consider the following problem. 'Three points are chosen on the
- * ’

°

circumference of a circle or radius R, and the triangle containing them
is drawn. What choice of points results in the triangle: of largest
possnble area? Justlfy your answer as "best as you can.' If space per~-

mitted, | would present he the full transcripts of the dialogues pro-
5N

duced by.my students ‘as they worked thls problem: one best sees thc

effects of 'control' failures by examining the effects of thos~ failures

» .

on the full solytions: See my (in-press, a) for typical'transcripts and

" the details of an analytical framework for analyzing them. One typical

» -~ . »

.

" transcript is summarized below. .

The students K and A had completed one and three semesters of cal-

~

culus re"pectivejy, with A Jjust having finished a course including the

!
multivariate technrqﬁes .that provide the analytlcal {rather than heuristic)

solution to the problem. They read the prob.em and quickly sketched {ou. a

,representatlve case, lndlcatlhg that they had understood it. After a total

of 35 seconds elapsed, the following dialogue ensued:

: | 11 o \
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“

! think tha largest triangie should probably be equilateral...

12

+  A: So we have to d|v1de the circumference of the - three equal arcs

to get this length (the length of a side) here. So, 60- 120

arc degrees... {“
, K:, Do we have...(?eads statement) justify your answer as best you -
> ) can. Justify way this triangle...justify why you...right. .
A: 0K, ket's somehow take a right triangle and see_what we get. . . .
We'll get a right angie. - . ; |
They made a brief (;5 second) calculation on the right triangle, and then
returned to the equilateraf: ‘
g A: 0K, but what we'll need is to say things wzke -- 0K, let's go
back to the angle -- probably we can do scmething with the angle.
1t is worth taking a close look at this dialogue, which shaped the .

rest of their solution. K began with the obvious conjecture, that the
) ) i

equilateral triangle is the answer. A began calculating its area immedi-

< 3

ately, although (1) ﬁhe problem does not dsk for the aé%f of the largest
trianéle, and (2) it is not clear that knowing that are@ will help. At
this point K reread the problem statement, obviously worried about the ‘° L
ahﬁase Yjustify your answer." They decided to look at tha right triangle.

-

a minor dlgreSSIOn that represents, { think, a weak attempt at justifica-

tion: if the area of the eauilateral turned outj to be larger than the

area of the right triangle -= another archetype == they would have\had

Y
o
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slightly more reason to believe it to be the largest After this brief

&

digression, hey moved wholeheartedly into the calculation of the equil-
ateral's area. '

Note that the decision. to undertake chis calculation, which nas to
occupy them for the balance of the solution, was made without any.overt
discussion of |ts utlllty or relevance to the solution. They simply began
calculating. Now there are times when it s appropvlaee to Jump into a .

<

solution attempt without reflecting upon it, for example when one proceeds

~

along familiar lines in a schema-drlven solution. But when the territory
. M S .

is somewher unfamllxar, some prudence in establishing one's directions

seems to be called for. 1f a bad decision is made, and then not revoked,

that one decision dooms the entire solutlon to failure. That is, in fact,

£

what haphened to K and A. - , -

Having decided te determine the area of the equilateral thlangle, the
students began calculations. These became }ar more tortuous than they had
-expected. About seven minutes into the solution, as their energies flagged
a bit, there was the following dialogue:

A: There'used to be a problem...about the square being the blggest‘

part. of the area... ‘ .

the largest area of...50me§hing Yn a circle, may be a rectangle, .

=

some}hing like that-..

Ah, well...

>

$c thils is R, and this is golng::o be 120 degrees, and...

12
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This brief interaction provided the students with the first clear
opportuéity to pause and take stock. They might have asked: How wel{ have
we done? Are there other possibilities? Should we takz those? Should we’
look for others? Instead the.al;ernative faded out of the picture and,
with renewed energy, they eﬁbarked once again on the calculation. (Noée,
incidentally, that K was the one to resume the calculations this time; A
_ began them earlier. They both share responsibilft§ for the one-dimension-

