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Characterizing'the Model

Much research attention has been paid to algebra in general, and equation

solving in particular, since 1970. the research studies, however, which are

pertinent to a model of student performance for solving linear equations are

often based upon quite different perspectives, and employ a wide range of

research techniques. The accumulated bits and pieces of information do not

obviously fall together into a consistent whole. The creation of that whole

requires that some theoretical structure be identified to support and organize

the pieces. As a prelude to this and to the discussion of the research,

we attempt to provide an abstract characterization of parts of that whole by

citing aspects essential to any potential model of student performance for

solving linear equati4s.

Foremost, we are considering the solving of linear equations in one

unknown in the context of school mathematics. The task then is a mathe-

matics problem solving task; given such an equation, one is to find its solution

set or a numerical correspondent of the variable such that, if the variable

is replaced by its numerical value and the computations are independently

performed on each side, an identity results. School mathematics carries this

task specFication a step further to include the method of writing a sequence

of equivalent equations. Except for the original equation, each equation in

the sequence should follow from its antecedent by means of an acceptable

algebraic-logical operation or process, with acceptability determined either

implicitly or explicitly in terms of mathematical logical principles or

skillful manipulations of proficient solvers such as teachers.

The reference to proficient solvers suggests that modeling of correct

performance may be very important to the study of correct performance. A

performance model must, therefore, include considerations of learning as
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students progress from one level of sophistication to another. At the same

time a useful model should also provide a backdrop for organizing and

discussing errors. As progress is made in this direction, it will become

obvious that the school mathematics view of the task is inadequate, being

too coarse in some ways to capture the thinking patterns of the solvers.

Indeed, we must seek perspectives more refined in terms of the task and

the solver. In particular, it may at times be necessary to consider equations

merely asstrings of symbols and to study the cognitive processes whereby

solvers interpret or manipulate such symbols. This suggests the appropriate-

ness of enhancing or supplementing the mathematical - school mathematics

view of the equation solving task with constructs from related areas such as

cognitive psychology, theories of human problem-solving, and performance

models in artificial intelligence.

A model of student equations solving perfor. ence, then, should take

into account a multitude of factors. It must acknowledge different levels of

awareness on the part of human solvers, making a distinction between abilities

to use various ideas, to express such ideas verbally, and to provide justifica-

tion for their use. Closely tied to this is the existence of different

types of knowledge: the mathematics knowledge which provides the basic

characterization of the task, the perceptual and conceptual knowledge about

notation and symbolism which gives mathematical interpretation to the latter,

and knowledge of the appropriate use of acceptable operations and processes

with the ability to measure progress toward the goal. Thus, the model should

be a multi-level account ranging across (a) perception and interpretation of

algebraic symbolism, (b) conceptual understanding of the problem-solving task,

(c) application of intellectural operations and process, and (d) the development

of strategies and general methods for solving any equation of a particular type.

1
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Reviewinq the Research

Historically, .a popular approach for studying students' equation

solving performance has been to administer group tests, to compate either

average test scores or average success rates for each test item, and then

to seek possible causes for common student errors (Bell, O'Brien, & Shive,

1980; Carpent,r, Coburn, heys, & Wilson, 1978; Carpenter, Corbit't, 'kepner,

Lindquistf'& Reys, 1980; Davis & Cooney, 1977; Hotz, 1918; Monroe, 1951a,

1915b; Reeve, 1926; Rugg & Clark, 1918). From these studies it is clear that

the greater the number of steps needed tO solve an equation, the less likely

students are'to solve the equation. Aspects of solution processes that have

been cited as potential areas of difficulty include combining like terms,

tranposing terms across the equals sign, clearing fractions, arithmetical

computation, and understanding fundamental concepts such as "variable",

"equation", or "equivalent equation".

Studies of Fundamental Concepts

The concept, "variable", is of course important in many contexts other

than that of equations solving. To focus on the full range of that research

would divert attention from the main thrust of this paper. Thorddike, Cobb,

Orleans, Symonds, Wald, and Woodyard (1928), Davis (1975), Kiichemann (1973),

Tonnessen (1980), Rosnick (1981), and Jensen, Rachlin, and Wagner (Note 1)

ail providc useful information relative to the understanding of "variable"

in algebra contexts.

More important for this paperare the concepts, "equation" and "equivalent

equation". Thordike, et al., (1928) identified two abilities with respect

to equations. The first was to solve the equation, which might mean to get

a numorioal answer, to solve for one variable in terms of the other, or to
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find the coefficients (e.g., find a and b in y = ax + b) givenmr-,r-
sufficiently many x, y pairs. The second was to understand the equation

as an expression of a certain relationship; that is, to understand that

equality is a relation and neither an operation nor an indicator that some-

thing is to be produced. It has only been fairly recently that any

research seems to have been done on this second ability.

