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INTRODUCT ION h)

L]

The educational research enterprise has grown tremendously

.
.\ .

in the last thirty years. The literature in many areas of

education and psychology has préduced hundreds of studies on the

" same topic. YFt few would argue that the knowledge base of the
gocial sciences has grown as }apidly as the volume of research
studies. Some critics and manf qeviewgr§ contend that our state
of knowledge has remained unchanéeé despite the best efforts of
the social science research comﬁunity. Until recehtly, research
reviews that yield equivocal.conéluéions have been the rule
rather than the exception. Glass (1976) noted th;t "the typical

teviewer concludes that the research is in horrible shape;

sometimes one gets results, sometimes one does).

The recurrence of equivocal conclusions from research

reviews led some investigators to speculate that the process of

research review might be at fault. Light and Smith (1971) were
» *

among the first investigators to examine the problem of

]
intégrating the results of quantitative studies in the social
sciences. They demorpstrated the importance of systematic

. 4 .
.analysis of variations in design and execution of studies as

.

well as thbk variation in study outcomes. . :
Light and Smith also generalized an approach from g}uster

sampling to generate an extensive élgorithm and analysis

strategy for a series of similar experiments: Unfortunatel&,

their approach requires access to the original data which limits

its practical usefulness ih research integration.

e

»




Light and Smith asserted, that, at that time, a technique

called vote-counting was the most commonly used method of
- . . )c - '.
lntegrating research studies. In their formulation, a number of )
N . ~
studies compare the soores of tes of two groups; one group of subjects
P . . .

receives an experimental treatment and the other group receives -

. - ’ -
no treatment. In the vote-counting method ‘the available ‘studies ) -

’ ’ Al

are sorted into three categories: those that yield' positive

- h ‘ N —t
, significant results, those that yield negative significant . . \
. . results, and those that yield nonsignificant results.
. - . - Y ) 4
- - : .
¢ i a pluralite of studies falls into any of these i
three gategories, 'with. fewer talling into the other .
» 13 . . - g » -

f two, the modal category is declared the wvinner. This
/ modal categorization is then assumed to giye the best

estimate of the true relationship between the independent,
and dependent variables. (Light & Smith, 1971, p. 433).

¢ . ' o

o .
) od . .
mn 3
¢ . > . ¥ '

Despite the, obvious simplicity of vote-counting methods,

~

these techniques have very serious problems. The deficiency of

-vote:counting methods stems from their reliance on tests of ’ .
and Olkin (1980) proved that when studies typically use smly use small
. o .

’ statistical significance in individual research studies. Hedges ~i
o

samples or when the phenomenon under study produces small |,

. . Toa . . . )
effects, vote-counting methods systematically fail to detect

N

[
effects. The reason for this behavior is related to the low

. ’ -
[
> v _ <

statistical power of significance tests when effects or sample
* sizes are small. Small effects._are the rule rather than the

exception in soci2l science research,

- .
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¢ For example, Gage (1978) has noted” that the magnitude of

the relationship between any teaching variable ahd achievement-

-

is likely to be small, although the cﬁmulative effect of many

such variables need not be negligible. Similar arguménts have
94 . .

been made about the magnitude of relationships in social '

psychology.

The consequence of small effects and sample sizes ‘on the S

.power of statistical analyses in educational and psychological

~

research 1is illu?tréted in surveys of statistical power of
publisheé research. Brewer (1972) calculated the power of'
studies publisﬁed in thfeg educational research journals. His
analysis showed that the

3

N \
anglysis showed that the power of published studies to detect
// L 3

’ small effects (a mean diffexence of 0.2 in standard deviation -
units) was uniformly low. Only two pér cent of the 55 studies

surveyed from the American Educational Research‘i;urnal had a
e

.

power géeéter than 0.3 to detect an effect that small. Thus the
probability ;f Type II errors (i.e., faildf&§Fo teject the null
hypothesis when it is false) seems unacceptably high in these

K ;tudies. Similar results have been found in surveys of studies

,in abnormal psychology (Cohen, 1962), communication research .
(Katzer & Sodt, 1973), ahd applied-psychology (Chase & Chase,

1976). 1f these surveys of social science research are

representati&e, failure to reject the null hypothesis in

.

individual® research studies canpot provide much assurance that

small effects are not present.

~

()
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A new approach to the problem of research integration was
* v . ¥

-

. R . N g
proposed by Glass (1976). He argued that ‘estimat.ion of the ~
magnitude of the expérimentberimental effect is perhaps more {mportant R

than statistical significance. Glass suggested thdt the "effect

v , .
between the experimental and control group means divided by the

control group ‘standard deviation. Glass coined /the term
ot . /

;

"meta-analysis" to describe the analysis of these "effect sizes"

. . “o
. from a series -of. studies. K /
/
Meta-analysis has become an important supplement to

~ . ,

traditional ‘methods of research reviewing, largely as- a regult

of the work of Glass and his colleagues. They demonstrated that
al

the technique could be used to provide sensible answers to ’ .

*
size" in a,two-group experiment be defined as the difference :

fundamenstal questions in the behaviordl sciences. The first
!

application of meta-anaylysis was the integration of studies on

' e

the effects of psychotheragy (Smith & Glass, 1977). This first
meta-gnalysis intrigued many and slirred controversy for others. - =

A series of other analyses, including the meta-analyses. of the

effects of class-sizg (Glass & Smith, 1979; Smith & Glass, lith & Glass, 1980).
\ e o .
have continued to provide strong evidence‘on long standing

-
.

oo controversies. The interest generated by these and other

e
examples, along with a lucid treatment of the methods of . .
- . 0

meta-analysis (Glass, 1978) have encouraged other investigators -

to use the .technique. ) ) .
 Many problems must be addressed by the reviewer who
carries out a meta-analysis. These problems include identifying

~ )

and obtaining appropriate studies, extracting estimates of

s . .




effect size from the studies, coding or classifying studies,

-~ e N

analyzing the -data, and reporting the results of the data ”

analysis. Some of these problems are similar to the problems . .
<
. s
faced by the primary researcher (see Jackson, 1980, or Cooper,
» L4 .
1982). In other cases the problems are not the same-as those

faced in primary research. The best source on methods for

- conducting meta-analyses is the bodk~by Glass, McGaw, and Smith

P . .
a (1981). This book ¢ontains opularizing the method of meta-analysis.

.
» »

. . -Why then another paper on a reasonably complete covefage of

Y

methods to deal with all of the problems mentioned above as well
as numerous others. This book draws upon the considerable

resources of three authord who have been instrumental in - o

-~

developing and popularizing the method of meta-analysis.

Why then another paper on methodology for meta-analysis?

Since the publicatioe of the Glass, McGaw, and Smith book, there
: . has been a great deal of interest in the development of . A

systematic statistical theory far meta-analysis. Many of the - |

. ' . . o .
techniques proposed and used by Glass and his assoclates were
>
2
sensible, but suboptimal. Recent work in the 'statistical theory
. P \

for meta-analysis has provided simple‘'methods that can be
rigorously jusﬁified\ The purpose of this monograph i$ to
supplement the existing literature on meta-analysis by ;roviding
a unified treatment of rigorous statistical methods for

-

meti-analysis. . !

\ —

- ’ Indices of Effect Size ¢

~

Statistical methods have been used to combine information T~

[ERJ!: from different research studies for many years. Some of the .
s ‘1 -
! . £ o
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earliest examples cf this work are found in the work on
~ {

com@ining the results of ‘agricultural experiments. Cochran

-—

(1937) considered the problem of combining estimates %f .

treatment effects from a series(of similar experiments. He

- -

considered several methods of weighting estimates from each

experiment. Yates and Cochran (1938) developed more refined

weighting methods (e.g., partial weighting) for combining

v

estimates from several agricultural experiments.. A more recent

review of statistical work in this tradition is given in Cochran ,
(1954). Tests of the statistical significance of combined , . -,
results were also introduced in connection with problems of

combining results of several stadies.in agriculture and biology

(e.g., Tip5etc, 1931; Pearson, 1943). .

The early ‘work_on combining the ‘results of studies in

-

agriculture’ involved combining the results of studies that share
a common, well-defined dependént vartable. For example, the -
. } S N

ob ject of a research synthesis in agriculture might be ‘to

~ . .

“combine estimates of the dirley crop.yield derived from several
N » B N f . .

‘studies. Each study would measure the dependent variable in- the

same wdy: the mber of pounds of bagley yielded per qcré

* planted. Therefore the means or treatment effect estimdtes

N ’

derived as mean differences are direetly comparable and ‘can be'

.
.

directly combinéd by averaging. When a series of studies in the
social sciences use the same measure of the- dependent variable,

methods developeéd for combining the results of agricultural

~

experiments can be used fo combine estimates of the treatment

effect. . .
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For many commqn educational variables, a. variety of

S » -

different psychological tests provide reasonably adequate : .
. o .
measures of ‘the underlying construct. Some authors (e.g., /) - A

Campbell) 1969) haVve argued that the different measures

-

(operationalizations) of a comstruct are highly desirable. ~

Studies of different operationalizations of a construct allow -

researchers to "triangulate" on the’construct. . Given a series .

~< - . .
of tests that are supposed to measure the same construct, one ‘

might ask what is meant by "measure the same construct.'" One .

P
definition is that two tests mﬁ&;ure the same congtruct if true
. . . S A I

scores on the tests are Qerfectly correlated. This implies that

. /
the tests are measures of the same construct if they are

\ -~

linearly equatable except for errors of measurement. This

+

the same thing if they yield intercorrelations¥that are about as

high as their reliabilities will allow. M .

notion is the basis for deciding that two tests atle measuring
|
|
The Effect Size as an Index of Effect Magnitude
. |
\

-

Glass (1976) suggested the standardized @ean difference or

s
effect isize as the scale invariant measure of® treatment effect.
Y

l

We define the effect size ¢ for an expegiment as

- .
[ [
¥ -\

2w e - -

G

L
S

B ¢ .
where 4 and u  are the' experimental and control group

¢
population means and < is the within-group pop}jlation standard

N

deviation. If the 'same experiment had been performed using a .

N -




N - T T T <} *
.

~

different (linearly[ equatable) measure of the outcome variable,

the effect size would not change. The effect size is invariant

under linear transformations of outcome variables. Therefore the
S .
effect size provides an index of effect magnitude that is.,

indepeadeont of the particular test used to measure a construct.

