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Abstract.

Perhaps the two most significant advances in educational mea-
surement over the past twenty years have been item response theory

"and multiple-matrix sampling designs. Unfortunately, few re-

searchers interestéd in assessment have been able to. enjoy the
full benefits of both advances simultaneously; the current methods
cf item response theory.cannot deal with the sparse data (at the
level of. individuals) that characterize the most efficiént samp-
ling designs. This research develops an approach based on item-
response models defined at the level of salient subject groups

rather than at the level of individuals, designed for use with the

most efficient multiple-matrix designs, i.e., those in which each

‘sampled subject is presented at most one item per scale.

In each of thtee NAEP mathematics subtopics, Reiser's group-
effects latent trait model was fit to the proportions of correct
response to items as observed in the cells 6f a design including
sex, race/ethnicity, region of the country, and size and type of
community. , Item -parameters and contrasts among demographic groups
were thus estimated in each of four age/year data sets: 1972/73
and 1977/78 dagp for 13-year olds and l7-year olds. (Data were
taken from NAEP public release tapes from these age/years and from
the NAEP mathematics 1972/78 "change" tape.) Based on\items common
to two or more age levels and/or assessment years, results were
linked across ages and over time in each subtopic. Item para-
meters and group averages were then obtained on scales common
across ages and years, despite the fact that different (but over-
lapping) sets of items had been administered in each age/year.

Successful calibration and linking in all three subtopics demon-
strates the feasibility of applying item-response methods to the
sparse sampling designs of mogern assessment. It is seen, how-
ever, that scaling must be accomplished within fairly narrowly-
defined skill areas, such as the NAEP subtopics, if the integrity
of scales across demographic groups and over time is to be main-
tained. 1In particular, item response scaling of NAEP test book-
lets as a whole is to be most strongly discouraged as it virtually
guarantees item parameter drift over time and poor fit to uni-
dimensional item response models.
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PREFACE .

Item response-curve models have triggered no less than a
revolution in educational measurement. Little wonder, since so
many' measurement problems that are difficult or impossible to
'solve within the framework of classical psychometric theory become
quite tractable under the item response-curve approach; examples
include anaiyses of the information that items'and tests provide
at various levels of ability, measurement on an invariant scale
from any subset of of calibréted items, and simplified test-

- equating procedures. . ;

To date these benefits have not been realized in the National
Assessment of Educational Progress. The primary reason, perhaps,

is NAEP's use of multiple-matrix sampling designs--efficient
procedures: guaranteed to provide economical estimates of group
level attainment. Sufficiéntly precise estimates of group-level
attainment may be obtained by administering only a few items from
a given skill-area to any 'selected subject. Unfortunately, the
current state of item response-curve theory cannot handle data
such as gathered by NAEP, wherein each subject.responds to too few
items in a specific skill area %o permit the stable estimation of
his ability levél. ‘

This project is intended to further the extension of item
response-curve theory to the assessment setting. The foundatigns
of the present work appeared in the estimation procedures outlined
in Bock (1976) that were later put into practice with the Cali-
fornia Assessment Program®(Bock, 1979; Bock and Mislevy, 1981);
item response curve models are in these applications -defined not
at the level of individuals but at the level of salient groups of
individuals. Reiser's (1980) dissertation research introduced a
group-level item response-curve model that is particularly suited
fo NAEP data, addressing characteristics of test items and per-
formances in the cells of a design on persons. The present work
develops procedures to link such results across assessment years
and/or age groups. Examples are drawn from the 1972/73 and
1977/78 NAEP mathematics assessments. .
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> CHAPTER 1

INTRODUCTION AND BACKGROUND
?

"The Nature of Educational Assessment

. The purpose of edﬁcational~assessment is to provide infor-
'ﬁation about the levels of skills or attitudés in specified popu-
, }atiohs o% subjects. .Reéultsqmay'ﬁegcompared from one pOphlationﬂ
to another'og from one-péint,inKtiTg?to another, in order to-"study

the effects of educational treatments or societal trends. The

distinguishing feature of assessments, however, %f their focus on

groups rather than.on individuals.

By virtue of its distinctvpurposes, assessment reqﬁires a
different technology than its c®ose cousin, educational meas-
urement. The "true-score” models of traditional psychometrics
concerh the measurement of individual subjects rather than groups
of subjects; it is not surprising that the strategies of
test construction designed fb provide optimal measurement of
individuals are not optimal for assessment. While borrowing
heavil§ from the models and the concepts of educational mea-
surement, assessment technology has gainfully employed ideas’ from
other fields a%s well, Aotably those of opinion survey samplfng and

‘sampling design theory.
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The state of the art ofzaésessment in the United States is

® - exemplified by the National Assessment of Educatioral Progress

(NAEP) and the California Assessment Prodgram (CAP). These two

programs have, since their inceptions over a decade ago, been

4 .
proving grounds for measurement and statistical advances designed

to obtain efficient and economical estimates of group-level at-
o

- . K

tainment. Our  attention will focus primarily on the National

Assessment, although discussion of certain topics will be clari-

fied with examples from the California Assessment.

(S

The National Assessment of Educational Progress charts levels

of attainment in ten broad areas, including Reauing, Science,

, Mathematics, and Writing Skills. Each area is assesseq‘periodic— >

ally, usually once every four or five years. Information is
. _

gathered mainly through the administration of multiple-choice and

open-ended tasks from the tafget area to subjects selected in the. .

NAEP sampllng de51gn Demographic -and -educational background data

are also obtalned for each sampled subject.,. Results are reported

as proportions of correct response to individual items and clus- A

ters of iteins, for groups of 1nd1v1duals defined by demographic

varlables such as age, sex, reglon of the country, size of com-

)

munity, and so on.

K Comparing NAEP results over time or across age-groups re-

quires measurement on an invariant scale. Proportions of correct

response for a given item may be compared across all the assess-

. but cdertainly trends in,

ments in which it wasc°administered..
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say, Mathematics skill are inadequately revealed by performance on
any single item. To overcome the idiosyncracies,of individual

items, information must be combined over several items testing the

/ L. . '
/ same essential skills. -
/
¢ - W
Average percernts-correct aver clusters of items\may instead

.
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be followed, but only as long: as the composition of the cluster
does not change. NAEP uses-this optlon at present but it is
hampered by the fact that typically ‘one fourth of the items in each

assessment are released to the public and ret1red from the item .

nool. Comparisons across. assessments of average percents-correct

of clusters of items will become less reliable as the numbers 5t

common items shrink over the years.

ot
o
’

This repdbrt explores methods by which moédern item response-

curve .measurement theory may be applied to the assessment setting

¢

to solve the problems of charting progress over time. The next

|
3

-sect{cn“cf‘this.chapter reviews the basics of multiple-matrix

" sampling theory, the'development‘which has contributeg so much to
the success of large-scale assessments such as NAEP to date. It
is upon this sampling ffamewori that neasurement models-must build
if they are truly to advance the practice of assessment. Next,
‘the current practiceS»of'reporting assessment results are
reviewed. Their 11m1tat10ns and prospects for overcoming them are

d1scussed The chapter concludes w1th a succinct statemen; of the

object1ves of ‘the present research.
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o Multiple-Matrix Sampling;“
. - / ~ K X ,
¢ The accountability movement of the 1960's 1nsp1red the' cre-

ation of a number of local and statewide testing programs 1ntended

to provide feedback about the, effects of public expenditures on .

education.. The methodology employed in these programs was that of
standardized achievement testing. Every pupil in a school or
classroom was. administered an achwevement test con51st1ng of as
many as -two hundred test 1tems, an undertaking demanding hours or’
even ‘days of classroom time from-each pupil. Designed to prov1oe
maximal d1fferent1ation among students, these tests yield highly
accurate scores for each pupil in but a few broad skill areas.

-4

Averages of pupil-level scores obtained in such a scheme did

LN

1ndeed reflect levels’ of performance in the school or classroom,
but in a most highly inefficient manner. The administration of
intensive eyery—pupil testing with traditional achievement tests
suffers several serious. deficiencies if it is only the group—level
results that_areunecessary for discussion by the public and the‘H
educational community.: . The, large numbers of items which must be
administered to a student in a skill area if distinctions are to
be made among students are simply not necessary if only infor-
mation about average levels of attainment in the group as a whode
is desired. Such a scheme expends scarce - educatioual resources to
measure each student much more—prec1se1y than is required in an
assessment, but by providing results in only a few broadly-
.conceived skill areas, offers little in the way of specific guid—

-

anc€ for.improving the curriculum.




[ . . T N \ ?ﬁl‘q\ﬂ-.

< Dur1ng this same per1od sample survey techn1ques vere be-

coming a familiar and widely- accepted mechanism for guaging the

strength of various attjtudes and op1n1ons among the publ1c,
mainly on issues of social or political relevance. Not'every
person is 1nterv1ewed not every person interviewed is.asked all

the "same quest1ons. Yet sat1sfactor1ly preC1se and rel1able

information iS'obta1ned‘about ‘the® prevalence of attitudes in the
\ ,

public at large., Why not apply these same methods to educational

assessment?

b ]

At the request of William Turnbull, president of Educational
. .

Testing Services, Frederic Lord investigated the possibility of

estimating levels of ability in a population by means of "mul-

» ?

tiple—matr‘x sampling”--that is, by administering‘diffékent sub- :

sets of an item domain to d1fferent samples of persons (Lord, - - *

1962; Lord and Novick, 1968 Chapter 11).

P

The simplest application of multigge—matﬁfx sampling is in.
estimating the average item 'score in a populgtion of N‘subiects
for an item pool of K test items. _The'average score that would be » |

a

obtained by administering every item to every subject can be -~

o @
random samples of n subjects each to random samples of k items

-

\
approx1mated by observ1ng the responses of, say, t d1fferent y
i

each,, (This is referred to in the mult;ple—matrlx sampling liter- |

.~ ature as a t/k/n des1gn ) The e;pected value of the aVerage'item.

A

score over all such samples is the population average item score.
3
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‘One ‘of the 'most important results offLord‘s'invésfigations
waépthe concluslion that fhe estimation of the population average ', &
is most precise for a givén number of reéponéé;‘ﬁhen k=1; tEat is,
when the,{ésponseéﬁfor.different‘Qﬁems have beeh obtained from

»

non-overlapping sampleé of subjects. Stated simply, two responses

* contain’more information about the~pdpulat§on if f%ey are from

v'“'vtdffferent persons ‘than if they are from the same person. ' '
Pandey and Carlson (1976), in a study of data from the Cali-
-fornia reading asséssment, f@end the effect to be géneralizable.
& ) \ : X
The error variance associated\with estimates of the population
mean was reduced almost four-fold ‘when, for the same number of

: y : . y Y
responses,- forms of ten items each were ‘administered to samples of

R ten subjects each, as compared to a design underswhich the items

N »

4

<.

3

were administered as two fifty-item forms to ten subjects each. &

Practical work génerally requires a more complicated sampling
- : ﬁ

design than those described*above. - In the California Assessment,

as an example, results must pe reported individually for each
x . 1 : .

"school. In the National Assessment, results must be reported for

‘ e : & : :
the cells and the margins of a design based on demdgraphic vari- “

3

. abless Samplling of subjects must therefore be carried out within

@

levels of stratification in both cases, akjowing for: the possi-

"bility of different selection'probabilities within different cells

. to meet requirements for”the precision of estimationizfg

<
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\may chart thé'flowuof“public support behind the candidates.

Item pools are generally statified as well, into divisions of

increasingly narrower skill requirements.  $heVgoal is to define
classes of items which are similarly affected by specific attrib-
utes of educational treatments, in order that treatments can be
monitored and modified as a result of the feedback from the asse-
ssment. Our attention in this paper will focus on items within *
the fihest level of stfatifi;ation of the item pool, which, fol-

lowing the practice of the California Assessment, ‘'we refer to as a

"skill element."

- . . »

- Reporting Assessment-Results

As noted above, comparisons of assessment resultg over time
and across assessments.requires measurement on an invariant scéie,
The method by.which this requirement is échieved in pﬁbli: opinion
survey research is to present subjects with questions that remain
constaht*over time; by asking, fo; example, "Which of these can-
didates would you vote for if the election were td@ay?" of sub-

. . T
jects interviewed during the six months before the election, one

Tyler's (1968) remarks and Womer's (1973) monograph suggest -that
this same method was originally intqnded for reporting the results

of the National Assessment of Educational Progress.

?
‘The "fixed-item" approach to reporting the results of assess-
ments, as it might be called, focuses on comparisons of_performF

ance between groups or across time on a single, specific task.

£ .

>




Interpretation is straight-forward as it applies to performance on
that particular item,>but the problem lies in generalizing the
results. . The 1972/73 NAEP Mathematics Assessment, for example,
presented 200 items to 13-year-olds alone; results for the cells
of a sex by race by size-and-type of community design would have
to be exp:essed as some ten thousand separate percent-correct
values. Comparisons across groups would vary across items as a
result of measurement error as well as with the skills tépped by
the items. How could such a preponderance of detail be suited to

general public dissemination or discussion?

Educational test items, unlike public opinion survey ques-

tions, are not usually important in and of themselves, but instead
o

‘as representatives of a class of tasks requiring similar skills.

It is these generalized skills rather than the specific items that

are addressed by instruction, and it is this level at which as-

_sessment results must be reported. The technology of educational

measurement, as it had developed by the early 1970's (see, for
example, Cronbach et al, 1972), was able to provide a framework
for generalizing results across test items within a skill area:

the "random-item® model.

Under the "random-item" approach to reborting the results of

assessments, the specific items ®rom a given skill area are con-

'sidered a random sample from a population of -items that, taken

together, defines the area. The average item score by & group of

subjects to a randomly—selectéﬁ subset of these items is an esti-

L e

~
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mate of the group's average for the entire population of items in

the area. 9§cause resu1t$ are averaged over a number of items,
peculiarities of item formats and distractors tend to cancel out,
revealing trends which underly performancevon all the items in the ¢
‘skill area. Under this model, average item scores may be compared
across groups and over time even though different sets of items

¢ may have been administered, as long as the set of items admin-

. istered in each assessment has been chosen at random from an

invariant population of items.

The assumptions of the "random-item" approach are not;
unforfunately, met in general practice. The problem lies with the
requirement of randomly sampling items from an invariant item pool.
If comparisons are desired across age groups, for example, sub-
jects must be presented itemsﬁfrom the same item pool; the effi-
ciency ofgﬁstimation suffers if younger subjects are presented
just as many hard items as are necessary to tap the skills of
older subjects, and older subjects are presented too many'easy

items just so the younger subjects can be tested.

’ .
A more serious problem is the charting of results over ‘time.

If item pools femain'invariant; they cannot reflect new emphases

in educational treatmentsrnor can they retire items which have

outlived their usefulness; neither can.items be released ﬁo the

publiq to aid the interpretation of results without compromising

. the integrity of the measurements. Yet if apparently desirable

revisions to certain items are carried out, the average item
&
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scores estimated in different assessments are not comparable; they
are estimates of performance in a shifting collection of items,

perhaps harder or easier on the whole from one year to the next.

Changes in subjects' skill levels are confounded with changes in

the composition of the item pool.

The National Assessment, recognizing this problem, has re-
sponded "by reporting results that are to be compared over time in

two different ways.

For non-=technical reports slated for public release, propor-

tions of items correct are reported over all items in a skill

?

~*"area, despite modifications in the item pool and decidely non-

random seleciions of items in an assessment. The comparisons
implied by the figures for differeat yeérs, althouqgh they do not
meet the assumptidns required to assure meaningfulness, are con-
sidered useful nonetheless. And indeed they may be good approx-
imatiéns of phe comparisons that would have resulted under ideal
conditions; i.e., true”random sampling in both yeafs from a fixed

pool of items.

For scientific investigations, NAEP provides reports and data

(3

tapes based on only those items which appear on all the assess-
ments to be compared. The assumpt}ons of the "randem-item" model

may be met in this way, defining the skill area to be that which

©

is measured by the average of that specific collection of items.

Comparisons, restricted to these so-called "change items," suffer

Le

-10-




‘measurement models. An IRC model individually parameterizes each

. assessement data; namely, Reiser's (1980) groﬁp effects model,

e

from the culling of items that cannot be matcﬁed, in that poten-= ;‘
tialiy useful information from these items must be ignored. The
resourcés expended in gathering this information have not been
justified in this respect. A%alyses of trends over time are

as well, as the set of items common to ail assessQFnts in ques-

tion tends to shrink when more time points are considered.

Similar problems in the measurement of individual subjects(

have been overcome with the advent of. item response-curve (IRC)

test item in a suitable domain'in terﬁs of its relationship to an
underlying scale of ability. Subjgcts may then be measured on an
invariant scale of attainment, based on their responses.to any
subset--not just a randomly selected subset--of itgms. The chal-
lenge is to apply the methods of IRC theory to the setting of
assessment, borrowing concepts and machinery to free reporting
from the constraints 6f classical test theory, while at the same

time building upon the multiple-matrix sampling framework.
Problem Statement
The objective of this research is to further the development -

of one approach to applying item response-curve methods to

which (1) allows the estimation of group-level parameters from
item responses obtained in an efficient multiple-matrix sampling

design, (2) yields these parameter estimates on a scale that is




v .
v . .

-3
e

invariant over time and across groups, and (3) permits- the evolu-
tion of the item pool over time without degrading the integrity or
the generality of the results. The steps we take to this end are

as follows:

1. Develop an algorithm for linking estimates from the Reiser
model across assessments. The approach will be based on a
proposal by. Tucker (1948). Linear transformations are
determined to provide optimal agreement among esfimates
from an arbitrary number of assessments, linked by an
arbitrary pattern of common items. \

2. Demonstrate the use of'the group-effects model and the
linking program with data from the NAEP 1972/73 and 1977/78
Mathematics Asseésmentéi Scales will be linked aé;oss
assessment years and across the 13- and 17-year—old age

groups in three skill areas.

-12-
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CHAPTER II

©

ITEM RESPONSE-CURVE METHODS FOR ASSESSMENT DATA

This chapter develops an approach for adapting item

7 o

response-curve methods td the assessment setting. The first .
section ,is a brief review of item response-curve theory as it has
been developed for measuring individual subjects. Features and

properties of IRC models that will be important in our generaliza=. - .

‘tion to group-level data’'will be emphacized. The second section

discusses the notion of applying IRC methods to- data obtained from

multiple-matrix sampling designs. 1In barticular we consider the

oy -

option of defining iﬁg models at the level of subject groups
rather than individuals. The third section is a non-technical
description of Reiser's group-effects, an IRC model defined at the

level of grdubs that is particularly well-suited to the demo-

. graphic stratifications used by the National Assessment. The

‘model from one assessment to others, thus providing the continuity

of meaSurement,necessaryafor longitudinal analyses. (The topics

O : - ) ‘ h -
treated in the last two sections, the Reiser model and the linking
procedures, are treated in a more technical manner in Appendices A

and B respectively.)

-13-
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Fundamentals of Item Response-Curve Theory
3

The models of item response-curve theory differ most radi-
cally from the models of tradit{onal "troe—score" psychometrics by
parameterizing test items individually in terms of their rela-
t10nsh1ps to the underly1ng ability, rather than treat1ng them as
random samples from a pool of interchangable items. Once a set of
items has been "calibrated" (i.e., the parameters of the items
have been estimated), a subject's ability can be estimated from
his responses to any subset of the items. This is the case even
when the items he has been presented are only easy ones‘or.only
hard ones--assuming that the IRC modeIafits the circumstances
reasonably well. ‘

“The heart of an IRC model 1s a mathematical equation for
the probab111ty of a correct response “to- a particular item by a
part1cular subject in terms of one or more parameters'that 1n—
d1cate the subject’ s abiliy and one or more parameters descr1b1ng T

how responses to the item are influenced by ability.

To illustrate, we will consider the Birnbaum'2—parameter

‘logistic item response- -curve model, which will be seen to share

@

many similarities with Reiser's group effects model for assessment

data. The probab111ty that Subject i will respond correctly to

o

Item j is diven by the following function: .
expll.7 Aj (61 - Bj)]
Prob(Xij=l) = m-mmmmmmm==l-mmm—momloo—- (1)
o 1 + expll.7 Aj (&1 - Bj)] :

where

-14-
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" Xij, the response, is 1 if it is correct and 0 if not,

exp 1is the exponential function,

01 is the "ability" parameter of Subject i,
B . e
Aj . is the "slope" parameter of Item j, and
Bj  is the "threShold"vparaméter of Item j. o ‘

T

"~ .
4

(The scaling constant 1.7 is included in this expression in ‘order
to make the item parameters in the Birnbaum logistic medel match

more closely the item parameters in the normal ogive model.)