: ~
ality of their solution approach.) There were two similar occurrences later

in the solution. The possibi-lities of approaching the problem by way of the

calculus, and also by means of an heuristic variational argument, were

mentioned -- and dfbpped - iﬁ passing. When the twenty-minute video~

cassette recording the students ran out of tape and cticked off, fhey
weré:3¥fTT4%alculating.‘:When | asked them what good it would do to
have the area, of ihe'triangle they could not say. -

| wnsh to argue tha:z the students' failure. on this pr;blem was nhot,
as in the examples in the prev:ous sect|On, a result of thear lack of
‘basic skills. (A.had solved an equally complex multivariate problem on
a fina)l exam less than two weeks before he was videotapled; he clearly
had the requisite skills.) Rather, their failyre was strategic. First,
they made no attempt to generate or consider plausible approaches to Fhe

problem. The first one that came to mind was embarked upon. Second, they

did not evaluate the approach they took: after having pursued it for a full
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twenty minutes, they could not say what value it might have had. Third,
they did not actively monitor and assess their progress (or lack.of it)
during the solution. An active ''executive" mi;nt have curtailed their wild
goose chase, and provided the opportunity for more produetive behavior.
Such an exeeutive might'have considered_the three other possibilities tnat
arose (a related calculus problem, maximization via calculus, a variational
argument) and, at ninimum, proposed that they be explored and evaluated

before they were abandoned: The point is not that this kind of egeeutive

guarantees success, for success clearly depends on a yariety of skills.

Rather, the point is that such an executive (strategist) helps to avoid what

‘{s otherwise a guaranteed failure. Moreover, such failures are far from

infrequent. The transcript summarized above was one of twelve .recorded in a

1981 efperiment..Of those twelve, seven could be categorized as being of tne
'read snd then go on a wild goose chase!' variety. The absence of plannino,
monitoring, assessing, -- in general, overseeing a solution -- can do students
-great harm..So can the imposition of inappropriate control decisions, If

space permitted, | Qouid discuss a protocol where students literaﬁly throw away
the elements of a solution that is at their fingertips. Bad ''control” is a

consistent source of failure., See my in-press, a for details,

J1!: Beliefs

Consider the following problem. You are given two intersecting straight

lines and a ponnt P on one of them, as in the figure below. Show how to construct,

WIth stra:ghtedge and compass, a circle that is tangent to both lines and has

the point P as |ts ponnt of tangency to one of them.”

P

b=
Ot
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“ If one thinks to draw in the desired circle and to derive the properties
- it mst have, the problem is nearly trivial (provided, of course, one has access
to the relevant geometric knowledge): the center of the circle lies on the
irtersection of any two of‘(a)-the perpendicular to the top line through P,
(b) the perpendicular'to thg bottom line through P's direct ”opposite,“{and
(é) the bisector of the vertex angle., That is not th students proceeded,
however, The following describes a typical session,

The students S and B read the problem, drew a rough sketch, and conjectured
that the diameter of the desired circle was the line segment between P and
itgi“oppogite,” P' (see F{gUre 2a). lThey reached off to the side for a
strzightedge and compass, in order to test their conjecture empiriéally.rr

They took great care with the construction, working on it for.five minutes

or so. It didn't look right when they finished it, so they rejected
the conjectu}e.~ At that point one of them recalled that the radius of
the circle was supposed to be perpérdicular to the tangent at P. As a
result they revised their conjecture: now the diameter of the circle

was, most likely, the segment of the perpendicular through P that lies

between the two lines (Figure 25). This, too, was tested empirically.
Five more minutes elapsed in constructions, and whén they‘exam}nedxthe
results of this constructiony‘they decided that th}s guess was also
-incorrect. They re-examined their origina1 sketch, and one of the
studentg noticed that the cenéer'of the circle seemed éo be half-way
between the two given lines. Perhqps, then, the center lay on the angle
bisector. This gavévrfse to a third conjecture (serendipitously correct;
. see Figure'2c), which was again tested by construction. This time they

were ''successful.! Sketch in hand, they reported to me ~- more than six-

teen minutes, after they had b€gun the problem -- that they had solved the
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i problem. When ! told them that their construction was indeed correct, and
l : . asked them if they could tell me why it worked, they said they had no idea;

it just did.

