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Theoretical and Pragmatic Issues

in the design oT mathematical "problem solvin ' instruct:on

Alan H. Schoenfeld
Graduate Sthoorof Education,
and Department-of Mathematics

The .1Jniversity of Rochester

Abstract

This paper considers the.nature of "understanding" in mathematics, and

of instruction designed to foster it. The first part is theoretical, pre-
.

sentrng an argument that there are (at least) three qualitatively different

components to competent mathematical performance: (1) possession of the

appropriate set of cognitive "resources," (2) the ability to select appro-

priately from the resources potentially at one's disposal, and use them with

some efficiency (i.e.,good "control" behavior), and (3) possession of'a

"mathematical perspective" that establishes the context within which resources

are selected and used. Examples are given to show that:the absence of any of

these can cause failure in students. The second part Is practical, and the

focus turns to "positive" behavior. Suggestions are made for (I) solidifying

resources including a focus on representations and the use of heuristic strate-

gies (2) inducing more efficient "control" behaviors, and (3) uncovering inap-

propriate (anti-mathematical) perspectives in students, and working towards re-

piecing them with perspectives that support the development and utilization-of

mathematical lmirrg.
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Issues in InstruCtion

Theoretical and Pragmatic Issues

-In the Desion of Mathematical "Problem Solving" Instruction

Introduction

I first offered an undergraduate course in mathematical problem

solving at Berkeley in 1976, and.have periodically of'fered various

incarnations of it since then. The most recent version is in progress

this semester at Rochester. While many of the ideas underlying the course

.and many of the problems I use are the iame as they were sel:ten years ago,

many things are different as well-. I would like here to describe the.

major change in my perspective, which establishes the context for the

balance of this paper.

When 1 began teaching "problem solving" I took that phrase, broadly

construe.d, as an operational definition of understanding: you understand

how to-think mathematically when you are resourceful, flexihle, and effici-
.

ent in your ability to deal with new problems in mathematics. .To be

resourceful and flexible,-students needed (I.thought) to be familiar with

a broad range of general problem solving strategies, known as heuristics.

ib be efficient, they-needed%coaching--in-how-to_l!manage"
the resources at

their disposal. My,course tried to provide both 7 and in some ways, still

does. Consistent with the operational view expressed above, the "acid test"

for its success was that, after instruction, the students should show marked

impr'ovement on a collection of problems not related to the ones they, had
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studied in'the course. (A later version of the course passed the tett)

with flying colors; see Schoenfeld, 1982.)

The earlSvi versions of my problem solving course reflected/a positi-
,

vitt, "cognitive engineering" perspective: one proceeds by modeling an

"ideal" way to solve problems (that model usually, but not necessarily,

based on experts' performance), and then training students to perform in

accordanCe with the model. As the acid test indicates, such courses can

be successful.

My notion of success has changed in recent years. More accurately,

my notion of mathematical understanding (and. therefore, of what I was '

teaching in the course) has changed. This change was indUced largely by

the part of my research that called for detailed examinations of my

stpdents' problem solving performance before they entered my course. My

students were, by most measures, the successes of our educational system.

Virtually all of them had completed at least one,semester of calculus (many,

three) with grades of B or better before enrolling in mr cburse. Their

enrollment itself indicated that they were partial to mathematics (it was

an optional course, fulfilling no requirements) and relatively confident

about their abilities (it had a reputation for beir.3 difficult). Video-

tapes of these,students' problem solving performance revealed-some

unpleasantealitiesIhay pointed to serious misunderstandings about

mathematics, and often to deeply held anti-mathematical perspectives in

these "successful" students. ,
In some cases they indicated that students

could work quite functionally in domains-about which they understood .
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virtually notk.ing. In others they indicated.that the students knew" a

great deal that went unused because they felt that knowledge to be use-
.

less. At a theoretical level, the research indicated that my earlier ,

notion of "problem solving" as an operational definition of "Understanding"

was a gross simpl.ification: one's behavior in problem solving is a com-

plex combination of (1) the cognitive.resources potentially at one's dis-

posal, (II) the ability one has to "oversee" the selection and deployment

of those resources, and'(1)1) 'the set of beliefs one has about the disci-

pline, the environment, the task, and oneself - the beliefs tha-, in

.
essence, sktermine the context within whi.ch one selects and deploys the

cognitive resources potentially aCcessible in Long Term Memory. The next

section : this paper provides a brief characterization of these categories,

and of the rules that they'play in "understanding." With this as theoretical

baCkdrop, we then discuss some practical issues related to instruction.

6
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Three Categories of Under-Standing*

Figure 1 outlines the contents of this section. There is an enormous

ljterature on the first.category, a substantial and growing literature on

the second, and a sparse literature on the third. I believe that they are

all critical components of understanding, and of problem solving performance.

Insert Figure 1 about here

.J: Resources

This category is quite broad, comprising the range Of facts and pro-

cedures potentially_ available to an individual problem solver for implementa-

tion. In a characterization of experts' problem solving, Simon (1979)

describes the key.issues as follows:
1i( how much knowledge does an

expert or.professional in the domaln have stored in LTM (Long Term MeMory),

and (b) how is that knowledge.organized and accessed so that it can be

brought to bear on specific problems?" A tiiird questionis implicit: (c) how

is 't'bat knowledge represented, and how does the nature of the representation

affect access and implementation?