Of central importance is that students understand that the equals

*
sign is a relation. Davip.,(1,975) stated this, atz (Note 2) stated a

,\

similar view in talking about the equals sign as a constraint. Kieran (1980)

pointed oat that the preponderance of evidence is that elementary school

students view the equals sign as a signal to write down an answer. Hence,

0 = 3 + 4 is backwards. To expand that understanding to include the relational

aspects of equality, she organized instruction in three steps.

First, students (6seventh and eighth graders) were asked to write

down true number sentences with more than one operation on each side of the

equals sign; e.g.; 3 x 5 + 1 = 2 x 2 + 12. (Students tended to evaluate from

left to right, without using the standard order of operations.) Second, one

number was hidden (first with a finger, then with a "box," and finally with

a letter) to generate equations while keeping the corresponding true number

sentence always retrievable. Third, the rule, "Whatfitou do to one side you

have to do to the other," was generated through work with number sentences.

For example, frOm 2 x 5 = 10, the sentence, 2 x 5 + 7 = 10 + 7 was generated.

The other part of "equation" that seems critical is the idea of

equivalonce of equations. (Two equations are equivalent if the domains of

the variables are identical and the solutions are also identical.) Wagner

(1981) asked students if the equations 7 x W + 22 = 109 and 7 x N + 22 = 109

iad the same solutions. She inferred that "conservation of equation" existed
1
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if the response was "Yes." If the response was "No, W is larger since

W is later in the alphabet," she inferred that conservation of equation

was absent. Students who said that the equations had to be solved to ki,ow

were classified as transitional. About 50% of 12-year-olds and about 80%

of 14- and 17-year-olds conserved. There was also a significalkcorrelation

(p < .05) between conserving and having had algebra, though it is not

clear whether there was age confounding in this analysis. Kieran (1979)

also reported that students may have the misconception that the solution to

an equation changes if the letter used for the variable changes, but she

did not mealure conservation of equation directly.

Herscovics and Kieran (1980) in an extension of their thinking

claimed that "undoing" the equation (that is, applyinverse operations in

the reverse order) "brings to the concept of equivalent equations a dynamic

flavor that is lost in a formal definition" (p. 579). No data were presented

in support of this. Given the extent to which this technique is used in

algebra texts and the difficulties that students seem to have' with generation

of equivalent equations, however, one suspects that "undoing is not as

effective as Herscovics and Kieran suggest.

Kieran (1980) stated that understanding equivalent equations seems

essential if the steps in equation solving are to be understood. She noted

that step three in the following sequence seems to be a bookkeeping use of

thy equals sign. Possibly the symbolsohave personal meaning for the learner.

2x + 3 = 5 + x

2x + 3 - 3 = 5 x 3

2x = 5 + x - - 3

2x - x = 5 - 3

x = 2

[clearly not equivalent]
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Similarly, the next sequence is also not uncommon.

y4 5 = 8

= 8 - 5

= 3

The equals' sign serves as a link between steps, but equivalent equation; in

the mathematical sense are not generated.

Bright and Harvey {1982) in a review of literature on equivalent equations

concluded that students do not seem to know when equations are equivalent.

Perhaps in light of the information on the use of the equals sign, this

should be rephrased as students seem not to be concerned whether the equations

they write are equivalent. Depending on the role of the equals sign, this

lack of concern may from the student's perspective be appropriate.

Thus, the research indicates that students do not necessarily develop

the meaning of equality intended by mathematicians. Students' interpretations

may affect performance, at least as interpreted by mathematics teachers, and

any model of student performance must take into account the possibilities

of misinterpretation.

Studies of Students Errors

Studies of erroneous processes are typically based on an analysis of

appropriate procedures to use in solving equations. Swain (1962), Romberg

(1975), and Matz (Note 2) have described appropriate procedures as

manipulation/reduction, sentential transformations, and deductions/reductions,

respectively.

Mindy (Note 1) and Bundy and Welham (Note 4) in developing a computer

program to solve equations identified three phases based on algebraic axioms

and principles. Isolation is performed if there is a single occurence of x;



for example, if 3x = 12 then the computer program divides both sides by 3

to produce x = 4. Collection is nsed if the number of occureucec oi the

Variable can be reduced; for example, 7x + (-3x) can be replad by 4x.

Attraction is the procedure used to get instances of the variable closer

together; for example,

and

12x + 7 = 4x - 1

12x + 7 + (-dx) = -1

12x + 7 + (-4x) = -1

12x + (-4x) + 7 = -1

8

would both be illustrations of attraction. This process may reflect what

students think as they solve linear equations, but it also may be too formal

(Mathematical) to be an accurate representation. Heller and Greeno (1979)

pointed out that knowledge of Bundy's three operations is not sufficient

for solving equations. There must also be a higher-order strategy for

choosing which operator to apply. There must be some guiding process.

