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Abstract

A standard method for exploring item bias is the intergroup
comparison of item,dfff;dﬁities. This paper describes a refinement
and generalization of this technique. In contrast to prior approaches,
the proposed method deletes outlying items from the fqrqulatioh of a
criterion for identifying items as deviant. It also extends the
mathematical framework of item difficulty comparisons to allow the

~gimultaneous analysis of any number of groups. As an example, the
proposed method is applied to a set of quantitative items selected
from a business school admicsion test.
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The Identification of Biased Items

Introduction - .

The study of item bias is concerned with the internal consiséency of
a test. An attempt is made to identify items that behave differeqtly
from other items presum;d to be measuring the same ability. Impl{cit in
research on item bias is group comparison; items are biased in favor of
or against one groyp of test takers:relative to another. Numerous
techniques have gme;ged to iAQesfigate item bias (for a review, see
.Rudner, Getson, & Knight, 1980), but among the most commonly used is the
intergroup comparison of item difficuities (see, e.g., Angoff & F‘rd,
.1973; Donlon, Hicks, & Wallmark, 1980). 1In this technique, an item’s
diff{culty is taken to be the z score associated witﬂ the proportion of test
takers responding correctly to the item. For a set of items, the diffi-
culties for one group are plotted against those for a second group. When
the items are more or less homogeneous in the ability they measure, a
line is §uggested by the resultiag points. This follows, since items
that are more difficult for one group will be more difficult for the

.

other group, and the easier items for one group will also be the easier

-

items for the second group.
A line of best fit is calgulated for the plotted points. Items far

removed from the line behave unexpectedly relative’ to most other items.

They could be described as more difficult for one of the groups thdn

would have been predicted by the relative performance of the two groups
on other items. (ne presumes that such a deviant item is sensitive to
factors to which most other items are insensitive or less sensitive.. By

introducing additional conditions for the successful completion of the

item, these factors interfere with the item’s expected relative difficulty.
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Thus, the comparison of item difficulties distinguishes items that behave
Aunus;ally relafive to the behavior of most other items, where distance
from the line of best fit is the measure of un;xpected behavior. This
line itself represents an ideal, the relationship of a set.of iteﬁs

ithat are homogeneous in what they measure. ,

Error enters into the approximation of the ideal line when items
sensitive to extraneous factors are included in the best-fit calculations.
A bettér approximation is aéhieved if the calculations include only the
more homogeéeous items. One can lessen the influence of items sensitive
to other factors by removing from the calculations items far removed from
the line suggested by the mainstream of points. A recent report presented
an algorithm for doing this (Sinnott, 1980). Basically, the algorithm
;uccessively removes subsets of items, stopping when a line is found in
which only those points within a specified distance participate in its
derivation. | |

The comparison of item difficulties has thus far been restricted to
two groupg. In this paper procedures are outlined that allow the
simultaneous comparison of any number of groups. The procedures incorporate
the algorithm described above, removing from the best-fit calculations
those items most likely to be sensitive to extraneous factors. After

the procedures are presented, their application will be illustrated. :

First, though, the mathematical foundation for the procedures is presented.

Mathematical Background

In this section the line of best fit is derived for a set of points

in n-space. The line sought 1s that which minimizes the squared distances

)

/
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of the points from the line. The discussion is adapted from arguments

presented by Pearson (1901). ;

Let Aaj be the difficulty of item o for group j, and S be the set

" of vectors Aa = (A ""Aan)’ a=1,...,Y, where vy is the number of items and

al,

n the number of groups. For a given group j, a mean and variance are

defined by

¥
M, = 2 Aaj /v and - 1 -

1]
[}
™

- 2 - :
(By5 = M2/ (=D (2)

» N

) ~a
For two groups, j and k , a correlation coefficient is given by .