- - We emphasize that the effect size is only invariant under

.

.. e . '
' substitution of (linearly equatable) measures of the same

construct, Effect sizes are not invariant under nonlinear
w ) - *
.rescaling. Similarlx, there is no reason to believe that effect

&

sizes derived from measures of one construct are equivalent to

.
N .

effect sizes derived froq_measures of another construct.

-

. . Different constructs will, in general, yield different effect

sizes. Thus the .notion of effect size of a treatment should

really be considered as effect size of a treatment on a

.

construct.

-

Other Indices of Effect Magnitude

Glass (1978) also observed that the product moment
correlation is a scale .invariant measure of the relationship
. between two continuous variables. That is, the correlation does

. not change as a result of linear rescalings of variables. He

.

therefore suggested that correlation coefficients could bz used

as indices of effect magnitude for studies examining the

.

relationship between two continuous variables. In some cases,

the natural index of effect magnitude is the difference between
> ~

proportions of subjects that reach a criterion’in experimental .

and control groups./fThe proportions are themselves scale
, 3

.
W » .
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,
&

invariant and can therefore be used directly to.compute a scale
invariant index of effect magnitude such as the difference

between proportions. —_—

£

The object of meta-analysis or other methods of
quantitative research synthesis is to use data from a series of
studies to obtain inform;tion about, the effect size for a
treatment on various constructs. This' usually involves obtaining
an estimate of effect siz; from each study and.pooling
(averaging) these estimates to obtain an estimate of the average
effectssize across studies (Glass; 1276).. In addition, the

investigator may want to determine whether any characteristics
of the studies are systematically related to effect size. '
Some writers in'the area of research synthesis have cited
substantive reasons for the position that different studies of
the effects of the same treatment might yield quite different
results. Light and Smith (1971) argued that many contradictions
in research evidence may be resolved by grouping studies with
similar ch;racteriStics. They asserted that studies with the
same characteristics are more likely to yield similar results,
and hence many apparent contradictions among research results |
arise from differences in the characteristics of ;tudies.
Pillemer and Light (1980) have argued that ;xamining the
relationship of variations in study outcomes and study

characteristics is an essential step’in assessing the range of

generalizability of a research finding. For example, if a

. X
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treatment produces essentially the same effect in a"wide variety

4

of settings with a variety of people, we are more confident in L

the generalizability of the finding of a treatment effect

r - .

related to effect size. The statistical analyses have sometimes ~

involved regressing the .ffect size estimates obtained from a
- P

series of studies on variables that represent various o
. - .
characteristics of studies (Glass, 1976, 1978). Such methods ,

.

have been used, for example, in the meta-snalysis of studies of
the effectiveness of psychotherapy (Smith and Glass, 1977), the S

effects of class size on_ achievement (Glass and Smith, 1979),

-

and the effects of television on achiévement (Pascarella,

Walberg, Junker, & Haertel, 1981). - .

o \

}oa
.
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THE STATISTICAL ANALYSIS OF EFFECT SIZE DATA v
- Y

»

Assumptions and thp'Statisticai Model

—

Many treatments of effect size have not adequately

emphasized the assumptions underlying effect size estimation and

testing. Glass (1976) proposed the quantitative synthesis of the,

results of a collection of experimental/control group studies by

e
-

estimating a population effect size for each study and then

. ~

combining the estimates across studies. The statistical analyses

in such studies typically involve the use of a t- or F-test to N

) . * * ‘ .
test for differences betweem .the groups. If the assumptions for

?

the validity of the t-test atre met, it is_possible to derive the

properties of estimators of effect size exactly. We start by
- L R .
. . s
stating these assumptions explicitly.

'

Suppose that the data arise from a series of k independent
. " - -

studies, where each study compares an experimental group (E)
. . e E C , th .
with an independent control group (C). Let Yi5 and Y, be the j

scores on the ith experiment from the experimental and control
2

. . E |
groups, respectively. Assume that for fixed i’Yij and Y]._i are

. : . D . 2
y normally distributed with meansu% aqdug and common varianced: ,

- “ * ‘\

l.e., i
WE 0 .o E . _ . .
Xij " P‘J(Li,\‘{), 3 = ;.,...,ni, L= .L,'...,}\,

~
and

-
b
\

it
o
o
e Oy
>
1
—
5

R TONIEE T

ij b R
. . . . th .

In this notation, the effect size for the i  study (85 is

defined as

i i - @) ‘ i
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-estimator of effect size. .Additional work is needed to provide a

.
t 1

) e
L
’ &
’

where we use the Greek lette; 3 to denote that this effect size '
is a population parameter. .
. A

;

Nte that the assumptions of the t-te$t may not always be

met in practice. “They may never be exactly met. These
assumptions are often reasonably well satisfied in practice, and
the theory that follows, as well as that of the “primary

statistical analyses; will be a reasonable approximation to

reality. Since the theory that follows relies on the properties

4 . . . i ‘
of the t~distribucion, many of the results should be robust. In
' / .
some situations, however, violations of the model assumptions

’

will be severe. For example, the observations in each study

 might have a highly skewed distribution. In cases sich as these,

»

alternative statistical methods are necessary:. _Unfoptunatly,
/

there has been little work on statistical procedures for-

v

meta-analysis with nonstandard models. One exception is that o

Kraemer and Andrews (1982) have provided a "nonparametric"

b

more complete theofy for meta-analysis when standard assumptions
) * . ! . . o
are not tenable. Another important issu is the quality of the
data ;eported in ,studies to be combined. The quality of the .
resegrch synthesis is unlikely t¢ bé higher than that of the

studies that go into it. This suggests that reviewers must

LY
. . N . N ,
carefully examine the studies before an attempt is made to .

. h .
combine the results of those studies.

»
~

Estimating Effect Size

The definition of effect size given'in. (1) above defines a

population parameter 6i in terms of other population parameters

(64

, 1
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b C : ’
Mo Hy and g;. Ve will seldom, if ever, know the exact

N

. : C . .
values of wj , uj, and 0;, thus we will have to est1mate5i .

: 1]
Glass (1976) proposed a statistic g, to estimate 6. by
essentially replacing u? , ﬂg, and O, in the definition of Gi

by their sample analogues. Specifically Glass proposed the

. 1 ~ T . .
estimator g, of<5.L , where g is defined by

gl = —2 i=1,...,K, (2)

<

~

E C .
where Yi and Yi are the experimental and control group saaple
v N

means for the ith

study .d Si is the control group sample
standard deviation. Hedges (1981) has shown that under the
assumptions of the previous section, the estimator (2) is

Figure 1 is a graphic representation of the ‘.

\
relationship between the ratio of the expected value of g to the

biased.

true parameter value § as a function of the degrees -of freedom
in the égtimQQe of J;. We see that the bias of g.;tends toward
zero in studies with large sample ‘sizes but can be substantial
in studies with small sample sizes.

If the assumption of equa! population variances in

eiperimental and control groups holds, a less bifsed estifmator

results when SE is replaced with the usual pooled within-groups




w;-l\l

1.6

"
=

~n

IC A

1.2

1.0

. DEGREES OF FREEDOM -
The ratio E(g)/8 of the expectation of the estimator § = (Y -y )/S

to the true effect size § as a function of m, the degrees of freedom
of S used to estimate o, ) :

N
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standard deviation, We denote this estimator by'§i,that is,
. , i

B = yi= Lk (3)

? . . .
where S~ is the pooled.estimate of the varlance
i

(nf - D(sH?Z + @S - DEH?

$52 = - .
* n, + n? -2
b N b K

We emphasize that g; 1is a sample statistic and therefore

has a sampling distribution of its cwn. Our assumptions imply

4

that g:iis distributed as (l//E;)times a noncentral t random

variable with n? +n g— 2 degrees of freedom and noncentrality

.

parameter ¥ n, & , where n, = n&rE/ (nf '+ nC). This distribution
1l 1 1 L i 1 .

leads immediately to exact expressions for the bias and variance

of 8 » which are givan in Hedges (1981). One should also note

that 8 is an inference sufficient statistic for ¢ .
i

An Unbiased Estimator of Effect Size

A simple unbiased estimator:of § was obtained by Hedges
(1981) based on the assumptions of Epg previous section: The

unbiased,estimator g , is given by
- i

= c(m, (4)




18
k

C . ’
wvhere m = n. +n_ =~ 2, c(m) is given exactly by
i

cla) = T(m/2) ’ (5)

T Yw/2 TG - 1)/2)

I (x) is the gamma function and c¢(m) is given approximately by

3

e *1-—4ot1

n
v ‘)’
*

It is clear that as m becomes large, gitends to gi , 80 that 8;
is almost unbiased in large samples. Since c(m) < 1, the
variance ‘of the unbiased estimator g is always smaller than the

variagce of g . Hence g  has uniformly smaller mean squared
. i i

-

A}
error that g_r The exact variance of g is
: i

s

f E.:.‘C._ 2? C—'> VA, 62
;i‘?i,i,ﬁi - 2)] [ni + 0] 21{1 + niG ] 2 (&

where ﬁi = n?n?/ (n "+ n?), and c(m) is given by (5).
i i

The Asymptotic Distribution of the Unbiased Estimator

. +

In small samples, the estimator 8; of effect size has a

’

sampling distribution that is a constant times the noncentral
[
t-distribution, When the sample sizes in the experimental and

control groups are large, however, the asymptotic distribution

of g provides-a satisfactory approximation to the exact

-
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-

distribution of g The large sample approximation is given by

A}
-

A

:2 . »
g; ~ N(6,,97(6,)), (7)
“ .
where -
o=
R (W8
< ) ‘nl + n(:: éi
c¢(8.) » =
2(6.) O ET G (8)
\ini ni ni‘

and we use the expression oi (61) to indicate that the variunge
of g, depends or the true effect size §;. This large sample
apprgximation is used by substituting an estimator of the effect

size for &, in (8). 1In the case of a single effect size, we
'd

substitute 8; for éi in (8) to obtain an expression for the

variance of g, . A useful”guideline on what constitutes a large
i

C

sample 1is n , M > 10. If the sample size of-either group is

smaller than about 10, it may be desirable to omit the study
» .

fram data analyses since the estimate of effect size is 8o

- » © . . * *

imprecdise that it is almost useless.

i\
Testing Homogeneity of Effect Size ~

Before pooling estimates of effect size from a series of k
studies, it is important to ask whether the studies can
reasonably be described as sharing a common effect size. A

statistical test for the homogeneity of effect size is formally




a test of the hypothesis

versus the alternative that at least one Si differs from the
- rest.
A large sample (approximate) test for the equality of k

effect sizes given by Hedges (1982a) uses the test statistic

: . (g. - g2
oy = A L , (9)

‘. 2
i=1 ci(gi) .