;. first b. second ’ ce. third

conjecture con jecture . ) con jecture
ffigure 2 ;

VO
a

The behavior of these two students was. more typical than not. " (See

my in-press, b for another protocol and a detailed model of students' per-

%

. formance on this kind of problem.) Without exception, my students guessed

i

at the nature of the solution and then tested their guesses by performing
their hypothesized constructions. If the guesses were wrong (that is, the

constructions did not '‘16ok right") they would try again, with another

constéuction. Most often the stﬁdents took fifteen to twenty minutes

to finish the problem, the majority of that time spent with straight-

edge and compass in hand. (They either found a construction that worked
. and reported success, or ran out of hypotheses and reported failure-)

Not one pair of students r=asoried their way to a solutién. Only one

pair justified their solution afterwards, and this justification was

an after-the-fact observation: 'Me éot it, that is, it looks pretty

" close....l think, if you center it right, they touch...0K. These (pcv
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and ‘P'CV in Figure 3) are similar triangles...Yeah...They are equal
tr angles too " In sum, their behaviors were purely empirical: the

students' classrcom knowledge of gecmetry was, w1th the sole exceptlon

just quoted, nowhere tc be seen.

p

PI

figure 3‘
.9" - L]
-
It would be depressing enough to think that these students =- again,
the "successes' of our system -- had forgotten all of the geometry that

»

they had learned in-high scﬁool. what is more depressing is that they
remembered it.. After the stuéents finished tﬁeir work on ;he problem, 1
asked them to work two “standard high school problems” for me: to prove
that PV = __V- and tha; cv blsected vertex’angle vV, in Flgure 3 Most of
the students were able to do so without difficulty.

Why,then, had the students not used this knowledge ln worklng the
Problem 7 | submit that it is because they had no idea that geometric
deduction ('proof') would be of the least value to them. Ddring the

students' careers, deductive arguments like the ones in- -the “standard

high school problems'' given above were not perceived as beung useful at all

-

From the students' point of view, you only 'proved' in class what you
already know to be true; that's the classroom game you play, to satisfy

the teacher. Proof never shows you something new, but enly confirms

what.you know already. Writing proofs in geometry is seen as being
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similar to conjUgating verbs in Latin. That is, it may be good for
‘Hisciplihé" and for “training the mind," but it has nothing whats&ever
. to do with thirking or solving problems;‘ As a reéult,this kind of
Melassroom knowledge'' is left behindvin the classroom: perceived as
,use]e;s, it goes.unuse&. ‘While it may see% melodramatfc, | submit that
the student who believes that deductive reasoning has no real value is
about as likely to think of using it when confronted with a M'real Qroblem“
as an atheist is likely to look for '“divine intervention'' as an explanation
for a particular phénomenon, or a creationist is likely to think of evolu- .
tionary mechanisms as a way to exélain ghe current configuration of a

L

“particular anatomic structure. We are confronted with an uncomfortable
parado;: as a result of iheir mathematica!,tra}ning, these.students have
adoptsd an anti-mathematical stance. This stance, in a very real sense,
bafs thenrf;om using mathemétics effectively. T'e belief underlying this
stance (which, | should stress, may not be consciously held) and two other
beliefs that significantly affect students' behav{or, are as followg.

Belief 1: Formal mathematics has little or nothing to do with real
thinking or préblem solving. ‘

) . Belief 2: Mathematics problems are always solved in less than‘Pen

tminutés, if they are solved at all, Corollary: Give up after ten nminutes,

Belief 3:0nly geniuses are‘capablevof discovering or creating mathematics.,
First corollary: if you forget something, too bad. After'all, you're not a

genius and you won't be able to derive it on your own, Second corollary: Accept

procedures at face value, and don't try to understand why they work. Aftey

.~all, they are derived knowledge passed on "from above,"
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Practical lssues

. v
]

N The discussion in the previous..section suggests the perspective that,

| shall take ﬁere: . . ‘ {

To be successful in training students to think mathematically,

instruction in mathematics must (a) provide, the students with ’ ‘ .

a solid collection of resources, the more integrated the better; é

i

(b) assist the student in developing an effective set of Ycontrol" i
(planning, monitoring, assessment, decision-making) behaviors, and
(c) serve to develop in students a set of perspéctives (beliefs)

that promote the students' propensities and abilities to use

-
-

mathematics where it is appropriate to do so.

