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Preface

The Australian Council for Educational Research was established in
1930, under a grant from the Carnegie Corporation of New York. Three
functions were held in 1980 to mark the fiftieth anniversary. Two were
invitational seminars—one on the improvement of measurement in
education and psychology and another on societal change and its impact
on education. The third function was the presentation of a history of the
ACER prepared by Professor W. F. Corinell.

This volume contains the papers and reactant statements which were
presented at the Invitational Seminar on the Improvement of Measure-
ment in Education and Psychology. A seminar on this topic was con-
sidered to be highly appropriate for the anniversary celebrations, as
measurement in education and psychology has been one of the main
areas of the work of the ACER since its inception.

The seminar was held on 22 and 23 May in the Council Chamber of the
University of Melbourne. Sixty-one people attended, including par-
ticipants from most parts of Australia and from Canada, The People’s
Republic of China, Finland, Germany (FRG), Great Britain, New
Zealand, and the United States. A highlight of the occasion was the
presence of Emeritus Professor R. L. Thorndike, of Teachers College,
Columbia University, who was especially invited by the ACER to give
the opening paper. His visit to Australia was supported by the Australian
American Educational Foundation.

The seminar was opened by the President of the ACER, Emeritus Pro-
fessor P. H. Karmel, whose introductory statement is included in this
volume. . ‘

It was decided in the planning stages of the seminar that the focus
should be on the contribution that latent trait measures can make to
education and psychology. In the 1960s and 1970s, psychometricians nad
devoted much effort to the development of latent trait measurement

“models. Yet measurement procedurcs based upon these models had been

used for only a short time in the practice of educational «nd
psychological measurement in Australia. Many practitioners in the field
of measurement still had little or no knowledge of the features of the
various latent trait models. It was thought that the time was opportune to
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Aruitoxt provided by Eic:




ERI

bring some of the theoretical and practical aspects of latent trait
measurement procedures to the attention of people in Australia working
in or interested in the field of measurement in education and psychology.

Papers on various aspects of latent trait models were sought from ap-
propriate authors in Australia and overseas. These were circulated in ad-

vance to participants in the seminar. The seminar itself took the form of

a paper ‘presentation, followed by a reactant statement on the paper,
followed in turn by general discussion. The edited versions of the papers

appear in this volume, together with the statements of reactants. Some of’

the discussion is caught up in the final paper, which represents the chair-
man’s attempt to summarize the debate emerging from the seminar.

The seminar was undoubtedly successful in raising the level of
awareness of many of the participants about theoretical and practical
issues in measurement and particularly in latent trait measurement pro-
cedures. Since the papers represent original contributions by reputable
authors in the field, the ACER believes that they deserve a much wider
audience.

July 1981 Donald Spearritt

Vice-President
Australian Council for Educational Research
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Introductory Statement

Peter Karmel

I have been asked, as President of the ACER, to open this seminar.
Although I have no technical background in educational measurement, 1
am a consumer of educational measurements and, with my background
as an economist, I have a predilection for measuring things which is
similar to yours. I like to quantify attributes and concepts whether they
are in economics or education or psychology, and my work in educa-
tional policy has usually had a statistical basis. Because of this I am well
aware of the conflict one faces when one is trying to measure things. On
the one hand there is the need to be precise and to emphasize what is
measurable; on the other hand, in respect of policy questions, it is impor-
tant to maintain a healthy scepticism about what is measurable and
about the kinds of inferences that can be made from measurements and

“mathematical models.

This seminar is the first of three major functions arranged to mark the
fiftieth anniversary of the establishment of the ACER. The organization
was set up in 1930 through a grant from the Carnegie Corporation of
New York. It is therefore most appropriate that the first paper should be
given by a distinguished scholar from the United States. While this
seminar is of.a highly technical kind, being devoted to improving
measurement in education and psychology, a second seminar on Societal
Change and its Impact on Education is concerned with ' educational
policy in Australia for the remainder of the twentieth century. The two
topics provide a nice balance between the interests of the ACER in
measurement and its technicalities on the one hand, and in ¢ducational
policies in a changing social context on the other. The third function,
during the Aanual Meeting of the Council in October, is the presentation
to the Council of a history of the ACER written by W. F. Connell.

It is relevant on occasions like this to issue a warning about'divergen-
cies between technical measurement and policy prescriptions derived
from measurecment. Some of the measures we use are relatively simple,
such as the number of students in the last year of high scho¢l or the
number of staff in institutions of higher education. But many of our
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measures, and particularly those which will be discussed in this seminar,
are statistical constructs which do not precisely portray the concept that
they are intended to measure. Since they cannot be used in any simple
way., care has to be rtaken in drawing inferences from them. In
economics, for example. we talk about the price level, and in Australia
we have the consumer price index (CPI) which governs to a large extent
the rate of change of wages in this country. The CPI is a statistical con- -
struct which does not measure changes in the price level according to any
theoretical definition. Similar difficulties arise with measures of produc-
tivity or of the real value of the gross domestic product. 4
A second matter of concern is that the use of statistical constructs may
have unintended results in the practical situations in which they are ap-
plied. Measures of cducational attainment, for instance, may have conse-
quences of a kind which are not the concern of those who are interested
in their technical development. For example, they may lead to the label-
ling of children with particular kinds of problems. and this in turn can
have implications for the way in which different groups in the community
arc treated, as in some of the Title 1 programs in the USA.
Thirdly, theoretical and mathematical models may be developed which
include concepts of which statistical constructs are measures. Inferences
may be drawn from these models and the statistical estimation of their
paramcters. It is casy to slide into a position where policy prescriptions
are being made about a real world which is in fact very different from the
theorctical world. In the field of economics, for example, it has become
common 1o measure outcomes against the optimum properties of a world |
in which there is a free market and free competition. The underlying }
model, however, rests on a whole serigs of value assumptions about what |
is optimum. Further, the optimum properties of that kind of world hold |
only if the world is made up of a large number of small units. But we |
know that the world we live in is not made up of « large number of small |
units; it is made up of quite large aggregations of economic power — large {
corporations, trade unions, various pressure groups, aind so on. To slide I

from the kinds of policies that one would advocate in a theorctical model

“to advocating those kinds of policies in the real world is simply not
legitimate, My intuition suggests that the difficulties experienced in ap-
plying theorctical models in cconomics to policy questions in the real
world are likely to oceur also with respect to models relating to educa-
tional attainment or psychological testing or measurement.

W hile it is important to Keep these points in mind. it is the purpose of
this first seminar to consider some diflicult technical problems in the ficld
of measurement in education and psychology. This is a very proper way
to begin the celebration of the fifticth birthday of the ACER, given the
role that measurement has played in its activities over the past 50 years.

ERIC 12
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FEducational Measurement— Theory
) and Practice

. Robert L. Thorndike

1 am honoured to open the program of this seminar celebrating the 50th
anniversary of the Australian Council for Educational Research. It
represents a major milestone in the history of this distir.guishcd
organization.

We could also, perhaps, claim to be celebrating the 75th dnmversary of
the birth of psychometric theory and practice, for it was just 75 years ago
that Binct and Simon published their report of the first workable scale to
assess intelligence. It was just 75 vears ago, give or take a year, that
Charles Spearman published his model of intellectual ability expressed in
terms of g, a general intéllectual factor, together with s factors each
specific to a single test, and also the model of test score in terms of true
score and vrror that provided the-foundation of much of classical test
theory. In the same year, in the United States, Edward Thorndike's Men-
tal anid Social Measurements introduced basic statistical concepts to the

-~ educational profession. We are still a relatively young discipline, when

compared with the total range of disciplined inquiry, but we have moved
tar enoughalong so that we can well afford te pause to consider where we
have been, where we are, and where we may be going!

Educationai and psychological measurement have, since their incep-
tion, imvolved the parallel streams of practical test development and for-
mulation of theoretical models -of test performance. Binet was a
pragzmatist, assembling in his scale of intelligence a wide variety of tasks
that he found usctul in the practical task of differentiating those who
were making normal school progress fromn those who were having
ditficulty in school. His work had little self-conscious theoretical struc-
ture. Concurrently Spearman was offering the theory that would provide
a rationale for Binet's procedure, in that it postulated a pervasive general
factor, g, ‘extending through the whole range of cognitive tasks.
Throughout the course of the past 75 years these two facets of the cnter-
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-prise have continued side by side. As the practical test makers have

generated test exercises, set scoring procedures, and combined the results
into test scores, the test theorists have constructed models to account for
how people perform on a test and to explicate what the test scores
signity. We are never interested in the bits of behaviour that appearona
test solely for themselves, but always as signifying something more
general, morc lasting, more fundamental about the individual.

Models have, from the beginning, been developed to account for two
distinct, but not unrclated, aspects of test performance. On the one
hand, it was observed that two measurements designed to be as nearly as
possible measures of the same identical characteristic of a person did not
yvield identical scores. A theory was required of measurement error. On
the other hand, it was observed that measurements of what were de-
signed to be ditlerent characteristics of a person were usually not inde-
pendent, but werce in varying degree related. A theory was required to
picture the organization of human traits.

. The classic theory of measurement error, or test reliability, presented
in its essentials by Spearman 75 yLars ago, viewed a test score as made up
of two components, a ‘true score’ and an error. The true score and error
were conccived of as completely independent. The true score was viewed
as unchanging from one form of a test to a parallel alternate form and
from onc occasion to another. The error was considered to be unique to
the specitic measurcment, and to be entirely independent of the error that
might equally be cxpected to appear on another measurcment designed to
assess that same characteristic of a person. Of course, the true score, as
such, could never be directly observed. 1ts existence and properties could
only be.inferred from consistency of performance from one test exercise
to another or from one test score to another.

This classic model of true score and error dominated the conception of
test scores for most of the first 50 years of psychometric theory. It was a
productive model in that it led 1o the formulation of a number of useful
relatior hips, Very carly it produced a statement of the rclationship be-
tween test precision and test fength. 1t permitted the development of
estimates of the precision of difference scores and change scores, bring-
ing out their fragile and undependable nature, and at the same time it
permitted estimation of the propertics of composites of two or more
diflerent measures. It led to estimates of the degree to which indices of
relationship between measures of different aitributes are attenuated by
the error of measurement in cach.

tlowever. at the same time, this model generated certain problems.
Thus, when two forms of a test yielded noticeably ditlerent mean scores
for a group, which one should be considered to correspond to the true
score? Or when a test form yielded higher scores if given second in a

L
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sequence of two testings than when it was the first test, which should be
considered the true score—when given first-or when given second?
Again, if different data-gathering procedures — split-test, alternate form,
retest — gave different values for the reliability coetficient, which one cor-
rectly identified the “true’ proportion of true-score variance?

So a somewhat different model has emerged in the past 25 years, This
views any given test performance as being a sample from a universe of
behaviour defined in a particular way, and thinks of true score as being
the complete universe score that would be approached if the sample
could be increased without limit, The difference may seem a somewhat
trivial one, but it does make it casier (o recognize that we may define
different universes to which we may wish to generalize, and that different
procedures for collecting test reliability data do imply different universes,
As a corollary, it lcads us to recognize that ‘error’ is not a monolithic en-
tity, but involves a number of distingnishable components arising from
different sources that can be separately identified and separately
analysed. This teads 1o a components-of-variarice model for test scores
that enceurages us to tease out the several sources of variance, other than
between-persons varianee, to estimate the magnitude of cach, and to
plan a data-collecting strategy for tuture rescarch that will hold these un-
wanted sources  of varianice to a minimum. This view of the
genceralizability of test scores has been most systematically explored by

Cronbach and his associates in their 1972 book, The Dependability of

Behavioural Measurements.,

At the same time that a model was being developed for test measure-
menl error, models were also being formulated for what was being
measured by 1rue score on tests of different but related tunctions, The in-
itial formulation was Charles Spearman’s, as was the initial formulation
of true ~core and error, Tt was phrased in the now long-tamiliar terms of
general ability, g, pervading a whole set of cognitive measures, and a
speeific factor, s, for cach separate measure, This conception of the
nature of abilities proved less durable than the true-scorc-and-error
model becatuse the accumulation of empirical data soon showed that it
was ap over-simplification of the manner in which abilities are organized,
and that tests are tied together much more complexly than by a single
seneral factor, Over the past S0 yvears, many different models have been
proposcd to account for the observed correlations among test scores,
Some have postufited a number of distinet general ability factors, Some
have called for the inclusion of group factors, less pervasive than the
general ones. Some have introduced second-order factors to make i
possible to adnit generat tactors that were not independent but rather
were related to cach other.

A massive body of statistical theory and computational technigue has

(24
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developed to service the analysis of voluminous sels of test score data
that have been gathered to elucidate the nature and relationships of
human abilities. Yet the general finding remains that a wide variety of
cognitive performances are in fact all related; the view persists that a
model must provide some role for a general component of ability; and we
can still view tests such as the Binet and its many descendants as devices
to estimate an individual’s status on one widely relevant cognitive ability.
This is not the place 1o examine in any further detail the structure and
substance of ditferent factor analytic models that use the interrelation:
ships of different tests as evidence on which to build a theory of human
abilities. Rather. let us turn 1o the scores on a single test, and to the
responses 1o a single test exercise, and see by what modcl these may be
understood. i .

The carly tests that aspired to measure human abilities were composed
largely of exercises that required the examinee to produce or construct
the responses. Responses were varied, and each was then scored using
some scoring guide that indicated the degree of acceprability of ditferent
possible responses. Exercises were developed primarily on the basis of
editorial judgment, and little by way of psychometric theory or statistical
analysis was applied to the selection of single test exercises or the com-
bination of them into a test,

However. at the time of and shortly after World War 1, there emerged
in the United States an enthusiasm for selective-response items — true-
false or multiple-choice exercises in which the examinee was required to
select from among those that were presented to him the correct or best
answer, In part because of the pre-established keying of the items, in part
because ol tire susceptibility of such items to ambiguity because of un-
skilled drafting by the item's author —resulting in unintended interpreta-
tion by the examinces of one or more of the response alternatives,
preliminary trv-out and statistical analysis of the test items became the
accepted practice. During the 19205 and 30s a great diversity of statistical
indices was proposed to express an item’s etfectiveness in differentiating
the more from the less capable examinees — capable in terms of what the
set of fiems was intended to measure. By 1940, procedures had pretty
mucle stabilized on the correlation, biscrial or point-biscrial, between
item and a total score designed to represent the attribute 1o be measured
by the test. Facility, as-represented by percentage of correct responses,
and discrimination. as represented by correfation with total score,
became standard working criteria for evaluation and selection of test
items. Psychometric theory was extended to formalize the relationship
between item parameters and test parameters, showing how test
parameters can be controlled by a judicious selection of test items. This
state of the art prevatled from the time the American Council on Educa-

RIC 15
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tion published in 1951, under E. F. Lindquist’s editorship, the first
edition of the handbook entitled Educational Measurement up untii
about the time that 1 ‘rode herd’ on the second edition, which came out in
1971.

Al the theoretical level, the conception of the nature and function of a
test was continuously evolving. As | view the scene, there are at the pre-
sent time two major competing models to describe what a test score
represents, and a number of variations of one of these. The two major
models may be designated the ‘domain sampling’ and the ‘latent trait’
model. Let us take a look at each of these in turn.

As its label suggests, the domain sampling model starts out with the
assumption that there is some definable domain of knowledge,
understanding, or skill. In its clearest form, the domain is limited in
seope and is precisely defined. Such a domain could be comprised of
something like the 100 basic multiplication combinations, or the use of
commas in series, or the capitalization of proper names. The domain is
viewed primarily as having a certain horizontal extent, with minimal at-
tention to its vertical dimension. The exercises in a test are viewed as
being a sample from he defined domain, usually a random sample,
though sometimes a stratified sample. The appropriate inference from a
test score is considered to relate to the proportion of all the test exercises
that might be drawn from that domain ¢ - which the indjvidual would be
expected to suuccd—lhc individual's completeness of mastery of the
domain.

This model has had a good deal of popularity, in the United States al
least, over the past 20 years. Tests based on the model are often called
‘criterion-referenced tests’, to contrast them with traditional norm-
referenced tests. When used most appropriately, each of these tests does
focus on a highly specific domain, and gives information that is im-
mediately relevant 1o a specific instructional decision. Has the pupil, or
the class, reached a level of proficiency on Skill A that means that further
teaching of that skill is not required and that Skill A is available as a
foundation for teaching Skill B? In practice, however, the model has
been called upon to rationalize much more general assessment and
evaluation purposes, such as evaluation of the strengths and weaknesses
of a pupil’s development or of a school's curriculum. Because of its wide
current use in present day edricational measurement, it is important that
we examine this model to see what its assumptions are and when and (o
what extent they are justified,

I'be basic assumption of any sampling cnlcrprlsc w huhc the universe
sampled is one of persons or one of test exercises, is that one can define a
universe of objects or events with sufticient completeness and precision
so that one can decide in each instance whether a specimen i$ a member
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of the defined universe and whether a set of specimens constitutes a
representative sample from that universe. The safe procedure for draw-
ing a representative sample is to enumerate all the specimens that com-
prise the universe and (0 use some system of randomization -to draw a
sample from among the enumerated specimens. Clearly the segments of
educational achievement, for which such an unambiguous definition,
complete enumeration, and random sampling is possible, are relatively
few and of relatively limited importance.

Perhaps we can agree that a universe specified as ‘Presented with two
single-digit numbers in the format 2 x 3 and ashed to give the product,
gives the correct answer’ does consist of 100 enumerable clements, and
that some system of random numbers could satisfactorily be applied to
draw a rundom or a stratified sample from this universe. For how many
of the significant competencies that education strives to produce is such a
procedure possible? We may feel that there does exist such a domain as
‘ability to spell’ or *knowledge of biology’, but how practical is it to
specity the boundaries of such a domain or to enumerate the clements
that fall within it? 1f we cannot specify the boundarics of the domain,
how can we be sure that the sample of tasks inctuded in our test covers
the full scope of the demain? If we cannot enumerate the clements' that
tall within the domain, how can we know whether we have sampled ran-
domly from them? And if we are not able to spectty the limits of the
domain, in what sense is it meaningtul to say that a pupil has mastery of
it? Within narrow limits it may be reasonable to say that, as of this Fri-
day, Mary shows mastery of the 20 words in this week's spelling lesson,
or that, tested at some particular time, John shows mastery of subtrac-
tion problems with zero in the minuend. But, for most of the range of
significant educational achieveiments and for any tests that are thought to
assess general abilities, the assumptions of a domain sampling model are
met at best only roughly and approximately.

We do, of course, prepare course outlines and svllabuses that sketeh in
broad outline the content and objectives of a program of study. Long
betore educators began talking about criterion referenced as opposed to
norm referenced tests, makers of educational achievement tests used
such outlines to guide them in planning the coverage of their in-
struments. In that sense, there is no confliet between the old-line norm-
referenced and new-style criterion-referenced approach. The issue s
whether the domain to be tested is sufficiently describable und specifiable
for one to be able to assert that it has been sampled in toto in a represen-
tative way, and so that some pereentage of test items answered correetly
can be considered to represent etfective mastery of the domain. For much
of what we are interested in assessing, this does not seem to be the case.

The alternative to a model based on a domain with lateral extent is ong

o | 1(3
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that focuses on a trait dimension, perceived as primarily vertical. In this
model, the function of a test is conceived to be 1o estimate an individual’s

“location on that vertical dimension--not ‘How many?’ from a domain of

tasks, but *How much?’ on a dimension representing a trait. The trait or
attribute is a construct rather than an observable. From the psychometric
point of view the attribute assessed by a test need not be psychologically
simple, though from the psychological viewpoint this would make for
clarity. The test tasks may involve quite a complex of functions, but the
latent trait model assumes that, to a reasonable approximation, the com-
plex is the same for all the test exercises that make up the test.

The vertical latent trait model seems most obviously appropriate for
test tasks that vary widely in ditficulty but relatively little in kind — for ex-
ample, responding 1o analogies of increasing subtlety, comprehending
reading passages of increasing complexity, remembering lists of increas-
ing length. For such attributes one tends not to worry very much about
providing precisely defined horizontal boundaries to the trait. Rather the
trait is roughly defined by the content and form of the tasks, and perhaps
by the factor structure of the task as its relationships to other types of
test excreises are studied by factor analytic procedures. Nor are there
definable vertical boundaries, because it is usually not possible to specify
limits on the facility of the task at its easiest or the difficulty of the task at
its most difficult level. A test’s function then is to locate each person on a
vertical scale of indefinite extent in relation to anchor points provided by
tasks scaled for their difficulty or by the performance of his fellows.

When the focus of our concern is educational achievement, the latent
trait. model is vaguely unsatisfying, because il seems somewhat in-
congruous to speak of a trait of, for example, competence in history. The
unifving attribute seems to belong to the domain of knowledge rather
than to the individual examinee. But usually there are no sharp boun
daries to the domain: test exercises relating to it do differ substantially in
difficulty or, at least, in the probability that students will succeed with
them: it is possible to arrange people on a continuum on the basis of their
ability 1o succeed with tasks drawn from the domain and to arrange the
tashs from the domain in a continuum with respect to the likelihood that
a person will succeed with that task. So a dimension of ‘competence in
history™ ts perhaps one on which difiérent individuals can be placed al
diffcrent levels. Thus, in broad-gauge measurces of achievement, as well
as in measures of aptitude (and interest or attitude), it seems plausible to
think in terms of a dimension of performance upon w hth a particular in-
dividual may be high or low,

We turn now o alternate models for thinking of a test, together with
the items that compose it, as a device for locating individuals on the con-
tnuous scale of some latent attribute, where we think of the scale as
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representing degree or level of that attribute. Our attention must focus

first on our model of a test item.

Whereas in the domain sampling model we viewed the test exercise as
one clement drawn from that domain, and passing the test item as
evidence increasing the proportion of the tasks in that domain that the
examinee was considered 10 have mastered, we now view the test exercise
as providing a cue as 1o where on the scale of the latent autribute the in-
dividual falls. If he passes the item, the chances are that he falls above
the difficulty level that is exemplitied by the item. If he fails the item, the
chances are that he falls below that level. But it is only a matter of prob-
ability, because our model indicates that the likelihood of success on the
item increases gradually and continuously as we move up the scale of the
latent auribute. Our model specifies a probability function that is a con-
tinuous function of the latent attribute — typically the cumulative normal
ogive or the logistic, two curves that have nearly identical propertics.

Different items may differ in one or all of three paramecters that
desceribe these functions. These are, respectively:

. aparameter that represents the steepness of the function, the raze at
which the probability of success increases as one goes up the scale of the
attribute; ,

2 a parameter that specifies the location of the function’s point of

inflexion in relation to the scale of the attribute, representing the difhi-
culty of the item —the level at which just half the examinees are decmed
t0 know the answer; .

3 a parameter that represents the lower asymptote for the item — the
probability of success for persons at very low levels on the larent
attribute,

Current expositions ot latent trait theory usually adopt one of (wo
contrasting positions with respect to the role of these three paramecters.
One school of thought, represented by Rasch and his followers, elects o
assume that the steepness parameter may be considered to be unitorm
over allitems and that the lower asymptote may uniformly be considered
to be zero. Thus items are deemed to differ only with respect to their

dithiculty. Then one need only estimate item ditliculties, that 1s, where the

inflection noint for the item falls on the scale of the latent attribute, to
characterize that item fully. The scale values of the items in a set then
cnable one to estimate scale values for cach possible total score based on
that set of items. The contrasting school of thought, led by Fred lLord at
the Lducational Testing Service of Princeion, New Jersey, would con-
tend that one should undertake to estimate all three parameters tor each
item, and should use the full set of item characteristic curves to estimate
the scale values corresponding to different scores, and consequently to
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the location of different individuals. Let us examine some of the virtues
and some of the shortecomings of cach of these approaches.

The Rasch one-parameter model certainly has the advantage of
simplicity. A first approximation to the necessary scale values can easily
be caleulated with a hand caleulator. With only a single parameter to be
estimated for each item, the estimates have some prospect of stability
even with pupil samples of modest size, which is to say in the hundreds
rather than in the thousands. As Ben Wright has pointed out, in scoring
the typical test we do act as it all ‘the items had a common steepness
parameter — that is, the same correlation with the underlying attribute.
We act this way in that we combine items with equal weights and do not
try to give greater weight to the more diseriminating items — those items

with greater item-trait correlations, Furthermore as the process of item

selection during test construction has ordinarily weeded out those items
with definitely low item-trait correlations, the ones that will show a much
Hatter item characteristic tunction, the range of item-trait correlations is
reduced a good deal in those items that survive preliminary screening and
make it 1o the final form of the test. Perhaps we do not strain reality too
much it we assume that the stopes are-all equal.

However, in many instances, the model s an oversimplification of

reality. We do find that some variation in the steepness parameter docs
remain in chosen items. For example, when item diserimination indices
were compared for two separate groups of pupils (over 2000 in each
group) that had been tested with our Cognitive Ability Tests, the correla-
tions from one group to the other of indices within a sub-test ranged
from 0.88 10 0.93 with an average value of 0.90. Clearly the items were
not all equally saturated with the common attribute that they were
measuring. Furthermore, with multiple-choice and especially with true-
false items, the assumption of a zcro asymptote at the low end of the
ability scale is almost certainly incorrect. Though many persons of low
ability will omait an item where they do not know the answer, many others
(at least in the USA)Y wall guess and, untess the item writer has been more
than usually skilful, that guess may be restricted to the two or three more
appetizing options. Consequenity all examinees are tikely to have a con-
siderable probability of hitting the correct answer.

I hus the one-parameter model provides an approximation that may be
prety rough in some circumstances. It scems most detensible in the case
of constructed-response items in which the examinee must generate the
response, and tor tests composed of items that have survived a rigid em-
pirical pre-sereening. Especially for these, its computational and concep-
tual simplicity can make it quite attractive,

The three- parameter model treats as reat and significant the differences
in steepness and in asymptote of item characteristic functions, as well as

Q o
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differences in difficulty. With. the resulting large number of parameters to
be estimated for a set of items, really large data samples are called for if
the estimates are 10 show satisfactory stability from one sample to
another. Thus use of this model in a practical setting makes sense only
for tests in which try-out of the items on large samples — of over 1000, if
one accepts Lord’s recommendations —is a practical possibility. Alas few
of us are so situated. Furthermore estimation calls for high-speed and
high-capacity computing facilities. When all of these conditions are met,
and especially with the widely used multiple-choice format, it seems
likely that the more complex model will provide a better description of
cach item, even if that information is only partially used in decisions
related to or based on tlie set of items. _

One assumption basic to both of these latent trait models is that the
parameters of a test item are invariant, depending only upon the proper-
ties of the item and not on the group to which it is administered. If an
item that is casy, relative 10 other items, in one group is difficult in
another, then any general statement about the difficulty level of the item
per se is meaningless. Uniformity seems most likely-to prevail for items
that depend primarily upon level of maturity and upon broad general
background. Probiems seem most likely to arise with items that are based
upon specific school instruction, especially when that instruction is likely
to vary widely from one place to another. Thus difficulty of an item call-
ing for selection of the prime numbers from the set 31, 33, 35,37, 39y
likely to be very much less for a group of 10-year-olds who have jus Y,
started a unit on prime numbers than for a group who has never receivéd
such focused instruction or has received it in the more remote past.
the other hand, difticulty of a matrices or a figure analogies problem,
relative to other items of the same type, seems likely to be relafively
stable from group to group. We conclude, then, that attempts to ekpress
a person’s status by the level at which that person falls on a vertical trait
dimension is most defensible tor ability measures that reflect
growth and the broad range of common experiences.

How will latent trait models influence our practical procedurcp of test
development and our interpretation of test scores? How will we proceed
differently from the way that we have in the past when we relied upon
item ditliculty and item discrimination indices? These questions will be
addressed in detail by some of the later speakers at this seminar. 1 will
only hazard a couple of gucsses.

For the large bulk of testing, both with locally developed and with
standardized tests, I doubt that there will be a great deal of change. The
items that we will select for a test will not be much different from those
we would have selected with eartier procedurcs, and the resulting tests
will continue to have much the same properties. The essential feature ofa

ERIC <2
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latent trait model is that test score is interpreted as a scale value on the
vertical scale of the lz.2nit trait, rather than being expressed in normative
terms in relation to some reference group of persons. It is more than 50
years now since Edward L. Thorndike and his associates developed the
Intelligence Scale CAVD 2- an effort to express level of intellectual per-
formance in an equal-v.ait vertical scale, but this scale never achieved any
greal measure of popular acceptance in the testing community. Nor-
malive reference rather than absolute scaling has always seemed more
meaningful and useful, and 1 deubt that this will change. .

There is, however, one field in which efficient use of item parameters to
estimate tne individual’s location on a trait dimension is likely to prove
crucially important. This is in individualized testing, whether by human
examiner or by computer. When it becomnes important to obtain the
greatest possible amount of information about an examinee in a limited
amount of testing time, then it is vitallv important that each test exercise
be one that will yield the maximunt amount of information about that
examinee. These are the items on which we start out with the greatest
amount of uncertainty about whether the examinee will get the item
right. They arc items for which the item characteristic function is steepest
at the ability level where the examinee is believed to lie. Adaptive testing,
which progressively refines the estimate of an examinee’s status after each
item and picks the next test exercise to match the current estimate of that
status, is one field in which the item parameters of single items will play a
key rolc.

1t will also be true that accnmulation of data on item parameters for
large pools of items, to the extent that these parameters are stable from
group to group and from time to time, will make possible great flexibility
in test construction. Such a calibrated item pool will make it quite easy to
generate alternate forms of tests, equivalent in difficulty, that can pro-
vide estimai s of performance expressed on a common scale — estimates

" that will facilitate studies of growth and change, that will permit testing

different candidates with different but equivalent sets of tasks, and that
may have a range of other practical uses.

The practice of educational and psychological mecasurement has
evolved gradually over the course of time. Our models gradually become
more explicit, better rationalized, and, we hope, more accurate reflec- .
tions of examinee test-taking behaviour and of the abilities that lie at the )
back of that behaviour. 1 have tried to describe to you the present status
of ¢certain models. it is highly appropriate at this point in time that we
take stock of those maodels and see what they have to offer for our prac-
tice in the yvears ahead.

O
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REACTANT STATEMENT
Barry McGaw

Professor Thorndike's knowledge of the traditions of educational
measurement began, | suppose, at his father’s knee. The richness of the
subsequent work, and the experience which shaped it, is evident in the
perspective which his review has provided for us. The review sets the
various theoretical and applied traditions in perspective and leads us
neatly to the concluding invitation to take stock of the measurement
models now current His paper thus sets the context for our seminar
without attempting tu pre-empt other speakers with definitive projections
of what might prevail and what might disappear from the contemporary
body of measurement theory and practice.

I find myself encouraged by the analysis in the paper to commence this
discussion with a first attempt at taking stock. The attempt, in classical
theory, to provide a theory of measurement error was identified as a
significant feature of the early developments. 1 wonder if that issue might
not be helpfully pursued as an important point of comparison of the
models. :

Since the crror variance could not be estimated directly from intra-
individual variability on multiple measurements with the same in-
struments, an indircct means of assessment was required. Classical
theory p.ovided the means for using inter-individual variability over two
occasions as the basis for estimating error variance. 1t has probably been
unfortunate that the correlation coefticients from which the standard
crrors of measurements are caleulated have been more dominant in the
language used to describe the properties of tests and to judge the utility
of the measurements they provided.

Speaking generally of a test’s reliability can obscure the significance of
the assumption that the test has a particular lack of precision which is
constant, if not for all applications, then at least for all individuals on a
particular application. The possibility of one individual’s status not being
assessed as precisely as another’s is simply not accommodated.

Genceralizability theory, as Professor Thorndike's review makes clear,
offers a refined conception of error of measurement through more com-
plete specification of the various sources of error. 1 have found this ap-
proach helpiul, particularly in the development and use of observation
schedules; but it needs to be pointed out that, although this approach
allows the estimation of the magnitude of error attributable to different
sources, it still presumes that the errors of estimation for all individuals’
scores are the same.

14
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1 am reininded of a claim I heard recently that the most significant ad-
vances in the design of sailing vessels occurred after the introduction of
steumnships. I now wonder whether the refinement of error estimatjon
provided by gencralizability theory, within the general framework of
classical theory, cannot be seen similarly as the product of zealous atten-
tion to detail in a dying cause. I 'wonder where weekend sailors or
designers and owners of 12 metre yachts aitempting to win the America’s
Cup would force me to push that analogy. Sailing boats have not dis-
appeared despite their loss of utility.

L.atent trait models provide the means of more. precme analysjs of error

variance. The magnitude of error variance depends on the precision with -

which the available items can locate each individual’s ability. Those
whose ability is in a range poorly covered by items are less precisely
measured than those for whom there are more items with difficulty levels
close to their level of mastery. A simple analogy can be drawn from a
measuring stick on which the fine divisions have been erased in some
sections.

Given this capacity for more precise specifications of measurement
error for cach level of measurement, should we not abandon the earlier
conceptions, albeit with due acknowledgement of their historic contribu-
tion? Professor Thorndike's explication of ‘the historic developments
encourages me to press the case for latent trait models to this extent.

How should we then deal with criterion-referenced measurement? Its
development was an attempt to free measurement from the circularity of
norm-referenced measurement but perhaps an ultimately futile one. Pro-
fessor Thorndike does speak of both domain sampling and criterion
referencing. | would preserve the distinction between them but now refer
only to the latter. Items which have been selected from a domain, if they
vary in difficulty, can be locaied on a vertical dimension. The predilec-
tion of criterion-referenced measurers for worrying only about whether
individuals are above or below some point does not remove the under-
lying continuum or reduce the value of a fuller view of it. It is a latent
trait, and more precise location of individuals on it is surely better than
determining only whether they are in one region or another. Can | claim
encouragement in Professor Thorndike’s analysis for asserting that in
criterion-referenced measurement we have another sailing vessel,
perhaps even one designed by a Thor Heyerdahl who would eschew not
only steam for propulsion but even wood for the hull. I will let those at
the ACER who purport to divide the world into literates and illiterates or
numerates and innumerates defend themselves.

In characterizing the differences between the main approaches to latent
trait meassrement theory and practice, Professor Thorndike has set out
clearly for us the differences in model complexity and ease of application.
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I would like to highlight an important ideological difference which forces
me o address not only questions of utility in judgiig the alternatives.

The three-parameter model is the natural extension of the earlicr
classical theory. It accommodates the baggage of classical theory —item
difficulty and item discrimination and, with the addition of the third
parameter, cven accommodates the US love of the multiple-choice item.

The proponents of the three-parameter model like to see the one-
parameter model as the degenerate version of fiieir own more complex
model, perhaps to be used on days when they are feeling simple-rainded.
That, however, inadequately acknowledges the fundamental view of the
developers of the one-parameter model.

They do not include the second-parameter, for item discrimination,
because it will accommodate the possibility of individuals of a given
ability having a greater probability of being correct on a harder item than
an casier one—at a point where the item characteristic curves have
crossed. The second-parameter brigade says that items in the world are
like that so their characteristics should be represented. The one-
parameter brigade says that measurement cannot occur with such in-
struments so such item behaviour should be identified as failure o fit the
model. The battle is thus joined by proponents of the one-parameter
model on the ideological ground of beliefs about the nature of measure-
ment.

. On the grounds of utility, the battle is joined by supporters of the
three-parameter model in terms of questions such as those Professor
Thorndike outlined. When, for example, is it worth the effort and the
extra data required to extract three parameters?

Proponents of the one-parameter model, however, do not see these as
meaningful questions. Once they have stopped asking why one would
ever be jus'ified in including more than one parameter, they seek to
demonstrat:: that, with dichotomous responses, there is insufficient infor-
mation to estimate more than one parameter. For them, it is only by the
sleight of hand, which arbitrary constraints in computer programs can
congeal, that second and third parameters can be estimated.

Professor Thorndike's overview stimulates me, then, to start the
discussion by asserting that the early classical formulations of reliability
and their extension to generalizability can be dispensed with, that
criterion-referenced measurement as originally introduced led us up a
blind alley, and that the measurement theory debate now is lodged in the
fatent trait domain. The battle is joined by one group claiming that the
other's view represents just a special case of its own more complex one.
The others, in their turn, claim that the complexity their opponents
prefer ought not to be sought but, if sought, cannot be quantified.

26
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2 ‘
Comparing Latent Trait with
Classical Measurement Models
in the Practice of Educational and

Psychological Measurement
John A. Keats

In ‘comparing latent trait theory with true score theory one may apply the
criteria of either to the other. This practice will, of course, favour the
theory which emphasizes the criteria being used. For example, some have

. criticizedthe Rasch model by showing empirically that selecting items in

terms c,>f this model will not necessarily produce the most reliable test of a
given size from the item pool available. The result is predictable from the
models as the true score model and associated methods tend to maximize
reliability in some sense whereas the Rasch model requires different
characteristics of the items. Alternatively one can argue that, since the
relationship between true score and underlying ability is not readily

specifiable for most tests, the true score model has defects. Such an argu-

ment is based on the criteria which form the basis of latent trait theory.

In the early 1950s, Gulliksen (1950) produced a synthesis of various
contribytions to true score theory and Lazarsfeld (1950), Lord (1952),
and Arbous and Kerrich (1951) produced applications of latent trait
theory to attitude scaling, test theory, and accident proneness
respectively.

Specifically the model described by Arbous and Kerrich is based on the
relation between the proportion, p(x), of subjects having x accidents in a
given time and a hypothesized latent attribute, accident proneness (M)
such. thai:

py= | e X aroy.
0 X
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where F(\) is the cumillative frequency distribution of \ in the population
studied. These writers are careful to point out that success in predic(ing
the values of p(x) only makes the accident proneness assumption more
plausible but there are other possnble interpretations.

In his treatment of the normal ogive latent trait ability model, Lord
(1952) assumes that the probability of subjects of ability 8 giving the cor-
rect response to item g may be written as:

O-b)

PO)= | " stnar

where @, and b, correspond to parameters of item g, $(¢) is the standard
normal frequency function, and ¢ is a dummy variable which disappears
in integrations.

Lazarsfeld (1950) explored the latent linear model which may be
written as:

- b= ] @+ bxg0ddx

relating the proportion of subjects giving the correct response to item i, - |
p., with the item parameters g; and b;, to the underlying variable x.
The true score model has its origins in physical measurement-and the
study of errors of measurement. It is assumed that a person’s score (X))
on a test may be regarded as consisting of two additive components: the
true score (7,) and the error score (E)) so that:

X;=T,+E,

The true score is thought of as a parameter of the person at the time of
testing whereas the error score is thought of as due to minor fluctuations
caused by irrelevant factors. Gulliksen (1950) produced a systematic ac-

- count of this mode¢l. Ehrenberg (1953) criticized Gulliksen (1950) on the
grounds that this account does not make clear what is being estimated
and what the basis of estimation is. Rasch (1960) takes up these points
and uses them as a justification for his latent trait model.

The questions of definition and estimation of true scores are taken up
by Lord and Novick (1968) but their proposed. answers were criticized by
Lumsden (1978) and more systematically by McDonald (1979).1 There
appear to be some unresolved questions related to the precise status.of
the concept of true score even within the context of the model itself.
Despite these problems, there is a large and growing literature developing
the true score model, particularly addressing the question of the fre-
quency distribution of true scores. Keats and Lord (1962) presented the

t Personal communication, Newcastle, 1979,
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beta-binomial model »f the frequency distribution of true scores and raw
scores. This model has been elaborated by Keats (1964; 1965) and Lord
and Novick (1968) and more recently by Huynh (1977) in the context.of
mastery scores.

In its simplest form, the beta-binomial model assumes that the fre-
quency distribution of number correct raw scores, g(x), can be written in
terms of the distribution of true scores, f{p), in the following way:

gx)= (5) Mp(1 - p)y~fipydp

If the regression of true score on raw score can be represented as a
polynomial in x then:
(=mda)da), . ..

X!(b )x(bz)x e

where n = the number of items, a., a:...; b, by ... areparameters tobe
estimated and

gx)=K

r(ﬂ| + Y)

(a). = =aa, + Wa, +2)...(a +x— 1) etc.

Ia,)
and the constant K, g(0), makes the sum of the g(x) values unity. If the
regression of true score on raw score is linear, then:

K (=mda).
g(x)= X! (b,

and this form can also be obtained by taking f{p) as a beta distribution,
hence the name beta-binomial model. It is worth noting that defining true
score in this way implies that it is a latent trait accounting for differences
in raw score along the lines of the accident proneness trait defined in the
Arbous and Kerrich model. However this is not the usual way of defining
true scores. The latent trait ability models of Lord and later of Rasch
define ability in terms of performance on an itemn rather than on the total
test.

Although there appears to be no general systematic account of the la-
tent trait model comparable to the treatment by Lord and ‘Novick (1968)
of the true score model, there are many recent developments of the
model in the context of test theory. The main problem tackled is that of
estimation of parameters and significance tests for the applicability of the
model, ¢.g. Gustafsson (1979).

Most of the developments in the literature on both models are either
statistical in content or deal with probiems of application in education
and psychology. There has been no attempt to compare the models in the
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more general context of, for example, cognitive development. Rasch’s
(1960) claim that ‘his model leads to the estimation of a person
parameter, for example an ability, can only be justified in the context of
adult behaviour in which the ability of a person may be thought of as ap-
proximately constant over a long period of time. When subjects under,
say, 15 years are considered, this ‘parameter’ as defined and estimated at
a particular time will not be the same a year or even six months later. Itis
important to use the Rasch approach to define the dimension measured
by a set of items, but any measure of a person at a given time is only
meaningful if it can be related to the value towards which the person is
developing. It is this asymptotic value that constitutes a parameter of the
person.

A number of writers, Courtis (1933), Bayley (1955), Cattell (1971), and
Jensen (1973), have attempted theoretical formulations of cognitive
development. Courtis proposed a two-parameter individual model which
involved difficult problems of estimation but did not suggest a form for
the group curve. Bayley attempted to construct an empirical group
cognitive growth curve but encountered difficulties in establishing an ap-
propriate unit of measurement. Anderson (1940), Cattell (1971), and
Jensen (1973) separately proposed random accumulation models, with
Jensen suggesting a separate consolidation parameter which differed
from person to person. These attempts seem to be trying to account for
certain known facts of cognitive development separately, namely:

1 Average ability seems to develop at a negatively accelerating rate
towards a stable level (Bayley).

2 Individuals develop at different rates towards different stable adult
values (Courtis and, in part, Jensen).

3 The older the person becomes, and therefore the closer he or she ap-
proaches the adult value, the more stable 1Q measures become when

_taken at yearly intervals. This fact is reflected in the simplex pattern ob-

tained when standardized ability measures at a number of successive age
levels are intercorrelated. As pointed out by Anderson (1940), Cattell
(1971), and Jensen (1973), such a simplex can be generated by means of
random accumulations over time. Jensen's suggestion that people differ
in the extent to which they can consolidate these accumulations leads to
growing differences between subjects as they become older but these
differences become more stable.

These three general findings are jointly consistent with-a developmen-
tal model with at least two individual differences parameters as well as a
measure of ability on a ratio scale and a measure of time since develop-
ment started. However, for the sake of clarity and system, a developmen-
tal model with one individual differences parameter will be examined first
and its strengths and deficiencies noted before proceeding to a two-
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parameter model. A further reason for studying the one-parameter
model is that the use of the 1Q in one or other of its forms implies a one-
parameter model of development. The possibility of more than two
parameters will also be explored to the extent of showing how data may
be examined to justify more than two parameters. Within the one- and
two-parameter models, the applicability or otherwise of a latent trait
model or a true score model will be examined. It is important to note that
the concern here is to model developmental change, not simply to
measure change in the absence of a model. The question of the
unreliability of change measures is not relevant to this discussion.

THE PRINCIPLE OF DYNAMIC CONSISTENCY

In discussing key problems associated with formal theory in psychology,
Marx (1976) lists the problem of individual versus group functions and
notes: ‘It is now generally agreed that in terms of mathematical functions
representing behaviour processes, data obtained from groups cannot be
freely used _for individual function’ (p. 255). Neither he nor apparently
anybody else is sufficiently disturbed about this state of affairs to suggest
that it should be a key principle in mathematical models of behaviour
that the form of the relationship between behavioural measures, stimulus
variables, and individual differences variables should be the same at the
group level as it is at the individual level.

If this principle does not apply then the form of relationship obtained
with group data may well vary according to the particular sample of in-
dividual difference parameters present in the group. Under such cir-
cumstances it is hard to see how general laws based on group data can
have any general validity at all. Sometimes the principle can be built into
the model by specifying how the individual data are to be aggregated into
a group functiop. If this can be done it seems important that it should be
done. Consider the basic.equation of the Rasch latent ability model
(Rasch, 1960) relating the proportion (P;) of subjects of ability (4,) giv-
ing the correct response to a particular item, to the difficulty (D)) of the
item

ie P,= A
A+ D,
If one considers a test of # items with values of D, j= 1...n notall

equal, the true score value corresponding to ability A, is nP,, where P,. is
the mean value of P, averaged over all n items for subjects of ability 4.
The relationship between P.. and A, will depend on the distribution of
the values of D, but will not in general be of the form:

(o)
A
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= A‘
" A+D.

where D. is the arithmetic mean of the values of D,. Thus true score will |
never be related to underlying ability as defined by this model in the same
way as the individual items of different difficulty which generate the
score. This conclusion generalizes to all latent ability models using
nonlinear item characteristic curves and unequal item difficulties. In the
case of the Rasch model it may be noted that, if the harmonic mean of
the P, values, H(P,.) were used to define true score,

A,’
A+ D.

which is of the same form as the individual item curves. Of course there
would be problems in defining true score in this way.

The above criticism of the true score model can be objected to on the
grounds that it arises from the latent trait approach and that one may
wish 10 consider true scores and their frequency distribution without
assuming an underlying ability. However application of the principle of
dynamic consistency makes it clear that this principle could never be
satisfied by true scores for any realistic form of item characteristic curve
unless all items have the same characteristic curve. In this extreme case,
Birnbaum (1968) has shown that the number correct score is a sufficient
statistic for estimating ability irrespective of the form of the item
characteristic curve, providing it is monotonic.

In what follows, the principle of dynamic consistency will be regarded
as fundamental so that it is possible to discuss the form of individual and
group cognitive development curves without obtaining inconsistencies.

THE ONE-PARAMETER COGNITIVE
DEVELOPMENT MODEL

Thé purpose of this model is to relate ability 4,,, measured on a ratio
scale, at time /. to time ¢, as a variable with one individual differences
parameter, ¢, and a scaling parameter which will be shown to depend on
‘the units in which ability and time are expressed. For reasons given by
Halford and Keats (1978), 1, will be taken from birth. For the sake of
simplicity as well as other'advantages noted below, the form of the rela-
tionship will be assumed to be:

H(P,)=

Alk = ,l‘
cto+d

or 1/A, =c¢c+d/t,

ERIC 3 | |
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It follows that as ¢, increases 1/A,, approaches ¢, more and more closely.
Thus-the individual differences parameter, c,, is a measure of the asymp-
totic value towards which the ability of subject i approaches as he grows
older. It follows that the units s, in which 1/c; is expressed are the same
as those in which A,, is expressed.

It also follows that H(A ,) the harmonic mean of A4,, over individuals
at age r,, can be expressed as: '

17H(A ,)="c+d/t,

or

which is of the same form as the individual curve with parameter ¢, the
arithmetic mean of the individual differences parameters for the group
defined. The group curve, defined in terms of the harmonic mean,
satisfies the principle of dynamic consistency.

It further follows that r.., the age at which the group curve reaches half
of its asymptotic value 1/¢, can be expressed as:

t.=d/c
or d=t.c
This latter expression indicates that the constant d is expressed in‘upi»lg of
u, u,” in dimensional analysis terms. Thus d is a_constant which varies
according to the units in which time and ability are measured.
The cognitive development model can be related to other measures of

ability in common use. For example, the mental age measure used by
Binet (1908) can be obtained by noting that:

dH(A.)
1-CcH(A.,) .

For a subject with ability A4,,, at age r,, mental age t,,, may be obtained
from the formula:

t, = .dA"‘
" I‘_‘(-'A,k

provided A, < |

¢
By substituting for the value of 4., one obtains:

" (e, -Oh+d

e
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Thus if ratio 1Q is defined as:
Q=100 - Mental age

Chronologlcal age,

then:

(c On+d

IQ« is a dimensionless constant. For subjects with asymptotic value 1/¢,
equal to that of the.group curve in terms of which mental age is defined,
then 1Q« = 100 and is the same at all ages. For subjects whose asymptotes
are greater than 1/¢, the ratio IQ will increase with age until it is un-
defined, i.e. A, =1/¢. Similarly, for subjects whose asymptotes are Iess
than 1/T, the ratio lQ will decrease with age. In general

S = (—g’k + ]
lQn d
Two obvious criticisms of the ratio 1Q arise from this formulation.
The first has been known for many years (see, for example, Thurstone,
1926) and refers to the fact that mental age and therefore ratio 1Q are
undefined for subjects whose ability has reached or surpassed the asymp-
totic value of the group curve. In practice this difficulty has been over-
come by ad hoc methods (see, for example, Terman and Merrill, 1937)
but these simply confirm the breakdown of the model.
The second criticism does not appear to have been noted before. This
" criticism relates to the significant trend in ratio IQ with age for a subject
whose asymptotic value departs from that of the group curve. The ques-
tion of whether or not such trends occur can be answered in the
affirmative from data published by Skodak and Skeels (1949, Table IX,
p. 146). These data are for two groups of subjects whecse natural
mothers’ 1Qs averaged 63 (Group A) and 109 (Group B). It would be ex-
pected that individual dzta would show considerable variability and this
is so. However the equation

100 _ (¢,~-©) L+l
d

1Qx
can be averaged over two subgroups to obtain:
400 -_ (cs—0) ft 1
H(1Qx4) d
and ' = =
100 _ (Cx—0) f+ 1
H(1Qks) d
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. Figure 1 Changes in Ratio 1Q with Age in Two Groups of Subjects

The corresponding graphs for group A and group B are given in Figure
1 and show clearly that for group A the slope is posmve which implies
that ¢,>¢ and so the asymptotic value for this group is less than the
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average asymptote as would be expected. from the average IQ ot the
natural mothers. On the other hand, for group B the slope is negative
which implies that the asymptotic value for group B is greater than
average as would also be expected. Thus these data seem to confirm sorie
of the prLdILlIOl‘IS of the one-parameter model and imply that the single
parameter, ¢, is at least in part influenced by heredity. On the other
hand, the intercept on the y axis should be unity according to the model
but this is far from the case. In fact, if individual graphs are drawn and
fitted by straight lines in the usual way, almost all of the 19 graphs would
have intzrcepts less than one. Thus the single parameter model is only
partially confirmed. This point will be taken up again when the two-
parameter model is discussed.

While the adherents to the true score approach were severely critical of
the ratio 1Q. they were appreciative of the fact that some transformation
of number-corrcet score was necessary in most applications. In many
cases the transformation recommended was that of standardizing to a
fixed mean and standard deviation. Similar transformations of ability ,
measures have been proposed so that individual values can be related to
particular groups.

Because (A,,)7" is related to ¢, and ¢, in a lmcar fashion, it seems
reiasonable to define a deviation score or 1Q,, in terms of (A,,)". 1t may
be noted that [H(A. )] = E[(A.,)7'] and so

EIAD T (AW = [HA )] = (A
=~

U‘“,k“' = 0‘,

and BT 5y 00 (€56 15y 4 100210,
0(4,,()" <

Thos the standard score of the reciprocal of ability at any age level is
equal to the asymptotic parameter expressed as a standard score with the
same mean and standard deviation.

It follows that 1Q,, and 1Q, can be related in ferms of the model and
the relationship can be simplified by choosing a scale for the ability
variable such that o, = 15. With this convention

lQn: -(-' —‘(',+IOO
100 _
1Q«

While this relationship can be defined in terms of the cognitive develop-
ment model propesed above and the corresponding definitions of 1Q,

and U (100~ 1Qu)1, +1
d

<o
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and 1Q,, it is of interest 1o see to what extent this relationship holds for
conventional ability tests. 1t is possible to estimate 1Q, and /Qx for tests
for which norms are available for a number of age levels. For example,
ACER Test, Intermediate D, (1947-51) has norms for ages 10-14 years.
According to these norms, raw scores corresponding to 100 1Q,, at cach
of the ages 10.0, 11.0, 12.0, 13.0, and 14.0 are 14, 23, 31, 39, and 46
respectively. Thus 10-year-olds obtaining these scores would have mental
ages of 10, 11, 12, 13, and 14 years respectively and ratio 1Qs of 100, 110,
120, 130, and 140 but their deviation 1Qs would be 100, 110, 117, 123,
and 129. Similar corresponding values could be obtained for 14-year-
olds. With these data, 100/1Q, is plotted against (1Q,~ 100), and the
graph should be lincar passingi through the point 0,1. Figure 2 displays
the graph obtained for the nine points available from these data. It
would appear that the simplifications and approximations used in the
model have led to a prediction which is not inconsistent with these data.

Although deviation 1Qs are never defined in this way, the actual values
obtained would not diftfer greatly for the definition above.

