DOCUMENT RESUME HE 015 855 ED 225 495 Gravely, Archer R.; Strenglein, Denise AUTHOR A Model for Predicting Student Credit Hours. SAIR TITLE Conference Paper. PUB DATE 24p.; Paper presented at the Annual Conference of the NOTE Southern Association for Institutional Research (Birmingham, AL, October 28-29, 1982). Statistical Data (110) -- Reports -PUB TYPE Research/Technical (143) -- Speeches/Conference Papers (150) MF01/PC01 Plus Postage. EDRS PRICE *Academic Persistence; *College Credits; *Enrollment **DESCRIPTORS** Trends: Higher Education; Longitudinal Studies; *Models: *Predictive Measurement *SAIR Conference; *University of South Florida * IDENTIFIERS #### ABSTRACT A model for predicting student credit hours (SCH) over a 2-year period was developed at the University of South Florida. A major application of the model would be to estimate the expected loss of upper-level SCH that would occur as a result of reduced lower-level enrollment. Attention was focused on the long-range effect of lower-level enrollment caps. The model may also be useful for estimating SCH reductions due to increased admission standards or more restrictive changes in the eligibility requirements for federal student aid programs. Components of the model include: mean SCH by course level; student type; and retention rate by student type over time. The predicted SCH means and retention rates were developed from a 50 percent random cohort sample of the 4,696 new University of South Florida student population from 1976 to 1980. The cohort groups were based on entering term. The remaining half of the student population was used to validate the model. For all student types combined, the predicted SCH was approximately two percent greater than the actual SCH generated. Statistical tables provide the SCH means and retention rates for each cohort group (fall, winter, spring, summer) by student type for eight terms, along with validation results. (SW) **************************** Reproductions supplied by EDRS are the best that can be made from the original document. ************************ A Model for Predicting Student Credit Hours bу Archer R. Gravely Denise Strenglein "PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY SATR ... TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)." U.S. DEPARTMENT OF EDUCATION NATIONAL INSTITUTE OF EDUCATION EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) received from the person or organization originating it. Minor changes have been made to improve reproduction quality. Points of view or opinions stated in this document do not necessarily represent official NIE position or policy. Presented at Southern Association for Institutional Research Birmingham, Alabama October 27, 1982 Office of Institutional Research University of South Florida Tampa, FL 33620 (813) 974-2450 This paper was presented at the 1982 Annual Conference of the Southern Association for Institutional Research held in Birmingham, Alabama, October 1982. It was reviewed by the SAIR Publications Committee and was judged to be of high quality and of interest to others concerned with the research in higher education. This paper has therefore been selected to be included in the ERIC collection of Conference Papers. Gerald W. McLaughlin President, SAIR #### Abstract The purpose of this research was to develop a model for predicting SCH over a two-year period. A major application of the model would be to estimate the expected loss of upper level SCH that would occur as a re-. sult of reduced lower level enrollment. The present study was conducted to assess the long range effects of lower level enrollment caps, but other institutions may find the model useful for estimating SCH reductions due to increased admission standards or more restrictive changes in the eligibility requirements for federal student aid programs. The components of the model include: 1) mean SCH by course level; 2) student type; and 3) retention rate by student type over time. The predicted SCH means and retention rates were developed from a 50 percent random cohort sample (n=4,696) of the new USF student population from 1976 to 1980. The cohort groups were based on entering term. The remaining half of the student population was used to validate the model. For all student types combined, the predicted SCH was approximately 2 percent greater than the actual SCH generated. #### Preface While institutions in the north are experiencing enrollment declines, many of those in the sunbelt are still experiencing some enrollment growth pressure. The Florida State government is willing to support this growth in order to meet its commitment to provide an undergraduate education to all qualified citizens, but it must also consider the many other demands on state funds. The educational planners at the State level are making an effort to channel lower level undergraduate students into the Community College system as a way to meet its commitment at the lowest possible cost. One method being used to accomplish this goal is the imposition of enrollment caps on lower level full-time equivalent (FTE) enrollment at the Universities. While the setting of caps is a perfectly reasonable way to limit the use of Universities instead of Community Colleges for lower division instruction, it creates the necessity for monitoring not only the admission of lower level students but also the effect of lowering the number of incoming students on future upper division credit hour generation. In Florida, this second requirement is complicated by the political rather than analytical nature of the enrollment projection process. The State University System funding is based on a five year enrollment plan. The planners at the University of South Florida felt that it would be advisable to project the effect of lower level caps on future upper division credit. The analysis will allow the planners to influence future enrollment plans to avoid loss of funding which could result from missing enrollment targets by more than the allowable margin. The University of South Florida is an urban institution located in the Tampa Bay Area. It has an enrollment of 