To begin with, there is the question of what domain-specific knowledge

is accessible.to the problem solver. Does a student trying to solve a

*This section takes liberally and extensively from my three in-press articles.

My purpose here is to be.summary-descriptive, and I have 'not provided

extensive documentation for the positions summarized here; bibliographies are

given in the in-press papers. There are, however, three recent reviews worth

mention.that provide broad and deep coverage of the relevant literaturcl:

see the papers by the Federation of Behavioral, Psychological, and Cognitive

_Sciences; by Greeno and Simon; and by Nickerson.

7
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Three Qualitatively. Different Categories of Knowledge and

Behavior Required for a Characterization of Human 'Problet Solving

Cotegory'l: Resources (Knowledge possessed by the individUal, that can be

brought to beer on the problem at hand)

a.

- - Facts and algorithms,

- - Relevant competencies, including the use of routine

procedures, "local." decision-mak.ing, and implementing

"local" hewistAcs.

Category II: Control (Selection and Implementation of Tactical Resources)

a

- - Monitoring

Assessmemt

- .Decision making

-- Conscious metacognitive acts

Category III: B.:lief Systems (Not necessarily conscious determinants of'an

indiVidual's behavior)

- 7 About self

mow: About the environment

About the topic

About.mathematics

figure 1
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straightedge-and-compass construction problem from plane geometry know
. _

that. the radius of a circle is perpendicular to the tangent line at the

point o tangency? Whether the student chooses eo use that fact is

another atter (see Categorly 111). But, crearly, solutions depending

on that knowledge would evolve in radically different ways if the students

did or did not "know" it. The same holds for relevant procedures. Does

the student know how to construct a perpendicular to a line through a

given point? If not, does the studert know that it can be done, so that

deriving the construction is a possibility? Or must that too be "diseovered?"

Beyond "possessioh" of factual and procedural knowledge comes the

question Of access to It. The student may "know" a particuIar fact, but
3

will the student "see" that it is relevant in a particular problem? The

literature indicates that much "routihe expert performance in a variety

of domains is due to,the possession-cf problem "schemata," wtiich provide

more or less "automatic" responses to generic situations; see, e.g.,

-deGroot (1966). Experimental results in pysics (Chi, Feltovich, and

Glaser, 1981) and mathematics (Schoenfeld and Herrmann, 1982) indicate

that experts see through the "surface structure" of problems to perceive

"deep structure" similarities and approach the pr,)blems.accOrdingly. .More-

over, students develop problem schemata that may or May not%be consistent

with those experts (Hinsley, Hayes, and Simon, 1977; Silver, 1979), and

these schemata change with experience (Schoenfeld and Herrmann, 1982).

For a characterization of the role of schemata in students' mathematical

problem solving performance, see Silver-, 1982. Again, issues of repre-
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sentation are a consistent thread throughout this literature (Orden° and

Simon, 1983).

One further class of resources Consists of.liaving access to,,and

being able to implement, various problem solving h
4

istics. I shall 1

mit address here the differences between mathematics ani other disciplines

(e.g. physics) that accord heuristics a special status in mathematics, but

will simply note that there is a fair body of research in mathematics

indicating the role of heuristic fluency al a component of Wmthematical

competence. /The point I wish to make here is that the domain-specifiC

implementation Cif many such Gtrategies is very much on a par with,the -

implementation o domain-specific schemata. Consider, for example, the

following general stratgy: "To discover useful information about the

object you are trying to find, assume that you have that object and

determine the properties.that it must have.", The "plawegeometry" version
0-

of the str'ategy is-"Draw a figure to sde what properties it has," which is

quite similar to a domain-specific schema such as "look for congruent tri-

angles when,trying to provecertain quantities are equal." Such heuristics,

like the facts, procedures', and schemata discussed abcve, comprise the set

of tools potentially accessi.ble to the problem solver.

An inventory' of these resources provides a characterization of.what"

ihe problem solver might, be able to use in solving a problem. Since we are

dealing with the "real" behavior of students rather than the idealized

behavior of experts, there are no guarantees that these resources will be
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called upon, even if itis appropriate for the problem solver ta do so:

o,

this is where this discussion diverges from SAmon's, as quoted above.

Whether the tools potentiMly accessible to the problem solver are

selected)or,vdiscarded, how such decisiohs are'made,, and how such choices

affect the problem solving process as a wholt, are another category of

behavior.

Control *

o.

,Consider thtfollowing prOblem. "Three points are chosen on the

circumferenCe of a circle or radius R, and the triangle containins them

is drawn. What choice of points results in the triangle of largest

possible area? Justify your answer as best as you can." If space per-
.

mittedi I would present here\.the full transcripts of the dialogues pro-
.

duced by my students as they worked this problem: one best sees the

effects of "contra" failures by examining the effects of thos: failures

on the full solutions. See my (in-prss, a) for typical transcripts and

the details of an analytical framework for analyzing them. One typical

transcriPt is summarized below.