Note that | have not used the phrase '']problem solviagh in this statement, or

suggested that ;qcﬁ.activities'must or should take place in a séparate course.
The deeper‘issue is mathematical understanding, although the ability to solve
.problems is clearlx a large component of thég understanding. In the be;t éf

all possible worlds, a separate course witp a heavy emphasis on problem solv;
ing would be unnecessary; (a) fhroﬁgh'(cf above would be developed in ordinary
courseworkf The research clearly indicates, honger,’that that does not take
place. Separate courses have two primary virtde&. The first is the freédom

%or teacher é;d students to explo}e their understanding of mathematics, with-
out feeling the pressure to ''move on'' invorden to éover other @aterial listed

in the course syllabus.® The second is that problems out of context are more

"

| #1t should not be inferred from this comment that separate problem solving or
understanding'' courses are easier; only that they are different with regard
to coverage: As the research cited above indicates, much -of what students
| "learn' wher standard material is '"covered' may.be illusory. ‘
20 - ‘
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-

likely to reveal students' misconceptions. My comments will be made in the

context of a separate course, butthey apply in.ge%eral. Where suggestions

| ’ -

of how to deal with such issues have received adequate attention elsewhere,

or when they are likely to be covefed in some depth at this symposium, |

<

shéll be very brief.

|. Resources

| suspect that the talks by Joan Heller and Fred Reif, and by Jim Greeno,
will say a great deal about promoting effective problem solving behavior and

understanding. Speaking broadly, the general idea is to be as explicit-as

-

4

ofe possibly can in ‘ C - )
! (1) elucidating a set of effective procedures and behaviors that .
are within séudents' capacity-to learn (often but not'necessarily,¢
modeled on experés' performance), while
(2) helping students to develop cognitive ''support structures"
for those procedures and behaviors (often the appropriate repre-
sentations; aiso the appropriate percentions of stereot?pica] cir-
‘ cumgtadges, for schema-based actions).
There [s, fartunatély, a growing Iite;ature on these topics.“ THe best
- quick summary'of usg?u[ suggqstions»can be obtained by taking the subsection

titles from Section 3 (Ho@\@ight understanding be faciiitated?) of Nickerson's

(1982) "Understanding Understaﬁd[ﬁg:“ 'Start where the studént is; promote

discovery; insist on active processing; use representations; use analogies
. ~N

and metaphors; simulate; explore the re5§ons for misconceptions and errors; . ’

-

AN
teach evoking «onditions for procedures; vary the context; make connections

~

among concepts being taught; relate classroom teébhi?g to real-world problems;
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encourage the acquisition of domain-specific knowledge; reinforce efforts to-
dnderstand; provide a generally supportive atmosphere." g

As far as this Iist_éoes, | can only say 'amen.'" | should point out,
howevér, that most of the suggestions Caé accurate reflection of the . litera-
ture) deal with re§ources. There is little about control behavior or (save
for miscochptions,‘and relating teaching to real-world problems) about

beliefs.

Il. Control

’The presentation by Joak Heller and Fred Reif has something to say about
the ''positive'’ aspects of control.behaviO(: the paper deals with the results
of encouraging students in the domain of mechanics to obtain. appropriate
representations, facilitating good decision-making and search, and promoting
the assessment of solutions' correctness and optfmality. The more domain-
specific one is, the more one can specify and encourage these positive' con-
trol behaviors. Clearly more needs to be done in elucidating domain- specuflc
(and generalizable) control strategies. Yet as we saw in the stcussion of
Heontrol' in the previous section, a major function of the "executive'' in

decision making in general problem solving consists of making certain that

wt

" explorations -are justified and that wild goose chases are terminated before

they become debilitating. This discussion will focus on those general,
domain-independent behaviors. Since there is an extensive '"how to'' section
that focuses largely on control decisions in (Schoenfeld, 1983), | will focus

here on the rationale for such discussions in the classroom and make a few

v

brief suggestions. The following three points form the basis of the rationale.
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1. " The very notion of serving as your own cognitive ''manager"
or “coach" - monitoring and assessing your progre;s as you wo;k
on a problem, and altering your sqlution as a resulé of those
asses§ments - is completely alien to virtually all of my (college
freshman) stu&ents. Their perception is that'théir minds are more ,
or less autonomous entities when_it comes to problem solving:

they just do 'what comes to mind." ‘

2. While the costs of bad 'res’ irces'' are immediate and apparent,

*

the costs of bad control are usually not. Students may go off on

a 'wild goose chase,'" in effect prohibiting themselves from using
what they know to solve a problem. They may make unwarra;ted
assumptions (that could easily be caught by the appropriate ”ﬁonitor”)
that invalidate their attempt from the beginning. In abandoning an

unsuccess ful “attempt, they may throw away the elements of a solution.