Byers and Herscovics (1977) also pointed to the variety of guiding

processes that students might bring to equation solving, but phrased their

discussion in terms of "understanding." Four kinds of understanding were

identified: (a) instrumental, in which rules are applied without knowing

why, (b) relational, in which specific rules for a particular problem are

derived from more general rules, (c) intuitive, in which the problem is

solved based on some prior analysis, and (d) formal, in which the symbolism

and notation are connected to relevant mathematical ideas to get a deductive

chain. rn solving the linear equation x + 3 7, students might exhibit the
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four levels by (a) transposing the number and changing the sign, (b) adding

-3 to (or subtracting 3 from) both sides, (c) guessing, or (d) generating

the string

x + 3 = 7

x + 3 + (-3) = 7 + (-3)

x + 0 = 4

x = 4

Carry, Lewis, and Bernard (Note 5) and Lewis (1981) studied the way

college students solved various equations. Their work was influenced by Bundy

(Note 3) and Bundy and Welham (Note 4), and although they didn't directly

analyze levels of understanding, their data could be used to investigate

these levels. Figure 1 shows the 14 equations that were presented to 34

college students and five research mathematicians. (The research mathe-

maticians were called experts.)

INSERT FIGURE 1' ABOUT HERE

Each college students subject was videotaped twice. Seven equations were

presented ir the first session and each subject was asked to "think aloud."

For the second set of seven equations presented in the second session, each

subject was asked to explain the method of solution as if to a student asking

for help on homework. For problem 2B, 'there were.several differences in

choices of strategies among the subjects. In particular, the experts were

:.omellmes much more consistent in their choice of strategies. (See Table 1.)

INSERT TABLE 1 ABOUT HERE
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is\ Yet, for equation 21, designed to be analogous to 28, a consistent strategy

was not used even among experts, and for equation 5A there was notable

consistency across all four groups. (See Table 2).

INSERT TABLE 2 ABOUT HERE

Of perhaps equal interest in these data were the categories of errors

identified among solution attempts. These include cancellation errors of

1
several types (e.g., becomes , x

2
- x becomes x): transposion

2 + x

errors (e.g., 7x 8 = x 2 becomes 8x 8 = 2), combination errors

x x 4 1 x 4 x 4 1
(e.g., 4

2 2
becomes ), cross-multiplication errors

1

1 1 5 x - 10
(e.g., 4 becomes 7 4 x), splitting-equation errors (e.g., -

x 7 10 x 4 5

a
becomes 5 - x = 10 and 10 = x

1
5), lack of inversion (e.g, = but not

x b

x b 2x 4. 3
= ), lack of clearing fractions (e.g., = 1 but not 2x 4- 3 = 1 x

2

x
2

)1
1 a

lack of distributivity (e.g., ax bx = c but not (a b)x = c), dead ends

(e.g., p = A - prt for equation 1A), fraction errors (e.g., 2- becomes lx),

x 2(x42) (x42)(x42)
grouping errors (e.g.,

x 2 (x42)
becomes ), and distributivity

errors (e.g., 2(x41) becomes 2x 1).

Some of the errors related to fractions have correspondence in work with

common fractions (e.g., Bright & Harvey, 1882). Some of the cancellation

errors (e.g., x
2

- x becomes x) may be language related (e.g., Davis & McKnight,

Note ('), and the splitting-equations error may be an overgeneralization of

other equation solving techniques (o.q., Matz, Note 2). Jensen, Rachlin, and

Wagner (Note 1), noted that students seem rule-bound; this behavior may reflect

inadequate repertoires or operators to apply or lack of recognition of

features to which to apply onerators.
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In summarn Carry, et. al.,-put all the errors into three types:

(a) operator, reflecting incorrect or incomplete knowledge, (b) applicability,

which was mostly mishandling of grouning and (c) execution, which included

partial executions, misreading, and miscopying. The first two typea,seem

amenable to correction by instruction. The third may not be easily

remediated.

Lewis (1981) noted that the experts also made errors (e.g., transposition

confusion of numerator and denominator, incorrect cancellations) similar to

those of college students, though at a lowerrate. Many of these errors

seemed to occur when more than one operation was done at once. Thus, some

of the errors may have been careless. Yet it seems important that the errors

were of the same kinds as those made by the college students.

Davis and Cooney (1977) also categorized errors made in solvina linear

equations, but the errors were from written records only; there were neither

videotape records nor "thinking aloud" records to supplement the written work.

Data were gathered from 72 regular algebra I students and 38 second-year basic

algebra (algebra I in two years) students. The categories of errors were

(a) Listake in addition of real numbers either as numbers or as coefficients

of x, (b) mistakes in multiplication, of real numbers, (c) transposing

errors (sirlilar to strategy difficulities discussed earlier) either for

addition or multiplication, (d) confusion about additive or multiplicative

inverses, (e) incomplete work (similar to operation gaps discussed earlier),

(1) mIgropving, (q) combination errors (e.g., -4 Sx = 4x), and (h) undeci-

phorablo. These errors and those identified by Carry, et. al., seem quite

consistent. Too, the students made many computational errors, and ere

seemed to be no difference in the distribution of errors between the two kinds

--.........=r1rInarimirmiNIMMINIMMENNEIMIMIM11.11111111101111111111111111fiiiii



12

of algebra students. This reinforces the observation of Lewis (1981) that

experts and college students made similar errors. However, the distribution

of errors of those students who solveS tin or eleven of the equations

correctly indicated mostly (75%) computational errors rather than process

errors (16%), while the errors of those students who solved two to seven

equations correctly were less (50%) computational and more (38%) related to

processes for solving.

