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INTRODUCTION

The educational research enterpfise has grown tremendously

in the last thirty years. The literature in many area& of

education and psychology has produced hundreds of studies on the*

same topic. Yet few would argue that the knowledge base of the

qocial sciences has grown as rapidly as the'volume of research

studies. Some critics and manY reviewerl contend that our state

of knowledge has remained unchanged despite the best efforts of .

the social science research community. Until recently, research

reyiews that yield equivocal conclusions have been the mile

ra.ther than the exception. Glass (1976) noted that "the typical

Teviewer conclude& that the research is in horrible shape;

sometimes one gets results, sometimes one does).

The recurrence of equivocal conclusions from research

tleviews led some invRstigators to speculate that the process of

research review might be at fault. Light and Smith (1971) were
A

among the first investigators to examine the problem of

integrating the results of quantitative studies in the social

sciences. They demorfttrated the importance of systematic

,analysis of variations in design and execution of studies as

well as thb variation in study outcomes.

Light and Smith also generalized an approach from cluster

sampling to generate an extensiv's algorithm and analysiii

strategy for a series of similar experiments: Unfortunately,

their approach requires access to the original data which limits

its practical usefulness ih research integration.
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Light and Smith asserted,that, at that time, a technique

called vote-counting was the most commonly used method of

rntegrating research studi,es. In their formulation, a nwnber bf

studies compare the soores of tes of two groups; one group of subjects

receives an experimental trgatment and the other group receives

no tTeatment. In the vote-counting method the available*studies

are sorted into three categories: those that yield'positive

significant resulrs, those that yield negative significant

results, and those that yield nonsignificant results.

a,pluralit.,. of studiq falls into any *of these
three categories, 'with. t:ewer tailing into the other
two, the modal category is declared the in/1.1111pr. This
modal categorization is then assumed .to giv,g the best
estimate of the true relationship between the independent,
and dependent variables. U.ight Smith, 1971, p. 433).

Despite the,obvious simplicity of vote-counting' methods,

these techniques have veri serious problems. The deficiency of

vote-counting methods stems from their reliance on tests of

statistical significance in individual research studies. Hedges

and Olkin (1980) proved that when studies typically use 'smly use small

samples or when the phenomenon under study produces small ,

effects, vote-counting metbods sys.tematically fail to detect

effects. The reason for this behavior is related to the low

statistical power of significance tests when effects or sample

sizes are small. Small effects_are the rule rather than the

exception in sociP1 sciencP research.

p.
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For example, Gage <1978) has noted-that the mSgnitude of

the relatilonship between any teaching variable alid achievement-

is likely to be small, although the cumulative effect of many

such variables need not be negligible. Similar arguments have

been made about the magnitude of relationships in social

psychology.

The consequence of small effects and sample sizes'on the

,power of statistical analyses in educational and psychological

research is illurated in surveys of statistical power of

published research. Brewer (1972) calculated the power oft

studies published in threp educational research journals. His

analysis show.ed that the

analysis showed that the power of published studies to detect
4

small effects (a mean difference of 0.2.in standard deyiatsion

units) was uniformly low. Only two per cent of the 55 studies

Vk3IL:
surveyed from the American Educational Research ournal had a

poWer tvater than 0.3 to detect an effect that' small. Thus the

probability of Type II errors (i.e., faildfVo teject the null

hypothesis when it is false) seems unacceptably hiAn in these

studies. Similar results have been found in surveys of studies

in abnormal psychology (Cohen, 1962), cpmmunication research

(Katzer & Sodt, 1973), and applied-psychology (Chase & Chase,

1976). If these surveys of social science research ai-e

representatiire, failure to reject the null hypothesis in

individuarresearch studies cannot provide much assurance that

small effects are not present.
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A new approach to the prbblem of research integyation was,

.

proposed by Glass (1976). He argued that 'estimatdon of the

magnitude of the exprimentperimental effect is perhaps more important

than statistical significance. Glass suggested Chat the "effect

size" in a.two-groUp experiment be defined as the difference

'between the exPerimental an'd control group means divided by the

control group 'standard deviation. Glass coinedithe term

"meta-analysis" to describe the analysis of these "effect sizes"

from a series .ot. studies.

Meta-analysis has become an important supplement to

traditional 'methods of research reviewing, largely as a reult

of the work of Glass and his colleagues. They demonstrated that
8.

the technique could be used to provide sensible answers to

fundamental questions in the behavioal sciences. The Hilt

application of meta-anaylysis was the integration of studies on

the effects of psychotheraN (Smtth & Glass, 1977). This first

Teta-analysis int.rigued many sCirred controversy for others.

'A series of other analyses, including the me.ta-analyses.of the

)

Oft

effects of class-size (Glass & Smith, 1979; Smith & Glass, lith & Glass, 1980).

have continued to provide strong evidenceNon long standing

controversies. The interest generated by these and other

examples, along with a lucid treatment of the methods of
0

meta-analysis (Glass, 1978) haye encouraged other investigators

to use the .technique.

.Many problems must be addressed by the reviewer who

carries out a meta-analysis. These problems include identifying

and obtaining appropriate studies, extracting estimates Of

C.
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effect size from the studies, coding or classifying studies,

analyzing the -data, and reporting the result,s of the-data

analysis. Some of these problems are similar to the problems

faced by the primary researcher (see Jackson, 1980, or Cooper,

0

1982). In other cases the problems dre not the same-as those

faced in primary research% The best source on methods for

conducting meta-analyses is the bo6k,by Glass, McGaw, and Smith

(1981). This book contains opularizing the method of meta-analysis.

,

-Why then another paper on a reasonably complete, coverage of

methods to deal with all of,the problems mentioned above as well

as numerous others. This book draws upon the considerable

resources of three authort who have been instrumental in

developing and popularizing the method of meta-analysis.

Why then another paper on methodology for meta-analysis?

Since the publicaticT of the Glass, McGaw, and Smith book, there

has been a great deal of interest in the development of

syUematic statistical theotY for meta.-analysis. Many of the

techniques proposed and used by Glass and his associates were

sensible, but suboptimal. Recent Work in the 'statistical theory
i.

for meta-analysis has provided simple'methods that can be

rigorously jus6ified. The purpose of this monograph iS to

supplement the e*isting literature on meta-analysis by providing

a unified treatment of rigorous statistical methods for

meta-analysis. .

Indices of Effect Size

Statistical methods have been used to combine information

from different research studies for many years. Some of the

4. a
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earliest examples of this work are found in the work on

couining the results of 'agricultural experiments. Cochran

(1937) considered the problem of CoFbining estimates otf

treatment effects from a series to f similar experiMents. He

considered several methods of weighting estimates from each

experiment. Yates and Cochran (1938) developed more refined
. -

weighting methods (e.g., partial weighting) for combining

estimates from several agricultural exPeriments%. A more recent
.1

review of statistical work in this tradition is given in Cochran ,

(1954). Tests of the statistical significance of combined ,

results were also introduceA in connection w,ith problems of

combining results of' several st.udies.in agriculture and biology

(e.g., Tipp'ett, 1931; Peirson, 1953). .

Thie early'work.on combining the'results of studies in

a'griculture' involved combining the results of itudies that share

a common, welldefined dependent variable. For example, the

object of a research synthesis in agriculture might be'to

'tombine estimates of the 1)Irley crop.yield dirived from several
r

, .

'studies. Each tudy would measure the dependent v'ariable in.the

same wdy: the nrnler of pounds of barley yielded per acre

'planted. Thereeore the means or treatment effect estimAtes

deY,ived as mean differences are directly comparable and'can be3

directly combined by averaging. When a series of studies in the

social sciences use the same measure of the,dependent variable,

methods developki for combining the results of agricultural

expffiments can be used to combine estimates of the treatment

effect, ,
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For many common educational variables, a variety of

different psychological tests provide reasonably adequate

measures of'the underlying construct. Some authors (e.g.,

Campbell

'

1969) hai'e argued that the different measures

(
(operationalizations) of a cvstruct are highly desirable.

Stu4ies of different operationalizaEions of a construct allow

researchers to "triangulate" on theaconstruct. Given a sgries

/c
of tests that are supposed to measure the same construct, one

might ask what is meant by "meisure the same construCt." One

A
definition is that two tests meitpure the same conptruct if rue

scores on the tests are perfectly correlated. This implies that

the tests are measures of the same construct if they are

linearly equatable except for errors of measurement. This

notion is the basis for deciding that two tests ate measuring

the same thing if they yield intercorrelations.qhat are about as
-

high as their reliabilities will allow.

The Effect Size as an Index of Effect Magnitude

Ghss (1976) suggested the .standardized tran difference or

effect;size as the scale invariant measure ofltreatment effect.

ye define the effect size ,F,.for an expeciment as

-

where 11 and
C

are thern experimental and control group

population means and )is the within-group pop lation standard

deviation. If the.same experiment had been performed using a
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difcrent (linearlytequatable) measure of the outcome variable,

the effect size would not change. The effect size is invariant

under linear transformations of outcome variables. Therefore the

effect' size provides an index of efect magnitude that is.0,

independent of the particular test used to measure a construct.