" (Examples of all of these are in my in-press, a.) In all of these

cases, failure is induced a¥ the control level. But unless there is
immediate feedback and evaluation, the failure is likely to be
attributed elsewhere: 'l didn't see that it could be done that way,"

%

or-"l really had no idea of what to do."

.3. Control processes are generally irvisible. Most often when a

student sees a problem "explained,' the student sees a discussion
of what 'works.! Most classroom ''solutions' of problems are schema-
based (on the part of the instructor), so students do not see the

teacher ""think.' On those occasions where there is a real 'problem,"

i
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one usually sees the:folldﬁing. TRe teacher says "wait a minute,

let me think.about that;'" there is a period of silence as the

teacher thinks; the silence is broken with "All right, let's look

at it this way." The solution proceeds. If ghe teacher gets

Y'stuck'' while solving a‘groblem, the same generally happens -

unless the teacher has reached a rcal impasse, in which case the

attempt is usually terminated with a promise t; present tHe solu-

tion at fhé next class Meetingf Thus students have no models for

the control processes discussed aboye.

The best way to bring these matters out in thesopen, andvﬁo provide usefgl
m?dels of control decisions for the students, is io engage in ''real' problem
solving in the classroom. At minimum, I,recdﬁm;nd that the teacher-elucidate
the full decision process when presenting solutions to proBlems: that is, to
e%plain what takes place during the silences alluded to in (3) above. ("All
right,‘what are the options here? We might look at A? or B, or maybe C. It
looks like A might be worth a try fér a few minutes, because...)' It is useful

to work through problems on this kind of ''blow by blow' basis, even when they

‘are familiar. While the téacher knows what to do and why, the student does

=

not: seeing the decision process modeled will, at least, "legitimize" it for
the students. Even so, this legitimization is only the first step. | suggest
two m;thods of group problen solv}ng during class’sessioné (and use each with
equal frequency). They are both described extensively, Qith some sample class-
room sessions, in Schoenfeld (1983).

A: THE CLASS WORKS THE PROBLEM AS A WHOLE, WITH TEACHER AS ''MANAGER."!

| pose a problem for the class to solve, and ‘invite suggestions for its .,
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.
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-

. 2

solution.* fOften suggestions‘will come quickly - too quickly, andfrequently
barely relevant to the problem (the first step of what might well be a wild
goose chase). My role is not .to judge the suggestions, but to point out the

speed with which they were raised: Yo N .

R - PN .

""|'s everyone sure that they understand the problem, before we = -

<

proceed with the solution?" N

- -

If the answer- is ''ng," the class takes whatever steps-are appropriate to remedy

-
. @ - )

Fe
that® examining_the conditions of the problem, lTooking at special cases, draw-~
ing a diagfam.or finding another appropriate represengatién, etc. Having done

so, we return to the original suggestions. The class is asked if they seem

= -

~ . ) .
reasonable. (If one or more of.the suggestions now appears unreasonable, this

may occasion a ''sermon'' about making 'sure you understand before proceeding,

and ‘abcut the dangers of wild goose chases.)

"Is there anythiﬁg else we ought to look at or try?

If there is only one'plausibie approach, we take it - aftey making sure that

A

what we are doing is reasonably well defined, and that we have a sénse of how

- »

we will use it in the solution. |If there is more than one (as is often the

case when:you work 'problems'' rather thah lexercises) we discuss the relative

merits of the approaches, and -what we might gain from them, The three ''generic''

*Two comments. First, these are reasonably difficult problems that may take the
class as a whole anywhere from ten to fifty minutes (or longer) to solve.
Second, this kind of interaction only works well when the students feel free to
make suggestions. There is a delicate tension between the wish to critique
suggestions and the fear that students, once 'scolded,' will cease to partici-
pate. The way out of this is for the teacher to stay strictly in the role of
"monitor,'" raising questions about the efficacy of suggested steps (both when,
they are useful, and not!). When the suggestions are il1-founded, the students
will’djscoyer,that for themselves. o .
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- questions for this discussion are given in (B) below. Having mad: our
- cheice, we proceed Yiith the solution. After five minutes or so have elapsed,

e pause.

b R

UATY right, we've been doing this for 3 while. s it.workinai
w7 Are .things going according to plan, or should we reconsider?"