. -

] (Aaj

4 r. —3
jk o

=<

’

A line, L, in n-space can be written in the form x=x'+tu, where
x’ is a vector lying on the line, t‘varies over the real numbers,
and u is a unit vector parallel to the line:' Qur goal is to find
%’ and u for the line that best fits S, expressing‘g’ and y solely in
tetms of the statistics. Mj, S5 and rjk' ‘
Let p(®).be the perpendicular distance of éu from L. As will now be

shown, p(®) can be expressed in terms of x", u, and Aa' For a given 8>
O . S -y R A

let t’ be chosen such that the vector

8 - @ * W
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is perpendicular to y. The length of (4) is the perpendicular distance °f.9a

from L, or p(a). Thus
P2(0) = (4, - (& + t"W@, - & + W),

Since y is perpendicular to (4), P

P2(@)8 (4, - (& + "W, - x). (5)

The perpendicularity of u and (4) is further exploited to find an
expression for t'. Since W(4, - x™ t’w) =0, ¢’ = g(éa—ﬁ').' Subs ti-

tuting this expression for t’ inte (5) yields

-~

P20 = (4, - 20, - ) - (wp -x»E ©

Equation 6 expresses p(®) in terms of x", u, and 4,+ In terms of

p(*), the line desired is that which minimizes I p2(x) . This sum can be written
a=1

(
1

p2 (o)

- X, - X)) - (e, - x))?
1 o

A
-0

1=
|
=

a

n ‘ 'n
(Z (8, - x)%2 - (L u

)
1 g M i=1

[
=

- x7))2
xj)) ). (D)

JTed

(]
The Lagrange multiplier method can be applied to minimize (7) subject to the
n
constraint that I u?= 1, This will lead to expressions for x’ and u in
j=1
terms of the 8 for the line that best fits S. The Lagrange formula is

4

n 2 n
(2 (b, -xDc=-(z
1 j=1 j=1

n ~— =

n
- x°))2 2_
. uy By = ¥ 1) + l(jiluj 1) (8)

i .

where A {s the Lagrange multiplier.

(e




Differentiating (8) first with gespect to x'k results in the following

L4
expressibén for each k=1l,.c.yns V‘
t‘ -
Y n Py
E ((Aak - xk) - 'E uj (Aaj - xj)) =0, .
a=1 j=1
®
which can also be written as
YM_k - Yx]:, = ukYt
® — " %
where
Y
Mk = I Aak /v and .
a=1
“ Y n
’\ ) ) t = L (f u, (.-xN/rv.
. . . a=1 j=] J oJ J

Note that t doe? not depend on k. Thus for each-k, M = x’k + tuy,
which is just the statement that ﬁf(Ml,...,Mn) lies on the line that
minimizes aél pz(z). Hence the vector‘ﬁ' can be taken as M.
Differentiating Equation 8 with respect to U for.k=1,..4,n,
yields ?

(
1]

I =<
(I S~ |

u ‘(Aj—M.)) (Aak-nk) = 0, 7

A_
T j 4@ 3 (9)

[3

In temms of the statistics Sj’ Sy and rjk defined earlier, this may be

§ -
written
!
n
oLy - l))uk = ji] ujsjskr.jk , (10)
r—
ffor k = 1,.04,n. v
J.L/ \
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Erom (10) one may observe that U is an eigenvector of the symmetric matrix

-7 .

CHY SpSyTya ¢+ s+ e+ S ST
. , )
51%2%12 ®2 R T
. .o (11) .
’ . ' 2 M
- _ Sl nrln stnrzn e o Y * e . . Sn _J .
»
[
o To determine which eigenvector, more information is needed about its
associated eigenvalue, g!(Y - 1). - ,
- Multiplying each of the equations in (10) by its appropriate u and
adding the resulting n equations together results in the following .
equation: ’ ) ‘
‘ n ) . .
MG -1) = I u2s,2+2 R Uiw S8, Foy (12) ,
je1 3 1<j<ken 3 B ATKD
K ~ - .
. n » \ Y gg
using the fact that jéluj = 1. The equation for &, P°(®)
) .
given in (7) can be written in terms of Sj’ sk,land rjk as follows:
’ 2 s Y ep 426 2 '
I p?(a)=(y-1)c s-(y-1)*Z u%s,“=-2(yv-1)_ ¢t u,u, s.s,r, .
a=1 j=1 3 j=1 1 1<j<k<n M
- ] .
¥ s Combining this expression with (12) yYsids )
) . p ‘ - o
Y . . n e , v
£ op¥a) 3 (v'-1) & siz = A “ oo

a=1 X : j=1 . ' \ .
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To mirimize the sum of the pz(a) requires choosing the greatest value
possible for the Lagrange multiplier A. Thus, the desired eéigenvector of .
the matrix (11) is thdt with maximum eigenvalue, .