We emphasize that the effect size is only invariant under

substitution°of (linearly equatable) measures of the same

construct. Effect '1,zes are not invariant under nonlinear

.. . ,

,rescaling. Similarly, there is no reason to believe that dffect

,-

sizes derived fr,tm measures of one constrdct are equivalent to

effect sizes derived from measures of another construct.
A...

Different constructs will, in general, yield different effect

sizes: Thus the notion of effect size of a treatment should

rea-lly be considered as effect size of a treatment on a

construct.

Other Indices of Effect Magnitude

Glass (1978) also observed that the product moment

correlation is a scale,invariant measure of the relationship

,between two continuous variables. That is, the correlation does

not change as 'a result of linear rescalings of variables. He

therefore suggested that correlation coefficients could ba used

as indices of effect magnitude for studies examining the

relationship between two continuous variables. In some cases,

. %
the natural index of effect magnitude is the difference between

....

proportions oe subjects tha't reach a criterionl'in experimental

and control groups./eThe prdportions are themselves scale

f

I ..

.,



invariant and can therefore be used directly to.compute a scale

invariant index of effect magnitude such as the difference

between proportions.

1 'The Method of Meta-Analysis

The object of meta-analysis or other methods o

quantitative research synthesis is to Use data from a series of

studies to obtain information about, the effect si.ze for a

Ireatment en various constructs. This. usually involves obtaining

an estimate of effect size from each study and,pooling

(averaging) theS'e estimates to obtain an estimate of the average

effectosize across studies (Glass, 19,76). In addition, the

investigator may want to determine whether any characteristics

of the studies are systematically related to effect size.

Some writers in the area of research synthesis have cited

substantive reasons for the position that different studies of

the effects of the same treatment might yield quite different

results. 'Light andSmith (1971) argued that many contradictions

in research evidence may be resolved by grouping studies with

similar characteristics. They asserted that studies with the

same characteristics are more likely to yield similar results,

and hence many apparent,contradictions among research results,

arise from differences in the characteristics of studies.

Fillemer and Light (1980) have argued that examining the

relationship of variations in study outcomes and study

characteristics is an essential step'in assessing the range of

generalizability of a research finding. For example, if a
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treatment produces essentially the same effect in a*wide variety

of settings with a variety of people, we are more confident in

the generalizability of the finding of a treatment effect

related to effect size. The statistical analyses have sometimes

involved regressing the ,:ffect size estimates obtained from a

series of studies on variables that represent various

characteristics of studies (Glass, 1976, 1978). Such methods ,

have been used, for example, in the meta-analysis of studies of

the effectiveness of psychotherapy (Smith and Glass, 1973), the

effects of class size ork.achievement (Glass and Smith, 1979),

and the effects, of television on achievement (Pascarella,

Walberg, Junker, Sc'Maertel, 1981).

C.

u
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THE STATISTICAL ANALYSIS OF EFFECT SIZE DATA

Assumptions and the Statistical Model

Many treatments of effect size have not adequately

emPhasized, the assumptions underlying effgct size estimation and

testing. Glass (1976) proposed the quantitative synthesis of the,

results of a collection of experimental/control group studies by

estimating a population effect size for each study and then

combining the estimates across studies. The statistical analyses

in such studies typically involve the use of a t- or F-test to

test for differences between.the groups. If the assumptions for

the validity of the t-test a're met, it is possible to derive the

properties of estimators of effect size exactly. We start by

stating these assumptions explicitly.

Suppose that the data arise from a series of k independent

studies, where each study gompares an experimental group (E)

with an independent control group (C). Let Yij and Yij be the i
th

scores on the ith experiment from the experimental and control

groups, respectively. Assume that for fixed I,Yij and Yij are

9

)
normally distributed with iceansu andll. and common varianceo-

i

an,d

1.. , = i = I,...,k,

N(4C
ij 1 1

In this notation, the effect size for the i
th

study (6i) is

defined as

(1)
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where we use the Greek lette4-"3 to denote that this effect size

is a population parameter.

tipte that the assumptions of the t-tegt may not always be

met in practice. -They may never be exactly met. These

assumptions are often reasonably well satisfied in practice, and

the theory that follows, as IZell as that of the$rimary

statistical analyses, will be a reasonable approximation to

reality. Since the theory that follows reliei on the propeities

of'the t-distribution, many of the results should be robust. In

some situations, however, violations of the model assumptions

will be severe. For example', the observations in each study

might have a highly sk,ewed Aistribution. In cases such as these,,

alternative statistical methods are necessary.... Unfovtunatly,

there has been little work on statistical procedures for'

meta-analysis with nonstandard models. One exception that

Kraemer and Andrews (1982) have provided a "nonparametric"

--estimator of effect size. -Additional work is needed to provide a

more complete theory for meta-analysis when standard assumptions

are not tenable. Another important issu is the quality of the

data reported in.studies to be combined. The quality of the

research synthesis is unlikely te be higher than that of the

studies that go into it. This suggests that reviewens must

carefully examine the studies before an attempt is made to

combine the results of those Itudies.

Estimating Effect Size

The definition of effect size given'in.(1) above defines a

populationparameterin terms of other population parameters

'",":
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C
and cri. 1:e will seldom, if ever, know the exact

valuses of pi , pi, and oi, thus we will have to estimate6i .

Glass (1976) proposed a statistic ai to estimate di by

,C
essentially replacing P

E

i '

P.
,

and G
i
in the definition of

i1

by their sample analogues. Specifically Glass proposed the

estimator.g
i
of6 , where g

i
is 'defined by

-E -C
Y - Y .
i 1 .

C. = , i = (2)

where Y. and Y. are the experimental and control group :44.aple

means for the i
th study ,d S

i
is the control group sample

standard deviation. Hedges (1981) has shown that under the

assumptions of the previous section, the estimator (2) is

biased. Figure 1 is a graphic representation of the

relationship betweeri the ratio of the expected value of g to the

true parameter value 6 as a function of the degrees of freedom

in the eTtimace of Ji. We see that the bias of g tends toward

zero in studies with lt;rge sample 'sizes hut can be substantial

in studies with small sample sizes.

If the assumption of (Nue. population variances in

eXperimental and control groupr; holds, a less bihed espio r

C
resultswhenS i.s replaced with the usual pooled within-groups
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The ratio E(g)/6 of the expectation of the estimator g (7E y )/S
to the true effect size ô as a function of m, the degrees of freedom
of S used to estimate a.
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standard deviation. We denote this estimator bythat is,

-E -C
'Y - Y.

i

S.

1
, i

9 .

where S. Is the pooled.estimate of the variance

C 2
E )(SE)2 ( 1)(S.)(n - 1 . n.

1 1
$ C

n. n. - 2

(3)

We emphasize that ii is a sample statistic and therefore

has a sampling distribUtion of its cwn. Our assumptions imply

thatg.is distributed as (1//al)times a noncentral t random

variable with ni + n i- 2 degrees of freedom and noncentrality

E C v

parameter' tir-7777, where 1-1.=11. n. / (n1:. + n. ). This distribution
1 1 1

leads immediately to exact expressions for the bias and variance

Of gi, which are given in Hedges (1981). One should also note

that gi is an inference sufficient statistic for (S..

An 'Unbiased Estimator of Effect Size

A simple unbiased estimator-of 6 was obtained by Hedges

(1981) based on the assumptions of tile previous section; The

unbiase0,estimator g is given by

, gi c(m)5i, (4)
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where m = n. n - 2, c(m) is given exactly by
1

c(m) -
r(m/2)

/Wf i((m - 1)/2)
(5)

1 (x) is the gamma function and c(m) is given approximately by

3
c(m) 1

7?

4m - 1

It is clear that as m becomes large, gitends to ii , so that gi

is almost unbiased in large samples. Since c(m) < 1, the

variance 'of the upbiased estimator gi is always smaller.tham the

varia4ce of i . Hence g has uniformly smaller mean squared

errorthati.The exact variance of g
i
is

2 E C
Ic(n.4-nCiTM[n14.11.--.2) [1 4,a.62]

E C
(n. 11. 4)fi.

3.

E Cif E.
where ai n n / (n n , and c(m) is given by (5).

i

The Asymptotic Distribution of the Unbiased Estimator

In small samples, the estimator g
i
of effect size has a

sampling distribution that is a constant tithes the noncentral
h

t-distribution. When the sample sizes in the experim'ental and

control groups are large, however, the asymptotic distribution

of gi provides.a satisfactory approximation to the exact
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distribution of g . The large sample approximation is given by

where

1 1 1

t-.

E C
n. 4- n

(. 6

. a?
2 ) 2.

t
1

i i ' E C E C
n.n. 2(n. + n.)

).