. . )
where g. is the weighted estimator of effect size given below in

. (13). )

The test statistic Hf is the sum of squares of the g about
i .

th

the weighted mean g., where the i sqhare is weighted by the

..reciprocal of the estimated variance of 8, The defining-formula

(9) is helpful in illustrating the intyitive nature of the -

-

. statistic HT’ but a computational formula is more useful for

~

actual calculation of.HT: The computational formula is

- *N
/’k “Ey \ 2
N 2 L ”:T';““}
oo aF -.(f,i) ! c1(8g) (10)
T k 1 ’
il 9%(g)) R s
S et i-1 Y3 (8D

.

vhere 3i (5i) i§ given b} (8): A similar test is given by

- Rosenthal and Rubin (1982),. °

! .

-~
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When each study has a large sample size (a reasonable

. . .. E C . e . .
guideline is n , n 2 10), the asymptotic distribution of Hp can .
be used as the basis for an approximate test of the homogeneity
of the si.'If all the k sFudiés have the same population effect

size (i.e., if " is true) then the test statistic HT has an

.

. asymptotic chi-square distribution given by ) . .

' ' He v X3y

% r

Therefore if the obtained value of HT exceeds the 100(l-a) per

A} A

cent critical value of the chi-square distribution with (k-1) ‘ .
. ’ degrees of fréedom, we reject the hypothesis that the §; are

equal., If this nuﬁl hypothesis is tejected, a conservative

(3]

individual may‘deéide not to pool all of the estimates of¢ since

they are not estimating the same parameter. When the sample
sizes are very large, however, it is probably worthwhile to .

' - consider the actual variation in the values of 8> since rather

’

small differences may lead to large values of the test

statistic: If the givalues do not differ much in an absolute
v L3 . ]
sense, the investigator may elect.to pool,the estimates even

though there is reason to believe that the underlying parameters

* -

are not identical: A less conservative investigator might pool
> ¢ * N

estimafes regardless of the outcome of tests of homogeneity.

-

H
Assessing Variability of Effect Sizes
-

*

It is often helpful to plot the effect sizes from a series

_of studies to assess the variability of the givalues. The large

LY

sample ap}roximation (7) may be used to obtain a confidence i

.

ERIC '

s e . D Rold
: . :




N -

interval for each effect size. An approximate 100(1-2) per cent

e d
confidence interval for Yt is given by N
L) N "

. . where “ztis the 100 per cent critical value of the standard

2 : ) :

s . . . . . .

normal distribution and\_(gi) 1s the Targe sample variance of 81
i

. ¢

gibegrby (8). Plotting each g; value along with a confidence

L3

intetval for each 8 ,gives an idea of the region in which the

.. corresponding '3 is likely to be. Therefore substantial overlap

of these confidence intervals suggests that there is agreement

~

among the g, on a common effect size. Conversely, if some of the

3

g; values aré far from the rest, and their associated confidence

intervals do not overlap much, then it may.be useful to consider

-
-

. ) ,

. these deviant values s outliers. If there are only a few
e

outlying values then it may be helpful to treat these studies ) >

separately, and estimate a common effect size from the other '

studies. .

The effect sizes from 10 studies of the ‘effect of open
educatton on attitude toward school are presented in Table 1
along with sample sizes and the estimated sampling standard

deviation Ti(ai) for each study. The 95 per cent confidence
4

. . . ‘ . . o
irnte€vals for these effect sizes are plotted in Figure 2. We see

I3

|
that one effect size, that of study 10, is quite é:bit larger .
|
|

.

than the rest. Similarly, the confidence interval foralo fails ‘ ‘

to overlap with those of other studies. Calculations for the
, .

.
9 . . .
test of homogeneity are also given 1in Tahle 1, and we see that .

the value of the homogeneity statiatic HT = 19.40 which is

Q D I
ERIC . Y

.
Aruitoxt provided by Eic:
a
.
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Table 1 -
Effect Sizes from 10 Studies of the Effects of !

. H
Open Educatipn-on Student Attitude toward Schocl

study 'nE nC . g a7 (g) l/oé(g) g/o2(g) éz/oz(g)
e e \-\\
1 131 138 .158  .0149  66.996  10.585 1.672
"2 50 40 .261 0504 19.831 5.176 1.351
3 5 40 .649  .0526  19.000-  12.331 8.003
4 79 49 .503 .03l 29.365  14.770 7.429
5 $6 45 458 .0349  28.620  13.108 6.004
6 28 SS .577  .0322  31.004  17.889 10.322
7 33 110 .588  .0366  27.341  16.077 9.453
8 3893 .392 L0376 26.557  10.410 4.081
9 20 23 -.055  .0935 ‘10f69h 588 0.032 )
10 W00 40 =332 L0507 19.728 -6.550  _ 2.175

TOTALS 279.135 03.209 50.522
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Fieure .. Ninetv=five per cvent conlidence intervals for
of fect sizew Tor the ten studies described in Table 1.
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significant beyond the o = .025 level. Deleting the effect size
for study 10, we see that the effect sizes are reasonably

homogeneous: H, = 9.983, .10 < p < .05.

Estimation of Effect Size from a Series of Homogeneous Studies :

If a series ,of k independent studies share a common effect
‘ '

£
size§, it is natural to estimated by pooling estimates from'each
of the studiés. If the dhmple sizes of the studies differ, then

the estimates from some (the larger) studies will be more

. a~—

precise than the estimates from other (smaller) studies. In
this case it is reasonable to give more weight to the more !

precise estimates when pooling. This leads to weighted

2 N
<

estimators of the form

k
R (11)
i=1
- k
where w, >0, i=1,...,k, and L w,o o= 1. It is easy to show
L:

that the weights that minimize the variance of (11) are given by

.

1/v.
w, = ———te i o= 1,..%k, (12)

[
[
=

where vy is the-variance of g  given in (6). The practical
. i

problem in calculating the most precise weighted estimate is
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th
that the i weight depends on the variance of g which in turn
- . i

.

depends- on % .

One approach to the problem of ;eighting results from
different ;studies, is to use Jeights that are based on some
approximation to the v, that does not depend on 6; This

procedure results in a pooled estimator that is unbiased, but it

will usually be less precise than if the optimal weights are @

-

used. For example, weights could be derived by assuming 'that

&

(5. C 2, E. C ., E_ C
v, * ., v . - N i . - s R - 4),
vy fein ny 2)] (ni * 0/ 2)/ni('\i n/ )

P

.

The weights thus derived are only optimal if § =0, If¢ is

near. zero these weights will be close to optimal since vi .

- - -

2 : . .
depands on § , which will be small. If a nonzero a priori

-

, . estimate of 3 is available, then weights could be estimated by o I
"inserting that value of § in expressipﬁ (6) .for the variance of g
and using the formula (12) for we In general the result will be
an unbiased pooled estimator of § that is slightly less precise
than the most pregise weighted estimator.
Anothe? approach to obtaining a weighted estimator of § is

to estimate & and use the sample estimate of § to estimate the

weights for each study. Define the weighted estimator .g. by ,
1 .

it g, ’
;:]" ——
. 2 o . l

. _:'l of (g,) (13)

ZK 1 '

co1 2
i=1 c(gy)

f AP . . P . .
2 where 7;(5;) is given by (). The estimator g. is therefore

g ' )




obtained by calculat%ng the weights using g; for 51 in (8).
Althougﬁ'thé‘giare unbiased, g. is not. The bias of g. is small
in large samples and tends to éero as the sample sizes tend to
infinity. <

This estimator could be modified by replacing & by g. in

. .2 . ..
the expression foro (g ), and iterating. That is, calculate the
i

estimator g.. defined by ‘ B ' )
, gk 8
o1 o (a (14)
SO L ) ‘
PR N
i=1 oi(g.) . '

(1)

2 RN
where o (6 ) is given by (8). The iterated estimator g. will
i i .
tend to be less biased than g. . If the effect size is .

- 4 - -
homogeneous across experiments, the 1lteratlon process usually

4 .

will not change the estimate very much, -
~”

The asymptotic distribution of g. is easily obtained and
can be used to obtain large sample confidence intervals for ¢
based on g. . The formal definition o% fla;ge sample' in this
case is that the sample sizes ng and ng, i=1,...,k are tending
to infinity at the same rate. A practic;1 g;iQeline for 'large
sample' is nE, n® > 10. The large sample approximation is

g. v N{8,02(8)), (15)

where -

\ ) K K 1 (16) ,
, i=1 02(3) - \

2 A
and ¢~ (3) is given by (8). We use this large sample - .

- o
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approximation by substituting the (comsistent) estimator g. for § .
in (15), A 100(1 -a) per cent asymptotic confidence interval
for § is therefqre

«

g. - 2a/2°ﬂ(g’) < §;§ g. + Za/ZO'(g‘)’

* ’

13

vwhere za/7is obtained from a table of the standard normal
hnd r'd

¢ * . . n! . * .
distribution. Similarly, an asymptotic test of the hypothesis

fhat & = 0 uses’ the test statistic

s ! ) N

A . = —
2(g.) _ET%ETY_ . - (17)

-~

If the obtained value of z(g.) is laréer in absolute value than |
the 100(1 - «/2) per cent critical value of the standard normal

distribution, we reject the hypdthesis that § = 0 at the 100q

~

per cent significance level. : ’
The formal asymptotic distribution of the iterated

estimator g. is the same as that of g. . We use the large

samplé approximation’to the distribution of gg ) by

substituting g.K )for 8§ in (16). Therefore confidence intervals

s s P : 1 .
and significance tests for ¢ based‘pn g. are calculated in the
- -~

- ' () . '

same way as for g. . The only,difference when using g. is

. (1)
that g. 1s replaced by g. wherever the former occurs.

