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PUPULATION PROJECTION : & :

i

1. INTRODUCTIOMN

What will be the distribution of ages 1n the U.S.
population lu »ears from now, 50 years from now, or 100
vears from now” Many things depend on the answer to that
question--the future of the social securgty system, the

demand for health care services, the earollment in colleges

and Jdniversities--to name a few If we know the present

&
age distribution of a population :say, how many 1ndivid- &
uals are -4 vears of age, 5-9 years of age, etc.) can we

predict the age distribution in 50 years” It seems clear
thit any suCh-prediction would he subject to lots of
grror. \{ter all, we cannot foresee future changgé 1n
birth and death rates, nor .an we estimate the effects of

migration, \
L]

A somewhat simpler question which can be easily for-
mulated and answered mathematically 1s this: If current
birth rates and survival rates continue unchanged, what
wi1ll tne popukation distribution be at a future éaté (assum-
1ng the effects of migration are 1gnored)” ,Although this
questionh 1s sinpler, 1t 1s not witheut practical interest.
tor example, 1t 1s of value to explore mathematically the
conseuuences of various hirth and death rates without hav-
ing to wait until the population’actually experiences these

‘consequencds. - . -

Several matnematical models have been developed for
this sinpler yuestion. Here we shall examine one'of these- -
4 mitriy model Jdevised by P H. Leslie and other-® In this
mbdel, matriy multiplication 1~ used to updaté the popula-
tion {ror one time/period to another. As we shall see,
the stud. ¢t such 4 process leads us to examine powers of
ratrice- Jur object will he to learn something of the

hehavicr of posers of matrices and to sqe how knowledge

] ! N
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of e1genva1uc€!and eigenvectors helps in understanding
* .

this behavid'r.

v

2. THE MODEL . k
7

N

v
2.1 Population Projection--An Example ®
. t L]

.

Let’s begin u\g& a simple example. Conyrder a’fic- }
titigus animal pgpulation eonsisting of 1000 ydung an:imals
7-1 vedar old, 8 0 individuals 1-2 years old, and 600 1nd1-
jone of these
animals lives longer, than 3 years. 'we can record this "

N

viduals 2»3 years old. We will assume that
. b

data 1fn an iye diztribation vecisr
~ -

r orosity we shall cafl zhe a§§ groups Class I . 0-1 vear),

ass ] +1-2 yearsy, and Class M1 (2-3 yearsi? 1 .
¢ - '

« {fiwe wany to know the age distribution vector one vear

; Ty v \ . *
from now we will need to know two things .
- ’ N - .
1." the proport:ion of those animals currently dll\g . J/j
. that w11l -survive until next year, and - . (
.

N -
<. 'how many offspring wi1ll be born and will survive
. - -
long enough td pe counted next vear. RS
i

1

In our exanple, Let.us suppose that 1/2 of ,the i1ndividuals

>

in Class I {1,e , 500 indiviaduals) survive to be in Class A
Il the next vear, and let us also suppose that 1/2 of the
individuals un €183 11 (1.e., -400 1ndividuals) survive to

he 1n (las~ IIl the next Jear. (Unde%’our assumption, ﬁndl—Cb\
vidyals currentl, in Class Jll.will be dead by next year.)

ihis process }s_lndxcated by the SOild lines i Table 1.

In addtion let us sub;ose that individuals 1n Class [ Ppro-
duc#,nc offsprnng, that each individual in Class Il produces 1
offﬁgrxng on }he averagé, and that each individual 1n Class

N

~11 produceﬁ > offspring’on the average: (Here we are

including only those of fspring who survive long enough to .

.
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, ~ TABLE 1 ' - ’
LA .
v .
\OM ' NEXT YEAR
il LLLTER LS
Class Number of Individuals Number of Individuals Class
I 1000 = 2000 I
II 800 I
111 600~ ! ;o= 11

" L
he counted the next year.} In Class I thé next year we
would ,expect to ﬁave 800 young f(produced by last year';
Class II 1individuals) and 2(600) = 1200 young (produced
by last year's Class III indivaiduals),’ for a total of
2000 new Class I individuals. This process 1s indicated

by the dotted*lines 1n Table 1. S
- .
+
The.computations we have done can be summarized in

this matrix computation:
- . . *

fo 1 20 (1000 2000} ;
500 ss0, = | 500
0% 0j | 600 | t00j

N

¢

\
F

This computation 1s of the form AxQ = X where A 1s

1
the matrix_cdntaining the birth and syrvival paraMeters,
X, 13 the 1nitial age distribution vector, and X) 1s the

. f 1 . N

age dxstr;butlon vector after~one year. We will call the

matrix A a lgslie matrpiz. - s

2.2 thendxng the Projection ~

By.ﬁerformln} a matrix multiplication we have found
the age distribution aféer one year. What if we wanted to
know the ége distribution aftez 2 years? If we belleVe
that birth and survival rates will remain unEhanged, then '

we can agdln multiply by the Leslie matrix A, this time &

using X, as our starting distribution. Thus we compute
, “fo 1 2V (2000 (1300)
| ' AR .
Axp T 0 0] 5004, = L1000l = x;
oy 08 300) 1 250] .
\ 4 .
1 . » '
3
’
’ ‘o
. o
i




Sotice that x, = Axl = A(AXOJ = Agxo. We needn't stop with
2 vears of course: he could compute
. < « ~ \
. - . 5 =
. L X = =‘Ax) = \(A“x ) ?'AJXO, etc, id '

. . \
More generall), 1f the hxrth and survival pﬂrameterﬂ remain

constant (or 1f we wish to know what uld happen 1f they
¢
«. ! remain constdnt), we could find th. age dgstrlbutlon“

vector after b years (let's call 1t X by compufing Xp =

4k\1- _C/ ' .