,The~function_s§own)abbve describes how likely it is that é
subject‘wiih a given ability will respond éorrettly to Item j.
This function.can be graphed, as in Figure 1l: the item response

- curve fo? Item j. It may be seen that subjects with very7}9w
values of é have‘little chance of respond%ng correctly. - As ©
increasés, so do chances of responding correétly. For a subject
with an ability that has the value Bj (the threshold of Item j),

the chances of a correct response are 50-50. As ability continues

to increase, chances of responding correctly increase also until

s
/

A | N
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it is nearly a certainly at very high levels of ability.

When this model is fitted to data, it is capable of
accounting for the facts that--

(l)‘ ome subjects perform better than others on the items

_in %hs\zkill area. ‘ o
(2) Some items in the area are easier than others.

(3) Some items ats\more reliable indicators of the ability

: @D
\ 1
|
)




than ‘otheérs. '
Figu?e 2 shows three different .item response curves on Ehe same '
plot. It may be seen that, on thg average; Item 3"is harder than
Item 2, which is harder than Item 1. It may also be seen that the
‘higher the value of.'an item's slope, the more sensitively an item
— reacts to cpanges in subjéct ability. Item 2 is more informative

’

than Item *, which in turn is more informative than Item 3. "

‘The manner in which subject and item parameters combine to
7] 1

produce probabilities of correct response is illustrated in Tables

1 and 2. Tébiéwf“shows,‘for the four hypothetical items and sig
hypotﬁetical subjects, the qﬁantity 1.7 Aj (ei - Bj). The orderly
relationships améng the parameter values are most clear in this |
chart, showing What are called the "logits" of correct response.
' |

Table 2 transforms these logits to the more familiar units of.

probabilities via Equation 1.

It méy be nofed at this point that the units for the subject
and item parameters are unidue only up to a linear transformation.
That is, equivalent relationships may be expressed by transforming
all the parameters/by the linear function f(x)=mx+b as follows:

Oi* =m 61 + b

Aj* Aj / m

’

Bj* = m Bj - b.
It may be readily verified that these transformed subject and item
parameters yield exactly the same probabilities of correct re-

sponse as the originals, since ‘ - : .
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TABLE 1
LOGITS OF EXPECTEL' PROPORTIONS CORRECT

A S Y S S S EEEEEEEE ST

I
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[42]
c
(0]
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e
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3
D
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Pt
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tt
Pt
o
o
o

ITEMS
“TBj: . -2.000 - -1.000  1.000  2.000
' 0.500 0.500 1.000
1 osoo . 1.500  0.250  -0.750  -2.500
o 2 -1.500 | ~0.500 —0.2?0 -1.250  -3.500
3 0.500 2,500 0.750  -0.250  =1.500
4 -0.500 .1.5bo_ ©0.250 -0.750 -2.500
5 1.000 3.000 :1.600. o.ooo~‘- -1.000
ii_mfﬁ“ 6 0.000 2,000  0.500  0.500  -2.000
. TABLE 2 = *
~ " EXPECTED PROPORTIONS CORRECT
§ - TRj: 20000 -1.000 . 1.000  2.000
SUBJECT i 1.7 Aj:+  1.000  0.500 0.500 . 1.000
i 1 om0 . 818 .562 - .321  .076
| 2 -1.500 622 438 223 029
' 3 0.500 ,924 .679 438 182
, 4 -0.500 .818 .56. .321 076
l 1.000 .953 .731 500 269
.« 6 0.000 881 .622 378 119
i
i
R h




1.7 Aj* (ei* - By*) = 1.7 A3 (ei - Bj). o
The implication is®that when parameters are estimated for the same
set of items from d1fferent sets of data, they can be expected to'
differ by such as 11near transformatlon. It is a pract1ca1 prob—
lem to est1mate the optimal transformation; various solutlons and
proposals have %een made by Tucker (1948), Lord and Nov1ck (1968),

o o £

and Haebera (1981). . ' .

Benefits of Item Response Curve Models

b .

e —When—a-&otlection-of-subjects' responses-to..test-items..can.be .
. \ :
adequately summarized in terms of an item response-curve model

like the one described above, several benefits accrue:

Iﬁva:iance withArespecﬁ to item eelection. Once a collectionu
of items has been caliprated,(i.e.,‘the parameters of the items
have been estimated), a spbject's ability may be estimated on the
basis of his responses to eny‘subset of the items--randomly se-
lected or not. This‘meane that, as an example, youngerAstudents
may be "administered mosﬁly easy iteﬂs while OIder students are

E3

administered mostly difficult items from the same scale.

New items can be added to the domaln. Nev items measuring'

the same trait can be l1nked into an ex1st1ng scale by administer-
ifg them along with items that -have already been calibrated. The
new items can be calibrated from this data, then their fit to the

. i

model verified before they are used to estimate subjects’
abilities. : Q*«¢
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Flawed items can be corrected. .Items found to<have flaws in
their grammar, format, or conception can be revised, then re-cal-

ibrated .into the domain as if they were new items.

_Items can be dropped from the bank. Without affecting the
the scale of measurement, items may be retired from use,’either
because they are outdated or because they will be used to illus-

traté the content area in&reports relea§ed to the public.

Content-referencing of scores. -The scaled scores~(e) from

--IRE - theory~are deflned 1mp11c1tly byuthemprobabllltles oiwcorrect

responses they imply for each of the items 1n the 'skill area. The

\ﬂ.—ﬂ

meaning of an ab111ty‘est1mate can be 1nterpreted thexefore, byv

1nspect1ng the content of the items with thresholds 1n that region’

of the scale-—W1thout reference to the distribution of ability in
0 .
any population of subjects. Scale scores may still be interpreted

in the more familiar manner of norm-referencing of course, with

the compuation of percentiles, stanines, standarq scoreg['and SO
on, with regard .to specified populations of subjects..
. 3 < .

Linearity with external variables. Because IRC ability

estimates are ‘not sUbject to the floor and ceiling. effects of

numbers]rlght and’ percents correct ~they tend to have more VYinear .

9

relatlgnshlps with external variables such as. SES, age, and years )

N .

of education. - . -
' ~ A ‘ \; n .
Well-defined 'standard errors. Because items are large-sample

PR

calibrated, they are considered 'fixed' rather than 'random’ from

( )
.
.

=

y
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a statistical point of vieew. For this reason, standard errors of

.estimating subjects' abilities, and, indirectly,'reliabilities,
.o 1) e .
are easy to compute (seesLord & Novick, 1968; Mislevy, 1981).

Moreover, these standard errors are correctly-expressed as a

e \

function-of the ability itself ra;hef thagﬁgratuitousiy and erron-

kg . . 4
. eously assumed constant as in classical:theory for number-right

-~

rScores. ¢
»
. 4 " a v
Suitability for longitudinal studies. With the-use of alter-

nate test forms consisting of! items from the same scale, IRC

ability estimates are amenable to the study of trends or program

effects. ° o

Assumptions’of Item Response Curve Models

*
~

If an IRCLﬁodel is to fit data, the assumptions .of the model
‘ , - A : . !
must be reasonably well satisfied. The main assumptions are

L]

discussed below. ~*

-

Unidimensionality. Néarly all applied work uses IRC models

~that assume a single underlying ability scale. This means’ that

subjects'.differing probabilities of cofrect'résponse: with re-

“spect to each of the items in.the scale, can be described by .a S,

b

“single variable. If one subject's probability of.é correct re-
sponse to a glve, item -is higher than that of a second subject
.~ - the assumptlon of unldlmen51onal1ty 1mp11es that the flrstasubject

has hlgher probab111t1es oﬁlcorrect response than the' sécond

©

subject on all the items in the scale.

3
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Local (conditional) independence. A subject's response to a

given item is assumed to depend only on his level of ability, not
on extraneous factors such as the position of the item on the test
or his responses.gnd reactions to preceding items. %

Temporal stability. Item parameters, and equivalently;

.relationships among items, must remain stable over time to guaran-

tee the comparability of ability estimates over time.

/
/
/ -
Goodness>-of-fit. The item and-person parametefs of the IRC

-

model must accurately account for the probability of a correct -
response to any item from any subject who is to be measured. This
is equivalent to saylng that the item parameters and the scale of
ability they imply must be invariant over subjects. (Exper1ence

has shown that the more homogeneous the content of the items, the

more likely it is that this assumption will be satisfied.)

Satisfying these assumptions is more of a skill than a sci-
ence}, During the past decade,'pra%titioners have begun to build

* up the body of\experiénce necessary to apply item response curve

r

theory at. the level of measur1ng individuals. Still\questions

~

' f remain, concerning top1cs such as the range of ab111ty over whkch

L.

“item paramcters can retain the same values and ‘the poss1b111ty

that item parameters may"drlft"over t1me.
W1th the exceptlon of the Callfornla Assessment Program,

-,

1‘wA there has been little exper1ence to date with the problem of’

meet1ng the assumptlons of IRC models in the ‘context of the sparse

<O
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(at the level of individuals) samples of item responses gathered
in efficient multiple-matrix designs. Guidelines derived from
their experience will be discussed in the following section, and

employed in the examples in the following chapter.
Applicationixo Multiple-Matrix Samples of Responses

Clearly, the advantages of item response curve theory offer
considerable benefit to educational assessment. Not only can-the

restriction of a fixed item bank from which items must be drawn at

random be lifted, but results can be reported on a content-

referenced scale: estimates of levels of attainment can be inter-

-

preted in terms of probabilities of correct response to the items

‘whose thresholds define a scale.

The main obstacle to the application of IRC theory to the
as;essment setting is; ironically, the efficient design of the
multiple-matrix sampIés: IRC theory, as.preséﬁtly cohcei?ed, has
been designed for tﬁe measurement of individual subjects. To
estimate the ability of an individual subject with IRC methods,
several items from the scale must be administered to him. This
practice is at odds with the aim of multiple-matrix sampling,

which provides economical information about groups by eliminating

' the measurement of individual subjects.

There are three approdches by Which the technology of IRC,
theory can be applied to mulfiple—matrix samples of responses.

fhemtollbwing paragraphs consider each in turn.

-21-
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Subiject-level model subject—level estimates. The first

approach by which IRC methods may be applied to multiple-matrix
samples of 1tem responses employs an IRC model like those descibed
in the previous section, modell1ng the probabilities of correct
response of individual subjects. Each subject sampled for a gﬁven
skill area is administered.enough items from that skill area to
permit the estimation of his ability. The resulting estimates of
the abilities of individual subjects may then be averaged over

°

subpopulations as desired.
Several benefits of IRC theory may be enjoyed under

this approach. First, tne necessary computational

methods are available, having been developed over the past decade
for use in measuring indiyidoals. Second,'the'restrictions on the
item bank are relieved; items could be dropped from the bank or
new ones could be calibrated in. Third, content-referencing of

' score estim tes is posslble. And fourth, random selectioirof
items for telst forms is no longer required; harder'andveasier
forms could e developed and administered appropriately, so that

‘the items an|individual takes may be more informative about him

and, consequently, about the subpopulations to which he belongs.

As note above, however, this approach will require the
adm1n1strat1 n of several items from that’ area——perhaps as many
as fifteen'o twenty——proscr1b1ng the use of the most eff1c1ent
}multlple—matnlx designs. (Pandey and Carlson [1976] demonstrate a

380-percent 1ncrease in eff1c1ency for est1mat1ng a group average

Q9




using ten-item forms as compared to fifty—item forms, observing
the same number of responses in both designs.) If the application
of IRC theory is truly to advance the state of the art o% assess-—
ment, it must build upon the advances already gained through the

use of efficient sampling designs rather than discard them.

4

Subiject-level model, group-level estimates. A second ap-

proach is to define an IRC model at the level of individual sub-

jects, but—t6 estimate the parameters of the distributions of

ability in suhpopulations_directly,_without estimating the abili-

ties of individual subjects. 0

5

This approach is well conceived for application to the most
efficient mult1ple—matr1x designs. Each sampled subject in the
assessment must be administered only one or two items in any
skill area. It is possible to estimate the parameters of the
distributions of ability in any subpopulaticnkon the basis of the
responszs of the subjects sampled from- that subpcpulation, and to

estimate relationshipsjamcng'skill areas or between skills and

‘external_measUrea variables--all without estimating the ability of

any individual subject.

e
s e o e

Eff1c1ent methods—of est1mat10n under th1s approach are still

under development. The rudlments for one method are found in

‘Andersen and Madsen (1977) and Sanathanan and Blumenthal (1978),

which dlSCUSS the est1mat10n of populatlon parameters from sub—

ject- level ‘data under the restr1ct10ns that all subjects have been;

A

. .
s
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administered the same set of items and the IRC model is the one-
parameter logistic. Extension to the general IRC case and to

multiple-matrix data are given by Mislevy (1982). . LY

Group-level model, group-level estimates. . The 'third ap-

proach, the one upon which thé present research is bascd, defines
_ an item response curve model at the level of subject groups rather
than at the level of individual subjects. One or more item para-
meters still relate each item .in a skill area to an underlying
scale of attainment, bui the ability (or attainment) pa;ametérs
~are for groups of subjects rather than indiViduals._ Rather than
-modelling the probabilities of correct responses from specific
individuals;ﬁa group-level IRC expresses the probability of a
correct response to a.,particular item from a subject seiected at
random from groups at the various levels.of attainment.ﬁ A group .

ability parameter may thus be fnterpreted as the average over the

subjects in that gfdupl

A group-level IRC would be defined at the lowest level of
stratification of the population of subjects for which results are

~to be studied or reported. In the California Assessment, for

example,. an IRC is defihed at the level of schbols; school-level
score estimates are then averaged to the levels of districts, Los

Angeles areas, counties, and the state as a whole when desired.

. The sampling scheme upon which such an IRC model is based is

the ﬁoét efficieht'mdlfipiérmafpik-sampiiﬂg design, in which each




sampled subject responds to at most one item from any giuen skill
area. Under this design and in a group—ievel model, the responses
of the-individual subjects from a given group may be considered
independent, given the ability parameter of the group. In this

way the IRC assumption of local independence is satisfied.

Group-level IRC's can be justified in two different ways.
First, they may be seen simply as models for data analysis which
may be used profitably when they:are able, with their item and
group. parameters, to describe the matrix of item-by-group propor-
tions of correct response in the skill area under consideration.
In this sense they are a generalization of logistic models for the
analysis of binary data (Cox, 1970; Bock, 1975), with any |
interaction terms between "item" factors and "subject-group"
factors are constrained to follow the patterns describable as item
response turves with possibly different slope parameters. 7Second,
group-level IRC's may be seen as an integration over group dis- | ,‘ ¥
tributions of phenomena described by subject-level IRC's. Under |
this interpretation, the distributions in all groups are assumed

identical in shape, and may differ only as to locatio%.

‘ 1dent1cal to those'in the subject level IRC This case assumes

In two special cases a simple relationship exists.between
item parameters from the group-level IRC and those from a'subject—
level IRC. (1) The distributions of ahility within groups. may be
considered to be concentrated on a singie point (Bock, 1976), in )

which case the item parameters 1n the group level IRC would be,

R
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that the grduping of subjects acccunts for all systematic vari-
ation among them. (2) The distributions of abilities may be
assumeu normal within groups, and, if a normal ogive subject—level
IRC is assumed, the group-level item threshold and- slope para-
meters are functions of the subject-level item parameters and the

»

common dispersion of ability within groups (Mislevy, 1982).
Defining Skill Areas for Assessment

Comparing attainment over time or across subpopulations
requires item parameters thiat remain stable over time and across
subject groups. This requirement is most easily achieved in the
setting of individual measurement by scaling w1th1n skill areas

defined narrowly rather than. broadly.

This prescription can be a burden in the setting of individ-
ual measurement, since it implies that each individual to be
measured must be administered several items from each of several

skill areas, defined narrowly to guarantee stable item parameters

but highly correlated in the population of individuals.

The same prescription can be a boon 1n the setting. of assess-
ment. In efficient approaches of IRC app}ication to assessment,
each subject will be administered only - 7/few items from each

separately scaled skill area. lThis means that the number of skill

~areas which can be measured at the level of groups’cah be very

large, w1thout requiring excessive time for administration.; The

\

- Grade‘3 California Assessment, for exaLple, measures school level

!‘ ¥
|
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attainment in 61 skill elements, while requiring less than an hour
from each subject. (The items from these skill elements are k
distributed among thirty different test forms, each of which

contains thirty-four items from different elements; each sampled

subject is administered one randemly selected test form.)

The manner in which skill elements are selected for separate
scaléng is based on the requirement for stable relatiénships among
items' relat1ve difficulties. The California Assessment Program
has attempted to deflne skill elements in terms of educatlonal
practice: if skill elements are based on "indivisible curr;cular
elements", all items in a scale will be similarly'affected by
curricular change. Changesoin a school's/performance'over time, -
then, may appear as increases in one elenent and decreases‘in
another, but will be consistent with respect to all the items
w;th1n an element. Because progress (or lack of progress) can be

monitored at the level at wnich educational treatmerits are ap-

plied, CAP results help school efficials adjust the balance of

‘emphases of various components of the curriculum.

Reiser's Model for Group Effects

The National Assessment of Educational Progress (NAEP) em-

" ploys samp11ng at both the item and the subject level. .The assess-

ment 1nstrument in a given content area is constructed of 1tems

e

sampllng spec1f1ed objectlves and assxgned to. oné of a: number of

"forms, with the number ofrformsvvarylng across age levels and

-27-
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A

content areas in accordance with the number of objectives in which
performance is to be measured. Each such form is administered to

a national probability sample of approximately 2500 persons,

selected by the cluster method from the approprfate age group (9-,

13-, or l7-year olds). Pupils, designated by age rather than
grade, are tested by NAEP personnel outside the classroom. All

pupils in any one testing session are administered the.same form,

&

‘and are "paced" through it by a tape recording that determines the

amount of time spent on each item. Free-response as well as

multiple-choice items are used.

The résults of these tests are aggregated not to the level of
scnools, 2s in the Californda Assessment, but to the cells of a
multliway demograph1c classification of subjects. Ways of classi-
hf1cat10n include -age, sex, racial/ethnic group, size and type of
communlty, region of the country, and parental education. The
emphasis is on measuring progress (change) in atta1nmentvof the

objectives as seen in the population as a whole and in the subpop-

ulations defined by the demographic classifications. TypicaIly
each assessment deals with one or more “content areas, each of

which is typically assessed E§e<i\four or five years. SR

At present NAEP does not make use of any type of scale;score
. . ’

report1ng. Results are expressed as. percents correct for‘items

\

slatea for pub11c release, or ‘as: average percents correct over the

1tems in an obJectlve or a content area.' Because of the diffi-

culties mentloned aboverwith the 1nterpretatlon of these averages

2
[3 -4
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when the item pool changes from Year to year, NAEP could make use

of the item-invariant scales offered by IRC®models.

&

in dissertation'researdh, Reiser (1980) generalized a model
by Bock (1976) to provide a.group—level~IRéQappropriate to the
aims and the Eﬁrrent practices of NAEP assessments. The Reiser

model is based on the following assumptions:

-~ 1. Each objective is scaled separately.’ The items within an

objective are considered sufficiently homogeneous to. func-

2

tion as what is referred to in the California As:essment
g T
.as a "indivisible curricular unit."  That is, differences

between subpopulations and changes over time may differ

the items measuring a given objective.

2. Each item representing an objective will appear on a dif-
ferent test form. (In present NAEP assessments, this
assumption is not strictly satisfied; occasionally two or
three items from the same objective appear on the same

'fofm.)