(7)

(8)

2
and we use the expression cr. (d ) to indicate that the variltnce

i

of gi depends.or the true effect size di. This la'rge sample

appdximatioa is used by subStituting an estimator of the effect

sizeforLin (8). In the case of a single effect size, we

substitute gi for Si in (8) to obtain an expression for the

,

variance of g. . A usefulluideline on what constitutes a large
1

sample is nE , nC > 10. If the sample size of-either group is_ ,

smaller than about 10, it may be desirable to omit the study

.0

from data analyses since the eitimate of effect size is so

.

impr ise that lt Ls almost useless.

Testing Homogeneity of Effect Size

Before pooling estimates of effect size from a series of k

studies, it is importaat to ask whether the studies can

reasonably be described as sharing a common effect size. A

statistical test for the homogeneity of effect size is formally

4,0 0
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a test of the hypothesis

H : 6. = 6, i
c,

versus the alternative that at least one differs from the

rest.

A large sample (approximate) test for the equality of k

effect sizes given by Hedges (1982a) uses the test statistic

, (g. g.)2
H =

K 1

i=1 c3(g.)
(9)

where g. is the weighted estimator of effect size given below ,0

(13).

The test statistic R
r

is the sum of squares of the g about

the weighted mean g., where the i
th

sq are is weighted by the

reciprocaloftheestimated,varianceofg..The detiniingformula
1

(9) 'is helpful in illustrating the intgitive nature of the

statistic H
T'

but a computational formula is more useful for

actual calculation of.H . The computational formula is
T'

a
/ \ 2

1

--4(g.) )
-) L2(' Ai-1 i.

,k 1
,

id o2i.(g.) L
1 1 . .

1,1

Were II ( 5i) i given by (8): A similar test is given by

-.Rosenthal and Rubin (1982)..

(10)
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2 I

When each study has a large sample size (a reasonable

.

guideline la n
E

, n
C
> 10), the asymptotic distribution of HT can

be used as the basks for an approximate test of the homogeneity

.of the 6...If all the k studies have the same population effect
i

size (k.e., if H
o

is true) then the test statistic H has an
T

asymptotic chi-square distribution given by

H
T

Therefore if the obtained value of H exceeds the 100(1-a) per
T

3 ..

cent critical value of the chi-square distritiution with (k-1)

.
degrees of freedot, we reject the hypothesis that the Si are

4,

'i
equal. If this nuil hypothesis is rejected, a conservative

individual may-decide not to pool all of the estimates ofd since

they are not estimating the' same parameter. When the sample

sizes are .1...T.ry large, however, it is probably worthwhile to

consider the Actual variation 0 the values of gi, since rather

'small differences may lead to large values of the test

statisfic: If the g
i

values do not differ much in an absolute

sense, the investigator may elect.to pool the estimates even
0

..

though there is reason to believe that the underlying parameters

are not identical: A less conservative investigator might pool

4

estimaEes regardless of the outcome of tests of homogeneity.

.

, J

Assessing Variability,of Effect Sizes
4

It is often helpful to plot the effect sizes from a series

of studies to assess the variability of the g values. The large
i

sample approximation (7) may be used to obtain a confidence



interval for each effect size. An approximate 100(1-) per cent

confidence interval for is given by

- 4 '.) < g z )i

.where 2' is the 100 A per cent critical value of the standard

2
normal distribution and (g.) is the rarge sample variance of gi

i0

gi'venbyW.Plottingeachg.value along with a confidenceafr

intetval,Sor each gi ,gives an idea of the region in which the

Corresponding is likely to be. Therefore substantial overlap

of these confidence intervals suggests that there is agreement

among the gi on a common effect size. Conversely, if some of the

gi values are far from the .rest, and their associated confidence

intervals do'not overlap much, then it may,be useful Co consider

these deviant values S outliers. If there are only a few

outlying values then it may be helgul to treat these studies

separately, and estimate a common effect size from the other

studies.

The effect sizes from 10 studies of the'effect of open

education on attitude toward school are presented in Tabje 1

along with sample sizes and thee estimated sampling standard

deviation "i(e,i) for each study. Tbe 95 per cent confidence

inteevals for these effect sizes' are plotted in Figure 2. We see

that one effect size, that of study 10, is quite a:bit larger

than the rest. Similarly: the confidence interval forfilo fails

to overlap with those of other studies. Calculations for the

test of homogeneity are also given in Table 1, and we see that
-

the value of the homogepeity statistic
II = 19.40 which is



23

Table 1.-

Effect Sizes from 10 Studies of the Effeets of

Open Education.on Student Attitude tpward School

Study n
E fl o2(g) 1/02(g) 002(g)

2(g)

1 131 138 .158 .0149 66.996 ,10.585 1.672

2 40 40 .261 .0504 19.831 5.176 1.351

3 40 40 .649 .0526 19.000 12.331 8.003

4 79 49 .503 .0341- 29.365 14.770 7:429

1

5 84 45 .458 .0349 28.620 13.108 6.004

78 55 .577 .0322 31.004 17.889 10.322

7 38 110 .588 .0366 27.341 16.077 9.453

8 38 93 .392 .0376 26:557 10.410 4.081

9 20 23 -.055 .0935 ,10.69.4 -.588 0.032

10 40 40 -.332 .0507 19.728 -6.550 2.175

TOTALS 50.522279.135 03.209

%
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4

1

Study 1

1 1

Study 2

Study 3

Study 4

. Study b

Study 6'

Study 7

StudvI,L;

Study 9

Study 10

-1 .
0.0

1.0

SI I

Fffect Size

rik!ure 2. Ninety-five per cent confidence intervals for
effect size-: the* ton studies described in TAble 1. .

5) ,
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significant beyond the a = .025 level. Deleting the effect size

for study 10, we see that the effect sizes are reasonably

homogeneous:' HT = 9.983, .10 < p < .05.

Estimation of Effect Size from a Series of Homogeneous Studies

If a series,of k independent studies share a common effect

size5, it is natural to estimate6 ky pooling estimates from'each

of the studies. If the dimple sizes of the studies differ, then

the estimate's from some (the larger) studies will be more

precise than the estimates from other (smaller) studies. In

this case it is reasonable to give more weight to the more

precise estimates wheli pooling. This leads to weighted

estimators of the form

where w. > 0, = 1,...,k, and E w. = 1. It is easy to show
1 i=1 1

that the weights that minimize the variance of (11) are given by

1/v.

i = (12)w
i ,

- i/v.

j =1

where v. is the.variance of g. given in (6). The practical
1 1

problem in calculating the most precise weighted estimate is



26

that the i weight depends on the variance of g
i
which in turn

depends. on .

One approach to the problem of weighting results from

different studies, is to use Weights that are based on some

spOroximation to the vi that does not depend on 6. This

procedure results in a pooled estimator that is unbiased, but it

will usually be less precise than if the optimal weights are

used. For example, weights could be derived by assuming'that

- 2)1 2 (n E n. 2)/1.(n. n. - 4).

The weights thus, derived are only optimal if 5 0. If 6 is

near,zero these weights will be close to optimal since v.

del.ands on 6
2

, which will be small. If a nonzero a priori

estimate of, S is available, then weights could be estimated by

'inserting that value of din expression (6) .for the variance of g.

andusingtheformula(Wforw.In general the result will be

an unbiased pooled estimator of (5 that is slightly less precise

than the most precise weighted estimator.

Anothei- approach to obtaining a weighted estimator of S is

to estimate 6 and use the sample estimate of 5 to estimate the

weights for each study. Define the weighted estimator g. by

E
k Si

0?(g.) (13)

nee

g. k 1

i=1
1

2
where _7. is given by cp. The estimator g. is therefore
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obtai""Y"I"latingthetieightsnsing.for 6 in (8).

Although-the'giare unbiased, g. is no. The bias of g. is small

in large sampres and tends to zero as the sample sizes tend to

infinity.

This estimator could be modified by replacing gi by g. in

2
the expression fOra (0, and iterdting. That is, calculate the

i

(1)
estimator g. . defined by

k gi

j(1)

E

0?(g.)

(14)

(1)

where o. (6 ) is given by (8). The iterated estimator g. will
i

tend to be less biased than g. . If the effect aize is

homogeneous across expekiments, the iteration process usually

will not change the estimate very much.

The asymptotic distribution of g. is easily obtained and

can be used to obtain large sample con,fidence .Intervals ford

based on g. . The formal definifion of "large sample'in this

case is that the sample sizes ni and ni, i = 1,...,k are tending

to infinity at the same rate. A practical guideline for 'large

sample' is nE, nC > 10. The large sample approximation is

where

g,

=
1

0?(6)
k 1

i=1 o2(6)

and a (6) is given by (8). We use this large sample

(15)

(16)
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approximation by substituting ehe (consistent) estimator g. for 6

in (15). A 100(1 -a) per cent asymptotic confidence interval

for S is therefve

g. za/2°.(g.) < < g.

where z
a/2

is obtained from a table of the standard normal

distribution. Similarly, an asymptotic test of the hypothesis

that 6 = 0 uses" the test statistic

z(g.) g.' (17)a.(g.)