By . L4

’ Exercise 1. VTontinuing the example of this sectionf\ébmpute Xz5 X4 -
X and Xg - {Note You will probably find 1t easier to obtain x:,> by

. Computing kx,, rather than first computing A and then computing A’ Xy )

Do you notice amy qualitative trends (e.g., does one class have con-

sis>tently rwre or fewer xndﬁ»1duahiqz;aq others)? Try the process

again using the same Leslie matrix a different starting vector’x

0
1

Does the choice of starting vector seem to affect the trend”

[

teslic Matrix

Tre exercise ralses twO duestlons: .
. 1., If the multiplicative process 1s repeated again
‘ and\ggaln does the distrjbution of ages change ran-
' domly or 1s there sonde regognlzable‘pattern.{n the

?

successive age distribution vectors?

2. Dses the wftimate behavior of the age dxstrlbutlon
. vector depend on the initial drsf€ribution”

[f there zr: any patterns they should show up as'we ‘
compute higher and higher powers of the Leslie matrix. Let's
cqnt1nuo~?ur example by coﬁputxng some powers of A. You can
do this by hand (a bit tedious, of course) or by computer (a

-, program for dding this 1s sho*m Appendix( A). Here are

some results {numbers are rounded to 6 decimals):

' (o 12) 1.5 10
* | ! 2
V= s 00 Ag = | 0 .51
‘o ‘ (o.soJ l.2s 0 o) .
~ X - s 4
\ » . ' i v
' - . 4
[4 .l (
-
Q . ' [ * *




\ge{:i: case later).
x, 3T age distribution

E

s * ' f
. f25 .1 1) ¢ L3375 75 .75 )
P - B8 s1s7s L437s .375%
VU125 .25 0y (.09375 .1875 .25 |
o
73062341 796875 79087350 . (.100809 .799988 .799988)
A7 e 1021, .002588 3vsass A0 - 1199997 400009 .39999)
L 0udoUY (199219 L203125) {.099929 ,199997 .%00012
o FLA00000 L 80000 L 800OUN
. AT =L 200000 L amu0e 300008, :
N L.109000 200000 200000,
We see that powérs of A are much alike fér ”larée” powers

"at least this 1s true 1
Wh

in1tral age distribution

.

Then 1f k 15 laage, X

\VARN 8)fa),
Y24 lby -
| 5 I
p.1L2 .ZJLCJ
thre 2= a + b + 2c.

-
The results are rat

size of the sePulation d
and ¢, the relative prop
age classes approach fix
proportions do not depen

(Thi
that the populatlog"for

of the population.

Although the ratios
a finite length of’time,

1f the opulation dif ac

n our example--we w1ll come to a more
at does this observation ihpIy about
vector” To see, let's suppose the

vector 1s

(a] he
X ~\!b§ -
ot
. L&y ,
=Akx0) 1s approximatelv
[.4a + .8b + .8C1 (,4] A I
| .
:.Za + .4b + .4ci = ai.Z,
(Y1a + .26+ L2¢ L.1) .
s .
7~ by
: A

her surprising: Although the total
epends on the initial values a, b
ortto}~ of i1ndividualssin the three
ed 1 Los 4:2:1 as k»», and these

d on the inittal age disti.bution

s 1s semetimes described by saying .

gets" 1ts 1nitial age structure.)

4-2:1 are never quite reached 1n
1t 1s 1nteresting %0 noticCe that

hieve these proportions at some time

m, then the age distribution vector would not change during
LN

subsequent time periods.

3 .

O
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then . ) 4
r (0 1 1~ (401
X = Ax_ = L0

"

ov o) gy

= The fact that Axm = X, can be expressed mathematically

by saymng that X, 15 an eigenvector corresponding to the
eigénxaLue 1. (Recall that a nonzero column vector v is
an eigenveczor of a square matrix A if there 1s & scalar
*», called an eigenvalue, such that Av = iv.) ?

In case 1t gscapéd your notice, go back and observg
that tne ratias 4:2:1 which occur in the eigenvector alse

Ak

occur approximately in the columns of when k 1s a large

, 64
number tsee A for instance).

2.4 Another Example .

3

Based on the example of the preceding section we have
several hunches'apout possible theorems. Bgfore exploring
these hunches 1t would be wise to look at one more example.
we need to know whether the behav1o?’showﬁ§1n the previous
example was typical of populatxq: growth using Leslie -~

matrices. Consider }he Leslie matrix

B = [1 4]' . -
5 0 \

(Can you interpret the entries of this matrix using "popu-
\ .
latio#™ language?). Some powers of B are shown:

= ’

g2 - (‘3 4 gd . {11 20
(.52 2.5 6

. 8 _ (171 340)

42.5 gcJ

I

[933

16 _ (43691 87380 ‘
10922.5 21846}

"Here we have a real, population explosion! At first glance,

the clear-cut patterns observed 1n our earlier example secem
.

8

to be missing. But 1f you look closely at B” and B16 you

E
fl

. 6

R}

-
L —




will see that the ratio of each first*row numpber to the
' corresponding second-row number 1s’ approximately 4 to 1.