27,000 students who produce 17,000. FTEs and an E & G budget of 84 million. ### <u>Introduction</u> The present study is a longitudinal analysis of undergraduate Student Credit Hour (SCH) behavior by student type from Fall 1976 to Summer 1980. The intended outcome of this research is a simple mathematical model for predicting the expected loss of SCH that would occur as a result of limiting lower level enrollment. Such a model will provide a useful planning tool for estimating future loss of funding due to limitations on lower level FTE, reductions resulting from the effects of tightening eligibility requirements for federal student financial aid programs, or any other drop in lower level admissions. The SCH prediction model was developed from a 50 percent random cohort sample (n=4,696) of the USF student population from 1976 to 1980. The cohort groups were based on entering term and student type. The model was validated by comparing the actual SCH with the predicted SCH for the remaining half of the population. ## Methodology The major predictive components of the model are based on: 1) mean SCH by course level (lower, upper, and total); 2) student type (FTIC in-state, FTIC out-of-state, lower level transfer in-state, and lower level transfer out-of-state); and 3) retention rate by student type over time. The model was designed to predict undergraduate SCH by term for a period of up to two years. As a method of calculating the most stable SCH means for each of the four student types for a period of two academic years, a cohort analysis was performed. Four sets of means and retention rates were developed based on entering terms. For greater clarity, the structure of the data base is shown in Table 1. Table 1 Cohort Population Size and Structure | · | | | | | | | * | |------------------|---------------------------------------|----------------------------|-----|--|-----|---|-------------------------| | Cohort Group | | egin
erm | | End
Term | g • | | N | | Fall , | Fa | 11 '76
11 '77
11 '78 | | Summer '78
Summer '79
Summer '80 | | | 2,204
2,705
2,725 | | Subtotal Fall | 6. | ·
 | . • | F: | | | 7,634 | | Winter | | nter '77
nter '78 | | Fall '78 | | | 419
416 | | Subtotal Winter | · · · · · · · · · · · · · · · · · · · | • | • | , | | | 835 | | Spring | | ring '77
ring '78 | 3 | Winter '79
Winter '80 | | ٥ | 232
209 | | Subtotal Spring | | | | | | • | 441 | | Summer | | nmer '77
nmer '78 | | Spring '79
Spring '80 | : | • | 257
224 | | Subtotal Summer, | | ·ę | · | | | | 481 | | Tota] | | | | · _ · | | | 9,391 | Table 1 provides a detailed overview of the structure of the data base. A total of 9,391 students were included in the study. This population was randomly split into model and test groups. Each group contained approximately 50 percent of the total population. The model group was used to develop aggregate SCH means ^{&#}x27;Graduate SCH generated by undergraduate students was found to be too small to warrant analysis. and retention rates for each cohort group for eight terms or two academic years. To test the accuracy of the model in predicting SCH, the actual SCH produced by the test group was compared to the predicted SCH for a two year period. ### Model Development The SCH means and retention rates for each cohort group (Fall, Winter, Spring, and Summer) by student type for eight terms are presented in Tables 2-5 respectively. These means and retention rates are the major predictive elements of the model. Examination of Tables 2 - 5 reveals that the upper level SCH means and retention rates by student type vary according to cohort group or entering term. These data can be used for determining the best term for initiating reductions in lower level
enrollment. In other words, in which term will reductions have the smallest impact on upper level SCH? The identification of this term would appear to be a function of mean upper level SCH and retention rate over a two-year period. As a method of analyzing these data, mean upper level SCH by student type was weighted by retention rate. These data are shown in Table 6. $[\]overline{\underline{2}}_{Adj}\overline{X}_{u_{i}}^{T} = (\Sigma R_{ij}\overline{X}_{u_{i}}^{T})/8 \text{ where:}$ $Adj\overline{X}ul_{j}$ = adjusted upper level SCH weighted by retention rate for student type i R_{ij} = retention rate for student type i and term j $[\]overline{X}ul_{i}$ = mean upper level SCH for student type i in term j * Table 2 Fall Cohort SCH Means By Student Type and Level Over Eight Consecutive Terms | <u>-</u> | | | | | | | | | - | |-------------------|-------------------|------|------|-------------|-----------|-------------------|-------------|-------------|----------| | Term | Student
Type | R* | n | X Lov | ver
SD |
Х | er
SD | X Tot | al
SD | | | FTIC Instate | 1.00 | 2296 | 11.29 | 3.20 | · 1.86 | 2.75 | 13.15 | 2.14 | | 1st | FTIC Outstate | 1.00 | 565 | 12.16 | 2.56 | 1.33 | 2:35 | 13.52 | 1.85 | | Fall | LL Trns Instate | 1.00 | 695 | 6.71 | 4.62 | 5.68 | 4.47 | 12.39 | 3.61 | | | LL Trns Outstate | 1.00 | 340 | . 8.32 | 4.33 | 5.11 | 4.25 | 13.44 | 2.69 | | | Term Total | 1.00 | 3896 | 10.35 | 4.02 | 2.75 | 3.63 | 13.10 | 2.48 | | | FTIC Instate | .91, | 2066 | 11.51 | 3.63 | 2.67 | 3.25 | 14.18 | 2.32 | | lst | FTIC Outstate 🕟 | .90 | 503 | 12.61 | 3.26 | 1.93 | 2.82 | 14.55 | 1.94 | | Winter | LL Trns Instate " | .82 | 569 | 6.55 | 4.73 | 6.35 • | 4.65 | 12.90 | 3.74 | | • | LL Trns Outstate | .82 | 278 | 7.86 | 4.42 | 5.98 | 4.38 | | 2.97 | | | Term Total | .88 | 3416 | 10.55 | 4.39 | 3.45 | 3.92 | 13.99 | 2.67 | | | FIIC Instate | .84 | 1935 | 10.43 | - 3.87 | 3.44 | 3.57 | 13.87 | 2.50 | | 1st | FTIC Outstate | 84 | 477 | 11.41 | 3.39 | 2.68 | 3.18 | 14.09 | 2.04 | | Spring | LL Trns Instate | .72 | 503 | `5.64 | 4.54 | 7.48 | 4.79 | 13.12 | 3.64 | | | LL Trns Outstate | .74 | 250 | 6.20 | 4.32 | 7.09 | 4.40 | 13.30 | 2.85 | | | Term Total | .81 | 3165 | 9.49 | 4.47 | 4.26 | 4.19 | 13.74 、 | 2.70 | | | FTIC Instate | .30 | 681 | 4.87 | 3.59 | 4.08 | 3.96 | 8.95 | 3.82 | | Ist | FTIC Outstate | .14 | 78 | 5.88 | 4.10 | 3.58 | 3.66 | 9.46 | 4.06 | | Summer | LL Trns Instate | 39 | 271 | 2.93 | 3.51 | 6.96 | 4.58 | 9.90 | 3.92 | | Juninet | LL Trns Outstate | .23 | 78 | 2.82 | 3.38 | 7.97 | 4.83 | 10.80 | 3.98 | | | Term Total | .28 | 1108 | 4.32 | 3.72 | 5.03 | 4.42 | 9.35 | 3.91 | | • | FTIC Instate | .69 | 1592 | 8.05 | 4.29 | 5.86 | 4.45 | 13.90 | 2.83 | | 2nd | FTIC Outstate | .66 | 370 | 9.15 | 4.06 | 5.34 | 4.20 | 14.50 | 2.22 | | Fall ^e | LL Trns Instate | .58 | 403 | 4.01 | 4.26 | 9.22 | 4.81 | 13.20 | 3.32 | | 1011 | LL Trns Outstate | .58 | 198 | 4.60 | . 