If the obtained value of z(g.) is larger in absolute value than

the 100(1 a/2) per cent critical value of the standard normal

distribution, we reject the hypothesis that 6 = 0 at the 100a

per cent significance level.

The formal asymptotic distribution of the iterated

estimator g.
)

is the same as that of g. . We use the large

sample approximation to the distribution of g by

substituting g.
(1)

for 6 in (16). Therefore confidence intervals

(1)
and significance tests for 6 based on g are calculated in the

same way As for g. The only,difference when using
1 )

is

that.g. is replaced by g(1
)

wherever the former occurs.

Efficiency of the Weighted Estimator

The weighted estimators discuised in previous sections were

derived by finding the expression .for weights that minimize pie

variance of the resulting weighted estimator. One might ask
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whether the best (most precise) weighted estimator is the most

.
precise in some larger class of estimators of effect size,

including those that are not weighted linear combinations of the

gi. Hedges (1982a) showed that g. is asymptotidally efficient

in the sense that the asymptotic variance of g. is the

theoretical minimum (Crame;-Rao bound). Thus no other consiitent

-

estimator has smaller asymptotic variance. This result implies

that g. has the same asymptotic distribution as the maximpm

likelihood estimator .of S based on k experiments.

ore

An Analogue to the Analysis of Variance for Effect Sizes

The represtrtation of the results of a collection of

studies by a single estimate of-effett magnitude can be

misleading if the underlying (population) effect sizes are not

identical in all of the studies. For example, suppose a

treatment produces large positive (population) effects in

one-half of a collection of studies, and large negative

(population) effects in the other half of a collection of

studies. Then representation of the overall effect of the

treatment as zero is misleading, because all of the studies

actually have,underlying effects that are different from zero.

Ihe test for homogeneity of effect size given in (9) provides a

method for detecting heterogeneity of effect sizes. It will

often be the case that a collection of studies cannot.be

reasonably said to share the same effect size. For example,

Giaconia and Hedges (1982) report the results of tests of
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homogeneity for studies measuring the effect of open education

on 19 different dependent variables. For each dependent

variabre, the hypothesis of homogeneity of effect size was

easily rejected.

?Some investigators in quantitative research synthesis

(e.g., Kulik, Kulik, & Cohen, 1979) have recognized th

potential for hetersogeneous effect s,izes and have grouped

studies which share common characteristics into classes. The

usual approach is then to treat the effect size estimates as

data and calculate an analysis of variance to determine if these

classes have different mean effect sizes. There are two
f

prOblems with this procedure. First, the assumptions of the

analysis of variance may not be met since'the effect size

estimates may not have the same distribution within cells. The

variance of an individual observation (effect size estimate) is

proportional to l/n, where n is the number of subjects in the

study. 'When studies have different sample sizes, the individual

"error" variances may differ by a factor'of 10 or 20. Secondly,.

even if the between-classes test were accurate, the use of ANOVA

does not provide any indication whether or not studies within

.the classes share a common effect size. Thus, even if ANOVA

correctly detects that two clabsevof studies have a ,:ifferent

average effect size, there is no guarantee that the average

effect size within each class is a reflection of a common

underlying effect size for that class%

Hedges (1982b) presented an alternative technique for

fitting models to effect sizes from a sei.ies of studies. We

assume the investigator has an a priori grouping of studies,
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that is, a scheme for classifying studies that are likely to

produce similar results. This will 'often take the form of a set

of categories into which studies may be placed. Studies may be

cross classified, by two Or more sets of categories. The

technique presented in this section is straightforward.

Conceptually the investigator begin by asking whether all

studies (reg dlegs of category) sjIre a common effect size. A

statistical te-t (fit statistic) is provided by the test of

homogeneity given in (9). If the hypothesis of fit to a single

effect size is rejected, the experimenter then breaks the series

of studies into classes, and asks whether the model of,a

ifferen't effect size of each class fits the data. It is

interesting to note that the fit statistic calculated at the

first stage is partitioned into stochastically independent parts

corresponding to between-class and Within-class fit,

respectively. The between-class fit is an index of the extent to

which effect sizes in the classes arP different. If the

within-class fit (fit to 4 single effect size within each class)

is not rejected, the investigator may stop. If the within-class

fit is rejected, the investigator may want, to Curther subdivide

the classes. Thg process of subdividing and testing for between-

and within-class,fit continues until an acceptable level Of

within-class homogeneity is achieva. The procedure provides

Valid asymptotic tests for the effects of classifications as

Well as an indication that the final classes are internally

homogeneous with respect to effect size'b
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Testing Homogeneity across Classes

Suppose that the entire collection of studies is divided

into p a priori classes. The test for homogengity across

classes is essentially a test that the average effect size in

each class is the same as the average effect size in every other

class. Hedges (1982b) gave the test statistic HB to test for

homogeneity of effect size across classes. The statistid H
B

is

given by

j=1 iclj

(gi. 7 g..)2

a(g.)
1

(18)

where is the sum over all studies with subscript i in the
icIj

th class, g. is the weighted average effect size for the j
th

i

J.

class given by
gi

icIj q(gi)
. 09)gj.

1

c(g)

g.. is the weighted average effect size based on all of the

studies given by (13) or alternatively

8'EP E

j=1 icIj q(gi)
(20)
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2
and a (g ) is given in (8).

If the effect sizes are identical in each class, then the

test statistic H given in (18) has an asymptotic distribution

,given by

H X2p-1 (21)

Therefore the test of homogeneity of effect size across classes

at a significance level a consists of comparing the obtained

value of HB with the 100(1 -a) per cent critical,value of,the

chi-square distribution with (p 1) degrees of freedom. If H

is greater than the Critical value, we reject the'hypothesis of

homogeneity of effect size across classes.

Testing Homogeneity of Effect Sizes within Classes

The test of homogeneity of effect size within classes is a

test whether all of the eifect sizes within the same class share

a common effect size. Hedges (1982b) gave the test statistic a

for testing the homogeneity of effect size within classes. This

test statistic is the. sum of the test statistics H for the
wj

thomogeneity

of effect size within the ih class. Thus the

statistic 'Hw is given by

(g. g.)2
Hw= DP E

3.

j=1 icIj ii

where E and g

itIj

(22)

are defined as in (19) and 0
2
(R. ) is given

in (8). Alternatively we could calculate: v, as
W.
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Hw = EP H
j=1 3

(g. g.)2

z

J a..(gi)
j= 11...,p.

If the effect sizes within each class are homogeneous, then

H has an asymptotic distribution given by

N 2
HW xk-p'

Therefore the test for homogeneity of effect sizes within

(23)

classes consists of comparing the obtained value of Hw with the

100(i - a) per cent critical vilue of the chi-square

distribution on (k p) degrees of fkeedom. If the obtained

value of H exceeds the critical lialue we reject the hypothesis

that the effect sizes are homogeneous within classes. In data

analyses, it may be helpful to calculate the within-class fit

statistics H for each of the p classes. This may facilitate the
Wj

identification of classes i which the fit is particularly bad.

An Analogy to the Analysis of Variance

There is a simple relationship among the fit statistics Hu

Hu, and H
T
that is analogous to the partitioning of sums of

,squares in the analysis of variance. It is possible.to show

that

HT HB 4-*HVP
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using only elementary algebra% One interpretation of this

formula involves xhis partitioning of the fit statistic Hr. The

"tot..1 fit" to the mpdel of a single effect size is represented

by HI. The "between-class fit" is represented by HB and the

"within-class fit" is represented bily . Thus the total fit is

partitioned into between-class and within-class components. We

have stated that the statistics HB, H14, and HT are distribUted

asymptotically as central chi-squares under appropriate nual

hypotheses with distributions given by

HT

H x2
B p-1 '

1114 'y X
2

k-p

Furthermore, Hedges (1982b) has shown that H and H are

asymptotically independent. Therefore the tests for between-

and within-class fit arelsYmptotically independent.

Computational Formulas for HILABI_sailk

In practice, computaXional formulas can simplify

calculation of the fit statistics H
T'

H
B'

and U. These

formulas *are much like tht cw1putational formulas in .the

analysis of variance. The conputgtional formulas permit the

resedrCher to compute each or: the fit statistics in a single

pass .through the data wilh a packaged comput,er 'program. Each of

the formulas can be verified by 4iroeqt algebraic mgnipulation.

The computational formufa for H is given in (10), but is

repeated here in different notation for reference.
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1
1

(a04.)
j= icIj i °I
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o'(g )g. j=1 jai i

g. \
12

1-

2
g. icIj o?(g.) )
1 i 1

E

"3 icIj o2(g.) 7 1
) j = 1)...)Ps

i 1
jeij o(g)

2
where E is defined as in (18) and a. (g ) is given in (8).