Numerous researchers have pointed out errors in equation solving. Monroe

(1915a) noted arithmetic errors, coping errors, and incomplete solutions,

Rugg and Clark (1918) noted arithmetic errors, combination errors (e.g.,

4c - Gc becomes 24, or 3x + 4 became. 7x), incomplete solutions, transposition

5
errors, and inverted divisions (e.g., 5x = 13 becomes x = ). Reeve (1926)

13

1
noted combination errors and mixed operation errors (e.g., y = 3 becomes

y = 1). Algebraic errors noted by Matz (note 2) that may interfere with

linear equation solving included (a,b,c,d may be numbers or algebraic

a c a + c a a a
expressions) (a) + becomes

b + d b + c
(b) becomes + , and

b d ' b c

a c
(c) s- + -d- becomes ad + bc. These seem not to be unique to algebra and

may be evtensiops of arithmetic errors (Bright & Harvey, 1982). Gerace and

Mestre (Note 7) noted similar kinds of errors in bilingual students.

Meyerson (1976) observed that typical remediation of errors like

a c a+ c
+

d b+ often takes the form of either substituting numbers for a, b,
b d

c, d to generate a false statement or deriving the true relationship

a c ad + bc
+ ) algebraically (or some combintaion of these two). He

b d bd

claimed that this technique is baSed on two assumptions; first, that the pupil''S

belief in the mistake is not strong, and second, the error is more random

than systematic. Meyerson noted that if one speculates as to why students
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use incorrect rules, then different and perhaps more effective remediation

a c a+ c
techniques might result. For example, -+ - may be derived from

b d b+ d

an overgeneralized multiplication of fractions rule, or it may be an

overgeneralized 'baseball addition' rule. That is, if a batter has 3 hits

in 5 attempts on Monday and 1 hit in 2 attempts then the cumulative record

3 1 4
is 4 hits in 7 attempts + = ). In either case, the incorrect rule

5 2 7

is frequently reinforced within the domain that it originated. Remediation,

therefore may require careful reanalysis of the mutual interference among

mathemati.:al rules and 'everyday' mathematics and may not be accomplished

simply.

Davis, Jockusch, and McKnight (1978) used the term, binary confusion,

to denote the interference between two rules. (See Figure 2.)

INSERT FIGURE 2 ABOUT HERE

If the S
1

P
1

chain is learned earlier and well, and if both the stimuli

S
1

and S
2

and the products P
1

and P
2

are similar, then the student may

generate the incorrect chain S2 4- Pl. Shevarev (1946) in discussin this

same example suggested that the incorrect chain S
2

-+ P
1

seemed to be learned

at the time of instruction on S
2

4- P
2

because the students were already

oriented toward the addition of exponents (S
1

4-

Occasionally, interference may arise from non-mathematics sources.

Kleran (Note 8) observed that junior high school students seemed to perform

multiple arithmetic operations from left to right; for example, 3 + 4 x 5 is

35 rather than 23. Perhaps this is interference from reading instruction,

reinforced by use of simple calculators with 'left-to-riaht' orientation. If

students do generate rules like this before beginning algebra, because of
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the absence of instruction to the contrary, then it may be very difficult to

overcome the student's belief in the incorrect rule.

The processes and errors presented in this section suggest several con-

clusions. First, errors areassumed not to andom, but they also may not

be effectively algorithmic. Errors may be i terpretable as overgeneralizations

of rules to domains which are inappropriate, but the cause of this over-

generalization may be lack of attention by the teacher to specifying the

limits on rules. To assume like Davis and McKnioht (1979) that students

spontaneously, and perhaps unconsciously, search for 'deeper-level rules'

may be a stretch of the information processing view of the world to unreasonable

limits. Students may apply learned rules whenever there is not a prohibition

to refrain.

Second, the possible interference among concepts or rules should be dealt

with directly. Probably this means that a teacher should identify explicitly

at least some of the possible ways that the concept or rule being taught is

not an instance of earlier-learned concepts or rules.

Third, flexibility in approach, suggested by the lack of consistent use

of a single process for solving a given equation (Lewis, 1981) may be the

best goal for instruction on equation solving. Explicit attention should be

given to helping students recognize what might cause a failure to reach

solution. Carry, et al., (Note 5) classified such a wide variety of causes

of failure that it is unreasonable to expect instruction to deal with them all.

ThP degree to which instruction deals with equation solving as an algorithm

process versus a problem solving process may-affect flexibility.