The studens K and A had completed one and three semesters of cal-
_

culus resl:ectively, with A just having finished a course including the

multrvariate techniques.that provide the analytical (rather than heuristic)

solution to the proble44. They read the problem and quickly sketched oui a

.representative case, indicatihb that they had understood it. After a total

of 35 seconds eLapsed, the following dialogue ensued:

e
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K: 1 think th.?..largesttrianclieshould probably be equilateral...

A: So we have to divide the circumference of the.three equal arcs

to get this length (the length of a side) here. So, 60-120

arc decrees...

K: "Do we have...(rleads statement) jpstify your answer as best you

can. Justify why this trianale....justify why you....right.

A: OK, let's somehow take a right triangle and see what we get.

We!li get 'a right angie.

They made a brief (15 second) calculation on the right triangle, and then

returned to the equilateral:

A: OK, but what we'll need is to say things like -- OK, let's go

back to the angle -- probably we can do something with the angle.

. It is worth taking a close look at this dialogue, which shaped the

rest of thbir solution. K began with the obvious conjecture, that the

equilateral triangle is the answer. A began calculating its area immedi-

ately? although (9 the problem does not ask for the aro of the largest

triangle, and (2) it is not clear that knowing that aren will help. At

this point IC reread the problem statement, obviously worried about the

phiase "justify your answer." They decided to look at the right triangle,

a minor digression that represents, I think, a weak attempt at justifica-

,

tion: if the area of the equilateral turned out/ to be larger than the

;

area of the right triangle - another, archetype -- they would have,had
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slightly more reason to believe it to be the largest. After this brief

digression, they,moved wholeheartedly into the calculation of the equil-

ateral's area.

Note that the decision to undertake chis calculation., which was to

occupy them for the balance of the solution, was made wilhout any overt

discussion of its utility or relevance to the solution. They simply began

calculating. Wm there are times when it is appropriate to jump into a

solution attempt without reflgcting upon it, For example when one proceeds

along familiar lines in a schema-driven solution. But when the territory

is somewhat unfamiliar, some prudence in establishing one's directions

seems to be called for. bad decision is made, and then not revoked,

that one decision dooms the entire solution to failure. That is, in fact,

what happened to K and A.

Having decided to determine the area of the equilateral triangle, the

stbdents began calculations. These became far more tortuous than they had

-expected. About seven minutes into the solution, as their energies flagged

a bit, there was the following dialogue:

A: There used to be a problem...about the square being the biggest

part of the area...

K: the largest area
of...something In a circle, may be a rectangle,

something like.that-...

A: Ah, well...

K: So this is R, :Ind this is going to be 120 degrees, and...

. 13
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This brief interaction provided the students with.the first clear

opportunity to pause and take stock. They might have asked: How well have

we done? Are there other possibilities? Should we take those? Should we

look for others? Instead the alternative faded out of the picture and,

with renewed energy, they embarked orice again on the calculation. (Note,

incidentally, that K was the one to resume the calculations this time; A

began them earlier. They both share responsibtlity for the one-dimension-,

ality of their soLution approach.) There were two similar occurrences later

in the solution. The possibilities of approaching the problem by way of the

calculus, and also by means of an heuristic variational argument, were

mentioned -- and dropped -- in passing. When the twenty-minute video-

d
cassette re ording the students ran out of tape and clicked off, they

wer tr calculating.0:, When I asked them what good it would do to

have the area of the'triangle, they could not say.

I wiih to argue that the stbdents' failure,on this problem was not,

as in the examples in the previous section, a result of their lack of

basic skills. (A had solved an equally complex multivariate problem on

ajinal exam less than two weeks before he was videotapled; he clearly

had the requisite skills.) Rather, their failure was strategic. First,

they made no attempt to generate or consider plausible approaches to the

problem. The first one that came to mind was embarked upon. Second, they

. did not evaluate the approach they took: after having pursued it for a full

14
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twenty minutes, they could not say what value it might have had. Third,

they did not actively monitor and assess their progress (or lack of it)

during the solution. An active "executive" might have curtailed their wild

goose chase, and provided the opportunity for more productive behavior.

Such an executive might have considered the three other possibilities that

arose (a related calculus problem, maximization via calculus, a variational

argument) and, at minimum, proposed that they be explored and evaluated

before they were abandoned. The point is not*that this kind of executive

guarantees success, for success clearly depends on a variety of skills.

Rather, the point is that such an executive (strategist) helps to avoid-what

, is otherwise a guaranteed failure. Moreover, suth failures are far from

infrequent. The transcript summarized above was one of twelve.recorded in a

1981 experiment. Of those twelve, seven could be categorized as being of the

III read nd then go on a wild goose chase" variety. The absence of planning,

monitoring, assessing, -- in general, overseeing a solution -- can do students

great harm. So can the imposition of inappropriate control decisions. If

space permitted, I would discuss a protocol where students litera#11y throw away

the elements of a solution that is at their fingertips. Bad "control" is a

consistent source of failure. See my in-press, a for details.