Note that it is important to ask these questions even when things seem to be

‘going well. 'Otherwise, they become a cue'' from the teacher that directions’
. - /f ) - * ’
A should be changed. The idea is that these questions should always be- in the

Back\of one‘u mind; ‘they advante to the front when solutions seem to bog

d .

down. The class may deC|de to proceed to proceed W|th caution ("we'll give

2

it another three minutés, and then reconsader”), or to change directions. =

. “Before we abandon this approach, is there anything in it that

. N -

< should beﬂsalvaged? Aré there any ideas in ‘it that. we might
want to return to, or related topics suggested by this .approach, )

that we might want to explore if cur new approach doesn't work out?"

’

. The di5cussion,continues in thlS vein until (with luck) the problem is solved

(We will occa5|onally stop at an impasse, and contlnue with the pToblem another .

3
day. On those occasions when, after such an impasse, it still appean that the

class is ignorant of some relevant knowledge and is unlikely to derive it, I'*' . .

may then provide them with it.) We may.then pursue somé of the other suggest-

s R .

ions, and solve the problem two or three different ways.
‘While the class works on the problem,“my'contribdtions are kept to a
_minimum. |f the class decides' to pursue’ a direction that | know leads td a

dead end, | will let them - so long as-the decision was reasonably made.

»
\}

<
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Thatzhapp;né, after all, in good problem solving; an eéfectiv; "monitor/
assessor' keeps such decisions from being fatal. In general, the role of

the ''external manager'' plaiéd by the teacher is to help the\students to get
the most out of what they know: to ensure that they have fully understood

a problem before embarking on its solution, that they have looked for good
representatlons, that they ‘enerate and select approaches to thé.problem wnth
care, that they capitalize on opporppnnties that arise during the solution,
that they employ the resourcgf at thei; disposal, and avoia squandering

their eng}gies on where it ‘is élearly inappropriate. Nothing the external

v

manager does depends on knowledge of the problem not accessible to 'the stadents;

everything this manager does could be done (with the same positive effeéts) by

-
5

the students themselves. In other words’ all of the "control" functions per-

formed in the classroom disqussion could be internalized by the students, with-
out additional knowledge. . -
After the problem has been dispatched with: l §fép back into the role of

teécher to do a “posf mortem'’ of the solution.. This includes a discussion of .

problem representations, of related knowledge that might ‘or shoufd have been

e ?

called into play, of the students' effective or ineffectjvg use of control

3

.strategies (I occasivnally let the class go on a wild goose chase, to point out

o -

what happens when one fails to exert executcve control), and of ,elements in the
students's approagnvthat could, if pursued or’ explonted dlfferently, have

yielded insights into the broblem or different solutlons‘of it.

.
-
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B. THE CLASS BREAKS INTO SMALL GROUPS TO WORK ON PROBLEMS , WITH THE TEACHER
_ AS ROVING ''CONSULTANT."

About a third of the time in my problem éolving—course is spent with the
c]ass divided into groups of four, working'on problems that | have just handed
out. As the students work on the prob}ews, | circulate through the class as
a possible source oé help. Again, my role is not simply to provide information
or hints, although | will if the situation calls for it. More often than not,
my response to a ‘request for a hint will be in the foré of e (heurfstic)
question: Does that problem-remind you of anything? Have  you done something

similar recently? £an you reduce it to something simplerf, etc. g

In the sma!l groups the emphasis on “control“ decnsson remains, but -the
responsibility for it shifts from the external manager to the students There

is a large p0§ter in the classroom with the follow %3 three'''executive'

questions: :

_What (exactly) are you doing?
(Can you describe it precisely?) , ,

Why are you .doing it?
(How does it fit into the solutlon?)

T How does it help you?
(What will you do with the outcome when

_you obtain it?)

- .

Their frequent inability, at the beginning. of the course, to answer these

-

- "guestions - coupled with the realization that if they cannot, they have most
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likely been wasting their time* - serves as a strong catalyst for the
internalization of these questions.