Taking our cue from the .example of Section 2.3, we might ' -

vector of B. By 'computing

1 4](4) i |(8
12

\ wonder whether a vector having a 4 to 1 ratio 1s an eigen-
4 ‘ .
i |
om0

Vo[, ,
| | =2 '
(1) J \

. H
we see tMi: the answer 1s ;bs. However, here the cigen-
value 1s N, and that gives a clue to the reason for the

~

~

p)

-« -

population explosion® even 1f the ratio in the age dis-
tribution vector stabilized at 4 to 1, the population

would continue to grow and would, 1n fact, double every
time pe{lodf

The.éna1y51s of the powers of B might have been

clearer had we accounted for the doubling iendency of the .

-, 2
population by dividing €ntries of B by 22, of 84 by 24

2

and so on. ﬁgre are.the results: - .
> 1,75 ) ' -5 5
/ LZBH=T'/D 1 . 1734 - [-6875 1.25
2 [.125°.53 . 2 .15625  .375
- 1 .8  [.667969 1.328125 1 ,16 _ [.666672 1.333313 @‘
e T6b T - '
2 {.166016 .335938 2 .166664 1333344

(Computations are rounded to six decimals.) The pattery,
now 1s much,clearer, and our computation would lead us to
- e -

guess that1
\

-
-

A}

1o [4/3473
11m-2'k-B = {1/6 s ( .

ko=

Of course, computation, however useful, 1s no substitute

for understanding. How can we analyze the behavior of Ak
k N

Can we predict the ultimate form of A without actually..

N

computing the powers? b : —~
s ! . < .
{By 1im Ck we meansthe matrix, 1f it exists, whose (i,))-th entry 1s
. (k) .,
lim €13 , where cfk) denotes the (1,))-th entry of Ck.
k- J
.o N
4 7 -~ »
]
M .
Q ) e
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Our ohseﬁ¥ai1ons up {o this point suggest that a knowl- *
of elgenvaluéi a;d\elgenvecfors would be valuable in
nalysis. We already know one eigenvalfie and a cor}
nding eigenvector for the matrix B. _Lét's find thé ¢
ergenvalue.’ Recall that the eigenvalues of B w11l

-

ots of the characteristic polynomial
{ )

: detix( ]J= det!

{ {

X 2)(x + 1)

,
1 0)
01

14

s o

(A

det (1 - B)

"

k4

2

¥ -

¢

= 2 and X, -1.
corresponding to eigenvalue Xj can be found by

this

are twd ergenvalues, i) An efgen-

r VJ

= 2
&

ng the eguation (AJI - B)vj For Xl

’

X eguation 1s

I

i
|

14

i

olution for v
.

[} i

JE—

N
1. 71

f. this vector 1s also an eigenvector cor-
An

A ~

multiple

nding to ,ll-the clgenspace 1> one-dimensional.)

vector corresponding to 3, = -1 can be found »n a

& —~

ar manper

{

L)

[
3

—_

)

v | .

2 -1y 4
L o

eneral theory of ei1gemvalues tells us that 1f we let

B, where

hd L]

d v, be the volumns of a matrix P, then P will be
anc

tible and pPhp} s
. }l
Py 0

0Of what use 1%48h15 1n compu¥ing powers of B?  We
A
hat

0
25

“

and D =

Lppp! = ppp-!

B~ = pPpP’~

LR

-{

)

-

»




. - - 9 ]
4
83 - ppdpl -
. "
-
. - . Bk 1= pka'l '
J Tl - .
This observation 1s useful becausiépowerﬁ of a diagonal
matrix are very easy to compute n ourexample
. . . -
S PR
D" = \0 -(‘Uk
$
It follows that
. L [4o2)[2k a4 2)”
. B" = 5
. r -1410 ( 1) 1 -1
! 4 2 1.1 -
. _ & 3
. > = hS
: ¥ 2
1 1J A& 3
It 15 helpful to rewfite this 1p the form .
Lok 421 0 Y11
. - ;EB = -6 3
= 3 _ k l -2
1 -1J10 (-5 18 3
.Slnce lim (~¥)k = 0, we se¢€ that ) - -
k—»oo
AN
) Lok [+ 1o 24
Iim -]-(-B = & 3| = 13
e ke 2 ) 12 11
. 1-1/10 o)z -3 zx
which checks with our initial computations.-
Now that we have determined Lhé limiting matrix for
> (kk)Bk, what can we say about X, , the age distribution vec-
. Y . E
R t?r If
. P
. xo }
- .~ . -
115 the irfitial age distribution vector, then (%k)xk, which
3 - equalq‘(353(8kx0), approaches «
\‘\ “ s N N , e N - 9
IU‘ ( .
- f
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- R

— .

”



: y Y . N .
, ‘ X

o 29[ ) - - |

33 = (a+ 2D)|> Co~
Y 11, 1 ) .
: 53 1) %) :

. e - \

as k»e. Thus x, is aggrox1mate1y 2K (a + 2b) 1/6 when k )

is large.\ Notice agaln that Q%e re&at1ve proportlons n
the_age classes are eventually almost constant (80% 1n
€lass I, 20% 1n Class II--ratio of 4 to 1). Also notice .
that this 4 to 1 ratio 1€ found in the elgenvector cor- - P

) responding to Ay = 2. The différence between this example,
and the example of Section 2.3 1s that now the total popu-
lation grows by ¥ factor of approximately 2 each.time k

increases by 1. . . .