If deviation 1Q as usually defined were constant, the value obtained
would obviously be a good predictor of adult performance. Because of
unreliability in measurement, it is not sufficient to show instability in 1Q,,
to challenge the single parameter approach. Even systematic trend in 1Q,,
over age in certain subjects would not be sufficient. What needs to be
shown is that systematic departures from constancy of deviation 1Q are
related to other variables. _

Two relevant studies on this topic are those of McCall et al. (1973) and
Hindley and Owen (1979). The former analysed longitudinal data ex-
pressed as deviation 1Qs for a large group of subjects. Between-subjects
differences corrected for mean value were used to define clusters of sub-
jects with similar patterns of change. The largest group (approximately
40 per cent) showed no systematic change over the 10 years studied. A
second group revealed an increasing trend in 1Q,, up to approximately 10
years of age followed by a decrease to the original value. At all age levels,
the average 1Q,, values were substantially greater than 100 for this group.
Interviews with parents of all subjects were conducted focusing on child
raising practices. Parents of this second group were typically ‘ac-
celerators’, that is they attempted to stimulate the cognitive development
of their children beyond or ahead of what was done at school. Other
groups of children showed decreasing trends in 1Q,, and parental practice
in these cases tended to be either repressive or laissez-faire. The essential
point is that systematic changes in 1Q, were associated with different
kinds of child raising practices.

In the Hindley and Owen study (1979), siinilar data were analysed in-
dividually. For each subject significant departures from constancy, lincar

«,7
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Figure 2 Relationship between Deviation and Ratio 1Q on the ACER
Intermediate D Test of Intelligence

trend, quadratic trend, et¢. were tested for significance sequentially and
parameters for linear, quadratic, etc. orthogonal functions estimated
where appropriate. Parameters were averaged across subjects for each of
three «ocial classes and systematic differences noted. In particular,
children with upper-class parents tended to show the same trend in 1Q as
those in the McCall et al. study with accelerating parents. The Hindley
and Owen study is an important confirmation of the McCall study and
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both show that, for some subjects, 1Q, is variable and the variation is
correlated with systematic environmental factors. Thus the one-
parameter cognitive growth model which could define a deviation 1Q
which is constant with age does not account for at least some of the
phenomena reliably observed.

The present model may be compared with the consolidation model
proposed by Jensen (1973). This model accounts for the simplex struc-
ture apparent in correlation tables from repeated measures obtained in
longitudinal studies. Jensen's version is explicated in some mathematical
detail and is based on the notion of random cumulating increments over
time. However the model does not yield an asymptotic growth curve and
no way has been suggested for estimating the consolidating factor, F,
from test data even though this is intended as the basic parameter deter-
mining adult level of performance.

According to Jensen’s model, §,, the performance of a particular sub-

" ject after n time intervals, is given by:

-

S.=F(G\+G:...G..)+G,

with G, a random component from experience in some time interval, F;

“the proportion of cumulative experience which is consolidated, and G,

the random component which is the result of current experience, uncon-
solidated.

If p, is the mean of the distribution from which the random com-
ponents G are drawn, G, the mean of the actual values for a particular in-
dividual, i, and ¢, is the time measure corresponding to the intervals then

S.= F.tusc + Fit (G, - pc) + G,

where G, and p are expressed as experience per unit of time. Thus S, will
increase approximately linearly with time at a rate dependent on F, the
amount of consolidation.

As 1, increases, the proportion of random variation contributed by the
second and third terms of this equation will decrease. Under these cir-
cumstances the correlation between S, and S,.., will increase with # as has
been frequently observed in actual data in the form of deviation 1Qs.

In the case of the one-parameter model, it has been shown that Var
(1/A4,) = Var(c,) and is independent of age. Thus the correlation between
values of (1/A4,,) at constant time intervals will not vary with age. The
single parameter model does not predict the simplex structure.

REVIEW OF PROPERTIES OF THE
ONE-PARAMETER GROWTH CURVE MODEL

1 This model does represent a growth curve approaching an
asymptote.

RIC ‘ 3y
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2 Individual differences are reflected in the model in differences in the
asymptote approached.

3 The model exhibits dynamic consistency when the group curve is
defined in terms of the harmonic mean.

4 The model correctly predicts variation in ratio 1Q for subjects with
above average asymptote as well as for those with below average
asymptote. -

5 With regard to the above relationships, the model predicts an in-
tercept of unity when 1/1Qx is plotted against time. The value observed
for almost all of the 19 subjects studied was less than unity.

6 The model also predicts that a deviation 1Q can be defined which
will be constant across age levels and this does not agree with studies that
show that environmental factors correlate with systematic variations in
1Qw. ..

7 The simplex pattern which led Jensen (1973) to propose his con-
solidation model would not be explained by the one-parameter model.

THE TWO-PARAMETER COGNITIVE
DEVELOPMENT MODEL

The need for the introduction of a second individual differences
parameter arises from the fact that not only do individuals differ in their
ultimate adult level of ability but they also differ in the rate of ap-
proaching that level. 1t has been noted that d/& is equal to the age at
which the group curve defined in terms of the harmonic mean reaches
half of its asymptotic value, 1/¢. Thus the parameter d is associated with
the rate of development. In the one-parameter model it is implied that
the larger the asymptotic value, 1/¢,, the older the person will be when he
or she reaches half of this value since this age equals d/c,. However, if
the parameter d is allowed to vary across individuals, allowance will have
been made for the observed fact that individuals do difter in their rate of
development. Thus the two-parameter cognitive growth model may be
written as;

- L
h =

oh+d,
or 1/A,.=c, +d./1

and I/H(A ) =C¢+d/t,

t

or HA = _- ko

(A.4) antd
and dynamic consistency is still preserved. It may readily be observed 4

that the individual asymptotic value will equal 1/¢, and that half of this
value will be reached at an age of d./c,. The units of ¢, and d, may be
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shown to be‘t’u' and 3w, so that the units of d./c¢, will be u, as required.
By the same methods as those used in the one-parameter model, it may
be shown that

. _100d
Sl . o IQR_(‘ -0+ d .
or 100 _ (c,:i") L+ (_/.
1Q, d

Thus when 100/1Q; is plotted against £ the intercept will no longer be
unity unless d, = d. In the case of the Skodak and Skeels data, it was ob-
served that the intercept was considerably less than unity for almost all
subjects which implies that'the rate of development for these children
was considerably greater than average since d,;<d. . '

.The data from this study have been questioned, see for example Mun-

. singer (1975), because of the high ratio 1Qs reported for most of the

children. However, as might be expected on other grounds and is in fact
confirmed in the Skodak and Skeels report, the home environments into
which-these children were adopted were considerably above average ir
terms of the cognitive stimulation provided for the children at a young
age. Such enriched environments lead to a small value for the parameter
d. and a high value of ratio 1Q which would tend to overstate the adult
value.

When the two-parameter model is wnllen in the form

I/A,k=(',-+d,-/’k

it is clear that the influence of the d; parameter decreases with age.
However the d, parameter is the one associated with rate of growth which
can readily be influenced by environmental factors, particularly at young
age levels. Thus the correlation between annual ability measures at young
age levels will be influenced by differences in d. values as we‘l{l as ¢; values
and so will tend to be lower than the corresponding correlation at older
age levels which will depend increasingly on c;.

As noted earlier, such correlations produce the characteristic simplex
pattern of correlations observed in many studies and explained by some
writers, e.g. Jensen (1973), in terms of random accumulation from ex-

~ perience and consolidation of these experiences. While such an explana-

! tion is possible, it is also clear that a process of environmental differences

affecting rate of growth towards an asymptote which is influenced by a

heredity component can also produce the observed phenomenon.

However the current model can also account for.the patterns of change

in deviation 1Q noted by McCall et al. (1973) and Hindley and Owen
(1979) and associated with environmental differences.

-
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AN INTEGRATION OF TRAIT THEORY, -
TRUE SCORE THEORY, AND THE
COGNITIVE GROWTH MODEL

From the principle of dynamic consistency, it is clear that true scores can
only be explicitly related to ability values when the condition that items
have identical item characteristic curves is satisfied. This is an additional
restriction to that imposed by the Rasch model and may not always be
achievable in practice. However the theoretical and practical advantages
of tests with equivalent items when prepared for a number of different
age levels are so great that the additional initial effort may be worthwhile
at least in some areas. Some of these advantages were noted by Keats
(1967). _ ’

The first important property of tests with equivalent items is that the
number-correct raw score (x) is a sufficient statistic irrespective of the
form of the item characteristic curve (Birnbaum, 1968, p. 429). This is
obviously an important property which enables one to classify subjects in
terms of raw score without particular assumption of the form of the item
characteristic curve. -

The second advantage of tests with equivalent items is that the con-
ditions for the binomial error model are met. Thus the regression, mean
(p/x), of true score on raw score may be written in terms of the frequency
distribution of x, g(x) as follows:

gx+1l) _ (n-x) Mean (p/x)

g(x) (x+1) 1-Mean(p/x+1),

(Keats and Lord, 1962). Keats (1964) set out procedures based on this
formula and the theory of orthogonal polynomials for tésting the regres-
sion of p on x for significant linear, quadratic, cubic, etc. components.
The resulting simple or generalized hypergeometric distribution of x may
be written as:

. s (=nmda)a:). . ..
o(x) = K
§ X! (b) (b, . ..

Pla; + %) =aa+1). . (@ +x-1)

[(a))
and K=g(0)

where (1), =

In the special case in which only the iinear component contributes
significantly to the regression one may write:

mean P = r,\'+ x(l-r)
v n n
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where ris the Kuder-Richardson formula 21. Various bi-variate distribu-
tions can also be specified as shown by Keats and Lord (1962) and Keats
(1964).
If the regression of truc score on raw score is to be constant irrespec-
tive of the age sample taken, then
" and * (1-r)
n n

must be the same for each population. This condition will be met if:

Var(x) = x(n—x)
' (n—rin—-10
where Tand Var(x) relate to the same population and r is the constant
value taken by KR 21 at each age level. If this condition is met, then
cognitive growth could be measured in terms of true score. Failure to
meet this condition would imply that the regression of true score on raw
score is not linear for this particular test and age range.
Another advantage of tests with equivalent items is that, as Birnbaum
(1968, p. 458) notes, the maximum likelihood estimate of ability, 8, may
be written explicitly as:

~

d=1+mlo
& (n—x)

if the logistic model is used. By appropriate choice of units and taking
6=1log A/D one has:

;1: Dx/n
1 -x/n

v A
n A+D

where D is the common difficulty parameter of the items. Thus raw score
has the same relationship to ability as do the individual items of which it
is composed. If in addition true score has a lincar relation to raw score,
then true score may be related explicitly to ability. In any case the
distribution of estimated ability values may be obtained from the
distribution of raw scores, g(x), even though the distribution of true
scores is unknown. As many recent articles have indicated, there are
difficulties in specifying the distribution of true scores if significant
departures from the beta function are indicated in the data. One advan-
tage of working with ability values rather than true scores appears clear
from this analysis.

[+
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According to the two-parameter cognitive growth model, ability A4 is
projective on time (f) with parameters (1, 0, c;, d.) and as first noted for
the case of equivalent items and the logistic assumption, raw score is pro-
Jective on ability with parameters (n, 0; 1, D). Thus raw score is projec-
tive on time with parameters (n, 0; | +c¢.D, d.D); that is,

x = ’k PN
n  (I+¢D)t+dD ’
If two such tests of # items with difficulty parameters D, and D, are
administered to the same subjects at approximately the same time, then

the scores on one (x;) may be chained to the scores on the other (x,) by
the formula:

1.t D (D:-Dy) -
X x D nD,

i.e. reciprocals of raw scores should be linearly equated.

MORE GENERAL COGNITIVE DEVELOPMENT MODELS |

The models proposed so far are based on the assumption that [/A4,, is
linear on 171, which leads to the projective relationship of ability on
time. For various reasons the observed data may depart significantly
from linearity. One obvious departure would occur if environmental fac-
tors changed 1o produce a dramatic change in the value of d.. If d, re-
mained stable at the new value, the graph would consist of two or more
line segments and could be analysed as such. More gradual and persistent
changes in ¢, however would produce significant curvature so that:

=¢, +d,| : )+e,glzj
Auk ,k ,k
might be a possible representation.

Such significant departures from linearity would make the task of
predicting and estimating the asymptotic value extremely difficult. To
what extent they ‘occur can only be discovered by studies which in-
vestigate the need for a three (or more) parameter model of cognitive
developuent. The data for a decision on this question arc not avail \ble.

3
» CONCLUSION
The present paper.has attempted to review the usefulness of latent trz\il
models as opposed to true score models in the more general context of
cognitive development 1t is clear that, even if only the difficulty of itcmx\
in a test is allowed (o vary, the true score model has difficulty in pro-
viding a useful representation of cognitive growth whereas the latent trait
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model can be readily extended to cover the cognitive growth phenomena.
This is true even if cognitive development is much more irregular and
idiosyncratic than evidence so far suggests. The evidence available at pre-
sent is consistent with the notion that at least two parameters are re-
quired to represent cognitive development and these parameters could be
estimated using two administralions of chained tests of the same ability
has not been explored here.

Although l/he latent trait approach is clearly supenor in this context, it
seems untonunate that some of the advantages of the true score model,
for exampYe distribution models, have to be abandoned. Keats (1967)
and Birnbaum (1968) noted some of the advantages of equivalent item
tests. A further advantage noted here arises from the fact that such tests,
and only these, produce a possible reconciliation of the two models.
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REACTANT STATEMENT
kev:n F. Collis

In speaking to his paper, Professor Keats has really removed any neces-
sity for me to react to the specifics in his paper. He has freed me to speak
about the general notions underlying the differences between the two
models, true score and latent trait, especially in relation to my own major
research interest, cognitive development. It should be noted at the outset
that my interest in the models arose from practical problems, initially in
the classroom situation, and has never been directed towards the niceties
of the mathematics involved.

Like most of us here, 1 was brought up on the classical true score
model, X, =T, + E.. However | very quickly began to find it not totally
satisfactory for practice in the classroom. This was probably because, as
is pointed out in Keats's paper, one was never quite sure of what was
being estimated nor of what the basis of estimation was. Quite apart
from this, the use of the model led to several undesirable practices, two
of which I shall mention briefly.

First, teachers tended to use the various tests based on this model, for
example intelligence tests, o 'label’ and categorize individual children.
Once the label had been attached, it was almost impossible for the child
to remove it. Most often, and even more sadly, the child and its parents
accepted the decision. In classroom practice, once the child had been
categorized as of average 1Q (say) then many things followed. The in-
dividual could be ignored — expectations were determined and a ready ex-
cuse was available ror any one of a number of qunc separate school or
home-based problems.

The second undcesirable practice which had arisen, partly because of
the classical model. was what 1 like to call the ‘carelessness’ syndrome.
Teachery' classroom tests were, often unconsciously, based on the true
score model. They would set a series of items to which the child was to
respond, the various correct scores were added, and the total score
represented the child’s achievement level in the content area concerned.
Apart from incorporating many dubious assumptions, this form of
assessment focused the teacher's attention on the number correct and on
ranking the children in order rather than on why an individual child did
not succeed on a particular item. In mathematics teaching, failure to suc-
ceed on an item was often put down to carelessness especially if the
overall total score was deemed satistactory. However, in my experience,
children were very rarely careless —they seemed, in the main, to take an
inordinate amount of trouble to try to follow the model solutions pro-
vided by the teacher.

It was \m_cl\ these undesirable and clearly unfair practices which led
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me to an interest in what lay beneath the surface. Unwittingly, at first,
and then more and more consciously I became involved in what is known
in the jargon as latent trait analysis. Let us look at a couple of particular

“examples from elementary mathematics.

Children can be asked to find *A” in each of the following statements:

() 3+4=24+3
(i 7-4=4-7

Each contains the same number of elements and operations; each uses
small numbers. Why then should the first be easily at'ainable by early
primary school children and the second not readily achieved until late
primary/carly secondary school?

The most productive method for finding out seemed to be to talk with
the children at various age levels as they attempted to solve the problems.
Two strategies for solving the first were in evidence with the younger
children —neither of which was a satisfactory strategy for the second.
The strategics used were either a low-level pattern secking —*‘There’s no
"4 on that side’, or some form of elementary ‘counting on’, that is, *3
and 4 arc 7, vo, we nced “4” so that 4 and 3 makes 7'. Questioning re-
vealed thai the obvious solution of 3+4=7 followed by 7-3=4
does not only not occur to these children but will be denied as an ap-
propriate method for solving the problem. Clearly the children needed to
be able at least to admit the usefulness of this last strategy if they were to
succeed on the second problem. In reality they needed to do more than
that. Having obtained ‘3’ from ‘7 — 4’ they needed to have a sufficient
overall view of the problem 10 add when subtraction was so fresh in their
minds and so strongly suggested in the question.

This increasing ability to solve problems involving more and more
complex manipulations of the data could be linked, intuitively at first;
to the cognitive growth phenomena which the Piagetians and neo-
Piagetians were describing in the literature. Further investigations (Col-
lis, 1975) enabled /ogical links to be made between the data and cognitive
development models.

As it turned out when the items which had been devised were analysed
using the latent trait 'model (ACER, 1977) the earlier intuitions were
confirmed. Perhaps more significant, in the context of the present paper,
psychometricians such as Keats became intrigued by the results coming
out of a number of cognitive development studies (Keats, Collis,
Halford, 1978) and began to seck a suitable mathematical model to
analyse the data in a more objective manner and to reconcile any new
model thus devised with the classical model. As Keats's paper shows, a
zood start has been miade in both these areas. -

In conclusion, then, my experience suggests that both models have
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‘their uses in practice —the latent-trait model set out in Kealts's paper is

particularly valuable for investigating the developmental concerns cur-
rently surfacing in educational and psychological practice. Both models

can be abused by their users —especially those who do not tully under- -

stand the assumptions underlying the particular model. The classical
model has been around a long time and so there is much more evidence
available of its abuse. 1 see this seminar as serving two important pur-
poses: one, developing a basic understanding ot the underlying assump-
ticns of the latent-trait model and two, beginning to reconcile two
models, one with the other. I believe that Keats's paper has contributed

signiticantly to these purposes and to the theme of this seminar.
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The Use of Latent Trait Models in the
Measurement of Cognitive Abilities.
and Skills

Bruce Choppin

MEASUREMENT SYSTEMS
What motivates most of the work t> be described in this paper is a wish
to develop a sounder basis for the measurement of educational achieve-
ment. 1 will not dwell much on the short-comings of traditional ap-
proaches based on the true score concept except where it is necessary to
point out that it does not lead to a system of measurement with the sort
of properties that we want.

In the argument, | pian to use the measurement of temperature as an
analogy. Temperature is a familiar concept and ideas about some objects
being hotter or colder than others must reach back very far in human
history. But temperature is an invisible commodity and measurements
may be made only indirectly. Turning ‘hot’ and ‘cold’ into number values
on a scale did not come easily, and even wher two temperatures (say the
freezing and boiling points of water) are given arbitrary numerical values
there is no very obvious procedure for locating intermediate tempera-
tures on the scale (Middleton, 1965). However, the problems of measur-
ing temperature have been largely solved in the last 150 years and the way
in which the measurement system developed contains some useful
lessons.

It could be argued that human achievement is a very dlfferent type of
concept. The outcomes of it may be extremely visible, and there would
seem to be no need to turn to indirect methods of measurement. For
some areas of achievement this is clearly true. If we want to know how
fast someone can run, we can time them over a fixed distance with a stop-
watch. If we want to know how high they can jump, we set up hurdles
and measure them in centimetres or inches. Mental abilities in general,
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and academic achievement in particular, do not lend themselves to a
direct approach. If we want to -know how good somebody is at
mathematics, we cannot expect a tape measure or stop-watch to give us
much help. The best we can do is to take a sample of tasks from the
realm of mathematics and, by observing performance on those tasks, in-
fer something about a hypothetical level of performance on a more
general ability. It is in this sense that the measurement of academic
achievement has to be i.adirect, and the trait itself treated as latent.

What then are the properties we seek in a system of measurement?
First, as a matter of convenience, we require that the instruments with
which the measurements are to be made shall be usable over a range of
values of the variable being measured. A thermometer tha: works only at
one particular tempcrature has very limited value. An unmarked stick
exactly six feet long may be quite useful for dividing people into two
groups one of whom all have heights less than six feet and the other all
greater, but its value as a measuring instrument will be extremely limited
in comparison with a properly calibrated ruler.

Further, one would require that the instrument is not unduly sensitive
to factors irrelevant to what is being measured. Neither thermometers
nor rulers should react noticeably to changes in humidity or barometric
pressure. .

More fundamental perhaps is the requirement that instruments should
be to some extent interchangeable. It should not matter which of several
available thermometers is used to measure the temperatu e of a room or
the temperature of a cup of coffee. The results obtained should not de-
pend upon which thermometer is chosen, and this has implications for
the calibrations employed. In itself calibration is not a difficult task. Any
set of marks on a ruler can be treated as calibrations of length and any set
of marks on a thermometer as calibrations of temperature. The raw score
achieved on a test can reasonably be regarded as a calibration of perfor-
mance. The problem arises when consistency among the calibrations is
required so that instruments themselves may be used interchangeably.

Cross-calibration procedures have something in common. To calibrate
two thermometers one against the other, you might use both to measure
the temperature in several situations (say freezing and boiling water and
a number of points in between) and observe carefully the readings on
cach thermometer. To cross-calibrate two tests, a straightforward pro-
cedure would be to give two tests to a number of people and to observe

- the raw score of cach person on cach test. In this way a table could be

developed to show how the ruw score on one test was related to the raw
score on the other. This, in a limited sense, is a basis for interchange-
ability since if a person's score on one of the tests is known it would
always be possible to predict his score on the other.

[l
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Unfortunately this does not work too well in practice. Firstly, the
errors of measurement usually present with the test scores are of such a
magnitude that in a real-life situation a single raw score on test A is likely
to correspond to a whole range of raw scores on test B. (The same sort of
thing happens with thermometers but the measurement error there is so
small that it is usually ignored.) Secradly, all pairs of instruments have
to be brought together tor the cross-calibration, and this rapidly becomes
impracticable as the number of instruments for measuring a particular
variable is incrcased. 1f 1 develop a new test of arithmetic in a world
where 100 other tests of this topic already exist, then in theory 1 need to
carry out 100 cross-calibration experiments in order to make my new test
fully a part of the measurement system. To solve this problem for
temperature, constructors of thermometers make use of the apparently
regular, though different, expansion properties of solids, liquids, and
gases, as temperature is increased. Most thermometers make use of these
cxpansions so that an indirect measure of temperature is obtained by
making a dircet measurement of length. Equal changes in length are said
to correspond to equal changes in temperature, and this makes the con-
straction of a variety of types of thermometer relatively straightforward.
Calibration is carried out against a standard thermometer at only two
points on the scale, the rest of which is marked off in equal intervals of
length. With this system, one can use a number of difierent thermometers
with contidence that a reading of 47 degrees on one of them means more
or less the same thing as a reading of 47 degrees on any of the others. The
consistency achieved by real-life thermometers is frequently exaggerated.
Mercury-in-glass and platinum-resistance thermometers which agree at
100 C will differ by about 97C at 300°C (Nelkon and Parker, 1968).
Neither is necessarily true or false; they represent two facets of an in-
herently inconsistent system, Though less dramatic, similar inconsisten-
cies oceur among liguid-in-glass thermometers. Many difteren. liquids all
with difterent properties were tried during the first hundred years of ther-
mometry and the general agreement in the 18th century to standardize on
mercury as the liquid scems to have been arbitrary (Eysenck, 1980).

With mental tests, a major effort to get around the calibration problem
has come to be known as norm referencing. Here a hypothetical scale of
performance is defined by the distribution of ability within a particular
population. If a particular test is administered to the whole population
(or a representative sub-sample of it), then it is possible to define a
transtformation of raw test scores into, for example, percentiles. Thus a
score ol 1t on test A may be held 1o be equivalent 1o a score of 36 on test
B, it both translate to the same pereentile value for the same population,
As past experience has shown that a normal distribution of ability is a
reasonable hypothesis 10 hold for most populations, the procedure to
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establish percentile norms for a new test need not be arduous. (Age
norms take these procedures one step turther by using the average per-
formance of each of a whole set of different sub-populations).

It is instructive to consider norm reterencing for temperature. Suppose
thermometers were all caiibrated in terms of the percentage of days that
were cooler than a particular temperature. They would have their uses,
but clearly also their limitations. They would not be much use for
measuring the temperature of cups of cofiee or human body
temperatures. In the context of weather, the calibrations would be mean-
ingful only in the restricted context of the climate where the calibration
was carried out, and even then they would not be much use for night-
time temperatures. Further one might well say, ‘Today is a cool day con-
sidering the whole year, but is it cool for the end of May?’. Normed
calibrations would not contain much information about that.

These limitations are just those that restrict the usetulness ot the norm-
referenced standardized test. The calibrations are only strictly relevant in
the context of the reference population and, in real-life situations, it is
almost always true that the population of interest will nor be the one on
which the calibration was carried out. Human populations are not par-
ticularly casy to define and, in particular, the characteristics ot student
populations usually change quite rapidly, so that a standardization
carried out onc year may already be noticeably inaccurate twelve months
later. Further the idea of a single population is often unhelpful. In-
dividual children need to be considered in terms of their own
characteristics, and not merely as representatives of a national popula-.
tion. Sex, ethnic origin, and educational background may all be crucial
to the interpretation of a particular test performance.

If norm referencing is ....i the answer, then perhaps we should seek
some theoretical basis for test interpretation analogous to that which
turned the problem of the measurement of temperature into essentially a
problem of the measurement of length. Just as the relationshir of the ex-
pansion of materials with temperature can be expressed (app rXimately)
in mathematical form as an equation so we seek a formal mathematical
representation of the way that performance level on an achievement trait
translates itselt into observable performance on a mental test. [t should
be clear by now that the model implied by adding up the number of
correct responses and using the resulting score as a measure of achieve-
ment will not do. In general the same person would get ditferent scores
on different tests even though his achievement level remains constant,
and so we must somehow build information about the content ot a par-
ticular test into our model.

A single test item is analogous to the six-foot long uncalibrated
measuring rod we mentioned carlier. It can divide people into two
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groups: those who can answer it correctly and those who cannot. A test is
like a bundle of rods of different lengths. A height-measuring system
based on them must take account of which rods are in the bundle.

In the last 20 years or so, a number of alternative models of test
behaviour have been advanced. In this paper I shall concentrate on one
of them which seems to have by far the widest range of application. This
is the Rasch model which relates the probability of a person responding
correctly to a particular item to a function of just two parameters: the
ability of the individual and the difficulty of the item (Rasch, 1960).

It is usually written:

. (u";‘)
Probability{a., = l}= W (n
| + Wita-s)

where a,, = | represents the event that person v responds correctly to item
f; a, 1s @ parameter measuring the ability of person » and 8, is a parameter
measuring the difficulty of item /. W is a constant which determines the
size of the units of measurement. For measures in logits, W is set at e.
For measures in brytes or wits, W is set at 322 which is about 1.2457.
Certain assumptions are built into this model. The first is that prob-
ability of a particular response being correct does not depend on which
other individuals are attempting the same item, or on the pattern of
responses the :se individuals might give. More importantly perhaps, it
assumes that the probability of a correct response to a particular item
does not depend on which other items make up the test, in which order
they appear, or what responses were given to the items that preceded the
one under examination. This assumption is known as ‘local in-
dependence’. Secondly the model assumes that the individual’s response
is conditioned by his ability to answer questions in this area, but not by
his motivation, his tendency to guess, his degree of hunger, or indeed any
other personal attribute. Thirdly, the model assumes that one and only
one item parameter (difficulty) affects the outcome and that other item
characteristics (such as reliability or discrimination) are not relevant.
In both Britain and the United States, the educational literature still
occasionally produces an outraged statement by a respected traditionalist
that he has looked at what underlies all the fuss over the Rasch model,
and he has tound that the model simply is not true. If this can be taken to
mean that the Rasch model does not exactly represent the behaviour of
real people in actual testing situations, then let me hasten to agree. The
Rasch maodel is a gross simplification, deliberately designed to provide an
approximate representation of reality, not an exact one. That indeed is
the virtue of scientific models. Is Charles’ law about the expansion of
gases true? No, of course not. Neither is Van de Waal's Equation of State
a true account of the behaviour of gases under changes in temperature. [t

O

Aruitoxt provided by Eic:



@

46 The lmpro‘vemem of Measurement

is more accurate than Charles’ law, but still an approximation. Newton’s
laws of motion are themselves no more than an approximation. They
work very well most of the time, but are woefully inadequate in some cir-
cumstances. i :

More telling is the criticism raised repeatedly by Goldstein and others
in the United Kingdom (e.g. Goldstein 1979) that the Rasch model is un-
sound because its basic assumptions are untenable. That they are
untenable is not really open to dispute, but I would argue that this again
is not a sufficient reason for dismissing the model. After all, the use of
flat maps to represent portions of the earth’s surface involves assump-
tions about the preservation of relative areas and distances that we know
to be untruce. Exactly what does a scale of 1:1 300 000 or 10 miles to the
inch imply? Yet two-dimensional maps are almost everywhere regarded
as being useful aids to personal navigation. Our experience to date with
the Rasch model suggests that it is quite robust with regard to violation
of its assumptions. Even when items have a built-in dependence upon
another and when parameters such as discrimination vary widely, the
results obtained when the Rasch model is used to measure people show at
most only very minor inconsistencics.

There arc, I would submit, three separate reasons for adopting the
Rasch model as the basic scaling technigue for measures of achievement.
They are:

I It is mathematically simple and convenient to use. Methods of
estimating the parameters are relatively straightforward and they do not
require vast amounts of data.

2 The model is in fact a direct extension of current testing practice
which adds up the number of correct responses and uses this as a
measure. In fact a number of authors have shown that under normal cir-
cumstances the raw score on a test is a sufficient statistic for the ability of
the person achievingit. That is, all the information about the person’s
ability contained in the set of responses he gives is concentrated in the
raw score. Similarly all the information about the relative difficulty of
items is contained in the set of facility indices (i.e. the proportion of cor-
rect responses item by item). Thus, if we have a complete data matrix
resulting from each of a particular group of people attempting all the
items ina particular test, where one is reported in the matrix for a correct
response and sero for an incorrect response, then the marginal sums of
this matrix contain all the information necessary for calibrating these
items and measuring the people. The Rasch model provides support for
the use of raw scores for a varicty of measurement purposes such as the
rankimg ot students. There is a one-to-one monotonic relationship be-
tween the raw score and the underlying latent trait scale.

3 The Rasch model does appear to predict the behaviour of real test
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items and real people with considerable accuracy (given the enormity of
the simplitying assumptions).

A straightforward illustration of this is given below. When one {tem is
morce dithcult than another, this manitests itself by a tendency for people
who succeed on it also 1o succeed on the other item. Information about
the relative difficulty of the two items is contained in the respective suc-
cess rates for a given group of people.

The Rbsch model leads to the somewhat surprising (but easy to
remember) result that, for any two items (7, j) measuring the same ability,
the ratio of the number of péople who respond correctly 1o i and incor-
rectly toj (say b,)), to the number who do the opposite (say b,,) should be
constant —a measure of the relative difficulty of items 7 and j—no matter
what the ability level or distribution of the pcople (Choppin, 1978).

In the notation of equation (1)

Probability {a,, =1, a,, =0}
Probability ja,, =0, a;, =1}

B8 - (2)

and (5, - 6, is estimated by 108 27108 b,

log W

I'o illustrate this, | have looked at four items used in the 1971 IEA
Science survey (Comber and Keeves, 1973). The data | have are from six
separate samples of about 1000 pupils ranging from one of eighth grade
pupils in non-academic streams to one of twelfth grade academic pupils.
Traditional facility values for a single item vary widely from one sample
to another reflecting the varying abilities of the pupils. Two of the four
items arc in chemistry and two in biology. For each pair, the values of b,,
and A, were counted in cach sample. The results are plotted in Figure 1.
I'he relative difficulty of the two items, according to the Rasch model, is
given by the slope of ihe line joining the origin to the sample point. You
will note the consistericy from one sample to another despite the extreme
variation in ability,

These data are not ‘cooked’. The items were drawn at random from the
set that were administered across the wide age group. Discrimination in-
dices range from 0.14 10 0.36. Both biology items were said to be measur-
ing ‘understanding™ but, of the chemistry pair, one was classified as
*knowledge of facts’ and the other as *higher mental processes’.

So, as well as illustrating the sample-free aspect of Rasch relative
dithculty, these data give some insight into the robustness of the model.
The structure holds up well even when the departures from the under-
Iving assumption of homogeneity and uniform discrimination are quite
substantial.
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MORE COMPLEX MODELS?

In the United States the Rasch model has often been referred to as the
‘one-parameter’ model because it uses only one parameter to describe a
test item (the dithiculty parameter). A “two-parameter’ model has been
proposed and investigated from a mainly theoretical point of view. Like
the Rasch model it relies on a single parameter to describe the person tak-
ing the test (ability) but, in addition to difficulty, it introduces a
parameter to represent the item’s power of discrimination. Largely in
response to theoretical objections resulting trom the use of the multiple-
choice tormat, a “three-parameter’ model has been suggested. This still
retains a single paranicter tor the person involved, but adds another item
paramcter representing the ‘guessability” of the item (i.e. the limiting
probability that a person with absolutely no relevant ability would still
respond correctly to the item). Though there is a substantial amount of
published discussion of this modcl, it has been little used in practice.
In passing it should be noted that there has been discussion about the
advantages of using a probability function based on the normal curve

- (proposed by 1 ord, 1952) rather than the logistic (exponential) functions

adopted by Rasch and Birnbaum. In quantitative terms it appears that
this would make very little ditterence to the results obtained and the
logistic form of model is now generally preferred because of s relative
mathematical simplicity.

The reason for interest in these more complex models is clear. The
simplitications made by the Rasch model are rather extreme, and a more
complen model could be expected to provide a better fit to real data.

Against this one must set the disadvantages ot losing the simple one-
to-one relationship of latent trait measure with raw score. The more
complexn models require very lengthy computation in order to score the
test. baven 1o rank candidates on a very short test, these models will
almost mevitably require the use of a computer.

Secondly, while quite usable estimates of the Rasch model parameters
can be obtained from as few as 30 candidates attempting a test, the more
complex models seem 1o require samples running into the thousands in
order 10 obtain a similar degree of reliability in parameter estimation.
Observations ceme as single bits of evidence, and it seems to be dithicult
10 squeeze more than one item parameter out of a single bit. 1t is for this
reason, | suspect, that Wright found that, in practice, the more complex
models titted real data less well than did the Rasch model.

I'he orthodon view among Rasch scalers is that it is better to avoid the
nroblems which prompt the introduction of exira item parameters. A
good test from the Rasch point of view (and hence also from the point of
view of those who use traditional test statistics) is one which avoids
substantial amounts of  guessing and items  whose  discrimination
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parameters vary widely. Where the Rasch model is used as an aid to test
construction, it is usually employed in this mode.

PARAMETER ESTIMATION

It is now nearly 20 years since Wright and I began to play around with '
different computational algorithms for solving the Rasch model. A good

: many other people have comce in on the act since then, and it would be
fair to say that by now this particular topic is fairly thoroughly explored .
and documented. ;

That there is a problem requiring a solution at all results from the '
stochastic or probabilistic form of the Rasch model itself. ht gives only
the probability of a correct response to an item whereas the actual obser-
vation is of success or failure. There is unfortunately no way to observe
probabilities directly.t

In general, however, if we have N people responding to the k items in a
test we have a total of Nk bits of information to estimate the N+ k
parameters (N abilities and & difficulties). The problem is to find values
of the parameters that best explain the set of observations, and then to
cheek that this explanation is good enoughi to justify the use of the Rasch
model in these particular circumstances. Many ways of fixing the values
of the parametcrs have been suggested: some precise but computationally
rather long-winded (Andersen, 1973); some rough and ready but easy to
calculate (Wright and Stone, 1979). In general they can be grouped into
two separate categories: ‘least squares’ and ‘maxinium likelihood’.

The least squares approach is based on the idea of minimizing the
discrepancics and deviations from the model. It is the approach sug-
gested by Rasch in his book, and was the first method to be investigated
in any detail. o » )

The maximum likelihood approach begins by specifying the prob-
ability of a particular set of observations, given particular values for the
parameters. The procedure then calculates the values of the parameters
that make this probability function a maximum. In practice the log /
likelihood function is maximized as this is computationally rather easier, 4
and leads directly to cstimates for the standard errors of the parameters. /

Some but by no means all maximum likelihood methods produce a
systernatic bias in the paramcter estimates obtained (an approximate cor/
rection factor has been proposed to take care of this). Some but by no
means all maximum likelihood methods arc computationally lengthy and
henee rather expensive. My own experience suggests that, although/the
quickest maniimum likelihood method (producing unbiased results) can-

FAn this case (as in many others) it would be quite impracticable to facg an in- {
dividual with the same test item on a large number of occasions ln/érdcr 10 \
estimate the probability by way of the relative frequency of success. ’
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not compete for speed with the shortest of the least squares approaches,
it is somewhat more stable with badly conditioned data. Where both
methods are applicable to the same set of data, it is comforting that the
results usually agree to within a tenth of a standard error, and 1 have
never seen a case where real (as opposed to artificial) data gave rise to
least squares and maximum likelihood estimates that differed by more
than half a standard error. ’

EXTENSIONS TO THE BASIC RASCH MODEL

Maost of the published accounts of the use of the Rasch model refer to the
standard situation where each of a group of people attempts all the items
in a test, and where cach item response is scored either right or wrong.
The last few years, however, have seen a great deal of work in developing
extensions to the basic model to cope with more complex testing situa-
tions. 1 will consider three such extensions.

Incomplete Observation Matrices

1f every person in i group attempts every item in a test, the data can be
arranged as an N by & rectangular matrix of ones and zeros, where one
represents a correct response and zero an incorrect response, as in Figure
5

In this case the (V + &) marginal values (i.e. the row and column sums)

ltems
] Ri 3 4 5 6
A 1 1 0 1 0 0 3
B ] 0 1 1 1 0 4
C | 0 | 0 0 0 2
D | | 0 | 0 0 3
8 0 | 0 0 §] | 2
- I 1 ! 1 0 0 0 3
Persons G " 0 | | | 0 1
H 1 l 0 1 1 0 4
| | | 0 0 0 0 2
] | | | | 0 0 4
[N 0 0 | 0 0 0 |
I | | 0 0 0 4] 2
10 N 6 6 3 1 Margins

Figure’_ 2 Hypothetical Data Matrix for Results of 12 Persons on a Six

Item Test (N =12, k=6)
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many real-lifc situations occur in which this matrix is incomplete.
Although it will then have less than Nk bits of information, it will sull
usually have more than enough to develop estimates for the N+k
parameters. With missing dala, the parameters cannot be estimated from
the margins. -

There are several different situations in which omissions not resulung
from a candidate’s ingbility to answer a question can occur. One is |
through some irregularity in the test administration. Some candidates |
may be given test booklets containing priating errors; one may be taken
ill half-way through an examination.

Another such situation is a test or examination in which the candidate
is allowed a choice of questions. This procedure is fairly standard in
British public examiniations where a typical rubric might run ‘Answer
questions 1, 2, and any five fram numbers 3-15°. It is widely believed that
such a procedure is fair to candidates who may (through no fault of their
own) have missed being taught some parts of the curriculum. Be that as it
may, it can casily result in a situation where, although an examination
consists of N .items, no student vector contains more than n

|

contain enough information to estimate all the parameters. However,
|

responses — and of course difterent students choose different questions.
“A third situation in which the data matrix is not complete occurs when
different tests are quite deliberately given to different students.
Sometimes this method is adopted to prevent students from copying the
answers of their neighbours, and hence {0 increase the overall security of
the examination, but it is also a quite legitimate way of increasing the
range of items on which achievement data are gathered without unduly
lengthening the time devoted to testing. One example of the latter kind
occurred in the IEA 1971 Survey of Science Achievement which I men-
tioned earlicr. For students in the pre-university year six ditferent forms
of the test were prepared. Each consisted of a basic sub-test of 60/items
which appearced in all forms, and six more advanced items drawf from
an additional pool of 36. This ensured that, while no student was asked
to respond to more than 66 items, achievement data on a total of/96 items
were obtained. Another pertinent example occurs in the work the NFER
is doing as part of a national monitoring of standards for yhe govern-
ment's Assessment of Performance Unit (APU). For the agsessment of
primary school mathematics, 26 different forms of test wefe used, each
cne containing only one-thirteenth of the total pool of it¢ms. (The iest
was o arranged that each item appeared in two separate forms.) When
a persons-by-

<. _observations from these ty pes of testing are arranged if
items_matrix (see Figure 2), it is clear that large parts of th matrix will be
emmu\\mu-l still be desirable to be able to calibfate @/l the items
one against the mhMcasurc the aghlc»cmem/ot all the people.

e
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Another, and rather more novel, type of ‘missing data’ occurs as a
result of editing an observation matrix, often as a result of a Rasch scal-
ing analysis. For example, after estimating item difficulties and the
abilities of candidates, it is possible to use the model to examine the
probability or improbability of each separate item response. This method
has been used to identify lucky guesses (a student correctly answers a
question that appears from the rest of the data to be far too difficult for
him). Further, one may discover that a group of testees respond in ap-
parently eccentric fashion to perhaps a sub-group of items, suggesting
that perhaps those particular items are not appropriate for them. It is
possible, in this way, to identify instances where the item response ap-
pears not to be a good indication of the candidate’s overall level of
achievement and these instances can be edited out before a second
analysis of the persons-by-items matrix. This matrix will now have some
holes. : B

How is the incompléte matrix analysed? The answer comes from the
result mentioned carlier for pairs of items. The ratio of the probability of
getting item J correct and j incorrect to the probability of getting i incor-
rect and j correct is a simple function of the relative difficulties of items i
and j. When faced with an incomplete observation matrix, we decom-
pose the test into all possible sub-tests of length two. Any individual who
responds to more than one of the original k& items contributes to the
estimation of the relative difficulties of at least some of the possible item
pairs. Once all the items have been calibrated, it is relatively straight-
forward to look at the set of responses a particular person gave, and
derive from them an estimate of that individual's ability (Choppin,
1978). Both maximum likelihood and least“squares methods work in this
analysis of incomplete observation matrices and, although over the years
my preferred method }as. usually been that of maximum likelihood, I am
now coming to the conclusion that in routine testing situations the non-
iterative least squares algorithm is going to prove the more reliable.

Partial Credit
Suppose that instead of being scored zero/one, a set of item responses
has cach been scored on a scale from zero to five depending on the degree
of *correctness’. Tests of this sort are not unknown in Great Britain,
though 1 do not know whether you have to deal with them in Australia.
Two different methods have been developed for analysing such data
with a Rasch model. The first, stemming from the work of Wright and
his colleagues in Chicago, is to treat each item in the example given above
as replaceable by five dummy items each of identical difficulty and scored
scro/one. The score actually achieved on one of the original items is thus
taken to be the raw score obtained by summing the scores on the sub-set
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of dichotomous dummy items, Since the dummy items associated with
one real item are assumed all to have the same difticulty value, the
margins of the observation matrix may be collapsed somewhat before the
conventional parameter estimation method is applied.

An alternative approach, and the one that I have been developing, is to
convert the actual score awarded (on the 0-5 scale) into a fractional score
on a continuum from zero to one. Thus in the example quoted above, a
score of 4 would be converted to one of 0.8, indicating that the candidate
has achieved four-fifths mastery of that particular question (and one-
fifth lack of mastery). On a second item for which the score is three, 1
deduce a degree of mastery 0.6 and lack of mastery 0.4.

A simple extension of the Rasch model to accommodate partial scores
between sero and one, in licu of dichotomous scores, replaces the prob-
ability function by an expected vatue. From this we can use the scores
achieved on two items by the same individual to give an cstimate of the
relative ditliculty of the items.
lly.)]_ Yt

S 14 wemes @

Expected value E[(

I'his equation is anatogous to equation (1) above. If we call the two itemns

" inour example fand /, then the refative difficulty ot the items is estimated

ERI

by
a5 - a,)
b (4)
l()g u (Iw(s - uw)

The items are then calibrated by looking at all possible item pairs as in
the missing data method outlined above.,

I have not much more to report about the use of non-dichotomous
scoring systems at the moment. Both methods of analysis are in use.
Sometimes they produce virtually identical results (c.g. where all the
ftems in a test are scored on the same scale). On other occasions the
results may be somewhat different, and it is up to the analyst to decide
which of the approaches is the more sensible in that particular case. The
first method 1 described weights questions according to the maximum
number of marks awarded for them. The second method weights all the
questions cqualty.

Early results that I have had suggest that non-dichotomous scoring can
give much more information about a candidate from a limited number of
item responses. It can thus substantially reduce the standard error of
measurement. On the other hand it is in general rather harder to meet the
Rasch model requirement of homogencous discrimination levels when
non-dichotomous scoring is used. T

» -
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Markers or Judges

This extension to the basic model i« intended to cope with the situation
where several different judges provide ratings of the quality of some per-
formance. I think that the best way to present this will be t¢ describe in
some detail an actual problem, and the progress made so far towards its
solution. It arose in connection with background work carried out for
the Assessment of Performance Unit that I mentioned earlier. In our
national monitoring of writing skills it was deemed appropriate to have
each writing sample graded by expert judges. Since it would clearly be
impracticable to have any one judge consider all the writing samples
obtained in a large national survey, we decided to explore the feasibility
of recruiting a pool of expert graders on whose judgment we could rely,
and whose variation on a severity- Ieniemy scale could be minimized. To
accomplish this the following experiment was conducted.

Seven hundred and fifty students provided writing samples for
analysis. Eleven separate writing tasks had been defined and each student

was asked to respond to two of them, one from the set (task 1-task 10)
and also task 11. In the experiment four markers were used, although
only two marked each candidate’s papers. Marker one was never paired
with marker three, and marker two never with marker four. Apart from
this all combinations of markers appeared with approximately equal
frequency:;

Each marker was required to grade cach task on four separate criteria.
For the sake of brevity these criteria will be referred to as content, gram-
mar, style, and orthography. All grades were made ona 1 — 5 scale with §
being the best work.

Thus for cach of the 750 candidates, we had 16 scores (two tasks X two
markers « four criteria). A Rasch scaling was carried out in order to
estimate the marker parameters and the task/criteria parameters. These
parameters were estimated to provide the best possible fit of the data to
the model. First,

L {(,x -1 } Wi )

4 |+ Moobom

where o is the writing ability parameter for a student, 8 is the difhiculty
level paramicter for a criterion on a particular task, m is an adjustment
for marker severity and X is the grade awarded. The expression (X — 1)/4
converts the grade to a fractional score on the zero/onc interval. This is
analogous to the procedure I described in the preceding section on partial
credit. For the present experiment it should be noted that the estimation
has no solution unless at least some interactions of task/criterion are

graded by more than one marker, and some individual pupils are graded
by the same marker on more than one task.
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If these conditions are met

DX~ D5 - X) )

L6 -X)X,~-1)

where i, j arc indices indicai 'ng particular task/criterion combinations

(hencetorth called items) and the sumunations are taken over all pairs of

pupil and marker tor which grades for both items / and j exist.
Simlarly,

Wm0 is estimated by

SX-DG-X) g
(5~ X)(X,~ 1)

where X, and X, are the grades awarded by marker fand marker g, and

the summation is taken over all pupil responses to individual items for

which both marker f and marker g provided grades. These two sets of

cquations were analysed using both least squares and maximum
likelihood methods. In no cases were the resulting calibrations different

from cach other by more than 0.1 wits. All the results reported below are

drawn from ihe maximum likelihood analysis.

Averaging the results over criteria and tasks gave the overall difficulty

levels shown below:

Woememe is estimated by

(1) Tusks
Tasks Mean ditticuhty
task | 50.8
task 2 49.6
tash 3 50.5
tash 4 49.4
tash 3 49.7
task 6 50.8
tusk 7 49.7
tash 8 49.4
tash 9 49.5
task 10 0.3
(i) Criteru
criterion (i) content — adjustmient 0.7 wits
Fasks criterion (h) grammar — adjustment  zero
110 criterion (o) style — adjustment ¢ 0.3 wits
criterion {d) orthography — adjustment -+ 0.4 wits
criterion {a) content — 51.5 wits
Lask criterion (b) grammar — 514 wits
i criterion (¢) style — 48.7 wits
criterion (d) orthography — 49,5 wils

The interpretation of these results was that, for example, task 3 was on
average one wit harder to score well on than task 9 (50.5-49.5) and that,
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for tasks 1-10, the conrent grading was about one wit more lenient than
the style grading (- 0.7) —(+0.3).

Task 11 was reported separately because it was common to all
students, and the pattern of marking was substantially different.
Whereas ‘content’ was the easiest criterion on which to score for tasks
1-10, for task 11 i* was the most difficult. Both content and grammar
were marked more severely for task 11 than for other tasks or other
criteria. Was this perhaps the result of overexposure of markers to
responses on this task? In any case, since cveryone took task 11, varia-
tions on it from the other tasks did not introduce any bias into the
estimation of student attainment.

The variations present in tasks 1-10 did have implications for
measures of student attainment. If the outcome was taken to be a score
derived from adding the eight separate grades provided by each of the
two markers, then we can see that half of these grades depend to some
extent on the choice of task. For a student of approximately average
ability, one point on each grading scale is equal to about 4 wits. Hence
the discrepancy of 1 wit between tasks 3 and 9 suggests a difference of
about a quarter of a score point for each grade awarded. The sum of this
would produce a difference of about 2 points in the total score; e.g. a stu-
dent who took tasks 3 and 11 and got a total of 47 would be expected 10
score 49 on tasks 9 and 11. Although most discrepancies are smaller than
this, some are larger, suggesting that (Rasch) scaling of the raw results
was highly desirable.

The Results — Markers
Adjustments for variations of severity of markers are shown below:

Criterion

Marker Content - Grammar Style Orthography  All ¢riteria
I 0.4 0.7 0.9 0.2 0.2
2 0 0.6 1.8 0.3 0.5
3 0 0.3 0.4 0.2 0.1
4 0.4 0.2 23 0.3 0.6
(SL - 0.5) (SE :0.3)

These results showed that there were no significant marker effects except
on the criterion, style.
On style the discrepancies were substantial:
On average, marker 1 was 1 wit too severe,
marker 2 was 2 wits too severe,

0
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marker 3 was about right,
marker 4 was 2 wits too lenient.

The structure of the data meant that it was not possible to test the con-
sistency of these results over each task separately, but it was possible to
compare grading standards on task 11 with the remainder.

) All crncna T Style

Marker Tasksl 10 Task || Tasksl 10 Task 11

1 -0.3 0.6 -0.3 2.2
2 0.7 0.4 1.6 2.1
3 -0.2 0 0.2 -1.0
4 -0.1 -1.0 -1.4 ~3.3
(SE=0.4) (SE=0.7)

From this it appeared that the main discrepancies between markers oc-
curred on task 11. The difference between markers 1 and 4 on task 11
‘style’ was 5.5 wits whereas on the other tasks it averaged only 1.1 wits,

Since all students responded to task 11 the effect of differential marker
severity on total score was considerable. The effect of having markers 1
and 2 rather than 3 and 4 was about 2 score points on task 11 and 1 score
point on the other task, or about 3 points in total. Overall the results
appear to confirm that the criterion ‘style’ was not being used in an accep-
table fashion by the markers. The rest of the calibrations appear satisfac-
tory. Marker calibration has been achieved, and on the basis of this set of
data it seemed reasonable to conclude that there were no systematic
differences of severity between the standards adopted by the four
markers in this experiment.

MONITORING OVER TIME

My colleagues at the NFER are now heavily engaged in various aspects of
Rasch scaling and the chief reason is the British version of national
assessment that I mentioned earlier, the APU. It is appropriate therefore
to spell out the precise nature of the problems raised by our work for the
APU, how we are proposing to solve them, and the sorts of results we
hope to produce. .

The APU program includes the monitoring of achievement standards
within our school system through the administration of tests to random
samples of children at two or three different age levels. At the moment
the cycle in each subject is an annual one (e.g. in mathematics, we ad-
minister tests to a sample of 10-year-olds each May, and to a sample of
15-year-olds each October) but it is possible that the testing frequency
will be reduced in the future. The aim of the program is to provide a
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detailed description of the attainment of children in our schools on a
wide variety of test material, to try to identify external factors associated

. with low patterns of performance over time. The aims are very similar to

those which motivated the National Assessment for Educational Pro-
gress (NAEP) in the United States, and in Britain too we have had a
debate over the merits of a purely descriptive approach in contrast with
attempts to identify causal links between academic performance and
background variables. However, for the moment, I shall concentrate on
the issue of monitoring standards over a period of years, an issue that re-
quires solutions to some interesting technical problems.