Fourth, the similarity of error categories across a variety of studies

suTiosts that convergence may be occurring regarding an appropriate categorization

of these errors. The need now seems to be for some conceptual framework
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within whch to explain those errors. This framework should bring into

relief the potential interplay among not only the concepts, principles, and

procedures used in teaching equation solving but also the perceptions of

those concepts, principles, and procedures.

Modeling Student Performance

We are not using the uerm model in the sense of computer simulation.

Rather, our model will be a verbal description which tries to address the

major features of performance in relation to the task, to the school

mathematics learning situation, and to some elements of cognitive p'Sychology.

Our purposes is to represent student equation solving performances in such

a way that our model can be used to guide curriculum and instruction

developments as well as continuing research efforts. Although much will be

based upon our understanding of existing research, the model has not been

validated. We hope that this presentation will lead to such efforts.

The proposed model is multi-level ranging from perceptual interpreation

of the symbolic stimuli us.ad to express an equation, to higher-level, more

abstract concepts and their associated cognitive processes. We introduce the

terms near features to refer to those aspects which are situation specific

and closely tied to the surface symbolism expressing a given equation, and

remote features for those qualities which exist only after abstraction,

associatron, or interpretation has occurred. When used in a relative sense,

remote voisus near, the former suggests greater depth of intellectual

processing with links to more extensive and general knowledge of equation solving

as a problem solving task. For example, "being solvable by means of an 'undoing'

strategy" is a more remote feature of the equation



3x 4- 5 = 11

than "having only a single occurence of x", since 'undoing' requires

relating several aspects of the equation.

Again regarding terminology, we make a distinction between our use of

the terms process and operation. For the latter we refer to Berlyne's

(1965) model for directed thinking alternatin

16

g situational and transformational

thoughts. The transformations of Berlyne are derived from observations of

one kind of stimulus situation being systematically replaced by another kind

of stimulus situation. Operation will be used when the action taken by the

solver is guided by a single transformational thought or, at least by relatively

few transformational thoughts. Intuitively, we are trying to capture the

simplest type of alteration that solvers might make as they write one step

following another.

A look at the typical learning situation should help calirfy the

notion of an algebraic operation. Such operations are often derived from

axioms,definitions,or theorems. Instructors typically identify the pro-

position upon which an operation is based, and then illustrate the actions

and/or applicability of-the operation. Corresponding to the

Symmetric Property of Equality

If a = b, then b = a.

for example, there is the algebraic operation changing

from a = b to b = a

which might appropriately be apnlied to

11 = 3x 5

to obtain

3x 5 = 11
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with the single occurrence of the unknown now to the left of the equals

sign. After a few such examples the student solver is typically expected

to know and to be able to begin using this operation.

The above example shows a single operation Lerived from one algebraic

principle. 'It is often the case, however, that ,..ANo distinct operations will

be so derived. This is the case, for example, witu the

cf Definition of Subtraction

a - b = a + (-b).

One operation is in changing from

a - b to a + (-b)

as in changing

from 4 3(x+2) to 4 + -E3(x+2))

and the other operation is in changing from

a + (-b) to a - b

as in changing

from 7x + -(3x) to 7x - 3x.

(See Bernard, 1978 for more examples and discussion.)

From the preceding examples it is, perhaps, evident that operations might

themselves he coanitiviely complex since the stimuli bounding an intervening

transformational thought are often complex. Lack of understanding of such

complexities might account for student difficulities with both learning and

usina legitmate operations. Because of the preponderance of operator related

errors (Carry, et. al., Note 5), we strictest that researchers consider this

possibility for determining the nature and causes of such errors. For our

purposes, however, rather than analyzing operations into subunits, it will

be sufficient to treat each as a whole.

1 .
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Process, on the other hand, will be used to denote a connected seauence

of operations. Here we look for episodes of performance which have an

integrity of their own. Such sequences de often aimed at attaining strategic

subgoals like "removing Parentheses" or "getting the x'es to one sidb." A

Irocess may be totally determined by an algorithm; that is, the specific

operations as well as the order of those onerations are given. 'However, we

allow for cases where decisions are made selecting applicable operations.

To avoid semantic issues, we also allow a process to be based 'upon a

single operation. Furthermore, this convention recognizes an important

learning phenomena. Aside from automaticity which speeds up the execution

of a sequence of operations, students frequently learn to collapse a familiar

sequence of several operations into one of fewer operations; the operations

in the new sequence being, in part or totally, distinct from those in the

original sequence. Frequent use of a process which might have been developed

in association with remote features can lead to the derivation of new

transformational thoughts as indicated by Berlyne (1965). The process, seen

in a situation specific context, might be re-defined in terms of near freatures.

Typical of this is the development of a transposition process, "moving a

term from one side of an equation to the other with a change in sign."