Exercise 2 Let -

13
- A=t‘i0

a. Interpret the entries of A in terms of births and survivals.

b. Compute the eigenvalues and eigenvectors of A.

c. Determine lim \ /X where kl 1s the larger of the eigenvalues.
s ko
of A. .

»

Vs
d. Approximately what percent of the population 1is in Class 1 and

whatgpercent 1n Class Il eventually?

. e. How fast does the total population grow each time period when k
A Y

15 large” v .

- 3

8. THEORETICAL BACKGROUND . ‘

3.*? Some Observations

In all the examplés and exercises of phé preceding

-
. sections there were certain common characteristics: ¢ .

w° 1. The age distribution vector eventually bghaved

like a multiple of some fixed vector.

ERIC o

Aruitoxt provided by Eic:




- A
.
2. This-fixed vector was an eigenvector corresponding

to thb largest eigenvalue.
‘3. This largest eigenvalue was real and positive.
1. The population eventfually tended to grow at a rate

equal to this largest eigenvalue.
The natural quest1on now %s: "How t)p1cal were these exam-
. ples?" Could we expect this behavior to hoid in general .
(probably too much_ggfexpect) or under what conditions wouid”
. 1t hold? . ’
- - .
* 3.2 The Perron-Frobenius Theorem

‘.