Efficiency of the Weighted Estimator

The weighted estimators discussed in previous sections were

i

derived by finding the expression .for weights that minimize ﬁﬁg

‘variance of the resulting weighted estimator. *One might' ask

~
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whether the best (most precise) weighted estimator is the most
precise in some larger class of estimators of effect size,
including those that are not weighted linear combinations of the

gi: Hedges (1982a) showed that g. 1is asymptotically efficient

in the sense that the asymptotic variance of g. is the

theoretical minimum (Cramég-Rao bound). Thus no other consistent

estimator has smaller asymptotic variance. This result implies

that g. has the same asymptotic distribution as the maximum

'likelihood estimator of § based on k experiments.

1 had ¢
*

An Analogue to the Analysis of Variance for Effect Sizes

The repggsqntation of the results-of a collection of
studies by a single estimat; of -effect magnitude can be
misleading if the underlying (population) gffect sizes are not
identical in all of the studies. For example, suppose a
treatment p;odpces large positive (population) effects in
.one—half of a collection of studies, and large negative
(population) ékfects in the other half of a collection of
studies. Then representation of the overall effect of the
treatment as zero is misleading, because all of the studies
actuélly have'underlying effects that are different from zerq.
‘The test for homogenei;y of eff%ct size given in (9) provides a
method for detecting heterogeneity of effect sizes. It will
often be the case }hag a collection of stpdies cannot. be

reasonably said to share the same effect sizé. For example,

Giaconia and Hedges (1982) report the results of tests of

s . .
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3

homogéeneity for studies measuring the effect of open education

‘ on 19 different dependent variables. For each dependent

\ -

variable, the hypothesis of homogeneity of effect size was “ :

-

easily réjected,
7 Some inveStigators in quantitative research synthesis .

(e.g.. Kulik, Kulik, & Cohen, 1979) have recognized the

~

potential for hetefbgeneous effect sizes and have grouped

~v

studies which share common characteristics into classes. The

. . -
usual approach is then to treat the effect size estimates as

. .

data and calculate an analysis of variance to determine if these
¢ .
classes have different mean effect sizes. There ‘are two

f N -

problems with this procedure. First, the assumptions of the

analysis of variance may not be met since' the effect size

0y

estimates may not have the same distribution within cells. The .

variance of an individual observation (effect size estimate) is
. - . ' . .
proportional to 1/n, where n is the number of subjects in the

study. ‘When studies have different sample sizes, the individual

-

"error" variances may differ by a factor of 10 or 20. Secondly, .
—y

even if the between-classes test were accurate, the use of ANOVA
+
: does not pgsvide any indication whether or not studies within ~

‘the classes share a common effect size. Thus, even if ANOVA

. correctly detects that two clabses”of studies have a cifferent

average effect size, there is no guarantee that the average
effect size within each class is a reflection of a common
underlying effect size for that class.
Hedges (1982b) presented an alternative technique for
fitting models to effect sizes from a seties of studies. We

assume the investigator has an a priori grouping of studies,

.ERIC 2

Aruitoxt provided by Eic:
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that' is, a scheme for classifying studies that are likely to

produce similar results. This will often take the form of a set

of categories into which studies may be placed. Studies may be
= cross classified. by two or more sets of categories. The
technique presented in gﬂis secgion is straightforward.
Conceptually the investigator beginsg by asking whether all
studies (regdrdless of category) shdre a common effect size. A

Y

statistical tedt (fit statistic) is provided by the test af

homogeneity given in (9). If the hypothesis of fit to-a single
ef fect size is rejected, the experimgnter then b;egis the series
of studies into classes, and asks whether the model of a
cifferedg effect size of each class fits the data. It is
interestiég tqQ note that the fit statistic calculated at the
first stage is pa;titioned into stochastically independent parts
™
corresponding to between-class and Within-class fit, -
réspéctively. The between-class fit is an index of the extent to
which effect sizes in the classes ares different. If the
within-class fit (fit to a single effect size within each class)
is not rejected, the investigato; may stop. If the within-class
fit is rejected, the investigator may want, to fgrther subd{vide
the classes. The process of subdividing and testing. for between-
and within-class.fit continues until an acceptable level of
within-class homogeneity is achievéa. The procedure provides
valid asymptotic tests for the effects of classifications as

well as an indication that the final classes are internally

homogeneous with respect to effect size:

a3 “

ERIC

Aruitoxt provided by Eic:
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.

Testing Homogeneity across Classes

Suppose that the entire collection of studies is divided

‘
into p a priori classes. The test for homogeneity across
classes is essentially a test that the average effect size in
each class is the same as the average effect size in every other
) s

class. Hedges (1982b) gave the test statistic HB to test for

homogeneity of effect size across classes. The statistié¢ H_ is

B .
given by
(gi - g7
n, = 2P g ” , (18)
- © j=1 ielj Oi(gi) ,
where L is the sum over all studiss with subscript i in the
ielj

tl s . . . .th
d ' class, gj 1s the welghted average effect size for the J

class given by

8.
g —r ,
ielj ol(g,)
NI —— (19)
! -ii’::j 2
o5 (g4) . .

g.. 18 the weighted average effect size based on all of the

studies given by (13) or alternatively

~r

. g.
oy k.
t - - . 2
L el oley) (20)
CA D 1 ’

LTL -

D1 teTd o2
31 ieIj ci(gi)
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and 9y (gi) is given in (8).
If the effect sizes are identical in each class, then the
test statistic HB given in (18) has an asymptotic distribution

,given by

2
N .
By v X501 (21)
2
Therefore the test of homogeneity of effect size across classes
at a significance level o consists of comparing the obtained

value of HB with the 100(1 -a) per cent critical value of,the

chi-square distribution with (p - 1) degrees of freedom. If HB
is greater than the critical value, we reject the’ hypothesig of

homogeneity of effect size across classes.

~

Testing Homogeneity of Effect Sizes within Classes

The test of homogeneity of effect size within classes is a
\test whéthe; all of the effect sizes within the same class share
a common effect size. Hedges (1982b) gave the test statistic H,
for testing the homogeneit; of effect size within classe;. This
test stétistic is the. sum of the test statistics ij for the
homogeneity of effect size within the ij class. Thus the

statistic H is given by

A

(g. - g.)°2 '
= __J.'__—___
Hy=® 1 A —, (22)
j=1 ielj  o;(g,)
where L and g are defined as in (19) and oi(gi) is given
ielj
in (8). Alternatively we could calculate K‘Jag

-

)
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, @ Hw = }.:P ij’ )
j=1
* where
\
. _ 2
ot (gJ gi) -
'j {14 2( ) " » ’ P
[ ‘o . {5 J Oi 8i
L 5

If the effect sizes within each class are homogeneous, then
Hw has an asymptotic distribution given by

Hy ® Xp oo T (23)

Therefore the test for homogeneity of effect sizes within
classes consists of comparing the obtained valde of‘Hw with the
100(1 - «) per cent critical value of the chi-square

. distribution on (k - p) degrees of fieedom. If the obtained

yelue of Hw exceeds the criticpl value we rejecf the hypothesis

A
v

! that the effect sizes are homogeneous within classes. In data
_~— analyses, it may be helpful to calculate the within-class fit

statistics %q.for each of the p classes. This may facilitate the
J

identification of classes in which the fit is particularly bad.

.
-

L 4

An Analogy to the Analysis of Variance

There is a simple relationship among the fit statistics HB’

H;, and HT that is analogous to the partitioning of sums of

.8quares in the analysis of variance. It is possible, to show

that

Hp = Hy *Hy
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using only elementary algebra. One interpretation of this

formula involves this partitiéning of the fit statistic Hp. T%e v,
"tot.l fit" to the model of a single effect size is represented

by HT" The "'between-~class fit" is represented by Hy and‘the. .
“within-class fit" is represented by le Thus the total fit is
partitioned.into between-class and within—class>component;; We
have stated that the statistics H , H , and H, are distributed

asymptot ically as central chi—squarés under appropriate null

hypotheses with distributions given by

vy

- HB oY

. a
asymptotically 1independent. Therefore the tests for between-
and within-class fit are “asymptotically independent.

.

Computational Formulas for H’L‘EB’ and H
I }' < o¥ .

In practice, computational formulas can simplify
calculation of the fit statistics Hy, Hp, and Hy. These
formulas ‘are much like the computational formulds in the . 3

analysis of variance. The conputational formulas permit the

researcher to compute each of the fit statistics in a single

*
pass .through the data with a packaged computer program. Each of
. .
- the formulas can be verified by diseqt algebraic manipulation.
The computational formula for HT is given in (10), but is

repeated here in different notation for reference.

2
p-1’
2
Hw v Xk—p
}
Furthermore, Hedge$ (1982b) has shown that H Band Hw are )
Q :
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2 ¥ Iy
; - . .. 05(g.
LR 84 _o\j=l ieTd 1}?1) ’ .
Y5l ey oi(g)) XA T
j=L ieIj 1S’ -
2
8; . \
g2 ie1j og) |
. i i°i N
L., = L - ’J—l’ » P
wj i » - -1 3
ielj oi(gi) z —
ielj ol(g;)
Hy T a Hop
j=1
dB = HT - H”,
“where £ is defined as in (18) and o> (g.) is given in (8).
ielj -~ L §

.

Fitting Effect Size Models to a Series of Studies

The statistical results of this paper can be used as part
of a general strategy for fitting models to the effect sizes
from a series of studies., Start witha series of studies where \
each study assesses the effect of a particular treatment via a
two group experimental group/control group design. Suppose that
the dependent variablgs measure the same construct and are
(approximately) linearly equatable. We assume that the studies
are classified according to one of the classification

dimensions. The claGses obtained by one partitioning may be

further partitioned according to a second classification

F
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dimension, and in turn partitioned according to other

. . - .

dimensions.
One strategy for fitting models to effect sizes for each
class is analogous to the strategy used to fit hierarchical

log-linear models to contingency tables. The strategy cand be

described as follows.

Step 1. Ignore the classifications and fit the model of a

-

single effect size to all the studies. The estimate of this

-single effect size 18 g.. given by (20). Calculate the fit [

statistic HT' If the value of HT "is not large or is

statistically insignificant at some preset a level, the

effect size fits the data adequately. The asymptotic

investigator may stop, concluding that the model of a single
distribution of g.. may be used to calculate an asymptotic

confidence interval for &. If the fit statistic HT 1s large or

statistically significant, go on to Step 2.