3.76 | 9.58 | 4.62 | 14.20 | 2.85 | | | Term Total | .66 | 2563 | 7.30 | 4.57 | 6.60 | 4.74 | 13.90 | 2.86 | | | FTIC Instate | .65 | 1493 | 6.68 | 4.31 | ⁻ 7.28 | ā.62 | 14.00 | 2.73 | | 2nd | FTIC Outstate | .63 | 358 | 7.85 | 4.12 | 6.82 | 4.50 | 14.70 | 2.45 | | Winter | LL Trns Instate | .52 | 364 | 3.13 | 3.68 | 10:50 | 4.72 | 13.60 | 3.51 | | Willes | LL Trns Outstate | .54 | 182 | 3.11 | 3.68 | 10.70 | 4.92 | 13.80 | 3.35 | | 1 | Term Total | .62 | 2397 | 6.05 | 4.45 | 7.96 | 4.85 | 14.00 | 2.89 | | | FTIC Instate | .62 | 1419 | 5.53 | 4.11 | 7.99 | 4.61 | 13.50 | 3.08 | | 2nd | FTIC Outstate | .61 | 342 | 5.78 | 4.17 | 8.30 | 4.44 | 14.10 | 2.50 | | Spring | LL Trns Instate | .49 | 338 | 2.72 | 3.41 | 10.50 | 4.86 | 13.20 | 4.00 | | Ch. 1119 | LL Trns Outstate | .51 | 174 | 3.21 | 3.42 | 10.70 | 4.02 | 13.90 | 2.64 | | | Term Total | .58 | 2273 | 4.97 | 4.13 | 8.61 | 4.70 | 13.60 | 3.14 | | | FTIC Instate | .37 | 839 | 2.94 | 3.16 | 6.66 | 4.36 | 9.59 | 3.87 | | 2nd | FTIC Outstate | .31 | 174 | 3.23 | 3 18 | 7 30 | | 10.50 | 3.71 | | Summer | LL Trns Instate | .31 | 218 | 1.67 | 2.77 | 8.80 | 4.43 | 10.50 | 4.26 | | Juninet | LL Trns Outstate | .31 | 106 | 1.75 | 2.33 | 8.62 | 4.72 | 10.30 | 4.03 | | | Term Total | .34 | 1337 | 2.68 | 3.09 | 7:24 | 4.46 | 9.92 | 3.94 | | | | | | <u>·</u> _ | | | | | | Table 3 Winter Cohort SCH Means By Student Type and Level Over Eight Consecutive Terms | | ° S <u>t</u> udent | | • | _ Low | | Upp | er | T _i o1 | tal | |----------|--------------------|---------|------|--------|--------|----------------|-------------|-------------------|--------| | Term | | R* | n | X | SD | <u>X</u> | SD | \overline{X} | SD | | | FTIC Instate | 1.00 | 117 | 9.25 | 4.19 | 2.54 | 3.68 | 11.80 | 3.68 | | lst ` | PTIC Outstate | 1.00 | 19 | 11.80 | 3.34 | 1.84 | ຶ2.91 | 13.70 | 1.06 | | Winter | LL Trns Instate | 1.00 | 200 | 6.59 | 4.93 | 5.05 | 4.42 | 11.60 | 4.03 | | | LL Trns Outstate | 1.00 | 70 | 7.06 | 4 67 | 5,37 | 3.97 | 12.40 | 3.66 | | | Term Total | 1.00 | 406 | 7.68 | 4.83 | 4.23 | 4.27 | 11.90 | 3.80 | | | FTIC Instate | .82 | . 96 | 9.14 | 4.54 | 3.36 | . 3.97 | 12.50 | 3.65 | | lst | FTIC Outstate | . 79 | 15 | 11.50 | 3.14 | \$≥ .53 | 3.58 | 14.10 | 1.62 | | Spring | LL Trns Instate | .76 | 152 | 6.57 | 4.53 | 6.03 | 4.84 | 12.60 | 3.95 | | | LL Trns Outstate | .74 | 52 | 6.73 | 507. | 6.23 | 5.15 | 13.00 | 3.16 | | | Term Total | .78 | 315 | 7.61 | 4.78 | 5.09 | 4.77 | 12.70 | 3.66 | | | FTIC Instate | .45 | 53 | 6.43 | 4.20 | 3.68 | 3.90 | 10.10 | 4.37 | | lst . | FliC Outstate | . 26 | . 5 | 7.80 | 3.83 | 2.40 | 3.36 | 10.20 | 3.11 | | Summer | LL Trns Instate | .36 | 72 | 3.31 | 3.71 | 6.33 | 4.81 | 9.64 | 3.86 | | | LL Trns Outstate | 26 | - 18 | 4.22 | 3.90 | 5.22 | 5.25 | 9.44 | 3.36 | | , | Term Total | . 36 | 948 | 4.69 | 4.18 | 5.11 | 4.67 | 9.80 | 3.95 | | - | FTIC Instate | .59 | 69 | , 7.90 | 4.41 | 4.43 | 4.35 | 12.30 | 3.83 | | lst | /FTIC Outstate | . 6,3 | 12 | 6.67 | 3.68 | 7.17 | 4.41 | 13.80 | 2.08 | | Fall | LL Trns Instate | •58 | 117 | 4.62 | 4.44 | 8.37 | ·5.17 | 13.00 | 3+93 | | <u> </u> | LL Trns Outstate | .69 | 48 | 5.50 | 4.54 | 7.58 | 5.31 | 13.10 | 3.10 | | | Term Total | .61 | 246 | 5,81 . | 4.69 | . 7.05 | 5.20 | 12.90 | 3.68 | | • . | FTIC Instate | .54 | 63 | 6, 62 | 4.56 | 6.03 | 4.92 | . 12.70 | 3.75 | | 2nd | FTIC Outstate | .58 | 11 | 8.36 | 4.18 | 5.09 | 5.03 | 13.50 | 1.86 | | Winter | LL Trns Instate | .54 | 108 | 4.29 | 4.69 | 9.14 | 5.49 | 13.40 | 4.02 | | <u> </u> | LL Trns Outstate | .60 | 42 | 4.35 | 4.25 | 8.81 | 4.77 | 13.20 | 3.19 | | | Term Total | .55 | 224 | 5.16- | 4.69 | 8.00 | 5.36 | 13.20 | 3.72 | | | FTIC Instate | . 43 | 50 | 5.82 | 3.76 |
₀7.08 | 4.30 | 1290 | 1 2.57 | | 2nd | FTIC Outstate | .63 | 12 | 5.58 | 4.27 | 8.08 | 4.40 | 13.70 | 1.30 | | Spring | LL Trns Instate | 49 | 98 | 3.35 | 4.01 | 9.56 | 5.08 | 13.10 | 3.33 | | | LL Trns Outstate | .59 | 41 | 3.93 | 3.81 | 8.83, | 4.77 | 12.80 | 3.51 | | | Term Total | .50 | 201 | 4.31 | 4.02 | 8.71 | 4.87 | 13.00 | 3.10 | | • | FTIC Instate | .21 | 25 | 3.08 | 3.50 | 6.12 | 4.25 | 9.20 | 4.37 | | 2nd | FTIC Outstate | .42 | . 8 | 3.25 | -3.81 | 8.13 | 5.33 | 11.40 | 3.11 | | Summer | LL Trns Instatê | .28 | 57 | 1.93 | 2.48 | 8.18 | 3.70 | 10.10 | 3.49 | | | LL Trns Outstate | .39 | 27 | 1.89 | 3,03 | 9.48 | 4.38 | 11.40 | 3.95 | | | Term Total | 29 | 117 | 2.26 | 2.96 | 8.03 | 4.20 | 10.30 | 3.81 | | | FTIC Instate | .30 | 35 | 5.29 | 3.73 | 7.86 | 4.02 | 13.10 | 3.19 | | 2nd | FTIC Outstate | .47 | 9 | 6456 | 4.39 | 7.89 | 4.14 | 14.40 | 3.05 | | Fa 11 | LL Trns Instate | . 38 | 77 | 2.48 | 3.08 | 9.53 | 4.99 | 12.00 | 4.26 | | | LL Trns Outstate | .51 | 36 | 3.11 | 3.50 | 10.00 | 4.69 | 13.10 | 3.23 | | | Term Total | ` .39 · | 157 | 3.48 | 3.€5 · | 9.17 | 4.71 | 12.70 | 3.79 | Table 4 Spring Cohort SCH Means By Student Type and Level Over Eight Consecutive Terms | | | , | | | | | | ` | | |------------------|--------------------|--------|--------------|-------------------|----------|---------------|--------------|----------------|--------------| | Term | Studênt
Type | R* . | • n • | X Low | er
SD | <u>,</u> Uppe | sD | Tota
 | 1 SD | | | FTIC Instate | 1.00 | 69 | 8.14 | 4.12 | 2.65 | 3.15 | 10.80 | 3.84 | | lst ['] | FTIC Outstate | 1.00 | 15 | 11.10 | 2.29 | 1.33 | 1.99 | 12.50 | 1.77 | | Spring | LL Trns Instate | • 1.00 | 102 | 5.85 | 4.96 | 5.04 | 4.34 | | - 4.33 | | opi ilig | LL Trns Outstate | 1.00 | 28 | 8.21 | 4.81 | 4.89 | 4.42 | 13.10 | 2.28 | | - | Term Total | 1.00 | 214 | 7.27 | 4.77 | 3.99 | 4.07 | 11.30 | 3°.89 | | | FTIC Instate | . 38 | 26 | [*] 5.81 | 4.03 | 2.73 | 3.50
2.16 | 8.54
9.67 | 3.30