’ . Since everythipg seems to depend on having a positive

~~~ae1gen\alue which 1s’'larger than the other eigenvalues, our
first question might logically be: "Is there alwnays such

e

an *c1genvalue Also, can we find a nonhegatlve2 e1genvec-
tor corresponding to this exgenvalue? (After all, to g
realistic, age distribution vectors must have nonnega :e
components.) [t ¢ surprising that with only some ml‘
assumptions the answer to these questions 1s 'ves." A
famous theorem, known as the Perron-Frobenius Thcorem goes

. a long way foward answering tgese questions. .The proof of
this ‘theorem LS‘he,ond u@at we 1ntend to do here, 3 but we

. shall at least see how the theorem applies uo Le511e matrices.

Recall that a Leslie matrix has the forn

)
. (a aj ag ... a an,1
by 00 L..0 0} N
A= 10 b, 0 0 Q;i (1)
‘ b6 0 by ... 0 0o |
¥ 3.' . |
o0 0 b7 % :

B3 - ‘

5 <
"\ womne 7.tioe vector 1s one for which all components are _nonnegative. If
all components are positive, the vector is called a posit™sc vector.

3 .
If you want to see more about this theorem you can consult the book by
varga (see the Teferences).

. 3

Q . .
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.

where 31(1 = 1, ..., n) gives «the average -number of off: >

pring born to an 1nd1v;dua] 1n the i;b class and
i bllx =1, ..., n-1) gives the probability that an indi-
vidual 1n the 1th class will 'survive to be counted 1in the

f1*1)s>t class during the next tige perlod Naturally we

assume that a < 0 for 1 =4, ..., n! We will assume that .

the survival probabilities are po;ltl\e, 1.e., b1 >0

1= b, .., 1) o satis fy tne hypotheses of the
Perron-trobenius Theorem, we must‘also assume that a, 1s .
‘atr:;tl} posi1tive, This assures tnat the Leslie matrix .

1> Irreducihle--a concept we shall not explore here. Under

these as-umpticns, the Perrdn-Engbenlus Theorem gua}antees .
. . N
, tne following: - R -

P
o 1 .bhwﬂmg&rxx A has a po>r?1§e elgcn\alue call 1t

. y» such that sy z (‘11 fomeall other eigenvdlues -

. 4

. . . oc, s, can be real or complex). , .- "

2 orresponding to I there ex1sts an eigenvector,
call 1t v having all positive components. ¢ : ’
. lhe nspdé corresponding ? S -
3 > JThe eigenspace E_/BD g to 2, 1s one
. dimensional, r.ce., any eigenvector Lorrespondlng ’

: to >y 1> 2 multiple of AR . G;T

LY
Fxercise 3 The structure of a Leslie matrix is rather simple and
*Inakes it possible to make some conilusfons about eigenvalues and

ergenvéctors wathout dppealing to the Rerron-Frobgnius Theorem *

.. . s
- a  hkrite out the characteristic equation for an arbitrary 3y 3

- 4
Leslie matrix of the form (L) . Using Descartes' rule of signs, what

can you say about the number of positlve elgenvalues® what about an {
-

aibitrary n x n lLeslie matrix” . N
L x! 3
W . .
b if y 130 be an eigenvectdr of lLeslie matrix A corre- ¢

s

i
/ Co . /
sponding to eigenvalue 3y, 1t must satisfy

1
‘ fa

|

|

’ N 0 z ‘
415 you are not familiar with Deécagtes' rule of signs, you may 1o0k
1t up 1n Uspensky, J V., Theqry of Equations, McGraw-Hill, 1948
oA ,

12
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H
>

o
w
"

5 b7)=l:_q
a 2

R . .
Using the second two equations solve for y anmd z .n terms of x (x may
$

, be asslgned 4ny value, say x = 1}, and 1n this way obtain a Jormda -
- for a1 positive ergemector correspon€ing to " txplain why the

values of x, » and : whick wou found automatically satisfy the

¢

TEMAINING eQUATIOR, J4,X + Ay + a5l = Alx” Can you write a frormula

» 0T 4 positive €1gen.ector in the n # n case”

“
.

3.3 An Ex3mple with Oscillations - .

. . X4
s, 4> vou can sece, thre Perron-krobenius Theorert gives us -

mo3: whatl'he want However, 1in dhalyzing the examples
M
Sections 2.3 and 2.4 1t was 1mpor(3nt that for each
K . } - -
1 #}1, 4«1,-1) -0 as k»=. This required, that Al/x1 be

strict&» less than 1, 1.e., that »; be stristi. greater

than the modulus of any other eigenvalue. (khen 0 ‘)1‘ .
ér all fther cigemalues » we will say that -, s, .
:, izwlnunt., Unfortunately, the Perron-frobenfus

Theorem guarantees only that >1 z ;»Iﬁ, and in fact @ .

¥ A
N little experimentation shows that the assumptions we made

St 2L

. fdr that theorem ane not sufficient to justify strict
,inequality, Ir, this exercise

Y

0

fxer.1se 4. Consider the Leslie matrix

A A=

¥ {08
N . N ' !

!
i -
"\ 0]

(101
Starting with the 1nitial age distribution vector Xy = ‘ig;, compute
.

'X;. Xoy Xz 4 Xge What do yo‘crve" Find the cigenvalues and )

elgenvectors of A, Then try.to y out the limiting argument used

N in Section 2.1. Wwhat happens”
,. Y
In tire exercise we fpund'that :'1:J= ‘AZQ}-Somethlng ‘
whT¢h did not happen in our previous examples. A quick

v

N 13

Q A €

JERIC - -
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. v review of the methods used 1n our other examples shows .
' that the limiting argument that we used breaks down for
the example 1n Exercise 4. As pe sce, the ¢xistence of a .
second eigenvalue whose modulus equals )] leads to oscil-

€
lating behavior in the age distribution vectnrs:
g L g
There are rather simple condition- which wi1ll guaran-

i
- 4 i

(' used 1nYtii1s theciem (///A
If 2 Leslie ratriy of the {6rm (L, satisfies the :

conditions eof Secticen 3.2 and 1f 1n addition

tee thﬁf -y 1s strictl, deminant.  One such condition 13

there are two consecdtuve indjces 1" and 141 such

afe hotn pesitive, then SIRE
5

L1 terms of populations, this thecrem Trequires &-at there
e tat o o nNseoutlve age Classes having peositive fertility -

$orogurreront that wall usualley be met 1n practice.

Toirin, again of the csamples of Section
