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Abstract

A standard method for,exploring item bias is the intergroup

comparison of item difficillties. This paper describes a refinement
and generalization of this technique. In contrast to prior approaches,
the proposed method deletes outlying items from thetformulation of a
criterion for identifying items as deviant. It also extends the
mathematical framework of item difficulty comparisons to allow-the
timultaneous analysis of any number of groups. As an example, the
proposed method is applied to a set of quantitative items selected

from a business school admission test,



The Identification of Biased Items

Introduction

The study of item bias is concerned with the internal consistency of

a test. An attempt is made to identify items that behave differently

from other items presumed to be measuring the same ability. Implicit in

research on item bias is group comparison; items are biased in favor of

or against one group of test takers trelative to another. Numerous

techniques have emerged to investigate item bias (for a review, see

Rudner, Getson, & Knight, 1980), but among the most commonly used, is the

intergroup comparison of item difficulties (see, e.g., Angoff & 4rd,

1973; Donlon, Hicks, & Wellmark, 1980). In this technique, an item's

difficulty is taken to be the z score associated with the proportion of test

takers responding correctly to the item. For a set of items, the diffi

culties for one group are plotted against those for a second group. When

the items are more or less homogeneous in the ability they measure, a

line is suggested by the resulting points. This follows, since items

that are more difficult for one group will be more difficult for the

other group, and the easier items for one group will also be the easier

items for the second group.

A line of best fit is calculated for the plotted points. Items far

removed from the line behave unexpectedly relative'to most other items.

They could be described as more difficult for one of the groups than

would have been predicted by the relative performance of the two groups

on other items. One presumes that such a deviant item is sensitive to

factors to which most other items are insensitive or less sensitive.,' By

introducing additional conditions for the successful completion of the

item, these factors interfere with the item's expected relative difficulty.
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Thus, the comparison of item difficulties distinguishes items that behave

umusually relative to the behavior of most other items, where distance

from the line of best Tit is the measure of unexpected behavior. This

line itself represents an ideal, the relationship of a set of items

,that are homogeneous in what they measure.

Error enters into the approximation of the ideal line when items

sensitive to extraneous factors are included in the bestfit calculations.

A better approximation is achieved if the calculations include only the

more homogeneous items. One can lessen the influence of items sensitive

to other factors by remo.ving from the calculations items far removed from

the line suggested by the mainstream of points. A recent report presented

an algorithm for doing this (Sinnott, 1980). Basically, the algorithm

successively removes subsets of items, stopping when a line is found in

which only those points within a specified distance participate in its

derivation.

The comparison Of item difficulties has thus far been restricted to

two groups. In this paper procedures are outlined that allow the

simultaneous comparison of any number of groups. The Procedures incorporate

the algorithm described above, removing from the beetfit calculations

those items most likely to be sensitive to extraneous factors. After

the procedures are presented, their application will be illustrated.

First, though, the mathematical foundation for the procedures is presented.

Mathematical Background

In this section the line of best fit is derived for a set of points

in nspace. The line sought is that which minimizes the squared distances
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of the points from phe line. The discussion is adapted from arguments

presented by Pearson (1901).

LetA.be the difficulty of item a for group j, and S be the set
aj

of vectors A ) a=1,...,y, where y is the number of items and

n the number of groups. Oor a given group j, a mean and variance are

defined by

M, = E A / Y and .

ctia=1

= E (A - m )2 / (y - 1)
aj

a=1

,e
For two groups, j and k , a correlation coefficient is given by

= E (A - M.)(A - M.) / (y - 1)s.srjk ctj 3 cik 3 k
a=1

(1)

(2)

(3)

A line, L, in n-space can be written in the form x=x14.tu, where

x' is a vector lying on the line, t varies over tne real numbers,

and u is a unit vector parallel to the line.' Our goal is to find

x' and u for the line that best fits S, expressing x' and u solely in

terms of the statistic& Mj, sj, and rjk.

Let p(a).be the perpendicular distance of .kt from L. As will now be

shown, p(a) can be expressed in terms of x', u, and A . For a, given A ,

0

let t' be chosen such that the vector

Aa - (3.." t'll)

ci

(4)
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is perpendickgar to u. The length of (4) is the perpendicular distance of
,-44

fr'om L, or p(a). Thus

p2*(a) = t's,)).(Aa 7 (x + Cu)).