The first problem appears on the surface to be stra|ghtf0rward we
cannot use the same items in the tests year after year. One reason for this
is that we are required to report results on an annual basis, and it is
regarded as essential that we publish at least some of the test items in
each of these reports so that the general public will understand and be
able to interpret the performance statistics that we give. But once an item
has been published in a report it becomes accessible to teachers who wish
their pupils to perform well. As a result it may be expected that it will
receive special treatment in a substantial proportion of classrooms and
thus will no longer function as a good indicator of achievement across
the curriculum. A more subtle difficulty inherent in the continued use of
the same test items 1s that changes in curriculum do occur, albeit fairly
slowly. Test items, that seemed entirely appropriate when the first
mathematics tests were put together in 1978, may well scem much less ap-
propriate for use in 1988. Our commitment is to test cach year what is

. currently being taught in the schools. Qur tests are supposed to remain

up to date and the deliberate and repetitive re-use of the sarne items,
although it would facilitate the comparison of test scores between years,
would also guarantee that the tests steadily lost validity.

At one stage our then Secretary of State for Education was reported to

. be extremely sceptical about the existence of any satisfactory alternative.

' A

She felt that comparisons of performance from year to year would lack
credibility with the general public unless they were based on the same test
items. But, of course, there are ways to handle this problem. One fairly
neat procedure is that adopted for the Scholastic Aptitute Test in the
United States, wherein cach test carries a small section which does not
contribute to the reported score, but which contains items that appeared
in the preceding year's tests. 1his provides a basis for equating standards
from one vear to the next using regression techniques. Thus a reported
verbal aptitude score of 500 in 1980 should represent the same standard
of performance as a score of 500 on the 1979 test, and this score of 500
was itself equated to a sc¢ore of 500 in 1978. The year-to-year linking,
always on the basis of current test material, is probably sound over a
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3

small number ot years during which the population of test candidates
does not change too dramatically. One suspects though that quite
substantial errors may well accumulate over a period of 10 to 20 years,
which was the sort of time scale at which the APU was aiming.

We preferred to approach the problem by using a bank of items scaled
along the appropriate latent trait. To achieve a wide coverage of the cur-
riculum we used some 600 items in the first survey of mathematics at age
ten although no individual child was asked to attempt as many as 50.
From the 600, we were able to discard a proportion the next year because
they had been used as examples in our reporting, because they had
proved not to have very good measurement characteristics or because
they were judged no longer very relevant to what was being taught, (On
the second cycle, this last category was largely non-existent, but we ex-
pect the number of items involved to grow as the years go by.) The
discarded items are replaced with new items developed by a panel of
pragtising teachers ard curriculum experts, so that the next year’s testing
has a substantial oveclap with the preceding year, but it has béen changed
sufhiciently to bring it up to date. The new items, rogether with the sur-
vivors.from the previous year, are scaled back on to the original latent
trait scale, vo that we feel we can make valid comparisons of standards
from onc year to the next. Further, since we can keep a careful watch on
the performance of individual items over a number of years in order to
ensure that they are performing in a consistent way, we feel more confi-
dent of our ability to make comparisons over a ten-year-period, or even
longer if necessary.

This brings us to the second problem | would like to consider, the
question of what 1o report. A simple statement to the effect that stan-
dards have gone up or down by so many points since the year before is

~unlikely to be of any help to anybody (except perhaps certain

politicians). The important findings are tied up in the ways teachers and
children arc reacting to a changing curriculum, to the changing emphases
being placed on topics within that curriculum, and in the resulting
changed pattern of performance. Our aim in future APU work must be
totry to quantity the changes in the pattern of performance so that they
can be related to changes in curricular emphasis and, hopefully, to
chtnges in the country’s perceived educational needs.

I weare to attempt this, then we are forced to confront the reality that
attainment in what we think of as a single school subject (be it
mathematics, science, or English language) is in reality a multi-
dimenstonal group of separate attainments. By this 1 do not mean to
umply that, for example, attainment in geometry is uncorrelated with
computational accuracy, understanding of algebra, or skill at using a
stide rule, There is ample evidence from past research that these traits are
quite highty corrchated.
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In an n#-dimensional space there are two ways of looking at this situa-
tion. The first is the bundle of traits all pointing in roughly the same
direction but each being assessed separately by its own set of items. The
second is to take this n-dimensional cigar and decompose it into ortho-
gonal axes. Here the major axis is a sort of conglomerate ‘general
mathematics performance’ and the minor axes represent not ‘geometry’
but rather ‘the way in which geometry is different from general
mathematics’. Of the two approaches to analysis and reporting, I prefer
the second for the following reasons,

It we choose to work with discrete sub-tests in geometry, computa-
tional skills, ete, each with its own latent trait scaling, we can link perfor-
mance from year to year within a sub-trait without problem. We know
however that, in‘time, particular traits will be emphasized more in the
way in which school mathematics is taught, and others will be empha-
sized less. This may be reflected in increases in performance on certain
traits and reductions on the others, but the link between the two will be
hard to establish. Further it would be difficult to incorporate changes in
the assumed structure of school mathematics; for instance, we may be re-
quired to combine two sub-traits into one, or break one up to make two
new ones. With the second approach to analysis, the unit is the individual
item within the item bank. Each item will have a loading (i.e. a difficulty
level) on the general mathematics scale, but also an indication of the ex-
tent to which it measures one or more sub-traits such as geometry. In this
case, the entire collection of ‘live’ items at any point in time defines the
effective mathematics curriculum that is being assessed. Uneven patterns
of performance that result from the multi-dimensional nature of
mathematics achicvement show up in departures from the Rasch model.
These departures (or residuals once the model estimates have been sub-
tracted from the data) can be analysed to provide the details of the
n-dimensional pattern of performance: Mead (1976), in the United
States, has developed some useful pointers here. The results of the testing
then, whether for an individual pupil or a large group of pupils, can be
evpressed in terms of an overall level of performance in mathematics
together with a profile showing relative areas of strength and weakness.
If it is decided to redefine the trait structure cither by combining existing
traits or by splitting to develop new ones, then this is readily accom-
plished merely by re-classifving the items. Past data sets can then be re-
analysed in terms of the new structure in order to look for evidence of
change.

In case all this seems rather abstruse, let me try and summarize here.
Over the years [ expect mathematics performance to change. Not only
will its overall level move up or down when measured against the current
requirement being placed on the school system, but also the very struc-
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ture of the curriculum, and the pattern of emphases placed on various
component parts, will be continuously changing. Our n-dimensional
cigar will be slowly changing its shape in ways in which it would be vir-
tually impossible to predict. We want not only to be able to identify the
existence of these changes, and their general direction, but also to quan-
tify them in real performance terms. We want to say not only whether
performance in school mathematics is going up or down, but how the
definition of school mathematics as evidenced by the pattern of perfor-
mance of pupils is responding to the <hanging needs of society.

It is too early to say if we shall be able to achieve this. We are still in
the process of establishing base lines from the initial surveys, but if you
should feel inclined to invite me back in ten years time | may have
something more definite to report.

ITEM BANKING

I'hat T leave this topic to the end does not imply any lack of importance.
It is my beliet that the future of educational testing lies largely with item
banks. They clearly will have a much wider application than just in na-
tional monitoring programs, although such programs are currently pro-
viding the substantial resources necessary for item bank development. |
chose not, in this paper, to concentrate on the general issues surrounding
item bank use, preferring to consider in some detail alternative measure-
ment models, but most of the points | have discussed will have direct
relevance to the item bank user. N

The great advantage of an item bank lies in its flexibility of operation.
The simple and rapid construction of custom-tailored parallel tests to
order—long or short, hard or easy, wide or narrow, all with known
psychometric  properties  and  with calibration tables generated
automatically —can improse the quality and impact of educational
testing everywhere.

As some of you know, I am involved in trying to sct up an inter-
national network of item banking centres which will exchange technical
know-how and actual test matcerials between difierent nations. Why are
we trving to do this? Because to be really effective item banks need to be
farge, and this means they will be expensive to create from the beginning.
Sharing materials can save money. Further, the existence of inter-
nationally agreed criteria and conventions for classifving items, for re-
porting psychometric parameters and so on will greatly assist cross-
national comparisons, evaluation, and accreditation.

On the smaller scale, my particular hope is that item banking can be
“descloped to provide the classroom teacher with really good diagnostic
instruments to clarity the learning difficulties of his or her pupils. In the
past this has tended 1o be a reglected area because of ity inherent
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difficulties, but latent trait scaling coupled with item banking may pro-
vide the answer.
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REACTANT STATEMENT
Glen A. Smith

I'welcome this opportunity to contribute 1o this invitational seminar, by
commenting on Dr Bruce Choppin’s mlcreslmg, and practical paper.
While this is a conference on measurement, it is directed to a particular |
ficld, education and psychology, and as such it should (ouch on practical
aspects and examples. Dr Choppin's paper does this, while still being
soundly based on theory. We have been shown ghmpses of latent trait
modelling in the ficld (or rather, classroom) and it is here I feel that the
model should face its closest checks. Its utility must go beyond keeping
the mathematically inclined among us happy and debating.

Dr Choppin raised the analogy of temperature as with accepted
measurement properties, but let me take the analogy a little further. As

practical measurers, we are more concerned with fuzzier traits, like ‘com-

fort’. Temperature is certainly one dimension of comfort —all people are
uncomtortable at very high and very low temperatures. If we were {0 use
a thermoneeter, with its good metrical properties, to measure comfort,
we would miss our mark, while getting data that fitted the Rasch model.
Some people are mmmrmble al 20°C, others at 26°C (it probably would
not be “culture fair’, in any case). We still need to be critically aware of

the name- trait distinetion, as I am sure Dr Choppin is, but I see the point,

overlooked so often that it is worth reiterating.

I am interested to hear that NFER is using a latent trait model to
measure achievement —an area where I think it may be less applicable
than others, for learning does presuppose exposure (0 the material
tested, and this can differ between groups, e.g. schools, and give data not
fitting the Rasch model while still truly measuring achievement. This
question can be treated empirically, and perhaps the data being collected
by NFER will show the assumptions made to be warranted. It should
give a test of the robustness of the model; if it uncritically fus any data,
with deletions of the occasional item, we need to think deeply about what
the model iy giving us. This is possibly more relevant to think about for
diagnostic testing —an area that [ think does not need Rasch modelling,
and by ity nature—identitving  low  achievement areas for  in-
dividuals — possibly does not hold the essential assumptions.

Dr Choppin gave details of several other interesting applications and
extensions of the model which are in the exploratory stage, and'I will be
nterested to follow their developments, especially the analysis of in-

complete data matrices with its exciting application to multiple raters, a
common problem in assessment. T am also interested in hearing more
about theindes, A, h,, especially its sensitivity to deviations from the
modcl. :
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I would finally like to reinforce Dr Choppin’s comments on item bank-
ing with its close ties to computerization of testing, something of high in-
terest to me. | agree that the future of educational testing will be tied
closely to item banking, and I hope that it can work worldwide, drawing
internationally on the expertise of NFER and like bodies.

ERI!
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The Linear Logistic Test Model and its

Application in Educational Research
Hans Spada and Regine May

INTRODUCTION - .

One of the central questions of educational research with regard to test
data is the assessment of learning effects. Psychometric analyses based on
the Rasch model {(Rasch; 1966) avoid some pitfalls of applying classical
test theory (cf. Fischer, 1974; Rost and Spada, 1978). But this approach,
which results in the measurement of the variable ‘studént ability’ and its
change over time and also the variable ‘item difficully’, is still deficient in
several ways. ,

First, this approach gives no answer to the question of how differing
problem difficulties can be explained from a cognitive psychological
viewpoint: Second, it gives no analysis of how changes in individual
ability are to be understood. In other words, a theory and method for
analysing item difficulty and ability change in a psychological and educa-
tional context is lacking. This paper demonstrates a way of overcoming
these deficiencies. At the same time it should be emphasized that the

. main problem of applying the Rasch model and models based upon it is
that they are at variance with the assumptions of several well-known
psychological theories of learning and development. This -will be
demonstrated later in the-paper. As yet, insufficient attention has been
directed to these guestions in English-speaking countries.

In Austria and Germany in the early seventies, Rasch’s ideas were ex-
tended by developing logistic models to go beyond the quantification of
item difficulties and student abilities (Fischer,; 1973; Scheiblechner, 1972;
Spada and Scheiblechner, 1973). The intention was to represent explicitly
the effects of thinking and learning processes by means of these models.

In the following pages, one of these probabilistic test models will be
described, the so-called Linear Logistic Test Model (LLTM). The LLTM
was first discussed by Scheiblechner (1972). Cox (1970) proposed a
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similar model but without the explicit notion of interindividual
differences. Fischer (1973; 1974; 1976) studicd the statistical properties of
the LLTM and derived the estimation equations on which the com-
puterized algorithm (cf. Fischer, 1974) is based; this was also used in our
studies. Fischer (1978) gives a thorough review of the work done in this
area.

THE LINEAR LOGISTIC TEST MODEL (LLTM)

The basic idea which led to this model is the following:

I The difficulty of the items of a test, e.g. an achievement test, is
traced back to (‘explained’ by) the number and difficulty of the cognitive
operations necded and used for their solution; and/or

2 the effect of the conditions of teaching and learning (e.g. instruc-
tional measures) with which the subjects were faced before taking the test
(and possibly also of those conditions which were of relevance while the
test was taken) are quantitatively assessed.

The LL.TM makes it possible to realize this idea by decomposing the
item parameters into linear combinations of more elementary parameters
corresponding to the difficulty of cognitive operations or to the effect of
instructional measures, ete. The estimation of the elementary parameters
ts based on the same principles as the estimation of the item parameters
in the Rasch model, and the validity of the decomposition can be tested
statistically by methods similar to those used for testing the fit of the
Rasch model (¢f. Andersen, 1973).

The LLTM is a Rasch model with an additional marginal condition.
Therefore the model is characterized by the following equation:

Y _ exp (EV"UI) . |
pl+iv,d) L+ exp (&, - ) (n

witho, = Z f, 9, +¢
=1

I'he probability that student v solves item i correctly is represented, ac-
cording to the Rasch model, as a logistic function of two parameters,
namely £, characterizing the ability of the student to solve problems of
this kind, and o,, characterizing the ditficutty of the item. But what is
denoted by /., and 5,2 In the context of analysing the problem-solving
process, the item parameter o, is seen as a linear function of the number
and ditliculty of the cognitive operations leading to a correct solution.
Fheretore, in this case, f,, denotes the hypothetical frequency with which
operation 7 is needed. The parameter g, characterizes the difficulty of
operation / and ¢ is a normalizing constant. In a later part of this paper
we shall see that in studies in educational evaluation the parametcrs 5, are
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often introduced to quantity the effect of instructional measures on the
item dithiculties.

Since the L.LLL.TM is a Rasch model with a linear marginal condition, it
shares many of its characteristic features with this model. The number of
correct responses is a sufficient statistic for the ability parameter, just as
in the Rasch model. The structural parameters », are estimated by a set of
conditional maximumn likelihood equations, which do not include the
ability parameters. The estimates of the parameters 5, are therefore
ssample free’. in the same sense as the item parameter estimates in the
Rasch model. A precondition for an application of the LLTM is that the
matrix F= f, ', which is a & (number of items) times m (number of
clementary parameters) matrix, is (a) of rank m and (b) specified before
the estimation procedure.

To provide detailed information about the advantages and the prob-
lems of applying the LLTM, three different empirical studies which were
carried out at the Institute of Science Education at Kiel (West Germany)
are summarized. In the first study the LLTM was used as a model of
thinking and intellectual deveiopment in the area of balance scale tasks
(Spada, 1976; Spada and Kluwe, 1980). In the second study the effect of
different instructional measures was estimated in connection with an in-
structional unit on nuclear power plants (Spada, Hoftmann, Lucht-
Wraage, 1977). In the third study the LLTM was used to develop an in-
structional unit on problems of ‘recognizing functional relationships’ and
Lo assess its effects (Haussler, 1978).

The discussion of these investigations will show that there are prob-
lems in the assumptions of the Rasch model itself.

THE LLTM AS A MODEL OF THINKING AND
INTELLECTUAL DEVELOPMENT

Structural Assumptions

An the first study 1o be reported here, the development of the concept of
proportion was investigated by means of the LLTM and a deterministic
model of qualitative change (Spada, 1976; Spada and Kluwe, 1980). Only
the results of balance scale problems analysed by means of the LLL'TM
will be discussed. These problems represent one form of proportional
tasks. They have been frequently used by developmental psychologists
since Inhelder and Piaget (1958).

By studying the relevant Piagetian literature and by observing children
who solved balance scale tasks, hypotheses were deduced about the
cognitive operations applied by children in reaching the correct solution,
and a sample of balance scale tasks with specified task structures was
constructed. The term ‘psychological structure’ of a task denotes in this

7y
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Table 1 Four (of Eight) Cognitive Operations Assumed to be Relevant
for the Solution of the Balance Scale Tasks Used in the
Investigation

Operation

Autention to and deduction from different amounts of weights

Attention to and deduction from different lengths of the lever arms
Compen3ation ot a change of the amount of one weight or the length of one
lever arm in the same modality on the other side of the bar

Compensation of a change in the other modality on the other side of the bar

context the type and number of cognitive operations which enable a
person from a certain population to solve a task.

Altogether a set of eight cognitive operations for solving balance scale
items was defined. Table 1 shows four of these operations.

1t was attempted to present tasks whose solutions involved certain sub-
sets of the cight postulated cognitive operations. Twenty-four tasks cor-
responding to different combinations of these operations were con-
structed. Figure | shows one of these tasks. It is supposed that operations g
I 'and 4 are relevant in the solution of this task. It was hypothesized that
the student was thinking in the following way: because the weight on the
left side is reduced, the bar will be unbalanced. To compensate for this
change on the left side, the weight on the right side has to be moved in-
wards. Analogously, other tasks were related to other combinations of
operations. : ‘

For every item /, a vector of the task structure f, was defined, con-
sisting of ones and zeros, where a one at the j-th position denotes the
presence of operation ; in item / and a zero denotes its absence.
The structure of the sample item referred to in Figure 1 is
(1,0,0,1,0,0,0,0). The hypothetical structure of all items under study
can be summarized in a task structure matrix F=f, ],

Quantitative Developmental Assumptions

In terms of the LLTM, the development of the ability to solve propor-
tional tasks can be considered to take the following form.
Devclopmental change is reflected in the LLTM as a purely quan-
titative change in the student parameters £. Development then is com-
parable to global learning. This type of learning leads to higher solution
probabilities for all tasks of one homogeneous class of problems. For all
children and adolescents under study (with regard to the investigation on
balance scale tasks, the age range between 11 and 16 years) it is supposed,
theretore, that the task structure remains constant and that the operation
parameters are imvariant. That is, correct solutions are assumed to be
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Figure 1 A Balance Scale Problem Used in the First Investigation
It is hypothesized that Operation 1 and Operation 4 are ap-
plied to obtain a correct answer (Adapted from Spada and
Kluwe, 1980, Figure 1.1.)

based on the same cognitive operations irrespective of age; the opera-
tions are assumed to have a constant rank order with regard to difficulty.

Figure 2 presents the functional relationship that is expected on the
basis of the model equation between task solution probabilities and
children’s task solution ability; the latter corresponding to the
developmental level. Given medium person ability, the probability of a

\orrect solution of the structurally most complex of the three tasks is

-very small. With higher person abilities, the solution probabilities of the

three tasks.approach each other and become approximately one for very
high values. The functional relationship can be understood to represent a

"more precise versiom of a model proposed by Flavell (1971) to describe

the developmental change of_intellectual abilities.

~

FEmpirical Findiags ~

In the investigation reported here, a pencil gnd paper test was used
(Spada, 1976). Twenty-four balance scale tasks were given. The sample
included 949 male and female students from ages 11 to 16 attending Ger-

~
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corresponding wit
developmental level

Figure 2 The Functional Relationship Postulated in the LLTM be-

tween Task Solution Probability and Person Ability (or
‘Developmental Level’)
The item characteristic curves of three tasks with the follow-
ing task structure vectors £, = (01000000), £, = (01100000) and
1. =(01100100) are shown. The abscissa distances between the
three item characteristic curves—which are parallel to one
another —were computed from the data and reflect the difier-
ing task difficulties. (Reprinted from Spada and Kluwe, 1980,
Figure 1.4)

man secondary schools. The test was administered in classrooms. (In
another investigation real balance scales were used in individual sessions
(Spada and Kluwe, 1980)).

Conditional likelihood ratio tests were used to test the assumption of
sample free parameter estimates and thus the validity of the Rasch part
of the LLTM. Some of the tests showed significant divergences between
the estimates of the item parameters computed from the data derived
from diftferent groups of students. 1t must be emphasized, however, that
the parameter estimates did not differ widely and that the statistical tests
indicated significant divergences essentially because of the large sample
of subjects (significant results would not have been obtained with less
than approximately 670 subjects). There is the question, nevertheless, of
what shortcomings might be responsible for these results of testing the
Rasch part of the LL1.TM.
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In the next step, the operation ditticulty parameters », were estimated.
Based on these parameter estimates and the task structure hypotheses f,,,
cstimates of the item parameters g, were computed and compared with
those item parameter estimates resulting trom an application of the
parameter estimation algorithm of the Rasch model itself. A graphical
comparison indicated a good correspondence between the two different
sets of parameter estimates. However, a conditional fikelihood ratio test
of the lincar marginal condition of the I.LLTM showed that the differences
were significant. This meant that at least some of the task structure
hypotheses were not valid and/or that the formalization of the
hypotheses by means of the linear logistic model was not without
problems.

Quite another approech to testing the validity of LLTM results on
operation difficultics w.ts taken by Néhrer (1977, cf. also Fischer, 1978).
He constructed new items for some of the tests which had been analysed
by means of the 1.1.TM in various research studies. Néhrer predicted the
dithiculty of the new items by using the published results on the estimates
of the operation difficulties and the task structure hypotheses. The new
items were then given to a new sample of subjects and the item difficulty
parameters were estimated from these data by means of the Rasch
model, Nahrer reports a good correspondence between both groups of
parameter estimates in most of the cases, especially for tasks from the
field of mechanics, ¢.g. rotation mechanism problems (Spada, 1977). It
was possible to predict the diftficulty of the newly constructed items quite
well, although in this casc also the fit of the LLTM was far from perfect.
Unfortunately no reanalysis was carried through for the balance scale
problems discussed in this paper.

Nahrer's study indicates another interesting field for applying the
11 1M, namely the controlled construction of items with predictable
ditticulty, ¢.g. for item banks and individualized testing (cf. Fischer and
Pendl, 1980). The L1 TM based on valid task structure hypotheses allows
us to detine in a precise way what might be understood by the notion of a
‘domain of tasks’. 1t is the homogeneous class of items which can be con-
~tructed on the basis of the set of analysed operations.

Shortcomings of the LLTM und the Rasch Model

There are, of course, aspects of the task structure hypotheses which are
open to question. They do not encompass all features of the problem
solving  process. Notbing iy stated  about  sequential or  temporal
characteristics. Encoding; decoding, and memory features are virtually
neglected in their present state of development. But the different tests of
fir of the T TN have shown that it is necessary to discuss some of the
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assumptions of the structural part (the marginal conditicnl) end the
Rasch part of the LLTM in more detail.

There is a serious drawback to the LLTM when applied in this context.
The task solution probabilities cannot be understood as the products of
the corresponding operation probabilities, because in general

exp (&~ § W+ C)
-

Ll - S
- = n{l—e"p (& —n,) } )
l+exp(f,— L fn+0) = U+exp(&—n)

This contradicts the ‘product rule’, which is a familiar assumption in
probabilistic automata theory, as proposed by Suppes (1969) and ap-
plied, for example, in the analysis of arithmetic teaching in elementary
school, by Suppes and Morningstar (1972). The product rule states that
the probability that a student solvas an item correctly is the product of
the probabilities that he carries out correctly all operations necessary- for
the solution (for a thorough discussion, see Spada, 1977).

Equation (2) makes it clear that this problem is not specific to the
LLTM but also occurs in the Rasch model itself if that model is ap-
plied —as is usual — at the level of item data and not at the level of opera-
tion data. 1t may be that some of the negative results in applying the
Rasch model in this study and in other investigations are due to the fact
that the task solution probabilities cannot be understood as the products
of the probabilities of a correct application of the corresponding opera-
tions. Furthermore the assumption of a /inear combination of the opera-
tion parameters in the logistic function is rather arbitrary in the sense
that it does not reflect psychological hypotheses about underlying
cognitive processes. Statistical reasons were decisive in the choice of this
type of function, since only the logistic function in the framework of the
Rasch model involves the important advantage of ‘sample-free’ measure-
ment.

Another criticism of the LLTM can be made from the viewpoint of
developmental psychology. The assumptions that the task structure is the
same for all children in the sample and that developmental change can be
represented as a quantitative change of the person parameters are at
variance with numerous developmental findings. Again this criticism ap-
plies equally to the LLTM and the Rasch model, if the models are used to
analyse data from children of differing age levels.

The balance scale tasks of this investigation are in some respects
siniilar to those analysed in the experiments of Piaget and-his co-workers
(Inhelder and Piaget, 1958). In addition, their results inspired the for-
mulation of the task hypotheses which were tested in this study. While
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Piaget’s theory assumcs that the solution algorithms vary and become
more and more complex in the course of development, applications of
the Rasch model and usually also of the LLTM are based on the assump-
tion that correct solutions result from the same cognitive operations for
all indisiduals tested. .

In Piaget’s theory, it is emphasized that qualitative structural changes
take place in intellectual development. In applications of the LLTM,
inter- and intra-individual differences are often understood as differences
in the degree of mastery of the same solution algorithm, in contrast to
developmental theories, where these difterences are explained in terms of
different solution algorithms,

In the field of information processing theories, the work of Siegler
(1976) is relevant to the present discussion. In his rule asses: ment ap-
proach, cognitive development is also characterized as the acquisition of
increasingly powerful rules for solving problems. Iu h's extensive study
ot problem solving with balance scale tasks, Siegler (1976) postulated
tour ditterent  algorithms, each algorithm corresponding to one
developmental stage. His theory predicts for every stage a certain pattern
ot correcet and talse answers. These answer patterns are used to assess the
developniental level (with regard to this class of tasks) of each child. One
of the more interesting findings which substantiates Siegler's assumptions
15 that children moving from stage 1] to stage Il show a striking decrease
in the number of correct answers with regard to one class of items, the
so-called contlict-weight-items. 1t is assumed that at this developmental
level the children have learned to pay attention at the same time to both
dimensions of balance scale tasks, namely weight and distance, but do
not vet know exactly how thesce variables are related. The consideration
ot both dimensions without exactly knowing how to ¢pmbine them leads
to an increase in the number of incorrect answers, because the sub-class
ot conflict-weight-items was constructed in such a way that the items can
be answered correctly (without full insight into the problem) by reference
to wcight alone.

The Rasch model does not fit data,of this type, nor does the LLTM, if
only onc matrix ot task structure hypotheses is assumed for all subjects
of the sample studied (cf. May, 1979). In principle, it would be possible
(o represent such structural changes (e.g. the acquisition of new se-
guences of operations) in the LLTM. This could be done by specifying
different task structure hypotheses for different children and for the same
child at different stages of development or learning: A prerequisite would
be to have well-founded hypotheses about such structural changes with
regard to each subjeci.

Empirical falsification of the Rasch model and the LLTM, which
would be inevitable with this type of data, could also be avoided by ex-
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cluding all tasks from the test sample whose difficulty does not decrease
in a monotonic manner with age. This approach seems defensible from a
diagnostic viewpoint. It is more problematic if the main interest is in a
cognitive analysis of the developmental process.

In summary, it can be said that structural changes of the problem solv-
ing process caused by development or learning contradict the homo-
geneity assumption of the Rasch model and the LLTM (with only one
task structure matrix). If inter- or intra-individual differences result from
such structural changes in a sample of subjects, deviations will be
detected in graphical and statistical tests of the model.

We refer finally to two groups of psychological models of human
knowledge, and of its acquisition, storage, and use. These relate 0
models based on semantic networks (Dorner, 1976; Norman and
Rumelhart, 1975) and on production systems (Newell and Simon, 1972)
(cf. also Anderson, 1976; Greeno, 1978). In thes¢ models cognitive pro-
cesses are represented - in such a way that the assessment of structural
changes is also of special importance in the measurement of change.

As a consequence we have to face the fact that the great majority of
psychological developmental and learning theories postulate cognitive
changes which would make the emergence of homogencous item samples
an exceptional, surprising result. In reality, however, the multiplicity and

- complexity of factors influencing test behaviour often lead to a falsifica-
tion of these theories and to a reasonable fit of the probabilistic Rasch
model under appropriate item construction conditions.

EDUCATIONAL EVALUATION: EXPERIMENTAL
DESIGNS WITH BINARY DATA

In educational evaluation some parts of the learning history of cach in-
dividual are usually known. The central aim of such investigations is
often the assessment of the efiects of different teaching strategies on the
learning outcome. The most relevant type of learning effects, which can
be assessed by means of the LLTM and traced back to instructional fac-
tors, are global learring effects. Global learning leading to higher solu-
tion probabilities for all tasks of one homogencous class can be
represented in the model either as an increase in the value of the person-
parameters (i.c. individual abilities to solve tasks of this type correctly)
or as a general decrease in the values of the item-parameters (i.c. item
difficulties). For technical reasons we shall use the second form of
representation of global learning effects. . ,
Let us consider the following very simple experimental educational
design. An instructional unit is applied in two different variants in two
samples of students. A third sample (control sample) does not receive
this type of instruction. Each sample comprises about four classes. Of in-

5.

O Y

ERIC

Aruitoxt provided by Eic:




ERI

The Linear Logistic Test Model 77

terest is the effect of each of the instructional methods on the improve-
ment of some ability or skill of the students referred to in one of the
learning objectives. This ability or skill is assessed by means of samples
of items of one homogeneous item class given before instruction (pre-

“test) and after instruction (post-test). (For a detailed discussion of

evaluation problems of this type, see Rost and Spada, 1978.)

Equation (3) shows—for the general case of f tests (test | = pre-test) —
how the LLTM might be applied in problems of this type. The linear
marginai condition is introduced to quantify the etfects of the instruc-
tional methods under study. The difficulty of the items of test ¢ (e.g. the
post-test) is traced back to the difficulty of the items of the pre-test
(betore instruction), to the etfects of the instructional methods and to a
trend parameter, charactenizing non-instructional general effects between
the pre-test and test ¢ on (he ability under study. Table 2 illustrates for
our simple example how the corresponding matrix £ of the LLTM is sel

up.
exp (& - Ouery)

3
1 +exp (& ~o. 3)

/)( + o, iv I):
)

(v)
witho, =g -5

"ty

and é, | = LSt

p(+ v i, 1) isthe probability that student v solves task i correctly at test
{time) ¢.

£ i the ability parameter of student v.

o, is the difficulty of item 7 at time ¢ (test ¢) after that type and
amount of teaching (i.e. instructional method in our
example) that 1ook place in the class with student v between
test 1 and test ¢,

0, is the (hypothetical) difficulty of item i before instruction
(test 1), .,
b characterizes the effect of that type and amount of teaching

(i.c. instructional method in our example) that took place in
the class with student v between test 1 and test ¢ (with 6, -0,

1. pre-tesy).
N, characterizes the effect of instructional variant a(a¢ = 1, s) on
the ability.
Il denotes the amount of teaching method @ betwee . est 1 and
test ¢ (in our example, 1 denotes that the met’ vas used
. with student v, 0 that it was not used).
T characterizes non-instructional general etfects betwevrn test |

and test £ on the ability, and is a trend parameter.
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In the example, ’ )

0., =9, + 7 inthecase of instructional variant |, and
n: + 7. in the case of instructional variant 2, and
-7 with no instruction.

Based on this approach, it is possible to compute ‘sample free’
estimates of the effect parameters of the instructional methods and of the
trend paramecter, even in the absence of random sampling with approxi-
mately cqual ability distributions in the different sub-samples of
students. This property is of great importance in our example and in
general in educational evaluation, because instructional methods are
usually tested with ¢lassroom groups, that is, the analysis is based on
chuster sampling. Cluster sampling leads to an underestimation of error
vanance in analyses of variance and thus to an overestimation of the
statistical significance ot the instructional effects. Using the LLTM, the
stgmficance ot the effects and of differences between them can be tested
statistically by mieans ot conditional likelihood ratio tests. These tests do
not rely upon the variance of the ability parameters; they are conditional
tests, in which the ability parameters do not even enter.

The use of the LI'TM in this context has the additional advantage
{common to  most of the Rasch model applications) that it is not
necessary 1o give the same test at the different points in time. Provided
that some items are given repeatedly, the other test items can be selected
in such a way that their difficulty is adapted to the achievement level of
the students at the time the test is given. If one is not interested in the
general trend cftect, but only in the question of the differences of e
effects of the instructional methods, it is even possible to present different
item samples in the different tests, as long as all items measure the same
ability, thus meeting the assumption of homogeneity.

1 his approach was also used by Spada, Hoftmann, and Lucht-Wraage
(1977 1o evaluate the cftects of an instructional unit and of four ad-
ditional instructional measures. The instructional unit was entitled
‘Nuclear Power Plants — Dream or Nightmare?'. A Rasch-scaled situa-
ton test was developed (ef. Spada and Lucht-Wraage, 1980), which
made 1t possible to assess several variables simultancously, which cor-
responded with the objectives of the instructional unit. The four groups
of instructional measures were: introduction of a model person, activa-
tion of alarm in subjects, the stabilization of attitudes, and group
instruction o the basis of interaction structure analyses.

Fhe usual procedure in empirical curriculum development is to lump
all good ideas rogether and to measure their joint effect by evaluating the
resulting instructional unit. In this particular classroom experiment, a
ditterent approach was chosen. With the traditional ideal of a factorial
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design in mind, the four measires were combined. Each of the 16 com-
binations (-, ~, -, =i+ ,~,—-,~;...5+,+,+,+) was then applied in
at least one class.

The LLL.TM was used to analyse the data for all students in the 22
classes involved in the experiment and o estimate the effectiveness of -
each instructional measure, the general effects of the instructional unit,
and the item difficulties and student abilities for each of the variables of
the situation test. The results of the study cannot be presented here
because of space limitations, but are available elsewhere (Spada,
Hottmann, and Luchi-Wraage, 1977).

Mention must be made of two serious drawbacks in applying the
LLTNE in this way in the context of educational evaluation.

I In contrast with the application of multivariate analysis of variance,
no simultaneous analysis of all dependent variables’is possible.

2 It has to be assumed that the learning effects are not person-specific
but depend only on type and amount of teaching. In other words, the
model is only valid if all inter-individual differences in learning outcome
which are not attributable to ability prior to instruction can be traced
back to global effects of the individual instruction or learning histories of
the students in the course of the educational experiment. ‘this assump-
tion of global learning, which refers to the level of the parameters
employed and not directly to the reactions of students, is quite restrictive
and should be tested when the LLTM is applied in this manner.

Fischer (1977; 1978) referred 1o another problem in connection with
the use of the LLTM and the Rasch model, namely, the restrictive
assumption of item homogeneity, and developed similar logistic models,
the Linear Logistic Models with Relaxed Assumptions (L1LRA), which
are not based on this assumption.

INSTRUCTION AND EVALUATION:
THE- STUDY OF HAUSSLER (1978)

A study undertaken by Haussler will serve as a final example of an ap-
plication of the LLTM in an educational context.

Haussler (1977: 1978; 1981) developed and evaluated two different
teaching programs to improve the ability of adolescents to solve tasks of
the type ‘recognizing functional relationships’. He made use of both the
structural aspect of basing teaching on task structure hypotheses and the
assessment aspect. Some of the different ways of applying the LL.TM, as
discussed in the preceding pages, were therefore combined in his
investigation. ,

Haussler's investigation was based on 356 students in a pilot study and
1037 students in the main study, aged 12 1o 16. He used the LLTM firstly
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to describe by means of task structure hypotheses the constituents of the
solution algorithms used by the students to solve the tasks, and secondly
1o micasure the effects of the teaching programs. |

1 he task structure hypotheses were deduced by observing and inter-
viewing students solving such problems and by considering some of the
conceptions of Scandura (1973). The hypotheses were then tested by
means of the LLTM. In line with the preceding discussion of short-
comings of the LLTM as a model of thinking, it is not surprising that the
fit of the LLI'M (and of the Rasch model) again proved to be not
satistactory in some cases. On the other hand the contribution of the task
structure analyses in producing a basis for psychologically well-founded
teaching methods was substantial.

Those probiem solving operations which were used by students to
solve individual problems correctly, before any training in this special
ticld was provided, were denoted by Haussler as ‘spontaneous’
algorithms, The first teaching program was based on these spontaneous
algorithms. All ot the algorithms identified by the task structure analyses
hayve one procedure in common: they involve manipulation of the datain
such @ way rhat an invariant guantity is produced. This common pro-
cedure was used to synthesize algorithms which include many of the
spontancous algorithms as special cases (cf. Hiussler, 1978). As part of
the sccond teaching program these ‘synthetic” algorithms were taught;
they  are more comprehensive, theoretically  superior, higher-order
algorithms, .

Haussler (1978, 1981) ascertained  that both  programs  yiclded
statistically signiticant, substantial and relatively long-lasting positive
ettects. Frgure 3 summarizes the resalis of the estimation ot the cffects of
the two teaching programs. The LI TM was used to estimate 2 (teaching
programs) < 4 (points in time of testing) x 3 (subsamples of tasks) = 24 in-
struction effect parameters § (¢f. Equation 3),

1 he students were tested prior to instruction (77), immediately after
instruction (7)., and siv weeks after instruction (73) in either teaching
program A (spontancous algorithms) or teaching program B (synthetic
algorithms), Somie students were given a short refresher program after
the siv-week period; these are designated (Ts) in place of (73). Three
groups of tishs were given in the four testing phases, Group | tasks were
used during instruction to practise the different algoritiims. Group 2
tasks could be solved by an algorithm similar to the onc learned during
instruction. Group 3 tasks could be solved only by inventing a new
algorithm. A most interesting result was that the teaching ot the spon-
rancous algorithms turned out 1o be more effective with Group 3 tasks.,
Presumahly, this strategy had torced the students at the outset to con-
stder the possibility of being confronted with new problems and to
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Figure 3 Graphical Representation of Instruction Effects 6,
The solid line corresponds to teaching program A (spon-
taneous algorithms), the broken line to teaching program B
(synthetic algorithms). Significant differences between A and
B are marked with a dot. (Reprinted from Haussler, 1978,
Figure 6.)

develop solution algorithms on their own —along the lines of the learned
spontaneous algorithms—in order to cope with these problems. The
presence of interactions between teaching effects and certain subsamples
of tasks draws attention to the restrictiveness of the usual as,umption in
applying the LLTM and the Rasch model, namely that learning effe.ts
are postulated to be constant for all items.

SOME CONCLUDING REMARKS

After twenty years of development and discussion the logistic models
originating in the basic ideas of Rasch are largely accepted as valuable
tools in educational measurement. In recent years, however, doubts have
‘been expressed by several authors about the validity of these models as
psychological models of cognitive processes in learning and develop-
ment. In this paper we have tried to consider questions of educational
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measurement and of psychological theorizing simultaneously. We have
demonstrated that the LLTM, as one of these logistic models, and the
Rasch model itself cannot provide a completely acceptable basis for
educational measurement if the various critical psychological arguments
are taken seriously.

Nevertheless the LLTM seems to be an interesting tool in cognilive
research and educational evaluation, because it makes it possible both to
measure inter- and intra-individual differences and at the same time (o
analyse general regularitics which are often hidden behind these
difterences. In practice, this statement holds only if the restriclive
assumptions of the model are not falsified by the data under study. As a
conseqguence, the LLTM and the Rasch model should be applied only in
those cases in which the validity of their assumptions is plausible and is
tested sufficiently. 1t is our hope that this paper has added some insight to
a more restricted and better controlled use of the LLTM and the Rasch
model.
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REACTANT STATEMENT

Glenn Rowley

There are two things on which 1 want to comment. One is the title.of the
paper, and the other is the paper itself. The title | have had for some time
and the paper for very little, so I may give more considered comments on
the title of the paper than on its content. Another point 1 would like to
note is that there has been an unannounced change in the title. The pro-
gram leads us to expect a paper on ‘The Lincar Logistic Test Model and
its Application to Educational Evaluation’. The paper we have before us
has ‘cvaluation’ replaced in its title by ‘research’. 1 am not sure whether
the alteration was inadvertent or resulted from a change of plans, but it
does change one's expectations quite dramatically. While it seems to me
that the use of latent trait models in evaluation is an area that, if it proves
1o be successful, is going to be very important for evaluators, it is alsoan
arca in which there are many problems. So 1 want to begin by making a
couple of points about evaluation, and about how it differs from
research.

Firstly, as distinet from research, evatuation is an activity which is, or |
would argue should be, conducted by or in conjunction with teachers,
for the benetit of teachers. and ultimately tor pupils. 1 ata not sure that
that is always the case with research, and 1 am not even sure that it
should be. 1 am quite sure that evaluation is not always conducted in that
way, and perhaps this has some implication for the kinds of measure-
ment that we can make use ot in evaluation, Barry McGaw introduced
the analogy of the sailing ship, and 1 think it can be taken much further.
It does seemn to me that we have to live with the fact that what we are
doing in faculties and schools of education throughout this country is
sending our teachers out, not in battleships or even in sailing ships, but in
row boats without oars. We rarely provide our teachers with enough
training to cope adequatety with the demands made on them by tra-
ditional norm-referenced measurement procedures. Our teachers usually
know little about criterion-referenced measurement (except, frequently,
that thev are in favour of it), and 1 seriously wonder whether measure-
ment based on latent trait models can yield results which are meaningfut
to the practitioner. Yet, if measurement is to have an impact on practice,
it must vield resutts which are meaningtul to practitioners, for they are
the people tor whom we need to provide assistance and with whom we
need 1o communicate, -

Al the same time, Barry McGaw, 1 thought, dismissed criterion-
referenced measurement rather too casily. 1 do not think that we can
dismiss criterion-referenced measurement at all. It may disappear in the
sense that measurement specialists lose interest in it and turn their atten-
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tion in other directions; but it will not disappear in the sense that teachers
are going to keep right on using it. Perhaps they may not call it criterion-
referenced measurement, but if, as a teacher, I have taught a given area
of content or towards a given set of objectives, the first thing I will want
to find out is whether my students can do certain things. No matter
whether the measurement experts are there to help me or not, that is what
I will be trying to do as a teacher, and that is what my testing will be
directed towards. So criterion-referenced measurement will not dis-
appear, even though we may not help the teachers as much as we should.

Secondly, there is an assumption involved in all latent trait models
which is fine for measurement and for psychology, but which gets us into
trouble when we try to use the models for evaluation. This is the assump-
tion that Professor Thorndike spelt out, to the effect that we are never in-
terested in the behaviours themselves, but only in the underlying trait
which those behaviours represent. That very same point of view is ex-
pressed at more length in a piece from a test manual published by Educa-
tional Testing Service. This is not latent trait modelling; this is traditional
classical measurement;, as practised in the bastion of norm-referenced
measurement, circa 1969:

When we use @ test we are measuring indirectly by taking a series of “readingy’

{one for cach test question), nor of the characteristic that we are trying to

measure, but rather various indicators of that characteristic. Then we must try

to mfer something about the characteristic itselt from the indicators we have
collected. In a way a test is like radar, where observations of a series of *blips’

on a screen are used to infer various characteristics of some unseen object.

(SCAT-STEP Series Il Teuchers Handbook, 1969)

I want to say that when | am evaluaung programs, or when 1 am
evaluating my own teaching, 1 am very interested in those blips. | want to
know whecher my students can do these particular tasks and those par-
ticular tasks, and if they cannot, what can be done about it. So, from my
point of view, the blips on the screen are very important. If the blips on
the screen enable me to develop scores which measure an underlying trait
that 1 have managed to increase, or at least stop from decreasing, then
that is an added bonus. But | remain very interested in the blips on the
screen, and 1 am not at all ready to dismiss them. 1t seems to me that, in
evaluation, very often teachers want to know in what areas they have
succeeded and in what areas they have failed, and the notion of a single
latent trait may perhaps not have so much appeal. Certainly 1 would say
that the measurement of a single latent trait has much more appeal to
researchers. than to evaluators,

A third feature of evaluation is that very often the evaluator is in-
terested in the performance of a group rather than in isolating the per-
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formance of a single individual. That, I think, makes evaluation quite
often a distinct activity from research which is more inclined to focus on
individuals and how an individual tackles a problem. This is the focus of
Professor Spada’s paper, and this is why I think it appropriate that the
title refers to ‘research’ rather than ‘evaluation’. In considering his paper,
therefore, I am viewing it as a contributioa to research (and I think it is
an important one). rather than to evaluaiion.

Firstly, it does seém- -to_me that the notion (and this is, perhaps an
over-simplitication of what has been done) of analysing item difficulties
as a way of understanding the processes involved in solving problems and
in developing cognitive skills is a very important way of tackling those
kinds of problems. What we have seen is a demonstration that item
difficulties measured in the metric that the Rasch model provides can be

" analysed successfully in this way, and that this can lead to useful infor-

mation and even understanding. What [ would like people to think about
exploring is whether item difficulties measured in traditional metric, or in
other metrics that may be devised, can be treated in similar ways. It
seems to me that we have a situation where we are interested in knowing
what factors might make an item more difficult or less difficult, and the
metric in which we measure item difficulty is something that people can
legitimately differ about. I do not know which is the best metric in which
to measure item difficulty for these purposes, although-some of the pro-
perties of the Rasch model may make it particularly advantageous. '
- In opening the paper, Professor Spada made a comment about the
measurement of change. He said psychometric analyses of such data
based on the Rasch model avoid the many pitfalls of applying classical
test theory. 1 hbpe they do, but I am not yet convinced. Every time |
listen to its advocates talking about the Rasch model, I have to keep
reminding myself that one of the nice properties of the model is that the
total score is a sufficient statistic for estimating ability. Another way of
putting that is that the ability.estimates that you finish up with are really
a transformation of the total score—of the number of items answered
correctly—and therefore the error of measurement associated with those
will be carried along intact through the transformation. Errors of
measurement do not go away when you use a latent trait model. Some of
the major problems of measurement of change come about partly
because errors get confounded with one another, and partly because the
errors loom very large in comparison with the amount of change which
has taken place. Applying transformations of one kind or another does
not rcmove that problem —it is still going to be there, and I do not know
any way of overcoming it. There are also problems of metric when we
measure change. One thing that we cannot often do is equate a change of
S0 many points at one part of a scale to a change of so many points at
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another part of the scale. Given that the use of the Rasch model cor-
responds to a transformation of metric from one to another, it may well
be that those problems are at least reduced, if not eliminated, but I have
never seen it argued that this is so.

1 suppose the other question that | want to raise = hather the sort of
research that has been described could be tackled in other ways, and
whether other ways are better — whether, for instance, the same questions
could be addressed via variance component analysis on item difficulty in-
dices, be they Rasch model or classical or whatever. Are item difficulties
affected by this or that instructional treatment, by this or that
characteristic of the item? There are other ways of asking those questions
which may lead to better or worse answers. By what criteria do we Judge
them to be betier or worse answers? What | have tried to do here is to
raise a number of questions which may be taken up, if of interest, ur
followed up in quite ditferent directions if that seems more appropriate.
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Using Latent Trait Measurement
Models to Analyse Attitudinal Data:
~ A Synthesis of Viewpoints

" David Andrich

INTRODUCTION

I have chosen to demonstrate how a Rasch latent trait model synthesizes
two common approaches to attitude measurément. There are two
reasons for this choice. Firstly, because the two approaches 1o be con-
sidered appeared in the literature around 1930, the time the Australian
Council - for Educational Research was founded, a presentation with
some historical flavour seemed appropriate. Secondly, Dr Keeves’s state-
ment on objectives for this conference commenced as follows:

During the past two decades there has been much effort expended by
psychometricians in the development and perfection of latent trait
measurement models. Yet it is only within the last five years or so that
measurement procedures based upon these models have begun to make
an appreciable impact on the practice of educational and psychological
measurement in Australia. A few practitioners in these disciplines have
become acquainted with these procedures, but most still remain un-
acquainted with the features of the various latent trait models. Conse-
quently, for the most part, traditional measurement procedures,
developed during the first half of this century, are still being used.

Therefore it seemed that explicit connections to familiar traditions would
make the material less esoteric. The price for this apparent advantage is
that sometimes characteristics of the more familiar approaches have to
be rearranged and viewed from a somewhat different perspective.
After a brief review of the two traditional approaches, the main model
of the paper, the Rasch model for ordered response categories which is
called the rating response model, is presented. Because it has been
presented elsewhere in more detail, this exposition is relatively brief. The
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next section shows that the main features of the two traditional ap-
proaches, both theoretical and practical, are also covered by the Rasch
rating model. :

The development of this model, particularly with its emphasis on the
explicit elimination of parameters in what is called the Rasch tradition of
model construction, is traced. It is argued here that, without this perspec-
tive of parameter elimination, the model is most unlikely to have been
constructed. This section also attempts to show that the rating model can
retain characteristics which usually are seen as mutually exclusive to the
two approaches because it is set in a framework apart from the other
two. To help make this point, some further less obvious but no less im-
portant connections with the established approaches are described.
While it has not been developed explicitly in that way, readers may see
illustrative glimpses of a paradigm shift, in the sense of Kuhn (1970), in
such a presentation of the Rasca tradition. This is not coincidental. I did
have an eye to Kuhn’s thesis when structuring this paper. A brief sum-
mary is then provided.

THE THURSTONE AND LIKERT TRADITIONS
"FOR STUDYING ATTITUDES

The following discussion on the relatively well-established frameworks
for studying attitude is circumscribed in two ways. Firstly, it deals only
with the two most common traditions, one associated” with- Thurstone
which appeared formally in the late 1520s, and the second associated
-with Likert which appeared in the early 1930s. Other approaches to data
collection gnd its modelling, together with definitions of the concept of
attitude, are covered in books such as Dawes (1972) and others.
Secondly, only certain key characteristics of these traditions, which are
well known but which set the relationships among traditions in context,
are highlighted. These restrictions in scope are directed by the concern
with basic principles in both traditions rather than with their detailed
elaborations which can be found, for either or both, in text books such as
Edwards (1957), Torgerson (1958), Oppenheim (1966), and Bock and
Jones (1968).

The work of Guttman (1954) is not considered here, partly because of
space.and partly because it is not used as commonly as other traditions.
However, it is conjectured that, with further developments, the main
features of Guttman’s formulation could be covered by the rating model.

The Thurstone Tradition
Rational Scales

By analogy with studies in psychophysics, but with no reference to a
physical continuum, Thurstone (1927a, 1927b) defined the concept of a
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discriminal proucess when a person reacts to a statement and formulated
the law of comparative judgment. The application of this law associates
with each statement a real number, called the affective value, which in-
dicates the relative degree of a particular affect the statement arouses.
Although no physical continuum was available, the notion of a proper
linear scale with well-defined intervals was not abandoned; indeed it was
stressed (Thurstone, 1928). Consequently emphasis was placed on both
the evidence that the statements could be placed on a single continuum
and on estimating the relative affective values of the statements. A collec-
tion of statements conforming to a linear continuum was taken to define

* a‘rational scale’. This term will be used throughout for a linear scale with

interval or additive properties.

The Puir Comparison Design

The law of comparative judgment is based on the design of ‘pair com-
parisons’, in which persons compare statements with respect to their in-
tensity relative to some particular attitude variable. (Thurstone
developed applications of this design primarily in terms of social values
and predictions of choice, but it can equally well be applied to attitude
statements. Thurstone (1928) describes an alternate method for scaling
statements for purposes of attitude measurement of individuals. This is
discussed later in this section.) This taw is generally formulated as
follows (Thurstone, 1927a; Bock and Jones, 1968):

1 On encountering statement /, a randomly selected person from a
population perceives it 1o have a real value d, on the affective scale which,
over a population of persons, may be defined by

d =26 +e (N

where 4, is the hypothesized scale value of the statement and ¢, is an error

- component associated with the person. In the population of persons d, is

a continuous random variable which is normally distributed with ex-
pected value 8, and variance o?.

2 In comparing statement / with statement j, the person reports state-
ment / to have the greater value if d,—d,>0. In the population, this
difference .

d,=d ~d =(6,-6)+(e—¢) (2)

is a continuous random variable, normally distributed, with expected
value
' Eld,)=6,-6, (3)
and variance "
Vid,) =02 =02 + 02 - 29,00, 4).
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Figure 1a Probabilityihat d,;>0 for Fixed (5,—6,) in a Pair Com-
parison Design '

This difference process for a fixed 8, — §; is graphed in Figure la in which
the shaded region represents the probability that 4, > 0. In data, the pro-

" portion of persons who judge that statement / has a greater effect than

O

statement j is an estimate of this probability and the estimate of 6, — §; is
the corresponding normal deviate. The probability that d,>0, as a func-
tion of (4, - 4,), may be expressed as

pld,>016, 9, 0,1 =ola, (5 - 8)l (5)

where ¢ is the cumulative normal distribution with mean zero and
variance unity, and where «,;=1/¢,; is the discrimination.. This prob-
ability is graphed in Figure 1b.