one final qudstinn Might drise. In these €xarples we were ‘
.

A L4 . H »
oosrao too duiagopalicotthe Teslie Tatrix. wrat 1f we ceuldn’t

d1aggQas . Te

a
nenav1or 3f the age distranutioh vecdtor dornct Jdenoid on

ar opoany anle v, diageralize tre matrix. [t co1 oire
(Y

fariliar witr the Jordan canonical form, s un Can o~e¢ now & .
. “ < \-\'
1o oextend our anal,sis to thc More gendral Cdse We Wil
- #
nct rursut tre nondragenalizable LanC T, ¢
<
5.4 summary ;
(1t~ wortrwhiale to stoP uad pull together tno theor, | , ,
H.or bave fin sy I yrs v recall our EDE LOT
. Ahaonh o we have"s5 rar,  barst let's recall our as~-umption-.
“
- iesimprions ~The ‘population 1> goverted by a leslie .
Ayl priens §

matria ot the form 1Ly n which

R — _ —

Sra \ -
If you are interchbted 1n the proof of this theorem, see the book by '
Poliard mentioned in the references A fascinating (dand more gencral

- tneorem requires only that the greitest comnon Jivisor ot the sct ot

indi.es 1 for whih 4 - O he ope
1 ¢ R

.

. 11
. .
v -
[ :
. 1

\‘\ ‘ . A ..; s :
ERIC , '
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1. aj, a,# ..., a , are nonnegative
N .
- 2. a, and bl’ bZ’ ce e, bn-l are positive, and

3. at least two consecutivély 1indexed ai's are

positive.

Hopefully you are convinced bv now ({although we have
given no formal proof) that the .method of Section 2.4 can
be carried out for any matrix satisfying our assumptions

and that the following conclusions wi1ll ‘nold:

Conclusions: As k-=, the p}oportxons of 1nd;v1-
viduals 1n.the various age classes of Xy approach
fixed valugs, and these values are ddtermined by
. a positive eigenvector corresponding tthe domi-
nant eigenvalue. The dominant eigenvalue gives

the eventual growth rate of the population.

3.5 A simpiification Using Left and Right Eigenvectors

N . [
. *In the exampleS we saw that Ak/); equals :
1 0 O 0 3
i \ s | .
E (,7 i X ! .
f ot w 0 P
1) ‘.
% ) ,
) P (. Ok P pl
v o0 7/ 0 ‘
\ 1y 5
' . r() .'ki
N N VA
N { VA | .
which for k large, 1s approximately
(10} - | 5
p i1 OE p 1 . e
- 10 0 ’
. )i
where 0's represent blocks Qf ceros of the appropriate
., size. In o§her words, the effect of the e1genmaldes other

than the dominan¥?one, ?1, 1s less and less as k grows N
larger. We might wonder whether we could approximate A
without baving to compute the smaller eigenVvalues (or their
exgcnvectGrs; at all. It turns out that we 2an do this.

We will state the facts that we need here. If )oh want to
understand the justification for these facts, sce Appendix

B. , 15

Y.

ERIC ' {J
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In order to state the desir conclusions we must
first mention the eigenvalues ngdelgenvectors of AT, the
t{anspose of the Leslie matrix A. Perhaps yogﬂglready

know. from vour study of linear algebra that A and AT have

the same eigenvalues. *If not, do this exercise.

1
Exercise 5. ltet A be an n x"n matrix. Prove that A and A? have the

-
same characteristic polynomial and hence the same eigenvalues. Give

T
an example to show that A and A" do not 1in general have the same eigen- .

vectors.

0 v

Let's turn again to our analysis of powers of a Leslie
matrix A. Suppose *) 1s the domipant eigenvajue of A. Of
course, by the exercise above’ )1 1s also the dominant®
ei1genvalue of AT, Let v, be a positive eigenvector of A

. corresponding to 1 and let uy be a~8651t1ve elgenvector
cf Ar corresponding to - The theorem we have 1s this

Uncer the same assumptlon% stated 1n Secgioh 3.3,

/» tencs to vy /u}\1 as kow,

It 1s 1mportant to examine the dimensions of the products
in viu /ul\,1 If A 1s nx n, then both uy apd V) are n X 1
-

—3

) ECtOrs So upvyoas 1 1 and so can be nreaked as «a

d§calar. Howevers, lu? 1s the product of an n x 1 matrix
by a 1/x n matrix and so has dimensions n X n (the same as
\, as 1t shceuld,. Incidentally, you perhaps noticed 1n

B previous examples that Ak/f§ tended to a matrix of rank one.,

P T :
Can vou conyince yourself that viug always has rank one?
'

Nowk'hhat about xk? We see that for k large,

6u1 1s sometimes called a eft eitgenvectcr of A, The reason. by
Jef)nxtlow, uj satisfies A uy = Alul, but this equation 1s ¢quivalent
to up\ = ’)ul' hence the rdference to lef* eigenvector. As you might
guess, v, 1s sometimes referred to as a right eigenvector of A,

b

o © ,

ERIC ' “ . :
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a

a >C

large k,

. \
X, = Akx = ) Lilili Xy = )k (ulxo) ’
“k U 1, T, 0 1 V17T
(ulwl) . (Ulvl

1s also 1 x 1, vyou can see that Xy 1S approxi-

»

scalar nultiple 05 Vi
we already knew that Xy benaved

‘where the scalar is
»f course,
alar multiple of the right eigenvector v, for

but

1

now we have-a formula for the scalar.

L)
Exercise 6.

tor of,kT

eigenvecto

Return to the example of Section 2.3. Find an eigenvec-

corresponding to Ay = 1. Use this, together with the right

T

to find Tim \ /f
k-

Exercise 7.

€

~  "a.
b. Find a
c. F1nd a
d.

.

Compute the dominant

Let

-

A

o e,

w|>—a -
<@

|
j

eigenvalue 2 of A.

positive eigenvector of A corresponding to }1.

posxtLVe eilgenvector of AT corresponding to 3

e

Find 1im A /»
k»qn

e&a‘Descrxbe the population distribution vector X, as k-2,

Exercise 8.

Carry out tﬂk analysis of Exercise 7a-e for the matmix

lo g’ﬂ
A = i% 0 0: -
I
{0 % 0f
~hat will eventually happen to a4 population whose growth 1s governed
by such a5 matrix A”
L]
: — -

O

ERIC
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(‘\ 4. A HUMAN POPULATION EXAMPLE

Although we-began this unit by referring to the U.S.

.