Since u is perpendicular to (4),

P2k / (4a + t u)).(e.a - x'). (5)

The perpendicularity of a and (4) is further exploited to find an

expression for t'. Since kP(Act (x'+ t'u)) = 0; t' = u<6a-x').. Substi-

tuting this expression for t' into (5) yields

p2(a) = (A. x')*(4 x-) (kP(A -4)2 (6)
-a - a - -a *

Equation 6 expresses p(a) in terms of x', u, and A . In terms of-a

P(s), the line desired is that which minimizes E p2(a) . This sum can be written
a=1

E P2(a) = E (Aa x').(ba - x') - (uqa -
a=1 a=1

y n n

= E ( E (A )(:)2 ( E u (A Z))2). (7)
a=1 j=1 a 3 a

.

j ij=1

The Lagrange multiplier method can be applied to minimize (7) subject to the

constraint that E u 1. This will lead to expressions for x' and u in
j=1 3

terms of the A for the line that best fits S. The Lagrange formula is-a

y n
E(E(i -x.:)2-(ELI.0i -x.:))2)-tx(Eu.2.- 1) (8)a 3 aa=1 j=1

j=1.

where X is the Lagrange multiplier.

.. mali.....1.11.111.
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Differentiating (8) first with respect to xi k
results in the following

expressi6n fqr each

E

a1
(Oak xi() uk E u. . - x')) = 0,

= j.1 ct3 3

which can also be written as

where

YMk Yxk ultY

Mk E A ak / Y
and

a=1

y n

t = E ( Z u. (ki / "Y.
J cta=1 j=r i

Note that t does not depend on k. Ibus for each.k, Mk = x'k + tu
k'

which is just the statement that M=(M1,...,Mn) lies on the line that

Y

minimizes E p6(a). Hence the vector x' can be taken as M.
a=1

Differentiating Equation 8.with respect to uk, for.k=1,...,n,

yields

y n

a=1 j=i J
°akukA - E ( E uj

- Mj )) Mk) "
(9)

In tertns of the statistics sj, sk, and rjk defined earlier, this may be

written

, I. (y - Mut( = E u.s.s,r.,
j=1 3'

Ifor k = 1,...,n.

u

(10)

.4.,
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,

Erom (10) one may Observe that u is an eigenvector of the symmetric matrix

-
S
2s1 r 12

... OOOOO ss r
n 1 In

ss s s
2

2 s r
1 2r12 n 2 2n

S S r
1 n ln_

s s r
2 n 2n

s
n
2

-

-

To determine which eigenvector, more information is needed about its

associated eigenvalue, f(Y 1).

Multiplying each of the equations in (10) by its appropriate u
k

and

adding the resulting n equations together results in the following

equation:

n

A/(y - 1) = E u.2s.2 + 2- E u u.s.s r.
j K 3 'k 3k,-..... 3=1." 1<j<k<n

a 'N
. n y

r 27 N
using the fact that .E u.2= 1.

j=1 3 The equation for ,. P 0,a=1

1

1

given in (7) can be written in terms of s
j'

s
k'
land r

jk
as follows:

,

.

...

.. nn
2 2 - 2(Y 1) E ujuksjskrjk

Y
( *1) 'E u s1) E s:2E p2( .1(

3 J 1<j<k<n
400 = (Y

3 j=1j=1a=1
.

V * Combining-this expression with (12) yiels

r
. ,

,

Y n

E P2(a) : (1b-,1) E

a=1 ' j=1
. .

1,

..

..

,
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To minimize the sum of the p
2(a) requires choosing the greatest value

possible for the Lagrange multiplier A. Thus, the desired eigenvector of

te matrix (11) is that with 'Maximum eigenvalue: .Y, .. ,, . ,

....0%, The x' and u that minimize aEl.p2(a) have nov been expressed
.

solery in,terms'of parameters derived from the set of Aa,a = 1,...,y.

.Thevector,,x,' ist=0,11,...,Mn), and u is the unit eigenvectoe of (11).

with maximum eigenvalue. All the points of S were included in the
A

calculation of L. When the linefitting algorithm is illustratedohe

, ..

line derived from all points is referred to as the preliminary llne of

best fit. As the algorithm is carried out, a number of intermediate

lines may be calculated, each based on the points remaining'after the
,

removal of-those whose distance from the previously calculited. Une.

exceeds some cutoff. The line ultimately resulting.from application

of the algorithm will be.reterred to as the line of best fit. When

points are removed, the statistics given in (1), (2), and 01 must be

recomputed, based on the remaining points. Lines calculated after the

preliminary line are derived in.the same way as the preliminary line, but

,- with appropriately adjusted parameters.

Identifyin.g and Analyzing Outlying Items
:4

'Lee'c be the distance fromlhe line of best fit,beyond. which one

considers a point's deviation possibly due to extraneous factors. This

cutoff may be empirically determined, as is shown in the next section.