3. The distributions of ability within each of the cells of

‘the classificatioﬁ scheme have. the'saMe shape, differing

3

at most by locatlon (1 e.[ cell average levels of . attaln-

a4

'ment). The demograph1c cla551f1cat10n is assumed to ab—
sorb all varlatlonubetween schools_or other level; of

elustering'in the sampling design.—

_29-
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/ 4. The expected'propOrtion of correct responses to an item

\‘\ °
~
N 4

within the ultimate subclasses of the demographic classes
is a two-parameter logistic function cf the parameters of

the item and demographic effegts for that cell.

o . 4

An Example

Perhaps the best way to introduce Reiser's model is with a

2

(relatively) simple numerical example. . We begin by saying that
the form of the model is very similar to that 6f the 2-parameter

logistic IRC model described above, except phet»the'focusors not

exblaining the probability'of°a correct response‘from a specified

_subject, but for a subject selected at random from a specified

group (i.e., a cell from the demographic classificafidn scheme) .

Consider four'ifems from_e skill objective and the six‘oells
of e sex-by-age design, including ages 9, 13, and 17. ‘Assume that
pilot-testing of the items has indicated their relative diffi-
culties, To each age group, only the two items at the approprlate
level of have been adm1n1st2red: Items 1 and 2 to 9- year olds,
Items 2 and 3 tov33—year olds, and items 3 and 4 to l7-year olds.
For each item targetted for a given age level, random samples of
subjects from each sex are administered the item. All sex—by—age—

by 1tem samples are equal in size. ' Suppose that the proport1ons

- of correct response observed in this adm1n1strat10n are ‘as shown

¢

in Table 3.




Now the comparlson of average percents correct over all the
items taken suggests a decline in atta1nment as age increases,
from .610 to .500 to..317.: This result is clearly an artifact of
the design of administration. It is obvdous in this ekanple that
average percents-correct cannot be conipared across gets of items
that differ in difficulty.

. One a}ternative is to compare age groups on the basis‘of the
items that they have taken ;n common. Item 2, for example, shows
.§00 correct for 94year oids and .621 correct for l13-year olds;

ten 3 shows .380 correct for 13-year olds and .439 for 17-year

lds. These'comparisons, illdstrating increasing levels of per-
formance with increasing‘age, are valid but‘inefficient7 each is‘
based on only half the data available from the age groups, being
compared. Moreover, no such comparison can be nade_betﬁeen 9- and

’

17-year olds, because they have taken no items in common., ;

a

. The first step in understanding Reiser's model is to consider
the logits of these proportlons, as shown in Table ‘4. The model
attempts to expla1n these values as functions of. item parameters“
BJ (threshold) and- Aj (slope), and cell average atta1nment.(ekl,
where k desrgnates sex and 1 de51gnates age). The form of the

A}

model is as follows:

Ljkl = 1.7 Aj (ekl -'Bj),
where L jkl.represents the logit of'the‘progortion”of correct
" " responses to Item j from»the cell.with sex designation k and aée'

.
- "
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| TARLE 3 . |
OBSERVED PROPORTIONS CORRECT L

s N
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. TABLE 4 ' .
LOGITS OF EXPECTED PROPORTIONS CORRECT

- ——— — ——— — — — ———— —————— i —— " S i —— T — — e e S — e m—

-0.500 1.500)  0.250  (-0.750) (-2.500)
~1.500 0.500  -0.250  (-1.250) (-3.500)

01500 (2.5009  0.750  -0.250  (-1.500)
-0.500 . (145000 0.250 ~0.750 . (~2.500)
1.000 . (3,000)  (1.000)  0.000  -1.000 )
0.0007 (2.000) (0.500) 0.500  -2.000 ~

________===================_—n==================================
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‘transformed as follgys:

a

designatioﬁ 1. In terms of proportionsrcorrect, the logits are

k1

N

exp(Ljkl) v ”

B 31 I e W
.1'1 exp(ijl) o .

H !
! .

From the»observed logits of correct response,  item and group

' parameters must -be estlmated., In Relser s model, as with all

/
2- parameter loglstlc IRC models, there are two linear dependencies

that must be resolved arb1trar11y--1t is thls fact that permits
allppad%meters to be rescaled by a 11near transformation as dis-
éussed above.; In thls example we resolve them by restricting the
average of the thresholds of the items to be one and the distance
between themhlghest and lowest thresholds to be four. Under these
constraintsl'the estimates of the item and group parameters are as
follows: | |

Item' Threshold Slope

1 ~2.00 1.00 )
2 -1.00 0.50
3 1.00 0.50 .
4 2.00 1.00
Age Sex Ab111ty AN
9 F  -0.50
9. M -1.50 o
13 F 0.50 -
13 M -0.50 -
17 F 1.00 "
17 M 0.00

1y

As befits an artificial example, these estimates perfectly
account for the observed proportions of correet response as shown .

in Table 3, when combined via Equation 2. An examination of the

<




v

ébilityl o<‘sca1e score, ¥Qlues for the ‘demographic groups shows a

‘l

L4 » 13 3 13 3 A
increase in levels of attainment with increasing age, from

U

Mor ver,/this pattern accounts for the differences be-
}

group. -

tween ages for all items. The comparison is thus based on all the

observations. v

4

The second stgp in undérstanding the Reiser model requires a
closer 1look at.the scale Scores of the six sex=by-age cells. As
noted above, score averages fdr age groups with ;exes combined are
-1.00, 0.00, and 0.50. Score averages for sex groups with age
groups combined are 0.50 for females and -0.50 for males. To-
gether these agé and sex marginal effects account for each of
‘iﬁdividual cells; that is, there is no sex-by-age interaction.

TQ obtain the scale score of any cell, three steps are required:
1. Start with an initial approximation of 0.00.

2. To account for the age effect, subtract 1.00 if the cell

is for 9-year olds and add 0;50 if it is for 17-year olds.

3. To account for the sex effect, subtract 0.50 if the cell

is for males and add 0.50 if it is for females.

'

'A distinguishing feature of Reiser's model is that the levels
of ability in’ the ultimate subgroups in the design need not.be -
estimated individually, but may be expressed as functions of some

smaller number of effects related to the ways of classification.

-

k)

=
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Statistical tests for the presence of effects,~both main and

‘interaction, are easily obtained by comparing how well various

VA_nested models explain the observed proportions of correct item

responses across the cells of the de51gn.

Reiser's dissertation research, as an example, used a classi-

flcatlon scheme based on sex, race, and size-and- type of communlty

(STOC). The analysis concerned Sk111 in Computing Fractions, with

~data from the .977/78 assessment of 13-year olds. He found that

the variation among the attainment ievels of the cells in this 2-
by-3-by-7 design could be explained in terms of just main effects

for the three veriables and race-by-sex interaction.

The paremeters of Reiser's model may be estimated by the
method of maximum 1ike1ihood: An equation like Equati 2 above
expresses the probability of a correct response to a g:jen item
from.a given cell in-the design. The pfoduct'of these expressions
over all the items and cells, appropriately weighted to reflect

the numbers of attempts each observed proportion_represents,\;s

the probability of the entire data set, as a function of item and

‘group—effect paraﬁeters; Item and group-effect parameters are

}

then found that maximize this probability. (See Appendix A for a
\

\more technical description of the model and the estimation pro-

X
cedures.)

Linking Results Across Assessments

The Reiser model outlined above has the.capacity for analy-
zing multiple-matrix samples of item responses with the item-

-54-
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invariance properties that distinguish the IRC approach. Previous
R . |

use of the model (Reiser's dissertation) considered data from one

am Em

time point only, considering just *the proportions of correct
response to ail items in an objective as obsérved in the cells of
a demographic classification of subjects. But charting results -
over time is the raison d'etre of assessment- capabilities forv
11nk1ng the results of assessments from dlfferent points' in tlme

is essential to any method of analyz1ng such data.

In principle'it is possible to analyze simultaneously data
from seve;al p-.nts in time“with the ReiSer‘model. All that is
necessary is the (possibly incompiete)‘matfix of proportions of
correct response to the items'in the objective in questién,‘from
each cell in the demographic classification of subjects, at each

: point in time. The analysis proceedslas described .in the previoué
section, except that the effects which constitute constraints-ih“ .
modelled cell probabilitieé nov include a main effgtt for time

- and, if_desired, interactions of time and demographic effects

A

AN

(i.e., allowing for the meaSuremenf of differential progress in
g .

different subpopulations).

This approach has in fact been carried out in the present
study, with data for two points in time within a single age group.
The geometric increase in the number of item-by-group cells as
additionai time poinfs are considered, however, leads to an expo-

f

nential increase in ‘the computing rescurces necessary to estimate

the parameters in the model. Clearly this approach is not well

&

suited to 1ongitudﬁhal analyses of any complexity.

i - IR

&5 ' - 3 5“; ’ \
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A more managable approach is to estimate the item and group--

-

effect parameters from each point 'in time separately, then link

_.the results on the basis. of items that are common across time

*

«
e

-

e

Full Tt Provided by ERIC.

points. If the assumptions of the model are correct, the item

parameters for the linking items in two assessments should differ

by only a linear transformation:

Aj* = Aj /m

.m Bj - b, B -

Bj*

Qhere theflinear transformation f(x)=hx+b.translates the item
parametersafrom the second point in time to the base scale. The
same transformation is tﬁen applied to the -ability estimafes of
the subject groups and group effects. It is necessary, then, to
be able to estimate values of m and b which will make the each
item's response lines from the t&b time points match most closely
after the item slopes and thresholds from the second timé point

are appropriately transformed.’

Methods of estimating m ana b have been proposed by Tucker
(1948), Lord and Novick (1968), and Haebaré (1981). One simple
approach is to calculate the mean and the standard deviation of
the item thresholds at both points in time, then choose m and b so
that the mean and standard deviation of the rescaled Time II

thresholds matches the corresponding values from Time I. That is,

m= S(I) / S(II)

~36-




b= [S(I)/S(II)] X(II) + X(I),
/- ? '

where“SLkl_deno;es_xheMstandardwdeyiationﬁoiuthe“thzesholds;axnu

Time k and X(k) denotes their mean.

This simple procedure does not take into account the fact

- that some item parameters may be estimated more accurately than

F

others, either bgcause more subjects %gvé responded to a<partic—

| ular item at a particular point iﬁ time or because the item ié
more closely matched to the average of the ability in the pdpula—'”
tion of subjeéts. Moreover,.linking is based on inforﬁation from
threshold_estimétes only, ingnoring potentially useful information
from item slabe estimates. .

A more sophisticatéd linking procedure which takes both of

thgse facfdrs into account is described in Appendix B. The proce-

dure is designed to link any number of calibrations, as long as

fhe data from all célibratioﬁé are linked by patferns 6f commén

items.\ It is not neces?ary for any item to appear on all calibra-

tions, but each calibration must share at least two items with i

other caiibrations,hand each calibration must be at least indi- . .

rectly linked with all other calibraticons. (Calibration a is ;

directly ;inked with Calibration b if they have an item in Common. i

Calibration a is indirectly linked with Calibration z if there is ‘

a sequeﬁce of directly linked calibra;ions beginning with a and

Y

|

|

s |

ending with z.) . 5 i
|
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CHAPTER I11I .

EXAMPLES FROM THE NAEP MATHEMATICS ASSESSMENTS, 1972/73 AND 1977/78
Introduction to the Examples ) -

The process of constructing scales affording the implementa-
tion of the aforementioned methods began with a perusal of the
NAEP classification scheme of unreleased items. Three skill

element categories comprised of sufficient numbers of items,

‘common to all cells yet appearing in unique booklets within each

cell of the age/year breakdown, were located. The NAEP classifi-

cations satisfying the criteria were Understanding Mathematical

. Coﬁcepts, i.e., value 4 of Cognitive Subtopics, Arithmetic Compu-

tation, and Algebraic Manipulations, i.e., values 1 and 5, respec- .

tively, of Mathematical Skills Subtopics. fables 5, 6, and'7

present the NAEP identification numbers of the items in these

scales, along with their locations in the various age/year

~ assessment forms. _ _ ' -

While items in the first category require the ability to

translate from one form of symbolism or language to another, those

'in the other demand the.rote application of the learned methods of
. ’ . -

arithmetic and algebra. Hence, the examples illustrate the appli-
cation of the methods to measures of rudimentary as well as ab--

stract levels of mathematical ability.

-38- : ' ' .




TABLE 5
 'DISTRIBUTION OF ITEMS: |
UNDERSTANDING MATHEMATICAL CONCEPTS

'8

" H I o BN I I I i i EE .

5-A45532
5-B41532
5<B41732
5-B31732
5-N00002
5-B11008
5-A71043
5-a21022
5-B32632
5-K30004
© 5-K10010

5-B33232

5-G43009
5-H12025

5-G20001 -

: |}
5-K51020
5-B22011

5-A21032

N O

(]

N W W » O

13-YEAR OLDS
1972/73
‘ITEM

1977/78

IT

"T0823

" 0141

T0607
TO712
T0206
T1020
T0431

T0908 "

T0319
T0540

T0124

T0633

T0221

"T0402"

T0926

17-YEAR OLDS

-1977/78 1972/73

ITEM

S0509

S0621

'S0806

USED)
S1125

S0707
S1001




TABLE 6
DISTRIBUTION OF ITEMS:
ALGEBRAIC MANIPULATIONS

———————————————.ﬁ'———————_———————————————————————_———_——————————————
e Y T 1t 1 ik

/ 13-YEAR OLDS ~ 17-YEAR OLDS
| 1977/78 ¥972/73 1977/78 1972/73
NAEP # FORM ITEM FORM ITEM FORM ITEM FORM  ITEM

5-H11025 2 T0202 2 ~ TO208 1  SO133 1 $0125

I | 5-G10003 . 3 . T0337 3  T0305 9  S0906 9  SO0916

. 5-H11007 6 T0603 6  TO6L9 2  S0202 - 2 50204

l 5-C50022 & T0807 8  TO818 4  S0402 4  S0402

l 5-G43005 | 3 s0338 3  S0323
‘5-H11015 7 80707 7  SO0718

I | 5-G44007 8 sS0829 8 50804
5-131001 | | 11 s1102 11 S1104

I 5-B21325 - 5  S0538
5-B20925 | 10 51031

1 5-B20125 | 6  S0605

1 5-H11002 4 T0432 4 T0410

o 5-B40225 7  TOT06A

I ' '5-B30425 9 T0939A

| 5-H11010 : 5  T0524 5 50504

1 5-H11026 o 1, t2r

I‘ 5-H21001 | v * o 6 S0606

i

1

i

F o 4)
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. TABLE 7 |
l .  DISTRIBUTION OF ITEMS: o
. | ARITHMETIC COMPUTATION
| T i maR oos  17-YEAR ops
1977/78 . 1972/73 . 1977/78 1972/73
: NAEP # FORM ITEM FORM. ITEM FORM ITEM _ FORM  ITEM
l _______________________ Sl o eSS S
‘ 5-B13002 | 1 80135
l o 5-C30010 8 TOBL0 8  TOB28 2  S0205 2  S0212
. 5-c10049 . 7  TO733 7  TO701 4 -S0406 - 4  S0421
l 5-C20006 . 2 T0203 2 © T0210 5 S0504 . 5 S0512
l“ 5 - 5-A23009 4 T0O435 4  TO424 6  S0631 6 50602
| 5-F30006 ) 7 so708 7 s0727
I » 5-F00006 s T0537 5 TOS16 B °S0835 8  S0825
o 5-A31732 : | 10 51023
I | 5-B31225 - 11 51132
5-A11832 1 TO0125
i 5-A45232 3 T0327A '
l 5-A22010 6 — T0602 6 T0605
- 5-C10009 9  T092 9  T0901
l 5-A34632 10 T1027.
" sfc10011 1 T0126 |
I 5-F00007 - | | 1 s0104
5-c20021 : -3 T0320 11 S1118
l 5-F00003 | - - 10 51008
l 5-C20022 - 9 50902
5-C30001 - | 3 S0306
l - O ap——
l :




Within the 1977/78.a$sessment'wear completion of the scales,

-

l that is, election of one item A'per remaining booklet, was accomp-
¢~;~—~mu¢ww;l1shed through reference to the three NAEP. class1f1cat1ons. To

maximize the number of poss1ble between -ceil comparisons, items

‘.commonvto other cells of the age/year breakdown were granted

"priority in the selection process.

Because the item‘classification schema of the 1972/73 assess-
ment differedhfrom tﬁat of the 1977/78 asessment, the selection of
items was based on an item-by-item scrutinw_of the available pool.’
0 ce again, items common to other cells were‘given selection

pri ritx.

1 . .
- EE B -

-

f“ The resultingAscales va&y in the total number of items as

Y well as in ‘the number of among- cell item communal1t1es. For
‘ kN ’

example, Understand1ng Mathematical Concepts is def1ned by a total

/ B

e

=oﬁ l7 items of similar content. The number of items within any,

L]

one cell of the age/year breakdown ranges between 7 and 11; pairs

)
of ) cells share between 3 and 6 1tems. L1kew1se, the Arithmetic

( y
NComputat1on scale 1s compr1sed of a to1al of 20 1tems, the number
&

of items within any cell fall1ng in th“ interval of 9 to 11, the

;betWeen—cell communa11¢1es ranging from 5 to 7 items. Finally, a
! \ ¢’

i ' "\ x

itotal of 17 items define the Algebraic Manipulation scale, the

\
number of items within each cell varying from 7 to 11, the number

of shared items vary1ng from 4 to 8.

-39~




Within each cell subject groups are defined according to a
multl—way demograph1c c1ass1f1cat10n.' Tﬁe cross-classification is

.- based on- fou%—vaP+ables~—name%y—sex~—;aee-s4zeuand—type~o£—com—

" munity, and region of the country.

. ‘ Methodology 3 . 4

In order to obtain item parameter and sﬁbgroup effect esti-

o .
mates on a common scale .across years and age groups, the following

steps were taken iq.each of the three skill areas:
1. Fit the Reiser group-effects model to data from eagﬁ age/

year separately.

2 [l

2. Establish .unit-size and location of scale with respect to

-

the results -of 1977 l13-year olds.
3. Determlne opt1ma1 linear transformations of remaining

age/year results to reference scale.

-

4, Transform item parameter and group;effect estimates to

reference scale.

The remainder of this section amplifies'these procedures.

Step 1: Fit Group-Effects Model to each Age/Year Separately

' ) . A
The basic data addressed by the Reiser group-effects :-model

&2

are the counts of numbers of attempts and numbers of correct

responses to each item_oﬁserved in each cell of the design on

persons. The classifiCéti%% of persons used in these examples is

based on sex (wale and female), race (Hispanic, Black, and whité),

region of the country (Ndrtheqst, Southeast, Central, and West),

'

-40-
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and STOC, or size and- type of»community (extreme rural, low metro-'

. >

politan, small places, main big, cities, urban fringe, medium

s c1tiesv—and_high_metropolitan). The _design consists of 168 cells

. N ' . ~ e . t’\
variables or not identified in one of the three main racial/ethnic

categories was excluded from the analyses. 2

14
w

Numbers of attempts and‘correct responses to each item in a

. 'skill area were accumulated for each cell in the design, with each -

I . - insall. Data from persons wé_tg missing.data in any of these

. . ‘Q .. . .
person's data weighted‘in proportion to his NAEP sampling weight.

l . Weights were rescaled so that the sum of weights was equal to the
.'15‘ Y nﬁmber'ofvobservations; in this way oversampling was taken into
l TR account but numbers of'obﬁservations were not .exaggerated.

; - . L ' N - T \.;

- In its attempt to- explain ‘the observed (weighted) proportions
' of correct response to’ each 1tem from each cell in the de51gn on
persons, Reiser s model yields estimates for threshold and slopé

oy

parametérs for each'item (reflectingvitems' relative difficulties
. N

and re\iabilities) and for contrasts among selected cells in the
de51gn 3n persons. A maximum of 168 contrasts could be' estimated

+owith thé\present des1gn, 1nclud1ng all main effects and all pos- .

P’

gested that interactions were generally negligible only main
effects were included here. Simple contrasts were employed for

A

— sex, race, and region: .

Male - Female

£y
u?
3

-4l- .. | ;

I . sible int tions. Because Reiser's dissertation research sug-




Hispanic - white

Black - white

Northeast - West
Sbutheast - West®

Ceﬁtral - West

-

So-called identity contrasts were employed for STOC. Con-

ditional on the effects listed abovef\the averaﬁe SCale—score in

each STOC category is estimated. 'The location and unit-size,

which must be arbitrarily specified, were provisioﬁally set by

fixing they"extereme rural” effect at -1.00 and the "high metro"

}effect}at +1.00. )

e
The parameter est1mates obta}ned in & given run of the Reiser

©

model,;then, conslst of thresholds and slopes for the items pre-

sented 1n that age/year, one sex effect, two race effects, three

L

reglon e{fects, and seven STOC effects. Each est1mate is accom-

panied by a large-Sample standard error of estimation, except for

¢
vd

A

the two STOC effects that were fixed to set the scale.