. .

Y .
e AN The x’ and u that minlmize oE1 p2(¢) have now been expressed .

. solely in‘terms of parameters aerived from the set of.éa,a = lyeee,Ye
_The wector,x’ is ﬂf(Ml,...,Mn), and u 1s the unit eigenvector of (%1)‘
- g}ch maximum eigenvalue. All the points of § were“included in the -

calculation of L. When the line-fitting alég%ithm is illustrated, the *~ . '

b » - v .
. line derived from all points is referred to as the preliminary line of
- . - : -
best fit. - As the algorithm is carried out, a number of intermediate )
. \ . ) P »
lines may be calculated, each based on the points 'remaining after the * , N
/ . : .

removal of  those whose distance frop the previously calculated line s

exceeds some cutoff. The line ultimately resulting‘from.app}icatioh .
& . *

of the algorithm will be.referred to as the line of best fit. When L l

points are removed, the statistics given in (1), (2), and (3) must be

recompuied, based on the remaining points. Lines calculated after the * ' .
. . Lt 8 ‘

prelihinary line are derived in.the same way as the preliminary line, but

e

, ‘v with appropri;tely ad justed parameters. X o
b Identifyiné and Analyzing“OUCiX}ng Items S o
“Let’ ¢ be the distance from‘theiline ofabest fit beyond. which one
'. considers a point ‘s deviation posg?bly aue;to extraneous factors. Tﬂis .
cutof f may be empirically deqermined, as is shown in the next section. h .
< ) 'Tﬂe algorithm for calculatinélthe line of best fit for a set *

.

S={(A is as follows: . ) .

al"“’Aan)}a=l_...1
y\l

\
[
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1. Find the line that best fits the sete
* S-R, wnere initially R is the’empty set.
2. Détermine the distances qf all points in

S from the line. The distance of a given

~
7 !

" point, 4 , can be derived from (6),'yhich

cen also be,written as |

. N v .
(b,. -M)%2 - (Zu (A, - Mj))2 (13)

TR B j=p 4 el

p2(a) =
j

nea3

3. Let R’ be the set of points whose distances
from tHe line are greater than the cutoff
. . : {
distance c. .

4., If R = R’, stop. Otherwise set R equal to
- R’ and begiﬁ again with step 1.

At 'the conclusion of the algorithm, the set R will contain those f

<

points considered outliers relative to the cutoff c. These items may be
further analyzed by determiping the groups contributing most to their .
! : ; oo

deviance. For a given pai] of groups, j and ky the lt@e‘of best fit can

be projected onto the j-k plane. For ag outlying item‘a, the distance ) . '

of (Aaj’Aak) from the projected line can be calculated, A comparison of

these distances over all possible pairs will reflect the relative contri-

bution of the various pairs to the item’s overall deviance. )

- ~
a

The projection of the line of best fit ont6 the plane determined by the

\

|

|

- |

groups j and K is given by A¥+Bt, where B = uk/uj’ A= Mk-BMj, and t vartes \?
. : |

i

|

|

over the real numbers. The distance of (Aaﬁ’Aak) from the projected line ™™ \\\\\\\
. . ‘
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can be derived from the two-dimensional analogue of (13). However, a more

’

useful formula is provided by:

=(A - \ 2
‘ij(a) =(A - 8, +fBL§aj)/ Y @ + 82 (14)
Q

This formula allows for pdéitive and*?égative values and thus indicates
' >
whether (Aaj’Aqk) is above or below the projected line. The formula
<

follows from the minimization of (t'-Aaj_)2 + (A+Bt—Aal)2, which is

projected line.

just—the_square of the distance of (4

ajJAukm) from a point (t,A+Bt) on the

When (14) is positive it follows that Aak<A+BAaj' Thus (Aaj’Aak )
is below (Aaj’ A+BAaj), which means that it is below the projected liné.
In the same way it follows that when (14) is negafive, (Aaj’Aak ) is
above the projected line. A point below the line suggests tsat the item
is unexpectédly difficult for group j. A point above the line suggesgs

that the item is uﬁexpecredly‘diéficult for group k.