4 The algorithm for calculating the line of best fit for a set

S=((Aa1':. '6'an)/a=l.-1'e
is as follows:

I.

-f
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1. Find the line that best fits the 'set'

SR, where initially R is the'empty set.

2. Determine the distances of a171 points in

S from the line. The distance of a given
,

point, A can be deDived from (6), which

can also be,wri tten as

.n . n
p2(00 = E (A 1.1.)2 ( E u. (A . M.))2 (13) .

j=1 .a3 .3 j=1 al.

3. Let R' be the set of points whose distances

from die line are greater than the cutoff

distance c.

4. If R = R', stop. Otherwise set R equal to

R' and begin again with step 1.

At the conclusion of the algorithm, the set R will contain those

points considered outliers relative to the cutoff c. These items may be

further analyzed by determining the groups contributing most to their

deviance. For a given pai of groups, j and the 14e of best fit can

be projected onto the jk lane. For a outlying item'a, the distance

of (A
aj

,Aak
) from the projected line can be calculatedt A comparison of

these distances over all possible pairs will reflec the relative contri

bution of the various pairs to the'item's overall deviance.

The prOjection of the line of best fit ontb the plane determined by the

groups j and k is givenbylk+BC,Igherell.yuytt=m1c-BM.,and t varies

over the real nbmbers. The distance of (Aa ak ) from the projected line
"""%



can be derived from the twodimensional analogue of (13). 'However, a more

9

useful formula is provided by: .

A + B )/ 1 (1 + B2)
jk ak .aj

(14)

This formula allows for pOsitive and_rgative values and thus indicates

...-

whether (A A
qk

) is above or below the projected line. The formula

follows from the minimization of (C-6 .)
2 + (A+BtA )

2
, which is

aj

'ustthe_square_of_the_distance_DUA ,Q ) from a_point (t,A+Bt) on the
ay iatc

.proSected line.

When (14) is positive it follows that Aak
<A+BA

aj
. Thus (A

aj
,A

ak
)

is below (Act
j,

A+BA
aj

), which means that it is below the projected line.

In the same way it follows that whe; (14) is negative, (A
aj

,A
ak

) is

above the projected line. A point below the line suggests t.)at the item

is unexpectedly difficu,lt for group j. A point above the line suggests

that the item is unexpectedly Aifficult for group k.

Illustration oi Procedures

Item,data for the examples presented below were selected from those.

used in Sinnott (1980). In this earlier work, the object of study was

the Graduate Management Admission Test. A stratified sample of some

5,000 individuals taking the test in January 1977 provided the item

data. Stratification was over a number of variables, including sex, age,

ethnicity or vace, and language fluency. Here groups varying in age are

examined. Only one section of the test formHis considered--problem
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solving. This was a 30-item, multiple-choice section presenting self-

contained mathematical problems. An item's delta value is taken as its

difficulty. This is just a linear transformation of the z score, given

'by A = 4z + 13,

Figure 1 is a frequency distribution of the item distances from the

preliminary line of best fit for a comparison involving three grodps:

randomly selected test takers between the ages 20 through 22, 35 through

39, and 40 through 65. There were about 1,450 indiyiduals in the youngest

group and 425 in each of the older groups. The numbers in Figure 1

fiem_1514as_the mast_demtant_item, kying more

than 1.6 delta units from the line.

Insert,Figure 1 here

For the three-dimensional comparison, Figur 2 displays the results

of calculating the line of best fit for a number of different item

cutoffs. As smaller cutoffs are taken, the distribution of points within

the cutoff distance begins to assume a configuration more consistent with

the theoretically expected normal distribution of items about the line of

best fit. The distribution presented at the top of the igure, is

associated with the line in which items within 1.5 units are the only

items participating in its derivation: For this cutoff, one iteration of

the algorithm was required, since the line resulting from the removal of

Item 15 was within 1.5 units Of all the remaining points.

Ins'rt Figure 2 here

In contrast, a cutoff of 1.0 resulted in the

lines, as illustrated in Table 1. The intercept

calculation of five

and direction listed
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Distance (delta units)

Figure 1. Frequency distribution of item distances 1

from the preliminary line of best fit for the threegroup cdmp"arison
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first are those associated with the preliminary line of best fit.

Initially, items 15;20, 24, and 29 were removed since they were greater

than 1.0 units from the preliminary line. The reader may verify this by

referring to Figure 1.