: . / ‘ _
. Item. parameter and subject-group effécts can be combined to
[4 E‘ . - .
produceyestimatea proportions of correct response to each item in

each cell. Tests of fit are obtained by comparing these estimated

proportlons with the observed proportlons. Likelihood ratio Chi
squares have been provided for each run, w1th numberr of degrees

of freedom equal to,the=numbers of non-empty cells t1mes the
numbers of items presented in the age/year in question, minus the

>

* . .
r U
.

t
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number of parameters estimated in the run. Because likelihood
ratio Chi squares can: be queStionable for small cells--and some >
cells in the design, such as high metro female Hispanics in the
Northeast .are very smali4—the more robust Freeman—Tukey Chi

squares-are also prov1ded for selected runs for comparlson.

\

Step 2: Establish Reference Scale in 1977 13-Year aﬁd Results

The size of units and the zero point of the scale must be
arbitrarily fiyed in the Reiser group-effects model. The scale
for these examples has been set by requiring the estimated grand
mean of 1977 13-year old results to be zero and the distance be-
tween the "extreme rural” and "high metro" STOC categories to be

two..

&

As noted above, the provisional scales for each age/year‘run
were set b7y requiring the values for these twe STOC categories to
be -1.00 and +1.00 respectively, so the unit-size in the 1977
13-year old provisional scale meets specificetion. The grang mean - ¥'
over all 1977 13-year olds was determined by averaging STOC ef—

fects, eacR weighted by the proportion of the populatlon it repre—

'sented. This grand mean was subtracted from all 1977 13-year old

STOC effects and item thresholds so’ as to fix the grand mean at
zero. This scaling is the reference to which the remaining age/

year results will be transformed.

Step 3: Deter@dne Linear Transformations for Remaining Age/Years

K
L

"
¢

-43-

e ¢




o

IIText Provided by ERIC

Under the assumption that the items in a scale define the
same variable across ages and over years, the sets of item thresh-
old estimates for items presented in two age/years will differ by
“only a linear transformation, aside for random errors of estima-
tion. Similarly,jtne two sets of item slope estimates will differ
‘non-randomly by a scaling cdnstant only, namely the scaling con-
stant required in the lineqr transformation of the item threshold

estimates. Once the linear transformation has been determined,

/
item parameters and group jeffects may be put onto a common scale.

j _ :
The weighted least—sﬁuares algorithm desd@ibed in Appendix B

" ~has been used to obtain optimal estimates of the linear transfor—'

'mations required to bring the results from the remaining age/years

to the reference scale established for the 1977 1l3-year olds.
Infdrnation is utilized fron all occurances of an item in two or
more ‘age/years, | including the precisienvhithiwhich each estimate
is determined. lThe goal of the algorithm may be.described as

minimizing the sguared weignted differences among item parameters
/

_ estimated in two or more age/years.

It has been dfqermined that the 1977 13-year old results are

. the reference scalid SO the identity transformation is known to be

appropriate for tha agé/year. Estimation error variation o;\the
rescaling constantsfhas been apportioned across all four age/
years, however, to reflect uncertainty in all age years in the

L

transformation of grQUp—effect estimates. Table 8 displays the

\estimates and standerd errors of estimation used in the examples.
e .

|

/ .
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TABLE 8
RESCALING PARAMETERS
=======?======F====================================’=================\
 AGE/YEAR ) SLOPE SE INTERCEPT  SE

k .

UNDERSTANDING MATHEMATICAL CONCEPTS

1977 13-YEAR OLDS 1.000 .035 ) .473 .118
1972 13-YEAR OLDS .686- .026 .885 .099
1977 17-YEAR OLDS 1.187 .045 2.801 .127

1972 17-YEAR OLDS .744 .031 2.957 .125

ALGEBRAIC MANIPULATION

1977 13-YEAR OLDS . 1,000 .022 .432 .067

1972 13-YEAR OLDS .329 .014 .609 .071 :
1977 17-YEAR OLDS .824 .021 2.254 .066 °
1972 17-YEAR OLDS .849 .021 2.612 .065 '

ARITHMETIC COMPUTATION

1977 13-YEAR OLDS 1.000 .021 .614 .078

1972 13-YEAR OLDS .762  .021 .100 .078
1977 17-YEAR OLDS .577 .018 2.888  .068
1972 17-YEAR OLDS .675 .022 » 3.443 ° .087
\\
N
N
N
"
N
"

~ \:\\\\

. ) c
=
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Step 4: Transform Results to Reference Scale

‘Let f(x)=mx+b be the estimated linear transformation of the
results for a given age/year to the reference scale, The trans-
formation of STOC effects apd the grand average, reflecting
locations along the scale, are accomplished as follows:

6* =m®©6 + b .

2 2 2. 2 2
SE(6*) = Sqrt{(m SE (6) + & SE (m) + SE (b)]

(The adjustment of the standard error neglects a term attributable
to the covariance of the errors of estimation of m and b, as these
terms have been found to be negligible.) The transformations of

sex, race, and region effects, which represent distances alony the

_ scale, are accompiished by:

6* =m 6

2 2 2 - 2
SE(6*) = Sqrti(m SE (8) + & SE (m)]

Final estimates of item parameters were obtained by first
transforming the threshold estimates in each age/year in the same
manner as STOC effects and slope estimates in the same manner as

contrast effects, and then obtaining weighted threshold and slope

~averages for each item over all ages and years in which it was

administered.

Taken together, the final estimates of item parameters and
group effects can be used to compute expected proportions of
correct response to any item in the scale from any cell in the

design on persons. To facilitate the interpretation of the ef-
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fects, additionalvtébles of conditional margins have been pro-
‘vided} that is, estimated averages for each of the levels in the
»\E?x, race, and region factors, under the assumption of "all other
‘factors held constant."” Thé average of the conditidnal effects
over all the levels of a given factbr in a given age/year, with
each level weighted in accordance with the proportion of the
‘population it represents, is the grand mean for that year. The
marginal proportioﬂévof the factors used in these computations are

AL

given in Table 9.
Results

The results .0of the prdcedures outlined above are summarized

through 12 and Figure 3 concern Understanding Mathematical Con-
cepfé: Table 10 presents rescaled item parameter estimates from
all four age/years and grand averages, Table 11 presents the
corresponding estimates of group effects, Table 12 presents the
conditional margins they imply, and Figure 3 plots item thresholds
and race/ethnicity avérages against the ability scale. Similar
information for Algebraic Manipulations is presgnted in Tables 13

through 15 and. Figure 4, and ior Arithmetic Computation in Tables

16 through 18 and Figure 5. Highlights are\?iscussed below.
\'\

: \
Overall indices of goodness-of-fit of the group-effects model
to data. from each age/year for Concepts,'Manipulation, and Com-

putation are found in Tables 11, 14, and 17 respectively. Chi-

l in Tables 10 through 18 and Figures 3 through' 5. Tabkles 10




TABLE 9
SAMPLED MARGINAL PROPORTIONS

SUBGROUP 1977, AGE 13 1972, AGE 13 1977, AGE 17 1972, AGE 17
MALE .499 .505 .487 .521
FEMALE : .501 - .496 .513 .479
HISPANIC .060 .056" .046 ' .043
BLACK ° .164 .167 .138 .152
WHITE ) ‘ .776 .777 .816 .805
NORTHEAST .227 .248 .232 .244
SOUTHEAST .226 .256 .229 .254 ;
'CENTRAL .316 .248 .327 .253 |/
WEST .231 .247 .213 .249
EXTREME RURAL .099 .101 ’ .100 .101 /
SMALL PLACES - .332 _ .333 .349 . 364
URBAN FRINGE =~ .154 .106 .157 .084

* MAIN'BIG CITY .141 -.120 .136 . .115
MEDIUM CITY . .071 .140 .058 .139

NOTES: 1. DATA FROM APPROXIMATELY 24,000 PERSONS IS ANALYZED ’
‘ IN EACH ‘AGE/YEAR. . ;

2., 'PROPORTIONS SHOWN ABOVE INCORPORATE NAEP CASE WEIGHTS.
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TABLE 10

ITEM PARAMETER ESTIMATES:
MATHEMATICS CONCEPTS

1977, AGE 13 1972, AGE 13 1977, AGE 17 1972, AGE 17
L ——_————— e e e S,
ITEM THRESH SE SLOPE SE THRESH SE SLOPE SE THRESH SE SLOPE SE THRESH SE SLOPE SE
. 5-A45532 - - - 1.01 0.24 0.29 0.03
5-841532 2.31 0.25 0.14 0.02
5-841732 . * K K
5-831732 3.05 0.36 0.19 0.01 2.22 0.23 0.16 0.02
5-NOOOO2 -1.69 0.36 0.20 0.03 -1.49 0.42 0.29 0.04 -1.26 0.57 0.20 0.03 *
5-811008 0.18 0.22 0.16 0.02 -1.18 0.49 0.15 0.03 -0.21 0.43 0.20 0.03 -0.97.0.72 ©0.19 0.03
5-A71043 * .1.17 0.27 0.21 0.03 :
5-A21022 0.41 0.16 0.25 0.03 1.24 0.23 0.28 0.03 0.98 0.34 0.26 0.04
5-B32632 2.68 0.32 0.18 0.03 * :
5~K30004 1.11 0.27 ©0.10 0.02 1.44 0.20 0.19 0.03 0.04 0.42 0.18 0.02
5-K10010 3.76 0.44 0.19 0.03 3.35 0.42 0.26 0.04 3.55 0.19 0.21 0.03
5-833232 0.23 0.22 0.15 0.02
5-G43009 1.92 0.28 0.14 0.02 . :
5-H12025 1.37 0.20 0.19 0.03 1.41 0.30 0.21 0.03
5-G20001 4.62 0.25 0.25 0.04
5-K51020 0.78 0.14 0.31 0.04
5-A21032 4.10 0.24 0.20 0,03
5-822011 ** - ‘
v+ ITEM DELETED: QUESTIONABLE DATA ON NAEP PUBLIC RELEASE TAPE.
«x ITEM DELETED; CONVERGENCE PROBLEMS IN GROUP-EFFECTS PROGRAM.
%%+ ITEM DELETED; ESTIMATED THRESHOLD VALUE TOO EXTREME.
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TABLE 11
ESTIMATES OF GROUP EFFECTS:
UNDERSTANDING MATHEMATICAL CONCEPTS

EFFECT AGE 13, 1977 AGE 13, 1972 AGE 17, 1977 AGE 17,.1972
GRAND MEAN .00 (.14) .36 (.12) 1.87 (.15) 2.30 (.1l5)
MALE-FEMALE -.07 (.09) 71 . (.14) .32 (.10) .56 —(:12)"
HISP-WHITE ~2.39 (.§§)x,;l}16””fi347ﬁ”:§:56 (.32). -2.36 (.42)
BLACK-WHITE . ~2:93 (.37) -2.55 (.42) -2.92 (.34) -2.98 (.46)
~ NE-WEST .66 (.16) .00 (.13) .67 (.17) 17 (.13)
SE-WEST -.16 (.16) -.27 (.14) -.13 (.15) -.18 (.14)
CENTRAL-WEST .67 (.14) ° .26 (.14) .72 (.15) .34 (.13)
EXTREME RURAL -.53 (.12) .20 (.10) 1.61 (.14) 2.21 .(.13)
LOW METRO -.71 (.27) -.14 (.26) .83 (.30) 1.57 (.29)
SMALL PLACES -.25  (.19) .54 (.16) 1.71  (.21) 2.16 (.20)
MAIN BIG CITY .03 (.21) .52 (.20) 2.07 (.22) 2.50 (.23)
URBAN FRINGE .00 (.21) .67 (.19) 2.22 (.22) 2:42-—(.22)
MEDIUM CITY .69 (.23) .50 (.19) = 2.73 (.27) 2,58 (.20)
HIGH METRO 1.47 (.13) — 57 ~(.10) 3.99 (.14) 3.70 (.13)
CHI SQUARE (LR) 1697.69 1367.79 1628.06 1518.32
CHI SQUARE (FT) NA NA 1478.31 1082.20
' DEGREES FREEDOM  1178.00 954,00 1147.00 808.00
60




~ TABLE 12
ESTIMATED CONDITIONAL MARGINS:
UNDERSTANDING MATHEMATICAL CONCEPTS

SUBGROUP 'AGE 13, 1977 AGE-13, 1972 AGE 17, 1977 AGE 17, 1972
. GREND MEAN 00 1 .55 2.03 2.38
MALE -.06 .91 219 2.66
FEMALE .04 .19 1.87 2.10
HISPANIC . -1.77 -.68 .33 . .57

WHITE .62 , 1.07 2.53 /279‘94 -
NORTHEAST .33 .55 —— 2734 2.47
CENTRAL . - .34 .81 2.39 2.64
_ WEST— -.33 .55 1.67 2.30
EXTREME RURAL. -.53 .20 1.61 2,21
MAIN BIG CITY .03 .52 2.07 2.50
URBAN FRINGE .00 .67 2.22 . . 2.42
MEDIUM CITY .69 .50 2.73 2.58
HIGH METRO 1,47 1.57 3.99 3.70

i
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AGE-RACE/ETHNICITY e ITEM ABBREVIATED TEXT

5-G20001  $Y / (4 BOYS)

.0 5-A21032 IF N IS ODD, N+1i-IS EVEN

5-K10010 _SEGMENT XY= 1/2 x 4 INCHES, OR 2 INCHES
pa

| "
5-B32632 IF A*B ((AxB)- B 4*5=(4x5)-5 OR 15

5-B31732 ANY NUMBER TIMES ONE IS THAT NUMBER .
.0 5-G43009 TEMPLATE FOR ASSOCIATIVE PRINCIPLE HOLDS FOR BOTH + AND X *
5-H12025 IF X<4, X+7<11

5-A45532 NEGATIVE NUMBER DIVIDED BY POSITIVE NUMBER IS NEGATIVE
5-K30004 LINE SEGMENT HM TWICE AS LONG AS NP . \
5-A21022 EVEN NUMBER + 2 IS EVEN * N
5-K51020 DISTANCE BETWEEN CENTERS ;

5-B33232 IF Z<6 AND Y<Z THEN Y<6 * . :
.0 5-B11008 A>5 & B>5 INSUFFICIENT INFO. FOR RELATION OF A AND B

5-NO0O002 IF HENRY>BILL AND BILL>RETE, THEN HENRY>PETE \\

* ITEM TEXT SLIGHTLY REVISED IN ORDER TO- MAINTAIN SECURITY.

FIGURE 3

ITEM THRESHOLDS AND RACE/ETHNICITY CONDITIONAL MARGINS:
UNDERSTANDING MATHEMATICAL CONCEPTS

PAFulToxt Provided by ERIC
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TABLE 13 v
: - : : , ITEM PARAMETER ESTIMATES: ) "
\ ‘ § ALGEBRAIC MANIPULATIONS , - ~
\ .
i N t
\ 1977, AGE 13 1972, AGE 13 1977, AGE 17 1972, AGE 17 | GRAND AVERAGES _
ITEM  THRESH SE SLOPE SE THRESH SE SLOPE . SE THRESH SE SLOPE SE THRESH SE SLOPE SE THRESH SE SLOPE SE
’ 5-H11025 - 0.08 0.15 0.25 0.03 : . 0.01 0.31 0.31 0.04 ©0.30 0.32°°.0.30 0.04 0.10 0.12 0.29 0.02
5-G10003 5.46 0.67 0.29 0.04 4.72 1.00 0.32 0.08 * 2,92 0.16 0.20 0.03 3.10 0.16 0.26 0.02
5-H11007 0.53 0.12 0.34 0.04 0.52,0.11 0.42 0.10 ©0.90 0.24 0.29 0.04 0.86 0.23 0.36 0.04 0.59 0.07 0.34 0.02
. 5-G50022 6.12 0.99 0.15 0.03 3.93 0.81 0.26 0.07 2.98 0.15 0.23 0.03 3.36 0.15 0.25 0.03 3.21 0.11 0.23 0.02
5-G43005 ‘ 5.22 0.35 0.32 0.04 4.84 0.25 0.34 0.04 4.96 0.20 0.33 0.03 -
5-H11015 a 5.69 0.39 0.25 0.03 4.81 0.28 0.24 0.03 5.11 0.23° 0.24 0.02
5-G44007 6.18 0.49 0.27 0.04 6.62 0.50 0.25 0.04 6.39 0.35 0.26 0.03
5-131001 6.63 0.56 0.72 0.13° 8.89 1.26 0.42 0.10 7.00 0.51 0.65 0.09
5-H11010 2.11 0.36 0.31 0.07 0.68 0.28 0.25 0.03 1.23 0.22 0.27 0.03
5-H11002 2.17 0.19 0.35 0.04 ° 2.96 0.56 0.29 0.07 2.25 0.18 0.34 0.03 .
5-H11026 -2.16 0.69 0.32 0.08 . -2.16 0.69 ©0.32 0.08
5-840225 -0.77 0.20 0.30 0.03 -0.77 0.20 0.30 0.03
5-830425 = 3.99 0.45 0.22 0.03 3.99 0.45 0.22 0.03
5-H21001 5.75 0.36 0.31 0.04 5.75 0.36 0.31 0.04 )
5-820925 . 8.24 0.96 0.37 0.07 8.24 0.96 0.37 0.07
5-821325 e
5-820125 * ; .
ITEM DELETED; QUESTIONABLE DATA ON NAEP PUBLIC RELEASE TAPE. .
v+ ITEM DELETED: CONVERGENCE PROBLEMS IN GROUP-EFFECTS PROGRAM. . o
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I - EFFECT AGE 13, 1977 AGE 13, 1972 AGE 17, 1977 -AGE 17, 197
'S D e ——— r_______;_____J_______-___________________; __________________
: " GRAND MEAN .00 ' (.09) . .36 (.08) 1.87 (.08) .2.30 (.08)
l - MALE-FEMALE -.26 (.08) -.35 (.11) . .25 (.08) .25 (.07) .
» HISP-WHITE ° -1:81 (.24) -1.29 (.33) -2.18 (.32) -1.85 (.26).
,lr“{ BLACK-WHITE” -1.84 (.19) -1.88 (.44) -2.41 (.29) =2.57 (.27)
S NE-WEST .33 (.12) © 1.13 (.29) °© .88 (.16) .65 (.12)
l SE-WEST -.3¢ (.13) ° .29 °*(,12) -.20 (.13) -.08 (.l0)
. CENTRAL-WEST .25 (.11) 81  (.21) 33 (.09) .02 (.10)
' ‘EXTREME RURAL -.57 (.07) 28 (.07) 1.43 (.07) 1.77 (.07)
l LOW METRO * - -.91 (.25) -.58 (.32) .77 (.27)  1.75 (.17
_ SMALL PLACES -.29 (.1%) -.13 (.12) 1.70 (.1%) 2.21 (.12)
MAIN BIG CITY -.08 (.1l6) -.22° (.l6) 2.12 (.15) 2.38 (.15)
I URBAN FRINGE .67 (.15) +.30 (.16) 1.95 (.15) 2.20 (,15)
| MEDIUM CITY .24 (.17) 47 (.14) 2.60 (.18) 2,49 (.13)
HIGH METRO 1.43 (.07), 9¢ (.07) 3.08 (.07) 3.47_ (.07}
= CHI SQUARE (LR)  4504.31 2146.00 2857.26 1527.28
| CHI SQUARE (FT)  1257.52 1275.63 1980.67 1349.41
DEGREES FREEDOM  814.00 © 814.00 '921.00 1161.00
I ] ) « : .8 !
i (, : ,
\ > ~ ’
I : ! T - |
\
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TABLE 14 .
, ESTIMATES OF GROUP EFFECTS:
: ALGEBRAIC MANIPULATION
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HISPANIC

-~ BLACK

WHITE

NORTHEAST
SOUTHEAST
CENTRAL
WEST

EXTREME RURAL
LOW METRO
SMALL PLACES
MAIN BIG CITY
URBAN FRINGE
MEDIUM CITY
HIGH METRO

TABLE 15
ESTIMATED CONDITIONAL MARGINS:
ALGEBRAIC MANIPULATION

F T T 1 1 1 1 1t 1 11 11t 11 1 2ttt 2 B b b R R

AGE 13, 1977 AGE 13, 1972 AGE 17, 1977 AGE 17, 1972 .