1 ±

Fitting Effect Size Models to a Series of Studies

The statistical results of this paper can be used as part

of a general strategy for fitting models to the effect sizes

from a series of studies. Start witha series of studies where

each study assesses the effect of a particular treatment via,a

two group experimental group/control group design. SUppose that

the dependent variables measure the same construct and are

(approximately) linearly equatable. We assumf that the studies

are classified according to one of the classification

dimensions. The Clesses obtained by one partitioning may be

further partitioned according to a second classification
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dimension, and in turn partitioned according ta other
. .

dimensions.

One strategy for fitting models to effect sizes fOr each

class, is analogous to the strategy used to fit h(erarchical

log-linear models to contingency tables. The strategy cart be

described as follows.

Step 1. Ignore the classifications an& fit the model of a

,

single effect size to all the studies. The estimate of this

.single effect size is g.. given by (20). Calculate the fit

statistic H
T'

If the value of H
T

is not large or is

statistically insignificant at some preset a level, the

investigator may stop, concluding that the model of a single

effect size fits the data adequately. The asymptotic

distribution of g.. may be used to calculate an asymptotic

confidence interval for 5. If the fit statistic H is large or
T

statistically significant, go ori to Step 2.

Step 2. A large value of the fit statistic H indicates
T

that effect sizes are not homogeneous across all studies, so

,

partition the studies into classes along one dimension. One
...,t, a

should choose the most important dimension first, that is, the

,

dimension believed to be most related to- effect size.

Calculate the between-class fit statistic H and the
B'p

within-class fit statistic H . If die value of the within-class
W

fit statistic H is small or is statistically insignificant, the
W

investigator may stop, since the 'model of a different effect

(

,

. '14

size for each class is consistent with the data. In this case,
...

g . given in (19) is the estimate of effect size for the
th

J.

class
,
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and H represents the extent to which the effect sizes differ
B

among classes. If H is large or statistically significant, then
W

go on to Step 3.

Step 3. A large value of the fit statistic H indicates

that effect sizes are not hdmogeneous within classes. At this'

point it may be useful to partiti6n within-class fit Hw into p

(if there are p.(.1;Aises) statiatics 11. ,dy= 1,...,p, where H.wJ wJ
eh

indicates the fit within the j class. Examining the values of

%

H4imay help identifi classes with especially poor fit, that is,

classes in which the effect sizes are heterogeneous. This may

lead, the investigator to exclude soMe classes or studies from

further analyses. Examination of within-class fit may also

suggest which other classification dimensions are useful. Go on

to Step 4.

Step 4. Partition the existing classes according to a

second classification dimension. Repeat Step 2, t'llat is,

calculate the between- and within-class fit statistics H and H .

Proceed through Steps 2, 3, and 4 until an acceptable level of

within-class fit is obtained or the classification dimensions

are exhausted.

The procedure given is a practical method involving

relatively simple calculations. It has the advantage that fit to

the model can be assessed at each stage and it also provides a

test of the relationship between the classification dimension

and effect size.

Comparisons between Classes

If a priori knowledge or a formal hypothesis test

(sighificant value of H ) lead an investigator to believe that

.1
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the effect sizes are noC homogeneous across classes, the

investigator may wish to compare the effett sizes of different

classes. More generally, Che investigator may wish to test

hypotheses about linear combinations of the effect sizes for the

classes. Such comparisons are analogous to contr cts in the

analysis of variance.

The general comparison is a linear combination of the g

of the form

C = 7,2'c , (24)
g 3 3.

where the c., j = are known constants. In the case of a

comparison be t ween two classes for exmpl e one of the c 'nigh t

be +1, another might be -1, while the remainder might be zero.

The comparison C given in (24) may be considered an estimate of

g

C. =. ZP c

j-1
(25)

th
where-r.is the weighted average population effect size in the_j_

class given by

(. )
1

1

iI
r

Cq(i)

(26)

Such comparisons are easiest to interpret when effect sizes are
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,

homogeneous within classes since then "8"

j
is simply the (common)

.

th
effect size for the studies in the i class.

Hedges (1982b) used the asymptotic disti.ibution of g. to
J.

obtain the large sample approximation to the distribution of C
g'

specifically

where o
c

c
g

is estimated by

p , zI3
c . 13=1 E

icIj q(gi)

(27)

Therefore an approximate 100(1 - u) per cent confidence interval .

forC..is given by
,)

r

.
.C -z a<C<C4-za

g a/2c-- d -- g a/2 c

.,,

An.dinalogue to Multiple Regression for Effect Sizes

When effect sizes are heterogeneous across a 'series of .

studies, one strategy ig to relate discrete characteristics of

studies to effect size perhaps by using the method given in

previous sections. Another procedure is the is the application of

regression analysis to the estimates of effect size. Glass

(1978) recommended the general strategy of coding the

characteristics of studies as a vector of predictor variables
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and then regressing the effect size estimate on the predictors

to determine the relatidnship between characteristics of studies

and effect size: For example, Smith and Glass (1977) used linear

regression to determine the relationship between several coded

charactefistics of studies (e.g., type of therapy, duration of

treatment, internal validity of the study) and the effect size

,
in their me-a-analysis of psychotherapy outcome studies. The

same method has been used in many research syntheses, including

a series of meta-analyses conducted by Walberg and his
. .

associates (e.g., Uguroglu & Walberg, 1979; Pascarella, Walberg,

Junker, & Haertel, 1981). This strategy has been used in some

very novel and creative ways in some research syntheses-. The

potential cf multiple regression methods in research synthesis
/

is perhaps best illustrated by the meta-analyses of the effectsy

'of class size (Glass & Smith, 1979; Smith & Glass, 1980).

Although the regression method advocated by Glass is

\

appealing, there are at least two problems with the method.
,_......,

First, the assumptinns of regression analysis are not met since

the variances of the individual effeet size estimates are

proportional to l/n, where n is the sample size of the study.

Thus when the studies to be integrated have different, sample

sizes, the individual "error" variances may be dramatically

different. Secondly, even if the regression coefficients are

properly estimated, Glass's method gives no indication of the

goodness of fit of the regression model,. That is, there is no

indication that the model is correctly pecified.

Hedges (1982c) developed alternative methods for fitting

models to effect size data when those models include continuous

'It.)
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.

or discrete independent variables. These methods provide

consistent, asymptotically efficient estimates of the parameters

of the model and also permit large sample tests of significance.

In addition the methods can provide an explicit test of the

spedification of the model. Thus it is possible to teat whether

os not a model adequately explains the observed variability in

_effect size estimates.

In this analysis, assume that the standardized mean

difference 6i for the ith experiment depends on a vector of p

fixed concomitant variables (x. x 12, . x )', where p < k.
"' ip

The vectors (x,i1,...,x1p)I., i = are denoted xi, and the

matrix

X =

is as'sumed to have rank p. The assumption that X has rank p

simply asaures that none of the column vectors of X is linearly

redundant. The vector (c31,,8 of regression coefficients is

denoted Thus the standardized mean difference for the i
th

t

experiment is therefore 6i = x3 = x1131 + + x. .

1P P

'Denoting the vector of effect sizes by 6, i.e., 6' = (61,...,6k)

we can write the model for the effect sizes as

= X3.
(28)
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0

Denote the vector of effect size estimates by

Estimation of

A model for the estimator could be rewritten using /, X,

a, and a residual 'Vector n as

where n has the same distribution as (L. L), i.e.,

n

where = diag(0
I

(d
1

),...
' k

(6
k
)) and a.(6.) is given by (8).

3.

If the values of a2( 6 ) were known, we could use generalized
A 1 i

least squares to obtain an estimator of 6$ Unfortunately

depends on which is unknown. However, it is still possible to

obtain estimates of f3 by using an estimated coVarFaRce matrix.

Hedges (1982c) showed that the resulting estimator can be easily

computed and has the same asymptotic distribution as the maximum

likelihood estimator of B. Therefore the alternative estimator

is consistent and asymptotically efficient. This alternative

es:li.1itor is also much easier to compute than is the maximum

likelihood estimator.

Define the matrix V(g) as

whe/e '- (g. ) is given by (8). An estimator E. of 0.. under'modelit
.

......,

V(g) = diag(q(g1),1...,

(28) is given by

(29)
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The large sample'approximation to the distribution of 13 is given

by

', N (6,z) ,\
P

,

where 2
-1

= (

st)
0 s, t = 1,...,p and a

st
is estimated by

k x. x.
st is it '

a Z
2 ,

i=1 a.(g.3. )
3.

/

(30)

2 -1 -1
and a. (g. ) is given by (8). Alternatively, E . (X'V (1)X)

1 3.

There is also an iterated estimator of 5 that is analogous to-

(14), but the iterated version of B rarely differs appreciably_

from (2) if-the model is'correctly specified.

The large sample approximhtion to distribution of B can be
4

used to provide approximate confidence intervals for the

-1 -1
components of 5. That is, if (X'V 60X) = (1;.st

), and

a . (a
1 '

...a )', then a 100(1 -a ) per cent confidence interval_
P

for 5
s

is given by

...