Step 2. A large value of the fit statistic HT indicates

|
|
that effect sizes are not homogeneous across all studies, so
>~
partit1og\the studies into classes along one dimensigp. One .
|

should choose the most important dimension first, that is, the
dimension believed to be most related to effect size.

Calculate the between-class fit statistic HB and the
. ’ . |

within-class fit statistic WJ. If the value of the within-class

fit statistic H is small or is statistically insignificant, the
W

M investigator may stop, since the model of a different effect
. _.Y:

size for each class is consistent with the data. In this case, |

- |

g. given in (19) is the estimate of effect size for the j°©

J»

h .

class

Aruitoxt provided by Eic:
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’

and HB ;epre;ents the extent to which the effect sizes differ ¢
among classes. If Hwis large or statistically significant, then
go on to gtep 3.

N Step 3. A large value of the fit statistic Hw indicates

that effect sizes are not homogeneous within classes. At this’

point it may be useful to partition within-class fit Hy, into p

L4
-

(if there are p (lasses) btatiz;ics ij A=1,...,p, where ij

indicates the fit within the j class. Examining the values of

A .
Ihjn@y help identify classes with especialyy poor fit, that -is,

classes in which the effect sizes are heterogeneous. This may
lead the investigator to exclude some classes or studies from
further analyses. Examination of within-class fit may also
suggesz w@ich other classification dimensions are useful. Go on
to Step 4. -

Step 4. Partition the existing classes according to a
second classification dimension. Repeat Step 2, that is,
calculate the between- aAd within-class fit statistics H and H .

B *W

Proceed through Steps 2, 3, and 4 until an acceptable level of
within-class fit is obtained or the classification diménsions —
are exhausted.

The procedire given is a practical method involving
relatively simple calculations. It has the advantage that fit to

the model can be assessed at each stage and it also provides a

*  test of the relationship between the classification dimension

and effect size.

Q

Comparisons between Classes

.. h ‘s
If a priori knowledge or a formal hypothesi Fest

|
Q (significant value of HB) lead an investigator to believe that |
|

RS : y

[
'
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the effect size; are not homogeneous across classes, the
investigator may wish to compare the effetét sizes of different
classes. More generally, the investigator may wish to test
hypotheses about linear combihations of the effect sizes for the
c};sses. Such comparisons are analogous to cdntrqcts in the
analysis of var{ance.

The general comparison is a linear combination of the g,

i.
of the form

- P .
v = c o, o, 4
R (24)

T ]

where the ¢, j =1,...,p are known constants. In the case of a
J .

comparison between two classes, for example one of the cj might
be +1, another might be -1, while the remainder might be zero.

The comparison C given in (24) may be considered an estimate of
) 8

\.\\{'

~ . wp =
Yg T L SL0. (25)
5.3 3

where?} is the weighted average population effect size in the j_

th
class given by

5.
S S
1e®j 92(a )
?§ U T (26)
3.

—r——— . —

-

"‘,-"25'
ie1j Oi(‘i)

Such comparisons are easiest to interpret when effect sizes are
?
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homogeneous within classes since then 35 is simply the (common)

. th
effect size for the studies in the i class.

Hedges (1982b) used the asymptotic distf¥ibution of g to
j.

obtain the large Samplg approximation to the distribution of C

g’
specifically
' C ~ N(C,,o0?
; ~ Meg 02,
2.
where o is estimated by
22 . 4P i
e R (27)

j=lp  —h

iclj o2
ieIj Oi(gi)

Therefore an approximate 100(l - o) per cent confidence interval -
for 95 is given by

C — ~ ~
g “a/2% TG SC oz, o0,

AnvAnalogue to Multiple Regression for Effect Sizes

When effect sizes are heterogenecus across a series of

- I

studies, one strategy i$ to relate discrete characteristics of
studies to effect size perhaps by using the method given in
previous sections. Another p{pc;dute is the is the application of
regression analysis to the estimates of effect size. Glass

(1978) recommended the general strategy of coding the

characteristics of studies as a vector of predictor variables
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. “

and then regressing the effect size estimate on the predictors
to determine the relationship between characteristics of studies
and effect size. For example,-Smith and Glass (195?) used linear
regression to determine the relationship between several coded
charactefisticé of sgudies (e.g., type of the;apx, dur;tion of
treatment, internal validity of the study) and the effect size
in their ne.a-analysis of psychotherapy outcome studies., .The
same method has been used in many research syntheses, including -
. a ser?es of meta—analyse; conchted by Walberg.and his
. associates (e.g., Uguroglu & Walberg, 1979; Pascarella, Walberg,
Junker, & Haertel, 1981). This strategy has been used in some
\ very novel and creative wéys in some research syntheses. The
potent}al af multiéle regression methods in research synthesis
is perhaps best illustrated by the meta-analyses of the effectsw
‘of class size (Glass & Smith, 1979; Smith & Glass, 1980).

Although the regression method advocated by Glass is

Sy
First, the assumptions of regression analysis are not met since

\appealing, there are at least t;o problems with the method.
the variances of the individual effect size estimates are
proportional to 1/n, where n is the sample size of the study. :
Thus when the studies to be integrated have different, sample
sizes, the individu;l "error" variances may be dramatically
different. Secondly, even if the regression coefficients are
properly estimated, Glass's method gives no indication of the

pecified.

gooddess of fit of the regression model, That is, there is no
indication that the model is correctly &

. Hedges (1982c) developed alternative methods for fitting

models to effect size data when those models include continuous

. A
ERIC -
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.

or discrete independent variables. These methods provide —
consistent, asymptotically efficient estimdtes of the parameters

of the model and also permit large sample tests of significance.

In addition the methods can provide an explicit test of the

specification of the model. Thus it is possible to test whether

-
~

or not a model adequately explains the observed variability in

-

effect size estimates. .

In this analysis, assume that the standardized mean

th

difference 5i for the i experiment depends on a vector of p

fixed concomitant variables (xil’ xiz,...,xip)', where p € k.
The vectors (&dl?...,xip)'” i=1,...,k, are denoted xi, and the

matrix

is asSumed to have rank p. The assumption that X has rank p
.4-"/ v
simply assures that none of the column vectors of X is linearly .

redundant. The vector (61,...,8p)' of regression coefficients is

deuoth 8. Thus the standardized mean difference for the ECh

1

experiment is therefore o; = iié =x,8 * e

By -

Denoting the vector of effect sizes by 8§, i.e., §' = (61,...,6k)

X,
1p

we can write the model for the effect sizes as
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Dendte the vector of effect size estimates by g = (gl,..,,gk)".

7 v ’
" LY

Estimation of B ,

- A model for the estimator g couid be rewritten using g, X,

8, and a residual vector n as

* E=X§.+B_r

. -
-

where N has the same distribution as (g - g), i.e.,
C n v NG,
- {
. 2 ’ . .
vhere . = diag(o, (6 ),...,02(6 )) and ¢2(5.) is piven by (8).
' S 'k Ok i %%

If the values of g?( § ) were known, we could use generalized
3 i i .

-

least squares to obtain an estimator of é}i Unfortunately I

.
] »

depénds on S which is unknown. However, it is still possible to

\obtain estimates of B by using an estimated coVafraqce matrix.

- - N

Hedges (1982c) showed that the resulting estimator can be easily

computed and has the same asymptotic distribution as the maximum

likelihood estimator of §: Therefore the alternative estimator

is consistent and asymptotically efficient. This alternative
L AN -
est?;§tor is also much easier to compute than is the maximum

. .
likelihood estimator.

-

Define the matrix V(g) as
; < as 2 2
V(g) dzag(ol(gl);...,ok(gk))

)
whe[i f; (gi) is given by (8). An estimator g of g under ‘model
. N

() (28) is given by

g

8 = (x'v'l(@x)'lx‘v‘l(‘g)g.. (29)
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The large sample’ approximation to the distribution of E_is given

»

by

“~

' B~ Np(g_,z),\ ’ (30) ’

s . .
where L = (o S s, t=1,...,p and o> is estimated by

st k xisxit }
0 = ——

=] o2 '
i=1 ol(gl) ' ~

,
//

and <J: ;) is given by (8). Alternatively, Z = (X'V —(g)X)ul.
There is also an iterated estimator of 8 that is analogous to
(14), but the iterated version of é rarely differs appreciably
from (2) if-the model is“correctly specified.

The large iample approximation. to distribution of é can be
used to provide approximate confidence intervals for the

R | -1
components of 8. That is, if (X'V lg)X) = (VSt), and

B= (B ,...8 )", then a 100(l -a ) per cent confidence interval

<

- for BS ig given by

R J— -
- YV < < 4
s zcx/2 ss — Bs X 8s

s Zal2"Vss

where 2,72 is the~t00(l - a) per cent critical value of the.

.normal distribution. The usual theory for the normal

distribution can be used in conjunction with the Bonferroni

inequality if simultameous confidence intervals are desired.
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Sometimes it 1is useful to.tqsgithe pypothesis that § = O,
that is, that all the components of § are simultanedusly zero.
The following statistics provide the basis for condu¢ting these

¢ tests. The hypothesib that § = O can be tested using the -

statistic

A'IA [ -1
Hl = 8'X'V "(g)g. (31)

If 8 = 0, H; has an asymptotic chi-square distribution given by

\ C p

The test that 8 = 0 at the significance level o therefore
consists of compafinglthe obtained value of Hj<t6 the 100(1 -a )
per cent critic;l value of the chi-square distribution with p
degrees of freedom. If the valug of H, exceeds the critical
value, the hypothesis that § = O is rejected. Note that the ~
statistic H, is analogous to the weighted sum of sqgires due to
the regression in wgighted least squares. Therefore the test
that § = 0 corresponds to a test that the weighted sum of™~ ////*

squares due to the regression is greater than would be expected

if g = 0.
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Testing Model Specification

v

We will argue subsequently that tests of model
specification are an important step in the analysis of effect
gsize data. The test of model specification is a way of
determining vhether the observed effect size-estimates are
reasonably consistent with the model used in the'data analysis.