00 36 1.87 2.29
-.13 19 2.00 2.42
13 53 1.75 2.16 °
~1.40 -.54 .12 91
~1.43 ~1.14 -.11 19
41 75 2.30 2.77
25 .94 2.49 2.80
—.42 210 1.41 2.07
17 61 ©1.93 2.17
-.08 -.20 1.61 2.15
-.57 .28 1.43 1.77
-.90 -.58 .77 1.75
-.29 -.13 1.70 2.21
-.08 -.22 2.12 2.38
67 -.30 1.95 2.20
24 37 2.60 2.49
1.43 .94 3.08 3.47
\
y
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! AGE-RACE ETHNICITV ;] ITEM ABBREVIATED TEXT /

1 8.0 5-B20925 IF N=3K AND N+K=72, THEN K=18 AND N 54

/
/

5-131001 POINTS (X,Y) ON CIRCLE SATISFY %/SQ + Y SQ = 36
/
3 5-G44007 FACTORS OF X SQUARE - 5X + 6 ARE (X-=2) AND (x-3)
/ g
5-H21001 FIND SOLUTION SET OF (X-1){(X+7)=0

j 5-H11015 IF 3X + 6 - 14 = X + 2 THEN X=5
! 5-G43005  {(2X-1)(X+3)= 2X SQUARE + 5X £ 3 *

i

4.0 5-B30425 /3x +BY + 4X = TX + &Y * ]

| i

5-C50022 IF A/B = C/D, THEN AxD = BxC IS TRUE

' ' 5-G10003 | 1/3 x A/2 = A/6 /
17-W i

17-W 5-H11002/ 5 IN BOX MAKES 3(BOX +6)=21 TRUE  * ’
l 2.0 / /
. / .
‘ . 5-H11010  IF 3X-3 = 12 THEN X=?
17-H /
©13-w / J
: 13-W §-H11007 IF 2/3 = X/15 THEN X =110  *
17-8 Po17-H 5-H11025 IF X+2 > 7, X MUST BE > §  *
1 17-B 0.0 j
13-H , : / »
P 5-B40R25  THE VALUE OF X+6 WHEN/ X=3 IS 9  *
13-B - 13-H /
l*‘1 -8 ]
g ! /
} -2.0 /1/ -
| | s-H11026 IF X-3 = 7, THEN X=
1972 © 1977

FIGURE 4 |
!
AND RACE/ETHNICITY [CONDITIONAL MARGINS:
ALGEBRAIC MANIPULATIONS

ITEM THRESHOLD
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TABLE 16

ITEM PARAMETER ESTIMATES:
ARITHMETIC COMPUTATION

5-C20006 1.40 0.16 0.20 0.02 2.04 0.26 0.28 0.04 1.73 0.20 0.38 0.05 1.11 0.35 0.30 0.04 1.58 0.11 0.29 0.02
5-F0O0006 3.12 0.29 0.24 0.03 2.74 0.35 0.22 0.03 2.81 0.14 0.26 0.04 * 2.86 0.12 0.24 0.02
5-C10049 -0.86 0.23 0.25 0.03 -0.51 0.18 - 0.24 0.03 -0.85 0.68 0.24 0.04 -0.38 0.61 0.26 0.04 -0.63 0.13 0.25 0.02
5-C30010 1.28 0.15 0.22 0.03 1.9 0.22 0.22 0.03 0.69 0.42 0.21 0.04 1.31 0.35 0.26 0.04 1.32 0.11 0.23 0.02
5-A23009 3.49 0.34 0.20 0.03 2.09 0.28 0.22 0.03 3.14 0.16 0.20 0.03 22 0.16 0.23 0.03 5.06 0.10 0.21 0.02
5-A22010 5.42 0.58 0.26 0.04 4.79 0.60 0.25 0.04 M " 5.11 0.42 0.26 0.03
5-C10009 -4.75 0.90 0.17 0.03 -6.63 1.29 0.12 0.02 -5.37 0.74 0.15 0.02
5-F 30006 6.14 0.45 0.30 0.04 * 6.14 0.45 0.30 0.04
5-A45232 3.49 0.34 0.20 0.03 3.49 0.34 0.20 0.03
5-A34632 5.60 0.70 0.16 0.02 5.60 0.70 0.16 0.02
5-A11832 -1.60 0.28 0.29 0.03 -1.60 0.28 0.29 0.03 ¢
5-B31225 . 3.95 0.18 0.32 0.0S 3.95 0.18 0.32 0.05
5-B 13002 . 0.71 0.33 0.40 0.06 0.71 0.33 0.40 0.06
5-A31732 4.21 0.22 0.26 0.04 . 4.21 0.22 0.26 0.04
5-FO0007 . 6.35 0.41 0.27 0.04 6.35 0.41 0.27 0.04
5-C2002 1 2.08 0.26 0.26 0.03 1.37 0.37 0.20 0.03 1.84 0.21 0.24 0.02
5-FO0003 1.08 1.09 0.19 0.03 1.08 1.09 0.19 0.03
5-C20022 -0.70 0.91 0.13 0.03 -0.70 0.91 0.13 0.03
5-C10011 -5.37 0.94 0.15 0.02 -5.37 0.94 0.15 0.02
5~C3000 1 **
=======:=====:======================:=====.‘:==========================================:=======::==='===========================
* ITEM DELETED; QUESTIONABLE DATA ON NAEP PUBLIC RELEASE TAPE.
“+ ITEM DELETED: CONVERGENCE PROBLEMS IN GROUP-EFFECTS PROGRAM.
]
" . .
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TABLE 17
ESTIMATES OF GROUP EFFECTS:
ARITEMETIC COMPUTATION

EFFECT AGE 13, 1977 AGE 13, 1972 AGE 17, 1577
GRAND MEAN 00 (.17) -.19 (.16) 2.43 (.12)
MALE-FEMALE -.13 (.08) -.20 (.08) .33 (.08)
HISP-WHITE -2.51 (.30) =-2.17 (.32) -1.68 (.27)
BLACK-WHITE -2.61 (.25) -3.38 (.42) -2.15 (.29)
NE-WEST .33 (.13) 1.13 (.19) .68 (.14)
SE-WEST -.92 (.16) .03 (.12) -.05 (.12)
CENTRAL-WEST .00 (.12) .82 (.15) 34 (.10)
EXTREME RURAL -.39 (.08) -.66 (.08) 2.31 (.07)
LOW METRO ° -.60 (.25) -1.47 (.27) 1.65 (.23)
SMALL PLACES -.25 (.16) -.36 (.15) - 2.20 (.1l4)
MAIN BIG CITY -.44 (.19) -.09 (.17) 2.54 (.14)
URBAN FRINGE .58 (.16) .35 (.16) = 2.60 (.1l4)
MEDIUM CITY .02 (.19) .19 (.16) 2.89 (.16)
HIGH METRO 1.61 (.08) .86 (.08) 3.47 (.07)
CHI SQUARE (LR) NA 2082.84 3105.16
CH1 SQUARE (FT) NA 1584.01 1268.41
DEGREES FREEDOM NA 1064.00 911.00
/
‘ ,'N
B
.

w

AGE 17, 197
3.02 (.15)
35 (.08)
-2.62 (.35)
062 (013)
20 (.10)

50 (.11)
2.77 (.09)
2.31 (.22)
2.93 (.14)
3.10 (.17)
3.08 (.16)
3.10  (.15)
4.12 (.09)
1569.53
1417.59
1150.00
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TABLE 18
ESTIMATED CONDITIONAL MARGINS:
ARITHMETIC COMPUTATION

—-—— — —————— — — — — — ———————  — T — o = = e V= S M S A = S SR AR AR AR AR A M T N I I =T ===

" SUBGROUP AGE 13, 1977 AGE 13, 1972 AGE 17, 1977 AGE 17, 1972

HISPANIC -1.93 -1.67 1.13 1.80
BLACK -2.03 -2.88 .66 .88
WHITE .58 .49 2.80 ~ 3.49

NORTHEAST .46 , .45 - 2.85 3.02
SOUTHEAST -.79 -.65 - 2.13 2.90
CENTRAL .14 .14 2.52 3.19
WEST ' , .13 -.68 ‘ 2.18 2.69

: ' EXTREME RURAL -.39 -.66 . 2.31 2.77

' - LOW METRO - .60 ~1.47 1.65 2.31

| SMALL PLACES -.25 -.37 2.20 2.93

MAIN BIG CITY -.44 -.09 2.54 3.10

URBAN FRINGE .58 .35 2.60 3.08

l MEDIUM CITY .02 19 2.89 3.10
HIGH METRO ;




AGE-RACE/ETHNICITY ABBREVIATED TEXT

3**0 = ?
6 IS THE WHOLE NUMBER NEAREST SQRT OF 38 *

5-A34632 3 20/15 IS NEXT STEP OF SUBTRACTION PROBLEM
5-A22010 (3)(-3) + 4 = -5 .

5-A31732 LEAST COMMON DENOMINATOR OF 7/15 & 4/9 IS 45
5-B31225 2 TIMES SQRT 5 = SQRT 20 *
5~A45232 300.00/36 IS FIRST STEP FOR 3 DIVIDED BY .36

5-A23009 EXPRESS 9/100 AS 9%

5-C2002%1  1/2 +
5-C20006 2/3 OF
5-C30010 (.4) x
5-FOO003  4*%3
5-B 13002 (+3)

»>

5-C10049 420 DIVIDED BY 35 = §2 *
5-C20022 (1/2)(1/4) = 2

5-A11832 3/9 1S THE SAME AS /3 *

5-C10011 SUM OF FOUR NUMBERS
5-C 10009 43 + 71 +'75 + 92 =

* ITEM TEXT SLIGHTLY REVISED IN ORDER TO MAINTAIN SECURITY.

FIGURE 5

ITEM THRESHOLDS ARD RACE/ETHNICITY CONDITIONAL MARGINS:
ARITHMETIC COMPUTATION -

ERI!

Aruitoxt provided by Eic:




squares.less than twice their degreee of freedom are considered
indicative of acoeptable'fit; it may be seen, however, that sev-
eral of the likelihood ratio (LR) Chi-squares exceed this value.
Freeman-Tukey (FT) Chi—squares, on the other hand, range between
one and one-and-a-half times their degrees of freedom, suggesting
a higﬁlf satisfactory goodness—of—fit. Inasmuch as the two in-
dices are asymptotically equivalent but the Freeman-Tukey Chi-
square is less susoeptible to problems with small cells, it would
appear that the observed proportions of correct response in the
examples. are well-explained by the group effects model and the

parameter estimates.

It will be recalled that an item's threshold is the point
along the ability scale at which we would expect 50-percent cor-
rect responses to the item. Group averages may be interpreted in
terms of item content, then, by inspecting the content of the
items in the region of the scale at which the average falls. The
group's proportion of correct responses would be about 50-percent
for items in thet neighborhood, less than 50-percent for items
with higher thresholds, and greater than 50-percent for items with
lower thresholds. 1In this way the content of items with thresh-
oids ae various points along the scale forms a picture of the
ability scale upon which group effects are measured. ’

Figures 3 througo 5, depictingvthe example scales, show
reasonable patterns of increasing complex or ad&anceo item content -

at increasing levels of ©. Algebraic Manipuletions and Arithmetic

-47-
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Computation show a broader and more evenly-spaced distribution of

items along the scales than does Understanding Mathematical Con-

cepts. Items from the latter scale are more concentrated in the

area that includes average l13-year olds and 17-year olds, but more -

sparse in the lower regions of the scale.

¢

Under the assumptions of the model, item paraméters in a
scale are invariant across ages and assessment yeafs. I1f this is
trﬁe, progress may be'charted in terms of ability estimates alone;
changes in the value of the globél ability éorrectly reflect
changes in probabilities of correct response to each individual |
item in the scale. vDepaftures from this assumption, such as
varying change over years from one item to another, are revealed
as discrepenciés among an item's parametéf estimates in difféfent

age/Years, after optimal rescaling (Tables 10, 13, -and 16).

4
An examination of these tables shows few age/year item para-
meters further than one-and-a-half standard errors of estimationa
from the cdrreSponding grand aQeragesé in other wads; the assump-
tio%—of invariant item parameters acorss the ages and years in the
examples is reasonably well satisfied. Theainterpr;?ition of
cases in which certain items were unexpectedly hard or easy in a.
particular age/yeéf are left to curri;ular experts, although one
pattern is suggested in.the results for 1977 13-year olds in
Algebraic Manipulations: both items found unexpecﬁédly difficult
in this age/year, compared to results on the other items in the
scale, deal with solving fractions equations. In the main, how-

4
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ever, the assumption of invariant scales across age/years and the

t

subsequent discussion of trends in terms of ability estimates

~rather than for individual items are justifyable. -,

-
3

_The universal test score decline of the seventies spans the
period covered by our examples, and with'minor exceptidns, appears
® - S

in all"skill,areas,aage levels, and demographic subgroups ad-

dressed here. Only in the area of Arithmetic Computation and only -

for 13-year olds did levels ofgberformance increase. In Concepts
: b2 ,

and Manipulation, equai decline was observed at both ages.

Male versus female contrasts in all three skill areas exhibit

an interesting age-by-sex interaction: l3-year old females outper-

* form 13-year old males, but l17-year old males outperform 1l7-year

old females. (An exception is 1972 Concepts, where l3-year old
males outperform females). One possible explanation ofsﬁhis
result is that the well-established superiority of males in cer-
tain areas of mathematics (Anastasi, 1958) is manif%st in the more
abstract tasks in the higher regions of ﬁhe scales b?k overwhelmed
by superior study habits of females in the elementary grades on

the less abstract tasks in the lower regions of the scales.
. H ” !‘?

Race/ethnicity contrasts uniformly exhibit highest levels ofg

performance by whites, followed at a distance by Hispanics then

‘Blacks. The magnitude of the difference is such that the averages

of 13-year old whites equal or exceed those of l17-year old blacks.

A comparison of 1972 and 1977 results shows blacks at both age

y
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levels catching up somewhat in Arithmetic Compuation but both

both age levels from 1972 to 1977.

o
fgc

B

black and Hispanic 13-year olds falling further behind in Under-

standing Mathematical 1l Concepts. In the remaining ages and skill !

/_»L_1’~ . . .

areas, relative,positions among the race/ethnicity groups remained

about the same. Y
‘T} o
Contrasts among different regions of the country are of a -

r
o

much smaller magnitude.' Performance is highest .in the Central

"region, generaliy followed by the Northeast, West, and Southeast.

The period covered by the examples saw a shift'of population from

the Northeast and Central regions to, the Southeast and West'

vpossible correlates of tlis shift are v1s1ble in region contrasts

and margins. In Conceptsr the distance between the Northeast and
Central averagas and the Southeast and West$averagesiincreased at.
Similar gaps in Manipuiation

decreased for 1l3-year olds but 1ncreased for 17- -year olds; gaps in
Compuation also decreased-for 13- year olds but remained unchanged

for 17-year olds.

The results for size and type of community (STOC) show the-
effects of a high con;entration of well-educated and highly-paid
professionals on the levél of achievementtin a neighborhood. The
low .metropolitan areas have a low level of income and few profes-
sional reside in them; hence, the level of ‘achievement is low.
Levels of income'and proportions of profassionals rise,as one goes

form low metropolitan areas to rural areas, small places, main big

cities, and to urban fringe areas. Finally, in urban areas where




the levels of income and education are highest, young peoples’

y

>

" levels .of performanqe are ﬁighest/élso.

-

S = s
\ Decb&gés in performance were genérally more pronounced in the
2 . ﬁ °

a

,STOR\Categories that were lowest to begin with--i.e., low metros.

politén and rural areas—--but less pronounced in the higher STOC

cdte Eries. In fact, the high metropolitan category showed in-

l creaseés as often :as declines, particularly among l3-year olds.

~"Aside {rom the concern of general decline, then, there is evidence
, \ X

of incr) asing disparity in the relative positions of communities

as time \progresses.

\

\
\




CHAPTER 1V

CONCLUSIONS

[N
r

The Re1ser group-effects model was successfully used to link

I

&

data across two age levels and over two trme p01nts in each of=
threeﬁsklll areas of the Nat10nal Assessment of Educational Prog-
.ress surveys of mathematics., Experlenceagalned in th1s effort
lead to severalslmportant conclus1ons concernlng the appllcatlon
of item response methods in general and of the group- effects model

-~

in particular to the National Assessment.

Items grouped at the level of NAEP subtopics proved satisfac-
torf for scaling with a unidimensional model,véven across age
levels and assessment years., Goodness—of-%it indices within the
age/year data matrices and successful links across ages and;years
ihply that trends and group differences can be profitably analyzed
at this higher level of abstraction tha. the individual item, yet
allowing for the "administration of d}igerent subsets of items to

'difterent age groups and at different points in time. This find-
ing is particularly‘fortuitousaw\en seen in the light of the NAEP
mult1ple—matr1x sampling design; the items from a subtoplc are
generally spread-over several test booklets. Such a scheme yields

more precise estimates of group-level atta1nment-than a scheme

fthat presented more items from a'scale to‘fewerydffferent persons.
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More inclusive and broader-ranged collections. of items would
not have lead to- satisfactory results. The combined calibration

of,Arithmetic,Computation and Understanding Mathematical Concepts, .

’ L4

'for example, could not have shown how blaeks were closing the gap
from whites in the former area but lagg1ng farther beh1nd in the
latter. The need for scales that ma1nta1n their integrity over
time;'then, requires rather narrow‘domgins for scaling. While it
may be convenient with current NAEP data tapes to scale'together

all the itemc that happen to appear in the same booklet, the

v

1ntent1onal heterogene1ty of such a collection v1rtually guaran—

¢ :

tees a poor fit to any un1d1mens1onal\1tem response model and

severe item parameter drift over t1me. Under current NAEP 1tem—

sampllng des1gns, the pract1ce of -item response scaling w1th1n

NAEP booklets should be most strongly dlscouraqed
4 : f.

Given that scal1ng must be accomplished within, fa1rly narrow

skill area-(e.qg., NAEP subtopics), methods of summar1z1ngaresults.

.
4

over these areas must,be determ1ned CIf levels of per formance

. S

increase in computat{onal sk1lls but decrease in understand1ng

A} ‘;

concépts, as an example, what should be sa1d about sk1ll in mathe-

matics as a whole? _Cleanly some,scheme of 1ndex1ng or'we1ghtedw

-

averaging is required,,with explicit rules by'which the informa-

tion from,the'separate ekille is combined. | . o %

N
e - R - }A
NEY

Within these restrictions, alternative methods of scaling are

L &

-

available. This project has made more clear some of the advan-

-/ . .
tages and disadvantages of ene of .those alternatives, namely, the -

" Reiser model for group effects. T

-53-
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Of‘great advantage to this/ project was the fact that numbers
of attembts and correct responses to each item in a scale from ‘
each cell in a design on perso%s are sufficient for estimatiﬁg
item parameters and group effe&ts. A summary file at the levél of
groups of persons rather than L full file at the level of individ-
uals negd be handled. This same feature of the modei, however,
may be seen as a disadvantage as well. .Because the model adresses
data at the level of cells in the desig? on persons, there are
practical limits to the complexity of the design that may be
employed before the numbers of persons in the cells become too
small. The design used in these examples contafned sex, race/ ,
éthnicity, region of the country, and size and type of community¥—
168 cells in all. Several o} these cells were small or empty, aﬁd

it is clear that not many additional factors could be included in

the design before there were more cells than observatioﬁ%._

In sum, these applications of the group-effects model can be
considered successful as a demonstration of the practicality of
applying iteh—response methods to the efficient multiple-matrix
data of modern assessments. Whether the group—effects model or a

close cousin eventually dominates, the generic advantages of item

- response theory are sure to advance the practice of assessmernt.