3.78 | | lst | FTIC Outstate | 40 | 6 | 7.00 | 5.22 | 2.67 | 4.12 | 9.49 | 3.76 | | Summer | LL Trns Instate | . 46 | 47 | 4.32 | § 3.85 | 5.17 | 5.12 | 9.42 | 4.38 | | | LL Trns Outstate | .43 | 12 | 4.83 | 3.79 | 4.58 | | | | | | Term Total | .43 | 91 | 4.99 | 4.00 | 4.23 | 4.11 | 9.22 | 3.43 | | , | FTIC Instate | .67 ' | 46 | 6.48 | 4.57 | 5.54 | 4 58 | 12.00 | 4.15
2.55 | | lst | FTIC Outstate | .67 | 10 | ` 9.60 | 5.04 | 3.80
7.21 | 3.12
4.56 | 13.40
11.90 | 4.21 | | Fall. | LL Trns Instate | .62 | . 63 | 4.71 | 4.03 | 7.05 | 4.90 | 13.80 | 3.33 | | • | LL Trns Outstate | .71 | 20 | 6.80 | 4.58 | 7.05 | 4.30 | | <u>. '</u> | | | Term Total | .65 | .139 | 5.95 | 4.53 | 6.39 | 4.61 | 12.30 | 4.00 | | • | FTIC Instate | .58 | 40 | 6.92 | 4.32 | 5.02 | 4.35 | 11.90 | 4.08
3.74 | | lst | FTIC Outstate | . 73 | 11 | 8.73 | 6.10 | 3, 09 | 4.06 | 11.80 | 3.86 | | Winter | LL Trns Instate | .52 | | 3.51 | 4.15 | 9.1% | 4.73 | 12.70 | 2.46 | | | LL Trns Outstate . | . 64 | 18 | 6.94 | 5.55 | 7.89 | 5.55 | 14.80 | | | | Term Total | 57 | 122 | 5.61 | 4.95 | 7.07 | 5.13 | 12.70 | 3.83 | | • | FTIC Instate | • .57 | 39 | 5.90 | 4.09 | 5.54 | 4.87 | 11.40 | 3.70 | | 2nd | FTIC Outstate | .53 | 8 | 9.25 |
4.80 | 3.00 | 3.66 | 12.30 | 2.66 | | Spring | LL Trns Instate | . 44 | 45 | 2.69 | . 3.18 | 9.62 | 4.59 | 12.30 | 3.82
4.23 | | | LL Trns Outstate | .64 | . 18
 | 3.28 | 4.13 | 9.61 | 4.84 | 12.90 | | | P . | Term Total | 51 | 110 | 4.40 | 4.24 | 7.69 | 5.17 | 12.10 | 3.77 | | | FTIC Instate | . 25 | 17 | 2.65 | 4.01 | 5.94 | 4.34 | 8.59 | 3.24 | | 2nd | FTIC Outstate | .33 | 1 : 5 | 4.60 | 3.13 | 2.20 | 2.17 | 6.80 | 2.68 | | Summer | LL Trns Instate | .25 | 25 | 1.88 | | 7.96 | 5.30 | 9.84 | 4.17 | | | LL Trns Outstate | . 36 | '~ 10 · | 2,00 | 2.45 | 10.40 | 5.46 | 12.40 | 4.3 | | | Term Total | .27 | 57 | 2.37 | 3.19 | 7.28 | 5.23 | 9.65 | 4.0 | | | FTIC Instate | .48 | 33 | 5.82 | 4.30 | 6.36 | 4.55 | 12.20% | 4.4 | | 2nd | FTIC Outstate | .40 | 6′ | 5.50 | 4 59 | 9.00 | 6.03 | 14.50 | 3.5 | | Fall | LL Trns Instate | .41 | 42 | 2.90 | 3.30 | 9.52 | 5.56 | 12.40 | 4.6 | | | LL Trns Outstate | | 17 | 3.82 | 4.25 | 10.90 | 5.01 | 14.80 | 3.2 | | , | Term Total | .46 | 98 | 4.20 | 4.06 | 8.67 | 5.38 | 12.90 | 4.3 | | | FTIC Instate | . 42 | 29 | 4.38 | 3.62 | 6.97 | 4.87 | 11.30 | 3.8 | | 2nd | FTIC Outstate | . 47 | . 7 | 4 14 | 3.58 | 10.00 | 3.65 | 14.10 | 2.4 | | Znu | LL Trns Instate | . 36 | · 37 | 1.76 | 2.72 | 10.60 | 5.33 | 12.30
14.20 | 4.7
3.8 | | Vinter | LL IIIIS IIIS CACE | | | | | | | | | | | Le Trns Outstate | .64 | 18 . | 3.39 | 3.96 | 10.80 | 3.73 | 12.50 | 4.2 | Table 5 Summer Cohort SCH Means By Student Type and Level Over Eight Consecutive Terms | Term | Student
Type | R* | n . | X Lowe | r
SD | ∑ Uppe | r
SD | ⊤ota
X | al
SĎ | |-------------|------------------|---------------|------------|--------|---------|--------|---------|-----------|----------| | | FTIC Instate | , 1 00 | 99 | 8.09 | 3.74 | 1.57 | 2.61 | 9.66 | 3°. 18 | | 1-4 | FTIC Outstate | 1.00 | 9 | 8.22 | 3.70 | 2.33 | 3.16 | 10.60 | 3.75 | | 1st | LL Trns Instate | 1.00 | 120 | 5.52 | 4.16 | 3.85 | 3.99 | 9.38 | 4.01 | | Summer | LL Trns Outstate | 1.00 | 14 | 4.50 | 4.16 | 4.71 | 4.51 | 9.21 | 4.19 | | | Term Total | 1.00 | 242 | 6.62 | 4.18 | ° 2.91 | 3.67 | 9.52 | 3.68 | | • | FTIC Instate | .85 | 84 | | ¥ 3.69 | 2.89 | 2.99 | 13:50 | 2.63 | | 1st | FTIC Outstate | 67 | 6 | 8.67 | 5.16 | 4.50 | 5.72 | 13.20 | 2.23 | | Fa11 | LL Trns Instate | .60 | 72 | 6.76 | 4.85 | 6.01 | 5.11 | 12.80 | 3.97 | | | LL Trns Outstate | .64 | 9 | 5.89 | ,5.13 | 7.56 | 4.07 | 13.40 | 2.96 | | • | Term Total | .71 | 171 | 8.65 | 4.71 | 4.51 | 4.44 | 13.20 | 3.26 | | | FTIC Instate | .76 | • 75 | 9.75 | 4.37 | 4.08 | 4.04 | 13.80 | 2.84 | | 1st | FTIC Outstate | .67 | 6 | 10.70 | 4.32 | 3.33 | 3.78 | 14.00 | 1.55 | | Winter | LL Trns Instate | .51 . | 61 | 4.97 | 3.84 | 7.20 | 5.08 | 12.20 | 4.38 | | | LL Trns Outstate | .50 | • 7 | 3.43 | 3.55 | 8.29 | 4.86 | 11.70 | 3.15 | | • | Term Total | .62 | 149 " | 7.53 | 4.80 | 5.52 | 4.78 | 13.10 | 3.61 | | . • | FTIC Instate | .67 | 66 | 8.45 | 4.53 | 4.91 | 4.32 | 13.40 | 3.21 | | lst | FTIC Outstate | .56 | . 5 | 9.80 | 5.40 | 2.80 | 4.38 | 12.60 | 3.97 | | Spring | LL Trns Instate | . 47 | 56 | 5.54 | 4.44 | 7.50 | 5.75 | 13.00 | 4.55 | | | LL Trns Outstate | .57 | 8 | 5:38 | 4.37 | 6.63 | 4.14 | 12.00 | 2.51 | | • | Term Total | .56 | 135 | 7.11 | 4.72 | 6.01 | 5.10 | 13.10 | 3.80 | | | FTIC Instate | . 36 | 36 | 3.89 | 3.70 | 4.64 | 3.87 | 8.53 | 3.21 | | 2nd | FTIC Outstate | , .22 | 2 | 1.50 | 2.12 | 9.50 | 6.36 | 11.00 | 4.24 | | ∙Summer | LL Trns Instate | * .2 8 | 34 | 1.76 | . 2.20 | 8.68 | 4.87 | 10.40 | 4.53 | | , | LL Trns Outstate | . 29 | . 4. | 6.00 | 2.31 | 5.75 | 5.06 | 11.80 | 3.30 | | ١. | Term Total | .31 | | 2.99 | 3.23 | 6.63 | 4.80 | 9.62 | 3.96 | | | FTIC Instate | . 5,5 | 54 | 7.59 | | 5.80 | 4.05 | 13.40 | 3.00 | | 2nd · | FTIC Outstate | . 56 | . 5 | 6.20 | 2.17 | 6.00 | 2.92 | 12.20 | 3.77 | | Fa11 | LL Trns Instate | .38 | 46 | 2.76 | 3.57 | 9.89 | 5.43 | 12.70 | 4.38 | | | LL Trns Outstate | 29 | . 4 | 4.00 | 3.37 | 6.00 | 2.45 | 10.00 | 5.35 | | • | Term Total | . 45 | 109 | 5.36 | 4.54 | 7.54 | 4.99 | 12.90 | 3.77 | | | FTIC Instate | .55 | √ 54 | 5.78 | 4.28 | 7.83 | 4.68 | 13.60 | 3.09 | | 2nd | FTIC Outstate | .44 | 4 ` | 5,50 | 8.54 | 8.50 | 6.45 | 14.00 | 4.97 | | Winter | LL Trns Instate | .39 | 47 | 3.09 | 3.46 | 9.55 | 4.98 | 12.60 | 3.71 | | | LL Trns Outstate | 36 | 5 | 1.60 | 1.52 | 10.20 | 7.82 | 11.80 | 6.80 | | | Term Total | .45 | 110 | 4.43 | 4.26 | 8.70 | 5.03 | 13.10 | 3.63 | | | FTIC Instate | .47 | . 47 | 4.49 | 3.79 | 8.89 | 4.81 | 13.40 | 3.33 | | 2nd | FTIC Outstate | • .33 · | √ 3 | 5.33 | 3.21 | 6.00 | 5.29 | 11.30 | 2.08 | | | LL Trns Instate | , | • 40 | 2.85 | _3.42 | 8.70 | 4.91 | 11.50 | 3.92 | | | LL Trns Outstate | . 29 | . 4 | 1,25 | 1.50 | 9.75 | 4.72 | 11.00 | 3.37 | | | Term Total | .39 | 94 | 3.68 | , 3.64 | 8.76 | 4.81 | 12.40 | 3.65 | Comparison of Cohort Group Mean Upper Level SCH Weighted by Retention Rate by Student Type | Student | | Cohor | t Group | | |------------------|------|--------|----------|--------| | Туре | Fall | Winter | . Spring | Summer | | FTIC Instate | 3.07 | 2.44 | 2.62 | 2.97 | | FTIC Outstate ` | 2.62 | 3.02 | 2.23 | 2.54 | | LL Trns Instate | 4.71 | 4.