In the early stages of learning about equation solving, students might

see a sequence such as

(a) 9x = 7 4x

9x - 4x =.7 4- 4x - 4x

9x - 4x = 7 4- 0

(b) 9x - 4x = 7
mom.

m dor 1111.01111111.1111
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The underlining is to draw attention to the features which systematically

change in this and other examples like it, leading to development of a

transpositionoperation going directly from a) to b). This is not necessarily

the fully developed transposition operation stated in the precedina

paragraph, but it might become so either through discovery in connection

with other specific cases or through discu:sion between the instructor and

the learner of this instance at the more general level of the complete trans-
1

position operation. Thus, this process sequence might c011apse to a single

operation changing from

to

9x = 7 + 4x

9x - 4x = 7.

Relating the Research to the Context of the Model

Understanding fundamental concepts, like "variable" and "equation", is

part of learning the remote features of equation solving. For example,

without an understanding of what equivalent equations are, students might

tend to learn the procedures for solving linear equations in a rote way; that

is, understanding might help both to organize the procedures and to provide

a rationale for selecting appropriate procedures to apply. The remote

features seem likely to be cued by near features of a particular situation,

hut cognitive accessibility to remote features seems essential.

Kieran's instruction on the relational aspects of equality seems to be

an attempt to use near features to develop remote features. The uniqueness

of her)instruction may be that the interplay between near and remote features
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is always highlighted. The more typical textbook approach of substituting

values for variables to obtain true number sentences does not seem to have

that dynamic quality and may not adequately communicate to students either

that there is an important relationship between near and remote features

or that remote features are important to the task at hand,

Equivalence of equations in general, and conservation of equation in

particular, also seem to depend on coordination of near and remote features.

Students' errors in writing equivalent equations, for example, may reflect

an incomplete grasp of the fact that remote features need to be accurately

reflected in their work rather than a serious misconception about the con-

cept of equivalence.

In studies of students errors in equation solving, there seems to be an

emphasis on interpreting errors first in terms of procedures on near features,

even though there may be relationships to underlying remote features. If

students perceive these procedures as only related to near features, then

instrumental understanding would seem to be the only possible understanding.

Students might also be relatively unable to create processes out of operations._

If these near features can be related to remote features, then the cognitive

structures necessary for creation of processes would seem.to be more

accessible.

Students' choices of operations or processes to use are alMost certainly

tied both to the per'ception of near features and to the way that these

potceptions cue remote features. When multiple near features are present,

A
then students may focus on only one and may not even be aware of the multiple

_

features. understanding what prompts the focusing behavior may be imnortant

in expanding the scope of the proposed model. Instruction itself, for example,

could significantly influence focusing behavior.

1
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The information processing perspective on student behavior tends to

create explanations of student errors in terms of operations and processes

that apply essentially only to near features. While this approach may be

effective in modeling students' behavior, its very success may focus

attention on aspects of eguation solving that do not suggest remediation

techniques. More attention may need to be given to the interplay between

near and remote features. This approach does suggest, however, that students

can operate without relating near and remote features and calls into consid-

eration the necessity for providing instruction that does relate near and

remote features.

Overgeneralization errors and binary confusion errors seem to be

explanations related to understanding remote features. Those who have

categorized errors, however, seem not to have paid much attention to

potential difference between error explanations set in the context of

near features and those set in the context of remote features. There may not

be any automatic carry-over of observations of near feature to structures

residing in remote features.

The Model

Many of the basic constructs of the model are taken from information

processing psychology and theories of problem solving. Readers familiar with

Newell and Simon's work (1972) on simulating human problem solving performance,

Groono's discussion (1973) of the role of memory in problem solving, and

Sundy's artifical intelligence approach (Note 3) to solving equations will

recognize influence of these. There will also be a use of such basic

information processing constructs as selective perception, memory (short-,

intermediate-, and long-term), executive control mechanism, and response

generator.

r,
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Intuitively it seem that when a solver is presented with an equation

solving task, perception interacts with memory and expectations to focus the

solver's attention on some feature of the given equation. For example, the

solver may want to remove some perceived obstacle; e.g., decrease the number

of symbols used; or attain a perceived subgoal; e.g., getting an the x'es on one

side. But the solver also has some expectations concerning which of available process

operations tc use. As the process is executed, the solver further checks

the outcome against expectations of appropriateness and must decide whether

to continue or to reassess the approach. Reassessment may lead to alterations

in expectations, choice of process, or even the desired outcome, but the

basic cycle is as indicated above.

Detail needs to be added to the above outline in areas of the selection

of features, identification of subgoals, choice of proceses and operations,

monitoring of progress, and the direction or re-direction of the solver's

efforts. Central to this is an assumed hierarchical system of levels of

control for the solver's observable behavior. Figure 3 shows this system

as it might relate to solving the equation

x + 3(x+5) = 27

at the point of writing 3x in the step

x + 3x + 15 = 27.