population, all of the example$ "so far have dealt with

fictitious pcpulations whose matrices were concocted to

make the computations simple.

returning to the U.S. population.

ccnsider the population of U S.

females

Let's end the unit by
Specifically, we will

in 1967, It s

ccventent to divide. the population into 10 age classes

J-d, 3%, 1i-14,

to ferales over

females aged 0-10.

50

.., +5-44. Since the number of births

.

15 negligible we w1ll consider only

The Leslie matrix consists largely .of

{the

teros.  The oﬂ]) nonzero entries are in the first row
al‘s, and i1n the sub-diagonal (the bi’s)’ These entries
are given n lable Z.
» TABIE 2
Start of first Row Sub-diagonal .
Age l?ter»al xal) (b1)
' e 00000 .99693 .
5 - 06105 99842
1u 08203 9?'%3 v
15 28849 L -99671 )
20 .37784 . N .99614 .
<3 .26478 .99196 .
3u 14055 99247
EET, 05857 .98875 k
: 1y 01311 98303
) 15 00081 '
. sour.e ke)fx£: and Flieger (see References)
[
I'he dorminant cigenvalue can be a;“oxmated using numerical
mathods. It 1= énproxlmdtely ].”376. (Recall that each
tire period la-ts 5 years, so ‘T 1.0376 means that the

total population ~ize 1~ multiplied by approximately

ERIC
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1.0376_ every § years.) A corresponding positive eigen-

vector 1s ~

_ particular chotege of vy glven here 1s useful because the
§ entries represent percentages 1n the various age Classes.
For example, 1f 196~ birth and survival rates persisted,

would be aged 0-4. 8 204% would be aged 5-9, etc.
\aturall\ the percentages shown do not add up, to 100%.
o "The remaining 28% (hpprox1mately) of the population would
have age 50 years or oldern. It 1s ini&eresting to note ‘
that+1n 1967 only about 24% of the population was 50 years
of age or older. It 1s well known that the average age

. of the U.S. population is continuing to 1increase.
. . Demographers believe that this increase wi1ll continue well

into the twentv-first century, hence the concern about

pension plans, etc. ° -

Lxer.1se 9.

a. Explain how to use hxgﬁ powers of a lLeslie matrix A to approxi-
mate left and right eirgemectors of A. (For a hint dbOL} finding

A Y
right eigenvectors see the final sentence of Section 2 3.~

b. Based on your answer tO part (a) show how to find positive left
.
and right eigehvectors for the Leslie matrix of this section (U S.

'females, 1967) using the computer program from Appendix A (or

1
.

19

O
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then eventually approximately 8.539% of the population .
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another program of your own writing). How could you usé high powers of

the Leslie matrix to find the dominant eigenvalue?

- 5. REILRENCES ' .

In this unit we have given only a brief 1ntroduction
to the Leslie model for:population growth. There are many
interesting extensions of the model and uses of the model
in refated applications. If you want to read more about,
this model and see some appllcatlons to har\estlng, you

mignt begin by examining .

« \

Rorrgs, C. and-H. Anton, Applications of Linear

© ., Algebra. John Wiley and Sons, 1977.
’ -

'beé/part;c*larly Chapters 6, 9 and 10.)

Al

For a discussion of populatien models, including the Leslie .

model ant others, yeu will find these helpful

Pirelou, . C. An Intrgduction to Mathematical Ecology.

John Wiley and, ons; 1969.-

Pollard, J. H. Mathematical Modeld for the Growth o

)

{

Human Populations. Cambridge University Press,
1973,

% book which considers many interesting questions about

human populations is

Keyfitz, N, Applied Mathematical Demography. John
hWi1ley and SonS::?97’(;
—~ .

A good source of data on human pqpulatlons 1S

Keyfitz, M. and W. Flieger. Population: Facts and
. Methods of Demograg y. W. H. Freeman and Co.,
1971.

The study of nonnegative matrices is fascxnatlng and you
may wish to pursue 1t further. If so you may.look at

Chapter 2 of | { ~

-

Yarga, R. §. Matrix Iterataive Analysis. Prentice-

Hall, 1962. 20
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in this unit we have generally dealt with 'small-sized
) matrices. lor suchsmatrices we could easily find the eigen-
values and eigemectors and then use these to compute v
pOwcrs-of the matrix. lfor large matrices hand computation
i> not practical. \ number of numerical methods are avail-
aple for .computing elgemalues and elgenvecrors ofelarge

matrices. To see¢ more about the;f methods consult

.
tow, I. An Introduction to Mumerical Linear AMgebra.

' . OxYTord University Press, 1965.

N
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6. ANSWERS TO EXERCISES

(1560) f1650' » , (1400} (1575 ]
! 650{, : 750!, i st;, 700 |
| 500 | 323) | 575) RIXTER) . .
There are dore individuals in Class I than i1n"Class [I (roughly
* twice as many! and more th Class II than in Class Ili‘(agdxn, dgout ‘
twice as manyj. If we begin w1Eh'
. ‘1001 . ‘ T
% Xy ® ;ZOD% , we nhave for ST s xé )
(100 ;
f i *’1000‘: ’fzso} ifsso; Ifezs ) fs00 7 i’sgw.s\I
Cos0', ys00,, 12sl, ems L [mesl, 200
o100 123 {zsoJ { 62.5)  {137.5;  |156.25]

If you try several other starting vectors, you can probably con-
vinee yourself that the trend mentioned abovg séems to hold

regardleds of which starting vextor is chosen.

=

. 2a. Individuals in Class [ produce 1 offspring on the average, andi-
. »xdu&{:_izhgliss II produce 3 offspring on the average. Of the
individuals in Class I, one-fourth can be expgeted- to survinve .-

until the next teme period

"

b. dett-I-A) = +7 -3} - 3/4 = (-~§)(»»%), 50 the eigenvalues are g
and —% . : . ~ N .
c(()‘. R3] M .
VT oropand v, =T are corresponding €lgenyectors .