To cast the preceding discussions in a (one of a‘humber of possible)

theoretical framework, we cap see the laége group and small gfoup discussions
as the social mediating facﬁprs that help move the student through a 'zone of

proximal development' (a la Vygotsky) to the point where' the appropriate

<

behaviors are internalized. At a more pragmatic level, the following four
reasons justify the use of class time for this admittedly time-consuming process.

1. This format affords the teacher the unique opportunity to inter-

*

. vene directly as the students solve problems, rather than being faced
with a ""finished product.'" That intervention (as indicated above) is

much stronger than it. could be in any other instructional format.

v

Moreover, group formats bring these ordinarily covert control procesgés

S .
Yout in the open,' where they can be examined.

2. Solving problems with a small number of one's peers provokes dis-

-

cussions of plausible cho§ces. When a student works a problem alone,

’

the first plausible option is often the one taken. When different
students have proposed approaches to the problem and they must settle
on one, there must be a discussion of the merits of the approaches

they have proposed - precisely’the kind of discussion that the studehts
. 1 4

'should be having, internally.

*One point of clarification: these questions are not meant to rule out explora~
tion. *'1'm mucking around for a few minutes hoping to find some‘inspiration” is
a perfectly good answer to them - so long as the student is aware of what's .~
taking place, and doesn't let the solution process degenerate into an exteqsive
and directionless series of random explorations. The purposé of the questions
is simply to make sure the student is ''in control! of what's taking place.

(s

29
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4
3. Problem solving is not “lways a’solitary endeavor. This

opportunity fo engage sin colléborative efforts does them no harm.

. 4. Students are remarkably insecure abo&f their abilities,
especially in a course of this nat;re.- Working,on problems with
other‘students is reassuring: one sees that one's fellow students

must also struggle to learn. ~

Belief

Dealing with~stud¢nts' beliefs and the effects of those beliefs on cognition
is a far more subtle issue than either of the precéang ones, and my suggestions
for it are far more primitive. We are just coming to understand the importance
and&impact of beliefs‘on cognition. One major aspect of belief systems has
received some attention and will, | believe, be addre;sed in this symposium by
Jack Lochhead and Lillian McDermott: Students' misconceptions’about physics
(their "naive physics') may interfere with their learning of the principles of

physics, or may simply render the students' Ybook. knowledge'' meaningless (§ee

Caramazza, McCloskey and Green, 138]; ~McCloskey, Caramazza, and Green, 1980;

Trowbridge and McDermott, 1980). There is clear evidence that students enter

‘their physics courses replete with a collection of naive, Aristotelian (pre-
Newtonian) viewsof physical phenomena. Many of ;hese students, in spite of
doing well in“tﬁoqe courses; emergé from them with their naive physics intacts
asked to interpret a 'real world' phenomenon, they invoke their pre-instruction

models.

The research on misconceptions ;in physics indicates that students will not

H
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innoke certein kinds of formal reasoning if they believe that they have better
explanations at their disposal. The research described on geometrynin the
previous section is similar, and perhaps more troubling: if student; have
decided that certain kinds of knowledge are ‘''useless acaeemic.classroom tasks'
they may not think to employ that knowledge, even when Sl) they have actess
to it and could use it to solve the given problems easily, and (2) they are
stymied without it. '

The ''moral' of this research is significant: students are not tabula 52322,
waltnng for knowledge to be prlnted on their 'mental blackboards.'" Those black-~
boards have been extensively written upon, and what we_ try to write on them will
only be meaningful if it connects with,.or replaces, whatﬁis there. Prob!ng for
misconceptions is essential: one must ''clean the slate,' to continue the meta-
phor. There are two'aspects to this. In '"making connections,” it is important
for teachers .to do so overtly; students may not see them otherwise. Nickerson's
(1983) suggestions ''simulate; make connections among concepts being teughc; and
(especially). relate classroom teaching to ;eal world problems' all serve this
end. The second-aspect. helping students to remove inappropriate beliefs or .
ideas, is'much more difficult: Those beliefs must be dfscovered before they

can be dealt with.