I
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A Detailed Specification of the Model

The development of the first two;sections of this chapter

parallels that-of Bock (1579), . In the first

In the second part, maximum likelihood estimates are derived

for tne parameters in the model. The last section consists of

a discussion of tho ésymptotic properties of the estimates. A

test of fit for the model is also discussed io th;s section. .
‘ITwo symbols which are used tepeatedry in _nis chaoter

.reguire a brief explanation. § is used as a summation sign,

instead of the more common upper case sigma, and d is used as

-

l part the model is stated in terms of a binomial response function.

the symbol indicating a derivative.’
Assume that subjects respond to one item from the set

of items which constitute the scale, and toat subjects are

assigned to £ homogen;ous sample groups. ..Assume also that

subjects* in group g are a probability sahple from a conditiooally

normal- latent trait distribution with mean represented by the

'
’ contrast iq @ and variance a2.

-d
matrix K,.

. -
l ‘ k represents the qth row of the general dasign




{ 11 %12 *13 ls :
| a1 |
I k o
| 3L |
K = |7 . co
| |
. .
| | .
’ | . o
| ) |
I kfl . . . ka I

® : -~

s is the rank of the model for estlmatlon. ' .
[0} represents a vector of contrasts among the group effects.

A subject s response to item j is scored
1 if correct
@ otherwise

The probability that the subject (or respondent) responds
correctly is given by the logistic ogiyej(logit)vmodel. - The
logistic curve is used here as an approximation to the much
more complicated mormal cumulative éistribution function.
Haberman (1974, pg 34) concludes that no emperical evidence

exists that the normal distribution provides more accurate moded s

than the logistic} So,

1/(1 + exp(-ij)), and

—
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o
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As menticned in chapter 1, the design of the samgle groués

is introduced into the specification of the logit, Zgye

e
?

, = C. + .k &
%q3 j 7 23%q =

”
5

o

where cj and aj are parameters for item j.
§ . . .

The priniple GF local independence states that responses
to items are independeat, conditional on item and group
parameters. By'this'principle, the probability of r_. correct

493

respon;es'fromfthe N respondents in group g who attempt

qj
item j is given by the binomial fungtion:

' ' v N_.! L_. N _.=-r .
P(r _IN_., K @, C.p a,) = ===== === P Yz 011 - Pz VG

3773 i .- 1) W g
- .. 93 a3 - Taj

The probabilitylbf the entire sample 'is taken over g¥oups

and items:

fn ]

(2) - IN ., k
P Z?‘ﬂp“qjmqn'-q

For a t-way désign on the subjects, the factor indices

iw vary from 1 to m, for w = l,...t. The nimber of cells

inuthe design, £, is equal to wmw' Any cell in the

design can be referenced by a single subscript g as follows:

g =i, + g (i, - l):Z;m:

2*

R)&' .
Equation (1) specifiés a guantal-response type model

P -
-

-
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winlen is closely related to the probiﬁ modél of Finney (1971)

and tne logit model ofﬁaerk50n3(1944). Finney uses the

cumulative normal distribution, but as stated.before,

there is no emperical evidence for prefering the normal over

the logistic, and the logistic is considerably simpler.

The logistic quantal response models aré‘igg-linear models,

and thus many of the methods and results %%om Haperman (1974) |

are applicable 'to the present model.

Derivation of Parameter Estimates.

Estimates for the item and group parameters can be obtained
in a straight forward manner by the method of maximum likelihood.

As will pe seen in this section, there are two lirear

s

dependencies among the set of vectors which consists of the

a

columns of the information matrix. In order .to eliminate T ,

>

these dependencies, two parameters must be fixed. arbitrarily.
. ¢

a

One choice which can be made here would be to fix the first
\aqg the mlth effects from the first factor of the design
res;;EETVely. This sets the scale of all the estimates in
a.very convenient range. Another choice ﬁor eliminating
one of the dependedcievabuld Be to include a prior

distribution for the item slope parameter within the model.

S

B

Some previous experience with two . parameter models has

»

. . . . . @ .
snown that including this prior knowledge .results in a more

well oenavea solution in tne sénse that parameter estimates

©

for items op which there is little information in the data .

will not take on.a value wnicn is unduly large. What .

happens in gractice is that tne.sloée”parameter can become

- A-Y
(JI'J o

o . . ~




very high for an irem on which ;he responses are either'nearly
all Lorrect or nearly all incorrect. For such an item, the
-information .provided by the prior distribution becomes dominantl
and the solution is primarily a ﬁunction of this<information. ~ {
Since socn items add essentially nothing to the likelihood
| ot tnhe data, eliminating them from the analysis entirely

a

consrltutes an equally effective strategy. However, the prior

olsrrlbutzon %lternatxve renders the model more robust in the
sense that less work with the data will be necessary before

satisfactory estimates are obtalned. Consequently, at somne

points in the derivation, information will be included - ~—)

deecribing changes that would be reguired in the equations inf

order to obtain maximum aposteriorl density (MAP) estimates.

A complete derivation of the MAP estimates would be nearly ' N
the same as the. derlvatlon of the maximum llkellhood estimates,

and .so it would be needlessly repetitive.° L

For the maximum aposteriori.density estimates, the slope

. paremerer, aj, is assumed to oe distributed log-normally with .>
meanlu and variance q‘z These two parameters for the L
distribution are given values by the rese;rcher before estimates
of tne item parameters are obtelqed. A state of nearly total
iignorance qbour toe.prior distripution can be indicated Dby

sgecifyipg a large variance.  The results of Lindley and Smith,

(l972§ show.that‘it is more reasonable to estimate the mode

o~

rather the the mean of rhe poéterior distribution, so the
easier path will be taken here.
For maximup likelihood estimates, the likelihood of the

entire sample is-obtained directly-from'exbression (2):
@ . N
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- ’ 'f(g. a, 9) = s s [const +r

log F(z_.) +
qj ' q]

qj

'(Néj “rqj) log(l - F(ij))]

30ck and Thissen (1979) show the general form for

tne logarithm of the posterior density. 1In tnis setting, it

takes the following form: ‘ &

°

n ‘ {' -.. )
f(c, a, ®) = s s [const + r.. log F .) o+
. ' - - ! 2
2 ~ (log aj -ﬂa)
7 . 1 .
. ‘ l l - F . - emaee & tesososes s os s os e oo
Mgy 7.Fqy) to9tl = Flzgyh ] = 5= i
o . . . a

Notice. that the difference betweeen these two eguations

consists only of a term, dfter the minus sign-ron the riéht,
which repreéents the prior information.

~The following are obtained now for use later:.

]

F(ij) = exp(qu)/(exp(ij) :»l) = 1/(1 + exp(-ij)

a

P «

1 - ngq.) =~exp(ij) + 1)/(exp(ij3 +1) =

J
o O . exp(z )’/(ex (z )~ + 1)
1 p q] ap qj
Q "
= 1/(1 + eXQ(ij)) =‘exp(hij)/(exp(-ij),+ 1
. Lo ' :
aF(z ) d'exgi-i'.)‘
- 91——— zZ - + Y- . -2 ===z T—qg—
dij‘ 1(1 exp(_ij)) TTdzg; .
, . ' Y Ny P4
.- . .
2 , | .
- - \-*egj A-b :
.\‘1 ‘ 7 * P . q’\ a
: £1{U: ‘ , RPN “
o : - \ —ed - 18

3- - -
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t<exp(ezq

F(ij)[l - F(zq

j)]

31/ (1 + explzg

i))(l + exp(-zq

‘der J.vatlve ’

Maxima:

d[l - )] . o
e ————— Sl-_ = =F(z_.)[1 - F(z_.)
9Z43 Q) q]
dz_. dz_ . dz_.
=31 - 3 =91 - 'e -=91 - k. a.
dac.. da. -q = ad q9 J
J J g
& ‘:L

Once trne likelihood function-has been chosen, tne
the functin withn :espect to a gimen parameter is o:ten
yOlnC at wnich the rate of chan"e of the functxon, tne
is equal to zero. Such a poxni’could als°
minimum or a bounda:y point, so other” aspects of, the 1

function have to be investigated.

aspects shortly. .

£

j))

maximam\ff

the
first ,
‘be a
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1ke11hgod

We will attend to these other

¢

.
g Fa3 — %%ai i
=== =8 [ g¥g=—=7 F(z_.) (1= F(2_ ;)] z=3 +
ch :(zqd) aj © gj acJ
G-y ) i a
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:

qj "*NqifilZqy)] =0

3

i
0

(c

=== = S (r_ .- N_.F(z_.)] k_ @ = 8 3+ .

da. qJ] q] d)] =g . YR . . %
J e s ' ) }’ v
\ ¢
L /u'
5 | . o . . .
~ww 3 §§ [r__.. - N__.F(z . k. a. = .0
) G J [ 9] - d] ( qj)] 939 3J

< . A " ' . -

o
\

ror mAP/ggtlmates, the preceeding egquations:.would dlffer
only in the pgresence of' the so-called penalty function as a
second term in derivative w1th respect to a.

|

- ' o S e S e e |

. Pzl ke - -o2.21 214 - - ‘

e = § [(r_. =« N_.F(Z°. O e wecccecdmcee-a = 9 . |

“da. qj ai’ g3’} &q 2 at o2
] ; %ja :

3 " . |

[ lh |

f B . is set equal tor_. = N _.F(z_.), the preceedi o |

, I Bqy M set ed qj ~ Nqif(Zqy)s the preceeding -, ,1

likelihood equations can be rewritten,in simpler expressions: B :
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"These equations i@nnot be solved explicitly for the unknown'

. Parameters, but estmates can be obtained’by “an- iterative
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Second derivatives:

use in the Newton-Raphson procedure. -

"N.,'qu(ij) (1 - F(qu)]

i
i

»

. p

—————— = S =N .F(z_.)[1 = F(z_.)] k_ ©
I dc dah Sjn q gl q) Q] .—q
l : st d 8 s iy F(2. )01 - F(z_.)] (k_ ©)2
daj da djb o ja)” Ta) . qj -q =
I :
. .' dzl . , < ‘
—————— = -N _iF(z .)[1 - F(z_.)] k__a.
l‘ R g aj (2g4) 1 = Flzg5)] kgqa;
o e T
i il
S s -8 Pz 0l - F(z.0] (k. 9k ’
- . - - = —N . YA . - YA . O T oa. +
o . qj "°q3 qj =q =""qg" ]
1 e
l ) Sa2 | | <
‘ ————— = S 5s5 -y .F(z_.)[1 - F(z_.)] k__a.k_ a.
e 4o de" g3 9] ""q] 493 99 3 ah’]
' \ ' ‘ g
"1 if j=h
= { 1s known as Kronecke

@ otherwise ‘ :
VA .

k-1

e

.
[ . s

numerical proceaure such as that of_NewEon-Rapnson. Second
derivatives of the log likelihood: are required for the purpose

of investigating the shape of the likelihood function and for

b

o
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Only one of the second derivatiVes would differ if Qe»were
deriving MAP.estimates. The derivative taken twice with respect
to the slope would include another ﬁe:m on the right hénd side

Y

of the equation:

l

- .2 : .\ ‘

a“ ] , r \ 1 -1log a, +pu,. -
—msmoe w8 =NGUF(z05) (1) = Fzg ] (kg o] IR P
daj da, q : L . 7a aJ

By ué&ﬁg the expected values for r . and B_. in the -

k. ] q3] q]
O . - . . .
apbve equatjons the elements of the information matrix can

7
I

. &
pe obtainea.

E(r = N .F [
( qJ) qj (qu) /
, = N .F . - N .F . =
E(qu) qj (ij) qj (ij) o
P \ 'hwq’ ,:’?
Alsd, set W_. =@ F(z_.)[1 - F(z 51

q] QJ\
The elements of the 1nformat10n matrix are’fnen as follows
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c,?

B.: E(= mmmmam—— ) = S N _.W_.k_ a.
1 ac, do, q ai'gitag’i
a2 .
B.: E(- —mmmo——-= = S N_.W_ .(k_ ©)k_a.
2 =% ) a qi¥qi g S kqg?;
j “%g
a?}
C: E(= ====w==- ) = § S N K ha.
5 Ngi¥qikqg?Rn25
do_ de, q j 32

“Phe information matrix, I(c, a, @), takes the form

I(c, 2, 9) = X'WX where

W = daiag(N s eesN

£19£1'M12%127 -+ *Ngnen!
is positive definite.
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of linear comoinations of columns with linearly independent

n 1’

-OZ, -OB’ e s -Os. It is anticipated tnat identity

COGIflClentS O, O, O, - - - O, al, a2, a3, . . « a ’ -@

contrasts will always be used over the first factor during
parameter estimation, hence another dependency exists among the
columns 6f X as. a result of these my identity contrasts.

The linear combination of columns with linearly independent

COefflClentS al, 32,33, ) « o a O, O, O, - . e O, -l,

n’
-1, =1, « « « =1, O, O, O, } . « O shows the dependence. If
any two parametars are arbitrarily fixed angd..the corresponding
likelinood equetions deleted, the information matrix with the
corresgonding rows and columns deleted is positive definite.

A necessary and sufficient conditioﬁ for the log=likelihood
function to be concave and have a unique maximum is that this
Hessian matrix (matrix of negative of expected value of second
derivativeé) is positive definite. 1In the limit, therefore,

unigque maximum likelihoo? estimates of the parameters exist.

The information matrix can be written in partitioned form:

A B!
I(c, a3, @) =
B C
where

| A A, |
A = | 11 12 I
| A,y Ay, |

Ayp = diag( 2 Ngj Wgy!

A <13 \(.4(_)
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COe:flC1entS 0’ 0’ 0’ s s e 0, .al’ a‘ZI a3’ e o an';: -0

-

of linear compinations of columns with-linearly independent

1’

_QZ, fOB, e e ® -GS. It is antic%pated that identity |
contrasts will always be used over the first factor during
éarameter estimation, hence énotner dependency existsqamong the
coluﬁns.of X as a result of these m, identity contrasts.

The linear combination of columng with linearly independgntn
coefficients a,, azf ags « + + 2, 0,0, 0, ¢« & - O; -1,

-1, -1, .. .=-1,0,0,0, . . . O shous the dependence. If
any two garametars are arbitrarily fixed and the corresponding
likelinood equations deleted, the information matrix with the ~=\
corresgonding rows and columns deleted is positive definite. |
A necessary and sufficient conditiop for the log-likelihood
function to be concave and have a unigue maximum is that this
Hessian matrix (matrix of negative of expectéd value of~second

derivatives) is positive definite. In the limit, therefore,

unique maxiaum likelihood estimates of the parameters exist.

The information matrix can be written in partitioned form:

A B'
I(E: a, Q) =
B C
where

| A A ]
A = 11 >12 ‘
I Ay A, |

All = diag( g qu ij)
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"slope paramters instead of arbitrarily fixing a second

' d
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C = S N .W .k .k X
= S qi"q3 qg®; 3*133 ,

N

Since X has a deficiency in rank of 2, two parameters can

be arbitrarily fixed and the corresponding likelihood -
pd

equations deleted. As discussed earlier in this chapter,

the first ana mlth effe;ts from the first factor of tne

design are the paraﬁeters chosen to pe fized at -1 and +1
respectively. This choice conveniently sets the scale of

the solution in terms of the range of the first factor effects.
As also discussed previously, one of the lineaél@ependencies

can be eliminated by specifying a prior distribution on the

parameter. The dependency eliminated by the prior would be
the one associated with the linearly independent coefficients

Ol O’ O' - e a O’ al,,az, a3, - . . an’ -@l, —92,

-@ -@ .

1, * & s

The inclusion of-the prior distribution does not change

-

tne composition of the X matrix, but the X matrix is never
actually formed during the estimation procedure. The infor-

mation matrix is tormed in the the three partitions, A, B,

A1 o
Ly .




and C. Tne last n columns of tne suomatrix A are formed
o . .

tn

by the inner products of the n~ + 1 through 2n*t0

.columns of tne X matrix. These columns are linearly

dependent on the last s columns. of X. Now the prior distri=-

bution is included by adding tne matrix G, say, where

l—logil-i»/ié-l-l-ogaz-blu

G = diag (O’ 0 ’ 0 y sea 0, --2 "2' ’ -'"2'---"2'----- ’a‘. -
| » r.¢ a T.° a
a 1 a 2

"1 - log a_ + M
-.--i---=5-——-§, 0, 0, O, «.. O)

T 2

1

to tne informtion matrix, which has the eifect of adding a

term to each of the last n‘diagohal elements of A, A being
2n by 2n. Tne linear dependency among the last columns of A
ané the other rows (columns) of the information matrix is
thus eliminated By'the addition of the elements of G to
the diagonal, and the additiphal row and column neéd not be Geleted
in this case. \ |
For the model with no prior distribution on thé slope
parameters, twa LOWS ;hd columns corresponding to two group

effects are deleted, and the information matrix will be

positive definite. Then,

I(c, a, Q) = | \ is the 2n + s - 2
J




for tne slopes, rows ané columns corresponding to only one
effect are deleted. I(g, a, 9*) will still be positive
definite, but the rank will be 2n + s - 1.

For tne MAP estimation, the information matrix is
adjusted when used in the Newton-Raphson iteratioqs for
the influence of the prior distribution, resulting in the

matrix, say, E. gt

*- <
- E=1I(c, a,8) +G

where G takes the form as defined previously.
< : §

For the regular maximum‘likelinood'estimates, no adjustment
. LN
is made to tne information matrix.

i

e - <2 . C s
N Froceeding to optain the necessary quantities for

the scoring solution, we need the inverse of the information

matrix, or the information matrix as adjusted for the prior

distribution.

"o
S N T o SETLINS TS S NI -1 %
| a~t 4 a8 (¢F - Bxa”i" ) Tlesa™l -aTiB" (¢7 - B*a7!sB
|
l * - ' o - * - [T
| -(c" - g*a~ig"")~lp«a”? (c* - *xa"1ip" )71
|

There are some aspects of I-l which can be used for

efficient computing. The wnole matrix is of course Grammian,

SO the upper right partition is simply the transpose ofthe

lower left partition. The right nand term in the upper left

A- 16 14>

i .
'
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' - =1 _*! * =] kP =] ¥ =1 . 53.
partition, A "B (C - B A "B ) "B A", 1s Grammian, and

can be formed with specialized routines from the two matrices

LR =] * * =] w4V o7 . . - .
3 A and (C - B A "B ) ~, which is the lower right

-1

partition. The matrix a does not requife heavy computation

because the matrix a consists of partitions which are diagonal:

a / ‘
11

i ]
| all al?y .
At - I 21 22
1 A AT
| | %
wnere
11 -1 ' 21 _ 12 _ _ -1, 22 -1
ATt = DA, A%t = AT = -0TTA, A*¢ = p7'Ap,
b [(S N_.W_.)(S N (k. 6)%) - (5 W (5. @2
= a ! - »
g q Giad’g qiVqi g & 5 qi¥qi8q & 1

[

~ The iargest matrix to be directly inverted is the s - 2

NP =1 _*! e e e
rank (C" - B~ A BTY . ‘

For the MAP estimates, ! is replacad by gL,

E-l is the same as I -1 excebc for the contents of All and D.
S0, if the prlor distribution ls spec1f1ed on the slopes,

All and D become as follows:

.

_ . l - log a, + M l - log a, + M
Ca 21 Ta 22 ’

A:l7




1 - log a, +;“

g voo2 i
= + meemmempecdeeeel) =
L alag[(g qu qj)(b g3 qj( 8) . 3 N 3 2)
o a 3
G (S k 'O 2,
5 @ial (kg 2701
- - * =1

Here, (C - B A B )'is of rank s - 1.

The Newton-raphson procedure consists of finding
estimates at the t+lth iteration by adding a correction
'to the estimates at the tth lteratlon. The*correction
is obtained from multlplylng the inverse of the matrix
of second derivatives by tne matrix of first derlvatlves.
If the lnformatlon matrlx, which contains expected values
for the second derivatives, is substituted for the matrix

of actual second derivatives, the iterative proceedure with

this substitution is known as Fisher's method of Efficient

Score:

| | | |- |
I ¢ | e | 1 s qu |
| I | I I q ' |
a1l lal 1l s s k) |
a a + I (¢, a, @) S B _.( @)

| T |7 € | g 979 |
EN | |
0 . 0] S S B .a.
|~ |~ |l g3 391

In extremum theory, the vector of first derivatives is
known as tne gradienc. The maximum of the likelihood function.”

exists at tne zero of tne gradient. The second derivatives

tellc-now fast tne yYradient is changing. As the gradient




‘

1]
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approacnes its zero, it will cnange faster and faster, and the
elements of the inverse of the information matrix will become

\smaller and smaller. So, at the maximum 0f the likelihood
; .