Illustration of Procedures

Item,data for the examplés presented below were selected from those .

used in Sinnott (1980). In this earlier work, the object of study was

E

the Graduate Management Admission Test. A stratified sample of some

5,000 individuals taking the test in January‘l977 provided the item

[y

data. Stratification was over a number of variables, including sex, age,

ethnicity or race, and language fluency. Here groups varying in age are

examined. Only one section of the test form is considered~—-problem

N 5
1] )
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solving. This was a 30-item, multiple-choice section present ing self-
| . contained mathematical problems. An item’s delta value is taken as its
difficulty. This is just a linear transformation of the z score, given
'gy A= b4z + 13,

Figure 1 is a frequency distributioné?f the item distances from the |,
pgeliminary line of best fit for a comparison involving three groips: -
randomly selected test takers between the ages 29 through 22, 35 through

39, and 40 through 65. There were about 1,450 individuals in the youngest '

g(odp and 425 in each of the older groups. The numbers in Figure 1

-

<

refer to.item_numbers. __Item 15 was_the most deviant item, lying more

0

than 1.6 delta units from the line.

Insert. Figure 1| here

.For the three-dimensional comparisom, Figure 2 displays the results
of calculating the line of best fit for a number of different item
; . ’ cutoffs. As smallef cutof fs are taken, the distribution of points within
the cutoff distance begins to assume a configuration more consiséent with

the theoretically expected normal distribution of items about the line of

best fit. The distribution presented at the top of the figure, is

.

associated with the line in which items within 1.5 units are the only
items participating in its qerivation: For this cutoff, one iteration of
' . the algorithm was required, since the line resulting from the removal of

Ltem 15 was within 1.5 units of all the remaining points.

. . Insert Figure 2 here

L
In contrast, a cutoff of 1.0 resulted in the calculation of five

lines, as illustrated in Table 1. The intercept and direction listed
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Figure 1. Frequency distribution of item distances L

from the preliminary line of best fit for the three-group comparison
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first are those associated with the preliminary line of best fit.
Initially, items 15, 20, 24, and 29 were removed since they were greater .

than 1.0 units from the preliminary line. The reader may verify this by

referring to Figure 1.

The line was then refitted relative to the remaining.26 points. The .
direction of the new line aprears in Table 1 as (.60, .58, .54). The ) £

line contains the vector (13.65, 13.57, 13.72). All item QistaAces were

recalculated relative to the new line. In addition to the points previously

removed, items 1l and 27 were greater than 170 uwits froi the second

line. Hence, for the next line derivation, items 11, 15, 20, 24, 27, and
. 29 were removeh. i .
Item distances were c;lculated again., Of the removed points, only
Item 29 was found to be within 1.0 units of the third line, and one
additional point, Item 19, was more than 1.0.units from the line.
- Herte, the fourth line was based on the removal of items 11, 15, 19, 20,
» 22, and 27. 1In addition to these six items,' Item 30 was more than 1.0
units from the fourth line. Hence, a fifth line‘was required. However,
this was the final line, since those itéﬁs greater than 1.0 units from it o
were the same as those previously removed. Thé distances given in

Figure 2 for the distribution associated with'the 1.0 cutoff are relative

to this fifth and final line.