Ò4 | 3.82 | 3.43 | | LL Trns Outstate | 4.57 | 4.48 | 5.05 | 3.42 | | Total | 3.42 | 3.63 | 3.49 | 3.21 | From Table 6, it is clear that for all student types combined, reductions made in the Summer term would have the smallest effect on upper level SCH. However, it is likely that any substantial cut in lower level enrollment could not be satisfied by reducing new Summer students only; therefore, the Fall term would be the second best choice for initiating reductions, especially if out-of-state students are targeted as the primary group to be denied admission. ## The SCH Prediction Model * The SCH prediction model is designed to estimate the SCH that would be lost for a period of up to two academic years as a result of limiting enrollment. The model has three major components: 1) the number of students denied admission; 2) mean SCH; and 3) retention rate. The model is designed to produce separate estimates for each of the four student types by term and SCH level. The model can be expressed as follows; The appropriate values for \overline{X}_{ijk} and R_{ij} are found in Tables 2 - 5. Institutional research had previously provided a model to convert SCH, and hence FTE, into student headcount by type. Using that model along with other analysis of admissions patterns it is possible to calculate how many students must be denied admission in order to conform to enrollment caps. This is the number of students used in the formula above. To illustrate the application of the model, a hypothetical example will be solved. For example, assume that 30 lower level out-of-state transfers are denied admission in the Fall and it is important to estimate the total reduction in SCH that would occur as a result of this cutback over the next two years. The \overline{X}_{ijk} and R_{ij} values are found in Table 2 which contains Fall cohort data. The model for predicting SCH can now be operationalized. SCH' LLTRNS OUTSTATE = 30(1.000)(13.44) + 30(.82)(13.84) + 30(.74)(13.30) + TOTAL SCH 30(.23) (10.80) + 30(.58)(14.20) ± 30(.54)(13.8) + 30(.51) (13.9) + 30(.31)(10.4) = 1893.47 ## Validation of the Model The validation phase of this research was designed to test the accuracy of the model in predicting SCH behavior. Such a test involves the comparison of actual vs. predicted SCH for a sample of students. The SCH means and retention rates developed from the model group were used to estimate the SCH generated by the test group for eight consecutive terms. The comparisons of the actual and predicted SCH for each of the four cohort groups are shown in Tables 7 - 10. Additionally, these data are also graphed in Figures 1 - 4. Table 7 Fall Cohort Validation Results of SCH Prediction Model | | | | | | Lower | | | Upper | | | Total | | |---------------------|---|---|---|--|---|---|---|---|---|--|--|---| | Town | Student
Type | Predicted
N | Actual
N | Predicted | Actual | Error | Predicted | Actual_ | %
Error_ | Predicted | Actual_ | Error | | Term
1st
Fall | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 2,113
552
684
364
3,713 | 2,113
552
684
364
3,713 | 23,856
6,354
4,590
3,029
38,430 | 24,037
6,558
4,896
3,074
38,565 | - 0.8
- 3.1
- 6.7
- 1.5
- 0.4 | 3,930
734
3,885
1,860
10,211 | 4,011
902
3,550
1,783
10,246 | - 2.0
-18.6
+ 9.4
+ 4.3
- 0.3 | 27,786
7,259
8,475
4,892
48,640 | 28,048
7,460
8,446
4,857
48,811 | - 0.9
- 2.7
+ 0.3
+ 0.7
- 0.4 | | lst
Winter | FTIC Instate FTIC Outstate LL Trns Instate LL Trns Outstate LTrns Outstate Term Total | 1,923
497
561
299
3,267. | 1,930
481
570
292
3,273 | 22,132
6,265
3,674
2,346
34,471 | 21,924
5,816
4,217
2,450
34,416 | + 1.0
+ 7.7
-12.9
- 4.2
0.2 | 5,134
959
-3,562
1,785
11,273 | 5,389
1,088
3,270
1,566
11,313 | - 4.7
-11.9
+ 8.9
+14.0
- 0.4 | 27,266
7,228
7,235
4,131
45,712 | 27,313
6,904
7,487
4,025
45,729 | - 0.2
+ 4.7
- 3.4
+ 2.6
0.0 | | lst
Spring
 FTIC Instate FTIC Outstate LL Trns Instate LL Trns Outstate Term Total | 1,775
464
493
269
3,008 | 1,808
450
501
267
3,026 | 18,512
5,291
2,778
1,670
28,542 | 18,619
5,049
3,059
1,869
28,596 | - 0.6
+ 4.8
- 9.2
-10.7
- 0.2 | 6.106
1,243
3,684
1,910
12,812 | 6,574
1,213
3,456
1,750
12,993 | - 7.1
+ 2.5
+ 6.6
+ 9.1
- 1.4 | 24,618
6,533
6,461
3,582
41,324 | 25,193
6,262
6,515
3,619
41,589 | - 2.3
+ 4.3
- 0.8
- 1.0
- 0.6 | | 1st
Summer | FTIC Instate FTIC Outstate LL Trns Instate LL Trns Outstate Term Total | 634
77
267
84
1,040 | 670
68
266
91 | 3,087
454
782
236
4,491 | 3,459
387
963
275
5,084 | -10.6
+17.4
-18.9
-14.2
-11.7 | 2,586
277
1,857
667
5,229 | 2,623
239
1,746
593
5,201 | - 1.4
+15.8
+ 6.3
+12.5
+ 0.6 | 5,673
731
2,641
904
9,721 | 6,082
626
2,709
868
10,285 | - 6.7
+16.8
- 2.5
+ 4.2
- 5.5 | | lst
Year | FTIC Instate FTIC Outstate LL Trns Instate LL Trns Outstate Term Total | 6,445
1,590
2,005
1,016
11,028 | 6,521
1,551
2,021
1,014
11,107 | 67,609
18,726
11,827
7,286
105,839 | 68,039
17,810
T3,135
7,677
106,661 | - 0.6
+ 5.1
-10.0
- 5.1
- 0.8 | 17,753
3,213
12,996
6,223
39,557 | 18,597
3,442
12,022
5,692
39,753 | - 4.5
- 6.5
+ 8.1
+ 9.3
- 0.5 | 85,362
21,961
24,825
13,516
145,334 | 86,636
21,252
25,757
13,369
146,414 | - 1.5
+ 3.3
- 3.6
+ 1.1
- 0.7 | | 2nd
Fall | FTIC Instate FTIC Outstate LL Trns Instate LL Trns Outstate Term Total | 1,458
364
397
211
2,451 | 1,494
341
407
228
2,470 | 11,737
3,334
1,591
971
17,889 | 11,927
3,088
1,731
1,007
17,753 | - 1.6
+ 8.0
- 8.1
- 3.6
+ 0.8 | 8,545
1,946
3,658
2,022
,16,174 | 8,799
1,883
3,635
2,198
, 16,515 | - 2.9
+ 3.3
+ 0.6
- 8.0
- 2.1 | 20,266
5,283
5,237
2,998
34,063 | 20,726
4,971
5,366
3,205
34,268 | - 2.2
+ 6.3
- 2.4
- 6.5
- 0.6 | | 2nd
Winter | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 1,374
348
356
197
2,302 | 1,413
324
391
208
2,336 | 9,175
2,730
1,113
611
13,928 | 9,310
2,448
1,361
785
13,904 | - 1.5
+11.5
-18.2
-22.1
+ 0.2 | 9,999
2,372
3,652
2,103
18,324 | 10,142
2,240
3,859
2,146
18,387 | - 1.4
+ 5.9
- 5.4
- 2.0
- 0.3 | 20,190
5,112
4,730
2,713
32,229 | 19,452
4,688
5,220
2,931
32,291 | + 3.8
+ 9.0
- 9.4
- 7.5
- 0.2 | | 2nd