’

If the number k of -effect size estimates exce;ds the "number of
predic;ors p, then a natural test of model specification is -
givén by the next theorem. If k > p, the specification of the
regression model can be tested-using the statistic

N )
H2 =3'V " (g)g - Hl' ] (32)

[}

When § = X8, i.e., the model is correctly specified, H, has an

asymptotic chi-square distribution given by

2 v Xk—p )

The test for model specification at a significance level q
~
€
therefore consists of comparing the obtained value of szith the

100(1 “f) per cent cri%%cgl value of a chi-square distribution
with (k - p) degrees of freedom. If the obtained value of H,
exceeds the critical value, then model specification 1is

re jected. Note that H, is analogous to the weighted residual sum

of squares in weighted least squares. Thus the test for model

specification is a test for greater regidual variation than

would be expected if 53 = X3. Such a test is not possible in the
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: context of the usual normal thedry because the means and
variances of observations are independent. In the case of

-

effert sizes, however, the sampling variance of g; given in (8)

. .

is completely determined by the mean of g; and the sample size.
Therefore the "expected" residual variation is determined as a
function of X and 8. ' '
The éegt for model specification will often be used to ) CoN

demonstrate that the data (sample effect sizes) are reasonably
cons%stent with the model used in data analysis, ‘' It is
therefore important to have some understanding of the factors

‘ affecting the>power of the test for model specification. Two
factors that influence the power of the test.are the number k of ‘ !
studies and the sample sizes (ng and ng) of those studies. The .
latter factor (the sample sizes of the studies) is often the .
most significant. The reason is that the specification test ¢ ‘
statistic i, can be loosely described as a sum of squares of ‘
standardized res¥duals. The residual for the ith study is
Ystandardized" the square root of the sampling variance of .

E

th . . .
the i effect size estimate. When n, =0 =n this sampling

i)
’
variance is approximately 2/"i° Therefore if the sample size ng

in each group is large, even a small deviation from the modgl
may result in a large contribution to the test statistic.
Simflarly, if the withih—group sample sizes n, are smal%, even -~
reasonably large deviations from the wodel may not yield a large

) . . . . d . .
""standardized residual' contribution -to the test statistic.

v

These arguments can be formalized into a rigorous development of

pover functions under so called local alternative hypotheses,

but the formal arguments will not be given in this paper.

.

ERIC 5
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. It is not necessarily true that large numbers of studies.

-
v

(large values of k) lead to rejection of model specificatio;. .
The author has seen relatively simple models that fit well wfth‘
over 100 studies, and“many examples of well specified models for
40-80 effect sizes., If ; particular model does not fit well, .
then diagnostic procedures are called for. Examination of
residuals is often helpful. Such examinations ;ay reveal
patterns that suggest variables that should be aéded to the

o model, Alternatively, some stuaigs may consistently yield
effect size estimates that deviate greatly from the prediction

. . of the model: and therefore merit closer examination.

*

~
.

* Computing Estimates and Test Statistics

The estimates and test statistics presented in this section
can be easily cealculated using any computer program package that

_manipulates matrices (such as SAS Proc Maq;ix). ' A simpler
alternative to tife computation of estimates and test statistics

'is the use of a computer program (such as SAS Proc GLM) that can

” “ x
. +

perform weighted least squares analyses,
Weighted least squares involves estimavion of linear model

parameters by minimizing a weighted sum of squares of

.

differences between observations and estimates. Given a design

- -

matrix X, a vector: of observations of Y, and a diagonal weight *

matrix W, the weighted least squares estimate of g in the model
<

ERIC - .

s '
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Y= Xg is
3

.1 -1 [ )
B, = (WO XWX .

[l

Note that the form of this estimator is the same as that of

B. Thus B is a special case of B8, where the weight matrix W is
1 th )

gi§en by V7' (g). That is, the weight i case is g{ven by
2(n” + n?}nFnG'
w. = . i i77i0 { =1 o
i C, , EC 77 "t
. 2(n;] + -
(n1 ni? + n/ng.

and the weight matrix is W = diag(w),...,wy).

The estimator é is the weighted least squares estimatér of

-
8 using design'matrix X, data vector g, and the weights WiseesWp
given above. The large sample covariance matrix of é was given
. N

previously as (X'V—kg)X)—l. Thi's large sample covariance matrix
is given by the weighted sum of squares and cross products
tuatri.x'()('wx)—l in the weighted least squares. If the computer .@.

3

program fits a "no—interceét" model, the test statistic H, for
testiné that 8 = O is given by the weighted sum of squares due
to the regression in the weighéed least saquares. A similar
statistic for testing that 'all components of B except the
intercept are simultaneously zero is given if the weighted

least squares program fits an intercept. In the latter case the

test statistic H, will be compared to the critical value of a

chi-square distribution on k-p-1 degrees of freedom. The test
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statistic kafor testing model specification will always be the
value of the weighted sum of squares about the regression line'
(the error sum of squares). Thus all of the statistics described
in this section may be obtained from a single rua of a standard

packaged cowputer program.

.

The Effects of Measurement Error on Effect Size

The standardized mean difference Gi defined as in (1), is a
measure of the magnitude of the treatment effect compgred to. the

variability within the two groups of the experiment. The
’ >
implicit assumptioﬂ§iﬂ that the variability within the

experimental aund control groups arises from stable difference

between subjects (or more generally between expeimental units),

" If the response measure is not perfectly reliable, i.e., if

.

errors of measurement are present, then measurement error also
- .' ,
contributes to the within-group variability. Measurement error,

-

therefore, alters the population value‘of the standardized mean
difference. If the object is to estimate the.value, § , of the
standardized mean difference when no errors of measurement are
present, some procedure to correct for measurement error is
v

necessary. \

Consider the population value of the standardized mean
difference in two cases,‘one'in which the measurements are

error-free and one in which errors of measurement are present.,

For simplicity of notation, the subscript i denoting the

| &
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particular experiment ig omitted in the exposition that follows,

-
but the results apply to each experiment when properly indexed.

B ~
+ 1f there are no errors of wmeasurement, then denote the

2
£

value of the standardized mean difference when there are not

within-cell standard deviation byo,_. Let§ denote the population

errors of measurement. Then

N ~

E C . ] .
. where ¥ and ¥ are the population means of the experimental and

control groups respectively. Note that the use of the symbol &
is consistent with the definition of § wused in the structural
models (L)..
. -
In the second case, when errors of measuresment- are preseant,
. . E C c o
the population means . and i are unchanged but the within-group

variance is larger. If ©' depotes the value of the standardized

mean difference when errors of measurement are present, then

where © is the variance due to errors of measurement. The
i
: relationship between - and ‘' can be expressed as

L]

&' = (o /ot + uT) = &,
£ g n

where » is the reliability of the response measure.
, Thus the population value of the standardized mean

difference depends explicitly on the reliability ot the response

ERIC o .
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measure. If the object is to estimate the value of 5 , the
standardized mean difference with no errors of measurement, then
estimation of ' instead of : can result in biased estimates.
Since reliabilities cannot exceed one, the effect of measurement
error is to reduce the magnitude of the parameter ¢ ' compared
with . Ia particular, errors of measurement cause the estimator
g to estimate ' ipstead of > , so -that E(g) = & ' =6v0 . Hence

errors of measurement result in underestimates of the parameter

A

+If the reliability . is known, the bias can be removed by
dividing g by »+ . When we combine several estimates that use
response scales with different reliabilities, each estimate can
N o 7
be corrected for measurement error separately. Statistical
analyses can then be carried out using g/v¢ in place of g and

\ [

(g)/. in place of (g).

l.e Effects of Departures from Linear Equatability

In the statistical work described earlier we assumed that
the tests used to measure outcomes in ‘the different studies are

linearly equatable. In practice this assumption may be only

*

approximately true. Some tests may have unique factors id

addirion to the common factor shared among all tests. For

example, some experiments may use an expensive standardized test
to measure reading achievement, whereas other studies use
locally developed tests that are correlated with the

standardized test. If the locally developed tests have unique .

factors, they will not be perfectly valid measures of reading

“
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achievement as measured by the standardized test. This section
reports some results of Hedges (1981) on the effect of
invalidity of resﬁonse measures on estimators of effect size.

One model for test invalidity assumes L.at a collection of
tests share a common factor, but that some tests also have
unique factors. If the populationlof test scores on a
particular test are generated by a mddel which includes both the
common factor (among all the tests) 8 d a unique factor, then
the test is partially invalid. ‘To examine the ef&ects of partial TT—
invalidity on effect size, Hedges (1981) derived the
standardized mean difference §'' ;%en tests had unique factors.

First considqr the case where the treatment only affects (

the dependent variable via the common factor. Omitting the .

subscripts we see that the standardized mean difference is

& ~ IS

here ,, “.» W U are the variances accounted tor hv the -

>

common factor, the unique factor, and measurement error,

.y . . v
respectively. The validity coefficients of the test can be

expressed as the within-group correlation of the test with the

common factor, that is,

ERIC
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Therefore the population value of the standardized mean

differencg ! '' can be expressed as

It seems unlikely that the population correlation of an invalid

test with the common factor among a series of tests would be

known. If X is a test that is not perfectly reliable, shares -the
\ . 3

Y common factor, but has no unique factor, then the correlation

‘.\’v 3 » 3 . 3 ’

~ can be obtained from Pyy by the familiar disattenuation

formula (see, e.g., Lord and “Novick, 1968):

where . is the reliability of the test X! Thus the population

standardized mean difference 8'' can be written in terms of a

correlation with a valid but unreliable test X and the

reliability‘-. of X, namely, N

.

Since CRY\‘T-’ it follows that 8''< § . This means that

invalidity always reduces the standardized mean difference when
treatment affects only the common factor among the response
measures. In this case, estimates of effect size may be

corrected by substituting gvi/, for g.

Xy

When the treatment affects the test Y through both common

and unique factors, invalidity of the test may either increase
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”

or decrease the standardized mean difference. Hence no simple
>
b4

characterization of the effect of invalidity on estimates of §

. obtained from the estimators 8; is possible. In this case the

.

standardized mean difference is

where - is the effect of the treatment on the unique factor; and

. ~
32, 7", and o' are the variances due to the common factor,

5 "

unique factor, and measurement error respectively. If g, tae

treatment effect via the unique factor is large enough, namely

S .
A.“M‘—ﬁ‘—‘.-—‘—w - ) -
> (v/og + o5 c; - Og)° = Lo
then :''' >, 1If - < T then §''' <.