. Insert Table 1 here

-
- ~

! . As can be seen in Figure 2, 'little new information about outliers is .

added as the cutoff drops below 1.1 delta units. By the 1.1 cutoff, the
eight asterisked items have distinguished themselves relative to the main

cluster of items, and these items also emerge as outliers yhen smaller

’ Q- cutof fs e taken 1 9
EMC . ar . e e . .
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TABLE 1

Results of the Algorithm
Applied to Three Groups

[

x' u Items removed .
(13,92, 13,97, 14.08) (59,59, 55 s, 50, 24a28
(13.65, 13.57, 13.72) \(.60, .58, .54) 11, 15, 20,122, 27, 29
(13.53, 13.35, 13.50) (.62, .58, .54) 11, 15, 19, 20, 24, 27
(13.63, 13:37, 13.49) (.62, .57, .53) 11, 15, 19, 20, 24, 27; 30
(13.56, 13.32, 13.39) (.63, .58, .53) 11, 15, 19, 20, 24, 27, 30




An examination of a plot of item difficulties for three groups

randomly selected from the same pool.of test takers,suggests that cutoffs
below about 1.0 units are likely to remove items that deviate from the
~main cluster of points for reasons other than item inhomogeneity.

Figure 3 displays the item distances from a preliminary line of best fit
for a delta plot involving three groups of Caucasians, each with about
850 tesé takers. As can be seen, Item 29, the most deviant item, lies

between .8 and .9 delta units from the line. Since the three groups were

randomly sampled from the same population, this deviation cannot be

attributed to factors that discriminate between the groups.

-

Insert Figure 3 here

ForJthe age—group comparison, the line of best fit for the 1.0
cutof f was projected ontd each of the two-dimensional planes defined by
the different pairs of groups. For a given.pair, j and k, the distance
of (Aaj’ Aak) from thé projected line was calculated for each item ¢ in
the set of outlying items. The results appear in Table 2. A positive
value indicates'that the item was unexpectedly difficult for the.first
group listed. A negative value indicates it was gnexpectedly easy for
the first group. As can be seen, all but one of the outlying items were

unexpectedly difficult for older individuals when compared to younger

test takers.

Insert Table 2 here
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Figure 3. Frequency distribution of item distances -
from the line of best fit for a comparison of
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TABLE 2 -

Distance from Prejected Lines
in a Three-Group Comparison

o~

Groups compared

Item Number

35-39 vs. 20-22 40-65 vs., 20-22 40-65 vs.35-39

.8 .7 -.1
1.3 .6
1.7 . o .2
1.1 . 2
1.6 6
l..4 -.2
1.1 -1

.7 1.1
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I A fourth age group was added to the other age groups to¢ yield a

fJ r-dimensional delca plot, the results of which are summarized in

%fgure 4. The fourth group was composed of about 575 test takers between -

)
»

Ehe ages 30 and 34, /fhe fis§t\distribution 16 Figure 4 displays the item
//distances from the preliminary line.of best fit. With a few exceptions,

there is conslderable 51milarity in the distributions of Figures 2 and 4.
' &
Notable exceptions are items 25 and 30, both of which display considerably

more deviant behavior in the four-dimensional analysis.

Insert Figure 4 here

For the' four-dimensional analysis, Table 3 presents data similar-to . {
Table 2. Again, the line derived from the 1.0 cutoff was used. A

comparison of Tables 2 and 3 reveals considerable overlap in their data.

»

Among the new information emerging from Table 3 is the following. Item 30‘
- - — " d
was unexpectedly easy for the middle-age. groups relative to both older

and younger test takers, and Item 25 was unéxpectedly easy for the 40- to

65-year-olds relative to the 30- to 34-year-olds.

Insert Table 3 here

»

A content analysis of‘outlying items may suggest reasons gbr their
deviant behavior. However, information gathered from a single item must
be interpreted cautiously since limitations in the methodol&gy may
lead to spurious data. Information extracted from a set of similarly
behaving outliers is more reliable. However, there are shortcomings in
® s
this approacn also, the foremost being that the teasons for an individual -

o) ' ..

item’s outlying behadvior may be obscured in an aggregate analysis or

2

N .
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'6istance from the Projected Lines

TABLE 3

in a Four-Group Comparison co . e
’ v o
* A ! i
- A 4 ‘ ‘;i
. |
. i . J
2 . g
F) . |
\___ Groups compared ) ‘ :,_j
. . Y N
30-34 35-39 40-65 35-39 40-65 40-@5 o . i
vs. " vs. Vs, vs. ’ vs. vs.
20-22 20-22 ™\ 20-22 30-34 . 30-34 35-39
: |
.3 1.0 .9 o7 A
Y
o7 .8 1.3 .1 .6
1.0 1.7 1.8 6 8
2
.6 1.0 1.1 4 5
6 1.0 . _ 1.5 4 9
.9 1.7 1.3 .7 4
T
6 1 - .5 . -5 -1.1 ‘
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1.1 1.3 1.0 'S 1 0
-1.0 - .4 7 b 1.6
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never pursued betause other items sensitive to the same factors do not

Y .

appear on the test.