Spring | FTIC Instate FTIC Outstate LL Trns Instate LL Trns Outstate Term Total | 1,310
337
335
186
2,154 | 1,333
312
358
200
2,203 | 7,245
1,946
912
596
10,703 | 7,150
1,940
938
654
10,682 | + 1.3
+ 0.3
- 2.8
- 8.9
+ 0.2 | 10,467
2,795
3,519
1,986
18,542 | 10,743
2,410
3,735
2,150
19,038 | - 2.6
+16.0
- 5.8
- 7.6
- 2.6 | 17,686
4,748
4,424
2,580
29,288 | 17,893
-4,350
-4,673
-2,804
-29,720 | - 1.2
+ 9.1
- 5.3
- 8.0 | | 2nd
Summer | FTIC Instate
FTIC Outstate | 782
171
212
113
1,262 | 787
157
233
112
1,289 | 2,299
553
354
198
3,383 | 2,299
507
359
233
3,398 | 0.0
+ 9.0
- 1.4
-15.2
- 0.4 | 5,207
1,249
1,866
973
9,140 | 5,094
1,084
2,115
937
9,230 | + 2.2
+15.2
-11.8
+ 3.8
- 1.0 | 7,498
1,797
2,226
1,185
12,523 | 7,393
1,591
2,474
1,170
12,628 | + 1.4
+12.9
-10.0
+ 1.3
- 0.8 | | 2nd
Year | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Year Total | 4,924
1,220
1,300
707
8,169 | 5,027
1,134
1,389
748
8,298 | 30,507
8,566
3,969
2,379
45,842 | 30,686
7,983
4,389
2,679
45,737 | - 0.6
+ 7.3
- 9.6
-11.2
+ 0.2 | 34,213
8,362
12,779
7,091
62,193 | 34,778
7,617
13,344
7,431
63,170 | - 1.6
+ 9.8
- 4.2
- 4.6
- 1.6 | 64,766
16,944
16,725
9,474
108,055 | 65,464
15,600
17,733
10,110
108,907 | - 1.1
+ 8.6
- 5.7
- 6.3
- 0.8 | | 2 Years
Combined | FTIC Instate FTIC Outstate LL Trns Instate LL Trns Outstate 2-Year Total | 11,369
2,810
3,305
1,723
19,197 | 11,548
2,685
3,410
1,762
19,405 | 98,089
27,295
15,792
9,661
151,706 | 98,725
25,793
17,524
10,356
152,398 | - 0.6
+ 5.8
- 9.9
- 6.7
- 0.5 | 51,992
11,571
25,778
13,318
101,725 | 53,375
11,059
25,366
13,123
102,923 | - 2.6
+ 4.6
+ 1.6
+ 1.5
- 1.2 | 150,087
38,904
41,550
22,990
253,389 | 152,100
36,852
42,890
23,479
255,321 | - 1.3
+ 5.6
0.0
- 2.1
- 0.8 | NOTE: Predicted values may not sum to the predicted totals due to round-off error. Table 8 Winter Cohort Validation Results of SCH Prediction Model | · | | | | | | | | | | | | | |---------------------|--|-------------------------------------|-----------------------------------|--|--|--|---|--|--|--|--|---| | | Student | Predicted | Actual | | Lower | <u> </u> | · | Upper | | | Total | | | _Term | Type | N | N | Predicted | Actual | Error | Predicted | Actual | Error | Predicted | Actual | %
Error | | lst
Winter | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 122
24
205
62
413 | 122
24
205
62
413 | 1,129
283
1,351
438
3,172 | 1,191
271
1,361
463
3,286 | - 5:2
+ 4.4
- 0.7
- 5.5
- 3.5 | 310
44
1,035
333
1,747 | 277
43
1,113
328
1,761 | +11.9
+ 2.7
- 7.0
+ 1.5
- 0.8 | 1,440
329
2,378
769
4,915 | 1,468
314
2,474
791
5,047 | - 1.9
+ 4.7
- 3.9
- 2.8
- 2.6 | | lst
Spring | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 100
19
156
46
322 | 100
22
160
51
333 | 914
218
1,024
309
2,451 | 971
223
1,055
382
2,631 | - 5.8
- 2.2
- 3.0
-19.2
- 6.8 | 336
48
940
286
1,640 | 337
67
939
294
1,637 | - 0.3
-28.4
+ 0.1
- 2.8
+ 0.2 | 1,250
267
1,963
596
4,091 | 1,308
290
1,994
676
4,268 | - 4.4
- 7.8
- 1.6
-11.8
- 4.1 | | 1st
Summer | FTIC Instate FTIC Outstate LL Irns Instate LL Trns Outstate Term Total | 55
6
74
16
149 | 49
7
78
21
155 | 353
49
244
68
697 | 306
45
359
98
808 | +15.4
+ 8.2
-32.0
-30.6
-13.7 | 202
15
467
84
760 | 155
20
421
133
729 | +30.3
-25.1
+11.0
-36.7
+ 4.2 | 555
64
711
152
1,457 | 461
65
780
231
1,537 | +20.3
- 2.1
- 8.8
-34.1
- 5.2 | | lst
Fall | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Oustate
Term Total | 72
15
119
43
252 | 76
17
122
39
254 | 569
101
549
235
1,464 | 591
177
675
196
1,639 | - 3.8
-43.0
-18.6
+20.0
-10.7 | 319
108
995
324
1,776 | 365
47
900
348
1,660 | -12.6
+130.7
+10.6
- 6.8
+ 7.0 | 885
209
1,546
560
3,250 | 956
224
1,575
544
3,299 | - 7.4
- 6.9
- 1.9
+ 3.0
- 1.5 | | 1st
Year | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Year Total | 349
64
554
167
1,136 | 347
70
565
173
1,155 | 2,965
647
3,169
1,052
7,783 | 3,059
716
3,450
1,139
8,364 | - 3.1
- 9.6
- 8.2
- 7.7
- 7.0 | 1,167
215
3,442
1,028
5,921 | 1,134
177
3,373
1,103
5,787 | + 2.9
+21.2
+ 2.1
- 6.8
+ 2.3 | 4,130
864
6,605
2,081
13,709 | 4,193
893
6,823
2,242
14,151 | 7 - 1.5
- 3.3
- 3.2
- 7.2
- 3.1 | | 2nd
Winter | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 66
14
111
37
227 | 67
14
109
35
225 | 436
116
475
162
1,172 | 449
112
427
150
1,138 | + 2.9
+ 3.9
+11.2
+ 8.1
+ 3.0 | 397
71
1,012
328
1,817 | 413
82
976
356
1,827 | - 3.8
-13.6
+ 3.7
- 7.9
5 | 837
188
1,483
491
2,998 | 862
194
1,403
506
2,965 | - 2.9
- 3.1
+ 5.7
- 3.0
+ 1.1 | | 2nd
Spring | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 52
14
100
37
207 | 63
13
94
31
201 | 305
80
357
144
890 | 418
86
258
116
878 | -27.0
- 6.6
+38.2
+23.9
+ 1.4 | 371
116
960
323
1,799 | 381
85
942
319
1,727 | - 2.5
+36.9
+ 1.9
+ 1.3
+ 4.1 | 677
116
1,316
468
2,685 | 799
171
1,200
435
2,605 | -15.3
-32.0
+ 9.7
+ 7.6
+ 3.1 | | 2nd
Summer | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 26
10
57
24
120 | 30
6
65
19 | 79
33
111
46
271 | 98
16
128
49
291 | 19.5
+104.8
-13.5
- 6.7 | 157
82
470
229
962 |
185
33
484
185
887 | -15.2
+148.3
- 3.0
+23.9
+ 8.4 | 236
115
580
276
1,234 | 283
49
612
234
1,178 | -16.7
+134.5
- 5.3
+17.8
+ 4.7 | | 2nd
Fall | FTIC Instate . FTIC Outstate LL Trns Instate LL Trns Outstate Term Total | 37
11
78
32
161 | 39
9
93
24
165 | 194
74
193
98
560 | 166
28
252
56
502 | +16.6
+164.3
-23.3
+75.6
+11.7 | 288
89
742
316
1,477 | 310
96
983
265
1,654 | - 7.2
- 7.3
-24.5
+19.3
-10.7 | 480
162
935
414
2,046 | 476
124
1,235
321
2,156 | + 0.7
+31.0
-24.3
+29.0
- 5.1 | | 2nd
Year | FTIC Instate FTIC Outstate LL Trns Instate LL Trns Outstate Year Total | 181
49
346
130
715 | 199
42
361
109
711 | 1,015
299
1,132
452
2,898 | 1,131
242
1,065
371
2,809 | -10.3
+23.5
+ 6.3
+21.7
+ 3.2 | 1,216
354
3,179
1,200
6,191 | 1,289
296
3,385
1,125
6,095 | - 5.7
+19.6
- 6.1
-+ 6.7
+ 1.6 | 2,232
654
4,305
1,655
8,970 | 2,420
538
4,450
1,496
8,904 | - 7.8
+21.5
- 3.3
+10.6
+ 0.7 | | 2 Years
Combined | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
2-Year Total | 530
113
900 -
297
1,851 | 546
112
926
282
1,866 | 3,980
943
4,297
1,504
10,685 | 4,190
958
4,515
1,510
11,173 | - 5.0
- 1.5
- 4.8
- 0.4
- 4.4 | 2,381
512
6,626
2,228
1,211 | 2,423
473
6,758
2,228
11,882 | - 1.7
+ 8.3
- 2.0
0.0
+ 1.9 | 6,362
1,518-
10,911
3,736
22,678 | 6,613.