The consequence of the assumption that a person is randomly selected
from a population and that the inter-individual differences form part of
the error is that, when estimated from a body of data, the relative scale
values of itéms actually describe the population and indicate nothing
specific about any individual person beyond what can be inferred from
the person’s membership ot that population. For example, Thurstone
(1927b) scaled social values with respect to criminal offences for a par-
ticular population of persons. If the scale values in another population

had been different, it would have been inferred that the populations were
different with respect to their oplmons,regardmg the offences. This issue
is amplified later. ;

i3 ey “ lgij )“vij
Figure 1b Probability that ¢, >0 as a Function of (5, - 5,

1
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The pair comparison design, which has received a great deal of atten-
tion in the literature both at a technical level (David, 1963; Bock and
Jones, 1968; Davidson and Farquhart, 1976) and at a more theoretical
and phllosophlcal level (Bradley, '1976) has the drawback that it is ex-
tremely time-consuming. As a result, models for incomplete designs
(Bock and Jones, 1968, Ch. 7) have been described. Adaptations and ap-
plications of the law of comparative judgment to the much simpler
design of rank ordering from which dependent pair.comparison can be

“inferred were also developed by Thurstone (1931).

The Equal Appearing Interval Design
With a scale having proper interval level properties, it was a small step to

~realize that not only could populations be compared with respect to the

nature of the scale they generated but that, if they generated the same
scale, then the populations could also be compared for location and
dispersion. In this case, the scale takes on an additional characteristic,
that of a measuring instrument.

For the explicit purpose of constructing an attitude measuring instru-
ment in which many statements had to be scaled, the somewhat different
design of ‘equal appearing intervals’, which has particular significance
for this paper, was also developed by Thurstone (1928). In this design,
pcople order a collection of statements, of which some 20 are finaliy re-
quired, mto a number of groups which they consider appear equally
spaced on an affective continuum.

The model for the classification, dlsplayed in Figure 2, is a straight-

- forward adaptation of the one shown in Figure 1b and again involves

assuming that a continuous random variable d, is induced when a person
encounters a statement. Then if 7,, 72, . . . 7., . . ., 7., designate’the m
boundaries or thresholds separating the n: + 1 ordered categories or inter-
vals, the response corresponds to the interval in which the value of the
random variable falls. 1f &, is again defined to be the affective value of
statement /, then the generalization of (5) is given by

/)l([v>6v"7k;6n Ty (X,l:¢’(¥,(6,*7k)‘, (6)

which is the probability that a randomly selected person will place the
statement in or below a particular category. The estimate of each of these
probabilities is the proportion of persons who classify the statement in or
below a given category and, by transforming these estimates to normal
deviates, the scale values of both the statements and the category boun-
daries can be estimated (Edwards and Thurstone, 1952).

¥ This paper is a bibhography of some 350 papers on the topic of pair comparisons,
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pld, < €.} ’ :
i i2 p{di < €i3)

pld, < & -1_}
i i p{di < 6i-r3}

$ + d
-20 -1lg T T, Ty lo 25
(Eil) (Siz) (£i3)

Figure 2 Probability that , is Less than 6, — 7, for each 7, in the Equal
Appearing Interval Design or Probability that d, is Less than
&. in Likert-style Statement .

It becomes evident from (6) that, in the equal appearing interval
design, the affective value of each statement. is compared with the
thresholds or category boundaries. This contrasts with the pair com-
parison design where the affective values of two statements are compared
with each other. Notice that no random variation is associated with the
thresholds, but only with the statement.

With a further rearrangement and redefinition so that a person v has
his ability parameter 8, compared with the item difficulty &, (Lumsden,
1977), equation (G) becomes

pld.>B. = 5,{B., 8 ct} = Bl( (B, ~ )} @)

This model has been extensively studied for dichotomous responses to
achievement test items (Lord, 1952; Kolakowski and Bock, 1970).

There are three aspects of this extended Thurstone framework that are
especially relevant here. Firstly, Thurstone stressed the importance of the
invariance of the scale with respect to people to be measured and made a
clear distinction between the construction of a scale and its use for
measurement as follows:

It will be noticed that the construction and the application of a scale tor
measuring attitude are two ditferent tasks. If the scale is to be regarded
as valid, the scale values of the statements should not be affected by the
opinions of the people who help construct it. This may turn out to be a
severe test in practice, but the scaling method must stand such a test
before it can be accepted as being more than a description of the people
who construct the scale. (Thurstonet, 1928; 1959, p. 228)

¥ Many of Thurstone’s papers are reproduced in Thurstone (1959),

1>
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Thurstone described how these assumptions can be tested empirically by
taking persons of known different attitude and comparing the relative
scale values of statements obtained from the two groups. Secondly, he
also recognized the complementary requirement that a person’s measure
should be independent of specific statements in the set. With respect to
an achievement testing situation, he made this point as follows:

1t should be possible to omit several test questions at different levels of
the scale without affecting the individual score. (Thurstone, 1926, p.
446) N

Thirdly, while recognizing the importance of person-attitudes, both as
a possible source of contamination in scale construction, and for the
comparison of two groups with respect to location and dispersion,
Thurstone never explicitly formalized a person- -effect. Consequently,
the procedurc for ‘measuring’ persons with a scaie, though practical and
sensible, was essentially ad hoc. The procedure is 10 ask the person either
1o agree or disagrec with each statement in the scale and then the
measurement is taken to be either the mean or the median of the scale
values of statements the person endorses. To establish invariance over
statements, the statements must be equally spaced on the continuum.

The Likert Tradition
Data Collection and Scoring

Perhaps the most popular design for studying attitude is that from Likert
(1932) in which peisons respond directly to statements by indicating the
degree of intensity with which they approve or disapprove of them. It is
the same design as that of Thurstone for attitude measurement but, in-
stead of simple endorsement or rejection, the responses have degrees of
endorsement or rejection. To distinguish it from the pair-comparison
and other data collection designs, this will be called the ‘direct-response’
design.

The basic response set of Likert is {Strongly Approve, Approve,
Undecided, Disapprove, Strongly Disapprovej, though variations, most
of which also have five categories, are readily devised; for example,
another set is {Always, Often, Sometimes, Seldom, Never}. The state-
ments are similar to those constructed by Thurstone, but they are not
first scaled. Instead the ordered categories are simply scored with suc-
cessive integers and a person's attitude value is taken as the sum of the
scores of all statements.

This approach is popular because it is simple, it focuses directly on the

attitude of persons, empirical researchers find it satisfactory, and it is
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A number of statistical assumptions are made in the application of his
attitude scales, e.g. that the scale values of statements are independent
of the attitude distribution of the readers who sort the statements,
assumptions which, as Thurstone points out, have not been verified.
The method is, moreover, exceedingly laborious. It seems legitimate o
inquire whether it actually does its work better than simpler scales
which may be employed, and in the same breath to ask also whether it
1 not possible to construct equally reliable scales without making un-
necessary statistical assumptions. (Likert, 1932, p. 7)

Thus, while arriving directly at person-attitude as if obtained by a
measuring instrument, Likert rejected the necessity, spelt out by
Thurstone, that the instrument’s operating properties be invar: int across
different groups which are 1o be measured. He rejeucd, also, recourse to
any formal statistical modelling of a response process.

Likert did originally investigate derivation of empirical weights for the
categories, not statements, and in doing so, assumed that the distribution
of responses across categories was normal. As scale values for the
categories, he also used the normal deviates corresponding to the
cumulative distribution. It is interesting to note that Likert observed that
the distribution of responses across categories was often skewed. He
took this to be, primarily, a function of the attitude distribution of the
group involved. For example, with respect to a statement which had the
distribution {1, I, 3, 8, 87} in one group, he noted that it had the less
skewed distribution {4, 3, 17, 18, 58} in a group with attitudes known to
be different from those in the first group 'n this context he wrote:

On the basis of this experimental cvidence and upon the results of
others, . . . it scems justifiable for cxperimental purposes to assunie

that attitudes are distributed fairly normally and to use this assumption

as the basis for combining the different statements. The possible
dangers inherent in this assumption are fully realised. This assumption
is made simply as part of an experimental approach to attitude
measurement. It is a step which itis hoped subsequent work in this field
will cither make unnecessary or prove justifiable. Perhaps this assump-
tion is not correct; its correctness can best be determined by further ex-
periment. (Likert, 1932, p. 22)

There is no attempt here to define the population in which the distribu-
tion is normally ‘distributed but it is interesting to note firstly, that
distributional assumptions among people were mentioned, and secondly,
that Likert hoped these would prove unnecessary. It is also interesting
that no mention was made of the effect of statement scale values on the
distribution of responses among categories.

Following such scaling of categories, Likert investigated the weighting
of categories by successive integers. A comparison of scorcs of persons
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obtained by a sum across items -of the empirically determined weights,
and those obtained by a simple sum of the integral weights, provided
almost perfect correlations. On such evidence, Likert concluded that it
was adequate to use the simpler weights.

The procedures for checking the consistency of statements in evoking
unidimensional responses is also less formal than in the Thurstone tra-
dition and parallels traditional test theory (Gulliksen, 1950; Lord and
Novick, 1968) to such issues. Thus correlations between person-scores on
odd and even statements of a questionnaire and correlations between
person-scores on a statement and on the total set of statements are
employed. In addition a discrimination-type index, obtained by compar-
ing the scores of a statement on two extreme groups defined by their total
scores, is often calculated. These indices are all formally much less
rigorous than those for the pair-comparison and equal-appearing-
interval designs which are exact probability statements regarding ihe
quality of fit. .

Although the Likert format has proved extremely satisfactory, both in
terms of easy application and traditional reliability criteria, two related
issues continue to be questioned: firstly, the adequacy of integer scoring,
and secondly, the correctness in considering the Undecided middle
category Lo represent an attitude between Approve and Disapprove. The
first pertains to the belief that scoring by successive integers depends
upon equal distances between successive categories while the second per-
tains more to the question of unidimensionality. Thus it is considered
that a person may respond to the Undecided category for reasons such as
failure to understand the statement, indiflerence, or ignorance, as well as
some kind of neutrality {Dubois and Burns, 1975). Therefore, because an
expression of attitude is considered more informative, there is an in-
tuitive appeal in constructing statements which do not attract responses
in the middle category. However, that is the very reason for concern
regarding the weighting of the middle category.

Statistical Models

In advances with latent trait theory, the threshold concept with respect to-
ordered categaries within statements, as investigated by Likert, has been

formalized following the cumulative normal ogive procedure of
Thurstone outlined above. Samejima (1969) developed the mathematical

machinery for the case of statements and persons while Kolakowski and

Bock (1972) have written a computer program to execute data analyses.

However, these authors and others seemed to have concentrated on

achievement items with more than one category rather than attitude

items. Two further points in relation to this development need to be

made,
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Firstly, in achievement testing the threshold parameter is taken to be
different on each item so that instead of the additive structure §,— 7, be-
tween item and threshold parameters, there is a different threshold
parameter £, for each item. In a Likert-style attitude questionnaire, this:
would correspond (o Likert’s original approach to scaling categories
rather than statements. Secondly, these authors and others shift from the
cumulative normal to the logistic distribution. This is done because in

-maximum likelihood parameter estimation, which tends (0 be used, the

explicit logistic is far more tractable than the implicit normal. For the
pair comparison design, the logistic analogue to (5) takes the form

pld,>0(8, -5, atj= CXPlald.—=d)1 (8)
1 +expla¥(d, —é,)]

while, tor the ordered category situation, the analogue to (6) is

Cxp;()l.*(éi»‘ 7))} 9)

pld. >0, — 7,18, 70, ¥} =
* * 1 +explaX(d, — 7.}

For a separate scaling of categories for each statement, §, — 7, in (9) is
simply replaced by say £, so that different thresholds ¢, always pertain to
different statements. v

It is well known that, with the constant factor adjustment of
a* = 1.7¢, the numerical values of the cumulative logistic and normal
differ by less than 0.01 over the entire domain of the variable (Johnson
and Kotz, 1972) and this numerical equivalence to the normal has given
further justification for use of the logistic. Thus use of the logistic is
made firstly for algebraic convenience and secondly because any
differences in statistical results, apart from the unit which is c‘ten
automatically adjusted, are negligible. Bradley and Terry (1952) and
Luce (1959) considered the logistic model for pair comparison data in
which o effectively is unity, while Birnbaum (1968) and Jensema (1974)
have considered it for achievement items by analogy to Lord’s (1952)
consideration of the normal ogive model.

THE RASCH RATING MODEL FOR ORDERED
RESPONSE CATEGORIES
The Rasch models are formalized immediately for the direct response
design in which & response is assumed governed by both the affective
value of a statement and the attitude value of the person. Rasch (1961)
immediately specities the condition, required by Thurstone, that the
relative scale values of statements be independent of the scale values of
persons. (Rasch reached the significance of this requirement, and the

10

RIC

Aruitoxt provided by Eic:




ERI

Aruitoxt provided by Eic:

Models to Analyse Attitudinal Duta 99

possibility of its realization, quite independently of Thurstone’s writings.
The main steps by which he did arrive at these issues are documented in
Rasch (1977). The connections to Thurstone are made here for purposes
of exposition of the relationships among approaches.) Rasch also makes
explicit the-symmetrical condition that the relative scale values of persons
should be independent of scale values of the statements. Complementary
conditions, which are also made explicit, are that the relative scale values
of a pair of statements should be independent of the scale values of any
other statements, and that the relative scale values of any pair of persons
should be independent of the scale values of any other persons. Such re-
quirements may be satisfied within some explicit frame of reference
which includes defining the class or set of persons, the class or set of
statements, and any other relevant conditions.

Specifically Objective Comparisons

In both the Thurstone and Rasch specifications, the stress is on relative
rather than absolute scale values. In the Rasch system, this characteristic
is often enunciated in terms of comparisons.

Rasch defines comparisons between the scale values of any two
statements or any two persons, which depend only on the values of the
two statements or the two persons being compared, to be specifically ob-
jective. The ‘objective’ term arises from the feature of independence of
all other values in the system except the two being compared, while the
‘specific’ term is used to indicate that this objectivity is relative to some
specified frame of reference (Rasch, 1977).

These specifications immediately give the scale values of statements
and persons an explicit generality. That is, one can say, for cxample, that
with respect to a class of statements and persons, and without further
qualification, statement A has a greater affective value than statement B.
Analogously, one can say that within the same frame of reference, and
without further qualification, person C has a greater attitude than person
D. Evidence for the difference in affective values between two statements
is the same irrespective of person attitude; therefore the evidence from
cvery person must point to the same difference. Again analogously,
evidence for the difference in attitudes between two persons is the same
irrespective of statement affective value; therefore the evidence from
every statement must point to the same difference.

The requirement of objective comparisons can be used e~plicitly to
check which statements and persouns are so related and then to define
classes of statements and persons which may be termed ‘mutually con-
formable’. Further implications of this specification are considered in the
next section.

Loy
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The Model for Dichotomous Responses

In the context of statement and. person scaling, the ordering of
statements and persons on a linear continuum, as articulated by
Thurstone, is immediately assumed. Accordingly, let 3. and 6, be real
numbers which characterize the scale values of person v and statement i
respectively. Then the response of person v 1o statement i is governed by
some function 8,, = 8{3., 8,]. To begin with, consider only a dichotomous
response of endorsement or rejection rather than the Likert response
which has degrees of endorsement or rejection. The response, while
governed by 6, is not completely determined by it; therefore a random
variable Y., which takes on the value y,,=0 for one response (rejection
say) and v, =1 for the other (cndorsement) may be defined. Associated
with the respective values are the probabilities

piy. =018,,8.1=/(0.)
and plv.=1{B.,,81=/(6.)=1- fo(8.).

Both the function 8, determining the slructura}gelationship of /3, and
8,, and the function f giving the probability djstribution, must be
specificd. The necessary and sufficient condition\(equired to satisfy
specific  objectivity (Rasch, 1968) is thar 6, =exp(3.-46,), or its
cquivalent, and that f,(0,)=46.,/(1 +6..). Entering these functions into
(10}, gives

(10)

plyv. =08, 61=1/y.,
and plv..=106.,81=lexp(B, - o)/ {., (n
where Y. =1+exp(B.-6,)

in which the logistic form of the mod¢l becomes evident. This is known
as Rasch’s simple logistic model (SL.M) for dichotomous responses, and
the consequences and illustrations of why this inodel permits the elimina-
tion of the person parameters while estimating the contrasts among state-
ment paramecters is well documented (e.g. Rasch, 1960, 1961, 1968;
Andersen, 19734, 1973b; Wright, 1968, 1977: Fischer, 1973, 1976). In his
paper, Douglas discusses these stanistical issues in some detail. The key
feature of the model is that the estimation of statement parameters in-
volves firstly identifying a set of sufficient statistics for the person
parammeters and secondly conditioning on these statistics so that the per- -
sun parameters are eliminated from the resulting probability-expressions.

Ior completencss and clarity, @ small example may be useful. If two |
statements £= 1, 2 whose paramcters 8, and 8: are to be compared are
responded to by a person v with parameter 3., the response set is the
cordered pair (v, . v.») with the sample space O = {(0,0), (1,00, (0,1), (1,D].
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With each element of the sample space the total score .
. r.=%y.,

is an observable statistic. The pattern of responses and this statistic are:

Ve, ¥2)

. ©.00 0 ‘,
. .o 1 ’

o 1

(, 1 2

The statistic r, can be seen to partition the sample space into the sub-
spaces €, =4(0,0)}, 8,={0,1), (1,0)} and ©;={(1,1)}. Now if within a
sub-space so defined —that is, conditional on the sub-space or equiva-
fently conditiopal on that value of the statistic—the distribution of
elements is independent of a particular parameter of the model, then that

~ statistic is said to be sufficient for that parameter.t Itis sufficient and no
further information regarding the value of the. parameter can be obtained
by taking account of the pattern-of responses. In the case of thé simple
logistic model for two statements, it can be shown that

DI,y F =1, 8y, 8y = SXP(=01pm =d2pa) (12)
exp(—6:) +exp(— &)

which is independent of the person parameter 8,. Therefore irrespective
of the attitude values of the persons, which can be expected to be
different, each response within the sub-space is a replicate of each other
with respect to the same parameters, 6, and 6., which are to be com-
pared. When sufficient statistics for parameters can be obtained so that
one set is eliminated while another set is estimated, the parameters are
often said to be separable.

)

The Model for Ordered Polychotomous Responses

The generalization of this model for more than two ordered categories,
which is of interest in this paper, has been described in Andrich (1978a,
1979), Wright and Masters (1980) and Masters (1980), where the latter

b The principle ot sutficieney was ohserved by R, A, Fisher in 1922 (Rasch, 1960). Rasch
studied with Fisher in 1935 while these ideas and the associated theory of maximum
likelihood were being developed. In his work, Rasch shifts the emphasis of the sufficient
statistie from estimation to the climination of parameters. Andersen (1973b) developed the
theory of conditional interence.

o J
ERIC f 143

Aruitoxt provided by Eic:

o




E

102 The Improvement of Measurement

authors give a slightly different rationale from the one presented here.
Therefore the exposition below will be relatively brief. :

First, suppose that every statement again has an affective value 8, and
that the categories qualify this affective value. Specifically, let 7,, 72, . . .
7. be real values designating thresholds or boundary points between
categories where these threshold values are on the same scale as the state-
ment affective values, and 7.> 7., for k=2, .. ., m. The thresholds are
taken to qualify the statement and therefore effectively increase or
decicase its affective value. Accordingly, suppose the thresholds and
statements values are related additively and enter the model in the form
S, + Ty, .

Second, suppose a response process of the form (11) at each threshold.
Then with the addition of the threshold parameter, the response at
threshold 4 is modelled by

=018 6, Tl =1/ Y
l){y‘l =1 !va 6n T" = [exp’Bv—— (6, + Tll)”/‘pwh (13)

where Vo = L+ expiB. — (8, + 7)1.

Third, consider for the moment, and for simplicity, the case of only
two thresholds and three categories. If the responses at each threshold
are assumed instantaneously to be statistically and experimentally in-
dependent, the set of possible outcomes or the sample space Q for
responses to the two thresholds is the set of ordered pairs Q= {(0,0),
(1,0), (1,1}, (0,1)}, where the first member of each ordered pair indicates
the response at the first threshold. The probabilities of these outcomes
are given byt

P00y 3., 8, Tt =17y

PHLO)Y 3., 6, 7] =[explB. — (8. + )]/ Y12

PULY) B, 6, tl=[explB. — (6, + 1) + B, — (8, + )]/ ¥ ¥
and piO 1) 8., 6, Tl =[explB. — (6, + 7))/ ¥i 2.

After considering each threshold separately, the person must bring the
two processes together and, in doing so, recognize the ordering of the
thresholds and the categories. Consequently the person must recognize’
that the pair (0,1) reflects a response above the second threshold and
below the first, that is, an incompatible pair of responses. Therefore sup-
posc the response (0,1) is not recorded if it occurs instantaneously, and
that it is reconsidered and eventually distributed in one of the compatible
pairs of responses. (Note that if these responses at each threshold were
spaced in time so that memory, say, played no part, such an outcome

(14)

P vedtor vaniable s setin bold tvpe face, e v tor (r 7oL o 7).
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could occur. For example, in grading or rating a paper as excellent or not
on one occasion, and fail or not fail on another with respect to a three
level category set of {fail, pass, excellent}, it would be possible for the
paper to be rated fail on one occasion and excellent on another.)

Fourth, suppose that each response in the sub-set €'={(0,0), (1,0),
(1.1)} of compatible responses retains the same relative probability as in
the full space Q. The appropriate probabilities are obtained simply by
normalizing the probabilities with respect to Q. After some algebraic
rearrangements, these are given by

- pli(0,0)|B.. 8., ¥ =1/v.,
pi1,0)18., 8, 7} = [exp{B., — (8, + T )4}/ ..
pHLDIB., 6, 7= [explB. — (8 + 7)) + B, — (6. + T2}/ .,

where Y =¥(B., 6, ) =1+expiB. — (6, + 1)}
+expB. — (6, 4+ 1)+ B.— (6 + 12)].

(15)

To simplify (15), first define the random variable X., to take the in-
tegral values x corresponding to the vector responses in € according to

x=0 for (0,0),
, x=1 for (1,0),
and x=2for (l,1).

Clearly, the value x,, indicates the number of thresholds exceeded, where
x., =0 indicates that none has been. Second, observe that

B.—6,+7)=~11+(B.—-98)
and that '
36, +T7)+8, -8, +12)=—11 — 12+ 2(3. - 8.).

Third, define the 7 combinations according to », = —7,, x2= =T, — T2,
Then (15) may be simplified to

PIX., =086, =1/v.,
/)‘/Y.. 2"“1‘3-" 6“ TI =exp|’(r +‘¥(Bl‘ - 6|)|/.Y""

Finally, gencralizing to m thresholds and m + | categories, and defining
x, =0 for x=0, (16) becomes

X, =xi8., 6, i =expix. .+ x(B.— )/ v.. (n
where Yo = S exphx, + (B, ~ ).

(16)

Equation (17) is the rating response model to which the rest of the paper
is primarily devoted.
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The most interesting and important feature of (17) is that the non-
negative integral values of the random variable appear conveniently in
the probability distribution and make it a member of the exponential
family. Special cases of this distribution are the wcll-kr}own binomial

and Poisson distributions in which (exXp x.) =(':> in the former and

(exp x.)=1/x! in the latter. The model of equation (12) for dichotomous
responses is also clearly a special case. Masters (1980) gives a further ac-
count of the models of this family in relation to Rasch models, as does
Douglas at this conference.

Next, and as a consequence, the sufficient statistic for the person
paramcter 3, becomes simply 7, = Lx,,, which is identical to the result in

the dichotomous case. Analogously, the sufficient statistic for the state-
ment parameter is s, = Xx,, and the sufficient statistic for the category
coceflicient parameteris T,=XYX 7 where /is an indicator variable which

takes the value 1 if a response is in category x, and O otherwise. That is,
T, is the totet number of responses, over all persons and all items, in
category x. The various argumeénts which actually eliminate the
parameters through a conditioning on these statistics will not be pursued
here. (A distinction between a set of jointly sufficient statistics for a set of
parameters and individually sufficient is not made here though, in
devcloping statistical machinery, the distinction can be important
(Barnard, 1974).)

In addition, the category characteristic curves have intuitively de-
fensible and appealing properties. These can best be observed from the
example shown in Figure 3 in which curves ar= drawn for the case of four
thresholds. Firstly, the thresholds are equally spaced about an origin of
zero. While this is not necessary, the thresholds can always be centred
about zero (Andrich, 1978a) without any loss of generality. This makes it
convenient for the interpretation of thresholds as qualifying affective
values of statements, some decreasing and some increasing their affective
values. Secondly, as 3, gets larger than §,, the probability of a high score
increases. Thirdly, the response with the highest probability corresponds
to the interval in which 3, - 6, falls. Finally, although the assumption of
independence of decisions at thresholds as a first step in deriving the
model might seem ‘counter-intuitive’ initially (McCullagh, 1980), it is
clear from equation (17) that in the final response process, the response
in any category is dependent on all thresholds.

An application of this model, for the case m> 1, which is identical in
principle to the now relatively well-known application for m =1, is pro-
vided in Andrich (1978b) and therefore formal aspects of the analysis of

11;
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Figure 3 Theoretical Category Characteristic Curves for Four
Thresholds

data will not be presented here.t

Further implications of the model are discussed in the next section in
which explicit connections to the Thurstone and Likert approaches to at-
titude measurement are made. Before proceeding to those connections, it
is significant to note that thic model goes beyond the Likert-style ques-
tionnaire situation. The mode, may be entertained for any rating situa-
tion, which is very common in the social and biological sciences. These
considerations have been explained for a contingency table context in
which the dependent variable is a rated variable (Andrich, 1979).

THE RATING MODEL AND THE
THURSTONE AND LIKERT TRADITIONS

To demonstrate the full level of unification that the rating model ap-
proach brings to the Thurstone and Likert perspectives and practice, a
brief comparison of their characteristics is summarized first.

Comparisons and Contrasts between the Thurstone and
Likert Traditions

A comparison of the Thurstone and Likert approaches reveals an in-
teresting contrast, despite their virtually simultaneous development. The
Thurstone approach is characterized by (i) providing statement scale
values, (ii) being time consuming, requiring a judgment group to obtain

EA Fortran IV computer program which analyses data according to this model is
available, at a nominal cost. from the Mcasurement and Statistics Laboratory, Department
of Education. The Umversity of Western Australia, Nedlands, Western Australia, 6009.
An ERDC grant to the author and G. A. Douglas (principal m»csugalors) supported the
dc\clopnunl of the program and is gratefully acknowledged.
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106 The Improvement of Measurement

the scale values and requiring that scale values be independent of the at-
titudes of the judgment group, (iii) being statistically rigorous in
establishing a continuum, and (iv) somewhat ad hoc in obtaining person
scale values which, asymmetrically, do depend on the distribution of
statement scale values. The Likert approach is characterized by (i) not
providing statement scale values, (ii) being relatively simple to apply, not
requiring a judgment group and making no mention of any independence
of attitude values of groups, (iii) not having a statistical model and
therefore not having stalistical rigour in establishing a continuum, and
(iv) being direct in obtaining person values.

Spanning these Traditions with the Raling‘ModeI

Now consider the Rasch rating model in relation to these issues. First, for
the purposes of person measurement, statements may be responded 1o in
either the Thurstone tradition of rejection or endorsement, or the Likert
tradition of degrees of rejection or endorsement, where the latter is seen
simply as an exiension of the former.

Secondly, and as a consequence of the model and not for reasons of
either conceptual or numerical approximation as in the Likert tradition,
the successive categories are scored with successive integers where the
first category is scored by zero. Thus in the Thurstone case of a response
of rejection or endorsement, the scores are 0 and | respectively, while in
the Likert case these are extended to 0, 1, 2, 3, 4in correspondence to the
extended responses. Furthermore, although the score must be trans-
formed to place a person’s attitude on a rational scale, because the total
score of a person across statements is a sufficient statistic for the attitude,
the first stage of summarizing the responses is the same as m the Likert
approach.

_ Thirdly, statement scale values which are independent of the attitudes
of the person as required in the Thurstone tradition, are estimated. The
advantage of scale values for statements even for Likert style formats is
that they help define the continuum in a more tangible way. How this
feature is exploited is shown in the next section. |

Fourthly, because the data collection design is of the Likert stylc itis |
simple and does not require the time-consuming involvement of a
judgment-group.

Fifthly, the statement scale values do not have to be equally spaced on
the continuum because the attitude estimate is independent of the scale
values of the statements. A more or less judicious choice of statements
with respect to their values can be made with a view to minimizing the
error of measurement, just as in choosing items of appropriate difficulty
in achievement testing (Wright and Douglas, 1977).

Sixthly, and as in the original Likert approaches with respect to the
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weighting of categories, thresholds between categories are estimated.

However, the threshold values do not need to be equally spaced to justify
integer scoring. .

Finally, while employing the simple Likert-style data collection design,
exact probability statements as with the Thurstone models can be made
regarding fit of data to the model.

From the above list, it should be transparent that not only does the
Rasch rating model synthesize and account for the apparent differences
between the two traditional approaches to attitude measurement, but
that in doing so, it retains the best theoretical and practical features of
both. Most importantly, it does this simply and elegantly.

THE RASCH TRADITION

The above list of points deals with the most obvious relationships among
the Thurstone, Likert, and Rasch approaches. An interesting issue to
consider is that the rating model, which has so many characterisiics con-
sistent with theory and practice of the two traditional approaches, even
where these appear in conflict (Ferguson, 1941), was not motivated with
any explicit intention to reconcile the two approaches. None of the three
papers which are most directly concerned with the evolution of the model
(Rasch, 1968; Andersen, 1977; Andrich, 1978a) deals with real or
simulated data or make reference to Thurstone or Likert. This section
traces the development of the rating model through these papers, stress-
ing the importance of the emphasis on sufficient statistics, and shows that
the independent development of the model facilitated its having proper-
ties of the other approaches. .

Sufficiency

Rasch’s paper generalizes his SLM for dichotomous responses to tre case
of polychotomous responses and in the first instance, the model is of m
dimensions for person and statement parameters. Briefly, if persons and

- statements are characterized in the first instance by vectoers g, =(B.i, 8.2,

., B..) and ;= (.1, 8.2, . . ., b..) respectively, in which the maximum
number of independent vectors is one less than the number of categories
as in the dichotomous caset, and if the set of values of the discrete ran-
dom variable X is extended from {0,1} to {0,1, . . x, . . . m}, where no

_meaning other than a naming of the categories for identification is

+ The vector parameters are denoted by bold type face as in ‘@.’ and ‘6’. When a specihic
element of a vector is considered, the bold type face is replaced by an extra sub-script
denoting the specific element, as in 3, and 3,,. A unidimensional or scalar parameter is
recognized by having neither bold type face nor ar element subscript as in 3, and é,. The
term ‘dimension’ is not used strictly in a traditional test theory sense. It simply refers to the
number of independent paraineters ascribed to the persons and items.
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associated with the numbers at this stage, then the generalization of (11)

PIX.=018,4, mi=1/y, | (18)
PIX, =x,|B.. 8., mi=[exp(B..~6.)}/ V..
where Yu=14 I exp(Bu —6.).
k=)

Equation (18) clearly specializes to (11) for m=1.

The rationale for developing this generalization for polychotomous
responses is based again on the requirement that the parameters be
separable and both Rasch (1968) and Andersen (1977) demonstrate the
model’s uniqueness in satisfying the requirement. Given that the maxi-
mum number of independent parameters for each person and each state-
ment is m, the question arises as to the possibility of reducing the number
of parameters. Rasch (1968) provides the equations in which the m per-
son and statement parameters are reducible to any number less than m.
The particular one of interest here is when that number is 1 in which case
the model becomes unidimensional and the categories reflect an ordering.

When the vectors B, and 4, can be expressed as linear functions of a
single parameter 3, and 6, respectively, for example according to

Boe= '+ ddB) and —8,=x"+¢(-5,),

(18) reduces to the form

PIX. =X 1B, 8, %, &, m)=(explx, + BB, - 6)]]/v.. (19
where X o=t ! .
and where Yo =¥(B., 6, %, @)= 5 explx, + @B, —8,)1.
k=0

As in (17), the x are the category coefficients while the @ are the scoring
functions, where xy = ¢y = 0. The relationships between the x’s and ¢’sin
(17) and (19) are explained shortly.

For analysing data according to (19), the techniques developed involve
first estimating the m-dimensional statement parameters and then factor-
ing these parameters according to §,, = - ¢.8, (Andersen, 1973a; Spada
and Fischer, 1973; Allerup and Sorber 1977). If a likelihood ratio test
shows that the m-dimensional and factored form are not significantly
different, then the hypothesis of unidimensionality is accepted. Once the
6. and ¢, have been estimated, the x, and B. can be estimated uncon-
ditionally bv a generalization from the dichotomous case (Wright and
Panchapakesan, 1969; Andersen and Madsen, 1977).

t There are a number of different ways of expressing (18), but this one will be most con-
venient here (Rasch, 1968; Andersen, 1973a, 1977).
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There are, however, two interesting and related characteristics of (19)
which require comment. First, while the multidimensional parameters 4,
can be estimated independently of the person parameters f,, the

. parameters ¢, and &, cannot be estimated independently of each other.

Secondly, ever with known ¢, and é,, in general the estimate of 8, for
person v permits a complete recovery of his pattern of responses across
the categories. Therefore, in a well-defined sense, there is no data reduc-
tion in the process of estimating a person’s parameter. This implies some
kind of pseudc-estimate of a unidimensional parameter which in reality
is still multidimensional. v

In relation to making the latter observation, Andersen (1977) in-
vestigated the model in (19) and established that if there exists a sufficient
statistic for a unidimensional parameter 8, which is a function of data
only, then the differences ¢.., — ¢, for all x<m must be equal. Following
on from Andersen’s work, I provided (Andrich, 1978a; 1979) an inter-
pretation of the category coefficients and the scoring functions essentially
in the form presented in a previous section, except that the response pro-
cess at each threshold x=1, . . ., m, was initially parameterised to have
possibly a different discrimination «.. The Birnbaum (1968) response
model at each threshold, rather than the Rasch SLM of equation (11), in

. .the form

B., 8, ol = [CXp[a.le —(8: + Tk)”]/¢w‘k (20

pin=1

where ¥, =1+ expla,lB. ~ (6 + 7.)]] was postulated. Applying the ra-
tionale presented earlier to this model gives cquation (19) in which
xo=¢o=0, x,= — L ayr,and ¢,= L as.x=1,2,..., m Thenifthe
k=1 k=1
discruminations a. are the same at each threshold, this value can be ab-
sorbed into the other parameters with the result that x,= — £ 7, and
k=]

¢.=x, giving (17).

Given that the model (19) is generated by a model different from the
SLM at each threshold, it is not surprising that it does not subscribe fully
to the requirement of having a sufficient statistic for 8,. However, it is
stressed that the derivation of (17) was not made through a specialization
of the Birnbaum model (20). Instead (17), or its algebraic equivalent, was
first developed by Andersen without interpretation of the parameters x
and ¢ given here. In addition, I derived model (17) before realizing its
connection witk models (19) and (20) in terms of discriminations at
threshelds. In the presentation of the model (17) (Andrich, 1978a), |
derived model (19) first and then specialized it to (17), but this was for
purposes of efficient exposition.
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110 The Improvement of Measurement

In relation to the development of (19), it is stressed that the search for
a suthcient statistic in the Rasch approach is directed primarily by the
perspective of eliminating parameters. While this has particular implica-
tions for estimating parameters, it contrasts with the usual approach o
ordered categories, exemplified by Samejima (1969), in which the em-
phasis is on estimation. With only this latter emphasis, the development
leading (o the rating model may have stopped with algorithms for
estimating the scoring functions ¢, (Andersen, 1973a; Spada and Fischer,
1973). (The substantive interpretations of the scoring functions ¢ in
Andersen, and Spada and Fischer are quite consistent with the idea of a
discrimination at each threshold. However, no similar prior interpreta-
tion of the category coeflicients x seems (o have been made.)

A consequence of this approach, in relation to that of Samejima’s in
which the cumulative probability generalization is used as in (10), is in-
teresting to consider. Although the emphasis in the latter approach is on
¢stimation, no simple explicit expression for the response in each
category follows and the probability of response in each category is the
ditference of adjacent cumulative probabilities. Therefore no simple
sufficient statistic for estimation of parameters follows. The surprising
consequence is that the apparently more straightforward generalization
of the dichotomous to the ordered category model, which was used more
or less formally by both Thurstone and Likert, does not provide the com-
prehensive synthesis of those approaches as does the independently
derived Rasch generalization of the dichotomous model. This feature is
not simply a result of the algebraic formulation because the Rasch rating
model and the Samejima model cannot be transformed into each other.

The other important contrast of approaches is that they generate prob-
lems which are unique to each approach. In the Rasch approach, estima-
tion ideally is carried out through conditional distributions (Andersen,
1973a, 1973b) and even though the models are simple and estimates have
desirablc properties, the implementation of algorithms for solving the
resultant equations can become complex.

In attempting to find approximations to the estimation which may be
more efficient, the consistency of the estimates is always a concern
because of the demonstration by Andersen (1973a), that unconditional
cstimates —that is, joint estimates of the statement and person
parameters —in the dichotomous case are not consistent. (For a fixed
number of statements, as the number of persons increase without limit,
the parameter estimates converge to values which are not the actual
paramcter values.) In the Samejima approach, while the expression for
the probability of each category is more complex, the estimation is car-
ried out by the more straightforward unconditional approach. In such
approaches actual convergence of estimates in iterative algorithms for
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implicit equ=iions may sometimes be at issue, but the actual consistency
of estimates :n the sense of Rasch is not as explicit a concern. Thus the
numerical methods problems are distinctly different.

Parameters Elimination and the Terms ‘Population-free’

and ‘Sample-free’ '

The focus of Rasch on perameter elimination together with some conse-
quent issues have just been described. The possibility of eliminating
parameters explicitiy is considered generally a desirable property for
psychometric models and the terms ‘population-free’, ‘sample-free’,
‘person-free’, and ‘item-free’ have been coined with respect to Rasch
models.

However, these terms are not always fully appreciated; sometimes they
are taken to imply more and sometimes less than what they actually
mean. The confusions often stem*from the dual uses of both the terms
‘population’ and ‘sample’, and the latter especially in relation to the idea
of sampling distributions.

One use of population is associated with the specification of a class of
objects or people as, say, in the population of 15-year-olds in Australian
high schools. The other use is with respect to numbers associated with
each of the members of the class with respect to some variable. For
example, it might be said that th¢ numbers indicating the degree of
achievemient on some test are normally distributed. In relation to the lat-
ter use, random sampling has the virtue that distributional properties of
random samples are well specified, hence the common use of the random
sample to represent some population. The confusion, of course, readily
arises because to get the random sample of numbers, one selects the
members of the class at random. However, conceptually, these are
different and it is with respect to the numbers associated with people and
their distribution and not with respect to the specification of the class of
people, that the Rasch models are population-free. They are free of

dlstnbunonal populations, not of classes of peoplc Because any member -

of a population as a class can be selected, there is no need to invoke ran-
dom sampling and its consequent distribntional properties to check on
the structure of the scale and the quality ¢t measurement. In this sense
the models are also sample-free.

I general, both a class of statements and a class of persons are en-
visaged when some attempt at measurement is made. To check the con-
formity of the statements and person parameters, various tests of fit can
be applied. Both person-fit and statement-fit (Wright and Stone, 1979;
Wright and Mead, 1977; Mead, 1976) can be examined in order to isolate
and understand why members of the person and statement classes, con-
sidered on a priori grounds to belong to the same class, do not conform

11,
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with respect to the measurement procedure. Within a conforinable class,
any members can be selected, and in that sense the models are person-
free and statement-free, but the classes have to be defined and confirmed
to be conformable.

In addition, by examining different classes of statements and persons,
for example from two scales devised separately but on the same issue, or
two classes of persons such as all 14-year-olds and all 15-year-olds ir: a
school system, and checking if they conform with each other, the
generality of the variables and scales can be extended.

It after the generality of a scale is demonstrated across different sub-
classes of people, one wished to compare two sub-classes such as all
l14-year-ole and all 15-year-olds with respect to location and dispersion
on the trait, then a random sample from each sub-class ought to be
selected. But then the aim is to describe a distribution of a population of
numbérs with respect to some class, not to confirm structural properties

of the class. This point also demonstrates that it is only the relative state- -

ment scale values that are objective, and not the absolute values.

In this connection, it might be stressed that the ‘distribution-free’ pro-
perties of the Rasch models, to use another more general term, is a
property of the models, not of data. That is, to demonstrate distribution-
free properties of models, one only needs to consider the models. Only if
real data conform to the models can the corresponding characteristics be
applied to the data. A check if data accords to the model can involve
checking that the statement or person scale values are distribution-free.
When the relationships among statements are not distribution-free or
attitude-free with respect to two classes of people, it may be just as infor-
mative as when they are, because then a potentially significant difference
betwecn the classes of people has been exposed. In this sense, the infor-
mation is analogous to that of Thurstone in the pair-comparison ap-
proach in which populations are described, not by their respective means
and variances, but by the scales they generate.

Another Connection to the Thurstone Tradition

It was observed earlier that Thurstone realized the significance of in-
variance of relative statement-values across persons with different at-
titude values. However, he never formalized this feature in his models.
Therefore it is opportune to note here, and as shown in detail elsewhere
(Andrich, 1978¢), that by formalizing Thurstone’s own verbal statements
regarding the discriminal process of equation (1), and by rearranging the
error term to separate the among-person variance from the within-person
variance, the law of comparalive judgment applied to the pair-
comparison design does eliminate the person parameters. Thus
distribution-free statement-scaling is met by the pair-comparison design.

12
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This effect -is manifested by the correlation g,; in (4) being zero, and
although in his data analyses Thurstone consistently assumed g;,=0 (c.f.
Thurstone, 1927b, 1927¢) and although in an empirical study
(Thurstone, 1931) he calculated that the observed correlation was indeed
virtually zevo, it does not appear that he ever related this assumption and
evidence to the elimination of person scale-values. Thurstone’s specifica-
tions must be modified to realize it, bui his requirement of random
sampling of persons is ir fact not necessary. Interestingly, it seems that it
is difficult to motivate this particular modification unless one has the
perspective of explicit person parameter elimination which is so central
to the Rasch tradition. That is, to appreciate this characteristic in
Thurstone’s model, one must look at it from a Rasch perspective.

Not only are the person parameters eliminated in the pair-comparison
design but, if the logistic distribution is substituted for the normal and
the discriminations «; are assumed to be the same for all statements,
which is Thurstone’s Case V specialization of (4), then the statement
scale values for the pair-comparison design and the direct-response
design (whether dichotomous or polychotomous as in the Likert format)
will be the same according to the models. Analogously, when statcments
are categorized as in the equal-appearing-intervals design, then each
statement can be considered (o have been rated. Accordingly the rating
model again can be applied. Thus the scale values obtained by the equal-
appearing-intervals design, the pair-comparison design, and the direct-
response design, all provide, according to the models, the same statement
scale values and all are free of any attitude of the persons involved in the
data collection. Whether or not sets ot data show these properties is an
empirical question, but to the degree that they do, then to that degree
generality of relationships is demonstrated.

Another Conneetion to the Likert Tradition
The estimation of parameters with sufficient statistics complements the
elimination of such parameters. The issue of estimating the attitude 3,
for person v on a rational scale by transforming the total score r, = Xv,, is
takcn up again here. '

If the statement and  threshold vaiues are assumed accurately
estimated, then the direet maximum likelihood cquation

r, =X xexpix.+x(3. ~ )/, (21

can be userd 1o estimate 3. (Andersen and Madsen, 1977; Andrich, 1978b)
and the associated »rrov variance of 3, is approximated by

83 = 1/ {(X %) - (E ypo)? 22)

where p., 1s given by (17). s
L2
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Table 1 Transformation of Total Scores to Attitude
Estimates for a Conformable Set of 16 Likert-
style Statements without the Undecided

389

Category
Total Cumuiative Attitude Standard

score proportion estimate error

r 8 ;7;1
1 0.00 -3.79 1.00

4 0.00 -2.36 0.51
7 0.00 -1.75 0.40
10 0.0n -1.34 0.35
13 5.01 -1.00 0.32
16 0.03 -0.71 0.30
19 6.07 -0.45 0.29
22 0.17 -0.19 0.29
25 0.34 0.06 0.29
28 0.56 0.31 . 0.30
31 0.75 0.58 0.31
34 0.87 0.87 1 0.32
37 0.96 1.21 0.35
40 0.98 1.62 0.39
43 0.99 2.17 0.48
47 1.00 1.04

Clearly all persons with the same total score will have the same attitude
estimate. In addition, the transformation of total scores r, to attitude
estimates 3, is monotonic. Therefore, if there is reasonable variation
among total scores of a set of persons, the total scores will correlate
closely with the attitude estimates. A transformation of total scores to at-
titude estimates for the example of 16 Likert-type statements with four
ordered categories described in Andrich (1978b) is shown in Table 1. The
same relationship is portrayed graphically in Figure 4. It is apparent
from this figure that there is a wide range, approximately § to 40, in
which the scores ., and 8, are virtually linearly related. In the real data
approximately 95 per cent of the 284 persons were in the range from 17 to
40. This type of relationship perhaps helps explain the success of Likert’s
integer scoring and, in an interesting sense, renders unnecessary the con-
cern of people who assumed that integer scoring depended on equal

"distances between thresholds bordering the categories.

However, an interesting question which might be asked is, Why bother
with the transformations if the total scores will suffice? Related questions
are, what effect, if any, do the affective values have if the total score is all
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Figure 4 Relationship of Total Scores and Attitude Estimates for a
Conformable Set of 16 Likert-style Stalements without the
Undecided Category

that is needed, and does it not make any difference which statements are
endorsed or rejected.

Answers to all of these questions help explain further the aspects of
the rating model and how more can be gained by using it than can be ob-
tained by simply using the total score. First, while the monotonic rela-
tionship between r, and 3, is a straightforward algebraic relationship, the
meaning of the scores and estimates is only valid if the responses accord
to the model. As already mentioned, explicit checks of person-fit and
item-fit are available to help define the class of statements and persons
which are actually conformable and which indicate which statements and
persons need special consideration. In the case of statements, the special
consideration may be related to its wording or the like. Presumably,
when these statements are constructed and placed in the questionnaire, it
is expected that they conform with the other statements. To the degree
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Table 2 Response Patterns of Three Persons with the Same Score to
Ten Statements

Increasing affective values

—

Statements (/)

Persons )
4 1 2 3 4 5 6 7 8 9 10
1 3 3 2 2 1 2 0 1 0 0 14
2 32 3 2 1 21 0 0 "0 14
3 0 3 0 1 3 0 2 0 3 14

2
that they do not, to that degree the theory or principle on which. the
statements are generated is not mastered. Understanding the source of
statement-misfit can therefore further help clarify the attitude variable.
The case of misfitting persons indicates that they were not measured as

“intended. That is, their total score is not ‘sufficient’ to account for a single

attitude and they are not comparable with other persons on-the same
scale. Such persons too can contribute to the refining of the variable.

Requiring conformity to the model means that only certajn patterns
with a specified amount of random variation are permissible. If two
people have the same total score, they will also have a similar pattern of
responses. The total score is sufficient for the parameter estimate and no
further information for the parameter can be gleaned from the response
pattern, but the pattern can be used for checking the fit. For example,
corsider a four-category response case of ten statements with increasing
aflective values from left to right. The response patterns of three people
each with the score of 14 are shown in Table 2.

Persons 1 and 2 could readily be conformable and it would be easy to
believe that the slight difference in pattern is due to random fluctuation.
However, for a total score of 14, the response pattern of person 3 would
be considered odd. This person endorses statements of greater or lesser
affective values about equally. Such a response pattern would be diag-
nosed as misfitting the model. Thus the weighting of statements in terms
of their scale values plays an important role in recognizing unusual pat-
terns and in confirming that a total score can be used in equation (21) to
estimate 3,.%

Another situation where the effects of statement scale values can be
seen is when all persons do not respond to the same statements. Since the

t For a contrasting view on this issue, based on a non-Rasch perspective on sufficiency,
see Samejima (1969), Chapter 10, entitled, ‘Some observations concerning the relationship
between formulas for the item characteristic function and the philosophy of scoring'.
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person scale values should be independent of the statement values, any
sub-set of statements from a conformable set should give statistically
equivalent person measures. This is particularly useful in constructing
‘parallel forms’ of questionnaires when repeated measurements are re-
quired and the same statements are avoided to reduce the effects of
memory of specific responses to the same questions. But, in this case, the
same total score from the two forms will not, in general, have the same
attitude estimates. For example, if the first form happened to have
statements with somewhat hieher affective values than the second form,
then a total score on the fi. .. rorm would correspond to a greater attitude

value than the same score on the second form.

The Rating Model and the Undecided Category

I* was indicated earlier that two concerns with the integer scoring of suc-
cessive categories still persist. These are the equidistance of intervals or
distances between categories in general, and the operating characteristics
of the middle or Undecided category in particular. A justification of in-
teger scoring through the rating model, without reference to distances
between categories, has already been made. The operating characteristics
of the middle category, and its manifestations in the rating model, are
now examined.

First consider what might be expected. If the middle category operates
consistently with the other categories, then the probability of response in
the category for any statement should show an appropriate transition
across categories as a function of 8,; in particular, the middle category
should neither be over-represented nor under-represented.

The category characteristic curves in Figure 3 reflect such conditions.
Explicit probabilities for a S-category response format from say Strongly
Approve (SA) to Strongly Disapprove (SD), which conform to this pat-
tern, are portrayed in Figure 5 for three values of A\,,=8.-4, and for
threshold values of 7, = = 1.20, 7= —0. 40 73=0.40, 74=1.20.

Because the response depends on 3, — 6, the three graphs from left to
right could represent the response patterns of a single person to three
statements of decreasing affective values or of three persons of increasing
attitude to a single statement. To illustrate what tends to happen when
data including the Undecided category are analysed according to the
rating model, some results from a real data set are now described briefly.

These data, which involve the responses of 309 Year 5 school children
in Australia who answered 16 statements called ‘questions about school’
(Western /Austraha Education Department, 1974), have been analysed
according tb the case of the rating model (Andrich, 1978d) having
bmomnal,cq@fﬁuems.

An obvidus feature of the threshold estimates, shown in Table 3, is

o 1 20
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Respons.

Figure 5 Model Response Probabilities in Ordered Threshold Case for
Three Persons with Increasing Actitude to a Single Statement
or of a Single Person to Three Statements with Decreasing
Affective "Values \,=8,-6,; 7,=-1.20; 7,=-0.40,
T3 = 0.40,' 7s=1.20.

that they are not ordered as expected, in particular #; < %,. With these
values of the thresholds, distributions analogous to those in Figure 5,
and with similar values of \,,= 8, — §,, are displayed in Figure 6. It is evi-
dent that the distribution for a central value of \,; is bimodal. A general
principle can be inferred from this illustration, namely, that only if the
thresholds are ordered is the rating model distribution strictly unimodal.
Ordered thresholds ensure that the coefficients x, have the relationship

Hoet + 2,
PTE forallx=1, ..., m—1

X, >
which in turn reflects the unimodality. The Poisson and binomial
distributions, which are special cases, have this relationship among
coefficients.

A bimodal probability distribution, which for any fixed set of
parameters \,, =3, -6, is a random error distribution, seems untenable
for a unidimensional variable. In general, if an observed distribution is
bimodal, it reflects at least two overlapping populations of numbers.

A manifestation of the reversed thresholds can also be seen from the
category characteristic curves shown in Figure 7, from which it is evident
that no matter what the value of \,, = 8, - §,, the probability of a response

Table 3 Threshold Estimates from a Real Data
Set of 16 Statements Including the
Undecided Category

1 2

~-0.40 0.00 -0.38
0.05 0.04 0.04
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Figure 6 Model Probabilities as'a Function 6f N\.=B.— 6, for a Real
Data Set in which Threshold Estimates Show Disordering

in the middle category is never greater than the probability of a response
in at least one of the other categories. Indeed, if \,,=0.0, where effec-
tively the person and statement values cancel each other, then one would
expect that the most likely response would be in the middle or Undecided
category. However, it is not. The response probability in the Agree
category is greater than the probability for the middle category. Note
that this has nothing to do with the distribution of people. The distribu-
tion of people might be bimodal so that some have a high attitude and
some have a low attitude and very few have a middle attitude. But this
will not affect the category characteristic curves. The distribution in
Figures 6 and 7 pertain to a single individual.

A reversal of threshold estimates can occur if the discriminations at
thresholds are not equal but the data are analysed as if they were, that is,
if an incorrect model is applied. The general perspective taken here is
that if threshold estimates are disordered, then the data do not fit the
model. It should be noted that the fit or otherwise on this criterion does
not invoke a fit statistic with an associated probability. In any case, such
a statistic provides only a necessary, and not a sufficient condition, for

LW
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Figure 7 Category Characteristic Curves for a Real Data Set in which
Threshold Estimates Show Disordersing :
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Table 4 Threshold Estimates from a Real
Data Set of 16 Statements without
the Undecided Category

k 1 2 3
7 - 1.00 -0.02 1.02
SE(r.) 0.05 . 0.04 0.04

deciding the fit. The criterion of threshold order arises directly from the
specification of the model.