- z /V< 5 </2ss - s
+ Z

s
Y"----a/2 ss '

where z
a/2

is the 0(1 - a) per cent critical value of the.

.normal distribution. The usual theory for die normal

distribution can be used in,conjunction with the Bonferroni

inequality if simultaneous confidence intervals are desired.
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Sometimes it is Useful to teAsthe hypothesis that a - 0,

that is, that all the components of a are simuitane'Sisly zero.

The following statistics provide the basis for condu ting these

* tests. The hypothesi's that S = 0 cqn be tested usin the

statistic

H
1

= Pnl-l(a)R. (31)

If = 0, HI has an asymptotic chi-square distribution given by

H
1 p

The test that .a = 0 at the significance level a therefore

consists of comparinglthe obtained value of H1ttó the 100(1 -a )

per cent critical value of the chi-square distribution with p

degrees of freedom. If the value of HI exceeds the critical

value, the hypothesis that . 0 is rejected. Note that the

statistic HI is analogous to the weighted sum of due to

the regression in weighted least squares. Therefore the test

that S = 0 corresponds to a test that the weighted sum of

squares due to the regression is greater than would be expected

if a . 0.
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Testing Model Specification

We will argue subsequently that tests of model

specification are an important step in the analysis of effect

size data. The test of model specification is a way Of
,

determining whether the observed effect size estimates are

reasonably consistent with the model used in the data analysis.
-,.

If the number k of:effect size estimates exceeds the'number of
^

predictors p, then a natural test of model specification is

given by the next theorem. If k > p, the specification of the

regression model can be tested using the statistic

\\

-1
112 = fv (a).F. H,.

When 6 = KB, i.e., the model is correctly specified, H2 has an

asymptotic chi-square aistribution given by

H
2 k-p

The test for model specification at a significance level a
%.

f.

therefore consists of comparing the obtained value of H
2
with the

1
.

100(1 - 1) per cent crikical value of a chi-square distribution

with (k - p) degrees of freedom. If the obtained value of H2

exceeds the critical value, then model specification is

rejeceed. Note that H. is analogous to the weighted reidual sum

of squares in weighted least squares. Thus the test for model

specification is a test for greater residual variation than

would be expected if 5 = k. Such a test is not possible in the
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context of the usual normal theory because the means and

variances of observations are independent. In the case of

effprt sizes, however, the sampling variance of gi given in (8)
,

is completely determined by the mean of gi and the sample size.

Therefore the "expected" residual variation is determined as a

function of X and B.

The test for model specification will often be used to

demonstrate that the data (sample effect sizes) are reasonably

consistent with the model used in data analysis. ' It is

therefore important to have soMe understanding of the factors

affecting the power of the test for model specification. Two

factors that influence the power of the test.are the number k of

E C
studies and the sample sizes (ni and ni) of those studies. The -

latter factor (the sample sizes of the studies) is often the

most significant. The reason is that the specification test I

statistic Ell can be loosely described as a sum of squares of

standardized res.luals. The residual for the i
th

study is_

?standardized" the square 'root of the sampling variance of

th E C
theieffectsizeestimate.Whenn.=n. =nV this sampling

t 1 1
,

varianceisappro*imatelyVni Therefore if the sample size n.
1

in each group is large, even a small deviation from the modal

may result in a large contribution to the test statistic.

Similarly, if the within-group sample sizes niare small, even I

reasonably large deviations from the model may not yield a large

a
"Standardized residual" contribution to the test statistic.

These arguments can be formalized into a rigorous development of

power functions under so called local alternative hypotheses,

but the formal arguments will not be given in this paper.

G.

-

r

1
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It is not necessarily true that large numbers of studies.

(large values of k) lead to rejection of model specification.

The author haS seen relatively simple models that fit well with

over 100 studies, and'many examples of well specified models for

40-80 effect sizes. If a particular model does not fit well,

then diagnostic procedUres are called for. Examination of

residuals is often helpful. Such examinaeions may reveal

patterns that suggest variables that should be added to the

model. Alternatively, some stuaies may consistentlY yield

effect size estimates that deviate greatly from the prediction

of the model and therefoee merit closer examination.

'Computing Estimates add Test Statistics

The estimates and test statistics presented in this section

can be easily calculated using any computer program package that

manipulates matrices (such as SAS Proc Matrix). 'A simpler

alternative to ttre computation of estimates and test statistics

ts the use of a computer program (such as SAS Proc GLM) that can

perform weighted least squares analyses.

Weighted least squares involves estimation of linear model

parameters by minimizing a weight,ed sum of squares of

differences between observations and estimates. Given a design

matrix X, a vecton of observations of Y, and a diagonal weight'

Matrix W, the weighted least squares estimate of B in the model
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a (x.14:0-1x,wy.

Note that the form of this estimator is the same as that of

- -

6. Thus B is a special case of a where the weight matrix W is_
th

given by V
-1 (/). That is, the weight i case is given by

E C E C
2(n. ..i. n.)n.n.

w ....

i E C E C
2 (n .

i
-I-

and the weight matrix is W = diag(w1,...,wk).

= 1,...,k,

The estimator (3 is the weighted least squares estimator of

using design'matrix X, data vector R, and the weights wl,...,wk

. given Above. The large sample covariance matrix of R was given

previously as (X'V (1)X) . This large sample covariance matrix

is given by the weighted sum of squares and cross products

1
matrix (X'WX) in the weighted least squares. If the computer

program fits a "nointercept" model, the test statistic HI for

testing that R = 0 is given by the weighted sum of voares due

to the regression in the weighted least squares. A similar

statistic for testing that'all components of a except tke

ineercept are simultaneously zero is given if the weighted

least squares program fits an intercept. In the latter case the

test statistic H2 will be,comPared to the critica1 value of a

chisquare distribution on kp-1 degrees of freedom. The test
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statistic for testing model specification will always be the

valve of the weighted sum of squares about the regression line

(the error sum of squaies). Thus all of the statistics described

in this section may be Obtained from a single run of a standard

packaged computer program.

'v
The Effects of Measurement Error on Effect Size

The standardized mean difference 6
i

defined as in (1), is a

measure of the magnitude of the treatment effect compared to, the

variability within the two groups of the experiment. Thi

implicit assumptio4in that the variability within the

experimental,and control groups arises from stable difference

between subjects (or more generally between expeimental units).

If the response measure is not perfectlr reliable, i.e., if

errors of measurement are' present, then measurement error also

contributes to the within-group variability. Measurement error,

therefore, alters the population value of the standardized mean

difference. If the object is to estimate the_value,d , of the

standardized mean difference when no errors of measurement are

present, some procedure to correct 'for measurement error is

necessary.

Consider the population value of the standardized mean

difference in two cases, one in which the measurements are

error-free and one in which errors of measurement are'present.

For simplicity of notation, the subscript i denoting the
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particular experiment is amitted in the exposition that follows,

4

but the results apply to each experiment when properly indexed.

If there are no errors of measurement, then denoe the

2
withincell standard deviation bya Let6 denote the population

value of the standardized mean difference when there are not

errors of measurement. Then

E C
6 - (u u

where ;-1

E
and 11 are the population mean43 of the experimental and

control groups respectively. Note that the use of the symbol

;

is consistent with the definition of ô used in the structural

models (1)

b
In the second case, 4hen errors of measurement- are present,

the population means ,1
E
and u are unchanged but the withingroup

variance is larger. If ," denotes the value of the standardized

mean difference when errors of measurement are present, then

61 (

C
'

where ::, is the variance due to errors of measurement. The

relationship between and ' ' can be expressed as

6'

where is"the reliability of the response measure.

Thus the population value of the standardized mean

difference depends explicitly on the reliability ot the response
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measure. If the object is to estimate the value of6 , the

standardized mean difference with no errors of measurement, then

estimation of ' instead of,=, can result in biased estimates.

Since reliabilities cannot exceed one, the effect of measurement

error is to reduce the magnitude of the parameter 6 ' compared

with . In particular, errors of measurement cause the estimator

g to estimate' ' instead , so that E(g) = ó ' =667. Hence

errors of measurement result in underestimates of the parameter

,If the reliability is known, the bias can be removed by

dividing g by , . When we combine several estimates that use

response scales with different reliabilities, each estimate can

be corrected for measurement error separately. Statistital

analyses can then be carried out using g/yr in place of g and

(g)/. in place of (g).

I.

1.e Effects of bepartures from Linear Equatability

In the statistical work described earlier we assumed that

the tests used to measure outcomes in tIle different studies are

linearly equatable. In practice this assumption may be only

approximately true. Some tests may have unique factors id

addition to the common factor shared among all tests.. Fpr

example, some experiments may use an expensive standardized test

to measure reading achievement, whereas other studies use

locally developed tests that are correlated with the

standardized test. If the locally developed tests have unique

factors, they will not be perfectly valid measures of reading
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achievement as measured by the standardized test. This section

reports some ebsults of Hedges (1981) on the effect of

invalidity of response measures on estimators of effect size.