The line was then refitted relative to the remaining,26 points. The

-direction of the new line apraars in Table 1 as (.60, .58, .54). The

line contains the vector (13.65, 13.57, 13.72). All item distances were

recalculated relative to the new line. In addition to the points previously

removedTitems n27 were great-etthan 1.0 units frbm the secoa

line. Hence, for the next line derivation, items 11, 15, 20, 24, 27, and

29 were removed.

Item distances were calculated again. Of the removed points, only

Itein 29 was found to be within 1.0 units of the third line, and one

additional point, Item 19, was more than 1.0.units from the line.

Heribe, the fourth line.was based on the removal of items 11, 15, 19, 20,

24, and 27. In addition to these six items,. Item 30 was more than 1.0

uni'ts from the fourth line. Hence, a fiftH line was required. However,

this was the final line, since those items greater than 1.0 units from it

were the same as those previously removed. The distances given in

Figure 2 for the distribution associated with'the 1.0 cutoff are relative

to this fifth and final line.

Insert Table 1 here

As can be seen in Figure 2,1.ittle new information about outliers is

added as the cutoff drops below 1.1 delta units. By the 1.1 cutoff, the

eight asterisked items have distinguished themselves relative to the main

cluster of items, and these items also.emerge as outliers when smaller

cutoffs are taken. 10
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TABLE 1

Results of the Algorithm
Applied to Three Groups

x U Items removed

,...

(13.92, 13.97, 14.08) (.59, .59, .55) 15, 20, 24,! 29

k
Y,

(13.65, 13.57-, 13.72) (.60, .58, .54) 11, 15, 20, 24, 27, 29

(13.53, 13.35, 13.50) (.62, .58, .54) 11, 15, 19, 20, 24, 27

(13.63, 13.37, 13.49) (.62, .57, .53) 11, 15, 19, 20, 24, 27; 30

(13.56, 13:32, 13.39) (.61, .58, .53) 11, 15, 19, 20, 24, 27, 30

wora&V



An examination of a plot of item difficulties for three groups

randomly selected from the same pool of test takers:suggests that cutoffs

below about 1.0 units are likely to remove items that deviate from the

main cluster of points for reasons other than item,inhomogeneity.

Figure 3 displays the item distances from a preliminary line of best fit

for a delta plot involving three groups of Caucasians, each with about

850 test takers. As can be seen, Item 29, the most deviant item, lies

between .8 and .9 delta units from the line. Since the three groups were

randomly sampled from the same population, this de'viation cannot be

attributed to factors that discriminate between the groups.

Insert Figure 3 here

For,the age-group comparison, the line of best fit for the 1.0

cutoff was projected onto each of the two-dimensional planes defined by

the different pairs of groups. For a given pair, j and k, the distance

of (A ., A ) from the projected line was calculated for each item a in
aj ak

the set of outlying items. The results appear in Table 2. A positive .

value indicates that the item was unexpectedly difficult for the first

group listed. A negative value indicates it was unexpectedly easy for

the first group. As can be seen, all but one of the outlying items were

unexpectedly difficult for older individual's when compared to younger

test takers.

Insert Table 2 here

2 1



,.

o

..

-16-

28 30

19 27 "

18 14

11 23 13 24

10 17 12 26 21

15 8 15 9 22 20 25

4 2 1 7 5 3 6 29
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Distance (delta units)

Figure 3. Frequency distribution of item distances .

from the line of best fit for a comparison of

three groups sampled from the same population
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TABq 2

Distance from Projected Lines
in a Three-Group Comparison
-

..

Item Number Groups compared

35-39 vs. 20-22 40-65 vs. 20-22 40-65 vs.35-39

2 .8 .7 -.1

11 .7 1. .6

15 Le 1.7 .2

19 1.0 1.1 .2

20 1.0 1.6 .6

24 1.7 1.4 -.2

27 1.3 .1.1

30 - .4 .7 1.1

I

23

I.'

1

.
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I A fourth age group vas added to the other age groups t6 yield a

flr-dimensional delta plot, the results of which are summarized in
/

VI gure 4s. The fourth group was composed of about 575 test takers between
,

Ole ages 30 and 34. The first Aistribution in Figure 4 displays the item//..\ .

distances from the preliminary line.of best fit. With a few exceptions,

there is considerable similarity in the distributions of Figures 2 and 4.

Notable exceptions are items 25 and 30, both of which display considerably

tare deviant behaviOr in the four-dimensional analysis.

.1\

Insert Figure 4 here

For the'four-dimensional analysis, Table 3 presents data similar-to

Table 2. Again, the line derived from the 1.0 cutoff w'es used. A

comparison of Tables 2 and 3 reveals considerable overlap in their data.