The question is what to do about this. An answer is available from
psychophysics literature in which a similar problem has been en-
countered. This is to leave the Undecided category out. In the case when
the other choices are simply Approve or Disapprove, this category is con-
sidered best left out (Bock and Jones, 1968, p. 3). It seems consistent to
leave it out also when the intensity of Approval or Disapproval is ex-
tended. As a practical recommendation, in the piloting of questions the
Undecided category would be included as usual and then any statements
which seemed to attract too many responses in this category would be
modified or excluded. In the final version of the questionnaire, the
Undecided category would be left out and an instruction given to people
to make a response even if, sometimes, they were uncertain. .

The analysis of a questionnaire constructed under such principles,
some results of which are shown in Table | and Figure 4, has been
reported in Andrich (1978b). For a conformable sub-set of 16 statements
from an original set of 20, the resultant threshold estimates are shown in
Table 4. As can be seen, the thresholds are in the correct order and the
distances are symmetrical.

It must be stressed that the emphasis on the above results is not on the
actual values but on their symimetry, and that this symmetry confirms the
suitability of the rating model for analysing such data. The threshold
estimates were obtained by an unconditional estimation procedure and,
therefore, the quality of the estimates in relation to consistency is not

known.
Another point that needs mentioning is that, interestingly enough, the

objectivity requirements of the model are not destroyed if the natural
threshold order is violated. Primarily on the basis of this fact, Wright
and Masters (1980) and Masters (1980) are prepared to accept disordered
thresholds as not violating the model. Masters also gives an extensive
review of category characteristic curves obtained in psychophysics
research and discusses the notion of ‘response set’ with respect to the
Undecided category.
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Finally on this point, it is noted that the traditional cumulative prob-
ability approach would not reveal so vividly the anomaly exposed above.
Because the probabilities are accumulated, and the logistic transform ap-
plied effectively at each accumulated point, the thresholds’ estimates
must be strictly ordered. In the Rasch model the logistic transform is ap-
plied effectively with respect to each pair of adjacent categories, hence
the possible disclosure of disordered thresholds. The corresponding
result from the cumulative probabilities approach would be a smaller
distance between the two middle thresholds than between the other
thresholds. Although the notion of rhreshold is similar in the two ap-
proaches in that in both it refers to a cut-off point on a continuum, the
thresholds arc actually formally defined differently in the two approaches
so that different values are obtained from the two models.

Further Aspects of the Rasch Tradition

The elegant features of the rating model, a member of the Rasch models,
does not obviate the need for patient, careful, insightful, and sometimes
laborious construction of statements. Indeed, because of its explicitly
demanding requirements, the care required may sometimes be greater
than in traditional approaches. The reward, however, is the generality of
the statements constructed with respect to the variables conceptualized.

The rating model itself, as indicated earlier, is relevant beyond the
Likert-style questionnaire context; in a sense, that case is only an
example of a rating system for classifying ordered data. In the social and
biological sciences, a rating system is used usually when formal
measurements cannot be made. Application of the rating model to such
data.can, therefore, provide a check on the quality of rating mechanism
and help place the results of ratings on the same level as that of usual
measurement. The only differerce between rating and measurement then
becomes the degree of accuracy, which in any case can also be estimated
from the model. In the physical sciences, the very process of measure-
ment is used to clarify and understand variables. Modifying and im-
proving a rating procedure with respect to some variable according to the
rating model should help clarify variables, which cannot be ordinarily
measured, in the same way.f

In this context, it is also worth noting that, in the physical sciences, the
different variables involved in lawful relationships and the lawful rela-
tionships themselves are defined simultaneously (Kuhn, 1972) and that
these very definitions often involve measurements (Ramsay, 1975).

* The prevalence of the rating scale in social science research is testitied 1o by Dawes
(1972) who states that some 60 per cent of studies involve as dependent variables only rating
type variables,
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In contrast, there is a tendency in psychology and education, and par-
ticularly the latter, to construct various scales for variables in a more or
less independent way, and then following their construction, to examine
relationships among variables using some form of correlational pro-
cedure. Thus measurement is secn to be prior to establishing relation-
ships among variables. However, the demands of Rasch’s specific objec-
tivity can be seen as demands for general lawful relationships (Rasch,
1977) in which the three aspects— (i) the definition of each variable in-
volved, (ii) the relationships among variables, and (iii) their
measurement —are simultaneous. _

On this issue which touches some fundamental epistemological ques-
tions, but which has only been briefly mentioned in order to indicate

further possible developments, three final points may be made. First, the

O
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usual study of constructing measured variables as prior to investigating
their relationships can still be applied using scales conforming to the
Rasch specificatior, and be better because the scales do so conform.
Secondly, the emphasis on the specification of lawful relationships, with
measurement being simultaneous to it, is exemplified by papers in Spada
and Kempf (1977) and Kempf and Repp (1977) and seems to be the direc-
tion taken in the German-speaking countries. Finally, conceptualizing
rational scale construction or measurement as part of establishing lawful
relationships again is consistent with Thurstone’s conceptualization for
attitude scaling which is derived from the psychophysical framework.

SUMMARY

A Rasch mode! for ordered response categories is derived and it is shown
that it retains the key features, both theoretical and practical, of both the
Thurstone and Likert approaches to studying attitude. These key
features of the latter approaches are also reviewed. .
Characteristics in common with the Thurstone approach are:
statements are scaled with respect to their affective values; these values
are independent of attitudes of the persons responding; the scales are
rational in the sense that they have interval level properties; the scale
values, apart from a linear transformation, are¢ the same as in the pair-
comparison design and the equal-appearing-interval design; the model
1or the data, being an explicit probability model, provides formal tests of
fit. Characteristics in common with the Likert approach arc: no
judgment group is required; persons whose attitude is to be quantified
respond 1o statements in the usual way in terms of intensity of Approval
or Disapproval; while thresholds or boundaries between categorics are
estimated, the successive categories are scored with successive integers;’
though it has to be transformed monotonically, the attitude of a person
is characterized by the simple sumi of the integral scores across the set of

1o
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statements; concerns with Likert’s Undecided category are appropriately
mantifested in the rating model. ' ;
Further features of this model which distinguish the Rasch tradition
are considered. Thus it is shown that the more conventional latent trait
formalizations which were used or broached by Thurstone and Likert for
ordered qualitative data do not provide the synthesis of the two ap-
proaches that the rating model does; even though the latter model 1$
derived from a very different basis. 1t is shown that this basis, which
generaies a completely different set of research questions for estimation
from that of the conventional approach, is characterized by identifying
sufficient statistics which can be used for eliminating one set of
parameters while estimating the others. In this context, further connec-
tions to both the Thurstone and Likert traditions are made. Finally, the
possibility of orientating the Rasch tradition for studying relationships
among variables to one in which measurcmerit is seen as simultaneous to
constructing lawful relationships among variables, rather than prior to

examining such relationships, is broached briefly.
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REACTANT STATEMENT
Charles Poole

As a teacher interested in measurement I would be decidedly sceptical of
any claims that one model of measurement fitted all my various re-
quirements better than another. Much of my measuring activity takes the
form of dealing out rough justice 1o answers submitted in essay form.
Admittedly the essay form is not chosen for measurement reasons but
because that form of activity fits with the educational aims of the course.
However | have found the classical model helpful in warning me of the
weaknesses of the technique and in developing weighting schemes to im-
plement policies 1 have determined for the course. The concerns of the
Rasch model developers seem mostly far removed from these activities.
For most such purposes the classical model will do just as well.

Andrich has made a good start in his paper towards producing an ap-
proach to scaling which suggests that here the Rasch model has con-
siderable advantages over the classical model. Not only do we have a
rationale for the Likert-type scales so beloved by designers of question-
naires, but he has also provided some links with the Thurstone scaling
techniques. 1t was of great interest to me to be reminded ihat Thurstone
was aware of the sample-free nature of his scale values and that he
recognized the power this gives to obtain measures from incomplete
tests.

The finding that the so-called neutral category does not necessarily fall
in the centre of the scale neatly demonstrates the validity of the disquiet
often expressed about this assumption and gives us good reason for
removing this choice from the offered responses. We need a wide variety
of studies like this one to make clear the usefulness of the Rasch model in
various educational settings. 1 believe the effort is worthwhile from a
teacher’s point of view.

Despite my day-to-day involvement with essay examining, it is as a
teacher that I appreciate the advantages in adopting the outlook fostered
by use of the Rasch model. To think in terms of a child moving up an
ability scale as his skill increases better fits with the modern notions of a
teacher’s task. There is much less stress these days on sorting out the
sheep from the goats. No one really wants to know who usually comes
top, nor do teachers want to stigmatize children by placing them on a
lowly rank in the class. Most teachers would be delighted to be removed
from the tyranny of the common examination paper and would ap-
preciate far more the model which suggests that children should be faced
with test materials that they find challenging but not impossible.

[ share Choppin’s uneasiness about rejecting items to meet the assump-
tion of unidimensionality. 1t would be difficult to accept an attitudinal
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variable defined by what was left of a set of items after rejection of those
not fitting the model. The more appropriate action would seem to be to
question the decision rule which allowed these items into the scale. Every
effort should be made to revise the decision rules so that unidimensional
scales result. At present such revision is better handled by multivariate
methods not yet developed within thé framework of the Rasch analysis.
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Conditional Inference in a
. Generzc Rasch Model

Graham A. Douglas

s

The aim of’this paper is to give an overview of the current state of the
conditional inference argument as it pertains to a class of statistical
models for measuring latent traits which we have come to term, ‘Rasch
models’. There are a number of reasons why we have chosen this more
technical topic for this conference. .

In the first place, much of what we in Australia do know about Iatent
trait models, and Rasch models in particular, comes from the American
and, to a lesser extegt, the English literature. Many of us were nourished
on a healthy dict fWright and others (1968; 1969; 1977) and, while it
would be unfair td&claim that they tend to ignore the conditional prob-
ability arguments expounded by Rasch himself (1960), it is nonetheless
true that these arguments and their ramifications are little known or
understood in this country. An important factor in this relative
ignorance is that much of the subsequent elaboration of Rasch’s ideas is
to be found in the European literature, and then most of that in the
German language.

It is somewhat ironic that, on the one hand, psychometricians working
in the field have so readily accepted the unconditional argument and its
related computing algorithms, while at the same time embracing the con-
cept of ‘specific objectivity’ or as Wright (1968) would call it, ‘sample-free
parameter estimation’, because without some form of conditional in-
ference argument it is difficult to demonstrate, at least algebraically, that
Rasch models do possess this property of specific objectivity. Con-
ditional arguments alone produce probability expressions which depend
on only one set of parameters at a time.

A second reason relates to an increasing interest in and preoccupation
with tests-of-fit of data to Rasch models, and in particular to the power
of these tests. A debate between Wright (1977) and Whltely (1974; 1977)

129




ERIC |

130 The Improvement of Measurement

1s an example of this concern. Recent articles by Gustafsson (1977; 1979;
1980) have demonstrated that whereas an unconditional algorithm may
lead very quickly to almost correct parameter estimates in the binary item
analysis model, the asymptotic properties of the approximate uncon-
ditional tests-of-fit whxch usually follow such estimation are far from
known.

Another reason for looking into this topic pertains to the proliferation
of a wide variety of statistical models which we might wish to call Rasch
models. The time appears opportune to attempt an initial generalization
and synthesis of the principles which underlie the structure of such
models. Once again this attempt will borrow extensively from the Ger-
man literature, and especially from the work of Scheiblechner (1971;
t977), even though we hope to go beyond his developments. I will pre-
sent the logic and the algebra associated with a general model for
measurement, parallel its derivation with that of the binary item analysis
model as an illustration, and then highlight significant details of two
othér models which may be derived from the generic form. Whereas all
models derivable from our generalization are legitimately models for
measurement, we may find the logic and even the language far removed
from the familiarity of the binary item analysis model which we usually
refer to as rhe Rasch model of educational and psychological measure-
ment. The intention then is to be sufficiently general to encompass a c6l-
lection of models with common characteristics suitable for the diversity
of measurement problems which arise in the behavioural sciences.

A final reason for choosing conditional inference is to extend the
arguments on conditional versus unconditional algorithms by suggesting,
through example, that not all the numerical problems which have in the
past been associated with the conditional approach have been solved,
and that therefore there is ample scope for major developments in
numerical approximations which will still allow us to stay within the
rubric of the conditional framework.

The body of the paper is structured into four main sections: a defini-
tion of what constitutes a generic Rasch model within the class of latent
trait models; an algebraic generalization of this definition and examples
of particular cases; an identification of some major problem areas in the
implementation of the conditional arguments in practice; and some sug-
gested remedies and directions for the future.

DEFINITION'®E_A RASCH MODEL
By now the concept of. specific objectivi 5. had sufficient exposure in
the literature that we come automatically to eduate it with the models of
Rasch (1960). It will be valuable for t owing, however, to re-state
the principle since other (Ways to view the detining characteristics
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of Rasch models are simply variations of or equivalences to this
principle.

By specificallv objective comparisons among entities, we mean com-
parisons at a ratio level among a number of entities of a set, such com-
parisons being uninfluenced in any way by any other entities which may
belong either to the same class as those being compared or to completely

_ different classes. For example, the comparison of the difficulty levels of

two items in an achievement test is specifically objective if the com-
parison does not depend on which particular population of subjects is
used 10 arrive at the estimates of item difficulty nor on the difficulties of
any othcr items which might happen to be estimated at the same time. As
Wright (1968) re-phrased this principle in an oft-quoted analogy:

it seemed that . . . my ability depended not only on which items | took
but on who | was and the company | kept . . . we hoped for easy tests sO
as not to make us look dumb. (p. 85)

Rasch’s emphasis on specific objectivity in his writings {1960; 1968;
1977) stemmeed from his belief that the principle was not only prevalent
but paramount in the rapid development during the last few centuries of
laws in physical sciences, even to the extent that one usually takes for
granted that onc’s comparisons of physical entities are of this nature.
Such is Rasch's conviction that the principle is all pervading in science
that his latest writings (1977) have centred on the common theoretical
structure underpinning specific objectivity and its variants in all sciences.
The current direction of rescarch in this area is towards a group-theoretic
analysis of the concept and some unpublished preliminary work has been
completed by Borchsenius (1974; 1977).

Rasch argues that, from the practical point of view, specific objectivity
allows onc to concentrate attention on analysis, estimation, and fit of one
set of parametcrs at a time in frameworks which usually include poten-
tially many other sets of parameters.

An alternative expression used frequently by Rasch is that of
‘separability of parameters’. Separability and specific objectivity may be
shown to be synonymous but the former term hints more closely at the
logical and algebraic properties inhcrent in models possessing specific ob-
jectivity. By separability of parameters, we mcan that, apart from simple
and trivial transtormations, the pertinent parameters in probability
models for measuring must have such a structure that they are capable of
separation into disjoint sets. Since, for example, the discrimination

: . parameter, «,, in Lord’s two-parameter logisticmodel (L.ord and Novick,
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multiplicative manner, there is no way to separate difficulty and

Q ‘
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discrimination parameters in this particular model. This can clearly be
seen if we write Lord’s model in the following form:

R

e‘"‘é"

PiX.,=x4= " __. )
| +ext8s0

where (i) a, is the item discrimination parameter,
(i) 8, is the item difficulty parameter,

(i) B, is the subject ability parameter ,

and (iv) x,, is an indicator variable taking on the value | whenever

the item is answered correctly, and value zero, otherwise.

In the 'following we will refer to (1) as the exponential form of the model.

O

RIC .

Itis worth digressing at this stage to emphasize some points concerning
the chronological emergence of various models and to set the record
straight on .comments like ‘the Rasch model is just the simple one-
parameter case of Birnbaum’s two-parameter logistic model’. It would
appear that Birnbaum (1968) adopted the logistic model as a
mathematical convenience because of some intractable estimation prob-
lems associated with the two-parameter normal model; in fact, many ex-
positions of the logistic model (to the base e) contain a muliiplicative
scaling constant (usually set at approximately 1.7) to bring the logistic
ogive morc into line with the normal ogive. Certainly the one-parameter
logistic was viewed by both Birnbaum and Lord as the special case of a
two-parameter model in which all discriminations were set equal to one
another.

As far as Rasch was concerned, the logistic form of the model arose as
a mathematically necessary consequence of his insistence on the principle
of specific objectivity in comparisons. The base e is purely a convenience.
(any base will suffice for a Rasch model), there is no allusion to normal
ogives and, although Rasch recognized that lack-of-fit of data to his
models was a consequence of more than one parameter operating for
each item, it is unlikely that he thought of the second parameter in terms
of discrimination, and certainly that word does not appear in his 1960
book. Rasch’s model was never the consequence of simplifications to a
higher-order model but the necessary result of fundamental measure-
ment principles, principles of such generalizability that they could be ap-
plied to measurement situations well beyond those rather narrow ones
conceived of by many psychometricians working on the other side of the ‘
Atlantic; hence the subject matter of this paper, the ‘generic Rasch
model.

It is but a short step from the relative looseness of separability to the
greater mathematical precision of additivity of parameters, and it is here °

1y,
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that Rasch becomes quite explicit about how the parameters in his
models must be amalgamated. The additivity pertains to models written
in the exponential form; in (1) above, the item difficulty and subject
ability parameters appear additively and hence, with all a; set equal to
one another, we have a model in which all parameters appear in the ad-
ditive form —a model therefore with specific objectivity.

Another term which we use interchangeably with the preceding three is
‘sufficient statistic’. Rasch relies heavily on the work of Fisher relating to
N sufficient estimators, conditional probabilities, and likelihood functions

.. 1o the extent that much of what is currently known in the mathemetical

. statistics literature about conditional likelihoods in general arose from
Rasch’s interest in them with respect to his models for measuring
psychological processes. The fact that the conditional ‘probabilities in
Rasch’s models have known, well-behaved, and potentially useful pro-
verties: means that the central theorem describing the asymptotic
behaviour of unconditional maximum likelihood (u.m.l.) estimates may
be extended to conditional maximum likelihood (c.m.l.) estimates. This
discovery paved the way for Andersen (1973a) to develop powerful tests
of the fit of Rasch models to their respective data sets.

Although it has been demonstrated many times before, the fact that

Lord’s two-parameter logistic model for item analysis does not exhibit a
gendine sufficient statistic for the ability parameter, §,, bears repetition.
The expression
&
P T.= L ax,

' =] i

/

does not constitute a statistic, let alone a sufficient one and there is little
gain in claiming that 7, is sufficient if we know the values of the o’s since
nearly always we are forced to try to estimate the o’s along with the &’s.
In fact, were the «’s-to be known, Andersen (1977) has shown that there
can be no data reduction in using T, unless all the o's are equal and so we
are forced back onto response patterns—a situation we are trying to
avoid since this means that, in order to know something about a subject’s
ability, we would have to retain the complete set of original data on that
subject and not just the summary which is embodied in the sutficient
statistic called the raw score. No further information about a subject’s
ability may be gained beyond a knowledge of the raw score.

ft is important in orienting oneself to the concepts involved in Rasch
models to point out that in these models the conditional inference argu-
ment is used not so much to identify groups of sufficient statistics for the
purpose of estimating the parameter sets with which they are associated
(as is usually the case in statistical models), but more to eliminate or
condition-out those sets of unwanted or incidental parameters thus clear-

ERIC | 11
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ing the way for cstimation of another set of parameters. Scheiblechner
(1977) makes the point abundantly clear when he employs the terms
‘general’ and ‘idiosyncratic’ to describe features of the psychological pro-
cesses which we attempt to model. Conditional inference arguments are
designed to remove the idiosyncratic features (i.e. individual differences)
which have tended to handicap the development of our understanding of
the more general psychological processes.

Furthermore, by extending the conditional inference argument fully,

€ are always led to probability statements about the data which are
completely free of all parameters and hence we set the stage for exact
probability (non-parametric) tests of fit. With such tests there is never
any doubt about distributional assumptions or the dubious application

‘of asymptotic theory. For Rasch this was the most powerful consequence

of adopting the conditional inference stance.

Separation of parameters (and hence sufficient statistics) arises because
of the additive (non-interactive) relationships among the parameters.
Without this fcature the separation does not occur and the conditional
argument breaks down. It is not coincidental that, for models of the type
considered by Rasch, the necessity for a conditional probability argu-
ment could be devcloped from the work of Neyman and Scott (1948) on
incidental and structural parameters leading 1o inconsistent estimates. In
the framework of binary item analysis where the emphasis is on item
estimation, the Neyman and Scott dilemma means that each potentially
new subject in the calibrating population carries, in his or her response
vector, a certain amount of information about each of the items, plus a
new parameter associated with his or her own ability. Thus the number
of incidental ability parameters could increase without bound.

We will try to incorporate the various concepts described in previous
paragraphs into a general model which exhibits all of these properties in
addition to those properties that we usually demand from any latent trait
modcl. We will argue that the generic model represents a probabilistic

dcfinition of ‘Rasch mode!” in the sense that all models which appear in
pp

the litcrature under this rubric are derivable from our generic form, and
that all modcls which do not fit into the mould cannot genuinely be called
Rasch models.

Our aim in attempting this generalization is not to constrain investiga-
tion of probabilistic modcls in the social sciences just to those which do
exactly fit our framework. There may be models which do not conform
in various ways to the general expression but which nevertheless display
interesting and valuable propertics: tor example, the dynamic test model
of Kempf (1976). Still, within a well-defined sct of assumptions based on
the concepts under discussion here, a wide variety of models follow to
which the label Rasch model may be attached.

¢
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THE GENERIC FORM OF A RASCH MODEL

The crucial principle of any Rasch model is the way in which the
parameter structure factors into additive components, Hence any general
parameter, 6, must be factorable into other undimensional or
multidimensional parameters which add together in the exponent. This
restriction confirms, for example, that in the binary item analysis model
there is rio place for either a discrimination parameter a,, since it
necessarily muyltiplies 3, and é,, nor is there place for Lumsden’s (1977)
person sensitivity parameter y,, for exactly the same reason.

Although we are accustomed to thinking in terms of two interacting
facets in a Rasch model (the test items and the responding subjects in the
binary item analysis model), we must provide in this general framework
for any number of facetst interacting simultaneously. Each facet consists
of a number of elements and by the term ‘interaction’ we will mean the
simultaneous confrontation of one element from each of the facets. For
example, one marker assessing the essay writing ability of one subject on
one essay question represents a single individual interaction in a three-
facet framework. The totality of observations may be represented in a
data ‘cube’ of as many dimensions as there are facets. Marginal sum-
maries of the data cube, cither of one or many dimensions, may be
efiected by summing the individual responses across various combina-
tions of the facets.

Not all responses are binary. In quantifying attitude questionnaire
items, for example, we may allow for multiple category responses scored
with the integers 0,1, . . ., m, instead of the usual 0,1, of binary item
analysis. Most often the number of response categories is fixed in ad-
vance, but there are measurement models in which the number of
categories is open-ended. An example of this situation will be discussed
in the nexi section.

While the basic multinomial random variable in our models always
represents the response when an individual interaction occurs, we will
find it more convenient when expressing the model in its statistical form
to use an indicator variable which takes on the value 1 whenever response
category /1 is used and takes on the value of zero, otherwise. This means
that the basic unit of observation is a set of (sm+ 1) responses, all of
which are sero except for the Ath element, which takes the value 1.

With these preliminary comments we are now in a position io give a
formal statement of the generic Rasch model for measurement.

(i) A total of r facets of an observational framework are in

=P Following Guttman and Cronbach, Rasch's term ‘factor’ is avoided because of its ob-

vious alternative connotations in psychology.

J. ‘1 ;-.;
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simultaneous interaction such that each individual response, x,,,, . . .,
may take on a value A& in the range h=0,1, . . . m.

(i) i.i2, . . ., i, are index sets for the respective facets and there are V,
elements in facet s.

(iii) The data may be arranged in a ¢-dimensional hypercube such that
it is possibie to calculate 1-dimensional, 2-dimensional, etc. marginal
summaries of the data.

(iv) 0,,,, . . ..+ 1s a general function of parameters which is factorable
into w additive component parameters as follows,

t

0.,.2 N LTl 3 o o /%

where the subscript j in g, stands for a sub-set of the indices i1,4, . . ., .
u, represents a continuous latent trait (unknown property) of facet com-
bination j and is manifested in the observed data.

(V) X.,,., . . .. is an indicator variable, taking on the value | whenever
response category A is utilized by facet combination i,/ . . . I, and taking
on the value zero otherwise.

(vi) X.,., ..., 1sarandom variable whose observed valueisx, ,, ... .

(vii) All interactions are stochastically independent, conditional on
the parameters in 6.

With these notations we may write the probability of the random
variable X,,,, . . ., taking on the valuc x, ,, . . ., in terms of a general ex-
ponential function of the parameter 8 and the indicator variable x,,., . . .
ke AS

A/ AT P
o p=e

Pl)(,l,2 I
noh .
3 TEEIRN

=0

Example 1. Binary Item Analysis Model

The familiar binary item analysis model arises by making the following
changes to symbols in (2).

(i) i ~vand iy =i
with v=1, ..., Nsubjectsand i=1, . . ., k items.
h=0,1.

(it)y Set Bopan = 1 + 2
with Hmo h/jv
and  p,= - ho,.
3. 1s the (iatent) ability parameter of subject v
5. is the (latent) item difficulty parameter of itcm /.

ERIC - 14

.
t




Conditional Inference in a Generic Rasc* Model 137

(i) Set x...=1 whenever subject v gets item / correct, and =0 otherwise.
Then the generic model takes the form,

1

T
PIX.. = x| = ery

>

(B, — 8.)Xn —e (8. = 6,)x..
PRIy 1 +e4

h=Q

We must now demonstrate that the property of specific objectivity
follows from this model. In order to do that we must derive the (uncon-
ditional) joint probability of all the data, the joint probability of
marginal statistics suitably identified, and the conditional probability of
one marginal set, conditional on all others. In order to know which
marginals to consider in the conditioning, we must select a parameter sel
which is to be the subject of current investigation; for the binary item
analysis model, for example, we usually focus attention first on
calibrating a fixed set of items, in which case the subject parameter set,
(3), 1s incidental. On the other hand, when the emphasis is on measuiing
the abilities of a fixed number of subjects employing items from an item
pool, the item parameter set, (8), is considered to be incidental. A
measurement perspective is necessary before adopting the conditional
probability argument.

As an appendage to the mainstream argument we will demonsirate, in
the manner of Rasch (1960), that completely parameter-free tests of fit
follow by extending the conditional argument to its limit.

The conditional probability (likelihood) of the total data set is given by
the continued product of the probabilities of the NN, . . . N, individual
responses and may be writlen as

L=PtLX, .. ) =x, T Xv,w: e TNy, vel

vy DO D (TTI F FIE SR O 00 & AU

3 h=)

na e

Hoaa ot A0

We have already replaced 6 by its appropriate factorization since the
structure of # is determined by the model builder and not by any of the
algebra of the derivations.

It will always be possible to re-write the numerator of this expression
in such a way that the set of sufficient statistics for the set of parameters,
(u,), is clearly indicated. We will write (x,) for that data summary

1"2‘:)‘
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(marginal) which arises from summing x, ,, .. ., over A and over all in-
dex sets which are not included in j. Hence we have )

Tu X + E;Lz,\'.: +...+ E;L...X.w
I 2 w
. | | 4
m IR LR
LI E e
w h=Q

- e
I
t

=

In the Binary Item Analysis Model,

w contains the single-dimension parameter 3.,
u: contains the single-dimension parameter §,,

and therefore

N A

E Bvxw“ : 6.X¢:
e =1
L==,

IT IT (1 +e%%

v= =]

where we usually write r, for x,. and s, for x.,.

Since (4) is written in terms of all relevant marginals, x,,, x.2, . . ., X,u,
and thus does not contain the original data explicitly, the joint prob-
ability of all marginal sets is simply C times (4), where C is the number of
possible complete data sets which could have produced exactly the
observed marginals, x.., x.2, . . ., X... (C is a combinatorial number. for
which no algorithm, other than listing, has as yet been developed.) The
probability is written as

L,=Pi(x.), (x.2), . .., (X)) &)
=CL
. As an aside to the main argument on specific objectivity, but of para-
mount relevance to testing of fit, we may demonstrate another property
of the conditional inference procedure. Using (4) and (5) we may write
the conditional probability of the observed data set given all the
marginals, as

LX=PiX .. oo=X . 0o Xyvy oo
. "."l": [ (-\\I)‘(-\.’Z)- DR ('\.’"')lzclw (6)

This probability (likelihood) is free of @/l parameters in the model and its
value as a tool in testing fit will be commented upon in a later section.

FRIC
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Returning to the main development, we now focus attention on one
component, say (g,), and its associated marginal, (x,,), in order to find
the marginal probability of all marginal sets other than (x,,). We do this
by summing the unconditional probability over all possible values of (x,,)
which are compatible with the remaining marginals, (x,,), (x.2). . . .,
(’Y’I‘|)’ (»to,ol), © s vy (XN-)-

Hence L = Pl((\*.u) Axa) oL () (), L ()
.4
all (x*) such that all other marginals are fixed.

(7)

Yiwx,, +_,p Nt oo+ Y o Xeat+ L oaXege e Zpat
el I 1+l w

Y ('\"l)[#il

nmiam ... e ™
] 2

w  h=(
where a symmietric function in the parameter set () is defined as

o,

""';,PI’LII = : (V* ()I
all () such that all
other marginals are fixed.

In the Binary Item Analysis Model, with attention focused on the estima-
tion of the item parameter set, (8), we have to determine a symmetric
function in the set, (8), which is defined as the sum over all possible item-
count marginal sets, (S*), which are compatible with the observed raw
score set, (). In practice a number of different binary data matrices, (C*
of them), will result in the same set, (S*), and this number C* must be in-
cluded in the definition, as shown,
k
- £ 6,8,

=]

all (S*) such that () is fixed.

l\l 3.7,
2t l Y fd]
L= Nk
IT [T (1+e9%)

EIRRE

Finally we need the conditional probability of the marginal set of in-
terest, (v.). given all other marginal sets which we are atiempting to

1 )
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eliminate. This conditional probability is obtained by dividing (5) by (7)
to obtain

L =PHx.) (x0), (), oo (60 () o0 ()]

Zupx,, (8)
_Ce
7((.,)[/!7/]

which is dependent only on the parameter set, (,),und not on any other
parameters in the model.

In the Binary ltem Analysis Model, upon dlvxsxon of the joint prob-
ability by the marginal probability, we have the conditional probability
of the set of marginal item-counts, given the set of raw scores, as

k
—_E 4,5,
ce "

Tyenld]

This conditional probability depends only on the item parameters and
not on the subject ability parameters.

To complete the algebraic story, we next set the vector of first
derivatives, with respect to the u’s, of the log-likelihood, equal to a zero
vector to obtain a set of conditional maximum likelihood (c.m.l.)
eguations.

aL alny ., [u] ‘ 9
— =Xy =0
a“/’ a“j

Upon solving these equations, we insert the c.m.l. estimates into a matrix
which is the negative inverse of the matrix of second derivatives of the
Irg-likelihood, thus arriving at

(10)

azl (l’.) f -l
Vil = - [ nyi.,, [#]:}

a“; a“ ;

which is an NV, x N, matrix of estimated error covariances and from which
the asymptotic stan}dard errors of the 4,’s are obtained by extracting the
square roots of the diagonal elements.

In the Binary Item Analysis Model, the maximum likelihood equations
and the error covariance matrix are given by




Conditional Inference in a Generic Rasch Model

L aln v 18] _
36 =-S-" " =0

”3]: _ [0”;6‘)’3(;[6]] .

A perhaps more tamiliar but algebraically identical version of the c.m.l.
equations presented above, as might be found in Andersen (1972) or
Wright and Douglas (1977), takes the form,

k-1
-8+ L nedy,.,=0, i=1,k
=) —e
Y-

where (i) n, is the number of subjects with a raw score of r,
(ii) . is the rth order symmetric function in the set (8), defined as

-, " Loéx*
v.ELE i

all response vectors (x*
such that r, is fixed,
(ii1) v.-1,, is the (#— 1)th symmetric function in which all terms in-
volving 8, have been removed.

The other two examples which follow are presented in the style of
Andersen (1972, 1973a). The difference between his approach and that of
Rasch which we have adhered to is that, for the binary item analysis
model, Andersen derives the conditional probability of the response vec-
tor for a single subject (conditional on that subject’s raw score) and then
arrives at the conditional likelihood of the total data matrix by taking the
product of the individual likelihoods over all N subjects. This procedure
produces a different likelihood, avoids the use of the t 'mbers C and re-
quires the calculation of separate symmetric functivas for each raw
score. Despite the different likelihoods, the c.m.l. equations are the same
as those of Rasch and thus we are led to the same parameter estimates.

In addition to the binary item analysis model and the two models yet to
be considered, some other models which fit into our framework and
which have received varied attention in the literature are:

{a) the speed of oral-reading model of Rasch (1960);

(b) sociometric choice models, Scheiblechner (1971);

(¢) the multi-dimensional questionnaire model, Andersen.(1972);

(d) the measurement-of-change smodels, Fischer (1976), which in-
troduce the facet of time;




142 The Improvement of Measurement

(e) the linear logistic model, Fischer (1977);

(f) the multiplicative binomial model, Andrich (1978a), Douglas
(1978);

(g) the grader/subject/item model, Malone (1980).

Example 2: The Rating Model, Andrich (1978b)

This model is one of an hierarchy of models derived from the
multidimensional model of Andersen (1972). Starting from a general
parameter 6., which may be writtén as

wh = B4 — 8%
(with v, i and & taking their usual meaning), we further factor this into

/35. = Bv bnt+ Hn

6.‘;. 26. D
Andersen identifies the ¢’s as the ‘scoring’ parameters and the x’s as the
‘category’ parameters. This model appears pertinent to any rating situa-
tion in which a scries of items (or more generally, questions), each permit
a response on-a scale which may be quantified from 0 to m. Andrich

(1978a) and in his paper prefers to work with a simple transformation of
tha s

=

r,(h=1,...,m)

p= —

He calls the 7's the ‘threshold’ parameters, after Thurstone.
In order fora genuine Rasch medel to eventuate, we must set the scor-
ing parameters equal to consecutive integers, that is

dn=hh=0,1, ..., m.

Only by doing this will we have a genuine sufficient statistic,

tfor the structural (item) parameters, thus permitting their elimination
from the conditional likelihood. As Andersen (1977) and Andrich
(1978b) have frequently pointed out, siich a ‘restriction’ is very much in
keeping with the notion of integer scoring advocated by Likert (1932)
and does appear appropriate for a wide class of data sets of the rating or
attitudinal type.

There still remains the question of the identifiability of the category
parameters, x,. Some simple algebra will show that since the marginal set
((x..»)) — the number of times that subject v used category A —is sufficient
for the parameter combination set ((h3, + x,)), the category parameters

10".;‘
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#

are well defined and are permitted in the model since they will be
eliminated (along with the subject parameters) when the conditional
likelihood is obtained. With these comments it should be clear that the
probability of an individual response may be written as

’EO Dew+ (3, — 8))x.,.

e

Ee”h+h(6v“5i)

h=0

and that the conditional likelihood for estimating item parameters
follows as '

PiXi=x, Xi:=x,,..., XNK:X.VA'I«XWA))I

PIX., =x,l=

&
-z 6.’xno
€ =]

N
l:ll ‘YXV.). [6]

Although we have as yet made no mention of numerical problems
associated with the estimation of the parameters in any of the models, it
should be noted that, in applications of this model to real data, Andrich
at least has used,an estimation algorithm based on the unconditional
likelihood, and then has ‘corrected’ the estimates to bring them more into
line with what would arise had the conditional likelihood been correctly
used; more on these problems later.

Example 3: The Rasch (1960)/Andrich (1973) Essay Grading Model

A perennial problentin the grading of extended response answers (such
as essays), when more than one grader is.involved in the marking, is the
question of the varying grader harshnesses which result in comparisons
among subject essay-writing “abilities which are highly suspect. One
avenue out of this dilemma has been to train graders to such a level of
consistency that we are prepared 10 accept all graders as virtual replica-
tions of one another. Problems of marker reliability are then assumed to
have been controlled. This training, however, is never very satisfactory
and, even mc;;c‘importamly, by trying to force all graders into the same

' mould, we [0se potentially important information about the psycho-
logical processes involved in essay marking as reflected in the very in-
dividual idiosyncracies that we are trying to eliminate. It is preferable to
control grader differences but still retain information about them than to
throw away that information altogether. §

15,
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Andrich devised a model in which grader harshness was explicitly
parameterized; because the model was a Rasch model and the specific ob-
jectivity property held, it was possible to estimate subject essay-writing
ability independently of the particular grader involved in the marking. In
this example we see a straightforward application of the strategy of iden-
tifying a sufficient statistic for the fundamental purpose of parameter
elimination.

The model adopted by Andrich had formal similarities to the one for
errors in oral reading described by Rasch in his 1960 book. In thal
development and in the thesis work of Andrich, the Poisson distribution
was the starting point. We will show now that by means of simple
transformations this model arises naturally from our generic form.

In the first place we assume that graders are permitied to detect an
unlimited number of errors in a subject’s script. This direction to graders
to use an open-ended scoring scale is equivalent to letting /m tend to
infinity in the list, #=0,1, . . ., m.

Furthermore, since the basic random variable in this model is the
number of errors detected, the subject ability parameter 3, should enter
the model with a negative sign if we are to make the same interpretation
of it as we have done in other models. With these minor variations and
with n, as the grader parameter, we may wriie the probability of an in-
dividual response when grader g assesses the script of subject v as

h“;() [ln(%) + h(r,)t - Bv)]" vkh
(4 .

PiX,,=Xx,l=
© N ) + A= B)
h=() '

Let us consider further elaboration of the model from the perspective
of estimating the grader harshnesses, »,. 1t is not difficult to see that x... is
sufficient for 3, and that x.,. is sufficient for n,. The conditional
likelihood is written as

PIX 0 x, X X X = X (G
¢

=
~ 1 . "~ .
L In()amt X g
(1’!:0 ®=1

|_[ Yaorlnl

For those of us for whom statistics are quite often a mystery, the rela-

. .
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tionship between this likelihood and the Poisson distribution appears
rather remote. However, if we make the following transformations,

A,=e

and B, P

and note, through a first-principles definition of the exponential func-
tion, the infinite sum in the denominator,

E NG + (3 - 6) .

h=Q)
converts (o
‘ e o
W h! B
which is just a definition of
oL B,

and furthermorc that the obtuse expression

Y oIn( ’l ) Xoghe
@ o

may be re-written more simply in terms of factorials as
1

X!

we arrive finally at an equivalent form of the model,

€~-|c N (A»:/ B.)"“" i
PLY X

X!

This distribution is directly Poisson with parameter A = A/ B.. Despite
the fact that it is Poisson rather than logistic we may sl apply our
marginal and conditional arguments, by which we are Iéd 10 the con-
ditional likelihood, ra

PLX, =x, Xia= X2y ooy Xy Xy (Ve

Xie
R
71

vt 11y .fd]
®=)
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Expressed in this manner, even the symmetric functions may be shown to
have a more favourable form, in that we may write

G Xoos
v oA,

&=

7'“[/‘I =

Niass

Thus the most transparent form of the conditional likelihood is

Pt/\/n TN, /";3 I W SO X\,,, 1‘.\‘\/”;(,\‘\“)'

G Nege ¥
A, I

&= L

- G \‘&00 G
LA, I x.,.!

=1 x=1

Andrich (1973) gives details of estimation and tests of fit and shows that
the vconditional and the unconditional likelihoods give identical
parameter estimates. One should not, of course, take this as a sign that
there are many other models for which this is true.

NUMERICAL ANALYSIS PROBLEMS
ASSOCIATED WITH CONDITIONAL INFERE. ICE

It is one thing to produce a mathematically rigorous statement of prob-
abilistic models involving many parameters, and another thing to devise
efficient and accurate numerical methods to answer the kinds of practical
questions we pose about the operation of the models. To a certain extent
these arithmetic problems have curtailed the widespread use of Rasch
models among social scientists; on the other hand, their apparent intract-
ability has led others to adopt approximations the validity of which is
frequently unhnown, ‘

In the development of new techniques, however, initial caution must
eventually give way to guarded extension if the models are to have aceep-
tance in a wider sphere. Often this means that ecither assumptions are

relaxed or approximations are introduced. It is the latter option which

has tound most favour with respect to Rasch models.

1t would be naive 1o imply that the only remaining problems of latent
trait models are those associated with numerical methods. However, for
the current exercise, we will address ourselves to some of these problems
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in the hope that, if the problems are well identified, their solution will
follow a little more easily. Normally we would not concern ourselves
with arithmetic problems like these at a seminar of this nature but, since
they are intricately related to the conditional inference argument, their
discussion is quite relevant, particularly when crude approximations are
used to verity the powerful properties of Rasch models. In a
characteristic understatemerit of Rasch (1960):

the practical applications of the theory present, however, difficulties yet

to be removed. As they are ‘only® algebraical and computational, we

may hope for a satistactory way out. (p. 122)

We turn now to a briet discussion of tour of these problem areas.

. ‘The Symmetric Functions

The number of terms in a middle-order symmetric function for binary-
item tests of even moderate length, say 50 to 60 items, is astronomical;
for example, the symmetric function 42<[6] in a 50-item test has in excess
of 12.6 < 107 terms, Our computers are tast, but there are limits. Even
granting that these caleulations could be made, there still remains the
problem that there is no closed explicit form for a symmetric function.
All algerithms which determine them, or ratios of them, use a recursive
expression which builds up cach successive function from those deter-
mined presiously in the list, This obviously reduces the actual number of
caleulations involved. but does introduce another more damaging com-
plication —rounding error.,

The calculation of the exponential function by a computer necessarily
means retainimg only a finite number of significant figures in each caleula-
ton, Ifonly a few caleulations are being made, by using double precision
arithmetic there s usually no problem about rounding crror. When
deternining  symmetric functions of the order we are describing,
however, this rounding error can accumulate draraatically to the extent
that negative estimates of the functions arise persistently, causing the
estimation algorithm to abort. Hence there are no conditional estimates.,

Gustabsson (19793 claims to have solved the rounding error problem by
utilizing a number of previously unused recursive relationships among
the successive symnietric functions, By employing these and a number of
other expedient devices, Gustafsson has written a program for which
conditional estimates can be determined for binary-item tests of up to
about 100 items, as fong as not too many of the items are at the extremes
of the dithiculty range, Unfortunately we do not have prior knowledge of
just how many or how extreme are the igems in order to predict whether
or not the program will abort. More crucially, there will always be the
suspicton that, although rounding errors have started to ‘set in’, they are




148 . The Improvement of Measurement

not yet of such a magnitude to abort the program. What then of our
‘estimates’? Even if the estimates are to be belicved, we might still ques-
tion the effort involved. :

Standard Errors

Another numerical problem arises in connection with the algorithm used
to solve the ¢.m.l. equations. If the raison d’&tre of the exercise was the
calculation of the ¢.m.l. estimates only, then there is little doubt that one
would prefer variations of the so-called ‘switching’ method to the multi-
parameter version of the Newton/Raphson method. Briefly the switching
method for binary item analysis involves solving for §, from the equation
which arises as a re-arrangement of the ¢.m.l. equation:

b S,
¢ = k-1
L nr‘ ‘Yr-ln .
=y Y.
k-1
) S nrivr‘-yly 11
6, =In| ' i=12,.. k..
S,

Although more iterations are required to achieve convergence with the
switching method, 3t least a & x k matrix of second derivatives does not
have to be inverted at each iteration, as is requiired with the multi-
parameter algorithm. But the purpose of the exercise is certainly not just
to estimate parameters; it should involve also the determination of the
standard errors of those estimates as well as tests of fit.

If we are to adhere to the principles of ¢.m.l. estimation, then the most
appropriate standard errors will be given by the square roots of the
diagonal elements of the matrix in (10). If we use the switching method
and avoid inversion at each iteration, the inversion would still be
necessary after convergence in order to extract the standard errors. The
implied criticism by Gustafsson (1979) of unconditional procedures for
parameter estimation is not levelled consistently since unconditional
standard errors are used by Gustafsson in his programs. Elsewhere there
15 evidence, Douglas (1978), to suggest that conditional and un-
conditional standard errors are not the same and, unlike the estimation
of the parameters themselves, we do not have known correction factors
which enable us to change from one form to the other.

More Complex Models

If the numerical problems are not wholly controlled in the binary item
analysis model, there is little surprise in finding that for more complex
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Rasch models the situation is quite unclear. For polychotomous models
for rating, for example, little is known about how to arrive at the c.m.l.
estimates (and their standard errors), other than in relatiyely simple cases
where the structural parameters are few in number. Unfortunately the
identification of this situation as a problem area is camouflaged by the
fact that, in the published literature, most examples limit the number of
structural parameters and one could be excused for believing that
numerical problems are totally non-existent. Yet in practice we are likely
to be dealing with large numbers of structural parameters. As we increase
the number of response categories—and five categories is certainly not
uncommon— the number of terms in each symmetric function also in-
creases beyond what it would be for the binary case. Although correction
factors are applied to unconditional item estimates in the polychotomous
model of Aadrich (1978a), no published studies are available as there are
for the Binary model (Wright and Douglas, 1977) which detail
thoroughly the circumstances in which the corrected unconditional and

the conditional estimates are similar. Naturally the problems of matrix

inversion and the standard errors are also magnified in these models.
The advisability of trying to find corrected estimates becomes more

questionable the greater the number of sets of parameters in the model.

For example, in a 3-facet model, the unconditional algorithm must

estimate simultaneously three sets of non-linear equations and must keep

a check on not only the convergence within each set but also on the
overall convergence to ensure that the complete likelihood is maximized.
Once correction factors have been applied to one or more sets of
parameters, the likelihood is no longer maximized.

Fstimating other Sets of Parameters

One advantage of viewing these models in their most general form is that
we are less likely to become fixated on item analysis to the detriment of
subject analysis. The area of subject ability analysis in a number of
models where it is relevant has received virtually no attention in the
literature. If we are to follow the spirit of Rasch and our generic form,
the subject ability parameters would be seen as structural parameters in
the presence of the incidental item parameters when the items for a test
have been selected from a bank or pool. In that case, the focus is on per-
son measurement and we are at liberty to vary the number of items
administered. ‘
All of the arguments used previously to derive conditional inference
statements with respect to item parameters may be employed in a directly
parallel manner to derive conditional inference expressions for the sub-
ject ability parameters. Even though the number of subjects being
measured simultaneously by a test may be thought of as fixed, this
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number could be quite large. Hence all numerical problems which we
have identified with item estimation are often intensified with conditional
subject estimation; one only has to note that for items, there are (¥ terms
in the rth symmetric function but for subjects, there are (?) terms.

While it is rare that we would wish to calibrate one or two items at a
time, it is not uncommon to find contexts (mastery learning, criterion-
referenced testing, tailored testing) where one person is to be measured at
a time. This situation raises a whole series of conceptual as well as
numerical problems when conditional inference iz smployed, since it is
patently impossible to estimate the ability of a single subject condition-
ally without recourse to the ability of a reference subject —and hence we
are back to norm-referenced measurement. [t is beyond the scope of this
paper to delve into these problems but the dilemma does highlight once
again that the models of Rasch are models for comparisons and that ab-
solutes really have no place here. Claims to the contrary are false.

We may identify at least two procedures (in addition to the con-
ditional) which have been used to arrive at subject measurement in the
binary item analysis model. According to Andersen and Madsen (1977,
p. 359), ‘the logical implication is to base the inference concerning the
3.s on the remaining part of the likelihood’. Since unconditional,
marginal, and conditional likelihoods are connected via the relationship,

Andersen is advocating that the expression

"o,
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be used to estimate the ability parameters. Although the symmetric func-
tions contain no f3’s, the denominator does involve item parametcrs as
well as 3’s and it is customary to replace the 6.’s by their ¢c.m.|. estimates.
On the other hand, Wright and Panchapakesan (1969) and Andrich
(1978a) base the inference on the unconditional likelihood, L,. Although
the likelihoods are different, both approaches produce the same m.l.
equations for the 3's and Wright substitutes the corrected unconditional
&'s rather than the conditional ones. Given that for a very wide class of
binary item analysis examples the corrected unconditional item estimates
are virtually identical to the conditional ones, the approaches of
Andersen and Wright should coincide. However, since correction factors
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are not well established for models other than the binary item analysis
one, we should not expect voincidence of the Andersen and Wright
mcthods in other models.

We might note also that the inconsistency of the unconditional item
estimates which leads to their values, 6,'’, being exactly twice those of
the conditional estimates, 5,*’, in the La.se of two items, is directly
duplicated when attention is turned to estimating the abilities of two sub-
jects. Although to our knowledge no confirmatory studies have been car-
ried out, we might surmise that an identical correction factor which
convcerts unconditional estimates to approximate conditional ones for
1Hems,

é.’.y” 1 S(ul
k
also operates in converting unconditional estimates to approximate con-
ditional ones for subjects,

Clearly this correction factor is not insignificant when we are measuring a
small number of subjects.

With respect to the standard errors of subject ability (the cquivalent of
what psychometricians would refer to as the precision of measurementy,
both the Andersen and Wright methods lead to approximate expressions
not involving the inversion o matrices and once again we have little in-
formation about whether these are under- or over-estimates of the error
of measurement,

SOME DIRECTIONS FOR THE FUTURLE

There appear to be a number ol possible ways out of the dilemmas of
numerical analysis as outlined in the previous section, The most
straightforward but uncompromising solution is to follow Gustafsson’s
example and attempt to improve the algorithms for caleulating direetly
the symmetric functions for all models. We tend to doubt the advisability
of this action for models other than those on which it currently works
since the numerical problems arce inordinately complex. It is not un-
common, for example, to find oneself” working with attitude question-
naires of the Likert-type (with five response categories) consisting of
something like SO questions, Sinee in this case raw scores range from zero
to two hundred, 1 is impossible to analyse these data conditionally with
the algorithms presently available. Other alternative solutions must be
sought.
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An alternative which suggested itself to Rasch himself in the early
seventies (personal communication) was to find numerical approxima-
tions to the symmeétric functions along the lines of the formula known as
‘Stirling’s approximation’ for higher order factorials. These approxima-
tions would take the form of explicit expressions for symmetric function
ratios of all orders. Other than initial skirmishes with the problem, little
development appears to have taken place in this direction.

A potentially promising approach is offered in related work on exact
probability tests being carried out by Agresti and his colleagues (1977,
1979). The approach offers advantages not only for parameter estimation
via the likelihood equations but, more importantly, for carrying out
exact tests of fit. Before outlining Agresti’s approach, we should say
something further about the tests of fit employed in Rasch models.

The applicability of any model derivable from our generic form rests
substantially on the assumption that the model fits the data to within ac-
ceptable probability limits; in that case, all the properties of the model on
which we place so much importance must follow necessarily. Viewed in
this manner, the determination of fit precedes in importance the deter-
mination of parameter estimates to the extent that an understanding of
the psychological processes underlying the interactions, which give rise to
our data, comes from our assumption that we have the correct model. To
talk of Rasch models as ‘providing specific objectivity’ is to understand
that these properties obtain in the presence of the model fitting the par-
ticular data set. Without fit we really have very little to talk about.

Complications occur when we realize that data fail to fit probability
models for many reasons and that it is highly unlikely that we will find a
statistical test which will detect lack of fit against all possible aiiernative
models. A test which is suitable for detecting unequal item discrimina-
tions in the binary item analysis model, for example, may have virtually
sero power tor detecting other departures from that model (i.e. a model
with equal item discriminations but unequal person sensitivities). At the
other extreme we have a problem which is constantly with us, that of .
sample size: if we manage to collect enough data pertinent to our model,
any test we use gains sufficient power eventually to reject the model
against every alternative hypothesis and we conclude that no data will
ever fit the model.

This is not the place for an extended discussion of the question of tests
of fit. Gustafsson (1977; 1979) has written extensively on this topic in re-
cent articles, where he raises some fundamental questions about the
power of the approximate chi-square tests ot fit many of us are ac-
customed to employing in our Rasch model programs. What concerns us
here is that one of the reasons we use these approximate tests (apparently
without knowledge of their statistical power) is that, despite our
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awareness of the existence of the more powerful tests, the operation of
the former does not depend on the calculation of the complete likelihood
and conscquently the symmetric functions.

Therce is no doubt that we do know the theoretically correct path to
follow. According to Andersen (1973b),

the main resalt so far on conditional inference is that a uniformly most
powerful unbiased (U.M.P.U.) test for a composite hypothesis can be
constructed from the conditional likelihood,

In practice this test takes the form of a likelihood ratio test in which the
statistic

«
=2l - X L]
&=l
is distributed as chi-square on (G - 1)(k - 1) degrees of freedom and
where )
(1) 1.1~ the log of the complete conditional likelihood as derived in (8),
(in) 4., is the log of the conditional likelihood for the gth subset of the
data, where (7 is chosen such that the number of observations in each
subset i sufhciently farge to warrant the assumption of asymptotic
theory,

Although the combinatorial number € disappears, the item parameters
have 1o be estimated tor G+ 1 data sets and, of course, the conditional
estimates must be used.

There is also no doubt that in many instances we are simply not in a
position to apply this test, cither because we are unable to calcutate the
symmetric tunctions (and hence the likelihoods) or because the sample
size is sosmall that asymptotic theory is of dubious validity. The purpose
of highlighting this problcin is not to exhort researchers (o drop their ap-
proximate tests of fit, but to induce a healthy scepticism and caution
when using these approximate tests with the anticipation that, when the
numerical analysis details are worked out, we will bc able to operate the
conditional tests in all circumstances.