III: Bellefs

Consider the following problem. You are given tWo intersecting straight

lines and a point P on one of them, as in the figure below. Show how to construct,

with straightedge and compass, a circle that is tangent to both lines and has

the point P as its point of tangency to one.of them."
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If one thinks to draw in the desired.circle and to derive the properties

it must have, the problem is nearly trivial (provided, of course, one has access

to the relevant geometric knowledge)i the center of the circle lies on the

irteriection of any twoi of (a) the perpendicular to the top line through P,

(b) the perpendicular to the bottom line through P's direct "opposite," and

(c) the bisector of the vertex angle. That is not how students proceeded,

however. The following describes a typical session.

The students S and B read the problem, drew a rough sketch, and conjectured

that the diameter of the desired circle was the line segment between P and

it "opposite," P' (see Figure 2a). They reached off to the side for a

.straightedge and compass, in order to test their conjecture empirically.

They took great care with the construction, working on it for-Jive minutes

or so, It didn't look right when they finished it, so they rejected

the conjecture.- At that point one of them recalled that the radius of

the circle was supposed to be perpendicular to the tangent at P. As a

result they revised their conjecture: now' the diameter of the circle

was, most likely, the segment of the perpendicular through P that lies

between the two lines (Figure 2 b) . This, too, was tested empirically.

Five more minutes elapsed in constructions, and when they examined the

results of this construction-, they decided that this guess was also

.incorrect. They re-examined their original sketch, and one of the

students noticed that the center of the circle seemed to be half-way

between the two given lines. Perhaps, then, the center lay on the angle

bisector. This gave rise to a third conjecture (serendipitously correct;

see Figure 2c), which was again tested by construction. This time they

were ' 'successful." Sketch in hand, they reported to me -- more than six-

teen minutes, after they had begun the problem -- that they imd solved the

16
4
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problem. When I
told them that their construction was indeed correct, and

asked them if they could tell me why it worked, they said they had no idea;

it just lid.

a. first
conjecture

b. second
conjecture

figure 2

c. third
conjecture

;.

The behavior of these two students was. more typical than not. (See

mly in-press, b for another protocol and a detailed model of students' per-

fomance on this kind of problem.) Without exception, my students guessed

at the nature of the solution and then tested their guesses hy performing

their hypOthesized constructions. If the guesses were wrong (that is, the

constructions did not "look right") they would try again, with another

construction. Most often the students took fifteen to twenty minutes

to finish the problem, the majority of that time spent with straight-

edge and compass in hand. '(They either found a construction that worked

and reported success, or ran out of hypotheses and reported failure%)

Not one pair of students reasoned their way to a solution. Only one

pair justified their solution afterwards, and this justification was

an after-the-fact observation: "We got it, that is, it looks pretty

c1ose....I think, if you center it right, they touch...0K. These (PM/
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and-P'CV in Figure 3) are similar triangles...Yeah...They are equal

tr angles too." In sum, their behaviors were purely empirical: the

students' classroom knowledge of geometry was, with the sole exception

just quoted, nowhere to be seen.

.figure 3

44*

It would be depressing enough to think that these students -.- again,

the "successes" of our system -- had forgotten all of the geometry that

they had learned in high school. .What is more depressing is that they

remembered it.% After the students finished their work on the Problem, I

asked them to work two "standard high ihool probleMs" for me: to prove

.
.

,

,

. ,

that PV = P V, and that CV bisected vertex.angle V, in Figure 3. Most of

the students were able to do so without difficulty:

Why,then, had the students not used this knowledge in working the

Problem ? I
submit that it is because they had no idea that geometric

deduction ("proof") would be of the least value to them. During the

students' careers, deductive arguments like the ones in-the ."standard

high school problems" given above were not perceived as being useful at

FroM the students' point of view, you only "proved" in class what,you

already know to be true; that's the classroom game you play, to satisfy

the teacher. Proof never shows you something new, but only confirms

what you know already.. Writing proofs in geometry is seen as being

18
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similar to conjugating verbs in Latin. That is, it may be good for

"discipline" and for "training the mind," but it has nothing whatsoever

to do with thinking or solving problems. As a result,this kind of

"classroom knowledge" is left behind in the classroom: perceived as

useless, it goes.unused. While it may seem melodramatic, I submit that

the student who believes that deductive reasoning has no real value is

about as likely to think of using it when confronted with a "real problem"

ias an atheist s likely to look for "divine intervention" as an explanation

for a particular phenomenon, or a creationist is likely to think of evoiu-

tionery mechanisms as a way to explain the current configuration of a

'particular anatomic structure. We are confronted with an uncomfortable

paradox: as a result of their mathematical training, these students have

adoptiA an anti-mathematical stance.
This stance, in a very real sense,

bars them from using mathematics effectively. re belief underlying this

stance (which, I
should stress, may not be consciously held) and two other

beliefs that significantly affect students' behavior, are as follows.

Belief 1: Formal mathematics has little or nothing to do With real

thinking or problem solving.

Belief 2: Mathematics problems are always solved in less than ten

,minutes, if they are solved at all. Corollary: Give up after ten minutes.

Belief 3:Only geniuses are capable of discovering,or creating mathematics.