'

s

.
)

Statistical Analysis When Correlations or

Proportions are the Index of Effect Magnitude

Q;} In some cases, the effect size will not be a suitable éndex
of effect magnitude for the studies that. the reviewer wishes to

.

integrate. For example, the studies may investigate the
* *
relationship between two con@inuous variables or they may study
the proportion of subjects “eaching a criterion in different

groups. In‘the first example, Glass (1978) suggested the use of

the correlation coefficient as an index of effect magnitude. 1In

ERIC
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the second example, the difference between ithe proportions of
subjects reaching the criterion appears to be a natural index of
effect magnitude. Statistical procedures for combining
correlation coefficients and differences bétween proportions
were developed by Hedges and Olkin (1983). These procedures are
analogous to the methods already presented for the analysis of
effect sizqs. One difference i;.that variance stabilizing-

transformations for correlations and proportions simplify the

statistical methods.

-

Statistical Analysis for Correlations as Effect Magnitudes

Suppose that k independent studies with sample sizes
LR yield k independent sample correlation coefficients

. Ty aeeesT,. If‘l yeee are the population correlations, the

o
k

first problem is to decide if the sample correlations could

reasonably have been drawn from populati with the same

underlying population correlation. A zzgiaib;‘fhe homogeneity of
N : .

correlations is needed to determine if all the studies share a

common population correlation. Statistical analyses are

simplified if the correlations are transformed by Fisher's

z-transformation. Let

-
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A test for homogeneity of Pyaees

H

(1

k r
(ni - 3)(2i - z.)2,

where z. is the weighted average of the z_ given by

i

k
L (ni - 3)z,
3 *
¥y k .
— . ) z (ni - 3)
(//~ i=1

If o =p=...=p, and all the n,
1 2 k 1

R pkuses the test statistic

(33)

(34)

are moderately large, then

H given in (33) is distributed approximately as a chi-square .on

(k - 1) degrees of freedom. Thus the test for homogeneity of the

value: to the 100(1 - » ) per cent critical value of the

chi-square distribution on (k - 1) degrees of freedom.

correlations consists of computing H and comparing the obtained

1f the

obtained value of H exceeds the critical value we reject the

hypothesis of homogeneity at the 100a per cent level.

computational formula for H is

If the correlations are homogeneous, then the natural

estimate of the z-transform of the common correlation is z.




given in (34). This estimate may be converted into an estimate
il.e.,
S os tanhie.) ¢ o S et (35)

In large sawmples, z, has a normal distribution_given by

» | ' ,.2
- - o, N m\(,',\.a.),
A

~

is the z-transform of the common correlation p and

-

where

; N S
T T (36)
. . i=1

This normal distribution can be used to obtain a large sample

confidence interval for,. & 100(1 -u) per cent confidence

interval for~is given by .

K'l SR AG/ZC. <L <z, F ZQ/ZO' S 7,2,
where " 1s given in (36) and 2z /2 is the 100(1 - ¢) per cent
M A

critical value of the standard normal table. The 100(1 ~; ) per

cent confidence interval for ,» is given by

"“‘*‘%K = anh(cl) <o o< rarn{y

. i

2) 2y

where tanh(x) is given by (35).
If a priori knowledge or the formal test of homogeneity

suggests that the correlations are not homogeneous, then the

/

investigator may wish to determine whether various

characteristics of the studies are related to the correlation.

ERIC _ S
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of . by finding the value of o that yieﬁgi/d{/as its z~-transform, ////
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] . .th
Suppose that Ci, the z-transform of the correlation in the 1

™ .
study depends on a vector of p study characteristics (xil,...,x. )!

1p
where p<k. The vectors (x _,...,x. )' , i =1,...,k, are denoted
- il ip
“x . and define the design matrix X as
25 > ,
[}
-

~
1 g
‘ X 11 17 .
L4
X = - * i 0
- , ‘ . Ll
lr\ \);‘\l ‘“z\p
{
where X is assumed to have rank p. Define the vectors
o= yeeaz ) z=(z ,...,2 )", and g = AR D ’
Lot ) 2T e 8 = Gy
Then the model becomes 7 = x R+...+x, B, 17 l,...,k, or
i. il 1 ip p
alternatively
5 = X3 .
Hedges and Olkin (1983) showed that a natural estimator of B is
; oy —1-|-
§ = (X'VX) "X'Vz, (37)
) i \
\ i .
vhere V = dxag(nl- 3,...,nk - 3). When all the n, are reasonably
, i !
large, 3 has a p-variate normal distribution given by &
S (3, 00w T, (38)
’ /

The large sample distribution of 3 can be used to obtain
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confidence intervals forﬁl ,e1+, 8 . For example, a
P

(nonsimultaneous).100(1 -« ) per cent confidence interval for g,

J
is given by 7 -
A S R 3. < é. +z v,
’ 3o Te/2733 =73 =75 Te/273)
p . Ltho. . ) -1 .
vhere vjj is the j  diagonal element of (X'VX) and z is

af2

the 100(1 =-2x) per cent critical value obtained from the standard

normal distribution.

A simultaneous test that § = () uses the test statistic

Hy = 8'(X'WR)E, _ (39)

Thus the tést that » =0 at a significance ievel a consists of
comparing the obtained value of H; with the 100 (1 -~ ) per cent
critical value of chi-square with p degrees of freedom. if Hy
excee%g the critical value we reject the hypothesis that 8= 0.

If k > p, a test of thewspecification (goodness of fit) of
the regression model uses the test statistic

s oo .
B, = a'Ve - Hy oL (40)
2 - 1
When the model is correctly specified, the statistic H, has a
chi-square distribution given by
;': v ‘)’\2 .
N ] /
Thus the test of model specification at a significance level

consists of comparing the obtained value of H, with the

.

-
-

<,
~




‘100(1 ~t) per cent critical value of the chi-square distribution
on (k - p) degrees of freedom. If H,exceeds the critical value
we reject the specification of the regression mgéél. Rejeétion
of wodel specification suggests that the model does not account
for all of the variability of the correlations: In this case it
may be desirable to think about additional explahatory variables

or to examine residuals and look for unusual z  values to .
. i
determine why the model does not fit well. It should be noted

that the test for model specification can- be very seansitive when
sample sizes are large, so even minor deviations from the model

can result in rejection of modeltspecification.

-

Statistical Analysis for Differences in Proportions
Suppose that k independent studies each compare the
proportion of subjects achieving a criterion in an experimental .
E ¢ o
and a control group. Let p. andp_  denote the sample proportions
i i ‘
of subjects reaching a criterion in the experimental and control

&)

. . .th L
groups respectively of the 1 study and let » and r  represent .
- i i

the corresponding proportions in_ the population. The obvious
N “

‘index of the magnitude of the treatment effect in the jy‘ study. \\\\ ,

is the difference between the experimental and control group
) . L " < . c et
proportions, "/ ="/ . Statistical analyses are simplified,

however, if a slightly different index of effect magnitude is

used. Defire the population and sample indices of effect

)

magnitude as

e
| SN
r

cy otnety TGy, e 1, Lk, (aDD) . ‘
|
|
|
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and
Y, i o= 1,...,k. (42)

A test of the hypothesis that w = w = ... = w uses the test
NS 1 .

2 K
statistic
. <
b :’ '\‘& 13 o - 2 ’
i £ zli(&i w.) (43)
i-1
Y
. E¢, E C E 9
whetre I, = g :
{ nini/(“i + 0 ), n. and n, are the experimental and control

i i
group sample sizes in the iFh study, and w. is the weighted

average of the v, given by

: i1

w, e X T (44)

s .
3 e
S )
»
When T “rE T e = .and the éample sizes are all reasonably
2 k

large, H given in (43) has a chi-square distribution on (k -1)
degrees of freedom. Thus the test of homogeneity of the y's ;t
gsignificance level . consists of comparing the obtained value of
H with the 100(1 - ¢) per cen; critical value of the chi-square
distribution with (k - 1) degrees of freedom. Values ;f H that
are larger than the critical value result in rejection of the
hypothesis that all studies share a common effect magnitude:
1t the w i v;lges could reasonably have come fr;m

populations with the same value of ., then the natural estimate
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of « is w. given in (44). In large samples the distriburisn of

w. is given by

w. Vv .\'(m,o?),

where
R S (45) .-
~ 12 d
i=1
L]
This large sample distribution can be used to obtain an . ~

approximate confidence igterval for w. A 100(l -a ) per cent

confidence ingerval for o is

r
»

¢ . C e S oa
R . W “1,‘.10 ‘_:- w W ‘,3/23 )
A}
-
b} ) .\
where :.is given in (45) and 2z ,)is obtained from tables of the -

/2

.

standard normal distribution.

If a E;iori knowledge or a formal hypothesis test lead the
investigator t; believe that the ,,'s are not homogeneous, then
the investigator Qay wish to determipe whether various
characteristics of studies are related to the index Wy of effect
magn{tude. Suppose that »i depends on a vector of p study
" "j> \

characteristics x' = (x_L,...,x_ )', where p+*<¢ k. The vectors
. * =1 i 1P —

X vereaX define the design matrix

-1

r
-
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where X is assumed to have rank p. Define the vectors

= (Ji...,w )' and w = (w},...,w )' of parameters and estimates
: k ! k '
and let 3 = (51,...,5 )" be the vector of regression
p :
* coefficlents. The linear model is = X + .e0 + X ,
W BT iptp, i =

.

l,...,k, or alternatively w = X8.

Hedges and Olkin (1983) showed that the natural estimator

. 3 = (x'vx)“lx'V3, : (46)

k

large, 3 has a p-variate normal distribution given by

where V = Zdiag(ﬁl,...,ﬁ ). When all of the ﬁi are reasonably

- —

: 3t (LT,

This large sample distribution of { can be used to obtain

confidence 4ntervals for Sj just as in the case of the analysis
Y . )

of correlations. The test that p = O and the test of model

specification based on the statistics

¢

»

are identical to the analogous tests in the analysis based on

!

|

|

|

|

|

* and
o PR ‘e
oy W ewW -

|

|

_ |

correlations. i

: |

|

|
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CONCLUSIONS

There has been some vehement criticism of Glass's
[

meta-analysis. Some critics have argued that meta-analysis may
lead to oversimplified conclusions about the effect of a

treatment because it condenses the results of a series of

b b
.

studies into a few parameter estimates. For example, Presby

(1978) argued that even when studies are grouped according to

\

variations in the treatment, reviewers might reasonably disagree

on the appropriate groupings. Grouping studies into overly

broad categories and calculating a mean effect size for each

category might serve to wash out real variations among

treatments in the categories. Thus it would appéar hat
var{gtidns in treatment were unrelated because the mean effect
sizes for the categories did not differ. An obvious extension
of this ;rgument is that reviewers might reasonably disagree on
explanatory variables that could bq related to effect sizes.