The implementation ot exuct probability tests, on the other hand, re-
quires no assumptions about distributional shape, parameter estimation,
or farge sample sizes (Fisher, 1934). As we have noted in equation (6), an
exact test of fit of datato a Rd\Lh modecl is theoretically possible since we
have a conditional probability statement completely free of all
paramcters in the model. This enables us to control the model on the
basis of the observed quantities alone since no parameters have 1o be
estimated, Ideally we would calculate the probability of the observed
data, given the marginals (which we know- 1o be equal to 1/C) and the
probability of cach other possible data set with the same marginals (each

18,
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of which also happens to have probability of 1/C) which tend to favour a
hypothesis which is an alternative to the null one of specific objectivity.
These other data sets are said to be ‘more extreme’. The sum of all these
probabilities would then be compared with the probability of a Type 1
error and conclusions about fit follow.

What prevents us going ahead as described above is the calculation of
the combinatorial number, C, the number of possible 0,1, . . ., m data
matrices. A direct frontal attack on this number seems futile, even
though the answer is known when we do not restrict our observations to
a pre-determined maximum of m; however, what Agresti recommends,
in a related context, is a sampling of a relatively small number of the
large number of possible matrices. With a high-speed computer the prob-
ability of a Type | error could be determined to any degree of accuracy.
Sampling of both symmetric functions and matrices appears a possibility
so that the technique might be employed for estimation as well as testing.
These ideas are in their formative stages only but they do appear to offer
one way out of the dilemma and will possibly pay strong dividends for
someone interested in starting an investigation along these lines.

By now the reader will have been prompied to ask the question, ‘Why
use the corrected unconditional approach in both estimation and fit?" If it
were possible to find the appropriate correction factors for parameter
sets in all models, the problem of estimation would no longer be with us,
even though we still see no way of getting around approximate expres-
sions for standard errors. But this still leaves the tests of fit since
Andersen’s test requires the calculation of the log-symmetric functions.

Whereas we must agree with Gustafsson’s (1980) exhortation:
*whenever it is judged important that goodness of fit is evaluated with
sound methods, the c.m.l. approach should be used’, we see no disadvan-
tages accruing from a strategy which takes the corrected unconditional
estimates (involving no calculation of symmetric functions) and using
them in the conditional likelihood (involving a single calculation of the
symmetric functions). Our stance is to make use of the best of all
available methodology to arrive at solutions whose rigour is unques-

tioned. An increased awareness of the importance of fitting is certainly

an encouraging sign in an arca prone to ad hoc approsimations. Further-
more an emphasis on guestions of person fit is equally timely and opens
up possibilities only previously hinted at (Leunbach, 1976; Wright and
Stone, 1979).
CONCLUSION

My aim has been to review the central place of conditional inference in
the theoretical and practical operation of a class of latent trait models
which we fabel as Rasch models, The pedagogical stance has been one of
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recognition of the technically correct procedures to adopt both in
parameter estimation and hypothesis testing about fit, combined with a
cautious use of numerical approximations where applicable.

A number of avenues have been hinted at for the future direction of
numerical analysis problems, all of which approximate the conditional
algorithms. I have stressed the crucial aspects of tests of fit. In particular,
I hope that those using approximate tests will temper their claims for
‘good fit’ with statements which acknowledge two fundamental facts: ‘fit’
is never tully determined by a finite set of tests; and information on the
power of tests adds credibility to such claims.
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REACTANT STATEMENT
Adan G, Smith

Dr Douglas's paper is a valuable one on several counts. Firstly, it makes a
contribution towards a generalization of the model, in bringing together
Rasch developments in several areas; and, in doing so, the paper ad-
dresses the problems of goodness of fit tests and the power of such tests.
Sceondly, the paper reminds us of some essential features for *specitic ob-
jectivity” in the measurement of attributes and, in particular, reminds us
why we should restrict ourselves to only one item parameter. Thirdly, the
paper reminds us of the real complexity of modelling psychological con-
cepts such that we have both mathematical completeness and at the same
time workable formulae to apply to real data. | wish to take up the last
point briefly, and to make one or two other comments.

Despite the great theoretical attractions of the procedure, Dr Douglas
has not overstated the difficulties inherent in utilizing symmetric func-
tions with the model. This raises for me the general issue of the potential
gult between theoretical development and real-world applications of a
statistic. The Norton studies of the behaviour of the F statistic (Lind-
quist, 1933) many years ago showed that that statistic often provides
good information under conditions where it could be expected to fail;
again, colleagues will be very familiar with the robustness of the Pearson
product-moment coctficient with data which often greatly abuse its
assumptions. Similarly, in the case of the Rasch model applied to binary
item analysis as put forward by Wright and Panchapakesan (1969), we
find that several of the theoretical problems with the model may not be as
signficant as Dr Douglas’s paper would suggest. Evidence is ac-
cumulating that the assumption of uniform item discrimination is not
nearly as vital to the performance of the model as writers such as Whitely
and Dawis (1974) would have us believe (Dinero and Haertal, 1977;
Smith, 1978). It would appear, too. that practical use of the model in
person-ability estimation is not significantly affected by the results of
goodness of fit tests (Smith, 1978). Again, we find that the model works
well with quite small samples (Tinsley and Dawis, 1975) even though it
uses @ very large sample statistic (Whitely and Dawis, 1974). Finally,
although Wright and Douglas (1977) show that the 1969 Wright and Pan-
chapakesan maximum likelihood procedures are biased, they also show
that the extent of the bias is of minimal practical importance, especially
when compared with the alternative estimation procedure. Thus the
merits ol new  conputationally  comples  procedures  which  solve
theoretical problems of goodness of fit and so on, albeit rather nicely,
will have to be very clearly demonstrated; this is especially true given that
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it has taken 20 years for the Rasch model to reach its current state of
limited acceptance. )

The work of developing the model and spreading its good measure-
ment news iy also hampered by problems of terminology and com-
munication. 1 am not a mathematician and am uncertain of the
correctness of my understanding on this point, but there seems (0 be a
real problem in the use of *conditional’ versus ‘unconditional’ estimation
procedures here. Douglas’s use of the term, which is tully explained in
the 1977 paper with Wright, is quite ditferent from the earlier use of these
terms in the latent trait tield. The originators of the terms were Bock and
Licberman (1970) and, if 1 understand their terms, 1 would conclude with
Baker (1977) and Subkoviak and Baker (1977) that Wright and Pan-
chapakesan’s 1969 procedure is conditional, not unconditional, and so
we have a terminology problem wherein one might say Douglas has
presented us with an unconditional generic model rather than a con-
ditional one.

Although Douglas covers himself well when he says he would not wish
to restrict work on other probabilistic models, it is difficult perhaps to sce
attributes elsew here from the standpoint of Rasch assumptions. Now it is
truc that the two-parameter normal ogive item analysis model does not
demonstrate ‘specific objectivity’ as defined mathematically by Rasch,
and it would appear to be true that invariance of paramcters docs not
exist for the two-parameter model (Smith, 1975; Baker, 1977). This does
not mean it is not useful, nor that it cannot be made to work. Douglas
says that in the two-parameter case, we must retain people’s original
response data in order to know something about their ability, and that is
true; but 1 think we can discover more than the limited raw score to
which Douglas suggests we are limited. 1 have been doing some work
with the normal ogive model involving iterative conditional estimation of
the two-item parameters in the first step, and person-ability in the second
step, and there is evidence that useful results emerge. 1t must also be said
that it is a complexs expensive process which does not compare well with
the Rasch logistic model. There is the further point, however, that the
normal ogive model offers through the use of the normal curve a link
with psychological theory which is most attractive.

1 have two other briet comments, The first pertains to the notion of
person-fit to the model. 1 must contess to some abhorrence of this con-
cept, depending on how it comes to be used. Our main purpose in educa-
tional meastrement is to bhe able to make definitive statements about
relative person-ability, While the concept of person-fit is statistically
nice, given model parameters, people are paramount and the model must
accommodate them, within populations. Therein is the problem: the
dehiniton of populations must be broad rather than narrow, and re-
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searchers must be caretul about conclusions drawn from significant
person-fit tests. The second comment is related to the first in the notion
of person-ability. Classical test theory is substantially concerned with
unidimensional abilities, and we spend much of our time establishing
reliable sub-scales in major tests. The fact is, of course, that latent trait
models are similarly concerned with unidimensional abilities, not-
withstanding their other merits. One of the major practical problems
which remains with latent trait models is to show how person-ability
values derived tfrom several test scales can be related and treated, and
whether the models can be made to work with tests which measure com-
plex abilities. Wide use of the Rasch model, for example, will depend on
such attributes being clearly demonstrated, and fortunately evidence
(c.g. Smith, 1975) is encou aging in this regard.

In conclusion, while 1 have been provocative about several aspects of
Dr Douglas's paper, one does need to note his comments about re-
guirements tor Rasch goodness of fit tests and their power. His paper will
no doubt prove to be constructive in the further development of the
model.
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The Use of Latent Trait Models
in the Development and Analysis

of Classroom Tests
John F. Izard and John D. W ite

INTRODUCTION

Teachers use tests for a number of different but related purposes. These
include assessing the success of a relatively short sequence of instruction,
indicating how much knowledge or skill has been retained over a period
of time, describing or summarizing achievement over an extended period
of study, and diagnosing aspects of curriculum which need further in-
struction. Obviously, if curricula vary. then the supply of tests which
mirror each curriculum presents problems. ’

When using published tests to assess progress through an instructional
sequence, teachers may be concerned that some of the questions are of
limited value because the content differs from the material presented in
their own classes, or that certain important objectives have been given
little consideration in the test specification. Such concerns may result in
teachers rejecting the use of published tests, making do with inadequate
data, or using other questions in an unsystematic way in an attempt to
meet deficiencies in the published tests.

In order to mecel these concerns, some teachers have been using collec-
tions of test questions such as the Australian Item Bank (Year 10
Mathematics, Science, and Social Science) and the New Zealand Item
Bunk: Mathematics (Levels 2-7 Mathematics). However, selection of
questions on the basis of content alone and without consideration of
other characteristics such as difficulty and discrimination makes the in-
terpretation of the results obtained from such questions difficult and of
doubtful validity-

Since variations in curricula place different emphases on different ob-
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Jectives, it seems desirable to produce collections of questions for each

objective so that tests can be tailored to suit local needs. Provision of

sach collections will not represent any advance on the existing item banks
unless ditticulty data are supplied with the items and unless procedures
are developed to adjust for difficulty when interpreting scores. Such pro-
cedures will need to be casy 1o apply without reference to computing
centres and will need to allow for additional questions to be added to the
bank where necessary. In Australia, data collected in the development of
cach item bank are not readily available to users (except in Tasmania).
Fhis may lead to a situation where two sets of five questions may be used
and the achievement level represented by a score of four or more on one
test may be totally different from that for the same score on the other
test.

Test analysiy techniques based on the Rasch model (Rasch, 1960;
Wright and Stone, 1979) attempt a separation of the respective contribu-
tons of person ability and item difficulty to a score. When this latent trait
modcel is assumed o be appropriate, item difficulty information available
tor cach question selected for a test may be used to make ability estimates
for various scores on that test.

This paper describes the development of a pool of calibrated items for
use by teachers and then presents a number of simplified procedures
which may be applied by teachers to construct tests from the item pool,
tointerpret the results, and to calibrate further items devised by teachers.

DEVELOPMENT OF AN ITEM POOL.

A solution to the problem of providing appropriate testing procedures
for schools seems to lie in the use of item banking techniques. This is a
fong-term solution and may take the next decade to be implemented as a
working assessment procedure at the school level, An intermediate solu-
tion lies in the development of a pool of test items and the production of
progress and review tests from this item pool. The essential feature of
these tests is that they relate to well-defined objectives and are used to
determine whether or not these objectives have heen met or the extent to
which they have been mel, ’

We do not make any assamption about the sequence in which skills are
taught or the curriculum in which the skitls are embedded. We do assume
that skills can be taught and or learnt. We do assume that a teacher
hnows what he wanis learnt by his students and that he has developed a
sequence ol learning experiences to enabte the skill to be acquired, In
other words, we assume that there are some identifiable skills which can
be taughr, fearnt, and tested as part ol instructional programs utilized by
teachers. In the discussion which follows, we distinguish between pro-

I/o,‘

Aruitoxt provided by Eic:




E

RIC - 17,

Aruitoxt provided by Eic:

Development and Anaivsis of Classroom Tests 163

gross and review tests and then desceribe the development of an item pool
using wddition of whole numbers as the specific topic.

A progress test is a smatl collection of items measuring performance
on a specitic skill such that a score on this test reflects the mastery status
of a student relevant to the skitl, For example, one progress test may
have a sample of items which involve adding two 2-digit numbers
without regrouping (carrving), while another progress test may involve
adding two 2-digit numbers with regrouping (carrying) from the units,

A review test s a collection of items measuring a student’s per-
formance on a number ot skills related by content such that a score on
this test identities arcas ot strength and weakness possessed by the stu-
dent in the specitied skill areas. For example, a review test may have
items iy olving adding two, three, and four 2-digit numbers without and
with regrouping (carryving).

n developing the item pool tor the addition of whole numbers, the ob-
jechives were st discussed with teachers from several education depart-
ments, [he collechion ol itenms was then trial tested with children in Years
1,4, 5, and 6. The data presented in this paper are taken from responses
by the Victoran children in the sample, and were analtvsed with Version 3
ot the BIC AL «camputer prograny (Wright, Mead, and Bell, 1979).

DESIGN OF PROGRESS TESTS
A teacher will have some idea of the target population for which a test s
selected -1t may be that teaching material tor the objective has been
completed recenthy or a placement or review test may have been ad-
mimistered. We also know trom triad testing of the items that we obtain a
number of irems tor cach objective which cluster within a restricted
rangee.

It a dearming program based on the specific objective has been designed
and impleniented, there are probably reasonable expectations for the
program’s stucess. These eapectations would be reflected in a narrow
distribution of scores with a relatively high mean, and are represented in
Freare 1.

When comparing the tareet population’s ability distribution and the
e didhionliy distiibution tor the test or tests, it is convenient to use the
reimmotory sueeested by Whnight and Douaglas (1975). The average
dithiculty ot the items selected tor the test is referred to as the height of
the test, /4. The range ot item ditticulties is the test width, B, and the
leneth of the test s the number of items, /.. Where these are estimated
from samples, Tower vase lerters are used.

Fhe best overall test i~ the unitorm test (Wright and Stone, 1979, p.
F34) i which tems are eventy spaced trom easiest to hardest. This test is
appropriate tor any tareet population within the usabte range of the test.

!
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—> Student ability

A, i N "

Ttem difficulty

- runge of the test .
Figure 1 Expected Pattern of Scores after Completion of a Success-
ful Learning Program

The testis described in terms of H, W', and L and is designed with the ob-
ject of minimizing the standard error of measurement (SEM) subject to
certain constraints,
Consider an a-item uniform test as shown in Figure 2 where 7 is odd.
In the case illustrated in Figure 2, the length of the test is # (5 in this
example), the width of the test is (7 - 1)d, and the height of the test is 0.
Figure 3 shows the corresponding information for an n-item uniform
test where 7 is even, In this example, the length of the test is # (4 in this
example), the width of the test is (1 - 1)d, and the height of the test is 0.
I a student has a raw score of r on an n-item test then b,, the ability
estimate of the student, is related to r by the equation

=t |+ et

item n-3 o 1 on+l n+3 nts
number 2 k] 2 k] 2

' t ' t t .

item

2d d 0 d 2d ditficulty
Figure 2 Uniform Test with Odd Number of Items
item 5
number nedon2 n-loon

] ' ' l 4

Yd d =. 3d item

; 0~ ;

2 2 R 2 difficulty
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Table 1 Limiiing Value for Ability Estimates

lim b,
d—-0
n r-1 r-2 . r-3 r=4 r=5 r=6
3 0.693 0.693
4 1.099 0.000 1.099
5 1.386 0.405 0.405 1.386
6 1.60Y 0.693 0.000 0.693 1.609
7

1.792 0.916 -0.288 0.288 10.916 1.792

As d—0 the uniform test becomes more narrow and ¢, —0

netr
1+ e

then r—

r . . . . .
and b, = In , as.shown for various values of nand rin Table 1.
n r

The standard error of b, is given by

1
T

\: o ) o
= 1+ (,/»,-,l‘ 1+ e
As d—0, d -0

and the standard error s, —

1
s 1 h- 0
i L eet 1+ e

, lim n , For uir aliee o3F s :
that s, 5. ., us shown for various values of n and rin
-0 n r

Figure 4 shows the ability estimate obtained for raw scores on tests of
vatiots fengths: cach ahility estimate is shown with one standard error
bounding cithei side of the estimate.

It the Rasch model is appropriate, we can speaty a probability that a
person with a given ahility will get a question correct. Similarly we can

@)
—
H

-
-
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Table 2 Standard Errors for Narrow Tests as d—0
|

lim s,
d—0
n rol r.o2 r 3 rod r=3 r=6
3 1.22 1.22
4 118 1.00 115
s 112 0.91 0.91 112
6 110 0.87 0.82 0.87 110
? 1.08 0.84 0.76 0.76 0.84 1.08

estimate people's ability from the score they receive on a set of questions
reflecting a continuum. For a uniform narrow test, this ability estimate
can be expressed in terms of the number of standard errors above the
mean difticulty of the test. For example from Tables 1 and 2, the ability
estimate for a raw score of 4 on a test of length L =5 (where d—0)is 1.39
with a standard error of 1.12. This estimate is 1.24 standard errors above
the mean. By making some normal curve assumptions, we can infer that
there is a probability of 0.89 that the student has an ability greater than
the test mean. This inference may be used as a definition of mastery for a

n -

Figure 4 Ability Estimates for Various Raw Scores on a Number of
Uniform Narrow Tests

17

ERIC

Aruitoxt provided by Eic:




Development and Analysis of Classroom Tests 167

narrow uniform test. In other words, a score corresponding to an ability
sufficiently higher than the mean may be regarded as evidence that items
from the same domain will be answered successfuily.

Our analysis shows that for tests of length le . than 5 the raw scores
other than 0 or » give insufticient indication of mastery or non-mastery as
defined. For a narrow uniform test of length 5 we have mastery for
r—35.4, non-mastery for r-- 0,1 and there is no indication of the respon-
dent’s mastery status for = 2.3,

I atest of length § iy considered satisfactory, then tests with L =6 or 7
might be considered wasteful. Given the constraint that only discrete
scores are possible, only limited additional information is available when
the test iy lengthened by one or two questions.

We can now look for values of ¢ for which the uniform test can be
described as narrow. In the uniform test design for this section, test
width

w(n- Dd, f= !
n

where 7 is the raw score, and ability estimates for given fand w are ob-
tained from the UFORM procedure (Wright and Stone, 1979, p. 144).

l (,‘u/

N

That is, he-w(f 0.5 +In |

Hence
“f=1)dr

o

l-e

n dtasli{a-ry

i ¢ "

iy an ability estimate tor o >0,

Forexample, giventhatn Sandr 1, b, 00, = - 1.39, and ¢ 1s tound so

that the discrepancy between b, and b, .o, given by 8, by, s less

than «, where ¢ is a designated accuracy value.

I hat i\, | o0

1.2d + In (-1.39) <.
I oed

table 3 shows this diserepancy or error term f{id) for n=5, r =1 when
o £0. Sumadar values tor flefy will be obtained when 7= 5 and 7= 4.,
Withd 03, n 5, w. 1.2, the ability estimate changes in magnitude
by 0.03 from the ability estimate derived from a narrow test.
Fhis represents a 2.2 per eent change in the ability estimate or 2.7 per

ERIC | 17;
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.

Table 3 Values of the Error Term f{d) for Values of d when n=5, r=1
fld
0.0003
0.012

0.032
0.059

cent of the standard error. Similarly, with d = 0.4 the percentage change
is 4.2 per cent or 5.3 per cent of the standard error for a test of zero
width.

If we have a cluster of items across a range of about 1.5 logits, then we
can select five of these items to construct a narrow uniform test. If these
items are specific to an objective then a progress test is constructed with
the following properties: {a) a student has mastered the skill if he scores 5
or 4; (b) he has not mastered the skill if he scores 0 or 1; (¢) his mastery
status is not determined for scores of 2 or 3.

We will summarize the design so far by looking at data from an actual
test which consists of 20 items constructed to assess the objective of the .
addition of two 2-digit addends with a sum less than 100 and regrouping
(carrying) from units to tens.

Figure 5 shows the difficulty estimates obtained for each item when
these 20 items were calibrated with other addition items. The mean item

Figure 5 Item Difficulties for each Item on One Addition Test

"JL! -5k G5 =0A -013 -0.2 -0l 0.0 0}; a2 0.1
1a RT3 28 5T 6T 3% 48 66 37 18
el w7 o eIn #33 wln #22 w2 445 +18 w13 27
" i1 T Y 21 39 58
[ 3 R0 #3500 17 + 30 +38
[ [ 1 [ (]
73
(Y]

ERIC B

Aruitoxt provided by Eic:



ERI

Develvpment and Analyvsis of Classroom Tests 169

difficulty for all 20 items is shown by | and the magnitude of the standard
deviation of the difficulty estimates is shown as the dark line.

We can construct a number of progress tests by selecting items from
the pool, two of which are:

Progress Test A; 35 57
(Coded W) 46 +26

dithiculty: - 0.47 -{.35

Progress Test B: S1 39
(Coded ) ¢ 39 +36

ditheulty: -0.47 - 0. -0.17

For Progress Test A

h="4 - _023 and
L

w 3.5 (Xdr LhY)/(L-1)=0.68
Using Table 1, the ability estimates for r =1, 2, 3, and 4 are:

r Ability estimate
0.23-1.39= -
-0.23-0.41 = -
-0.23+0.41 =

4 -0.23+1.39=

with standard errors of 1.12, 0.91, 0.91, and 1.12 respectively, using
Table 2.

In the progress test model, these values are not so important because
the user of the progress test is interested in the mastery status determined
from the raw score.

The user knows that r -0, 1 corresponds 1o non-mastery requiring
further teaching, r- 4,5 corresponds to mastery, and r=2.3 will require
further testing to confirm masiery status.

However, for the purposes of this discussion, the ability associated
with a raw score may be estimated by the UFORM procedure (Wright
and Stone, 1979, p. 144).

I'his ability estimate is given by the equation

| -t
- e'u( -1

b, -h+w(f-0.5 +In |

Py ay
7
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Table 4 Comparison of Estimates of Ability Using UFORM and
Narrow Uniform Test Assumptions

Approximate estimale UFORDMI estimate
r b, 5, b, 5,
0.2 1.62 1.12 1.63 1.12
0.4 0.64 0.91 0.64 0.92
0.6 0.18 0.91 0.18 0.92
0.8 1.16 1.12 1.17 1.12

with standard crror given by

G = {w {1-e] }
TN L -1 - e

A comparison of the ability estimates with the approximations
resulting from narrow uniform test assumptions is presented in Table 4.

tigure 6 illustrates the mastery sta.us associated with a raw score of 4
and the non-mastery status tor a raw score of 1. It also illustrates that
there is insufticient information to determine the mastery status tor r=2
orr=3,

For a narrow uniform test we assume that all items have equal diffi-
culty. Where L =5, and = ~0.23, the ability estimate for r=4 is
bs=1,17. Henee

()I 40
plx=1,by=117,d=-0.23)= , =0.802

+el 4()‘

is the probability of a success on an item encounter for a student with
ability 1.17. Similarly,
Pl 0.by= 11T, d= 0.03)= I 20198

+ (:'l 40 -

is the probability of a failure on an item encounter for a student with
ability 1,17, The probabilitics of the student obtaining various raw scores
given that his ability is 1.17 are

pr=5=(0.802)° =0.332
pir-4) = 5(0.802)%0.198) =0.410
plr 3) - 10(0.802)%0.198)? - 0.202
pr - 2) = 10(0.802)(0.198)* = 0.050
plr=1)= 5(0.802) (0.198)* = 0.006
pir 0y~ (0.198)¢ =0.0003

17
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Test mean * 1 s.d.

-1
T

r-! r=2 re=. r=1

Figure 6 Ability Estimates from Raw Score in Relation to Progress
Test A

When a student has an ability of 1.17, the maximum probability of
making an incorrect statement of his mastery status is therefore

; 0.202 + 0.050 + 0.006 + 0.0002 = (.258

This estimate is inflated due to the inclusion of the cases where r=3

and r 2.

DESIGN OF REVIEW TESTS
In the case ot the progress tests, the items for each test had a relatively
lower range ot dificulty. However if review tests are to be constructed by
selecting items from the various progress test item pools, the difficulty
continuum tor addition items ranges from -4 to +4. 1t is possible to
design several review tests to span the continuum as shown in Figure 7.

We can consider one such test where h= - 2.5, w=13.0, and L is to be
determined.

For the progress tests we were able (g, use the characteristics of a nar-
row test 1o determine the value of L.

In the review tests we cannot assume ‘narrowness’ and will have to
determine £ from an assumption about the magnitude of the standard
error of measurement, using’a method proposed by Wright and Stone
(1979, p. 140) in which

sl ("w
T OSEM:
where ., is termed the error coetlicient, SEM the standard error of
measurement and £ the expected relative score. They define the error
coefhicient as
w(l —e™]
“ .. ‘,-rw“l Ae‘(l'!)u]

For the design above we obtain

31 -e)
[l e"!f][l _‘e‘(l‘!),\]

¢ 'm =

v
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P,

-3

-3

|

i

Figure 7 Abiiity Ranges to be Covered by Review Tests

Table 5 Values of C,. for w=3 and f=0.1(0.1)0.9
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Table 7 Item Difficulties Generated for Review Test 1

&

t
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AN e IO

Values tor C,, have been tabulated for various values of fas shown in
Table 5, and the corresponding test lengths for various values of SEM
are shown in Table 6.

A test length of L =15 would not be an unreasonable length for a
review test in terms of the time for administration. If we look at L =15 in
the body of Table 6 we see that SEM ranges from 0.9 (for f=0.1, and
S=0.9) to SEM =0.6.

The formula 6, =H - (w/2L)L +1-2i) for i=1,15 generates the
preferred item difficulties for the 15-item test, as shown in Table 7.

We now have to decide on the items to include in a review test. Table 8
show< the overall review test structure which could completely span the
addition continuum by including items from a number of objectives
pools. The selection is shown in Table 9; the total deviation from desired
ditficulties is 0.00. 0

We are now in a position to calculate the characteristics of review
test 1.

Te«t height is estimated by:

Table 8 Review Test Design to Cover Addition Continuum

Review Test Objectives (codes)

31,32, 33
33, 34, 35
35, 36, 37
37. 38, 39
39, 40, 41
41, 42, 43
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Test width is estimated by:
w=3.5V(Ed?—-Lh?*)/(L-1)

w=3.13
Ability estimates for each raw score are given by:
l—e™
by=h+w(f-0.5+In
l — e"(l'/)w

| —e313s
=-2.50+3.13(/-0.5)+1In e

— g t1-n3al

with standard error”

D3 2

5 = 3.13 |—-e? 3 . _ 7 0.2
115 []'._“elj.'u'qlrl__e-(l-/uuj B [1’_'95.'.‘3;]“:;?(,“.,‘,',7;1

Table 10 presents the ability estimates and standard errors for various 1
scores on this review test.

[f this review test is being used as an instrument to ascertain the
position of a student relevant to the objectives after an extended period
of instruction related to the objectives, then the student’s score can sug-
gest which objectives have been mastered provided that the average
difficulty of each objective is known. Further we can argue that:

(i) r<3indicates that a less difficult review test is necessary;

(ii) 3= r=<12 indicates that student’s ability is in the range of the objec-

tives;

Table 9 Item Selection for Review Test 1

) d,

Item Desired Selected Item number
number difficulty difficulty b, ~d, and objective
1 -39 —3.85 -0.05 9, 31
2 -37 —-3.66 -0.04 2, 31
3 ~3.5 -3.48 -0.02 . (14, 31)

4 -3.3 -333 0.03 (8, 31)

S 3.1 -3.06 -0.04 2, 33)

6 -2.9 -2.94 0.04 (5, 33)

7 2.7 -2.82 0.12 @3, 31)

8 ~2.5 -2.52 0.02 (7, 33)

9 -2.3 -2.27 —0.03 (8, 33)

10 -2.1 -2.12 0.02 (7, 32)
11 -1.9 -1.91 0.01 (11, 33)
12 - 1.7 -1.72 0.02 (17, 32)
13 1.5 -1.49 --0.01 6, 33)
14 -1.3 -1.33 0.03 (13, 32)
15 -1.1 -1.00 -0.10 (18, 32)

O e e
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Table 10 Ability Estimates and Standard Errors for Raw Score Values
on Review Test 1

Raw score

r / Tr b, S

1 0.067 - 5.47 1.06
2 0.133 4.65 0.79
3 0.200 - 4,12 0.68
4 0.267 -3.69 0.63
5 0.333 -3.32 0.59
6 0.400 -2.98 0.57
7 0.466 - 2.66 0.57
¥ 0.533 -2.34 0.57
9 0.600 -2.02 0.57
10 0.667 - 1.68 0.59
H 0.733 - 1.31 0.63
12 0.800 -0.88 0.68
13 0.866 -0.35 0.79
14 0.933 +0.47 1.06

(ii1) r>12 suggests a more dithicult review test relating to other objec-
tives because the student’s ability is beyond the range of these objec-
tives.

USING AN ITEM BANK
OF CALIBRATED ITEMS

Once an item bank or pool is established, we can make the questions and
associated data available to teachers. However, the majority of teachers
in Australian schools do not have ready access to computers and it is
necessary  to provide simplified procedures which will not necd
sophisticated computing tucilities. By contrast, hand-held calculators are
widespread and small programmable caleulators are becoming more
common. Our experience in lecturing to teacher trainees and graduate
teachers indicates that worksheets can assist teachers to collate informa-
tion and to produce refevant statistics. Accordingly we sought to develop
worksheets which would enable teachers to use information from an item
bank to construct tests with known characteristics, to check that their
group of students perform on such tests in a manner consistent with the
pertormance of the reference group used to set up the item bank, and to
scale their own items to the continuum underlying the item bank.
Where the items in an item bank have been scaled on a single con-
tinuum, a teacher may construct either a. test for relatively precise
measurement in a particular part of the continuum or a broader test
which will provide estimates of the range of achievement in that

1%3
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classroom. If desired, both types of test could be used. The results on the
wide range test could suggest the types of item which might be tested in
more detail.

The UFORM procedure referred to earlier in this paper may be used to
estimate the ability associated with each raw score on a test using the item
bank data for each of the items in the bank. (Ability estimates cannot be
made for zero or a perfect score.) This procedure assumes that the items
in the bank are calibrated on a single continuum and it is recommended
that items are uniformly spaced in difficulty for the intended target
population (Wright and Douglas, 1975).

The difficulty of the items selected for the bank is averaged to estimate
the test height, and the variance of the item difficulties is used to estimate
the width of the test. The estimated ability is

b,=h+w(f—0.5)+In(A/B)

where A is the mean difficulty of the items,
w is the estimated test width
/ is the proportion of the items correct
A is b exp(—wf), and
B is 1 - exp[ - w(l-.1].

The associated standard error is

5= [(w/LXC/AB)]
where L is the length of the test and
C is | —exp(—w).

The worksheet for this task (see Appendix 1) is used with a calculator
having ‘¢~ and ‘In’ function keys.

Table 11 shows the results obtained using the worksheet for a test of
five items from an item b. .k with difficulties —0.560, —0.174, +0.012,
+0.197, and +1.573.

If required, the ability estimates may be recalculated for the six-item
test which results when an item of difficulty + 0.975 is added to the five-
item test. Table 12 shows the corresponding results.

Instead of using the worksheet, we can obtain this table of ability
estimates and associated standard errors from convenient tables
presented in Wright and Stone (1979, p. 146). For the example shown
above, the estimates from the Wright and Stone tables are compared
with the worksheet calculations (all correct to 2 decimal places) in Table
13.

These estimates from item bank data can be compared with actual
observations to see whether the predictions provide useful information.
However such a comparison requires a procedure to calibrate items w.th
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Table 11 Person Ability Iisliqpales and Associated Standard Errors
for Various Scores on a Five-item Test

Proportion Ability Standard
Raw score correct estimate error
r i b, s

) 1.430 1.134
). - 0.414 0.932
). 0.433 0.932
) 1.450 1.134

‘Table 12 Person Ability Estimates and Associated Standard Errors
for Various Scores on a Six-item Test

. Proportion Ability Standard
Raw score correct estimate error
r ! b, S5

0.17 - 1,538 1.118
0.33 -0.572 0.894
0.50 0.170 0.846
0.67 0913 © 0.894
0.83 1.879 1.118

Table 13 Ability Fstimates and Associated Standard Errors for
Various Scores

Worksheet caleulations ~ Wright and Stone”

Seore bh. . . h, s,

1.43 1.13
0.41 0.93
0.43 0.93
1.45 113

Mok dnd\lm\c. 1979, Tables 7300, 7.3.2, p. 146.

another group as well as a procedure to check whether both the original
group and the new group react to the items in a consistent fashion. Both
types ot procedure are now described.

CALIBRATION OF ITEMS USING PROX
Wright and Stone (1979) describe a procedure culled PROX which pro-

1%
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vides a Rasch calibration of test items and *approximates the results ob-
tained by more elaborate and hence more accurate procedures extremely
well” (Wright and Stone, 1979, p. 28).

This procedure assumes that item difficulties and person abilities are
more or less normally distributed. ltem ditticulty is estimated with
reasonable accuracy (when compared with more sophisticated computing
procedures) where both person abilities and item difficulties are more or
less symmetrically distrituted around one mode, and the location and
spread of person abilities and the item difficulties are similar.

I'he procedure requires the responses to be listed in a student-by-item
matrix and the calculations are carried out on marginal totals of correct
and incorrect counts for both items and students. (It there are any
students with perfect or zero scores and any items with perfect or zero
suceess rates, these are deleted from the matrix before the calculations.)
This listing of student responses may present the classroom teachers with
a sizable clerical chore. However a class analysis chart after the style of
the CATIM material (ACER, 1976; 1979) allows the teacher to avoid this
clerical work by transferring the actual student cesponses (o a chart.

Using PROX it is possible to calibrate items using a hand calculator
and paper and pencil. Wright and Stone point out that the PROX pro-
cedure has an application in the classroom but, if classroom teachers are
to use such a procedure, it is our view that further assistance needs 1o be
provided. This assistance is provided in the form of a worksheet (see Ap-
pendix 1) which uses marginal totals from a class analysis chart, and an
example of its use is presented in Table 14. When the procedure is ap-
plied to these data, the results shown in Tables 15 and 16 are obtained.

CALIBRATING ITEMS ON TO THE
ITEM BANK SCALE

Lhe procedure for calibrating tcacher-made items on to the same con-
unuum defined by an item bank requires that jtems constructed by the

teacher be administered to a group of students together with a set of

items from the item bank. The items from the iteni bank constitute the
hink. and the quality of this link can be investigated using the procedures

advocated by Wright and Stone (1979, p. 96-116). The quality control of

the link enables the original results obtained by the reference group
(which provided the data on the banked items) to be compared with the
results obtained from the sampled items test. We would expect that the
observed difficulties tor the link items would ditfer from the ditficultics of
those ttems obtained tor the reference group to the extent that the group
of persons being tested is more or less able than the reference group.

“After adjusting for the group difference in ability, the remaining

discrepancies for each item are expected to have a mean of zero (Wright

ERIC s
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Table 14 Data Matrix for I'en Persons and Six Items

Person number
ltem Item

number 1 2 3 4 S 6 7 ] Y 10 score

] I | 1 | | 1 ] 0 1 0 8

2 1 1 1 0 I 0 G 0 0 ] 5

3 I ] 1 0 0 1 1 0 0 0 5

4 1 0 | 1 I 0 0 ! 0 0 5

3 0 | 0 0 0 0 0 0 0 0 I

6 ] 0 0 1 0 0 0 0 0 0 2
Person N=10

ta
to

seore N 4 4 3 3 1 ] ] L=6
Table 15 Item Calibrations Obtained Using PROX

Ny Initial Corrected Standard

frem ltem In -
number sore ¢ calibration  calibration error
1 X 1.386 1.752 -2.399 1.082
2 < 0.000 0.366 -0.501 0.866
3 3 0.0(0) 0.366 - 0.501 0.866
4 N 0.000 0.366 - 0.501 0.866
hl 1 2.197 1.831 2.506 1.443
é 2 1.386 1.020 1.396 1.082

Mean - 0.366
(' variance - 1.573

Table 16 Person Measures Obtained Using PROX

Inttial measure

Person Person Corrected Standard
number wore hoin T measure error
r L r
| N 1.609 2.287 1.557
2 4 0.693 0.985 1.231
3 4 0.693 0.985 1.23]
4 3 0.000 0.000 1.160
s 1 0.000 0.000 1.160
6 2 0.693 (.985 1.231
T 2 ().693 - 0.985 1.23]
¥ ] - 1,609 - 2.287 1.5857
U} | 1.609 -2.287 1.5587
! 1 1.60Y 2.287 1.557

Mean = 0,322
b ovariance = 1,250
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and Stone, 1979, p. H14). 1f both groups react to the test items in a con-
sistent way, then all items are adjusted to the original scale defined by the
item bank reference group data.

T'he worksheet (see Appendix 1) devised for this task uses the data
from the item bank and the data obtained from the group of students for
the link items. (The latter data could be obtained using Worksheet 2 as
described above.) The difference in ability between: the reference group
and the group of students is estimated as the mean of the differences in
difficulty for cach item. The magnitude of the remaining discrepancy is
considered for cach item separately as well as for the set of items from
the bank.

It it is decided that the discrepancies are small enough to be ignored,
then the caltbrations of the teacher-made items are adjusted to the same
extent. If the discrepancies are too large to be ignored, then it may be
necessary 1o conclude that the group of students reacts to the questions in
the item bank in a ditferent way from the group which provided the
onginal item bank data. Further, the differences between the two groups
cannot be accounted for by a difference in ability.

In order to illustrate this procedure, results from a calibration of a
S5-item mathematics test were used to construct two seven item tests,
Results tor these tests on another sample from the same population as
that sampled for the calibration provided ‘observed difficulties’. The
difficulties for the reference group and the sample group are summarized
for two collections of items in Table-17. The table lists the approximate
chi-squared estimates associated with residual discrepancies for each
item. The discrepancies are related to the particular group of seven items
for which the calibration was performed. Test A illustrates an acceptable
linking collection of items since the chi-squared estimate of 7.87 is less
than the critical value of 14.07. Test B items do not appear to be consis-
tent for both the reference group -and the sample group (chi-squared
estimate is 33.88) and therefore Test B is not a satisfactory link. In Test
A, item 24 appears to be a poor item for the link; in Test B, items 13, 49,
and 54 contribute most to the poor guality of the link.

This section set out to describe the procedure for calibrating teacher-
made items for a particular line of inquiry onto a calibrated collection of
items along the same line of inquiry. After finding suitable link items, the
teacher-made items are calibrated onto the existing scale using a simple
translation calculated from the difference between link item difficulties
on the reference scale and the scale obtained on the link test. In develop-
ing the computational steps for this procedure, it has become clear that
we must investigate further those characteristics of an item or groups of
items which could indicate to us suitability for the linking process.
Another area requiring further investigation comes immediately to mind

L
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Table 17 Observed Difficulties for Two Seven-item Tests

Item ltem bank Observed Residval  Chi-squared

number difficulty dlfhculty dlscrepancy estimate
Test A 7 -0.928 -1.224 0.115 0.297
16 - 1.854 -2.106 0.071 0.113
24 --0.314 -0.953 0.458 4.711
39 1.262 1.127 -0.046 0.048
46 0.316 0.326 -0.191 0.819
53 = 0912 0912 -0.181 0.736
55 1.873 1.918 —0 226 l 147
Test B 11 -0.584 - 0.857 0.356 2 624
13 -2.122 -2.791 0.752 11.711
19 -0.954 -1.131 0.260 1.400
38 ~-0.185 -0.209 0.107 0.237
45 0.482 0.754 —0.189 0.740
49 1.002 1.696 -0.611 7.731
54 1.779 2 537 —0 675 9.435

when we consider, if two seven-item tests produce such different link
qualities, whether they also produce different ability estimates for the
group to which the items are exposed. The answer to this investigation
may have implications for item banking and although it would be the
substance of another paper a preliminary analysis is reported in Table 18.
Table 18 shows the estimated abilities for each raw score and the cor-

Table 18 . Ability Estimates and Associated Standard Errors for
Two Seven-item Tests

Raw Estimated from

- seore calibration dala Observed
b, 5 by S
Tesr A } - 2.16 1.17 -1.99 1.18
2 <1.07 0.96 - 1.06 0.98
3 0.22 0.90 ~0.32 0.92
4 0.58 0.90 0.37 0.91
5 1.44 0.96 1.07 0.95
6 2.53 1.17 1.96 1.16
lest B | -2.43 1.17 -2.19 1.24
2 - 1.34 0.96 -1.17 1.02
3 () 48 0.90 -0.37 0.95
4 0.32 0.90 0.38 0.96
5 117 0.96 1.19 1.02
6 2.26 1.17 2.20 1.22
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responding observed abilities for the second sample on both the
calibrated and observed data. The difference between ability estimates
from the four sources are well within acceptable tolerances when we
examine the respective standard errors, When this area is investigated
completely we would expect to develop instructions for classroom use of
established calibrations of items.

SUMMARY

It has been shown that a pool of items which has been calibrated onto an

ability scale using Rasch analysis can be used to assist classroom assess-

ment in two ways. The first application involves the production of pro-

gress and review tests by a test development group. The users of these

tests do not necessarily have 10 understand the underlying theoretical

structure of the tests, but they must know the simple rules to use in inter-
. preting raw scores of students on the tests.

I'he sceond  application involves the user with decision-making
associated directly with the pool of items. Although many easy-to-tfollow
worksheets were developed for calibration of items, estimation of
abilities, und use of the established item pool, it is anticipated that the
user would need to be aware of the assumptions and concepts of Rasch
measurement if the sheets were to be used. In either case the use of Rasch
analysis has been directed towards the provision and development of ob-
jeetive measuring instruments in which the teacher has a great deal of
Hlexibility in choosing the individual questions that match the teaching in-
tentton,
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: APPENDIX I
Worksheet 1:  Calculation of Ability Estimates from ltem Bank Data

o .
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Worksheet 2:  Calibration of a Test Using PROX (Part 2: Persons)

(&) )] (10 (I (11a) (12) (13)
Inital Standard

measure Corrected error
Person | Person b= 1n r measure

number | score . L-r : hX X\r(L-7r)

R O R S O

Q ‘ 1
ERIC |
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Worksheet 2:  Calibration of a Test Usiug PROX (Part 3: Calculations)

From Part |

an - Column (4) Total E:l - E_'] . =
Mean, = =0 of Ttems - Pmean)t =[]

L

Column (4a) Total - L % (mean,)?, [ J - L 1 X [ ]

LT : .

Variance, = U=

T —

From Part 2

) Column ¢11) Tortal [:] 2
Mean, . . an,)? -
lean No. of persons [: 4 [: » (mean,) S

Column (11a) Total - Nx (mean,)? [ ] I l x[ j
NoT )
1

Varance, = b

L

2.89

L 1]

8.35

» et . *
XO- Person ability expansion tactor :

due 1o test width

N —

Y Item ditheulty evpansion factor 2.89
due to sample spread -
8.35
v
Q s

ERIC 19.;

CAR 4
Aruitoxt provided by Eic:




Development and Analysis of Classroom Tests

(1) (2)

ltem
[tem bank

number |dithculry

R ol A e A S A PR

19
40

A noo ol gems

N onos ol persons

y N\
I T

ERIC

Aruitoxt provided by Eic:

APPENDIX 11

Worksheet 3:  Comparing a Sample Group with a Reference Group

(3) 4) (3)

Ob-
served (4)-

ditficulty [(2)-(3) | Mean

Totab (4y

Mean

(6

187

(N (8)
Is (7)
< 3.84?
(6) x Q (Yes/No)
Fotal (7)

Is Total {7)< R from Table A?

Yes No

19,

o
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Table A
K 2 3 4 5 6 7 8 9
R 599 7.82 949 1107 1259 14.07 1551 16,92
K 0 112 13 s
R 1831 19.68 21.03 22.36 23.68 25.00
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The Use of the Rasch Latent Trait
Measurement Model in the Equating
of Scholastic Aptitude Tests

George Morgan

“This paper reports the results of an exploratory investigation which at-
tempted to assess the capabilities of Rasch’s Simple Logistic Model in the
calibration and cquating of final and trial forms of the Australian
Scholastic Aptitude Test (ASAT). The investigation had two main aims:
(1) to determine to what extent the items in the final and trial forms of the
ASAT can be successfully fitted to latent variables of general scholastic
aptitude determined by calibrations of iteins in whole tests and various
sub-tests, based primarilv on content, and (ii) to determine whether
equatings of ASAT-forms-can be undertaken-successfully at the whole - . .. ..
test or sub-test levels. »

The items in the ASAT? are grouped into units, each unit being con-
cerned with a particular theme. A unit begins with stimulus material,
presented in a variety of forms, drawn from the four broad subject (con-
tent) arcas of humanities, social science, mathematics, and science, and
is followed by a group of binary-scored, multiple-choice items related to
the stimulus material. The items in the ASAT are designed to measure a
wide range of abilities and skills, such as those concerned with the inter-
pretation and comprehension of scholastic materials, that are relevant to
academic courses at the Year 12 level of secondary education and at the
tertiary tevel. When the tests are constructed, care is taken to avoid using
materials directly related to Year 12 syllabuses.

The ASAT is an omnibus test of scholastic aptitude but it does not
refate to any particular theoretical model. Broadly the test’s structure is
determined to a large extent by the pool of abilities and skills underlying

F The ASAT is a secure test, but @ booklet containing a sample collection of items may be
abtained fer inspection.
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the particular items which happen to be incorporated in the test, when a
form of the test is constructed. .

Although a considerable literature exists on the ASAT (Lees, 1978), .
for the most part it is concerned with the test’s power to predict success in
tertiary cour<es and its use as a scaling instrument.

It appears that the earliest investigation into the psychometric proper-
ties of the ASAT was undertaken by McGaw and Greddon (1973). A few
years later a comprehensive study of the psychometric properties of the
1973 version of the test, ASAT-B, was carried out by Bell (1977) and,
more recently, Bell (1979) factor analysed the 1977 version of the test,
ASAT-F. He found that the first principal component of ASAT-F ac-
counted for 10 per cent of the test variance. These studies indicated that
the ASAT is factorially complex, and that at a global level the test can be
characterized by a general ability factor, and more specifically by factors
representing quantitative and verbal abilities.

In his study of ASAT-B, Bell (1977) analysed the test using traditional
item analysis procedures as well as those based on the Rasch Simple
Logistic Model. He found that about two-thirds of the ASAT-B items
coaformed to the Rasch model. More recently, Bond (1978) applied the
Rasch Simple lLogistic Model in the multiplicative binomial framework
in an analysis of ASAT-F. He suggested that Rasch measurement of the
ASAT should be based on the units rather than on the items, because the
items tend to lose the part played by the stimulus material of each unit.
Eleven of the eighteen units in the test were callbraled by hlm to a

-unidimensional latenttrait of general ability.

With a factorially complex test like the ASAT, it is not dcar whuh
group of items in a form should be calibrated together in order to permit
satisfactory equatings between tforms. Obviously, basing the equatings
on the c¢stimates from a Rasch multiplicative binomial analysis of the
units in forms is impracticable, because the number of link units required
for an adequate analysis would require the construction of inordinately
long tests.

Even so, if cquatings between ASAT forms are 10 be based on the in-
dividual items in the test, it is not clear which items should form the
links. Reckase (1979) showed that for factorially complex tests, the
Rasch Simple Legistic Model estimates the sum ot the factors when there
is more than one independent factor, and estimates the first dominant
factor when it exists. In_the latter situation, he found that stable item
calibrations can be obtained even if the first factor accounts for less than
10 per cent of the variance. These findings suggest that stable ASAT
cquatings might be obtained at the whole test level and, if so, the various
test forms could be equated within the existing framework of test
development and application.

]
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]

Currently the test’s main function is to act as a uni-valued variable in
the scaling of Year 12 public examination results or teacher assessments
of student achievements where such examinations do not exist. If the
Rasch Simple Logistic Model could be used to equate the ASAT forms at
the whole test level, equated scores could be derived from the different
forms of the ASAT and then be applied in the scaling process, thus
bringing the effects of the scaling to a common base. Otherwise equatings
may need to be undertaken at a sub-test level determined by criteria like
content homogeneity or pure tactor structure.

PROCEDURE

The ASAT program of test development has evolved over a number of .
years and is now well established. It provides a somewhat routine
schedule to be followed in the construction and trial testing of each form
of the test. Thus, beginning with a pool of units in each of the subject
arcas of mathematics, science, humanities, and social science, the units
are processed and, from these, units are selected for inclusion in the trial
forms. The trial forms are then administered to a sample of Year 12
students. Subsequently, using classical test theory principles of test con-
struction in conjunction with expert considerations about the content
and kinds of abilities and skills measured by the items, units are selected
to make up the final form of the test. :

In formulating the course of the investigation, the intention was to
allow work to proceed within the framework of the existing program of

2

“test development outlined abové. This seemed a profitable course to

follow, since preliminary calibrations of the items in the whole test anc
some sub-tests of the ASAT-G showed that appreciable numbers of the
available pool of items were satisfactorily fitted to the Rasch latent
ability continuum associated with the whole test and the sub-tests based
on the four broad subject areas.

An alternative course would have involved the creation of Rasch-like
forms from the outset, perhaps aiming to have forms of equal length and
containing sufficient numbers of link items to ensure satisfactory
equatings of the forms. However, such an approach would have entailed
going beyond the current practice of test development as outlined in the
test’s specification (ACER, 1978), and this would need to be agreed to by
the ASAT users. Nevertheless it seemed at the time that an exploratory
investigation within the existing test development framework would be
able to shed some light on the kinds of results that might be expected
when Rasch measurement techniques are applied to the ASAT.

Whole Tests and Sub-Tests
The investigation was concerned with equating two final forms, ASAT-G'

Q 197)
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items
100 -
100
T

. Number of Number of

students

2345
2422
246

Mean
seore

Brief Statistical Description of ASAT Forms

~ Standard

deviation

16.0
14.8

KR 20
reliability

0.93
0.91
0.79

282
249
248

0.78
0.80
0.80

W 72

M 72

CData tor ASAT-Goand ASAT-1 came tfrom students in the Australian Capital
Territors: data tor forms V, W, Y, and Z trom students in Tasmania and South Australia
who took part in the trial testing of ASA -1,

and ASAT-H, through four trial forms of ASAT-H. Equatings of forms
were analysed using various combinations of the items which were in-
dependently calibrated. Table 1 provides a brief statistical description of
these torms.,

Table 2 shows the distribution of items in each form across the four
subject areas. The items in each of the six forms were grouped into a
wholc test, consisting of all the items in the form, and eight sub-tests
which were: Mathematics/Science, Humanities/Social Science,
Humanities, Social Science, Mathematics, Science, Quantitative, and
Verbal. ‘Except for the Quantitative and Verbal sub-tests, each sub-test-
contained all items in the relevant subject area(s) that were available.

In constructing the Quantitative and Verbal sub-tests, the following
arbitrary criteria were used. Humanitics items were assigned to the Ver-
bal sub-test and mathematics items to the Quantitative sub-test. Ot the
science and social science items, if the point-biserial correlation between

Table 2 Distribution of ltems in ASAT Forms According to Subject
Area

Percentage in subject area

Total:
Social number of

Form Humanitics science Mathematics  Science items
ASAT-G 30 20 30 20 100
ASAT-H 30 20 20 30 100
vV 48 0 24 28 71
W 32 22 18 28 72
Y 26 25 24 25 72
/. 32 26 28 14 72
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an item and the Mathematics Science sub-test was greater by 0,03 than
the point-biserial correlation between the item and the Humanities/
Social Science sub-test, the item was assigned to the Quantitative sub-
test. Conversely items were assigned to the Verbal sub-test. In cases
where a decision could.not be made on the basis of correlations, items
were classified on the basis of their face validity. A tew items could not
be classified using these criteria and hence were omitted from these sub-
tests.

Link Structure

The following list gives the length of each form, the subject area of the
link items in the form, and the name (in parenthesis) of the form(s) 1o
which it was linked. Forms V, W, Y, and 7Z are the trial forms of
ASAT-H used in this study.