One model for test invalidity assumes taat a collection of

tests share a common factor, but that some tests also have

unique factors. If the population of test scores on a

Particular test are generated by a m del which includes both the

common factor (among all the tests) 1 d a unique factor, then

the test is partially invalid.'To examine the effects of partial

invalidity on effect size, Hedges (1981) derived the

standardized mean difference 6 " when tests had unique factors.

First consider the'case where the treatment only affects

the dependent variable via the common factor. Omitting the

subscripts we see that the standrdized mean difference is

r I t
)

'3' ;
-i- 2-c i- u-

0 sn

-itere -_ - atul ,)

n
are the variances accounted tor by the

,

common factor, the unique factor, and measurement error,

V
respectively. The validity coefficiento ot the test can be

expressed as the within-group correlation of the test with the

common factor, that is,

1 %

v CI`,-, + .1-,, 4:- a-7
, ..) n,
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TherefoCe the population value of the standardized mean

differenW, " can be expressed as

l
Vr f- up

2
It seems unlikely that the population correlation of an invalid

test with the common factor among a sefies of tests would be

known. If X is'a test that is not perfectly reliable, shares the

Y common factor, but has no unique factor, then the correlation

- can be obtained from Pxy by the familiar disattenuation

formula (see, e.g., Lord and-Novick, 1968):

3

where , is the reliability of the test X: Thus the population

standardized mean difference ott can be written in terms of a

correlation with a valid but unreliable test X and the

reliabilityc of X, namely,

"n

Since , it follows that 6"< 6 . This means that
XY-2"

invalidity always reduces the standardized mean difference when

treatment affects only the common factor among the response

measures. In this case, esti'mates of effect size nay be
.

corrected by substituting gV77,,xy for g.

When the treatment affects the test Y through both common

and unique factors, invalidity of the test may either Increase
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or decrease the standardized mean difference.. Hence no simple

4

characterization of the effect of invalidity on estimates of 6

obtained from the estimators gi is possible. In this case the

standardized mean difference is

JOr
6,11 =

/0 + + C
8

where ; is the effect of the treatment on the unique factor; and

, And ,7

2
are the variances due to the common factor,

Yi

cf)

unique factor, and measurement errbr respectively. IT c, the

treatment effect via the unique factor is large enough, namely

> (kia-21-4772- - a )6 = c
c'a

then > . If -, then 6"' < 6.

Statistical Analysis When Correlations or

Proportions are the Index of Effect Magnitude

In some cases, the effect size will not be a suitable index

of effect magnitude for the studies that, the reviewer wishes to

integrate. For example, the'studies may investigate the

relationship between tswo colinuous vaiiables or they may study

the proportion of subjects /reaching a criterion in different

groups. In'the first example, Glass (1978) suggested the use of

thp correlation coefficient as an index,of effect magnitude. In
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the second example, the difference between Athe proportions of

subjects re'aching the criterion appears to be a natural index of

effect magnitude. Statistical procedures for combining

correlation coefficients and differences between proportions

were developed by Hedges and Olkin (1983). These procedures are

analvgous to the methods already presented for the analysis of
N

effect sizes. One difference is that variance stabilizing

transformations for cOrrelations and proportions simplify the

statistical methods.

...

-

Statistical Analysis for Correlations as Effect Magnitudes

Suppose that k independent studies with sample sizes

n1,...,nk yield k independent sample correlation coefficients

r
1

... r
k

. If,
1 '

... "k are the population correlations, the.

first problem is to decide if the sample correlations could

!"--Pa..6
reasonably have been drawn from populati

\ith
the same

underlying population correlation. A test for e homogeneity of

correlations is needed to determine if all the studies share a

common population correlation. Statistical analyses are

simplified if the correlations are transformed by Fisher's

z-transformation. Let

,,,
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A test for homogeneity of pl ,..., pk uses the test statistic

f
H = E

k
(n. - 3)(z. - z.)2,

1 1
i=1

where z. is the weighted average of the z given by
i

E
k

(n. - 3)z.
1

.3.i=1
z. =

TO.

( 33 )

( 34 ) ,

If0=1),=...=p,andallthen.are moderately large, then
1 k I

H given in (33) is distributed approximately as a chi-square .on

(k 1) degrees of freedom. Thus the test for homogeneity of the

correlations consists of computing H and comparing the obtained

value.to the 100(1 a ) per cent critical value of the

chi-square distribution on (k - 1) degrees of freedom. If the

obtained value of H exceeds the critical value we reject the

hypothesis of homogeneity at the 100a per cent level. A

computational formula for H is

(

E
k

(n, - 3)z )2

A 2- (n. 3)72

i 4 1
i

E
k

(n, - 3)
.

i=1

If the correlations are homogeneous, then the natural

estimate of the z-transform of the common correlation is z.

.L.

t
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given in (34). This estimate may be converted into an estimate

by finding the value of that yields . as its z-transform,

i.e.,

tanhcz.) (35)

e
2z.

1

In large samples, z. has a normal distribution given by

where is the z-transform of the common correlation p and

(36)

This normal distribution can be used to obtain a large sample

confidence interval for. A 100(1 -(A) per cent confidence

interval for-,is given by

zeto.o. < z. z
af2

a. . 7

where is given in (36) and z
2

is the 100(1 - u) per cent
t/

critical value of the standard normal table. The 100(1 -(1 ) per

cent confidence interval for is given by

where tanh(x) is given by (35).

If a priori knowledge or the formal test of homogeneity

suggests that the correlations are not homogeneous, then the/
/

characteristics of the studies are related to the corl-elation.

investigator may wish to determine whether various

I.
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Suppose that
,

the z-transform of the correlation in the i
1

study depends on a vector of p study characteilstics

1

where p<k. The vectors (x )1 , i = 1 ,k, are denoted
ip

th

x and define the design matrix X as

X --

Or

where X is assumed to have rank' p. Define the vectors

7 = ( ; , qc I Z = ( Zi Z 1? I , and

Then the model becomes = x +...+ x, 8 = 1, ,k, or
i . il 1 IP P

alternatively

Hedges and Olkin (1983) showed that a natural estimator of a is

(37)

where V = diag(nl- 3,...,nk - 3). When all the n
i
are 'reasonably

OL
lafge, has a p-variate normal distribution given by

N 0,(X'VX)
P

The large sample distribution of L can be used to obtain

(38)
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confidence intervals for ;3 .. . For example, a

(nonsimultaneous) .100(1 ) per cent confidence interval for f3

is given by

v . < 5. < 6. z v..,
3 a/2 i3 j a/2 33

-1
Where v

i
is the i

th
diagonal element of (X'VX) and z

a/2
is

j

the 100(1 -J) per cent critical value obtained from the standard

normal distribution.

A simultaneous test that = 0 uses the test statistic

pl(X'vx)t;

which has a chi-square distribution when I = 0 given by

H,

( 39 )

Thus the teest that = 0 at a significance level a consists of

.* comparing the obtained value of HI with the 100(1 -a ) per cent

;

.critical value of chi-square with p degrees of freedom. If Ill

exceed the critical value we reject the hypothesis that 0 = 0.

%

If k > p, a test of the specification (goodness of fit) of

the regression mOdel uses the test statistic

(40)

When the model is correctly specified, the statistic H., has a

chi-square distribution given by

)':"

p

Thus the test of model specification at a significance level

consists of comparing the obtained value of 112. with the
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100(1 -,t) per cent critical value of the chi-square distribution

on (k - p) degrees of freedom. If H exceeds the critical value

c...

we reject the specification of the regression model. Rejection

of model specification suggests that the model does not account

for all of the variability of the correlations. In this case it

may be desirable to think about additional explanatory variables

or to examine residuals and look for unusual z values to
i

determine why the model does not fit well. It should be noted

that the test for model specification can.be very sensitive when

sample sizes are large, so even minor deviations from the model

can result in rejection of model(specification.

Statistical Analysis for aifferences in Proportions

Suppose that k independent studies each compare the

proportion of subjects achieving a criterion in an experimental .

E C
and a control group. Let p andp denote the sample proportions

i i

of subjects reaching a criterion in the experimental and control

groups respectively of the i
th

study and let 7
E

and 7 represent
. C

_

the corresponding proportions in,the population. The obvious

'index of the magnitude of the treatment effect in the ith otudy,

is the difference between the experimental and control group

E u
proportions, "i --i . Statistical analyses are simplified,

however, if a slightly different index of effect magnitude is

used. Define the population and sample indices of effect

magnitude as

`;, ". :-.) - '.1 0' ), i
...

(41)
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. /
- sin 'pC) = 1,.. k. (42)

i
.1

A test of the hypothesis that = w = = w uses the test
1 2

statistic

(43)

E C E c E C
wht..rvni.n.1.00.,-/IY,n.and n are the experimental and control

1 1 i
i t i

.th
group sample sizes in the 1 study, and w. is the weighted

average of the wi given by

(44)

When = --= = = .and the sample sizes are all reasonably
1 '

large, H given in (43) has a chi-square distribution on (k -1)

degrees of freedom. Thus the test of homogeneity of the w's at

signiticance level t consists of comparing the Qbtained value of

H with the 100(1 - t) per cent critical value of the chi-square

distribution with (k 1) degrees of freedom. Values of H that

are larger than the critical value result in rejection of the

hypothesis that all studies share a common effect magnitude.