\
Hence failure to find variables that are systematically related
to effect size does not imply that the effect sizes are
consistent across studies. It may only imply that the reviewer
has examined the wrong explanatory varie'les.

A ralated criticism is that the studies in a collection may
give fundamentally different answers (e.g., have different
population effect sizes) perhaps because of the artifacts of a

,
multitude of design flaws (see e.g., Eysenck, 1978). Any

analysis of the effect sizes is therefore an analysis of

estimates influenced by a variety of factors other than the true

magnitude of the effect of the treatment. Thus ineta-analyses may
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be ansther (ase ot "garbage 1n--garbage out.," The argument

underlying this criticism is that flaws in studies may influence

- e

cttect ~izes. e ’
Y

The statistical wethods presented in this mgnograph provide

a wechanism for responding to criticisms mentioned previously.

In the simplest case the reviewer summarizes the results of" a

serles of studies by the average effect size estimate. Is this
an oversimplification of !the results of the studies?  The test

o,

of homogenerty of effect size provides a method of empirically
testing whether the variation in effect size estimates is
greater than would be expected by chance alone. If the

hypothesis of homogeneity is not rejected, the reviewer is in a

~ \

strong position vis-a-vis the argument that studies exhibit real
var1tatility which is obscured by course grouping. If the model
of a sing'e population effet size fits the data adeguately,

then a desire for parsimony suggests tnis model should be
considored seriously.,

tailure to reject the homogeneity of effect sizes from a

series of studies does not necessarily disarm the criticism that

-

the results of the studies are artifacts of design flaws. For

example, 1f a series of studies all share the same flaw,

consistent results across the series of studies may be an.
3

arti1fact of just that flaw. That is, th% design flaw in all of

the <tudies may act to make.the effect sizes in the studies
v N

cons1st-ut with one another and consistently wrong as an

esti1mite of the treatment effect, On the other hand, the
/

- . 5

N
stadies mav ant alil havedthe same flaws. If a variety of”
L]

’

. ’

R 2



different studies, with different design flaws all yield
consistent results it may be implausible to explain the
consistency of the results of a series of studies as a

-

conspiracy of different artifacts all yielding the same bias. .

. T 67
\
\

L3

Thus the reviewer who fgnds consistency in research results and

strong position against the 'garbage in--garbage out" argument.

I emphasize that careful examination of the individual research '

who knows the limitations of the individual studies may bé in a ‘
\

.

studies and some scrutiny of the attendant éesign problems is
essential, Without such analysis of the studies, a single
source of bias is a very real and plausible rival explanation
for empirical consistency of r;search results.

When a reviewer explains the effect sizes from a series of

’ v
:

studies via a model involving explanatory variables (e.g., the
effect size varies according to grade level), tests of model
specification élny a2 vole analogous to “hat of rthe test of
_homogeneity. It is difficult to argue that additional variables !
are needed to explain the variation in effect sizes if the
specification test suggests that additional variables are not
" ' needed. .

. Evidence that the model is correctly specified does not N
necessarily mean that the artifacts of design flaws wmay be )
ignored. Il all studies share a common design flaw then the
results of all of the studies may be biased to an unknown
extent. If design'flaws are correlated with explanatory
variables, then the effects of those design flaws are confounded

{
with the effects of the explanatory variable . It may be

ERIC - | K
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ditticult or wmpossible to determife the real source of the
effect. However, if several design flaws occur in different
studizs, #f few of the flaws occur in more than a few studies,
and if simple models appear to be correctly specified, then it

seems implausible that inferences drawn about the effect sizes

"

are artifacts of biases due to design flaws.

4

’ Methods for the quantitative synthesis of research

. »

(meta-analysis) have received a great deal of attention. These
. wmethods are promis}ng improvements in the methodglogy for

research reviewing. Some authors (Jackson, 1980) have argued

|
‘that research reviewing in so;{al sciences has not been subject ’
. .

to the kind of rigorous professional standards of methodology
that have been imposed on the conduct of primary research. One
positive aspect of the interest in meta-analysis has been the
‘movement toward the use of rigoroqs methods of sampling,
measurement, and statistics in research reviewing (Céoper,~,

v

1982). As Glass (1978) pointed out, research reviewing is a

<

. . . C . . i
difficult task that ‘'mands as much creativity and insight as
the conduct of primary research. The application of rigorous

methods in research reviews may be a step toward a time when

reviewing is accorded equal status-with the generation of

primary research. - ’ .
s

Statistical techniques for research reviews are not well

developed. The present survey of methodology is a beginning. New

methods are clearly needed for the exploratory analysis of

effect size data. Glass (1978) argued that it is often useful to

estimate effect sizes from other statistics or from data other

- .
.
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than means ‘and standard deviations. Methods for obtaining such
estimates were discussed in Glass (1978) and in Glass, McGaw,

and Smith (1981). Yet very little is known about the properties

N -

of such estimatQQ( The development of rigorous statistical

theory for these estimators would be an important cortribution.

Many research studies provide data on several measures of «

the same or related constructs. The several effect size

’

~estimates derived from differeat measures applied to the same

e

individual are therefore correlated. In fact, the vector of

effect size estimates can be shown to have a multivariate norm-'
distribution in large samples. Moreover, the (large sample)

*

correlation matrix of the effect }dzes is the same as, that of
. ° . "- s “
the original observationg. Thus if a reading and a mathematics .

achievement test have a (populationj correlation of .7, effect

sizes derived from these two tests will also have a correlation’

of .7 in large samples. This result can be used in the study of (ﬁi:>
covariation among effect sizes derived form th'e same sample, but

relatively little work has been done. A conservative solution is

to use the average of mlltiple effect sizes as the only estimate

of effect size in stati;tical analyses. More work is definitely

needed in the area of the multivariate analysis of effect sizes. -
A related issue is how to handle estimation 6% effect size from

a series of correlated estimates. Glass (1978) suggested the use ~

of Jackknifc estimators in this case, whiJﬁ)seems sensible. This

. A -

problem bf estimation of effect size from correlated estimates
‘merits further investigation.
The possibility of influences of bias due to the use of

statistical significance as a criterion in editorial decisions
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has been suggested (Sterling, 1959). Some preliminary work (Lane

& Dunlap, '1978) suggests that the effects of pﬁblicatibn bias

can be severe. We have little evidence about how seriously such

biases affect quantitative research syntheses. Some empirical

*

evidence on this question is discussed in Glass, McGaw, and

Smith (1981). There are very few statistical methods for dealing

-

with' the effects of these biases. Future meta-analyses will, no

doubt, reveal new methodological problems that also need

-

attention. .
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Many problems must be addressed by the reviewer who carries out a
; meta-analysis, These'problems include identifying and obtaining appropriate
studies, extracting estimates of effect size from the studies, coding or
classifying studies, analyzing the data, and reporting the results of the
date analysis. Earlier work by Glass, McGdw, and Smith describes methods
‘ for dealing with these_yroblems. ’

However, since their book, there has been a great dgal of interest
in the development of systematic statistical theory for meta-analysis.
The purpose of this monograph is to pyovide a unified treatment of
rigorouc statistical methods for meta-analysis. These methods ‘provide a
mechanism for responding to criticisms of meta-analysis, such as that
meta-analysis may lead to oversimplified conclusions or be influenced
. by design {laws in the original research studies.

ORDER FORM .

Please send copies of ERIC/TM Report 83, "Statistical Methodology
in Meta-Analysis," at $7.00.

Name__

Address - ~

Zip

, Total enclosed §

Return this form to:

ERLC/T™
Educational Testing Service
Princeton, NJ 08541




‘ 75
N RECENT TITLES

* IN THE ERIC/TM REPORT SERIES .

#8383 - Statistical Methodology in Meta-Analysis, by Larry V. Hedges. T2/82
$7.00.
#82 - Microcomputers in{Educat}onal Research, by Craig W. Johnson. 12/82

$8.50. -

181 - A Bibliography to Accompany the Joint Committee's Standards on
Educational Evaluation, compiled by Barbara M. Wildemuth. 107p.
$8.50. i
#80 - The Evaluation of College Remedial Programs, by\Jeffrey K. Smith
and - others. 12/81. $8.50. .

#79 - An Introduction to Rasch's Measurement Model, by Jan—Eric Gustafsson.

12/81, $5.50. . : .’

B ) N - *
#78 - How Attitudes Are Measured: A Review of Investlgations of Professional,
Peer, and Parent Attitudes toward the Handicapped, by Marcia D. Horne.
|
|
|

12/80, $5.50.

#17 - The Reviewing Processes in Social Science Publications A Review of -
Research; by Susan E. Hensley, and Carnct E. Nelson. 12/80, $4.00.
. / )
#76 - Intelligence Testing, Education, dnd Chicanos: An Essay in Social
Inequality, by Adalberto Acquirre Jr. 12/80, $5.50.

#75 - Contract Grading, by .Hugh Taylor. 12/80, $7.50.

DeLisi. 12/80, $4.,50.

#73 - Measuring Attitudes Toward‘Reading, by Ira Epstefﬁ. 12/80, $9.50.

#72 - Methods of Identifying Gifted Mihority Students, by Ernest M. Bernal.
12/80, SL 50

|
|

\ |
\#74 - Intelligence, Intelligence Testing and School Prﬁctices, by Richard .
#71 - Sex Bias in Testing: An Annotated Bibliography," by Barbara Hunt. 12/79,

$5.00. . f
#70 + The Role of Measurement in the Process of Instruction, by Jeffrey K.

Smith. 12/79, $3.50.
#68 - The Educational Implications of Piaget's Theory and Assessment {
Techniques, by Richard DeLisi. 11/79, $5.00.

#66 - Competency-Based Graduation Requirements: A Point of View, by Mary
. Ann Bunda. 1978, $2.00.

” ' ~

#65 - The Practice of Evaluation, by Clare Rose and Glenn F. Nyre. 12/77,
$5.00. . y

#63 - Perspectives on Mastery Learnipg & Mastery Testing, by Jeffrey K. .

Smith. 1977, $3.00.
L ’
M lj \_>