First corollary: if you forget something, too bad. After all, you're not a

genius and you won't be able to derive it on your own. Second corol)ary: Accept

procedures at face value, and donft try to understand why they work. After

. -all, they are derived knowledge passed on "frOm above."

19
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Practical Issues

The discussion in the previous,section suggestt the perspective that.

1 shall take Here:

To be successful in training students to think mathematically,

instruction in mathematics must (a) provide the students with

a solid collection of resources, the more integrated the better; 4

(b) assist the student in developing an effective set of "control"

(planning, monitoring, assessment, decision-Making) behaviors, and

(c) serve to develop in.students a set of perspectives (beliefs)

that promote the students' propensities and abflitjes to use

mathematics where it is appropriate to do so.

Note that I
have not used the phrase "problem solving" in this statement, or

suggested that such.activities' must or should take place in a separate course.

The deeper issue is mathematical understanding, although the ability to solve

problems is clearly a large component of that understanding. In the best of

all possible worlds, a teparate course with a heavy emphasis on problem solv-

ing would be unnecessary; (a) through (c). above would be developed in ordinary

coursework. The research clearly indicates, however, that that does not take

place. Separate courses have two primary virtues,. The first is the freedom

for teacher and students to explore their understanding of mathematics, with-
t

out feeling the pressure to "move on" in order to cover other material listed

in the course syllabus.* The second is that problems out of context are more

V.

*It should not be inferred from this comment that separate problem solving or

"undemtanding" courses are easier; only that they are different with regard

to coverage: As the research cited above indicates, much-of what students

"learn" when standard material is "covered" may be illusory.
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likely to reveal student0 misconceptions. My comments will be made in the

context of a separate course, butthey apply in.general. Where suggestions

of how to deal with such issues have received adequate attention elsewhere,

or when they arelikely to be covered in some depth at thls symposium, I

shall be very brief.

I. Resources

I suspect that the talks by Joan Heller and Fred Reif, and by Jim Greeno,

will say a great deal about promoting effective problem solving behavior and,

understanding. Speaking broadly, the general idea is to be as explicit as

one possibly can in

(1) elucidating a set of effective procedures and behaviors that

are within students' capacity to learn (often but not necessarily,

modeled on experts' performance), while

(2) helping students to develop cogmitive "support structures"

for those procedures and behaviors (often the appropriate repre-

sentations; aiso the appropriate perceptions of stereotypical cir-
.

cumstamces, for schema-based actions).

There is, Taktunately, a growing literature On these topics. The best

quick summary of use'ful suggestions can be obtained by taking the subsection

titles from Section 3 (HoWNmight understanding be facilitated?) of Nickerson's

(1982) "Understanding Understantling:" "Start where the student is; promote

discovery; insist on active processing; use representations; use analOgies

and metaphors; simulate; explore the reaions for misconceptions and errors;

N,

teach evoking conditions for procedures; vary the context; make connections

among concepts being taught; relate classroom teaCi,ng to real-world problems;
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encourage the acquisition of domain-specific knowledge; reinforce efforts to

Understand; provide a generally supportrve atmosphere."

As far as this list,goes, I can only say "amen." 1 should point out,

however, that most of the suggestions (an accurate reflection of the litera-

ture) deal with resources. There is little about control behavior or (save

for misconceptions, and relating teaching to real-world problems) about

beliefs.

II. Control

The presentation by Joan* Heller and Fred Reif has something to say about

the "positive" aspects of control behavior: the paper deals with the results

of encouraging students in the domain of mechanics to obtain, appropriate

representations, facilitating good decision-making and search, and promoting

the assessment of solutions' correctness and optimality. The more domain-

specific one is, the more one can specify and encourage these "positive" con-

trol behaviors. Clearly more needs to be done in elucidating domain-specific

(and generalizable) control strategies. Yet as we saw in the discussion of

"control" in the previouS section, a major function of the "executive" in

decision making in general problem solving consists of making certain that

explorations are justified and that wild goose chases are terminated before

they become debilitating. This discussion will focus on those general,

domain-independent behaviors. Since there is an extensive "how to" section

that focuses largely on control decisions in (Schoenfeld, 1983), I will focus

here on the rationale for such discussions in the classroom and make a few

brief suggestions. The following three points form the basis of the rationale.
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1. 'The very notion of serving as your own cognitive "manager"

or "coch" - monitoring and assessirg your progress as you work

on a problem, and altering your solution as a result of those

assessments is completely alien to virtually all of my (college

freshman). students. Their pecception is that their minds are more,

or less autonomous entities when,it comes to problem solving:

they just do "what comes to mind."

2. While the costs of bad "res'.Irces" are immediate and apparent,

the costs of bad control are usually not.. Students may go off on

a "wild goose chase," in effect prohibiting themselves from using

what they know to solve a problem. They may make unwarranted

assumptions (that could easily be caught by the appropriate "monitor")

that invalidate their attempt from the beginning. In abandoning an

unsuccessful attempt, they may throw away the elements of a solution.