1,431
11,273
3,738
23,055 | - 3.8
+ 6.1
- 3.2
- 0.1
- 1.6 | NOTE: Predicted values may not sum to the predicted totals due to round-off error. | | | | | | Lower | | | Upper | | | Total | | |---------------------|--|--------------------------------|----------------------------------|---------------------------------------|---------------------------------------|--|---|---|--|---|--|--| | Term | Student
Type | Predicted N | Actual
N_ | Predicted | Actual | 2
Error | Predicted | Actual | 2
Error | Predicted | Actual | %
Error | | lst
Spring | FTIC Instate FTIC Outstate LL Trns Instate LL Trns Outstate Term Total | 62
10
117
31
220 | 62
10
117
31
220 | 505
111
685
255
1,600 | 540
107
680
208
1,535 | - 6.5
+ 3.7
+ 0.7
+22.4
+ 4.2 | 164
13
590
152
878 | 102
12
658
154
926 | +61.1
+10.8
-10.4
- 1.6
- 5.2 | 670
125
1,275
406
2,486 | 642
119
1,338
362
2,461 | + 4.3
+ 5.0
- 4.7
+12.2
+ 1.0 | | lst
Summer | ° FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 24
4
54
13
95 | 38•
4
58
12
112 | 137
28
233
64
472 | 254
36
238
48
576 | -46.1
-22.2
- 2.3
+34.1
-18.0 | 64 *
11
278
61
400 | 113
8
310
55
486 | -43.1
+33.5
-10.2
+11.0
-17.7 | 201
39
511
126
872 | 767
44
548
103
1,062 | -45.2
-12.1
- 6.8
+21.9
-17.9 | | lst
Fall | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 42
7
73
22
143 | 37
8
87
21
153 | 269
64
342
150
851 | 327
87
452
119
985 | -17.7
-26.1
-24.4
+25.8
-13.6 | 230
26
523
155
914 | 118
25
643
157
943 | +95.0
+ 1.8
-18.7
- 1.2
- 3.1 | 498
90
863
304
1,759 | 445
112
1,095
276
1,928 | +12.0
-19.8
-21.2
+10.1
- 0.1 | | ist
Winter | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 36
7
61 °
20 | 37
8
75
18
138 | 249
64
214
138
704 | 261
77
298
81
717 | - 4.7
-17.2
-28.3
+70.0
- 1.9 | 181
23
558
157
887 | 204
42
665
158
1,069 | -11.5
-46.3
-16.1
- 0.9
-17.1 | 428
86
773
294
1,593 | 465
119 •
963
239
1,786 | - 8.0
-27.6
-19.8
+22.9
-10.8 | | lst
Year | FTIC Instate
FTIC Outstate
LL Trns Instate
LL trns Outstate
Year Total | 164
28
305
86
583 | 174
30
337
82
623 | 1,331
267
1,476
605
3,627 | 1,382
307
1,668
456
3,813 | - 3.7
-13.0
-11.5
+32.7
- 4.9 | 643
72
1,954
524
3,079 | 537
87
2,276
524
3,424 | +19.7
-17.3
-14.2
0.0
-10.1 | 1,808
340
3,431
1,127
\ 6,712 | 1,919
394
3,944
980
7,237 | - 5.8
-13.8
-13.0
+15.0
- 7.3 | | 2nd
Spring . | FTIC Instate FTIC Outstate LL Trns Instate LL Trns Outstate NTerm Total | 35
5
52
20
112 | 32
6
70
18
- 126 | 209
49
139
65
494 | 192
48
223
66
529 | + 8.6
+ 2.1
-37.9
- 1.4
- 6.7 | 196
16
495
191
863 | 182
37
646
160
1,025 | + 7.6
-57.0
-23.3
+19.2
-15.8 | 403
65
633
256
1,358 | 374
85
869
226
1,554 | + 7.7
-23.3
-27.1
+13.2
-12.6 | | 2nd
Summer | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 16 °
3
29
11
59 | 15
3
46
8
72 | 41
15
55
22
141 | 36
13
89
17
155 | +14.1
+16.8
-38.2
+31.3
- 9.2 | 92
7
233
116
450 | 92
18
375
38
523 | + 0.1
-59.7
-37.9
+205.4
-13.9 | 133
22
288
138
573 | 128
31
464
55
678 | + 4.0
-27.6
-38.0
+151.6
-15.5 | | 2nd
Fall | FTIC Instate
FTIC Outstate
LL Irns Instate
LL Trns Outstate
Term Total | 30
4
48
19
101 | 26
5
63
16
110 | . 173
22
139
72
425 | 131
39
, 155
33
358 | +32.2
-43.6
-10.2
+118.9
+18.7 | 189
36
457
206
877 | 190
28
629
178
1,025 | - 0.4
+28.6
-27.4
+15.8
-14.4 | 363
58
595
280
1,306 | 321
67
784
211
1,383 | +13.1
-13.4
-24.1
+32.6
- 5.6 | | 2nd
Winter | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 26
5
42
20
95 | 24
5
58
15
102 | 114
20
74
67
293 | 98
33
106
22
259 | +16.4
-41.0
-30.1
+205.7
+13.2 | 182
47
447
214
892 | . 198
47
611
173
1,029 | - 8.3
0.0
-26.9
+23.9
-13.3 | 294
66
518
282
1,183 | 296
80
717
195
1,288 | - 0.6
-17.2
-27.7
+44.5
- 8.2 | | 2nd
Year | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Year Total | 107
17
171
70
367 | 97
19
237
57
410 | 539
104
407
228
1,353 | 457
133
573
138
1,301 | +17.9
-21.8
-28.9
+65.1
+ 4.0 | 661
104
1,634
730
3,060 | 662
130
2,261
549
3,602 | 0.0
-20.0
-27.7
+33.0
-15.0 | 1,198
208
2,038
959
4,415 | 1,119
263
2,834
687
4,903 | + 7.0
-20.9
-28.1
+40.0
-10.0 | | 2 Years
Combined | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstale
2 Years Combined | 271
45
476
156
950 | 271
49
574
139
1,033 | 1,870
371
1,883
833
4,980 | 1,839
440
2,241
594
5,114 | + 1.7
-15.7
-16.0
+40.2
- 2.6 | 1,304
176
3,588
1,254
6,139 | 1,199
217
4,537
1,073
7,026 | + 8.8
-18.9
-21.0
+14.4
-12.6 | 3,006
548
5,469
2,086
11,134 | 3,038
657
6,778
1,667
12,140 | - 1.1
-16.6
-19.3
+25.1
- 8.3 | NOTE: Predicted values may not sum to the predicted totals due to round-off error. Table 10 Summer Cohort Validation Results of SCH Prediction Model | | | | | | | | | | | :==== | | | |---------------------|--|-------------------------------|---------------------------------|---------------------------------------|---------------------------------------|--|---------------------------------------|---------------------------------------|--|---------------------------------------|--|--| | | Student % | Predicted | Actual | | Lower | · · | | Upper | | | Total | * | | Term | Type Type | N N | TT | Predicted | Actual | Error | Predicted | Actual | Error | Predicted | Actual_ | Error | | -Summer · | FTIC Instate
FTIC Outstate
LL Trus Instate
LL Trus Outstate
Term Total | 102
9
108
17
236 | 102
9
108
17
236 | 825
74
596
76
1,562 | 786
77
569
107
1,539 | + 5.0
- 3.9
+ 4.8
-28.5
+ 1.5 | 160
21
416
80
687 | 172
5
486
60
723 | - 6.9
+319.4
-14.4
+33.5
- 5.0 | 985
95
1,013
157
2,247 | 958
82
1,055
167
2,262 | + 2.9
+16.3
- 4.0
- 6.2
- 0.7 | | ist
Fall | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 87
6
65
11
168 | 86
7
70
12
175 | 919
52
438
64
1,450 | 942
83
409
93
1,527 | - 2.4
-37.0
+ 7.1
-31.1