The branches and question marks are used in tao different ways. First, the

activity chosen at a particular level may have been one "ofseveral competing

alternatives. For example, the question mark to the left of the METHOD

level might indicate a "Guess and Test" approach. Second, the activity may

be one of a series of alternatives, all of which are to be used. At the

STRATEGY level, for example, "Removing Parentheses" may simply be one of a
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sequence of phases that the solver consciously plans to execute in the

specified order. Processing limitations being what the are, the solver

must keep the others on hold while executing the current phase.

INSERT FIGURE 3 ABOUT HERE

The PROCESS and OPERATION levels are of course different, but there

may be blending of process and operation levels. A specific process may be

composed of a single operation, or a process may be expanded into phases or

sub-processes before reaching the operation level. While the strategy

level is indicative of the more problematic character of the task, either

because the solver is faced with a novel situation or because of memory

difficulities trying to re-construct a solution seauence, the process level

designates the more routinized aspects that come from successful experiences

with similar tasks. Figure 3 at least in this wav addresses the problem-

versus-exercise issue so often mentioned in relation to skill development in

school mathematics.

Relative to accessing and activating the control structure, the range

of features, near to remote, is placed parallel to the control hierarchy as

shown in Figure 4 . This arrangement indicates that the Perceived features

act as cues accessing the different levels in the control hierarchy. Prior

knowledge about solution acitivies (Methods, Strateaies,..., Tactics) and

exre4tAtionslabout the solution task operate in sele(Aing relevant features

trom tbo oqbation. As features connected with a level are selected,

currogpondinq controlled activities are determined. Features associated with

higher levels (e.g. task) dominate influencing choices made at lower levels
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(e.g., operation). While the field of focus on features tends to narrow

on a specific subexpression of the equation, controlattention passes from

higher to lower levels with each subsequent level containing an expansion

or redefinition of the acitivities from the higher levels. Thus activated,

the control structure is ready to guide the solution process.

INSERT FIGURE 4 ABOUT HERE

At any particular moment during the solution process, the solver's

attention will be focued at some level in the hierarchy. Once activity is

completed at that level, attention moves upward to the next higher level at

which the solver must deal with a list of yet unfinished acitivty. Figure

5 presents a hypothetical illustration of the flow of attention with respect

to time.

INSERT FIGURE 5 ABOUT HERE

The basic information processing notion of problem solving includes a

loop of activity; identify a subgoal, select and apply processes, evaluate

the outcome, and decide what to do next. Such a loop might be maintained

at each level of the hierarchy, from the METHOD level on down. If a solver

has competing choices at each level, this might not be unreasonable.

While we allow for such horizontal looping it seems that the more common

application of such a loop might be vertical; that is, monitoring and

evaluation are used to guarantee that lower level activities satisfy the

constraints set at higher levels.

2 5
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It should be noted that our model is an attempt to capture the essense

of the school mathematics approach to equation solving. It is not an attempt

to simulate the performance of any particular individual solver. Thus,

differences are to be expected between our model and observed indi<ridual

behavior. Notdbly, not all student solvers wilI be able to exhibit the

entire well-defined control structure of the model. Typically, in the early

stages of instruction, only very simple equations like

x 1 = 7,

3x = 6, and

x - 2 = 9

are considered so that the fledgling solver can be made aware of both the

nature of the solving task at one end of the control spectrum and some of

the operations and tactics at the other end. The object of subsequent

instruction is to help the learner fill in the intervening levels.

Little has been said explicitly about the role of memory in this model.

The descriptors for the levels in the control hierarchy imply specific

repertoiresof knowledge and the means to access such knowledge. The hierarchy

Itself represents a knowledge structure which the proficient solver is

assumed to be able to access from memory. The choice of Process was to acknow-

ledge that larger Procedure units rather than operations can be called

from memory and executed without the necessity of interviewing

ovaluation.

The model certainly has implications for both reinterpreting the existing

research and analyzing the school mathematics approach to equation solving.

As tho model continues to evolve at least some of these implications will

become obvious. For the purposes of this paper, however, it seemes more

important to discuss some of the research needed to amplify and verify the

model.
r,Il
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Identifying Needed Research

The proposed model needs to be validated in the sense of determining

whether it addresses aspects of equation solving performance that are in

fact important in learning and teaching. The model, when it is more fully

developed, should help provide understanding of both what should be done

to encourage learning and what students actually do in a given instructional

context.

The first area of concern is general focusing behavior of learners.

Do they identify, or distinguish between, near and remote features? If so,

how are remote features cued? Does the learner's perspective of the task

affect perception of features? That is, are learners keeping in mind the

goal of obtaining the solution, or has the task become the writing down or

the expected steps? On the other hand, is there a point in the development

of understanding and skill when a shift might take place to operations on

near features with remote feature available to use when necessary?

Related to this concern is whether successful performers focus

differently than unsuccessful performers. How can focusing behavior be

measured? Certainly self-reporting techniques; e.g., thinking aloud; along

with proding questions from an interviewer would seem to play an important

rolc in measuring this behavior, but memory research techniques might also

be quite useful. If focusing behavior does in fact distinguish between

performance, then how can instruction be designed to foster appropriate

focusing?