Form V 71 items 16 humanities items, 10 science, and 35
mathematics items (Form H)
10 humanities items (Form 7Z)
Form W 72 1tems 14 humanities, 6 social science. and 9 science
items (Form H)
5 science and § mathematics items (Form Y)
FormYyY 72items 10 social science, 6 science, and 4
mathematics items (Form ()
3 science and 3 mathematics items (Form H)
T0 humanities items (Form V) ~ ’
Form Z 72items 10 humanities, 5 science, and 5 mathematics
items (Form G)
4 science and 6 mathematics items (Form )
5 science and 5§ mathematics i.ems (Form W)
Form G 100 items 10 social science, 6 science, and 4
(ASAT-G) mathematics items (Form Y)
10 humanities, 5 science, and § mathematics
items (Form Z)
Form H 100 items 16 humanities, 10 science, and 5 mathematics
(ASAT-H) items (Form V).
14 humanities, 6 social science, and 9 science
items (Form W)
§ science and 3 mathematics items (Form Y)
S science and 5 mathematices items (Form Z)

F'his arrangement of link units among the forms allowed the investiga-
tion of férm cquating at the whole test level and at the Mathematics,
Science, Quantitative, and Verbal sub-test levels. The link structure iy
shown schematically in Figure 1. '

210,
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In order to preserve the unit structure of the ASAT when equating
forms, entire units were initially selected 1o provide the links between
forms rather than individual items. In all cases the link units had average
item facilives and average iem point-biserial dnscrlmmallon values
which were neither 1oo large nor too small.

Given the amount of material to be trial tested, the samples of students
available for analysing the total test data, and the availability of a
relatively short testing time (of'1 % hours), it was not possible to include
more link items within the trial forms.

Calibration Samples

For the ASAT-G and ASAT-H, the calibration samples were (wo
separate groups of randomly selected Year 12 students who sat the tests
in the Australian Capital Territory in September of 1978 and 1979,
respectively; for Forms V, W, Y, and Z the calibration samples were
Year 12 students who participated in the trial testing of the ASAT-H in
Tasmania and South Australia in March 1979,

Computer Program for Rasch Measurement

The program used was CALFIT-3, a computer program adapted by R.
Wines and D. Keunemann from one designed by B. Wright and R. Mead
(Cornish, 1976).

CALFIT-3 estimates item difficulties and person abilities of the Rasch
Simple Logistic Model using the corrected unconditional maximum
likelihood statistical procedure (Wright and Panchapakesan, 1969). In
addition it estimates how well an item conforms to the Rasch model.
CALFIT-3 also estimates a probability of sub-test fit which indicates how
well a group of items contorms to the model, as items are accumulated
one by one into a sub-test, starting with the best fitted item.

The program performs its calculations in two cycles. First it calibrates
all the items, omitting items which evervone answers correctly or
evervone answers incorrectly, and then estimates person abilities after
deleting persons with zero or possible maximum raw score. In the next
cycle it gathers the best-fitted items, according to a probability of sub-test -
fit cut-off provided by the user, recalibrates this group of items, and pro-
duces revised estimates of person abilities.

Method of Equating or Linking

This was the Rasch common item method of equating tests which is
described in detail by Wright (1977) and Wright and Stone (1979).
Suppose Test ¢ and Test £ share a common set of A items, called the
link items. In the Rasch common itern method of equating two tests, the
scale of the latent variab'e of one of the tests, say Test b, is adjusted 10

O 2 l,‘ ,‘}
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the scaie of the latent variable of the other test, Test a, using the
difference in average estimated difticulties of the common items from the
two separate calibrations to translate the difficultv estimates of Test b to
the scale of Test @. Proyiding the common items and the other items in
both tests conform to the Rasch model, and are calibrated o the same
latent variable, this method yields a pool of calibrated items whose"
estimated difficulties are on a conmimon scale.

A summary of the main clements of this method, proposed by Wright
(1977) and Wright and Stone (1979) follows.

1 Begin by separately calibrating the itéms in Test ¢ and Test &, which
give two independent sets of estimated item difficulties for the link items.
Let d,, and d,, represent the estimated item difficulties of the ith item in
the link, in Test ¢ and Test b respectively.

2 Calculate the translation constant which effectively translates all
item difhculty estimates from the calibration of Test b to the calibration
scale of Test «, using the formula

N
L= Y (d.—du)/K.

This translation constant is the difference in average estimated item
dificulties of the common items in the two calibrations. The standard
error of the estimated translation constant, SE(/,,) is approximately
3.5(NK) where N is the calibration sample size of the link items and K
15 the number of items in the link. Unfortunately this expression for the
standard error of the translation constant applies to the situation where
the link items are calibrated in a separate test, taken by N examinees. In
this investigation the link items were placed in two separately calibrated
forms and hence the tormula did not apply because the calibration
sample sizes diftered for the two forms. However, so as to obtain an ap-
proximation tor this error the valuc of N in the expression was arbitrarily
taken 1o be the smaller of the two calibration sample sizes.

3 The validity of the link between Test ¢ and Test # may be tested
using the statistic

N oK .
L (/m"(/nn “an)y
12k 1) ( : v )

which is distributed approximately as a chi-square with A degrees of
frecdom. Alternatively the validity of the link may be tested by determin-
ing the mean and standard deviation of the standardized residuals
do = dy =1,
Sn
where S, = (SE(d,)? + SE(d,,)?) , to see if Lhese estimate the expected
mean equal to zcero and expected standard deviation equal to 1.

ERIC <l
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4 The validity of an item in the link may be tested using the statistic

N K
12K-1

which is disiributed approximately as chi-square with one degree of
freedom. ’

5 Alternatively the validity of the link and the items in the link may be
ascertained visually by plotting the estimated difficulty estimates of the
common items from the two calibrations, and observing the extent to
which the points are scautered about the line of perfect agreement.

6 If three or more tests are linked so as to form a closed loop, the con-
sistency of the links may be tested by summing the corresponding
translagion constants around the loop and examining whether this sum
estimates zero within one or two standard errors of this sum. For
example, if Test ¢, Test b, and Test ¢ form a loop, then

(d.—d,—1.4)?

Lo+t +1,=0

The standard crror of the sum may be estimated using the expression

3sd Lot b
NuKa N K, N.K.,
where, in this study N,,. etc. were taken to be the smaller of the two

calibration sample sizes, and K,,. etc. are the number of common items
in the links.

RESULTS AND DISCUSSION

Only the calibration results based on the whole test, and the
Mathem: acs, Science, Quantitative, and Verbal sub-tests are presented
here. The results for the other sub-tests were similar, and have con-
sequently been omitted.

In all the item calibrations undertaken, the major reason for some
items not conforming to the Rasch model was the item discrimina-
tion — the observed discriminations were cither too largér they were too
small, their values departing markedly from the model valuc.

Table 3 reports the percentages of fitted items of tests and. sub-tests ac-
cording o the subject area of the items. Considering the results for whole
test calibrations, and all items in the form, greater percentages of items
in the trial forms were fitted than in the Hnal forms, ASAT-G and
ASAT-H. This resuit is not unexpected for it reflects the sample size sen-

sitivity of the chi-squared method ol assessing item and sub-test fit. The

larger the calibration sample size, the more likely witl small discrepancies
between the observed and estimated item characteristic curves be found

215
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'Tahle 3 Percentages of Fitted Items of Tests and Sub-tests Accord-
ing to the Subject Area of the ltems.

Percentage fitted Number of items in subject area

Test. Social :
Sub-tew Form  Humanities science Mathematics  Science Ali
Whole ASAT-G 57730 75720 53730 70/20 627100
test ASAT-H 73730 7020 50/20 97/30 757100
v 94734 76/17 90,20 89/71
W 87/23 9416 77/13 90,20 88/72
Y 95719 83-18 100/17 94/18 93/72
Z 83723 89/19 80720 80710 83/72
Mathematics  ASAT-G 63/30
sub-teat ASAT-H 80/20
vV 76/17
W 77/13
ﬁ’ 88//17
. Z. 90,20
Science ASAT-G 9020
sub-test ASAT-H 97,30
v , 90,20
W ) 100,20
Y 89/18
VA 100710
Quantitative  ASAT-G 7914 57730 62/13 6357
sub-test ASAT-H 1004 65720 92 26 8230
. vV ) 5917 8211 68,28
™ W 83:6 - 92/13 89/18  89/37
Y 1003 9417 - 100413 9733
/ 676 90,20 50:8 76,34
Verbal ASAT-G 70 30 83. 6 ) 8316 7442
sub-test ASAT-H 83-30 85 13 1004 8547
vV 94 34 1009 9543
W 91 23 10010 100. 2 9435
Y 95 19 100 12 ) 1008 9s5,36
7. 78 23 1002 1002 R6. 37

Cur ofl tor probability of sub-test it was 0,07,
\

to be signiticant. Actually the calibration sample sizes of ASAT-G and
ASAT-H were appreciably greater than those of the trial forms. The
percentages of items fitted in the trial forms were about the same.
Morcover the ASAT-G items fitted less well as 2 group than the ASAT-H
items, beeause fewer humanities and science items in the test conformed
to the model. In terms of the subject area, the group of ttems which fitted
worst of all were the mathematics items. On the basis of these results it
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seems, perhaps with the exception of the mathematics items, that accep-
table percentages of items were fitted from the pool of items available in
cach form. Obviously, had the pools of items been sufficiently large it
would have been easy to calibrate and fit Rasch-like items to give
calibrated whole tests of any desired length.

The results in Table 3, for the calibrations of the items in the Quan-

titative and Verbal sub-tests, indicate that generally slightly more items

were fitted than in calibrations based on the whole test. However, the
pattern in the percentages of fitted items, according to the subject area of
the items, was not entirely consistent across the forms. In some cases a
greater percentage of items was fitted in a subject area than was the case
with calibrations based on the whole test, and in some cases the situation
was reversed. In the Quantitative and Verbal sub-tests there was no ob-
vious pattern in the subject areas of the better fitted items. That is, the
rank order of the better fitted items in both sub-tests did not show a pat-
tern of preferences for any of the subject areas from which the items
were drawn.,

Calibrations of items in the Mathematics and Science sub-tests in
general fitted greater percentages of the available items than did calibra-
tions based on the whole tests, For example, 10 per cent more
mathematics items in ASAT-G were fitted in calibrations based on the
‘\Luhcmdliu sub-test, and 30 per cent more were fitted in ASAT-H than
in the calibrations based on the whole tests.

A tentative generalization is that a greater percentage of ASAT items
will conform to the Rasch Simple Logistic Model, if the items in cach
subject arca of the ASAT are calibrated independently. Apparently the
items in cach subject are more closely represented in terms of a
unidimensional latent variable, from the point of view of the Rasch
Simple Logistic Model, than are the items in the ‘impure’ sub-tests which
contain items from two or more different subject areas. The problem of
dimensionality is not simply a matter that deals with the subject area of

“the items, but rather one of identifying those abilitics and skills, forming

the laient variable, that arc common to the group of items which must
cxplain consistent examinee performance on the test.

Table 4 presents statistics of item difficulty estimates of the fitted items
for the whole and sub-tests calibrated. The mean of the item difficulty
estimares is zero in cach case, and fixes the origin of the calibration scale.

At cach testsub-test calibration level, the ranges of the estimated item
difficulties, for most forms, are quite similar to each other. This, together
with the tact that the standard deviations of the estimated item difficulty
estimates are much larger than the average standard errors of these
esiimates, suggests that the items in the tests, sub-tests were sufiiciently
scattered on the calibration scales to give the latent variables direction. It

2
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_ Table 4 Calibration Results for Fitted Items® of ASAT Forms According to Test/Sub-test Calibrated
Statistics of item difficulty estimates® s
Percentage - T TTT TS s m - Calibration
Test/ of fitted Average sainple
Sub-test Form liems dwin dmax Range SD SE(d) size
Whole ASAT-G 62 -2.26 2.36 4.62 0.91 0.13 312
test ASAT-H 75 -2.05 1.56 3.61 0.71 0.12 308
v . 89 -2.98 2.11 5.09 0.96 0.14 240
w 88 -2.07 2.00 4.07 0.87 0.14 247
Y 93 -1.64 1.83 3.47 0.86 0.14 241 3
Z 83 -2.92 2.18 5.10 0.94 0.14 238 2
Mathematics ASAT-G 63 -1.45 1.80 3.25 1.04 0.13 336 3
sub-test ASAT-H 80 -1.22 1.75 2.97 0.85 0.14 309 'E
\% 76 -1.53 1.33 2.86 0.98 0.19 192 (<)
w 77 -1.83 1.60 3.43 1.21 0.21 147 b3
Y 88 -1.72 1.04 2.76 0.80 0.15 225 3
Z 90 -3.42 ~2.24 5.66 1.62 0.18 231 3
Science ASAT-G 90 -2.04 1.41 3.45 1.03 0.13 303 'S
sub-test ASAT-H 97 - 1.88 1.60 348 0.74 0.13 288 <
Vv 90 -2.69 2.52 5.21 1.14 0.15 232 . 3
w 100 -1.41 0.98 2.39 0.64 0.15 239 g
Y 89 -1.80 1.69 3.49 0.88 0.15 238 g
S Z 100 -0.74 0.81 1.55 0.54 0.15 232 a
Quantitative  ASAT-G 63 -1.95 2.35 4.30 0.97 0.13 304 3
sub-test ASAT-H 82 -2.16 1.60 3.76 0.70 0.13 343 g
\% 68 -1.77 1.71 3.48 1.01 0.17 225 ~
w 89 -2.29 1.92 4.21 0.95 0.15 . 236
Y 97 —-1.58 1.65 3.23 0.76 0.15 236
Z 76 -3.30 2,18 5.48 1.34 0.15 225
Verbal ASAT-G 74 -2.12 1.38 3.50 0.91 0.13 280
sub-test . . ASAT-H 85 -1.43 1.28 2.71 0.66 0.12 345
\% 95 -2.73 1.65 4.38 0.89 0.14 235
w 94 -1,53 1.62 3.15 - 0.80 0.14 247
3 . Y 95 L -1.50 1.48 2.98 0.88 0.15 . 237
]: TC Z 86 -1.31 1.83 314 o ‘0 0.14 238
*Cut-off for probability of sub-test fit was 0.01. * Measured in logits. S Td
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appears that cach torm was somewhat successtul in providing enough
items for cach test sub-test, providing usctul vardsticks against which
the abilities and shills of esaminees could be assessed in the continuum off
the relevant Latent variable. However, the cffective ranges ot the
estimated item ditheulties are not as large as were expected for an omni-
bus test like the ASAT. Tt is not surprising that the ASAT test items
measure scholastic aptitude along a narrow range of the potential
scholastic continuum, because the test construction procedures currently

inuse seleet items with factlities centred around 38 per cent and generally

exclude items whose tacilities are below 20 per cent or greater than 80 per
cent,

Table 5 shows the range of examinee abilities for ASAT-G and
ASAT-H at the test sub-test calibration levels. Without exception, the
range of estimated abilives was greater than the range of estimated item
dithiculties. The match between estimated abilities and estimated item
ditfrcultics, measured in terms of their overlap, was not entirely satistac-
tory for etherient measarement practice. As can be seen in the examples of
ASAT-G and ASAT-H (Tables 4 and 5), the whole tests and sub-tests,
with the exception of the Mathematics sub-tests, were somewhat 100 casy
for the catibratron sample. In the case of the Mathematics sub-tests, they
were too dithicult for some students, matehed to the abilities of some, and
far too casy tor the rest of the calibration samples. Similar results were
obtained with the inal forms.

Equating Analyses ] .
Untortunately, as it turned out. insufficient numbers of link items were
fitted 10 some torms, and this undoubtedly affected the validity of lhc
subscquent equating analyses, )

I'he results of the equating analyses, tor the links illustrated in Figure
b, arc reported in Table 6. The forms have been statisticaily linked at the
whole test level, and the Mathematics, Science, Quantitative and Verbal
sub-test levels. Further details of the results of equating are given in
Fables A1 to A4 in the Appendix to this paper.

In Table 6 are reported estimates of the translation constant ¢, and its
estimated standard crror SE(¢,,), for the situation where Form « is linked
to the calibration seale determined by Form b, The standard deviation of
the ditference in the estimated item difficulties of the link items in the two
independent calibrations, SIXd, - ), provides a measure of the
coherence of the two sets of estimated item difficulties. The smaller the
SDUd,  d.), the fess noise’ thete s in the link. Links with a lot of noise
might result from calibrations which have defined two ditferent latent
variables, perhaps to the extent that once or both calibrations were based
wopart on estrancous variables.

¢ <l
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Table 5 Estimates of Range of Examinees” Abilities for Fitted Items of Tests/Sub-tests of ASAT-G and

ASAT-H . :
Estimarted
Minimum ) Maximum range of
) : Min examinecs’
FForm Test Sub-test b Raw score b Raw score SE(h) abilities ;!
]
ASAT-G Whole test 1.43 14 378 60 0.28 §.21 T
' Mathematics ) |
sub-test ~2.49 2 3.35 18 0.51 5.84 3
Seience <
sub-test - 193 3 3.20 17 0.52 513 3
Quantitative 3
sub-test - 1.66 7 4,05 35 0.36 5.71 s
Verbal =
sub-test - 1.91 N 3.71 30 0.39 5.62 5
ASAT-H  Wholce test -1 20 2.64 69 0.24 3.75 8
Mathematics =
" sub-test - 217 2 3.02 15 0.54 5.19 2
Science ‘ 3
sub-test - 173 5 2.35 T2 0.39 4.08 3
Quantitative . :
stb-test - .58 8 318 s 033 4.73
Verbal

sub-test 1.06 It 2.09 18 0.33 3.15

Measured in ogits. . . . . I

ERIC . | 240
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Table 6 Results of the Equating Analyses

Test

. Sub-test

Whole 1est

Mathematics
sub-test

Science
sub-test

Quantitative

sub-test

Verbal
sub-test

“Form ¥ hnked to the scale determined by Form G. _ ]
»~ OFf the 20 link items originalty calibrated, the 12 best fitted items were used in the link

canalysis,

Only the better fitted link items were selected for caleulating the
transiation constants. Some of the links proved to be very tenuous, con-
sisting of only two or three items, but the estimated translation constants
for these links were in general agreement with other translation con-
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stants, as was shown in the assessment of link coherence.
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The Improvement of Measurement

Since the standard error of a translation constant is approximately in-
versely proportional to the product of the number of items in the link
and the size of the smaller calibration sample, a link with a few items
could sl give a respectable standard error providing the sample was
large enough. But it seems too much to hope that links consisting of a
few items can be stable in most practical sinrations, especially it the links
contain much noise.

An interesting result of this investigation is that the translation con-
stants 2t the tese sub-rest levels are mostly small, and in many of the
equatings closer than about three standard errors from zero.

Examples of Equating Analyses

To illustrate the process of equating ASAT forms, results are presented
for the cquating at the wholc iest tevel of Form W to the scale determined
by Form Z, and for the equating at the whole test level of Form V (o the
scale determined by Form Y. '

Separate calibrations of items, using test data from the calibration
samples, were carried out for the four forms, producing item difticuhy
estirinales and estimates of their standard error. The number of students
in the calibrations were: 247 for Form W, 238 for Form Z, 241 for Form
Y. and 240 for Form V. Sixty-two of the'items of Form W and 59 of the
items of Form 7 were successfully calibrated using a probaoility of sub-
test fit cut-ofl equal to 0.01, white for Forms Z and V the number of
items successtully calibrated were 60 and 63, respectively..

Equating Form W 10 Form 7

ltems 37 and 727 of Form Z and items 72W and SW of 7 orm W were
omitted from the equating process because they failed to it the Rasch
model in one of the separate calibrations. ltem 687 of Form 7, (item IW
of Form W) was omitted becausce it fell outside the 95 per cent confidence
region (see Table A1),

Consequently, of the original ten items in the link, seven were used 10
caleulate the equating constant. Table ALl sets out the stages in the
caleulation ot the equating constant (1., - 0.19), and the test of the
validity of the link, The Hok is statistically valid since the standardized
residuals in Table AT are distributed with approximately zero mean and
approvimately unit standard deviation. The obtained mean ( - 0.05) and
standard deviation (0.82) do not differ appreciably from the expected
values.

The two estimated dithculties of the link items were transtormed to a
common scale determined by Form Z, first by adding the translation con-
SNt to tie estimate ¢, of Form W, and then finding the average of this
new value and the estimates .. These averages (indicated by
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superscript®) are shown in Table A.2 under &, and d. In transforming
the rest of the items in the two forms to a common scale, difficulty
estimates of items in Form Z not in the link remained unchanged, while
difficulty estimates of items in Form W were increased in value by 0.19
(the translation constant).

Equating Form V to Form Y

ltem 68Y of Form Y and item 6V of Form V were omitted from the
cquating process becausc they failed to fit the Rasch model in both
calibrations. ltem SV of Form V (item 67Y of Form Y) was omitted
because it fell outside the 95 per cent confidence region (see Table A.3).
Only eight items were used to calculate the equating constant and to test
the vatidity of the link. Tables A.3 and A.4 show the results of the link-
ing exercise for Forms V and Y.

Consistency of the Links

Figure 1 shows a number of closed loops joining three or more of the
forms at the whole test and Mathematics, Science and Quantitative sub-
test levels. 1f the sum of estimated translation constants for a certain
loop should estimate zero within one or two standard errors of the sum,
the links in the loop are said to be statistically consistent. In cssence this
kind of information supplies additional support for the validity of the
links making up the loop.

Table 7 shows this sum and its associated standard error for eleven
loops. In all cases, except loops containing the link Y—V at the wholc
test level and Loop 11, this sum is within one standard error of zero. In
Loop 11 the sum is approximately one standard error away from zero. It
appears that the links in these loops, at the test/sub-test calibration
levels, are consistent at least in terms of the criteria proposed by Wright

- and Stone (1979).

The loops contaimng the link Y —V appear to be inconsistent. Since
the link items in Y — V which comprise a unit of 10 humanities items. arc
the first unit in Form V and the last unit in Form Y, it is possible that the
position of the unit in the two forms affected the estimation ot the
translation constant. Indeed the average facility of the link items was 40
per cent in Form Y and 57 per cent in Form V: and for the cight best
Atted items it was 43 per cent and 63 per cent, respectively. The difterence
in individual item facilities was almost constant between the two forms,
ranging between 15 and 20 per cent. Morcover both calibration samiples
were comparable in terms of their composition. The relatively large
translation constant reflects the fact that the link items in Form Y were
estimated to be more difticult than in Forni V. These results suggest that,
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Table 7 FEvaluation of the Consistency of the Links in the Loops Displayed in Figure 1

Standard error -

Sum of the of the sum ot ~

Loop . “translation the translation Py

Test- Sub-test nuniber Loop constants constants ~
Whole test ] G=Y-V-H-W-7-G -1.08 0.39 (inconsistent)” §
2 G—-Y-V-H-7-G -1.13 0.39 (inconsistent) <

.3 G=Y-H-W-Z-G ~0.04 0.39 3

4 G—-Y—-H-Z2-G ~-0.09 0.39 R

5 Y-V—-H-Y 102 0.26 {inconsistent) 3

6. Z—-W-H-7 - 0.05 0.26 . &

Mathematics z
sub-lest 7 G=Y-H-7-G - 0.02 0.51 "
Science , 8
sub-test 8 Z—-W-H-2 0.22 0.31 5
Quantitative 3
sub-test 9 G=Y—-H-W-7-G 0.19 0.52 R
10 G-=Y-H-2-G -0.15 0.44 &

11 Z—-W—-H-2 -0.34 0.28

* The links in the loop are consistent it the sum of the translation constants estimates zero within one or two standard errons,
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Equating of Scholastic Aptitude Tests 207

in this case, the item calibrations and form equatings based on the trial
test data may be somewhat unreliable.
. CONCLUSION

The results obtained in this investigation indicate that it is feasible to
calibrate the ASAT and to equate its forms using the Rasch Simple
Logistic Model. However, if the ASAT test is to be prepared on the basis
of Rasch measuremeni principles, the existing prograrn of test develop-
ment, as exemplified in the test's list of specifications, will need to be
modified to allow the preparation of Rasch-like tests. From the percen-
tages of firred items at the whole test and sub-test levels, it is clear that
larger pools of items in each of the subject areas would be required than
are now available, if test lengths of 100 items are 10 be achieved.

A crucial and important aspect of Rasch nieasurement is the assess-

-ment of item fit 1o a ‘unidimensional’ latent variable. The Rasch model

assumes that only one latent variable exists, but it might be reasonably
argued that with factorially complex tests like the ASAT, more than one
latent variable is really needed to explain thé complex pattern of test
responses. Perhaps the way round this problem is to break up the test
into homogencous parcels or sub-tests each of which can be safely
characterized by a single latent variable. But this acticn might not
guarantec unidimensional sub-tests, because a single item may measure
many kinds of abilities and skills. This is a real dilemma for the test
developer who has to construct and arrange test items into meaningful
and useful parcels.

“The results seem to indicate that the Rasch Simple Logistic Model will
attempt to fit to a common latent variable any group of items that cohere
in some fashion. It will attempt to do this on statistical grounds and will
pick up as the latent variable a kind of lowest common denominator.
This observation is in agreement with the findings of Reckase (1979).

Finally the limited resulis of the equating analyses suggest that the
ASAT may be equated at the whole test level and various sub-test levels.
Unfortunately the stability of some of the links is questionable because
they consist of very few items. Nevertheless a general picture has
emerged which should lend some support to those interested in applying
Rasch measurement principles to factorially complex scholastic aptitude
tests tike the ASAT.

REFERENCES

Austrahan Council tor Educational Rescarch. Resecrch papers reluting (o the
Austratian Scholastic Aptitude Test. Hawthorn, Vic.: ACER, 1978,

Bell, R. C. A psvchometric study of the Australiun Schelastic Aptitude Test
(Series B). Nedlands, WA: University of Western Australia, Research Unit in
University Education, 1977.

e 215

Aruitoxt provided by Eic:




208 The hnprovement of Measurement

Bell, R, C. The structure of ASAT-F: A radial parcel double factor solution. In
Australian Council for Educational Research, Research papers relating to the
Auwstralian Scholustic Aptivide Test. Hawthorn, Vie.: 1979, 71-8.

Bond, M. W, An analysis of the Australian Scholastic Aptitude Test (Series F).
Unpublished  report for the Board of Sccondary Education, Western
Australia, 1978,

Cornsh, G B. Culfit 3: 4 program for the Rasch item analvsis technique.
Hawthorn. Vic.: Australian Council for Educational Research, 1976.

Lees, Lo Research relating to the Australian Scholastic Aptitude Test: A select
annotated bibliography, Hawthorn, Vie.: Australian Council for Educational
Reseurch, 1978,

MeGaw, B and Gredden, G Factor structure of ability and achievement tests for
svienee and humanities students, Paper presented at the annual conference of
the Australian Association for Research in Education, Svdney, 1973,

Rechase, M. DL Umitactor Latent trait models applied 1o multifactor tests: Results
and imphications, fournal of Educational Statistics, 1979, 4, 207-30,

Wright, B. D. Solving measurement problems with the Rasch model. fournal of
Educational Measurement, 1977, 14, 97-116.

Wright, B. D, and Panchapakesan, N. A procedure for sample-free item analysis. |
Fducational und Pyychological Measurement, 1969, 29, 23-48.

Wrizht, B Dand Stone, M. HL Best test design: Rasch measuremen:. Chicago:
MESA Press, 1979,

e
o

T )

RIC

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

Table A.l
. Form Z
ftem d.
(V4 0.87
2/ 1.98
iz MR
47 218
hV4 1.04
687. 0.40
697 0.13
707 114
T1Z 1.09
127 "
Mean 1.33
SH 0.83

Translation constant 7, ~

CCHI is distributed approsimately as vF with | degree of freedom (Wright and Stone, 1979, p. 96).
“item not htted when calibrated.

APPENDIX

Test Equating (Excluding ltems 5Z, 68Z, 72Z, 72W, IW, 5W)

SE(d)
0.16

0.22
0.24
0.24
0.16
0.14
0.14
0.17
0.16

-

-

D, 7=0.19

FormW

d.

SE(d.)

0.16
0.19
0.21
0.22
h
0.14
0.13
0.15
0.17
0.15

21

K

D

d. -d.

0.04
0.36
0.32

018

0.86
0.09
0.46

-0.03

0.19
0.20

o,

0.23
0.17
0.12

- 0.01

0.10
0.27

0.22

0.00
0.20

ltem link
fit
CHI»

1.23
0.67
0.39
0.0

0.0
1.70
1.13

Sie

0.23
0.29
0.32
0.33

0.19
0.23
0.23

Calculation of the Translation Constant (/..) and Test of the Validity of the Link Z—W: Whole

1.00
0.59
0.41
0.03

0.53
1.17
0.96

0.05
0.82

sisaf apnndy duspjoyos fo sunnby
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Table A.2 ttem Difficulty Estimates for Form W and rorm Z from
tnitial Calibrations and upon Translation to a Common
Scale Deternined by Form Z: Whole Test Equating \
(Estimates for first 20 items of each form are shown.) '

Form W Form Z
ftem ltem
d., SE(d.) 17 d. SE(d.) d.
IW - 1.2¢ 0.14 074 | 17 -0.87 0.16 0.99¢
2w - 0.2 .11 - 0.08¢ 27 1.98 0.22 1.90¢
W (.68 0... 1.01 3z 2.18 0.24 2.12¢
4W 1.12 0.17 1.20¢ 47 2.18 0.24 2,19
SW 0.55 0.15 omit 57, 1.04 0.16 omit
6w 2.07 0.17 1 88 67, - 1.54 0.16 - 1.54
A% 0.76 0.13 ~0.57 77. -0.84 0.14 -0.84
BW - 1.20 0.14 - 1Ol 87 -0.69 0.14 -0.69
YW 0.67 0.13 ~0.48 97  ~1.25 0.15 - 1.2§
TOW 1.06 0.16 .25 107 0.84 0.15 0.84
W 1.20 0.14 1.01 1z -0.29 0.15 -0.29
12W " " " 127 -0.60 0.14 -0.60
13W (.34 0.14 0.53 132 -0.48 0.14 -0.48
14W " " b 147. 0.39 0.14 0.39
ISW - 0.17 0.13 0.02 152 -0.60 0.14 - 0.60
l6W 0.37 0.14 0.56 162 -0.42 0.14 -0.42
17W 0.20 0.14 0.39 172 -0.73 0.14 -0.73
18W 0.18 0.14 0.37 187, § b "
19W - (.15 0.14 0.04 197. 0.41 0.14 0.41
20W .14 0.17 1.33 207 " b h
d,, d iem difhiculty estimates in logits
SE(), Sy standard errors of estimates in logits
.. o average dificulty estimates on common scale in logits
Samit e omitted from common seale because it was not Gited in both calibra-
LRIR 101N

wsed to caleutate the translation constant
item not hted when calibrated

o,

-
e
j v
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Table A.3 Calculation.of the Translation Constant (1., and Test of the Validity of the Link Y-V
Test Equating (Based upon the First Four and Last Four Items in the Table)

Form Y . FormV : “ltem Link

, ' ® D= Fit, 2
ltem s d, SE(d,) Item d, ! SE(}I.,) d, —d, D-1t, CHI- S, Z, '§
63Y 0.03 0.13 v - 1.21 “0.15 1.24 0.24 1.34 0.20 1.20 OSQ
64Y 0.77 0.14 2V 0.00 0.14 0.77 -0.23 1.21 .20 -1.18 )

63Y - 0.02 0.13 v -0.81 0.14 0.79 ~0.21 1.01 0.19 -1.11 ;‘; .
66Y -0.79 0.14 4V -~2.17 0.20 1.38 0.38 3.30 0.24 1.58 3
67Y 1,07 0.13 sV 0.98 0.15 - 0.09 3
68Y 1.03 0.15 6V b b s §
69Y 0.03 0.13 7V -1.08 0.15 1.11 0.11 0.28 0.20 0.55 =
0Y 1.03 0.15 ) 8V 0.17 0.14 0.86 - 8 14 0.45 0.21 - 0.67 ;
7Y 0.21 0.14 9V --0.93 0.14 1.14 14 0.45 0.20 0.70 =
nY 0.92 0.15 v . 024 0.14 0.68 -0.32 2.34 0.21 ~1.52 =
) <
Mean 0.42 -0.52 1.00  -0.00 -0.05 &
SD 0.46 u ; 0.63 0.25 0.25 1.12 ~
Translation constant £, = ¥ D,/8=1.00 o 2
1 . @

CCHE s dlslrlbl;lcd approvimately as y? m’ll’\, 1 degree of treedomn (Wright and Stone, 1979, p. 96). .

" wtem not hited when catibrated. - )
. v "/’ 4 ' . ) . E

Q £ : ) ' 2 _!_ l)
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Table A4 Item Difliculty Estimates for Form V and Form Y from
Initial Calibrations and upon Translation 0 a2 Common
Seale Determined by Form Y: Whole Test Equating
(Estimates for first ten and last ten items of each form are
shown,)

Form V Form Y
k.

hem | d SE{d) It htem — d, SE(d) o

v 1.21 015 ~0.09 1y  -0.71 0.14 ~0.71
hAY 0.00 ) 0.88" 3y 0.03 0.13 0.03
RS 0.81 . 0.08" ¥y 087 0.14  -0.87
v 217 i (.98« 4y 1.64 017 - 1.64
SV 0.98 13 1.96 sY 0.98 0.15 0.98
6V g ‘ " 6Y 1.29 0.16 1.29
7V 1.08 35 - .03 Y - 0.54 0.14  -0.54
8\ 0.17 ) 1,10« 8Y g g b
9\ 0.93 ) 0.1 9Y  -0.23 0.14  -0.23
10V 0.24 . 1.08" 10y -1.37 0.16 - 1.37
62V 0.39 ) 1.39 :
a3\ 0.09 ) 1.09 63Y 0.03 0.13. - 0.19
64V 0.12 ) 0.88 64Y 0.77 0.14 0.88"
63V (.37 ) 0.63 65Y  -0.02. 0.3 0.08"
66V (.58 . 0.42 66Y - 0.79 0.14 - 0.98¢
67V 0.37 . 1.33 . 67Y 1.47 0.15 1.07
68V 0.41 ) 0.59 68Y 1.05 0.15 omit
69V 0.76 13 1.76 69Y 0.03 0.13 - 0.03
70V 0.07 . 0.93 0Y 1.03 0.15 110
1y 0.33 14 1.33 7Y 0.21 0.14 014~
7Y 0.92 0.15 1.08"

o d itens ditheulty estrmates in logis
SE) SE) ~standard errors of estimates in logits
ol ol average difheulty estimates on common seale in logits
Somnt trem omitted trom common scale because it was not titted in both calibra-
' Hons ,
used 1o caleulate the ranslation constant
em not htted when calibrated
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9
Some Alternative Approaches to the
~Improvement of Measurement in
Education and Psychology:
Fitting Latent Trait Models

Roderick P. McDonald

After some 70 vears of research, the virtues and limitations of the linear
common factor model, as a tool for the structural analysis of a battery of
mental tests, are now reasonably well understood. In the well-known
case that Spearman originally treated, we explain the covariation of a set
of tests by supposing that they have linear regressions on a single
variable — a ‘common factor’ or ‘latent trait’— with residuals that are un-
corredated. The Spearman case is free from those problems of rotational
and interpretational indeterminacy that have made some social scientists
suspicious of factor analysis, and the model gives us a reasonable defini-
tion of unidimensionality or homogeneity for a set of quantitatively
scored tests. That is, if the tests fit the single-factor model ‘satisfac-
torily’, we say that the battery is ‘unidimensional’ or ‘homogeneous’ in
the clear sense of these terms that the common factor model provides.
Given estimation of the paramcters of the model by the method of maxi-
mum likelihood, we can obtain a statistical test for the unidimensionality
hypothesis. At the same time, the residual covariance matrix supplies a
nonstatistical but very recasonable basis tor judging the extent of the
misfit of the model to the data. In practice, the residuals are, we might
argue, more important than the test of significance, since the unidimen-
sionality hypothesis, like all restrictive hypotheses, must be false, and
will be proved so by the chi-square test on a sufliciently large sample. If
the residuals are small, the fit of the hypothesis can still be judged to be
satisfactory.

It is ‘possible to show, but the demenstration would take us too far
afield, that there is no psychometric distinction to be made between a

213 24)1
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Spearman common factor and a generic true-score as treated in Lord and
Novick (1968). A Spearman factor analysis can therefore be made the
basis for a considerable amount of test-theoretic analysis. including the
assessment of generic reliability; that is, of generalizability in the sense of
Cronbach et al. (1972). (See McDonald, 1978a.)

If by construction or by chance, the factor lo.dings of a set of fac-
torially homogeneous quantitative tests are equal, the tests are essentially
tau-equivalent in the sense of Lord and Novick (1968), and the common
factor differs only trivially from a specific true score. The factor analysis
then supplies a basis for the assessment of reliability in the classical sense
of measurement error (whatever that really means).

In its origins, latent trait theory (latent structure analysis) was
motivated by the rccognition that linear common factor analysis could
not be carried over from the quantitative test to the qualitative test-item
(Lazarsfeld, 1950; Guttman, 1950). The central reason for this is that the
regression curve of a binary item on any independent variable (observed
or unobserved) represents the conditional probability of passing the
item. (Herc we use the word ‘passing’ for whatever is scored as the
positive response, without intending any loss of generality.) Since the
regression curve is a curve of conditional probabilities, it must therefore
be bounded by sero and unity, and cannot be linear. To the extent that
item characteristic curves — the regressions of the items in a test upon a
latent trait —can be approximated by straight lines over the interval con-
taining most of the examinces, we can justify the simple process of fitting
the latent linear model, which is just the Spearman common factor
model (Lazarsteld, 1950; Torgerson, 1958; McDonald, 1967a), and we
can tolerate the continuing practice of factor analysing product-moment
correlations of binary items, the so-called phi coefficients. Although
there is some evidence that this approximation is not nearly as bad in
practice as we might expect from theory, concern about difficulty factors
(see McDonald, 1965, 1967a; McDonald and Ahlawat, 1974), as well as
the admitted theoretical inappropriateness of the linear model, has led to
the introduction of appropriate models for binary data that are essen-
tially counterparts of the Spearman case for quantitative variables.

In the Spearman case, given avariables v, j= 1, . . ., n, we assume that
there exists a'singl - common factor or latent trait x, such that the regres-
sion curve is given by

Elv, x=x]=m+[x, hH

and such that for any fixed value ., of x, the variables are uncorrelated. 1t
is reasonable to suppose that all users of this model, if questioned, would
say that they intend the stronger assumption that for fixed x the variables
are distributed independently. That is, users probably intend to assume
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Alternative Approaches: Filting Latent Trait Models 215

the principle of local independence (lLasarsfeld, 1950; Anderson, 1959;
McDonald, 1962). In practice it is both convenient and sufficient in
general to test the weak implication that, when the common factor is par-
tialled out, the residual covariances are zero; that is, to test the familiar
mxphm(mn that

={ELv, - 1)V — )] = 1+ U? (2)

where f'=[fy, . . ., f.] and U? is a diagonal matrix of residual variances.
This is tantamount to ignoring possible information in the higher
moments of the distribution of {),, . . ., y.}.

Lasarsfeld (1950), seeking a suitable counterpart of factor analysis for
binary data, first explored the class of polynomial item characteristic
curves (which in principle suffer the same difficulties as the linear item
characteristic curve). To bypass technical difficulties, he then substituted
the fatent class model for the polynomial model. With this step the cen-
tral idea of a distribution of the latent trait or traits over a continuum of
any dimensionality is given up altogether. (See McDonald, 1967a.)
Lawley (1943) and Finney (1952) independently introduced curves that
are actually appropriate for the regression of a binary item upon an
observed independent variable, such as, in Lawley’s case, the total test
score. Lord (1968) attributes the basis of modern item characteristic
curve theory to Lawley (1943) but, on one interpretation, it seems to be
Lord (1952) himself who first combined the probit curve (the normal
ogive) with the principle of local independence to yield the normal ogive
latent trait model: Birnbaum, 1957-1958, (see Lord and Novick, 1968) -
gave theory for the equivalent logistic model.

We can'reasonably consider the normal ogive and logistic models as
nonlinear counterparts of the Spearman model. This is immediately seen
on writing the two-parameter versions of these models as

Ely,ix=xi=MNm,+fx) 3
and .
Ely,ix=x)=¥[D(m,+fx)] 4)
where
1 t 22
M= __ ez, (5)
NLT -=
the normal distribution function,
V() =1/(1+ev), (6)

the logistic function, and D is a known constant, remembering that if y,
is a binary variable, coded unity for ‘pass’ and zero for ‘fail’, then
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Ely, ' x=x}=Ply=1'x=x}] (7

Equations (3) and (4) are nonlinear counterparts and indeed nonlinear
transformations of the Spearman model (1), with the transformations
chosen so as to satisty the bounds we require on the regression curves
when they represent probabilities. As a consequence of these transforma-
tions, the combination of the assumed item characteristic curves with the
principle of local independence no longer vields a simple covariance
structure such as (2) for the relations between the variables.

Not surprisingly, fitting a nonlinear latent trait model proves more
difficult than fitting the counterpart linear common factor model. In the
common factor model—except for Lawley (1942) and McDonald
(1979) —we treat the common factors as random independent variables,
that is, random regressors. The test covariances vield all the information
needed for estimating the parameters. If we are interested in factor scores
(values of the latent traits of individual examinees), we estimate these for
any examinee, whether from the original sample used to estimate the

" parameters of the model or not, quite independently of the estination of

the model rarameters. In contrast, most proposals for fitting the normal
ogive or logistic models treat the A latent trait values x,, i=1, ..., N, of
the examinees in a samiple, as parameters (o be estimated simultaneously
with the item parameters—usually s, £, in (3) and (4). That is, we treat
the latent trait as a fixed independent variable—a fixed regressor. The
main exception (Bock and Lieberman, 1970) uses extremely costly
numerical procedures and is not reccommended by the authors for prac-
tical applications, admirable though it may be as a theoretical tour de
force.

Before going on to an examination of the problem of fitting a latent
trait model by conventional methods, we should note the special case of
the logistic model (4) in which we write

Ely, x=xi=¥[D(m, + fx)], (8)

that is, we set every f, equal to a common value f. This transformation of
the case, that we have noted carlier to be that of essentially tau-
cquivalent tests, was proposed by Rasch and has been popularized
recently by Wright and others. For certain purposes we will regard the
normal ogive model (3) with equal /, values as a version of the Rasch
model also. 1t is of course indistinguishable from it. For many applica-
tions for which these models seem 10 have been intended, we must
substitute )
Ely, x=x}=g + (- g)Nm, + fx), 9)
and
Ely, v=xt=g+ (1 - g)W[D(m, +fx)l], (10)

MC (),) ”
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so that the modcls may be employed on multiple-choice items.intended to
measure abilities. The guessing parameters g, could in principle be
estimated along with the g, and the f,, (if we are not using the simple
Rasch model) together with the x, values or, as in Lord (1968), they could
be estimated independently, perhaps as the chance level, that is, the
reciprocal of the number-of options.

The literature on fitung latent trait models seems to be in a rather un-
satisfactory state. 1t is a simple matter to write down the likelihood func-
tion and its first and second derivatives with respect to the parameters of
a fixed regressors model. The second derivative matrix is very strongly
patterned, allowing in principle minimization of (minus-log-times) the
likelihood function by blocks of iterative steps, one for each set of
paramelers, that are essentially simple Newton-Raphson steps. From
what is stated, and from what is not explained, by Lord (1968),
Kolakowski and Bock (1970), and Wingersky and Lord (1973), it appears
that investigators who have attempted to program what might seem to
be an unusually simple minimization algorithm have had to deal with a
large number of problems by trial and error, to the point where the
reader cannot be sure just what has been programmed. [ hope to be cor-
rected, but there does not seem to be any published demonstration by
Monte Carlo study that any of the programs for fitting the two-
parameter model recovers the true values of the parameters within
reasonable tolerance. Lord (1968) states that his method does not con-
verge unless both the number of iteins and the number of examinees is
large, and that otherwise values of f, tend to increase without limit for
some items. Wright (1977) conjectures that this must happen, and con-
cludes that the two-parameter model therefore cannot be fitted to data. It
does indeed seem thar the simultaneous estimation of the item
parameters f, and person parameters x, may strongly tend to run into
difficulties of the kind noted by Lord and commented upon by Wright.
(A similar problem in Lawley’s (1942) fixed-regressors factor model is
solved by the choice of a loss function in the form of a more appropriate
f. ~ction of likelihood —McDonald (1979) —but the present problem
does not seem 1o yield an analogous treatment.) The introduction of the
guessing parameters possibly makes the situation worse, especially if we
attempt to estimate them rather than supply them as constants. We might .
also question the claims that have been made in favour of the Rasch
model as free from difficulties in the methods used to fit its parameters, at
least it the model is applied to multiple-choice items, since in the usual
estimation procedures there is no provision for estimating the guessing
paramcters, and there is no reason to believe that the estimates of the
other parameters of the model are unaftected by guessing,

Actually, the case tor using maximum likelihood estimation in the
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two-parameter model begins to look less interesting when we note that a
test of fit of the model does not seem to have been given, to go with the
likelihood estimates of its parameters, and that ‘good’ properties of the
maximum likelihood estimators have not actually been demoustrated for
these models. Although it has been thought otherwise, this last remark
may well apply to the Rasch model as treated by Wright and others.
Measures of fit have been suggested for the Rasch model and conjectured
to have a chi-square distribution (Wright and Panchapakesan, 1969). Ac-
cording to Wright and Mead (1977), however, simulation studies have -
shown that this distribution is ‘not exactly correct’. Our own simulation
studies suggest that it is not even approximately correct for the measures
of fit in the OISE version of a program originally by Wright and Pan-
chapakesan. 1t does secem that current methods for fitting these latent
trait models lack a properly established statistical criterion for rejecting
the model. Perhaps more imporiantly, they certainly lack criteria tor
regarding the fit as satisfactory, criteria analogous to the sizes of the
residual covariances atter fitting the linear common factor model. 1t 1s
partly for this reason that some writers have stressed the need to test the
unidimensionality of a set of items by some means, before actually fitting
a model with a single latent trait. Hambledon et al. (1978) state that
testing the assumption of unidimensionality takes precedence over other
goodness-of-fit tests of a latent trait model, and that further research is
needed to establish a proper procedure to test the dimensionality. Crude
devices have been suggested, such as the examination of the eigenvalues
of the item covariance or correlation matrix, but such procedures are not
well founded. (See McDonald, 1981.)

If the analysis just given is correct, latent trait theory is in a prob-
lematic state, and one that is not without some historical irony. It was in-
troduced because linear common factor analysis was recognized to be in-
adequate to supply a dimensional analysis for binary items. 1t has
reached the point where, given the values of the parameters of a latent
trait model, we know how to use them for a wide variety of test-theoretic
purposes. Yet we stiil have to resort to a form of linear factor analysis for
a crude test of unidimensionality, we still have reason to doubt the
estimation procedures that have been proposed, and we still have no
satistactory statistical criterion for rejecting the model and no satisfac-
tory criterion tor regarding its fit as adequalte.

McDonald (1967a, b) gave theory for nonlinear factor analysis, and
numerical methods for fitting nonlinear regressions, in the form of
polvaomial functions, of quantitative tests or of binary items, on fac-
tors, that is, on latent traits. In contrast to item characteristic curves such
as the normal ogive and logistic functions, which are nonlinear functions
both of the latent traits and the item parameters, the polynomial item

RIC <2y
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characteristic curves are nonlinear in the latent traits but linear in their
cocfhicients (the item parameters). The immediate consequence is that the
nonlinear factor model shares many of the simple algebraic properties of
the lincar common factor model. In particular it allows us to assess the
adequacy of the fit of the model by examining residual covariances. In
principle, therefore, nonlinear tactor analysis supplies a general test of
the unidimensionality or homogeneity of a set of binary items without
the strong and false assumption of linear item characteristic curves that is
implicit in the usual attempts to assess dimensionality prior to fitting a la-
tent trait model. However, polynomial item characteristic curves share

the defect of lincar item characteristic curves that they are not bounded -

as required for probabilitics. It might therefore seem unlikely that we
could use nonlinear factor analysis in practice for this purpose, but.
shortly we will see that we can in fact do so under some conditions.

McDonald (1967a) sought to show that latent trait models such as the
normal ogive model can be treated as special cases of nonlinear factor
analysis by expressing the normal ogive curve as an infinite series whose
terms are polynomials that are mutually orthogonal under the assump-
tion that the latent trait has a normal distribution. If x has a normal
distribution with mean zero and variance unity, then the normalized
Hermite-Tchebychefl polynomials given by

D oyern @ gipn poo 12, (11)
vp! dxr
have mean zero, variance unity, and covariances zero. That is,

Eth,(x)=0 (12)

h(x)=

and

Eth,(x)yh(x)=1,p=q, (13)
=(), otherwise.

The first four orthogonal polynomials are given by
ho = ] '
h(x)=x
M(x)=(x2 - 1)/y2
h(x) = (x? - 3x)/ 6.

Recalling that the first six moments of the normal distribution with mean
zero and variance unity are uy =0, o= 1, uy =0, s =3, s =0, s = 15, we
casily verify for example that

Lih () h:(0)) = EHxY - x)/\2)

=(uy =)/ 2
=0,
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and
EY A0 = Efx — 657 +942)/64

= (pte — 6ps +9u2)/6

= l’
and similarly for the remainder. (These polynomials serve as a good
classroom demonstration of the tact that, it two random variables are
uncorrelated, they are not necessarily statistically independent, and in-
deed one can be a curvilinear function of the other.) Orthogonal
polynomials such as these provide the building blocks for a curvilinear
regression, in which the uncorrelated components supply additive
variance, That is, instead of fitting a polynomial regression of some vy on
SOME X as

YEdotax X @t e (14)
it is usually better to fit
Ve bo+ b (X)) + b () + bR+ .. te (15)

because the terms in (15) are uncorrelated and supply contributions to
the variance of y» whose magnitude and significance can be assessed
separately. The series can be terminated when all systematic variance has
been captured.

Given orthogonal polynomials appropriate to the distribution of x(not
necessarily the Hermite-Tchebycheft” series (11)), the method of
polynomial factor analysis introduced by McDonald (1967a, 1967b)
amounts to recognizing that it we write nonlinear common factor models

V=0 X+ X4 te, " (16)
or
yo=bo+bah() +hahx) +. . +e,j=1,. .., 1, (17

with uncorrelated residuals, then in the second version the polynominls
behave just like orthogonal common factors. The technical problem of
nonlincar factor analysis (which nced not concern us here) is to
discriminate between a model such as (17) and the parallel finear model

¥, - /),n + /),1.\'1 + [),1.\'1 +...+¢€, (18)
both of which imply the covariance structure
Coviy, vid=b, b + bbb+, .., j£k. (19)

This is done by studying the distribution of factor scores in common fac-
tor space. to see it these lie within curved subspaces. (See McDonald,
1967b.)

We can use a kind of harmonic or Fourier analysis to approximate any
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—= = linrar
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Nommal ogive

Figure 1 Normal Ogive (1=0.5, ¢=2.0) with Polynomial Approxi-
mations

prescribed curve by a polynomial series. By making the series long
enough, we can make the approximation as precise as we please over a
finite range. For the remainder of this paper, it will be convenient to
describe the normal ogive characteristic curve in the traditional way as
N(x; w;, a;) where g, and o, are the mean and standard deviation of the
cumulative distribution function M(.), so that in (3)

fi=1/g, (20)
and

m;= —uj/aj. . (21)

Figure 1 shows a normal ogive with »,=0.5, g,=2.0. Superimposed upon
it are the best-approximating linear, quadratic, and cubic curves, ob-
tained by stopping at the second, third, and fourth term of the series

B2 b0+ bx+ ba(x2 — 1)/32 + by(x — 3x)/6. (22)

The coefficients bjo, b,1, b;2, b, are chosen to give a least-squares best fit
of the polynomial curve to the normal ogive, weighted by the normal
density function. That is, the coefficients are chosen to minimize

¥ = E[(NGG w, 0)— T b)), r=0, 1, . .. 3)
P30 .
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McDonald (1967a) showed that if we express M(x; u,, 0,) as the infinite
series

N o) = T b, x) (24)
P20

where
[)10 = N( - /"'//a.l) (25)
and
b,=p ", h,. (u/a)mp /), p=1,..., (26)

2

where «, = (1 + 0?)' 2 and M_.) and n(.) are the normal distribution and
normal density funct{pns, then every finite segment of the infinite series
has the property that it minimizes (23) for the chosen number of terms.
In particular, (26) yields

by =a;nlu,/a,) (27)
b=y ot g M) (28)
by = \/‘3 o5 sl o)k ). (29)

The intended application of this theory was to fit the nonlinear factor
model to a set of binary data by methods described in McDonald
(1967b), up to the second or third degree, say. If the single-factor
nonlinear mode! gave a reasonable account of the data we would then ex-
amine the distribution of the factor scores to see if it is normal, and ex-
amine the coefficients b,, to see if their relationships were consistent with
those required by (25) and (26), The equations (25) and (26) could then be
solved for g, and o,. Unpublished work by McDonald and Ahlawat
showed that reasonably precise estimates of the parameters of the normal
ogive model could be obtained using this technique. (See also McDonald
and Ahlawat (1974) for an account of difficulty factors in terms of this
theory.)

Recent developments in the analysis of covariance structures
(McDonald, 1978b; 1980) have made possible a more direct application
of this theory, and the rest of this paper will focus upon the new method.