‘ function, the correction to be added to the estimates becomes

zero. The iterative process is stopped and considered
aQ
conveérged whenever the absolute value for all corrections

falls below a oreassigned criterion. Starting values of
£

S

Os and 1ls, for the“cj's and aj's respectiéely, have been used

with success. -Least squares estimates of the group effects

calculated on the cell proportions can be used as

x
starting values for O .

Asymptotic Properties

Many of tne traditionalvresults which hold for
maxinum likelinood estimates are useful hereg. Since the
only parameters associated with.the subjects are fixed
group eftects, tnis modeliévéids%one of therthdrniest
problems often-encouhtered by two parameter latent trait
models. In such a model where eacn subject has an ability
to be estimateq, the subject parameter, which»appéars as
a niusance parameter, cannot be conditioned out of the
likelihood equations, and the number of parameters increases
with the number of respondents. In the present mddel,
however, the number of paramgkérs are fixed even as the

number of respondents becomes very large. Hence, standard

results that are covered in general treatments such as

103
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Cramer (194) and Rao (1965). apply.
Maximum likqlihdod‘estimates have the properties of
consistency and asymptoti; efficiency, the latter meaning
*  tnat tne variance of the estimates is the minimum .

attainable by any consistent estimator. gdditionally, o -
the estimates are diséributed in multivariate nofmal f;rﬁ,
with variance-dévariancé matrix equal to thé inverse of‘
"the negative of the matrix of second derivatives,‘i.e.,
the information matrix. Thig, information méééure,“also .o

é

known as Fisher's inf&f&étion,‘proves to be a general
index of sensitivity fbr small changes in the value‘oft o
the”parame;er (Réo, 1962) o~ .

The»stanaard errors for the estimétes are formgd -

from 'elements of the information matrix as follows:

S.g.(c) = 1/sere(T2h)
j 0

S.E.(a.) = 1/SGRT I";n'j;a,d)

U
S'E'(Og) l/SQRT(IlnY\))}hﬁ\)v

Fortunately, the terms needed for the denominators of
the expressions can be taken diréctly from the information
. o

matrix as formed during the last iteration of the-scoring

procedure.

Testing Goodness of Fit

‘ l
.




. 4
4 . v

Two statistics which are_commonly used as a measure
of the diséance.bgtween the model and the data are ége
likelinood rgtid%chi%ﬁﬁuare; somet imes written as Gzr
ana tne Pearson chif;guare,‘some;imes written as %?.

Gz and xz are defined as follows:

: N
r .. log -—-glg__
230 N_. P
q] "gqjh

where h is over all responses to an item.

R
. 1
N
w.wns
2 W0 m
ownN

2
n £f (N. - N_.P .

LS s -5 L
19 MgyPqj

The degrees of freedom for these statistics are equal

tonf - 2n - s + 2. 1In practice, the values of G2

ana xz are essentially the same tor a given model and

- .
data set, althougn G2 may be more resistent to ill
effects of cells witn very low expected value. It

can be shown gquite readily that x% is a sum

of squares of épproximate unit normal deviates, and

has, therefore, approxiﬁately a chi-square distribution
on nf - 2n - s + 2 degrees of ffeedeom (see for example,
Brownlee {(1965)). Bishop, gienberg, and Holland

2 2

(1975) show that G“ and X° are asymptotically equivaleht
, . 8

2 has the

under ‘the correct¥modei for. the data. G
overwnhelming advantage that it can be used for coméa?ing
alternative neéted models using a conditional breakd?wn
of the chi-squar: measures for the models.
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A WEIGHTED LEAST-SQUARES SOLUTION FOR LINKING CALIBRATIONS

FROM FORMS WITH AN ARBITRARY DESIGN OF OVERLAP

Robert J. Mislevy

International Educational Services

INTRODUCTION o
o B9

o

o
_The 2-parameter logistic item response model expresses the .. ... ..

probability of a correct response to Item j from Agent ias
oi -85 |
Pij = ¥ |-==—=-—- (1)
93 '

Y (x) denotes the logistic function exp(x)/[l+exp(x)],

where

_Q}bis the ability parameter for Agent i,
B8} is the threshold parameter of Item j, and
, | oy is the dispersion parameter of Item ] (the recip-

. . . .
. \
AN

of the slope parameter of Item j).

II : Reiser's (1980) latent trait model for group effects follows - B

- this form, with "Agent 1" interpreted as the groupbof subjects in

l a specified cell of the NAEP demograph'}c sam,pling design, and with

@i being a linear function of a vector of group-effect parameters.
Item and group parameters are determined unique1y~bnly up to

a linear transformation. When subsets of items from the same

scale are calibrated in separate data sets (e.g., data from

transformations must be found which optimally, rescale item and

I different assessment years or different age groups), linear
|

" R-1
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group-parameter estimates from any given calibration to a common
scale with a specified origin and unit-size.

The method of linking calibrations described in this paper is
intended for the case in which two or more calibration runs have
been performed on independent sets of data. In each case, all
items are assumed to belong to the same scale. It is necessary
that each calibration contain agj{;ast two items that appear in
some other calibration, and that all calibrati&ns are linked
either directly or indirectly. (Calibrations k and f are linked
_directly-if-they--have-items in-common;they-are linked indirectly
if Calibration j shares items with Calibration h, which in turn
shares itéms with Calibration f. Any such chain of finite length
constitutes an indirect link.) The method util{zes information

from all links among all calibrations in the estimation of

optimal transformations to a common scale.

SETTING UP NOTATION
We concern ourselves with item and group pa:ameter estimates
from M separate calibrations. Item parameter estimates are
denoted as follows:

Bjk is the estimate of the threshold parameter of Item
j from Célibration k, if Item j has been included in
Calbration k; otherwise, this value is ‘'undefined;

Sijk is the estimate of the dispersion parameter of Item j
from Calibration k, if Item j has been included in that
calibration run.

@ik is the estiimate of the ability of Group i obtained

in Calibration k, if appropriate.

B-2
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The linear transformations we seek will, for convenience,
rescale the estimates from all other calibrations to the scale .
determined in Calibration 1. They are denoted as follows:

Lk(x) = Ak x + Ck.

They are applied to the estimates as follows: ‘ -

Bik* = Ak Oik* + Ck,
Bjk* = Ak Bjk* + Ck, and
Sjk* = Ak Sjk.

It is clear that each item will have at least two estimates of

i

"“éacﬁmaf'ifgmparameters;~after~thesewtransformations“have”been'A” T e
applied to the reéults from each calibration. Inasmuch as the
transformations represent optimal rescaling to a common unit and
origin, final estimates of item parameters may be obtained by

taking the averages of the estimates for a particular value, with

each estimate weighted by the squared reciprical of its rescaled

standard error of estimation.

THE FITTING FUNCTION
The weighted least-squares fitting function that
simultaneously estimates the transformations for Calibrations 2
through M, usiné informa;ion from all available links, is shown

below. It is to be understood that A is fixed at 1 and C; at 0.

. . } Y
k[[}AkBjk + ck) - (AQBj +}g£q . wij

B-3 1i;




‘”wwmmﬂ~mwfittingmfunttion"may*begfn“wfth“an"unweighted“Teast*sqaﬁfésm“““

where

f 2 2 2 2 -1 -
{sqrt[Ak SE (Bjk) + Af SE (Bjf)1} if Item j is
included in both
ﬁ ' calibrations,
Wikf = . .
L 0 otherwise;
- ,
2 2 2 2 -1
; {sqrt[Ak SE (Sjk) + Af SE (Sjf)]1} if Item j is
. included in both
calibrations,
Wxjkf = :
0 otherwise.

A computational method for obtaining the minimum of the

Y o

approximation which uses information from threshold estimates

only, as described in the following section. In this section, we
provide apprdximate first and second derivatives of the fitting
function with respect to the parameters of the transformations,
which may be used in a quasi-Newton solution. Givén appro#imations
A ™ and ¢™of the parameters of the transformations, we obtain

better approximations as follows:

poe —— - =

2 2 7] -1
dF d4F dF
(m+1) (m) {dA dA dA daC da
A = _A_ - .
c c 2 2
dF 4F dF
dc dA d4c dc (m) | ac |

At

The presence of the slope parameters Ak in the weights
complicates the computation of derivatives. We propose,
therefore, that during the iterative solution of this problem, the

weights be considered as constants at each step. That is, during

8-+

i B
|
i
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the computation of the (m+1)‘th estimates, the weiéhts are to be

computed from the kncwn values of the standard errors- of the item

parameter estlmates and the transformatlon slope parameter

4es:imates Ak obtained from the m'th step. This expedient can be . .
expected to have little effect on the efficiency of the“sclution;
Under this assumption, we obtain the .-first and second derivatives
of the fitting functian F as shown below.. It is to be understood

that these derivatives are for transformations 2 through M.

First derivatives

N M )
Ak: 2 ‘Z=1 221 [( KBk QBjk i + cksjk C, ]2) )
(27K)
2 *
+ (A Sy 255%55¢) sz]
N M |
Ck: 2 = pX (A, B., - A,B. + C_-C Wy
: j=1 2=1 kTjk L7 k L jka
(27#k) . .\
Second derivatives
' N , M , M *
Ak, Ak: 2 L B. I W, ] + [s. I OW ]
' 5= l:]k =1 jk& jk =1 jke
- AAK) (2#K)
N *
k, Af: -2 jil [Bjkgjzwjkz + sjksjlw jsz
N M
Ak, Ck: 2 = [—B. TOW. :\
(2#k)
N

Ak, C{: -2 =T

ByaWike | R




g N M
Ck, Ck: 2 . § W,
=1 g=1 K&
(27K}
. N
Ck, Cl: -2 I W.
5=1 jki

"~ 777 AN UNWEIGHTED LEAST—SQdARES APPROXIMATION

An unweighted solution using infprmation from item threshold
estimates only may be obtained by redefining the weight terms in
the fitting function F. Firsﬁ, éil weights relating to item )
dispersion.terms, W*jkl, are set to zerol Second the keights

. \ .
relating to thresholds are replaced by simple indicato:\variables:

S | .

1 if Item j is included in both calibrations,
Djkf =
' 0 otherwvise.
. . \ r
FINAL ESTIMAT%§ OF ITEM PARAMETERS )

The transformations determining the minimum of the fitting

function will také group—effect 2stimates to the comhon scale
defined by the first calibration. Item parameters may aiso be
rescaled accordingly. Each item will have at least two estimates
of its threshold and dispersion, accompanied by rescaled standard
'errors of estimation. (The standard errors of a rescaled item
parameters is simply the standard error from the calipration

run, multiplied by the appropriate'tranéformation parameter Ak;)
To obtain a single point estimate of a‘gfben parameter, one may

" take the average of the several estimates, each deighted by the
squared reciprocal of its reécaled standard error.

- With either the weighféd or the unweighted solution, one may
obtain an approximate Chi—square value to test the hypothésis that‘

N

B-©
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ail estiméteé of a given item parameter are equivalent within the
ranges of calibration error. For example, the Chi-square for the
equality of.the several estimates of the threshold of Item i is
given by

5 M

xB.=22 8. : :

3 jk -

k=1 \ﬁzajl . SEZ(sz*))/(ZG. - 1)
2 :

2 j,Q, ’

where 6jk=1 if Item j was included in calibration k and 0 if not.

The number of degrees of freedom for this gquantity is the count of

appeérances of the item in all calibrétions;"ﬁiﬁdswgﬁé.g
A test of fit for the entire set of linking transformations

may be obtained by summing quantities as defined above, over all

similarly summed.

%
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A FORTRAN IV COMPUTER PROGRAM FOR LINKING ITEM CALIBRATIONS o

- Y
(SOURCE CODE AND SXAMPLE FROM 'UNDERSTANDING MATHEMATICAL CONCEPTS')
= VSN 1. //CONCEPT JOB (8UZ303,NAEP,M),MISLEVY,RE=280K,TE=Y
2. // EXEC FORTGCLG,USERLIB='SYS2.MATCAL'
3. //FORT.SYSIN DD * : E e
4. IMPLICIT REAL*8 (A-H,0-Z)
5. REAL*8" INAME(20) : v
6. COMMON/PARCOM/ INAME , ACRIT,N, M ,NM,METHOD ,M1 NP NTRIS NTRIL,
7. $ IDIAG,MAXITR .
8. NAMELIST/INPUT/ACRIT,N,M METHOD, IDIAG,MAXITR, INAME
9. c , ‘ . e
10.. c METHOD OF SOLUTION:
11. c 1. UNWEIGHTED LEAST SQUARES-
12. c 2. WEIGHTED, THRESH INFO ONLY
13. c 3. WEIGHTED, THRESH & DISP INFO
14. c v
, 15. c N = TGTAL # ITEMS
16. c M = # CALIBRATIONS
17. c NP = # PARAMETERS TO BE ESTIMATED,
) ) 18, c 2%(M=1). .

o~ e METHOD=0 S S S s .
20.. MAXITR=10
21. ACRIT=.001%
22, READ(5,INPUT)
23. c
24, M1i=M-1
25. . NP=2%*M1
26. NM=N*M :

' 27. NTRIS=(M1*x(M1+1))/2
28. NTRIL=(NP*(MNP+1))/2
29. CALL COMPUT
30. STOP
31. ‘ END
32. SUBRNL TINE COMPUT
33. IMPLICIT REAL*8 (A-H,0-2Z)
34. REAL*8 INAME(20) -
35. COMMON/PARCOM/ INAME , ACRIT ,N,M,NM,METHOD ,M1 NP ,NTRIS,NTRIL,
36. s IDIAG,MAXITR

. 37. ' DIMENSION INCID{(20,4).B(20,4),BSE(20,4),5(20,4),SSE(20,4),
38, s RSCSLO(4),RSCINT(4),PARAMS(G),CHANGE(G),FDRV(G), ;
39. $ SDRV.(21) .KDELTA(20,4,4),WB(20,4,4),WS(20,4,4),
40. $ WORK1(6),WORK2(6),
~ - 41, : s AVEB(20),AVES(20),ADJB(20).ADdS(zO),AVEBSE(20),AVESSE(20),
: 42, 3 STNRES(BO),SLOPE(20,4),SLOSE(20,4),AVESLO(20),AVSLSE(20)
K : - 43, REAL*4 FMT(20) :

44 c
45, c
46 . DO 10 K=1,M
47. - RSCSLO(K)=1DO .

EI{I(? v | : . ].1.3
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»(»«»-‘ e e e o e e e e et e e e
{
48, RSCINT(K)=0DO
49, DO 10 J=1.N 2
50. INCID(J,K)=0 i
51, B (J,K)=0DO
52. BSE (J,K)=0DO
53. S (J.K)=0DO
54, SSE, (U,K)=0DO.
55, SLOPE(J,K)=1E69 v
56 . K SLOSE(J,K)=1E69 -]
57 ~ DOKég/L.1JM N
58, KIELTA(J.K,L)=0 ®
59, wB (J.K,L)=0DO .
60. WS (J.K,L)=0DO ’
61. 10 CONTINUE .
62 c
63 ; "READ(5,15)FMT
64 15 FORMAT(20A4)
65 c , .
66 DO 20 1=1,999999 ¢
67 READ(5,FMT ,END=21) J,K,THR,THRSE,DISP,DISPSE \
68 INCID(JU,K)=1
69. B (J,K)=THR
70. BSE(J,K)=THRSE
71 s (J.K)=DISP
72 SSE-(J,-K)=DISRSE
73. 20 CONTINUE
74 . 21 IF(IDIAG.LE.OQ) GOTO 30
75. DO 30 K=1,M
76. WRITE(6,9040) K
77. DO 25 J=1,N
78. IF(INCID(U K).EQ.0) GOTO 22 -
79. WRITE(6,9060) U,B(J,K),BSE(JU.K), s(u K) SSE(J, K)
80. 22 CONT INUE
81. 25 CONTINUE
82. 30 CONTINUE ¢
84. c :
84, c SET UP KRONECKER DELTA MATRIX;
85, c KDELTA(J.K,L)=1 IF ITEM U APPEARS
86. c FOR BOTH CALIBRATIONS K & L,
87. c =0 IF NOT.
88, 50 CONTINUE
89, DO 60 U=1,N
20. 00 60 K=1,M
91. DO 60 L=1,M _ 4
92. IF(INCID(J,K).EQ.1 .AND. INCID(J.L).EQ.4%) KDELTA(J.K,L)=1
93 wB(JU,K,L)=KDELTA(J,K,L) : ’
94 60 CONTINUE .
95. IF(IDIAG.LT.2) GOTO 70
96. ~- D0 70 U=1,N
97 WRITE(6,6000) J,(L,L=1,M)
98, DO 65 K=1,M o
- 99. WRITE(SG, e1oo)(k (KDELTA(U K,L),L=1,M))

ERIC
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o NeNe]

C
C

o000

65
6000
6100

70

100

103

CONTINUE v
FORMAT (' ~KDELTA MATRIX, ITEM',14,5%,2013)
FORMAT(22X.4X,2113)

CONTINUE

ICYCcL=-1
ICYCL=ICYCL+Y
DO 700 ITR=1,MAXITR
IF(IDIAG.GT.C) WRITE(6,9000) ICYCL,ITR
DO 103 I=1, M1
PARAMS(I)=RSCSLO(I+1)
PARAMS(I+M1)=RSCINT(I+1)
CONTINUE

( IF WEIGHTED SOLUTION,
. . COMPUTE WEIGHTS.