The second general area of concern is the adequacy of the control structure

part of the model to explain or interpret performance. Earlier it was

suggested first that initial instruction might simultaneously focus on the

nature of the equation solving task and on simple processes and operations
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to accomplish this task and second that other parts of the control structure

are filled in during later instruction. Is this suggestion accurate?

Perhaps the development of the control structure depends on the extent to

which instruction deals with equation solving as a problem solving task as

opposed to an algorithmic task. For example, it is possible to teach

linear equation solving as a set of mini-algorithms, each of which is

applicable to a narrowly defined equation type. In this context the learner

might view the task as an identification task of the particular equation

type. Then the appropriate algorithm is to be applied. Alternately,

equation solving can be taught as a set of procedures which apply to many

"types" of equations. The learner must use some, perhaps, more problem-solving

like techniques for selecting the procedures to apply to any particular

equation.

In the latter case, the development of a stable control structure might

be more important for successful performance. If so, the instruction should

perhaps deal explicitly with possible control structures. In particular, it

may be important to identify ways that processes and operations can be cued

from near or remote features of an equation. That is, how are features and

processes connected?

One speculation about the relation of near and remote features to perfor-

mance is that successful solvers tend to perceive structure in the symbol

system while unsuccessful solvers tend to view the symbolmanipulations as

isolated and unrelated actions. If this is true, then the control structure

may be fundamental in determining the approach that students take. An

incomplete control structure may only permit the less sophisticated view of

manipulations.
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Related to the development of the control structure may be the possible

interference among operators. Such interference phenomena have general

psychological interest, but they also may have specific relevance to under-

standing the control structure.

A third area of concern is the analysis and interpretation of errors.

Are errors related to near features different than those related to remote

features?f What importance would such a difference have? If particular

instruction is interpreted within the model, can errors be predicted? If so,

then instruction could presumably be improved before students are exposed

to it.

In a real sense the development of the model is predicated on the

assumption that appropriate understanding of symbols and correct operations

and processes either exist or can be developed in the learner's cognition.

If this assumption is violated then it will probably be impossible to teach

correct performance.

It is hoped that the presentations of this model of student performance

in solving Linear equations will promote deeper analysis and further study

of that performance. Algebra is, and will probably continue to be, important

in the development of mathematical competence. A thorough understanding

of performance would seem to aid the improvement of this part of mathematical

competence.
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'Strategies for Problem 2B

Choice of St;tegy b

Transpose Invert ,20ther

E 4 (80) 1 (20)

T 4 (40) 6 (60)

M 3 (21) 11 (79)

B 0 (0) 10 (100)

Choice of First,Step
b

Transpose Other

5 (100) 0 (0)

8 (80) 2 (20)

9 ($4) 5 (36) '

0 (0) 10 (100)

a
E = experts (professional mathematicians)
T = top 10 college students
M = middle 14 college students
B = bottom 10 college students

b
Entries are numbers (percentages) of subjects in each group.

adaptvd from Lewis (1981)
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Table 2

Strategies fOr Problems 2A arid 5A

33

b
2A Operation for Problem 5Ab

Other Cross-Multiply Clear Fractions Other

5 (100) 5 (100) - 0 (0) 0 (0)

8 (80) 6 (60) 4 (40) 0 (0)

13 (93) 11 (79) 2 (14) 1 (7)

10 (100) 5 (50) 2 (20) 3 (30)

Strategy for Problem

Transpose-Invert

a
E = eXperts (professional mathematicians)
T = top 10 college students
M = middle 14 college students
B = bottom-10 college students

bEntries are numbers (percentages) of subjects in each group.

a-diCiciTi.ciii7I;;I's (1981)
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Figure 1

Equations Us,-.1 by Carry, Lewis, and Bernard

lA A = p + prt, solve for p

1 1 1
2A

3 x 7

1B 2x = x
2

1 1 1 1
2B --= --+ + , solve for xRxyz

3A 9(x+40) = 5(x+40) 3B 7(4x-1) = 3(4x-1) + 4

4A ky + yz = 2y, solve for x

5 x - 10
5A i.-ci =

x + 5

4B
x + 3 + x

- 1

x2

1 - x2
5B - 2

1 - x

6A x + 2(x+1) = 4 6B x + 2(x+2(x+2)) =

7A x - 2(x+1) = 14 7B 6(x-2) - 3(4-2x) = x - 12

adapted from Carry, Lewis, and Bernard (Note 6)

,



Figure 2

Binary Confusion

Original Learninga

Incorrect Associations

Binary Confusion Scheme

a
S. = stimulus = product i
1 1

S1-3 P1

S2 P2

a(Iaptod from Davis, jockusch, & McKnight (1978)
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FIGURE 4
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FIGURE 5
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