Among the new information emerging from Table 3 is the following. Item 30

A
was unexpectedly easy for the middle-age.groups relative to both older

and younger test takers, and Item 25 was unexpectedly easy for the 40- to

65-year-olds relative to the 30- to 34-year-olds.

Insert Table 1 here

4
A content analysis of outlying items may suggest,reasons for their

deviant behavior. However, information gaChered from a single item must

be interpreted cautiously since limitations in the methodology may

lead to spurious data. Information extracted from a set of similatly

behaving outliers is more reliable. However, there are shortcomings in

this approach also, the foremost being that the reasons for an individual

item's outlying behavior may be obscured in an aggregate analysis or
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1

TABLE 3

instance from the Projected Lines
in a Four-Group Comparison

Item /

Numbar Groups compared

.

2

11

15

19
,

,

20

24

25

.

27

30

30-34
vs.

20-22

/

35-39

vs.

20-22

.

40-65

V.
"1 20-22

35-39
vs.

30-34

40-65
vs.

3034

4

, k.

40-65
vs.

35-39

.3

.7

1.,0

.6

.6

.9

.6

'' 1.1

-1.0

1.0

.8

1.7

1.0

1.0

1.7

.1

1.3

- .4

.9

1.3

.1.8

1.1
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never pursued belause other items sensitive to the same factors do not

appear on the test.

In the age analYsis, the set gpitems found to be-unexpectedly

difficult for older-test takers did share a comMon characteristic.- Of
;

the thirty items in the problem-solving section, 17 'were word problems,

posing their questions in the context of some real-world situation. In

contrast, the other 13 Were more abstract, invorving for the most part

only mathematical concepts. Of the 13 non-word problems, eight appeared

as unexpectedly difficult for 35- to 65-Year-olds. The non,-word problems

deal with concepts seldom encountered in their purity outside of formal

academic training. Their agpearance as unexpgctedly.difficult fo'r the

older test takers may be due to a deterioration in a test taker's

ability tomanipylate these concepts, a deterioration correlated. with.the

number of years elapsed since leaving school.

Discussion

In this paper a straggy has been presented for studying item bias

using the intergroup comparisoplof item diffiCulties. In contrast

to prior applications of this approach, thel>pposed method allows the

ilmultaneous comparison of any number of groups, thus avoaling.the

awkwardness of nume'rous pair-wise comparisons, tu _hermore, the'role' of

deviant Items in the formulation of criteria on which biased items are

distinguished is lessened. he procedure's qutlined and Illustrated in

this Taper allow'for a more ef icient and reliable appbicatibn of item

difficulty Comparisons to the study of item bi.as-.

4t0"

"N

.%

4.
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The approach is based on an algorithm that ensures that the best-fitting

line fbr an n-dimensional plot of item difficulties is derived solely from

items lying within a specified distance of the line. The dine that best

fits these items is shown to be that which intersects the vector M = (M
1 n

)

and lies in the direction u, where u is the unit-eigenvector with maximumr

eigenvalue of the symmetric matrix given in (11) and H. is the mean of

the item difficulties experienced by group j.

It appears that no information is lost when additional dimensions

Are added to an analysis. Sinnott (1980) performed two-dimemsional

comparisons of the age groups studied here. The findings of that investr-

gation were contained in the results of both the three- and four-dimensional

comparisons. Furthermore, the findings of the three-dimensional analysis

are repeated in the four-dimensional analysis, as can be seen by comparing
.v

, Tables 2 and, 3.

The limitations in .the proposed strategy stem primarily from the

"assumption underlying the use-of the inverse normal transformation a's a

measure'of item difficulty. Olie bases the use of this transformation

on the existence of-a level of ability above which success on the item

is achieved and below which,, failure. No item in practice has such

perfect discrimination. 'A more accurate model, assumes that test takers

over the range of ability may resp.,nd correctly to the item, but their

chances of correct response improve with ability. Using this model,

Lord (1977) has tllustrated how items sensitive to the same dimension

may ,deviate from linearity in a plot of their z scOres
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EmpiricPlly, the algorithm seems to be a useful tool for the study of

item bias. Several theoretical issues remain to be explored, however.

In pa4icular, the resulting line may be only one of several lines that s

satisfy the criterion of resulting from the consideration of all points

lying within a specified distance. One might wish to show that the

algorithm uncovers that line with the most points contributing to its

calculation. Also, it is theoretically possible that the algorithm might

never lead to a solution, but circle Chdlessly. However, this seems

unlikely to happen on any real data set.
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