'(Examples of all of these are in my in-press, a,) In all of these

cases, failure is induced at the control level. But unless there is

immediate feedback and evaluation, the failure is likely to be

attributed elsewhere: "I didn't see that it could be done that way,"

or-"I really had no idea of what to do."

.3. Control processes are generally invisible. Most often when a

student sees a problem "explained," the student sees a discussion

of what "works" Most classroom "solutions" of problems are schema-

based (on the part of the instructor), so students do not see the

teacher "think." On those occasions where there is a real "problem,"

93
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one usually sees the following. Tile teacher says "Wait'a minute,

let me think about that;" there is a period of silence as the

teacher thinks; the srlence is broken with "All right, let's look

at it this way." The solution proceeds. If the teacher gets

"stuck" while solving a problem, the same generally happens -

unless the teacher has reached a real impasse, in which case the

attempt is usually terminated with a promiSe to present the solu-

tion at the next class Meeting. Thus students hive no models for

the control processes discussed above.

The best way to bring these matters out in the/open, and to provide useful

models of control decisioni for the students, is to engage in "real" problem

solving in the classroom. At minimum, I recommend that the teacher-elucidate

the full decision process when presenting solutions to problems: that is, to

explain what takes place during the silences alluded to in. (3) above. ("All

right, what are the options here? We might look at A, or B, or maybe C. It

looks like A might be worth a try for a few minutes, because...) It is useful

to work through problems on this kind of "blow by blow" basis, even when they

.are familiar. While the teacher knows what to do and why, the student does

not: seeing the dec1sion process modeled will, at leail, "legitimize" it for

the students. Even so, this legitimization is only the first step. I suggest

two methods of group problem solving during class. sessions (and use each with

equal frequency). They are both described extensively, with some sample class-

room sessions, in Schoenfeld (1983).

A: THE CLASS WORKS THE PROBLEM AS A WHOLE, WITH TEACHER AS "MANAGER."

I pose a problem for the class to solve, and'invite suggestions for its

24 .
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solutioh.* Often suggesti'ons will come quickly,- too quickly, and,frequently

barely relevant to the problem,(the fi.rst step of what Mightwell be a wild

goose chase). pir rol,e is not,to judge the suggestions, but to Point out the

speed with:which they were raised:

"Is everyone sure that they undersfand the problem, before we

proceed with the solution?"

If the aiiswer-is "n6," the class takes whatever steps-are appropriate to remedy

that: examining_the conditions'of the problem, fooking at special cases, draw-p

ing a diagram or finding another appropriate representation, etc. Having done

so, we return to the original suggestions. ,The class is asked if they seem

reasonable. (If one or more of.the suggestions now appears unreasonable, this

may occasion a 'sermon" about making sure you widerstand before proceeding,

and'about the dangers of wild goose chases,)

"Is there anything else we ought to look at or try?."

If there is only one plausible approach, 'we take it after making sure that

what we are doing is reasonably well defined, and that we have a sense of how

we will use it in the solution. If there is more than one (as is often the

case wherryou work "prohleMs" rather thah "exercises) we discuss the relative

merits of the approaches, and-what we might gain from them. The three "generic"

*Two comments. First, these are reasonably .difficult problems that may take the

class as a'whole anywhere from ten to fifty minutes (or longer) to solve.

Second, this kind of interaction only works well when the stUdent&feel free to

make suggestions. There is a delicate tension between the wish to cr'itique

suggestions and the fear that students, once "scolded," will cease to partici-

pate. The way out of this is for the teacher to stay strictly in the role of

"monitor," raising questions about the efficacy of suggested steps (both when,

they are useful, and not!). When the suggestions are ill-founded, the students

will'discoyer,that for themselves.
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questions for this discussion are given in (B) below. Having mach: our

choice, we proceed t4ith the solution. After five minutes or so have elapsed,

we pause.

"Al) right, we've been doing.this for a while. is it.workin

Are things going according to plan,.or should we reconsider?"

No,te that it is important to ask these questions even when things seem to be

'going well. 'Otherwise, they become a "cue" from the teacher that directions'

sflould be changed. The idea is that these questions shodid always be ii the

bacloof one'!... mind; they advar(Ce to the,front when solutions seem to bog

down. The class may decide to proceed, to proceed with caution ("we'll give

it another 'three minutes, and then reconsjder"), or to change directions.

°Before we abandon this approach, is there anything in it that

should b4salvaged? Art there anj, ioeas in It that.we mi,ght

want to return to, or related topics suggested by this approach,

that we might want to explore if tAir new approach doesn't work out?"

The dicussion.continues in this Vein until (with luck) the problem is solved-.

(We will occasionally stop at an impasse, and coninue with the problem another

da. On those occasions when, after such an impasse, it still appeafs that the

class is ignorant of Sow relevant kriowledge and is unlikely to derive it, I

may then provide them with it,) We may then purue some of the other suggest-

ions, and solve the ftoblem two or three different ways.