IF(METHOD.GE.1 .AND. ICYCL.GT.O)
CALL WEIGHT(KDELTA,RSCSLO,BSE,WB)

IF(METHOD.GE.2 .AND. ICYCL.GT.O)
CALL WEIGHT(KDELTA,RSCSLO.SSE,ws)

' P CALCULATE DERIVATIVES

3

ERIC
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o000

150

160 -

700
71¢C

CALL FIRST(B,BSE,S,SSE.RSCSLO, RSCINT 'WB,WS,FDRV)
CALL SECOND(B,BSE,S.SSE,RSCSLO,RSCINT,WB.WS, SDRV)

NEWTON-RAPHSON STEP

CALL INVSD(SDRV,NP,DET,WORK1, WORK2)
CALL MPYM{(SDRV,FORV,CHANGE,NP,NP,1,0,1)
BIGC=0DO
BIGD=0DO
DO 150 I=1,NP
CHANGE(I)——CHANGE(I)
IF(DABS(CHANGE(1)).GT.BIGC) BIGC=DABS(CHANGE(L))
.1IF(DABS(FDRV(I)).GT.BIGD) BIGD=DABS(FDRV(I))
CONTINUE
CALL ADDM(PARAMS,CHANGE ,PARAMS NP, 1,0)
DO 160 I=1,M1
RSCSLO(I+1)=PARAMS(I)
RSCINT(I+1)=PARAMS(I+M1)
CONTINUE
CALL FUNCT(RSCSLO,RSCINT,B,S,WB,WS.CHISQ)
WRITE(6,9020)ICYCL,ITR,BIGC,CHISQ
IF(IDIAG.GT.O) CALL DPRNT(RSCSLO 1,M,0, BHSLOPES )
IF(IDIAG.GT.0) CALL DPRNT(RSCINT,1,M,0,8HINTERCPT)
IF((BIGC.LE.ACRIT .OR. BIGD.LE. ACRI?) .OR.
(METHOD.GT.2 .AND. ICYCL.EQ.O .AND. ITR.GE.3)) GOTO 710
CONTINUE ’
CALL DPRNT(RSCSLO,1,M,0,8HSLOPES )
CALL DPRNT(RSCINT,1,M,0,8HINTERCPT)’

110
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153. CALL DPRNT(SDRV,NP,NP, t,B8HCOVARNCE)
154 . C
155, C IF WEIGHTED SOLUTIGN DESIRED,
156. C q AND JUST UNWEIGHTED SOLUTIDN .
157. C HAS BEEN CDMPUTED, GO BACK %
158. C AND DD WEIGHTED SDLUTIDN.
159. C R : ‘
160. IF (ICYCL.EQ.O .AND. MET'{DD.GE.1) GOTD 100
i61. C :

s 162, ¢ " RESCALE I1TEM PARAMETERS
163. C
164, DD 765 J=t1,N
165. C
166, AVEB (J)=0D0
167. AVES (J)=0DO
165, ADUB (U)=0D0
169. Ar-1s  (dJ)=000
170. A iBSE(uU)=000
171. AVESSE(J)=000
172. 765 CONTINUE : _

, 173, DD 780 K=1,M

e 174, WRITE(6,9050) K
175. oo 775 J=1,N :
176. IF(INCID(J,K).EQ.0) GDTD 770

SEL L - o R— —— _ .
178, 8 (J,K)=B (J,K)*RSCSLO(K) + RSCINT(K) .. -~
179. BSE(J,K)= BSE(J,K)*RSCSLU(K) : ”
180. s (J,K)= S (U,K)*RSCSLO(K) ~~
181, SSE(J,K)= SSE(J.K)*RSCSLO(K)
182, SLOPE (U K)Y=100/S(J,K)
183, SLDSE(JU,K)=5SE(JU,K)*SLOPE(J,K)**2
184 . WGTB=00D0
185. WGTS=000
186. IF(BSE(J,K).GT.0DO) WGTB = 1DO/(BSE(J,K)**2) --
187. IF(SSE(U.K).GT.0D0) WGTS = 100/(SSE(J,K)**2) .
188, AVEB(U)=AVEB(U)+B(J, K)*WGTB _ .
189. AVES(U)=AVES(J)+S(J,K)*WGTS i
180. ADUB(U)=ADUB(J)+WGTB
191, ADJUS (JU)=ADJS(J)+WGTS .
192, AVEBSE (U)=AVEBSE (J) + (WGTE¥BSE(J,K))**2
193, ‘AVESSE (J)=AVESSE(J) + (WGTS*SSE(J,K))**2 )
194. WRITE(6,9060) J,B(J,K),BSE(JU,K),S(J,K),SSE(J,K},
195. . SLDPE(J,K),SLDSE(J,K)
196. 770 CDNT INUE
197. 775 CONTINUE
198, 780 CONTINUE
199. WRITE(6,9070)
200. DD 830 J=1,N
201. AVESLD(J)=0D0
202. AVSLSE(U)=000 -
203. IF (ADUB(J) .GT.0DO) AVEB(J)=AVEB(J)/ADUB(J)
204. IF(ADUS(JU).GT.0DO) AVES(U)=AVES(J)/ADUS(J)
205. 1F(ADUB(J).GT.000) AVEBSE (J)=( 100/ADUB(J) ) *DSQRT(AVEBSE(J))
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206. IF(ADUS(J).GT.ODO) AVESSE(J)=DSQRT(1DO/AVESSE(J))
207 IF(AVES(J).NE.ODO) AVESLO(J)=1DO/AVES(J) .
208 IF(AVES(J).NE.ODO) AVSLSE(J)=AVESSE(J)*AVESLO(J)**2 2
209. WRITE(6,9030) J,AVEB(J),AVEBSE(J),AVES(J),AVESSE(J), .
210. s AVESLO(J).AVSLSE(J)
211. 830 CONTINUE i
212, o . : "
213 o . STANDARDIZED RESIDUALS
214 c T
© 215 IDF=0
216 DO 840 K=2,M
217 K1=K-1
218 DO 837 L=1,K1 -
219 DO B34 J=1.N
220 - IDF=IDF+KDELTA(J,K,L) -
221 834 CONT INUE -
222 837  CONTINUE
223 840 CONTINUE
1V 224 c :
225 CHISQ=0DO
226. DO 850 J=1,N’ , -
227. DO B45 K=1,M :
228, . INDX=J + (K-1)*N . -
229. STNRES(INDX)=0DO ’

e =230 ey e LELINCID(J ,K) . LE.Q) GOTO 845 L
231. s STNRES(INDX)=(B(J,K)-AVEB(J))/DSQRT (AVEBSE(J)**2+BSE(J,K)**2)
232. _ CHISQ=CHISQ + STNRES(INDX)**2 ‘

233. 845  CONTINUE
234. 850 CONTINUE
235. CALL DPRNT(STNRES.N,M,0,B8HRESIDUAL)
. 236. WRITE(6,800Q) A\
237. DO 900 J=1,
238, WRITE(G,8§;O) INAME(J),
239. $ (B(J,K),BSE(J,K),SLOPE(J,K),SLOSE(J,K) .K=1,4), ’
240. $ AVEB(J),AVEBSE(J),AVESLO(J),AVSLSE(J)
241. 900 CONTINUE '
242, c . -
243. 8000 FORMAT(1H1//' ITEM ',5(' THRESH SE SLOPE SE ')/ “
244. $  1X,31(4H----)) '
245, B100 FORMAT{1X,A8,5(F7.2,F5.2,F6.2,F5.2))
246 9000 FORMAT(1H1//' CYCLE', I4,' ITERATION',14)
247 9020 FORMAT(1H ,214,2F12.6) -
248 9040 FORMAT(1H¥/'-INPUT ITEM PARAMETERS FOR CALIBRATION'.I4// .
249 $ ' ITEM THRESHOLD S.E.  DISPERSION  S.E. Y/
250 $§ ! mmmmmmmm oo e ————o oo 9
251 9050 FORMAT(1H1/'-RESCALED ITEM PARAMETERS FOR CALIBRATION',14//
252 $ ' ITEM THRESHOLD S.E.  DISPERSION  S.E. ', ,
253 $ ;' SLOPE S.E.'/
254 B et ‘,
255 $ Pmmmmm o ")
256 9060 FORMAT(1X,14,6F10.3) .
257 9070 FORMAT(1H1//'-GRAND AVERAGES OF ITEM PARAMETERS'/
258 $ ' ITEM THRESHOLD S.E. DISPER%%PN S.E. '
- ré;
. ¥

oo

12%




ERIC

-

300.
301 .
302.
303.
304.
305,
306 .
307.
, 308,
309-.
3to.
3.

[oNeo N9

200
300
400

565
6000
6100

570

~—
$ ! SLOPE S.E.'/ -
s 1 e e e e e e e . o e 1 .
$ 1 e e e 1) .
RETURN . .
END ) . .
SUBRDUTINE WEIGHT(KDELTA,RSCSLO,SE,W) ) ) .

IMPLICIT REAL*8 (A-H,0-2) .

REAL*8 INAME(20)

COMMON/PARCOM/ INAME , ACRIT,N,M,NM,METHOD, M1 NP, NTR1S,NTRIL,
s IDIAG, MAXITR

DIMENSION KDELTA120,4.4),RSCSLO(4),SE(20.4).W(20,4.4)

DO 400 K=1,M '
Ki=K-1 !
. DO 300 L=1,K1"
DO 200 J=1,N
w(J,K,L)=0DO
IF(KDELTA(d K,L).LE.O) GOTO 100 .
W(J.K, L)—1DO/((RSCSLO(K)*SE(d K))**2+(Rsc5Lo(L)*SE(u L))**2)
W(J,L,K)=W(J,K, L}~ ) ’
CONTINUE o
CONTINUE .
CONTINUE
IF(IDIAG.LT.2) GOTO570
DO 570 J=1,N .
AWRlTE(G.GOOO) J,(L,L=1,M)
DO 565 K=1,M ' el
WRITE(6,6100) (K, (w(d.K.L),L=1,M)) ~ ,
CONTINUE ]
FORMAT ( ‘' -WEIGHT MATRIX ITEM',14,10110) \
FORMAT(12X,4X,110, 10F10.4)
CONTINUE -

‘RETURN
END
SUBROUTINE FUNCT (RSCSLO,RSCINT,B,S,WB,WS,CHISQ)

COMPUTE CHI-SQUARE

IMPLICIT REAL*8 (A-H,0-2)
REAL*8 INAME{20)
COMMON/PARCOM/ INAME , ACRIT,N,M,NM, METHOD,M1,NP,NTRIS,NTRIL,
$ IDIAG, MAXITR -
DIMENSION RSCSLO(4), RSCINT(4),B(20%4),5(20,4),
$ WB(20,4,4),WS(20,4.4)
CHISQ=0DO
DO 500 K=1,M .
K1=K-1 :
DO 400 L=1,K1 o
IF(K1.LE.OQ) GOTO 400 =
DO 300 J=1,N
IF(WB(J,K,L).LE.ODO) GOTO 300

9
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312, CHISQ=CHISQ + (RSCSLO(K)*B(J,K) + RSCINT(K) B
313. $ —RSCSLO(L)*B(J.L) - RSCINT(L))**2 * wB(J,K,L)
314. IF(METHOD.LT.2) GOTO 300
315. CHISQ=CHISQ + (RSCSLO(K)*S(J,K)
316. 3 -RSCSLO(L)*S(J,L))**2 * WS(J,K,L)
317. 300 CONTINUE
318. 400  CONTINUE
319. 500 CONTINUE
" 320. - RETURN
321. END
- 322. SUBROUTINE FIRST(B.BSE,S,SSE,RSCSLD,RSCINT,WB,WS,FDRV)
323. IMPLICIT REAL*8 (A-H,0-2)
324. REAL*8 INAME(20)
325. COMMON,/PARCOM/ INAME ;ACRIT,N,M,NM,METHOD,M1,NP ,NTRIS,NTRIL,
. . 326. s IDIAG,MAXITR ~
¥ 327. . DIMENSION'3(20,4).5(20,4).Bss(zo.a).sss(zo.a).RSCSLo(a).RscxNT(a),
328. $ WB(20,4,4),WwS(20,4,4),FDRV(6E)
329 c
330 c FIRST DERIVS OF SLOPES
331. c
332. DO 190 K=2,M
333. KK =K~ 1
334, FDRV(KK.)=0DO
. 335. , Do 170 J=1,N ,
& 336. DO 150 L=1,M :
i - 337. 1F(L.EQ.K .OR. WB(JU,K,L).LE.ODO) GDTO 150
338. ‘FDRV(KK)=FDRV(KK) + WB(J,K,L)* .
339. s (RSCSLO(K)*B(J,K)**2 - RSCSLO(L)*B(U,K)*B(J,L) ®
340. $ + RSCINT(K)*B(U,;K) - RSCINT(L)*B(J.K))
341, ) IF(METHOD.LT.2) GOTO 150
342. FDRV(KK)=FDRV(KK) + WS(J,K,L)*
343. s (RSCSLO(K)*5(J,K)**2 - RSCSLO(L)*S(J,KI*S(J,L))
344. 150 CONTINUE '
345, 170  CONTINUE
346. FDRV{(KK)= FDRV(KK) * 2DO s
347. ° 190 CONTINUE .
348 c
349 c FIRST DERIVS OF INTRCPS
350. c , -
351, DO 290 K=2,M
352. KK=M1 + (K-1)
353. FDRV (KK )=0DO
354. DO 270 J=1,N : :
355. DD 250 L=1,M —
356. IF(L.EQ.K .OR. WB(U,K,L).LE.ODO) GOTO 250 -
357. FDRV(KK)=FDRV(KK) + WB(J,K,L)* :
358. $ (RSCSLO(K)*B(J,K) - RSCSLO{L)*B(J,L)
359. : $ + RSCINT(K) - RSCINT(L)) :
360. 250 CONTINUE® ' .
361. 270  CONTINUE - LN -
g . 362. FDRV(KK)= FDRV{(KK) * 2DO )
363. 290 CONTINUE y . d
364. IF(IDIAG.GT.0) CALL DPRNT(FDRV;{,NP,O,8HFDRV, )
. O s, ° ) ’ - - .
B . v o
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RETURN

END_

SUBROUTINE SECOND(B,BSE.S,SSE,RSCSLO,RSCINT,WB,WS,SDRV)
IMPLICIT REAL*8 (A-H,0-2)

REAL*8 INAME(20)

COMMON/PARCOM/ INAME ,ACRIT ,N,M,NM,METHOD ,M1 NP ,NTRIS ,NTRIL,

$- ADIAG,MAXITR

DIMENSION B(20,4).S(20,4).BSE(20.4),SSE(20.4).RSCSLO(4).RSCINT(4),
$ WB(20,4,4),WS(20,4,4),SDRV(21),SDRVA(8E),

$ SDRVB(9),SDRVC(6) ’ .

SLOPE DOUBLE DERIVS
INDX=0 °
DO 190 K=2,M
INDX=INDX + (K-1)
SDRVA ( INDX)=0DO
Do 170 J=1,N
SUMWB =0D0.
SUMWS=0D0
DO 150 L=1,M
IF(L.EQ.K .OR. WB(J,K,L).LE.ODO) GOTO 150
SUMWB=SUMWB + WB(J,K,L)
SUMWS= SUMWS + WS(J,K,L)
CONT INUE
SDRVA{ INDX)=SDRVA (INDX)+ SUMWB*B(J,K)**2
IF(METHOD.GE.2) .

s SDRVA(INDX)=SDRVA (INDX) + SUMWS*S(J,K)**2
170  CONTINUE :
SDRVA ( INDX)=SDRVA(INDX) * 2DO
190 CONTINUE
SLOPE CROSS DERIVS
400. INDX =0
’ 401, DO 290 K=2,M
402, DO 270 L=2,K . a
403. INDX=INDX+1 o
404. \ IF(L.EQ.K .OR. WB(J,K,L).LE.ODO) GOTO 270
405. o SDRVA(INDY) = ODO
406. DO 250 J=1.N
407. SDRVA ( INDX)=SDRVA (INDX) + B(J,K)*B(J,L)*WB(JU,K,L)
408. IF (METHOD .LT.2) GOTO 250
409, SDRVA{ INDX)=SDRVA (INDX) + S(J,%)*S(J,L)*WS(J,K,L) .
410. 250 CONTINUE 4
411, SDRVA(INDX) = - SDRVA(INDX) * 2DO o
4132, 270  CONTINUE .
413, 290  CONTINUE
414 . C
415 c SLOPE*INTRCP CROSS DERIVS,
416 c * SAME CALIBRATION
. 417 c |
) g .
Q v v
B - 'S
ERIC . 12+
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466 .
467.
468.
469.
470.

DO 390 K=2 M

KK=K-1
INDX=(KK-1)*M1 + KK
SDRVB ( INDX ) =0DO
DO 370 J=1,N
SUMWB = ODO
DO 350 L=1,M
IF(L.EQ.K .OR. WB(J,K,L).LE.ODO) GOTO 350
SUMWB=SUMWB + WB(J,K,L)
CONT INUE
SDRVB ( INDX )=SDRVB(INDX) + B(J,K)*SUMWB
CONTINUE
SDRVB{ INDX) = SDRVB(INDX) * 2DO

390 CON}INUE

SLOPE*INTRCP CROSS DERIVS,
DIFFERENT CALIBRATIONS

INDX=0

DO 490 K=2,M

DO 470 L=2,M
INDX=INDX+1
IF(K.EQx) GOTO 470
SDRVB ( INDX ) =0DO
DO 450 J=1,N

SDRVB(INDX )=SDRVB(INDX) + B(J,K)*WB(J,K,L)

CONTINUE
SDRVB(INDX) = - SDRVB(INDX) * 2DO

CONTINUE

CONTINUE

¢

. INTRCP DOUBLE DERIVS

INDX=0 .
DO 590 K=2,M
‘* INDX=INDX + (K-1)
SDRVC(INDX) = ODO
DO 570 J=1,N
DO 550 L=1,M
IF(L.EQ.K .OR. WB(J,K,L).LE.ODO) GOTO 550
SDRVC(INDX) = SDRVC(INNX) + WB(J,K,L)
CONT INUE :
CONT INUE
SDRVC(INDX) = SDRVC(INDX) * 2DO *
CONTINUE :

INTRCP CROSS DERIVS

INDX=0 :
DO 690 K=2,M - .
DO 670 L=2,K
INDX=INDX + 1 ‘
IF(L.EQ.K .OR. WB(JU,K,L).LE.ODO) GOTO €70 s

12, ¢
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471, SDRVC(INDX) = ODO
\ 472. DO 650 J=1,N
473. SDRVC(INDX) = SDRVC(INDX) + WB(J,K,L)
| 474. 650 CONT INUE ‘
‘ ‘ : 475 SDRVC(INDX) = - SDRVC(INDX) * 2DO
| 476. ‘670  CONTINUE
' 477. 690 CONTINUE
478, c
479. CALL ADUJRC(SDRVA,SDRVB, SDRVC,SDRV,M1,M1)
480. IF(IDIAG.GT.0) CALL DPRNT(SDRV,NP,NP,1,8HSDRV )
481, RETURN
482, END
483. //GO.SYSIN DD *
484. &INPUT N=17,M=4,METHOD=3,MAXITR=20, INAME=
485, '5-A45532",
486. '5-B41532",
487. '5-841732",
488. ‘5-B31732"',
489, {5-NOO002 ', .
490. "5-B11008 ',
491, ‘5-A71043",
492. '5-A21022",
} 493, ‘5-B32632",
494. '5-K30004 ',
_ 495, '§5-K10010",
N 496. ‘5-B33232",
™~ ' 497 . '5-G43009"',
498, '5-H12025",
499. '5-G20001",
500. '5-K51020",
o 501. . '5-A21032',
502. &END
_ 503. (12,11,4F8.3)
T 504. 41 3.046 .360 5.263 .281
505. - 851 -1.687 .360 5.000 750
506 . 61 .185 ,220 .6.250 781
507. 81 .413 .160  4.000 480
508. a1 2.681 .320 5.556 .926
a 509, 101 1.107 .270 10.000  2.000
510. 111 3.756 .440 5.263 .831
511. 121 227 .220 6.667 , .889
512, 131 1.923 .280 7.143  1.020
513, 52 -3.460 .610 5.000 .750
514, 62 -3.010 .720 10.000  2.000 N
515. 102 .810 .290 7.692  1.183
516. 112 3.530 .610 5.556 .926
\ 517. 142 %, .700 .290 7.692  1.183 .
518, 162  ~.150 .210 4.762 .680
. \ 519. 13 -1.511 205 2.857 .335
. . 520. 23 -.413 + .210 6.061 .882
- 521, 43 - .430 .195 5.348 .744
522. 53 =-3.420 .478 4.115 .559
4,

523. 63 -2.540 .360

4\} . . ' ' \ . 4
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524 .

526.
527.
528.
529,

531.
532.

o |
ERIC ‘
O . S

PN

73 -1.378 . 231 4.065 512
83 -1.319 .194  3.040 .351
103 -2.325 .a57  4.717 .623
64 -5.283 .968 6.944 1.206
84 -2.657 .454 5.155 .797
114 791 260 6.329  1.001
144 -2.084 .397 6,289 .989
154 2.233 .338 5.464 .836
174  1.533 .324 6.667 1.067
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COMMENTS ON NAEP PUBLIC-USE DATA TAPES

Due to the gUantity of information provided, the NAEP tapes
were in general cumbersome to work Qith. ‘The documentation for
the 1977/1973 and change item tapes can only be described as
excellent, comprehensive in SCope.and accurate in detail. The
files comprising the tapes were well—organized; theuinformation
“about variable locations as well as that contained in the value
labels of the accompanying SPSS.files was invaluable, and the
classification of items contained in the appendices greatly
facilitated the construction of our scales. FIn comparison, the

1972/1973 tape was more difficult to work with, the organjzation

and contents of the tape less readily understood.

A few minor difficulties that we encountered bear mentioning.
The difference between the "no response" and "missing values”
classifications of item responses is unclear from the documenta-
tion. The fact that ih school and out of school 17 year olds are
assigned different yalues for the region variable proved to be a

source of temporary confusion.

Data for items whicn were supposed to be invariant across two
or more age/year cembinations, according toathe documentation
provided, occasionally did not seem right. As an example, Item
5-B32632 appeared in-both the l3—year old and 17-year old instru-
ments in 1977/783 as T1020 and- SO921 respectively. Proportions of
’ correct responsei?however, suggested the item to be’ exteremly more

d1ff1cult for 17-year olds than 13- year‘olds, a: trend strongly |

G"contrad1ct1ng evidence from every other’ 1tem 11nk1ng these two age

- 123




years. It is likely that data for thc 17-year olds is in error
here. Similar problems arose for items 5-A71043 and 5-N00002.
Such questionable item/age/year data combinations were omitted in

our computations.
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