If the w values could reasonably have come from

populations with the same value of... , then the natural estimate
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is w. given in (44). In large samples the distriburion of

w*. is given by

where

(45)

This large sample distribution can be used to obtain an

approximate confidence interval for w. A 100(1 a )yer cent

cunfidence inperval for is

4

where :.is given in (45) and z
iis

obtained from tables of the
L)

standard normal distribution.

If a priori knowledge or a formal hypothesis test lead the

investigator to believe that the ,'s are not homogeneous, then

the investigator may wish to determine whetker various

characteristics of studies are related to the index (). of effect
1.

magnitude. Suppose that
i

depends on a vector orp study

characteristics x' = (x ...,x )1, where p.< k. The vectors1 i1 ip

x. define the design matrix
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where. X is assumed to have rank p. Define the vectors

P and w = (w ,...,w )' of parameters and estimates
1 k

_
1 k

and let r = (B1,...,r ) be the vector of regcession
P

coefficients. The linear model is w = x B + ... + x a
i il l' ip P, i '

1,...,k, or alternatively w = XB.

Hedges and Olkin (1983) showed that the natural estimator

of z., is_

3 = (XIVX)
-1

X'Vw
.....,

,
(46)

where V = 2diag(al,...,
k
). When all of the n

i
are reasonably

large, 1, has a p-variate normal distribution given by

/
,+,

This large sample distribution of i can be used to obtain

confidence -intervals for -,;i just as in the case of the analysis

A i

of correlations. The test that r = 0 and the test of model

.

....:---.

specification ased on the stLstics

and

n'X,:\-

...1vw

are identical to the analogous tests in the analysis based on

correlations.

b

#
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CORCLUSIONS

There has been some vehement criticism of Glass's

meta-analysis. Some critics have argued.that meta-analysis may

lead to oversimplified conclusions about the effect of a

treatment because it con4enses the results of a series of

studies into a few parameter estimates. For example, Presby

(1978) argued that even when stddies are grouped according to

variations in the treatment, reviewers might reasonably.disagree

on the appropriate groupings. Grouping studies into overly

broad categories and calculating a mean/effect size for each

category might serve to wash.out real variations among

treatments in the categories. Thus it would appear hat

variations in treatment Witre unrelated because the mean effect

sizes for the categories did not differ. An obvious extension

of this argument is that reviewers might reasonably disagree on

explanatory variables that could b related to effect sizes.

Hence failure to find variables that are systematically related

to effect size does not imply that the effect sizes are

consistent across studies. It may only imply that the reviewer

has examined the wrong expI,Anatory varielles.

A related criticism is that the studies in a collection may

give fundamentally ,different answers (e.g., have different

population effect sizes) perhaps because of the artifacts of a

multitude of design flaws (see e.g., Eysenck, 1978). Any

analysis of the effect sizes is therefore an analysis of

estimates influenced by a variety of factors other than the true

magnitude of the effect of the treatment. Thus meta-analyses may
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be al)Hiet ot "garbage In--garbage out." The argument

underlying this crIticism is that flaws in studies may influence

ettect sizes.

Tht statIstic:al methods presented in this monograph provide

a luochanism for respondtng to criticisms mentioned previously.

In Ole simplest case the reviewer summarizes the results of's

serles of studles by the average effect size estimate. Is this

an oversimplificatIon ofithe results of the studies? The test

f homogeuelty of effect size provides a method of empirically

tosting whether the variation in effect size estimates is

greater than would be expected by chance alone. If the

hypothosis of homogeneity is not rejected, the ,reviewer is in a

strong positIon vis-a-vis the argument that studies exhibit real

varla!;Ility which is obscured by course grouping. If the model ,

of a siagle population effet size fits the data adequately,

then a deslre for parsimony sUggest's tnis model should be

considered seriously.

i'ailure to reject the homogeneity of effect sizes from a

rles of studies does not necessarily disarm the criticism that

the results of the studies are artifacts of design flaws. For

example, If a, series of studies all share the same flaw,

consistent results across the series of studies may be an.

artlfact of just that flaw. That is, the design flaw in all of

tho studios may,act co make.the effect sizes in the studies

consistout with one another and consistently wrong as an

estimite ,)f the treatment effect: On the other hand, the
/

stidlos may not all have,nhe same flaws. If a variety of'



\ 67

different studies, with different design flaws all yield

consistent results it may be implausible to explain the

consistency of the results of a series of studies as a

conspiracy of different artifacts all yielding the same bias.

Thus the,reviewer who finds consistency in research results and

who knows the limitations of the individual studies may be in a

strong position against the "garbage in--garbage out" argument.

I emphasize that careful examination of the individual research

studies and some scrutiny of the attendant design problems is

essential. Without such analysis of the studies, a single

source of bias is a very real and plausible rival explanation

for empiricar consistency of research results.

When a reviewer explains the effect sizes from a seties of

studies via a model involving explanatory variables (e.g., the

effect size varies according to grade level), tests of model

specification play a role anaIng0U9 tO 'I'at Of thP taat nf

,homogeneity. It is difficult to argue that additional variables

are needed to explain the variation in effect sizes if the

specification test suggests that additional variables are not

needed.

Evidence that the model is correctly specified does not
1

necessarily mean that the artifacts of design flaws may be

ignor0. Il all studies share a common design flaw then the

results of all of the studies may be biased to an unknown

extent. If design'flaws are correlated with explanatory

variables, then the effects of those design flaws are confounded
1

with the effects of the explanatory variable . It may be
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difticult or impossible to determine th^e real source of the

effect. However, if several design flaws occur in different

studi,2s, i-f few of the flaws occur in more than a few studies,

and if simple models appear to be correctly specified, then it

seems implausible that inferendes drawn about the effect sizes

are 'artifacts of biases due to design flaws.

Mahods for the quantitative synthesis of research

(meta-analysis) have received a great deal of attention. These

methods are promising improvements In thg methodology for

research reviewing. Soma authors (Jackson, 1980) have argued

that research reviewing in social sciences has not been subject

to the kind of rigorous professional standards of methodology

that have been imposed on the conduct of primary research. One

positive aspect of the interest in meta-analysis has been the

'movement toward the use of rigorous methods of sampling,

measurement, and statistics in research reviewing (Cooper,,,

1982). As Glass (1978) pointed out, research reviewing is a

difficult task that unands as much creativity and insight as

the conduct of primary research. The application of rigorous

methods in research reviews may be a step toward a time when

reviewing is accorded equal status.with the generation of

primary research.

Statistical techniques for research reviews are not well

.

developed. The present survey of methodology is a beginning. New

methods are clearly needed for the exploratory analysis of

effect size data. Glass (1978) argued that it is often useful to

estimate effect sizes from other sCatistics or from, data other
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than means 'and standard deviations. Methods for obtaining such

estimates were discussed in Glass (1978) and in Glass, McGaw,

and Smith (1981). Yet very little is known about the properties

of such estimatge< The development of rigorous statistical

theory for these estimators would be an important contribution.

Many research studies provide data on several measures of

the same or related constructs. The several effect size

estimates deriwed from different measures applied to the same

individual are therefore correlated. In fact, the vector of

effect size estimates can be shown to have a multiyariate normr'

distribution in large samples. Moreover, the (laige simple)

correlation matrix of the effect rizes is the same as.that of

the original observations.. Thus if a reading and a mathematics

achieveme.nt test have a (population) Correlation of .7, effect

-sizes derived from these two tests will also have a correlation'

of .7 in larze samples. This, result can be used in the study of

covariation amongseffect sizes derived form tlie same sample, but

relatively little work has been done. A conservative solution is

to use the ,averEige of mtltiple effect sizes as the only estimate

of effect size in statistical analyses. More work is definitely

needed in the area of the multivariate analysis of effect sizes.

A related issue is how to handle estimation of effect size from

a series of correfated estimates. Glass (1978) suggested the use

of Jackknift estimators in this case, whA>seems,sensible. This

problem hf estimation of effect size from correlated estimates

"merits further investigation.

The possibility of influences of bias due to the use Of

statistical significance as a criteriom in editorial decisions

s

()

Alf
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has been suggested (Sterling, 1959), Some preliminary work (Lane

& Durilap,1978) suggests that the effects of prblicatibn bias
_

can be severe. We have little evidence about how seriously such

biases affect quantitative research syntheses. Some empirical
,

evidence on this question is discussed in Glass, McGaw, and

Smith (1981). There are very few statistical methods for dealing

with" the effects of these biases. Future metaanalyses will, no

doubt, revpal new methodological problems that also need

attention.

..

,
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