'While the class Works on the problem,'my contribUtions are kept to a

minimum. If the ciass decides\ to pursue?a direction that I know leads td a

dead end, I will let them so long as"the decision was reasonably made.

el
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'That happenS, after all, in good problem solving; an effective "monitor/

assessor" keeps such decisions from being fatal. In general, the role of .

the "external manager" played by the teacher is to help the students to get

the most out of what they know: to ensure that they have fully understood

a problem before embarking on its solution, that they have looked for good

rep.resentations, that they ,enerate and select approaches to the problem with

care, that they capitalize on opportunities that arise during the solution,

that they employ the resouriis it their disposal, and avoid squandering

their energies on where it is clearly inappropriate. Nothing the external

manager does depends on knowledge of the prob!em not accessible to-the students;

everything this manager does could be done (with the same positive effects) by

,

the students themselves. In othee words', all of the "control" functions per-

formed in the classroom discussion could be internalized by the students, with-
,

out additibnal knowledge.

After the problem has en dispatched with, I step back into the role of

teacher to do a "post mo tem" of the solution- This includes a discussion of .

problem representations, of related knowledge that might'or should have been

called into play, of the students' effective ar ineffectivd use of control

.strategies (I occasionally let the cjass go on a wild goose.chase, to point out

what happens.when one fails to exert executive control)., and of,elements jn the

students's approacn.that cauld, if pursued orexploited differently have
-

yielded insights into the problem or different solutions of it.

1

27
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B. THE CLASS BREAKS INTO SMALL GROUPS TO WORK ON PROBLEMS, WITH THE TEACHER

AS ROVING "CONSULTANT."

About a third of the time in my problem tolving course is spent with the

class divided into groups of four, working on problems that I have just handed

out. As the students work on the problems, I circulate through the class as

a possible source of help. Again, my role is not simply to provide information

or hints, although I will if the situation calls for it. More often than not,

my response to a Tequest for a hint will be in the form of a (heuristic)

question: Does that problem remind you of anything? Have-you done something

similar recently? Can you reduce it to something simpler?, etc.
yor'r

In the small groups the emphasis on "control" decision remains, but_the

responsibility for it shifts from the external manager to the students. There

is a large poster in the classroom with the folloWi three'"executive"

questions:

,What (exactly) are you doing?

(Can you descHbe it precisely?)

Why are you AoIng it? -

(How does it fit into the solution?)

How does it help you?
(What,will you do with the outcome when

you obtain it?)

Their frequent inability, at the beginning.of the course, to answer these

'questions coupled with the realization that if they cannot, they have most



Issues in Instruction

25

likely been wasting their time* - serves as a strong catalyst for.the

internalization of these questions.

To cast the preceding discussions- in a (one of &number of possible)

theoretical framework, we can see,the large group and small group discussions

as the social mediating factors that help move the student through a "zone of

proximal development" (a la Vygotsky) to the point where the appropriate

behaviors are internalized. At a more pragmatic level, the following four

reasons justify the use of class time for this admittedly time-consuming process.

1. This format affords the teacher the unique opportunity to inter-

vene directly as the students solve problems, rather than being face'd

with a "finished product." That intervention (as indicated above) js

much stronger than it could be in any other 1nstructional format.

Moreover, group formats bring these ordinarily covert control procest'es

"out in pe open," where they can be examined.

2. Solving problems with a small nuMber of one's peers provokes dis-

cussions of-plausible choices. When a student works a problem alone,.

the first plausible option it often the one taken. When different

students have proposed approaches to the problem and they must settle

on one, there must be a diicussion of the merits of the approaches

they have proposed - precisely the kind of discussion that the students
1

thould be having, internally.

*One point of clarification: these q,:estions are not meant to rule out eiplora-

tion. "I'm mucking around for a few minutes hoping to find some inspiration" is

a perfectly good answer to them - so lohg as the student is aware of what's

taking place, and doesn't let the solution process degenerate into an extensive

and directionless series of random explorations. The purpose of the questions

is simply to make sure the student is "in control" of what's taking place.

1)9
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3. Problem solving is not lways a'solitary endeavor. This
7

opportunity to engageiin collaborative efforts does them no harm.

4. Students are remarkably insecure about their abilities,

especially in a course Of this nature.. Working on problems with

other students is reassuring: one sees that one's fellow students

must also struggle to learri.

III: Belief

Dealing with students' beliefs and the effects of those beliefs oh cognition

is a far more subtle issue than either of the preceding ones, and my suggestions

for it are far more primitive. We are just coming to understand the importance

and impact of beliefs on cognition. One major aspect of belief systems has

received some attention and will, I believe, be addressed in this symposium by

Jack Lochhead and Lillian McDermott: Students' misconceptions'about physics

(their "naive physics") may interfere with their learning of' the principles of

physics, or my simply ,render the students' "book. knowledge" meaningless (see

Caramazza, McCloskey and Green, 1981; JicCloskey, Caramazza, and G-reen, 1980;

Trowbridge and McDermott, 1980). There is clear evidence that students enter

'their physics tourses replete with a collection of naive, Aristotelian (pre-

Newtonian) viewtof physical phenomena. Many of these students, in spite of

doing well in those courses, emerge from them with their naive physics intact:

asked to interpret a "real world" phenomenon, they invoke their pre-instruction

models.