-Because the representation (24) of the normal ogive is a linear com-
bination of (random) orthogonal functions of the random variable x, it
follows by a weak implication of the principle of local independence that

p,=ply, =1 =Ely)=E}= b, (30)

pa=ply,=ly=U=Eypl= L byb.,.j+k, (3D

DS

v
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where b, and b,, are the functions of #, and g, given by (25) and (26). We
can rewrite (30) and (31) in a familiar matrix form by defining y' =1, y,,
.« & V., an (n+ 1)-component vector whose first component is unity,
B=[b,).j=1,..,mp=1,..., o, b'=[bio, ..., 0., 0=pi, ..., pl,
and P =[p,.]. Equations (30) and (31) can then be expressed in the form

P*= 1 . ’] = [ : r b’] + [0 J (32)
'. P : l_ . B U: '
where U? is the diagonal matrix whose jth diagonal element is

ul=bo— LT b3, j=1,... n. (33)
p=0

The right member of (32) is formally the same as the structure implied by
the orthogonal common factor model. In this case the column-order of
B —the number of ‘common factors’—is infinite, but the infinitely many
elements of B are all functions of the 2n parameters u,, g, j=1,. . ., n.
That is, we have expressed the normal ogive model, which is nonlinear in
its parameters-and in the latent trait x, as a linear combination of in-
finitely many nonlinear functions of the latent trait, with coefficients that
are nonlinear functions of the parameters of the model. Consequently
the normal ogive model becomes a special case of the common factor
model.

McDonald (1978b) has described a model for the analysis of
covariance structures which allows higher order factor analysis of any
order, with residual matrices of any prescribed structure. For the present
application, the important property of the model is that the user can
impose constraints on the matrices in it by making each element of
each matrix a prescribed function of one or more ‘tundamental’
parameters —the parameters, that is, with respect to which the model is
actually fitted. A program COSAN has been written for the model, and
some applications are described in McDonald (1980). Program COSAN
minimizes one of several loss functions with respect to the parameters of
a given model, using a quasi-Newton method. For many purposes, the

- comstraints on the model consist in setting certain elements of a factor

loading matrix, or a residual or correlation matrix, equal to a constant
(usually zero for simple structure . orthogonality, and unity for a self-
correlation) or constraining two or more elements (o be equal, as in the
work of Joreskog (1970). In addition to these standard provisions of pro-
gram COSAN, the user can write sub-routines of his own—usually very
short and simple—if he wishes to prescribe special constraints upon the
¢clements of the matrices in the model. It is therefore VEry easy 1o use pro-

" gram COSAN 1o fit the parameters of the normal ogive model by fitting

the version of the orthogonal factor model in (32) to a sample counter-

\ 23,
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part of P*, where the elements of b and B are the prescribed functions of
woandag, j=1, ..., n Inpractice, of course, we must trunczte the matrix
B 10 be of some finite column-order, and therefore we are in a sense
fitting an approximate version of the normal ogive model. However, the
coefticients b, rapidly diminish as p increases, and trial suggests both
that terms beyond the cubic are negligible in magnitude and that in-
cluding them would not improve the precision of estimation of the fun-
damental parameters of the model at all, even if it were to improve the fit
slightly.

With B truncated to an 7 x 3 matrix, we fit the model (24) to a sample

matrix
$* = [ 1 s'} 34)
) . s S,

in which the jth component of s, ¥y,./N, is the proportion of examinees
in the sample passing item j, and the ¢, A)th element-of S, Ly, v/ N, is
the proportion of cxaminees passing items j and A&. We minimize the
usual least-squares function

6 = tr{(P* - 8%)%) (35)

with respect to the 2n parameters g, 0,. By fixing the g, values to be equal
1o a common value o, we may fit an equivalent of the Rasch model,
minimizing (35) with respect to the g, and o. If we fix g =0, we seck to fit
the perfect scale, estimating the g, only. (See McDonald, 1967a.) We can
introduce a guessing parameter by replacing the model with

Ply, =1 x=xl=g+(1-g)Ny;p, o) (36)
Correspondingly, (25) and (26) become
b= g+ (1 -gIN(~p/a) (37)
and .
h,=(1 -g)p™ g (/@ ),/ o), D= 1,2,... 38) _

We could then read in guessing parameters, possibly as the reciprocal of
the number of options in multiple-choice items, or estimate them, in
combination with any of the options for the g, values. To apply COSAN
to these purposes, one library sub-routine of seven executable
Jtatements, to evaluate the normal density and distribution functions,
and two special sub-routines, of simple logical structure, of 34 and 68
executable statements are needed. A program has also been written to
generate normal ogive data on which to test the method. A program
MESAMAX, the OISE version of a program by B. Wright and N. Pan-
chapakesan for fitting the Rasch model was the only program available

23
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Table I * Example 1: True 0= 1.33

100 104’ 100’ lo lo
estimated estimated  estimated  estimated  estimated
cubie - ccubic - cubic “cubic ‘straight ~  'RASCH -
htted fitted fitted fitted line fitted  program
NOSOO0D0 N 3000 NS0 N =500 N =500 N=1500

1,00 1.000 - 1.006 -0.976 -0.998 -0.989 —0.8997
0,80 (1,816 -(.803 - 0.604 -0.746 —-0.740 - 0.5805
0.60 0.593 0.641 -0.538 -0.582 -0.578 -0.5352
0.40 0.407 0.372 -0.424 -0.419 -0.416 -0.3576
(.20 0.19” 0.169 -0.173 -0.210 —0.208 =0.0509
0.0 0.012 0.032 0.045 0.049 0.049 0.0250
(.20 0.198 0.164 (.366 0.355 0.354 0.3098
0.40 0.398 0.438 0.407 0.396 0.395 0.4718
{60 0.582 0.655 0.587 0.391 0.588 0.7010
0 X0 0 %09 0.820 0.841 0.828 0.825 0.9162

min o 1.312 [.259 1.032
mas o 133y 1.490 1.578

1.318 1.297

tor comparison with conventional methods for fitting latent trait models
that gave believable results, This sets limits upon comparisons that can
be made in two-parameter cases.

A large number of constructed examples have been run, Of these,
three will be deseribed, and other observations of the behaviour of the

" method will be briefly summarized.

Exumple 1 Three data-sets were generated, with sample sizes 50 000,
3000, and 500 respectively, whose true: i, values are listed in the first
column of Table 1. A common value of o=1.33 was employed for all
ttems 1o enable a reasonable comparison with the available program for
fitting the Raseh model. Each of the three resulting 11 x 11 raw product

~moment matrices (8* in (34)) was analysed four times by COSAN: (a)

ERI

hiting ten i values and a common o value versus fitting ten g, values and
ten o values; (b) using the cubic approximation to the norma! ogive
model versus using the linear approximation, that is, deleting the col-
umns of B containing coeflicients b,,, b,,. Table 1 gives the estimates of
the i parameters for five of these analyses, as well as the estimates ob-
tained by pre. m MESAMAX applied to the raw data for sample size
500 and transformed for compatibility with the normal ogive representa-
tron,

These results illustrate observations that have been made from a wider
range of analyses. The estimates of g, are not noticeably more precise
when one o iv fitted than when they are fitted individually. That is, it is no
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Table 2 Example 1:

Raw Producl Moments (N =3000)

1 2 3 4 5 6 -7 8 9 10 11

1 1.000

2 0.722 0.722

3 0.689 0.544 . 0.689

4 0.651 0.510 0.502 0.651 N

S 0.589 0.482 0.458 0.439 0.589 .

6 0.541 0.435 0.420 :0.407 0.376 0.541

7 0.493 0.403 0.393 0.375 0.344 0.320 0.493

8 0.460 0.379 0.369 0.355 0.330 0.311 0.286 0.460

9 0.402 0.333 0.327 0.309 0.295 0.266 0.254 0.240 0.402
10 0.355 0.297 0.292 0.281 ~ ~0.266 0.247° 0.224 0.214 0.184 0.355 :
11 0.320 0.267 0.264 0.248 0.232 0.221 0.211 0.201 0.175 0.157 0.320

Table 3 Example 1: Residuals, Cubic Approximation
{ 2 3 4 5 6 7 8 9 10 11

1 0.000

2 0.000 0.000

3 - 0.000 0.001 0.000

4 0.001  -0.005 0.003 -0.000

5 - 0.002 0.007 -0.003 -0.000 0.000

6 0.001 -0.001 ~0.004 0:003 -0.000 -0.000

7 0.000 0.001 0.001 0.001 -0.005 -0.003 -0.000

8 0.001 -0.001 -0.002 0.000 -0.001 0.004 -0.000 -0.000

9 -0.001 0.000 0.002 -0.001 0.005 -0.003 0.003 0.000 -0.000
10 -0.002  -0.000 0.001 0.003. 0.005 0.005 -0.002 -0.002 -0.007 0.000
11 0.002 -0.001 0.001 -0.004 -0.005 0.001 0.005 0.003 0.001 -0.002 -0.000
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Table 4 Example 1: Residuals, Linear Approximation
3: |
I 3 3 3 5 6 7 8 9 10 I 3 |
I 0.000 3 |
2 -0.001 0.000 S
3 - 0.001 0.002  0.000 =
3 -0.000 -0.004  0.004  0.000 ';;
—- SO-m002 0 0.008 0 - 0.002 -0.000 - 0.000 I
6 0.001  ~0.001 —-0.004 0.003 -0.000 0.000 S
7 0.001 0.000  0.001 0.001 -0.005 -0.003  0.000 8
8 0.001  -0.002 -0.003 0.000 —0.001 0.003 -0.000 -0.000 s
9 ~0.000 ~0.001 0.002 -0.002  0.004 -0.004  0.003 0.000  0.000 8
10 -0.001  -0.001 = 0000 0002 - 0004 0.005 -0002 -0.002 -0.006 -0.000 &
1 0.002 -0.002  0.000 -0.005 -0.006 0.001 0.005 0004 0002 -0.000 0000 I -
Table 5 Example 1: Coefficients of Cubic N
bo by b by S
0.722 0.196 ~0.048 -0.018 ~
0.689 0.217  -0.047  -0.025 s
< 0.650 0.223 -0.037 -0.028 =
0.591 0.239  -0.024  -0.035 X
0.540 0.235  -0.010  -0.033 2
0.492 0.238 0.002 -0.034 )
0.459 0.247 0.011 -0.039 ©
0.403 0.216 0.021 -0.026 . .
0.357 0.208 0.030 ~0.023
0.218 0205  0.040 -0.022

e
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228 The Improvement of Measurement

more dithicult to fit the two-parameter model than to fit the one-
parameter model, using this method. The estimates are nol noticeably
more precise when the cubic approximation is used than when the lincar

approximation is employed. Table 1 gives the minimum and maximum _

value of ¢ when a common parameter is estimated.

Table 2 gives the 11x 11 raw product-moment matrix for sample size
3000. Table 3 gives the corresponding residual matrix using the cubic ap-
proximation, while Table 4 gives the residual matrix using the linear ap-
proximation (with ten ¢, values estimated in both cases). Table 5 gives the
estimated values of the coefficients b, in b and b,,, b,., b; in B, cor-
responding to Table 3. (These are estimated parametric tfunctions of g,
and g,.) Since they are coefficients of orthonormal polynomials, they
behave like loadings on orthogonal common factors, showing directly
that the data are actually accounted for to a good approximation by a
lincar model. The approximation is cnly siightly improved by the ad-
dition of the quadratic and cubic terms. Terms beyond the cubic would
almost certainly be quite negligible. At the same time, fitting the cubic
approximation can be recommended on the basis of a general observa-
tion, not illustrated by the comparison of Table 3 and Table 4, that
usually the residuals from the cubic approximation are just sutficiently
smaller to constitute slightly better evidence that the data are unidimen-
sional and adequately described by the normal ogive model.

Example 2: A data-set, of sample size 3000, was gencrated, to consist
of 50 items, combinations of five o, values and ten g, values, as shown in
the margins of Tables 6 and 7. These contain the estimates by COSAN
(using the cubic approximation) of the , values and the g, values respec-
tively. Inspection suggests that the precision of the estimates of the g,
values is not noticeably atfected by the size of g, itselt, or the size of a,,
and that the precision of the estimates of the o, values, while approxi-
malely. proportional to g,, is not noticeably affected by the size of g,.

Example 3: Again with a sample size of 3000, and with a common ¢
value of 1.7, 20 binary items were simulated in ten pairs, with g, values,
repeated, as in the previous example, but with the parameter g, in (36) in-
troduced and set 10 0.2 tor the tirst member of each pair, and 0.5 for the
sccond member, It is as though cach odd-numbered item 1s a multiple-
choice item with five options, while the following even-numbered item is
an otherwise equivalent true/false item. The first column of Table 8 gives
the true g, values, The second contains the estimates by COSAN, with the
cubic approximation, and reading g, values alternately of 0.2 and 0.5 and
holding them fixed, as we might do from knowledge of the item formats.
The third column contains COSAN estimates assuming that there is no
effect of guessing on the data, that is, setting each g, value to zero. The

’I
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Table 6 Example 2: ., Estimates (N = 3000)

True o,

True 227 200 L7282 133
- 1.00 - 1.042 -0.997 - 1,056 -1.056 - 1.033
-0.80 0.800 -0.865 -0.756 -0.756 ~0.757
-0.60 - 0.584 - 0.525 -0.529 -0.595 - -0.541
-0.40 -0.456 --0.358 ~0.398 ~0.366 ~0.381

0.20 -0.316 -0.236 -0.207 -0.277 ~-0.245
0.00 0.050 0.040 -0.038 0.013 —0.040
- 0.20 0.207 0.236 0.180 0.239 0.252
0.40 0.378 - 0.478 ~0.405 0.319 0.484
0.60 0).489 0.631 0.596 0.593 0.605
0.80 0.830 0.759 0.847 0.879 0.817
Table 7 Example 2: 4, Estimates (N = 3000)
True o,

True g, 2.7 2.00 1.72 1.52 1.33
100 2257 2.062 1.768 1.598 1.315
0.80 2.2%9 2,057 1.680 1.569 1.248
0.60 23 2.059 1.606 1.471 1.316
0.40 2230 1.845 1LRI8 . 1.585 1.3
0.20 2.504 2.050 1.687 1.737 1.348
0.00 2.620 1.903 1.995 1.452 1.338
0.20 hTRK! 2141 1.617 1.579 1.458
.30 2.07% 1.990 1.954 1.534 1.502

C0.60 2.241 2,408 1.668 1.589 1.139
0.50 2419 1.92% 1.793 1.652 1.539

E

fourth column contains the estimates of the y, values obtained from
MESAMAX, which of course makes no provision for guessing. It is clear
that the effects of guessing in multiple-choice items must be allowed for
in the analysis. The method of Wright and Panchapakesan yields quite
unacceptable estimates of the difficulty parameters in the presence of
guessing, s does the COSAN method when the guessing parameters are
assumed to be zero. When the guessing parameters are treated as known
(as in Lord, 1968), the COSAN method gives good estimates of the other
parameters. Attempts to use COSAN to estimate guessing parameters, as
well as the other parameters of the model, have run into difficulties re-
quiring further research. 1t seems likely that the nonlinear factor model
(17) will have to be fitted directly to raw data it the present method is to
yield estimates of the three-parameter model.

O
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Table 8 Example 3: Estimates

COSAN COSAN
estimate estimate
with with RASCH
e e TEUE e o AT0C & o= 00_ estimate
1.00 . ~1.073 -1.962 -0.392
- 1.00 -0.934  -2.648 ~0.889
£0.80 -0.887 ~1.734 -0.220
~0.80 -0.768 —-2.480 -0.771
~0.60 -0.593 -1.380 0.016
-0.60 -0.602 -2.315 -0.648
~0.40 ~0.518 -1.291 0.085
0.40 ~0.434 ~2.153 -0.538
-0.20 --0.208 -0.927 0.332
-0.20 -0.196 -1.932 -0.388
0.00 -0.008 -0.697 0.481
0.00 0.012 - 1.745 -0.267
0.20 0.160 ~0.507 0.606
0.20 0.137 -1.637 -0.203
0.40 0.431 -0.209 0.802
0.40 0.222 - 1.565 -0.143
0.60 0.557 -0.073 0.885
0.60 0.585 -1.273 0.034
0.80 0.800 0.180 1.052
0.80

0.853 - 1.075 0.178

While a more systematic Monte Carlo study is desirable, the examples
serve to show that we can indeed fit the normal ogive model, in a one-,
two-, or three-parameter version (the latter with known guessing
parameters), by a program for the analysis of covariance structures, with
reasonably satisfactory results. The fact that we can do this at all
illustrates an essential unity of psychometric theory for ‘quantitative’
tests and ‘qualitative’ items that we might easily lose sight of while con-
centrating on the details of fitting the models by the conventional
statistical procedures. The fact that we can do this reasonably well sug-
gests that the technique deserves further exploration, as possibly a usetul
one at least for some data sets. Already it is clear that reasonably precise
estimates can be obtained over a range of sample sizes, from about the
smallest we should ever use for such work to indefinitely large. The ob-
vious advantage of the method is that it supplies a measure of the
goodness of fit of the model in the familiar form of a residual matrix,
and the sum of squares of its elements, and it does not require a prior ex-
amination of the dimensionality of the data. An obvious limitation of the
method is its assumption that the latent trait has a normal distribution.
There seems to be less willingness on the part of investigators to assume
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normality of the latent trait underlying a set of items than to make the
same assumption for the common factor underlying a set of tests. This
would be because it is easier to exert control over the distribution in the
former case than in the latter, by the design of the items. (We can skew
the distribution of a factor by choosing tests that are too difficutt or too
easy, or flatten its distribution” by ¢hoosing a~ wide range Of test
difficulties. Since tests are item sums, the cases cannot be very different.)
If the method suggested scems worth using, the user can in principle
design his item set to have a close-to-normal distribution of the latent
trait, Since users may not want to do this, tfurther research will include an
... investigation of the robustness of the method against violations of the
normality assumption. If it is not sufficientty robust for generaf use, then — ==
it will become worthwhile to repeat the theoretical work leading to equa-
tions (25) and (26), using a more gencral distribution of the latent trait,
Because this work had been done originally for the normai ogive model,
discussion in this paper has been. confined to that case, just to save the
rethinking thal would be necessary, even to state the corresponding
results for the equivalent logistic model.
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. Alternative Approaches: Fitting Latent Trait Models

APPENDIX
Scoring an examinee

A preliminary investigation has not revealed any advantages of the

polynomial approximation over the conventional treatment when it

—-—CTomes to-scoring an examinee; -+ e-obtatning-an-estimate-of his latent-— ———
trait given his item scores. However, for completeness, some remarks can
bc madce about interesting parallelisms between equations for the estima-
tion of a latent trait from binary data and equations for the estimation of
a common factor trom test scores. The one possibly usetul result to
cmerge so far from the cxamination of these parallelisms is an expression
that contains an estimate in closed torm of the latent trait, based upon
the linear approximation. Whether it is close enough to the conventional
estimate will nced to be investigated by a Monte Carlo study.

In the usual treatment of the common factor model, with random
common tactors, we first fit the parameters ot the model (factor loadings
and uniguenesses) to the covariance matrix ot a ‘calibration’ sample. For
any cxamincee in the population that the model purports to describe, we
estimate his factor scores as linear combinations of his test scores. In the
Spearman vase (1), the Weighted Least Squares (WLS) formula of

—~Bartlert, —

P - s
minimizes the sum of squares of the given examinee’s 7 residuals

e, =v,—m, - fx, (A2)

([ S . (v, —m,), (A

weighted by the reciprocal of the variances of these residuals in the
population. That is, it minimizes

. 2 G, = fX)?

o - - (v, ﬁ-/') . (A3)

=1 Varfe| =1 1 - 12
If we assume that cach residual has a normal distribution, then (A1) is
alvo the maximum likelihood estimator of x. The corresponding
Unweighted 1east Squares (ULS) estimator

” - l n r
x= [ z /?J S -om), (A4)
=]

.

=1
minimises the sum of the squares of the given examinee’s residuals
without taking account of the residual variances. That iy, it minimizes

or= Let= X (v, m, - Sy (A3)

=1 1

”
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(Scoring formulae (Al) and (A4) are respectively Method 2 and Meathod
1 as discussed by McDonald and Burr, 1967.)
The condition for a minimum of ¢; in (A3) may be written as

I *_,ﬁér‘,. l’»r{fﬁ.’.(fii’l":[rﬂ’ioi. R )

which on rearrangement gives (Al).
Writing (1) as

V,=m 4 fix, (A7)
whence a5
- =/, (AB)
ax
and noting that
Varle,} = Var{y,, x}, (A9)
we can rewrite (A6) as
£ [a'v’ / Varly, 4,\'}] w,—m)=0, (A10)
<11 ox : ‘
or as
¥ we =0, (All)
1=1
where
W, :_‘3—&/ varly, |x}. (A12)
ke

That is, we choose x such that the weighted sum of the residuals becomes
zero, with weights that consist of the slope of the regression of each y, on
x divided by the conditional variance. In the linear common factor model
both the terms in the weight w, are independent of x, one because the

" model is linear, and the other because (in the usual treatment of the

model) we assume that the residuals are homoscedastic.

Now suppose we have any latent trait model with a single latent trait x
and known parameters in the item characteristic curve P{m, + fx). We
write Q,=1 - P,. We wish to estimate .x for a given examinee with binary
item scores vy, . . ., ¥,. By well-known theory, the likelihood equation is
given by '

1=

2%/ PQ, b~ P)=0. (A13)

-
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Since, in the case of binary data,

Varly, x|=P.Q, ' (Al4)

cquation (A13) is formally the same as equation (A10). That is, in any
latent trait model with a single latent trait and known item parameters, (0

obtain the maximum likelihood estimate of an examinée’s scorc we’

choose a score such that the weighted sum of his residuals becomes zero,
if weighted by the slope of the regression of cach y, on x divided by the
conditional variance. In contrast to the linear case, however, both the

regression slope and the conditional variance are in general functions of

X
In the special case where the # item characteristic curves P,(x) are iden-

== == vical, equal to P, say, and P has an inverse function P!, it is well known

that (A13) can be solved for x in closed form. (See Birnbaum n Lord and
Novick, 1968, pp. 438-9.) This follows because we may then write (Al3)
as

aP, - _ )
PO EWw-P)=0 (Al3)
ox =
whence "
Yoy e nP) (A16)
=
SO that
oy [' ‘_»] (A17)
n o=

Again following Birnbaum we note that the logistic function ¥(/) in (6)
uniquely has the property that

‘Z“/’ R0 T (AIB)

whence it follows that

MD(';H‘/'""” ¥ [DOn, + LD~ ¥[DOm, + fODL - Df, (A19)
[1AY

independent of x, so that in this casc (A13) becomes

}'.'I./',(_L“ D, + f )] =0 (A20)
I3

or
CLNIDOn, + f0) = s (A21)

= =y
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which is a way of expressing the fact that the weighted item sum
Sty
=1
is a sufficient statistic for x for a given examinee in the (wo-parameter
logistic model'if the values of the £, are known. In the special case of the
~ Rasch model, in which the coeflicients £, have a common value, it follows
that the unit-weighted sum

Ly
=1

ts then a suthicient statistic for x. This latter property might be considered
useful in some practical applications. However, it is primarily if we
choose to fit the fixed regressors version of the model, simultancously
estimating the item parameters and the latent traits in the calibration
sample, that this fact gives the one-parameter model an advantage over
those models that realistically allow for guessing and tor the fact that, in
general, items measuring a given trait will not measure it equally well.

If we wish to apply the Rasch model to the measurement of ability by
means of multiple-choice items, it would seem by Example 3 given carlier
that we must introduce a guessing parameter. If we do so, the likelihood
equation doces not yield a counterpart of (A19), whether or not the /,
values are supposed equal. That is, the attempt to apply the model to
multiple-choice items by the introduction of a guessing parameter
destroys the sufficiency that has been regarded as an important property
of the logistic model (and destroys other properties of the Rasch model
that have been regarded as its important special characteristics). Perhaps
more importantly, whether or not a single function ot the examinee’s
responses is a sufficient statistic for his v, we cannot in general solve the
likelihood equation in closed form.

Fhe remarks in this appendix arose out of a tentative exploration of
the problem of scoring the examinee in terms of the polynomial approxi-
mation model that was introduced in the body of the paper. The hope
was that the nice properties of the Spearman linear case, including closed
torm, might carry over to this problem. Such a hope was quickly seen 10
be untounded. In particular, an atterapt to substitute the polynomial
modcel in (A13), even just the linear approximation, yields seemingly in-
tractable expressions. One result from this exploration may be of value
and is theretore perhaps worth reporting.

It we accept the evidence given carlier that the lincar model given by
the first (wo terms of the polynomial series (24) is in general a good ap-
proximation 1o the normal ogive model, we first consider substituting
this 1n the condition (A13) for a WLS, i.c. M1 solution, to yield

S b tha s baxXL - b bal - bo  bax)- 0. (A22)
() .
Aw 1 't
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It seems fairly obvious that the linear approximation does not yield a
solution in closed form. In desperation, with some, but not much,
theoretical justification, we consider instead applying directly the ULS
expression (A4), which yields

\

R L 1S e S 1 ¥ £ )

h

that is, by (25) and (27)

x= /'( :. o't n (‘a") [y,—N (“a“)] , (A24)

k= [ b (“")] . (A25)
=1 oy o; /.

This closed-form linear least squares estimate of x is not without a cer-
tain plausibility of expression. By theory given in Lord and Novick
(1968, pp. 377-8), the quantity 1/q; is the correlation between x and y,,
and is a measure of the discriminating power of the item, while the quan-
tity N{ — u,/a,} is the proportion of examinees passing the item. In (A24),
the contribution of an item to the estimate is weighted in three reasonable
ways. First the item is weighted proportionally to its discriminating
power, 1/a,. Second, the item is weighted by nf{ —u,/a,}, so that greater
weight is given to items near the mean of the distribution of x than to
items further away in either direction. Third, if the item is difficult, it
gives a larger absolute value to the (positive) contribution from passing
the item than to the (negative) contribution from failing it, and con-
versely for an easy item. It is conjectured from the form of (A24) that x
will prove an acceptable closed-form estimate of the examinee’s latent
trait, given a reasonable number of items. The approximation involved
should be best at the middle of the distribution. At the extremes, cor-
responding to a total test score of zero or n, where the maximum
likelihood estimate is infinite, x cannot be correct. But this is not
necessarily a disadvantage.

where

@
oo
»
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A Perspective on the Seminar
Donald Spearritt

It was recognized in the planning of the invitational seminar that the
authors of the invited papers would examine the contributions and
potentialities of latent trait measurement procedures at a number of
levels. Some papers would emphasize the place of latent trait procedures
within the general stream of the theory and practice of measurement in
education and psychology. Others would emphasize theoretical issues in
latent trait measurement which have arisen in the course of finding solu-
tions to practical problems. Some would be more directly concerned with
demonstrating practical applications of latent trait models in large-scale
educational testing and in particular areas of long-standing intefrest in the
development of tests in education and psychology. With the expected
diversity in the papers, it was anticipated that it would be a useful exer-
¢ise to draw together the main themes of the seminar and to assess its
contribution to the improvement of measurement in education and
psychology. This task fell to the chairman of the seminar. The approach
taken has been to consider first the trends raised in Thorndike’s opening
address, and then to reflect on the main themes.

In his introductory address, Thorndike provided the seminar par-
ticipants with an excellent overview of the origins and broad trends of
psychometric theory and practice over the past 75 years. His references
to Binet and Simon and Spearman are a reminder that the notion of la-
tent traits has been in use tor a long time, though the conception of latent
traits or underlying abilities in the Spearman model is rather diffcrent
from that coming und«r the rubric of latent trait theory today. He in-
dicates why and how two of the main streams of psychometric theory
were developed — the theory of measurement error with its notions of
truc score and reliability, and tke theory of the organization of human
abiliticy, both deriving in large measure from Spearman’s early work.
Lest we hasten to demolish the old temples too quickly, he gives us a
timely reminder that the classical measurement model was responsible
for producing a body of useful knowledge about tests. He also notes the
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°

emerzence of an alternative notion of true score in more recent times, in
which true score represents the universe of behaviour that would be ap-
proached it the number of relevant test tasks were increased without
Hmit. But neither this notion nor the components-of-variance model 1o
which it leads received much attention in the seminar.

The pervasive influence of multiple-choice items on testing theory and
practice is also noted, as is the development of indices for item analysis
purposes, viz. item ditheulties or facilities, and item discrimination in-
dices, Despite their shortcomings, these indices have influenced educa-
tonal and psychological measurement at the workface as well as in the
rescarch laboratory,

It is enlightening to have had Thorndike’s perspective on what he sees
s the two major competing models to interpret a test score, that is, the
domain saumpling model and the fatent trait modei. While the seminar
was largely concerned with the latter, we are reminded that a very
substantial amount of work has been done in recent years on defining the
universe ob behaviour to which we wish 1o generalize from our tests, on
vriterion reterenceed tests and on testing for mastery. Though the domain
sampling model is not without its problems, it represents an important
aspect ot educational measurement which must continue to be explored.

Thorndike’s coneept of the latent trait model as a vertical dimension
o which the individual person is o be tocated is a useful one. There are,
as he notes, some real dithculties in conceptualizing some aspects of
cducational achicvement in terms of the latent trait model, though set-
ting up dimensions such as ‘competence in history’ may £0 some way
towards meeting these ditficulties. .

Latent trait models, the aspect of educational and psychological
measurement which forms the main subject of this conference, were con-
sidered i the tinal section of Thorndike's paper. He distinguishes two
schools of thought — the *one-parameter’ school represented in the Rasch
approach, and the *three-parameter’ school led largely by Lord. The pros
and cons of these approaches were argued by Thorndike and debated in
greater detail in subsequent papers in the seminar.

I their own way, the individual papers have cach made a contribution
to the theors and. or practice of latent trait measurement. But what has
heen the contribution of the seminar o the field, considering the set of
papers in toto? One convenient way of making this assessment is (o for-
mulate some fundamental questions and to see what light has been
thrown upon these by the various papers.

‘“WHICH OF THE LATENT TRAIT MODELS
GIVES THE BEST FIT TO ITEM DATA?
Ihis has been a controversial question for some time. The contest has
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been largely between the Rasch one-parameter model, involving item
difficulty only, and the three-parameter model, involving item
discrimination indices and guessing paraineters also. As Lord (1970)
demonstrates, good fits appear to be obtainable with the thiee-parameter
model, which takes account of the ditfering slopes of itein characteristic
curves and the level of the Tower asymprote, as well as item difficulties.

On this criterion, the three-parameter model, not unexpectedly, has
the advantage. But it is relevant 1o ask, as Thorndike does, whether such
a comples model is really required. Are its advantages outweighed by the
need tor substantial computing facilities and for large samples tor item
tryouts? With respect to these questions, MceDonald’s study provides
some promising findings. His results suggest that precise estimates of
ability can be obtained with sample sizes as low as 500, which is about a
desirable minimum value of N for item analysis studics.

DOES THE RASCH ONE-PARAMETER MODEL
GIVE A SUFFICIENTLY GOOD FIT TO
ITENI DATA?

From @ practical pont of view, the Rasch model obviously has the ad-
vantage of bemg simple to operate and requiring smaller tryout samples
of persons. But Thorndike indicates that the model provides only a
rough fit 1o the data in some cases, depending on the differences among
the values ot item diserimination indices tor a set of items and the extent
to which guessing is involved in students’ sclection of answers, He sees
the Rasch model as being rather more successful with constructed-
response items  than with multiple-choice items, though with the
qualification that carefully selected multiple-choice items! are likely o
provide good fits. Choppin recognizes that the model is designed 1o give
an approvimate rather = noan exact representation of data, but argues
on the basis of his extensive experience with the model in studies carried
out by the National Foundation for Educational Rescarch in England
and Wales that the model is robust with respect 1o violations of ity
underlying assumptions, and presents empirical evidence 1o support this
argument. Working in the area of cognitive development, however, in
which ability is likelv to change over a period of time, Keats shows that a
one-parameter model is inadequate. A two-parameter model of cognitive
development which uses as individual difference parameters both the
asymptotic value of a person’s ability and the rate at which he ap-
proaches that level gives a rather better fit 1o the data than a one-
parameter model mvolving some index of 1Q.

Choppin notes that one of the suggested applications of the Rasch
model invobves the identitication of responses which are ‘lucky guesses’,
and the editing out of the items which produce®such responses. This type
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of editing would have the eftfect of improving the fit to the one-parameter
model. It would seem highly desirable in such applications to scek some
independent verification of the statistical aberrations. Some interviewing
of students about their lucky guess responses would indicate whether the
cditing was justified.

The question at issue concerrnis the robustness of the Rasch model.
How tar can the data depart from the model betore leading us to draw
icorrect inferences? Arguments about the relative virtues of the Rasch
model and the three-parameter logistic model are reminiscent ot other
controversies over the last three decades concerning the violation of
assumptions underlving statistical tests, for example, the robustress ot
the Fotest in analysis of variance. In such controversies, it has often been
found that the models ailow considerable relaxation in their underlying
assumptions betore they begin to support false inferences. It would not
be surprising to tind that the Rasch model exhibited a similar degree of
robustness,

There s a turther question that may be asked in considering the
goodness ot fit of the Rasch model. If better fits 1o a set of data are pos-
sible. does this mean that less good fits musi be discarded, even if they
tahe o traction ot the time to obtain and provide a satistactory approx-
mation to the questions being asked of the data? While further empirical
studies will be of assistance in answering this gquestion, it would séem
reasonable to draw the tentative conclusion that the Rasch model is a
satisfactors model tor estimating item and person ability parameters,
unless its applicability to a set of items is obtained at the expense of
discarding too many items,

ARE EXISTING TESTS OF FIT FOR LATENT
TRAIT MODELS SATISFACTORY?
[his question was taken up by Douglas and McDonald. Both authors
regard the existing chi-square tests of fit as unsatisfactory. They are more
likely to vield a significant non-fit with increase in sample size.
Douglas urges that the present approximate tests of fit be used with
caution. One of the advantages of the generic Rasch model which he
denves mhis paper by means ot conditional inference approaches is that
1t feads 1o a test of fit based on likelihood functions, though the ap-
plicability ot the test is limited by numerical analysis problems. Douglas
notes that an exact test of ht of data to a Rasch model is theoretically
possible, through the use of conditional inference procedures free of all
parameters in the model. Such a test has still to be developed, but he sees
« promising hine of development in the approaches taken by Agresti.

MeDonald's paper is largely concerned with improving methods of

heung, and testing the it of, latent trait models. He notes that difficultics
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such as lack of convergence have been experienced with programs for
fitting latent trait models which involve the simultaneous estimation of
item parameters and person parameters and that the difficulties have
been magnified if guessing parameters have also been estimated, He
doubts that the Rasch model is free of these difficulties. He questions the
appropriateness of the chi-square approach, since ro account is taken of
the size of the residuals. He concludes that satisfactory criteria for testing
the fit of latent trait modcls have been lacking, and notes that, even whén
a prior test of unidimensionality of the data has been made, it has relied
on a lincar factor analysis of a non-linear set of data.

McDonald's use of non-linear factor analysis is a promising approach
to the fiting of latent trait models, since it avoids the false assumption of
lincar item characteristic curves. He shows that the normal ogive modecl,
for cxample, can be cexpressed through orthogonal polynomials as a
linear combination of nonlincar functions of the latent trait. Constraints
on the model can be introduced into the program (COSAN) used for
htting the model, a particular set of constraints providing the equivalent
of the Rasch model. He demonstrates that the program provides a
satistactory fit to the normal ogive model in a one-, two-, or three-
parameter form tor a range of data sets. Since this approach requires no
prior test of the dimensionality of the data, and takes account of the size
of the residuals in assessing the goodness of fit, there is some support for
MceDonald's claim that it is superior to the usual methods of testing fit.
There remains the problem of determining whether his approach is
robust with respect to violation of the assumption of normality in the
distribution of the tatent traic.

There is obviously scope for improvement in testing the fit of latent
ait models, and the rather different approaches of Douglas and
MceDonald to the problem provide useful directions for further investiga-
tion,

HOW EFFECTIVE ARE CONDITIONAL
AND UNCONDITIONAL PROCEDURES FOR THE
ESTIMATION OF ITEM PARAMETERS?

Fhe 19704 have been marked by a considerable amount of interest in the
development of unconditional and conditional maximum likelihood pro-
cedures tor the estimation of item parameters. Unconditional procedures
which imvolve the simultancous estimation of both item and person
ability parameters have the disadvantage of yielding inconsistent
esbimates of itemn parameters. Conditional procedures yield estimates of
item parameters conditional on person ability parameters and are com-
monly accepted as possessing theoretical advantages, especially with
respect to the testing of goodness of tit. The seemingly intractable
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numerical problems of estimation with conditional procedures led in-
vestigators to make some progress with the refinement of unconditional
estimation procedures. )

As mentioned in the previous section, McDonald questions the accept-
ability of procedures which involve the simultaneous estimation of item
and person abitity paramcters, on grounds which include the uncertainty
of convergence. The difticulties are exacerbated by the inclusion of guess-
ing parameters, unless a wide range of abilities is involved. '

In presenting his generic Rasch model, Douglas provides a more
generalized framework within which estimation procedures for item
parameters can be considered. By determining how many data sets.could
have produced the observed marginal totals for all parameters, he can
estimate the conditional likelihood of the observed data set given the
observed mzu&ginal totals. This enables him to focus on any designated set
of parameters, say, item dithculty, and to estimate the conditional
likefihood tor the set of item marginals given the set of raw scores, thus
affowing him 1o arrive at item parameter estimates which are not-depen-
dent on subjeet ability parameters. A number of numerical analysis
problems have to be solved, however, before these conditional maximum
likelihood  estimation  procedures can be put into operation. He
recognizes that Gustatsson (1980) has recently developed conditional
estimation procedures which can be successfully applied in the Rasch
model for up to 100 dichotomous test tems, but has some reservations
about the eftects ot extreme item parameters and rounding errors on the
estimates viclded by these procedures. Pending further work on con-
ditional estimation procedures, he recommends the use of unconditional
estimates of parameters, which can be subsequently ‘corrected’ to the
corresponding conditional estimates, though the extent of applicability
ol such corrections has also to be explored. ,

Douglas's paper is an important one with respect to the estimation of
both item parameters and person parameters, and opens up new avenues
for investigation in this technically complex aspect of latent trait
measurement.

CAN LATENT TRAtT MODELS COPE
WITH THE FACT THAT ABILITY PARAMETERS
~ CHANGE AS A RESULT OF
INSTRUCTION AND OVER TIME?
Keats pomnts out that ability is a trait which is likcly to change with time,
and that the abilitn parameter being estimated through  person
parameters i the Rasch model and some other latent trait models is
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time-bound. Taking cognitive development as an area in which ability
can be expected to change, and using in turn both ratio 1Qs and deviation
1Qs as the individual differences parameter, he finds that the one-
parameter model fails to account satisfactorily for cognitive develop-

ment. Rather better results were obtained with a two-parameter model of

cognitive development, which incorporates as individual ditferences
parameters both the asymptotic value of a person’s ability and the rate at
which he approaches that level. While this approach provides a pro-
cedure for accounting for a change in ability, it was seen to involve some
difficulties by some of the seminar participants. Reliable information
about both the asymptotic value of ability and the rate of development
may be dithcult to obtain for a significant proportion of persons prior to
adutthood. More fundamental was the question of whether latent trait
models should be expected to cope with changing ability. Should the
ability parameter be an estimate of ability at the time of measurement
only, or an estimate which also took into account the likely ultimate level
ol development of that ability?

I'he use of Hatent trait models in the measurement of change was con-

sidered also by Spada. In their paper, Spada and May set out the ra-

tionate of, and some practical applications of the Linear Logistic Test

Modet (1.LTM), which was developed during the 1970s by a number of

Furopean tatent trait theorists 1o overcome the problem involved in
measuring change. In cffect, the problem is handled by breaking down
the usual item parameters into lincar combinations of the operations in-
volved in finding the solution to the item; these include not only cognitive
operations but components such as the effect of different types of instruc-
tion. Whercas change in item difficulty with time or instruction is difficult
to represent in the Rasch model, it can be adequately represented in a
model such as the LI M which analyses the difficulty of each component
operation. Operation difliculty parameters can be used to arrive at
estimates of item difficulty parameters. "
Spada and May argue significantly that the structure of a task or item
is not likely 10 be the same for all persons in a samiple, as is assumed by
both the LLTM and the Rasch models. Intellectual development does not
necessarily take the form of increasing mastery of the same solution
algorithm, but may be characterized by the appearance of different solu-
tion algorithms. By allowing change to be examined at a basal level, the
LLTM provides more possibitities for coping with structural change than
does the Rasch model. It has distinet advantages for the cevaluation of
factors contributing 1o change in item difficulties, and considerable
potential as an approach to the study of change. As McDonald noted
during the seminar, the significance of this procedure lies more i its new
approach to the modelling of change than to the measurement of change.

o 2:5,3
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HOW CAN LATENT TRAIT THEORY IMPROVE

TEST DEVELOPMENT PROCEDURES?
Once of the main purposes in singling out latent trait theory as the major
focus ot this seminar was the gap between the theoretical advances in test
theory and the procedures being applied at the practical level in test
development, which by and large have taken little or no cognizance of
these advances. Henee it was highly appropriate that some attention be
given in the seminar to practical applications of latent trait concepts in
test development.

A commonly claimed advantage of latent trait models is that they
facilitate the cquating of scores across tests, because of the availability of
sample-tree item parameters and item-tree person parameters. This par-
ticular application of the Rasch Simple Logistic model was examined by
Morgan in relation to the equating of ditferent trial and final forms of the
Australian Scholastic Aptitude Test (ASAT), through the-use of link
iems at both the whole-test level and sub-test levels. The procedures
senerally tollowed the Rasch common item method of equating tests as
setout in Wright and Stone (1979).

A number of findings from this study are likely 10 be of general interest
to test constructors, 1 was found that items which did not conform 1o
the Rasch model were largely those with very high or very low item
discrimination indices. The percentage of ASAT items conforming to the
Rasch model was greater when items were calibrated within their respec-
tive sub-tests rather than across the whole test, presumably because of a
greater degree of unidimensionality within the separate arcas, In this type
of cquating exercise, test constructors should make sufficient allowance
for the loss ot link items which do not fit the Rasch models. The effect of
the positioning of link items within a test also seems worthy of further
study.

Morgan's study, demonstrates that it is possible 1o use Rasch models 1o
cquate tactorially comples scholastic aptitude tests at both the whole-test
and sub-test levels, Tt would be usetul to ascertain what was happening to
the item pool in the process. Is the factor composition of the tinally
selected items less comples than that of the original pool? Morgan’s sug-
gestion ot classifying o set ol test items into homogencous sub-tests
betore applying the Rosch model seems sensible, and akin 1o the old
question of whether to use total score or verbal and qguantitative sub-
scores as the critenion against which to analyse individual test items.

fzard and White's paper is an attempt to make latent trait analysis pro-
cedures aceessible o classroom teachers, a development which must
oceur 1 atent trait models are to have a significant impact on educa-
tional testing as distinet from educational and, psychological measure-
ment in rescarch, In the classical measurement tradition, booklets such
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as Lducational Testing Serviee’s Making the classroom test or Multiple
choice questions: A close look have had a major influence in spreading
ideas about item analysis procedures and notions of reliability and
validity among teachers. These ideas have become more readily available
10 Australian teachers in recent vears through the publication by state
education departments or examining bodies of series of booklets under
such titles as *School Assessment Procedures’.

Izard and White describe the use of Rasch procedures to develop a
pool of calibrated items for use by teachers. They distinguish between
progress tests consisting of small numbers of items to indicate the degree
of mastery of specific skills, and review tests, a large collection of items
designed to give a broader coverage of a student’s performance in a con-
tent arca. Their example, using a uniform test with items evenly spaced
across the difficulty range, suggests that tests vith small numbers of items
can be satisfactorily prepared for progress tesis to allow a student to-be
regarded as having mastered a skill if he scores 5 or 4 on a five-item test,
or having not mastered it if he scores 0 or 1. While their procedure for
developing progress tests depends on applying the characteristics of a
narrow test, they use the size of the standard error of measurement as a
criterion to determine the appropriate length of review tests.

Onve banks of calibrated items are prepared, their use by teachers in
constructing classroom tests will depend very much on whether simplitied
and vasily understood item calibration procedures are available. The
simplified PROX procedure from Best Test Design (Wright and Stone,
1979y and the method of calibrating teacher-made items on to the item
bank scale by using link items sclected from the latter scale are illustrated
by lsard and White, and would seem to have a reasonable chance of im-
plementation by teachers who are prepared to put this extra effort mto
their assessment practices.

I'he usc of worksheets of the type suggested by Izard and White will be
essential if the Rasch procedures are to be applied by teachers in their
own tests, The task of making clear to teachers the assumptions and con-
cepts of Rasch measurement is likely to be more difficult, but should be
aided by manuals such as Best test design (Wright and Stone, 1979)
which provides exceptionally elear and simple presentations of basic con-
cepts of measurement.,

The work done by Izard and White in the development of short pro-

“gress tests exemplifies Thorndike's argument that it is in the areas of in-

dividuatized and adaptive testing that latent trait models, which are well
suited to the estimation of a subject’s precise location on a trait dimen-
Jon. will have a considerable impact on test development procedures.
Item banking is an arca in which latent trait theory could make a
major contribution to measurement, again because of its sample-frec
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item parameters. The value of item banks is enhanced by the availability
of invariant item difficulty parameters. The importance of item banking
is underlined in Choppin’s paper, both with respect to national monitor-
ing programs and its gencral application for use in schools. Some
reservations were expressed at the seminar as to whether the Rasch model
was sufficiently robust as a base for monitoring programs, and par-
ticularly about the effects of the proposed multi-chaining procedures on
item parameters, which might be expected (o become considerably less
stable with moves away from centralized curricula to school-based cur-
riculum development. There is little doubt that latent-trait-based item
banks will be of assistance to schools in their assessment procedures.
Their use in monitoring programs is somewhat more controversial,
although it is difticult 1o determine the mix of technical measurement
problems and the educational and political overtones in such controver-
stes. Theoretical guestions about the viability of latent trait models for
such purposes will need 1o be considered in the light of the extensive
practical experience that the National Foundation for Educational
Rescarch in kEngland and Wales has acquired in the use of such models.

Choppin also describes some novel applications of latent trait models
to particalar practical problems in educational testing, such as the deter-
mination of between-marker agreement and the handling of score
matrices with incomplete observations.

WHAT WERE THE MAJIOR CONTRIBUTIONS
OF THE SEMINAR TO MEASUREMENT THEQRY?
I he reader may have gained the impression from the previous pages that
widespread consensus of views was the order of the day. Such was not
the case. A number of participants, and especially McDonald, felt that
the Rasch and other latent trait modellists may be in danger of cutting
themselves off trom other arcas of psychometric theory, and warned
against. a complete rejection of older models in the scarch for new
maodels, Despite the differences in orientation on this issue, it is apparent
that some important contributions towards the unification of test theory

were made in the seminar, particularly by Andrich, Douglas, and Keats.

Andrich has made an undoubted contribution to bridging the gap be-
tween older and more recent models 6 measurement by showing that the
Rasch latent trait model synthesizes the Thurstone and Likert ap-
proaches to atiitude measurement. He perceptively observed that
Thurstone was scarching for an attitude measure which was invariant
across ditferent groups of persons, and a person measure which was in-
variant across difterent sets of statements, whereas Likert was not. He
expresses Thurstone-type scale values in the form of the simple logistic
model for dichotomous-response rating scales, and derives a ‘rating
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response model’ for the ordered polychotomous response case by taking
the threshold and statement values as additive components in the model,
and bringing together the results obtained from considering each
threshold independently. In effect, the Thurstone and Likert approaches
are considered as special cases of the dichotomous and polychotomous’
form respectively of the ordered response model. This development of a
Rasch rating model represents both a theoretical and a practical con-
tribution to the improvement of measurement of attitudes.

Douglas in turn has made a substantial theoretical contribution in
generalizing the theory behind the Rasch model to incorporate variants
of the model, including Andrich’s model for polychotomous attitude
seale items and the Rasch/Andrich essay grading model. Douglas’s
generic model reduces to the standard Rasch approach in the case of
dichotomously scored items.

Keats was the only author to make a direct examination of the rela-
tionship between classical test theory and latent trait theory. He arrived
at the important generalization that the true scores in classical test theory
show an explicit relationship with latent ability values only when all items
have identical item characteristic curves. This condition might be re-
garded as unnccessarily restrictive by test developers, although there
would be practical advantages in having tests of “equivalent items
available at a number of different age levels.

Given that these three authors were successful in achieving some
further integration of measurement theory, there was nevertheless a feel-
ing on the part of somc of the seminar participants that latent trait
theorists were failing to take sufticient account of the mainstream of
measurement theory. This point of view was resisted by some of the la-
lent trait theorists, who thought that premature attempts to integrate
ditfering theories might obscure the special features of new theories.
MeDonald's plea for a more concerted effort on the part of latent trait
theorists to consider their models in the context of other aspects of
measurement theory is worth heeding. 1t would seem incongruous, for
instance, not to cxpect some correspondence between the latent trait
measures vielded by factor analysis of item data and those estimated
through latent trait models.

WHAT CHANGES IN MEASUREMENT PRACTICE
ARE LIKELY TO RESULT FROM THE
INCREASING USE OF LATENT TRAIT MODELS?

[t will be appropriate to complete this overview of the seminar with some
personal predictions of the changes which are likely to occur in measure-
ment practice in Austratia as the result of an increasing use of latent trait
models. These will coincide to some extent with the predictions made in
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Thorndike's paper. since some ot the new approaches made possible by
latent . trait models will be likely 10 be adopted irrespective of any
national differences in the philosophy or practice of measurement.

Except in the case of short *progress’ tests designed 1o estimate fairly
precisely a person’s position on a dimension, there seems likely 1o be little
change in the types and characteristics of items selected for achievement
and ability tests because of the use of latent trait models. Most of the
items which are aceeptable in terms of traditional item facility and
discrimination indices are likely 1o be aceeptable in a latent trait model,
It evperience indicates that some *good’ items under traditional indices
are rejected by latent trait models because of lack of fit, practitioners
may well show some inclination 10 question the model as well as the
items. In effect, tests of any reasonable length can be expected to have
similar distributions of item facility and diserimination indices, and
similar levels of reliability as they have at the present time,

Major changes can be expected in the provision of short Progress tests
with uniform distribution properties of the kind described in the [zard
and White paper. Testing is likely to be used more for instructional pur-
poses and somewhat less for survey purposes, especially it computer
facilities became more readily available at the locat level. This will
stimulate demand tor individualized testing, for adaptive or tailored
tests, and the greater availability of such tests will in turn promote a
greater use of tests for instructional purposes. The fact that latent trait
models can be used 1o provide fairly precise item-tree estimates of person
ability will probably Icad to their widespread adoption in the develop-
ment of such tests. There may well be some development of finc-grained
tests i accordance with the linear logistic test model 1o assess whether
the individual operations required 10 answer an item have been mastered.

Fatent trait models are also likely to improve the quality of item banks
and to generate more interest in their use. Teachers are likely 1o become
more aceepting of item banhks as an additional resource in their teaching
and testing, and more so it the items are accompanicd by adequate
sample-tree information about their parameters.

Some slackening of demand for norm-referenced tests can be an-
tapated, though it is not likely 1o be very pronounced. Feachers are still
Ikely to be interested in comparing the performance of: their students
with other appropriate reference groups, even if they have item-free in-
dices of their students’ achievement in different subjects, Their reliance
on norme-referenced tests will be greater if it proves to be difficult 10 apply
fatent trait models to achievement tests in some of the traditional content
arcas. Normereferenced tests are likelv to retain their appeal also for
educational administrators and for psychologists involved in the assess-
ment of ability and aptitude.
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A major obstacle in gaining widespread acceptance of latent trait
modecls will be the inherent complexity of the measurement notions on
which they rest. 1t takes years to wean the public and even teachers away
from the idea that marks can only be interpreted on a percentage scale.
There has obviously been some increase since the 1940s in the percentage
of the community with some undcerstanding of the ideas of standard
deviation and pereentiles, but these notions are still not understood
widely. Given the recent public controversics in Australia about the con-
version of raw scores 1o scaled scores, one must view with some trepida-
tion the public’s likely degree of understanding of a student’s score on an
underlying ability or achicvement scale which does not range from 0 to
100. A great deal of effort will have to be expended in communicating the
meaning of the new score scales to teachers and the public. 1f these ideas
remain_incwplicable to people at the level at which they are to be im-
plemented, their implementation is unlikely to be successful,

Although the prospects of an carly widespread aceeptance of latent
trait meastures in the public educational domain seem dim, they are prob-
ahty much brighter in the arcas of educational and psychological
research. Rescarch can only benefit from the use of sample-free item
seores and item-free person seores, I the seminar was successful in rais-
ing the level of understanding of latent trait models among researchers
and measurement specialists in Australia, it will have proved to be a
sgnificant event in the improvement of measurement in education and
psyehology in Australia, and a fitting event to mark the ACER’s
achicvements in educational and psychological nieasurement on the
occasion of ity golden jubilee vear. ’
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