In the age analysis, the set efsitems found toobe-unexpeqtedly

‘ i ‘.
difficult for older’test takers did share a common characteristic.” Of

-
N

the thirty items in the problem-solving section, 17 were word problems,
posing their questions in the context of some real-yorld situation. 1In

_ contrast, the other 13 were more abstract, involving for the most part

only mathematical concepts. Of the 13 non-yord problems, eight appeared

- .

as unexpectedly difficult for 35- to 65-year-olds.‘ The non=word problems

1Y -

deal with concepts seldom encountered in their purity outside of formal

~
-

academic training. Thelr appéégance as unexpectedly difficult for the

-

.

older test takers may bé due to a deterioration in a test taker’s

‘e

number of years elapsed since leaving school.

Discussion . . .

.

In this paper a stra@ggy has been presented for studying item bias

- .

using the intergroup comparisep’of item difficulties. In contrast

to prior applications of this approach, the prgposed method allows the

simultaneous comparison of any number of groups, thus avoiding .the

¥R ¢
. .

deviant items in the formulation of criteria on which biased items are

distinguishéd is lessened. he procedu?e% ‘qutlined an@_fllustrated in

"

¥ Y
ﬁhis.paper allow for a more ef Lcieﬁt and reliable applicatibn of item
difficulty camparisons to the study of item bias, - .

| N o ' . .

N e . .

.

" awkwardness of numerous pair-wise comparisons., ' Fu .hermore, ‘the role’ of

-

“

= .
ability to-manipulate these concepts, a deterioration correlated with the
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' .
The approach is based on an algorithm that ensures that the best-fitting

line E%r an n-dimensional plok of item difficulties is derived solely from

items lying within a specified distance of the line. The .line that best

fits these items is shown to be that which intersects the vector M = (M

-

ER ]

1,...,Mn)

and lies in the direction y, whére u is the unit ‘eigenvector with maximum

eigenvalue of the symmetric matrix givén in (11) and Mj is the mean of
the item diff;culgieswexpé;ienced by éroup j:
It:appears that no information is lost when additional dimensionc
are added to an apalysis; Sinnott (1980) performed.two—dimensional
comparisons of the age groups studied here.,

gation were contained in the results of both the three-

N

.

.

The findings of that investi-

—

and four-dimensional

-

comparisons. ‘Furthermore, the findings of the three-dimensional analysis

are repeated

N

The limitations in the proposed strategy stem primarily from the

L]

on the existence of .a level of ability above which success on the item
is achieved and below which, f

perfect discrimination. "A more accurate model assumes that test takers

Lord (1977) has tllustrated how items sensitive to the same dimension

g

oin the four-dimensional analysis, as can be seen by comparing
.

. hbksZam‘&

~

chances of correct response improve with ability. Using this model,

»

measure’ of item difficulty.

-

may deviate from linearity in a

ailure.
\

»

plot of their z scores.

“assumption underlying the use-of the imwerse normal transformation as a

One bases the use of this transformation
. .

No item in practice has such

over the range of ability may respund correctly to the item, but their

3

»



-

) Empiricslly, the algorithm seems to be a useful tool for the study, of
. - ’ . - . -
item bias. Several theoretical issues remain to be explored, hcwever.

In paPticular, the resulting line may be only one of several lines that

satisfy the criterion ofkresulting from the consideration of all points

lying within a specified distance. One might wish to show that the

. -
.

. algorithm uncovers that line with the most points contributing to its

. -

calculation. Also, it is theoretically possible that the algorithm might

never lead to a solution, but circle endlessly. However, this seems .

unlikely ‘to happen on any real data set. < * .
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