The research on misconceptions jn physics indicates that rAudents will not
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invoke certain kinds of formal reasoning if they believe that they have better

explanations at their disposal. The research described on geometry in the

previous section is similar, and perhaps more troubling: if students have

decided that certain kinds of knowledge are "useless academic classroom tasks"

they may not think to employ that knowledge, even when (1) they have aettls

to it and could use it to solve the given problems easily, and (2) they are

stymied without it.

The "moral" of this research is significant: students are not tabula rasae,

waiting for knowledge to be.printed,on their "mental blackboards."' Those black-

boardS have been extensivelywritten upon, and what we try to write on them will

only be meaningful if it connects with,.or replaces, what,is there. Probing for

misconceptions is essential: one must "clean the slate," to continue the meta-

phor. There are two aspects to this. In "making connections," it is important

for teachers to do so overtly; students may not see them otherwise. Nickerson's

(1983) suggestions "simulate; make connections among concepts being taught; and

(especially) relate classroom teaching to real world problems" all serve this

end. The second'aspect, helping students to remove inappropriate beliefs or

ideas, is'much more difficult: Those beliefs must be discovered before they

can be dealt with.

We are most unlikely to see evidence of mEsconceptions or "misbeliefs" as

long as (a) we are presenting material to the students, or (b) they are pre-

senting to us what they believe we want to see - e.g. formal mathematics or

formal physics in an obviously "formal" setting.- Misbeliefs are only likely

;, surface if students are given'the opportunity to show us what they "know."
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In the classroom I have fOund that the mdst effective way to find out what

lies

beneath the surface of students' performance is to repeat (in different

forms) one simple question: WHY? I shall give one example here.

The discussions took place this semester at Rochester, in my "problem

solving" class. It has eighteen students, all of whom studied geometry in

high.school, and most of whom took calculus at the college level (and did well

in it). I
introduced,geometric constructions with the simplest.problem I could

.think of: Suppose you had line segments of lengths A, B, C respectively. How

do you (using straightedge-and-compass) construct the triangle whose sides have
4.

lengths A, B, C? The class (acting as a wliole group) solved the problem in

less than a minute (mark off a line segment of length A; from its endpoints

swing arcs of length B and C respectively; draw the line segments from the end=

point of the first segment to the point of intersection), and agreed unanimously

. that they had the solution.

"Why does that work?"

Silence.(for a long time)

"Why do you swing the arcs?"

Ditto

"Ufhen you swing the arc of length B around this endpoint, what do you get?"

There were some answers to this, and we proceeded from there. The class eventu-

ally decided that the point (singular) of intersectron had the property that it

was simultaneously at distance B from one vortex of the desired triangle (whose

base had been established as A), and distance C from the other: this must be

the triangle we wanted.
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"Are there any others?"

In response to the puzzled looks, I pointed out that the construction wasp

not unique. Extended, the arcs (circles) intersected twice; moreover, one

might,use arcs of lengths C and B, respectively, instead of B and C. This

construction led to four solitions. Response: "They!re all the same."

"Nhy?"

After a long pause, one student said "All the triangles you get are congruent.

They're the same." The class agreed.

"Are there any different-looking triangles with sides A, B, and C7"

This question left thennonplussed. The sentiment was "no," but there was'. rio

coherent argument to support that sentiment.

"Suppose you had.two different triangles, each of which had sides

A, B, and C. What could you say?"

They're congruent, of course...Hmm,,maybe congruence has something to do with

this idea of uniqueness (my language)...Forty minutes had'elapsed when we cLosed

this discussion of the problem they had "solved" In less than a minute.

We began the next session of class with the following question: "How do

you bisect an angle?" Again, the class produced the construction in short order.

"Why does the construction work?"

I will spare you the details and report the result: It took longer than a half

hour for the class to see that the (standard) construction yielded two.congruent

triangles, and that the line that resulted lay between two equal angles that had

been created; thus it was the angle bisector(!).

In sum, my class spent a week (at the college level) uncovering the reasons
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for two constructions that they had been able to produce from memory in less

than two minutes. Was this a waste of time? I believe just the opposite.

The di5cussions not only explained "where the constructions came from" - a

minor goal - but also served to legitimize geometric reasoning (notions of

proof and congruence) as useful' tools in thinking geometrically. In subse-

quent discussions "proof" and "congruence" were invoked frequently both as

-rebsons that things worked and (MUCH more importantly) as ways ofeinding out

.what might work. This week of discussions had "unlocked" for use the content

of a full year of stutly, that had lain stagnant in long term memory not

because it could not be accessed, but because Lt had been deemed worthles'S.

The shame is that these discussions were "remedial," and took place 'al a

collegiate probfem solving course. Proper attention to the context of learn-

ing, to making knowledge meaningful,.and to making sure that students "under-

stand" should make such remediation unnecessary.

I am sorry that this example is anecdotal, for I consider it important;

I intend to find "rigorous" documentation in the-near future. But I hope the

following two points have emerged clearly from my discussion:

(1) Teaching students to Solve problems (a.k.a. "think" or "understand"

cails for attention to resources, control, and beliefs;

(2) While the task is far from easy, it can be done (and iq rewarding).

31
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