- 5.1 | 251
27
389
82
756 | 227
12
509
63
811 |
+10.4
+126.1
-23.5
+30.6
- 6.8 | 1,171
80
829
146
2,212 | 1,169
95
918
156
2,338 | + 0.1
-16.2
- 9.6
- 6.5
- 5.4 | | lst | FFIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 78
6
55
9
146 | 76
6
55
10
147 | 756
65
274
29
1,102 | 760
55
274
77
1,166 | - 0.6
+17.3
- 0.1
-62.1
- 5.5 | 316
20
397
70
808 | 271
20
464
54
809 | +16.7
+ 0.4
-14.5
+30.5
- 0.2 | 1,070
84
672
100
1,917 | 1,031
75
738
131
1,975 | + 3.8
+12.6
- 8.9
-24.1
- 2.9 | | lst
Spring | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 68
5
51
10
132 | 71
5
52
4
132 | 578
49
281
52
940 | 623
52
194
35
904 | - 7.3
- 5.0
+45.0
+48.9
+ 3.9 | 336
14
381
64
794 | 333
10
493
14
850 | + 0.8
+41.1
-22.8
+358.9
- 6.6 | 916
64
660
116
1,731 | 956
62
687
49
1,754 | - 4.2
+ 2.4
- 3.9
+137.3
- 1.3 | | lst
Year | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Year Total | 335
26
279
47
682 | 335
27
285
43
690 | 3,081
265
1,591
226
5,052 | 3,111
267
1,446
312
5,136 | - 1.0
- 0.7
+10.1
-27.4
- 1.6 | 1,063
82
1,584
303
3,042 | 1,003
47
1,952
191
3,193 | + 6.0
+74.4
-18.9
+58.7
- 4.7 | 4,146
322
3,178
529
8,103 | 4,114
314
3,398
503
8,329 | + 0.8
+ 2.4
- 6.5
+ 5.1
- 2.7 | | 2nd
Summer | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 37
2
30
5
73 | 35
2
34
4
75 | 143
3
53
30
219 | 176
6
88
5
275 | -18.8
-50.5
-39.5
+491.6
-20.5 | 170
19
263
28
485 | 146
9
239
45
439 | +16.7
+109.0
+23.5
-37.0
+10.5 | 313
22
315
58
704 | 322
15
327
50
714 | - 2.7
+45.2
- 3.8
+16.3
- 1.4 | | 2nd
Fall | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 56
5
41
5
106 | 61
6
45
5
117 | 426
31
113
19
569 | 399
50
118
0
567 | + 6.7
-37.5
- 4.0
-
+ 0.4 | 801 | 398
40
450
63
951 | -18.2
-24.4
- 9.8
-53.0
-15.8 | 752
62
521
49
1,370 | 797 °
90
568
63
1,518 | -31.7
- 8.2
-21.7
- 9.8 | | 2nd
Winter | FTIC Instate
FTIC Outstate
LL Trns Instate
LL Trns Outstate
Term Total | 56
4
42
6
106 | 54
6
40
4
104 | 324
22
130
10
471 | 327
32
129
6
494 | - 0.8
-31.9
+ 0.9
+63.2
- 4.8 | 439
34
358
62
924 | 404
45
403
49
901 | + '8.7
-25.2
-11.2
+27.4
+ 2.5 | 763
55
530
72
1,391 | 731
77
532
55
1,395 | + 4.4
-28.0
- 0.2
+31.3
- 0.3 | | 2nd.
Spring | FTIC Instate FTIC Outstate LL Trns Instate LL Trns Outstate Term Total | 48
3
36
5 | 52
3
38
4
97 | 215
16
102
6
339 | 263
19
97
13
392 | -18.2
-16.7
+ 4.7
-52.6
-13.6 | 426
18
310
48
806 | 458
22
399
39 | - 6.9
-19.0
-22.3
+23.3 | 642
34
410
54 | 721
41
496
52
1,310 | -10.9
-18.1
-17.4
+ 4.3
-12.9 | | 2nd
Year | FTIC Instate FTIC Outstate LL Trns Instate LL Trns, Outstate Year Total | 197
14
149
21
377 | 202
17
157
17
393 | 1,107
- 72
398
87
1,594 | 1,165
107
432
24
1,728 | - 5.0
-32.7
- 7.9
+260.3
- 7:8 | 1,362
101
1,380
169
3,010 | 1,406
116
1,491
196
3,209 | - 3.1
-12.9
- 7.4
-13.7
- 6.2 | 2,470
173
1,778
235
4,598 | 2,575
223
1,923
220
4,937 | - 4.1
-22.5
7.5
+ 6.8
- 6.9 | | 2 Years
Combined | FTIC Instate
FTIC Outstate | 532
40 | 537
44
442
60
1,083 | 4,187
337
1,986
313
6,639 | 4,276
374
1,878
336
6,864 | - 2.1
- 9.8
+ 5.7
- 6.9
- 3.3 | 2,427
183
2,968
472
6,061 | 2,409
163
3,443
387
6,402 | + 0.7
+12.2
-13.8
+22.1
- 5.3 | 4,957
764 | 6,685
537
5,321
723
13,266 | - 1.0
- 7.9
- 6.9
+ 5.6
- 4.3 | NOTE: Predicted values may not sum to the predicted totals due to-round-off error. ERIC # COMPARISON OF ACTUAL AND PREDICTED TOTAL STUDENT CREDIT HOURS FOR THE FALL COHORT GROUP OVER EIGHT CONSECUTIVE TERMS FIGURE 1 21 COMPARISON OF ACTUAL AND PREDICTED TOTAL STUDENT CREDIT HOURS FOR THE WINTER COHORT GROUP OVER EIGHT CONSECUTIVE TERMS COMPARISON OF ACTUAL AND PREDICTED TOTAL STUDENT CREDIT HOURS FOR THE SPRING COHORT GROUP OVER EIGHT CONSECUTIVE TERMS FIGURE 3 18 22 # COMPARISON OF ACTUAL AND PREDICTED TOTAL STUDENT CREDIT HOURS FOR THE SUMMER COHORT GROUP OVER EIGHT CONSECUTIVE TERMS 19 ERIC Full Text Provided by ERIC From the error percentages shown in Table 7. - 10, it should be noted that the model produces reasonably accurate predictions. Most, if not all, of the large percentage errors would appear to be attributable to small sample sizes. The errors are usually smaller when predicting total SCH as compared to the separate predictions for upper and lower SCH. This would apparently be a function of a cancellation effect, where positive and negative errors are balanced in the prediction of total SCH. In a similar manner, most of the larger errors made in predictions for a single term are cancelled when the data are combined into one or two academic years. The total SCH predictions of the four cohort groups over two years ranged from -0.8 to -8.3 percent error. ### Conclusion This research has attempted to develop a model for predicting future SCH for students who are denied admission to USF. Such a model could be an important planning tool for estimating the loss of state funding especially if enrollment limitations affect a large number of students. The most important feature of the model is that it provides a method for gauging not only the immediate effects of enrollment limitations on funding but the expected loss of SCH for two years as well. The model for predicting SCH has been validated by the comparison of actual to predicted SCH for a sample of students. The most accurate predictions are made in the estimate of total SCH rather than in separate estimates for lower and upper SCH. Additionally, the errors were much smaller in predicting SCH on a yearly rather than on a term basis. For the two year period, the predicted SCH error for all student types was less than five percent for three of the four cohort groups. The largest total SCH error (-8.3%) occurred in the Spring cohort group.