We are most unlikely to see evidence of misconceptions or "misbeliefs! as
long as (a) we are presenting material to the students, or (b) they are pre-
senting to us what they believe we want to see - e.g. formal mathematics or

formal physics in an obviously "formal' setting.- Misbeliefs are only likely

to surface if students are given the opportunity to show us what they 'know.!

. .
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In the classroom | have found that:the most effective way to find out what I .
lies beneath the surface of students' pgrfor%ance is to repeat (in‘different
forms) one simple'question: WHY? | shall give one example here.
The discussions took pl;ée this semester at Rochester, in my ”groblem
solving' class. |t has eighteen studen;s, all of whom studied geometry in

high. school, and most of whom took calculus at the college level (and did well

bl

in it). | introduced geometric constructions with the simplest. problem | could

_think of: Suppose'you had line ssgments. of léngths A, B, C respectively. ‘How

do you (using straightedge-and-compass) construct the triangle whose sides have

r

lengths A, B, C? The class (acting as a whole gfoup) solved the problem in

less than a minute (mark off a line segment of length A; from its endpoints

-

swing arcs of length B and C respectively; draw the line segments from the end-

- point of the first segment to the point of intersection), and agreed'hnanimously
that they bad the solution. . .
'"Why does that work?! . : * .

Silence.(for a long fime)
'"Yhy do you swing the arcs?" .

Ditto o ' ‘ S | o
’Wmén you swins the arc, of length B around this endpoint, what do you get?"

There were some answers to this, and we'proceeded from there. The cléss evgntu-

ally decided that the boint (singula?) of intersection had the property that it

was simultaneously at distance B from one vortex of the desire& triangle (whose

base had been established as A), and distance C from the other: this must be

“the triangle we wanted.

)
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YAre there any others?"

In response to the puzzled looks, | pointed out that the construction was.
not unique. Extended, the arcs (circles) intersected twice; moreover, one
might use arcs of lengths C and B, respectively, instead of B and C. This

-

construction led to four solitions. Response: 'They're all the same."
"Nhy?'!
After a long pause, oné student said "All the triangles you get are congruent.
They'}e the same.' The class agreed. _
""Are there any different-looking triangles with sidés A, B, and C?"

This question left themnonplussed.. The sentiment was ''no,' but there was no

'

coherent argument to support that sentiment.
Suppose you had.two different triangles, each of which had sides
A, B, and C. What could you say?"

They're congruent, of course...Hmm, maybe congruence has something to do with

this idea of uniqueness (my language)...Forty minutes had ‘elapsed when we closed

this discussion of the problem they had Hsolved' in less than a minute.
We began the next session of class with the following question: 'How do

you bisect an angle?' Again, the class produced the construction in short order.

"Why does the construction work?'

-

| will spare you the details and report the result: It took longer than a half

hour for the class to see that the (standard) construction yielded two.congruent

triangles, and that the line that resulted lay between two equal angles that had

been created; thus it was the angle bisector(!).

In sum, my class spent a week (at the college level) uncovering the reasons

33
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for two constructions that they had been able to produce from memory in less

than two minutes. Was this a waste of time? | believe just the opposite.-

The discussions not only explained 'where the constructions came from'' - a

minor goal - but also served to legitimize geometric reasoning (notions of

-

proof and congruence) as useful” tools in thinking geometrically. In subse-

quent discussions ''proof!' and ''congruence'' were invoked frequently both as
-‘reasons that t&ings worked and (MUCH more importantly) as ways ofafindin? out
-what‘g?éht work. This wesk of discussi;ns had "unlocked“>for use the content
; of a full year of study, that had lain stagnant in long term memory - not
,because‘it could not be accessed, But be;ause it had been deemed worthless.
The shame is that these discussions were ''remedial,'" and éook place in a
¢ollegiate problem solv}ng course. Proper attention to the context of learn-
ing, to making knowledée meaningful,. and to making sure that students ‘under-
stand'' should make such;Eémedjation,unnede§sary.
| aﬁ sorry that this example is anecdotal, for | consider it important;
| intend to find '"rigorous" documéntation)in the'n;ar future.' But | hope the
following two points have emerged clearly from my discussion: |
(1) Teaching studeqts to solve problemS‘(a.k.a.‘“th}nk“ or 'understand"

calls for attention to resources, control, and beliefs;

.~ (2) while the task is far from easy, it can be doné (and is rewarding}.
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