i1} - L-l} «

“ \K/»T approaches
o 2101l 2%“_ (374 3/2)
1 | ” - | -
i1 -1J10 0j41 -1 {178 174 \ )

d. The percents are determined by vi- b 7 or about 85 7% will be 1n B

Class I, 1/7 or about 14 3% will be 1n Class II
+ ’(3‘ * .
-~ e. If ;7| 1s the imitsal age distribution vector, X 1S approxi-
iby .
»
mately
- 7 ‘
- 7
. . -
)7 ‘
o i z

<
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3/4 3/2) ’ 6 :
(1'5)k[1/8 1/4J[b} = (1.5 (g + %b){lJ :

. . J
« Lach time k 1ncreases by 1, every entry in the age distribution

— gb vector is mult1ﬁlfbd approximately by 1.5, so the population o

grows by 50%. - :

Ja. fh-a -a,; -3

! -b1 A 0

) - l 0 ’bz L)' !

P

203 2 a =
= A7 - 31A - blaZA - blbza3 = 0.

There 1s one variation in sign (remember that all the al's and
bl's are nonnegative). It follows from Descartes' rule of signs
that there 1s exactly one positive root. You can show by induc-

tion that the characteristic polynomial for the n x n matrix is

n-} n-2 n-3 . ’
- 31A -blaZA -blbzask ----blb2 bn-lan .

. L

Descartes' wule of signs again implies that theye 1is one positive ¥

root.
N 2
b. y= blx‘/Al (note that Al 1S nonzero); z = b2 /Al 2 Elbzx/ll .

If we set x = 1, we see that i Ll
1.
b /A
. cf} . ™
o Lble/Al

. N ’ .

. . .
1s a positive eigenvector corresponding to Al. Substituting y

-

these componénts into the equation a x + ayy + a;z = Alx, we have

1 3
¢ ‘al

3 2 ®
1AM 7 By - b3y
substituting Al 1nto the characteristic equation.

4 {80 0) (320 160 1280 640 »
! . |5 40 20 160 0] - leao] " )
, .

A , 1
{59 The distributien vectors alternate betw%sn ongs witly ratio 16:1

2
+ azbl/).l + a3blb2/)\l = Al. This gs equivalent to
—

A = 0, which is just the result of

« and those with ratio 1 1. Every two bcrlods the total population
s1ze grows by a factor of 4. The eigenvalues are 2 and -2, with

corresponding eigenvectors

] -y é?my. 23
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thus . -

" -1
4 .41 0 Y[4 -4

£z - [ )[ k}{ ] .
110 (-1 1 ) :

Here (Az/Al)k = (-l)k, which does not tend to zer55 but rather,
produces the oscillating effect. '

5. det(Ai - A) = det(al' - AT) = det((a1 - &)T)

example: for the matrix

"

det(AI - A). An
]

] -

08 <
A:Aio v

an eigenvector corresponding to eigenvalue 2 1s -
F

A

You can easily check that this vector 1s not an eigenvegtor of A .

«

s

6. 1 .
2! 1s an eigenvéctor of AT corresponding to Al. . .

2 488

. T, T . _ 1
- The limiting matrix is vlul/ulv1 =15 12 44
122

' ? ’,

7a, Eligenvalues aré 2 and -1.

”

b. An eigenfector of A corresponding to 2 is [6 . .
1 -

c. An ergenvector of AT corresponding to 2 1s [1].
3
b= '

d.” The limiting matrix for Ak/Ak is v uT/uTv - L6 18)
35 Wt U U 0 Wl -1 P

]

X behaves like a multiple of [6). Bach time k increases by 1,
1

the entries in the age distribution vector are mujtiplied by .

approximately 2.

8a. Eigenvalues are %, %(-1 Y.
. "

. -

. ’ 24
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. . {2 .

DY
b. An eigenvector of A corresponding o ¥ 1s j2i. . .

r

T
An eigenmvector of A  corresponding to % 1s

. . . \1 .

B [.a .
. d The limiting matrix for Ak/\¥ 15 i.d .
' 2

\ , , VAN A n

S 2) .

Xy behaves like a multiple of 2‘. The entries 1n the age dis- .

i

Wy
tribution vector are multiplied by approximately ! each time k
increases by 1. The population will eventually die out (prac-

tically, if not mathematically)}.

9. For large k, Ak 1s approx}mately a scalar multiple of VIUT But

R 1
1n the matrix vluI the columns are all multiples &f vy and the

rows are multiples of u, .- Hence, any column of A64 is, an approxi-
¥ -

1
mation to a right eigenvector of A and any row of A64 is an

. approximation to a left eigenvector of A. Each time k imcreases’
4t’ by 1, the entries of Ak are multiplied by approximately Xl.

Therefore, to find Xl
Ay

we can take any entry of A}“’l (e.g., the
. program of Appendix.A could easily be modified to compute Aés) and

[;~ divide by the corresponding entry of Ak (A64 in our program).
L)
]
. -
.- . 25
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’ ARPENDIX A ‘

.

Here is a BASIC progra'xwhlch computes powers of a

matrix A. A sample run is also shown.
. oy
LIST . . .
POWERS . . £
5 DIM A(10,10) .
10 INPUT N . . ' .
1AWMAT INPUT A(N,N), . )
20 PRINT ’
25 PRINT ''MATRIX A'' ’ !
30 PRINT
;B 35 MAT PRINT A ,
40 FOR 1 =41 TO 6 4
45 MAT B = AsxA . .
50 PRINT "' MATRIX A" ;21 ‘
. " 55 PRINT ey .. )
- 60 MAT -PRINT B .
65 MAT A = B o '
70 NEXT 1
75 END

READY &

RUN N ] *
POWERS ! i .
? 3 . .

. - » ’ .
2 0,1,2,.5,0.0,04:5,0 - Y

~  MATRIX A g .

ERIC ) e

P .




MATRIX A 8
4375 .75 .75 N . -
. 1875 .4375 .375

»09375 . .1875 .25

MATRIX A 16 "
- .402344 796875 .79687S . -

. 199219 402344 .398438

» v

+9960%4E-1 .199219 .203125

.

MATR?§ A 32 .

.400009 »799988 .799988

L] .
/ . 199997  .400009 .399994 -
.999985E-1 .1999%97 ,200012
MATRIX A 64
ﬁ‘ -
4 8 .8 .
VO | .
i
& 2 .6 .6
- + ’ S
.’ 1.2 L2 =
) ]
. READY S
‘ .
154 . N
L3
. - s
’
L3 . “
. ¥
. 27
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APPENDIX B . .

We will look once more at powers of a Leslie matrix A

and show how the limiting behavior can be described using .
i left and right eigenvecters. he wiIl continue to make
those assumptions about A which are stated in Section 3.4. .
As before, let Uy be a positive eigenvector of AT corres- )
- ponding to the dominant eigenvalue Al, 1.e., ATu1 #1Yys a
alsc, et vy be a positive eigenvector of A corresponding
to vy, e, Av1 = v Let P be the square matrix whose
colurns are made up of the eigenvectors of A, with vy
being the first column, 1t.e.,
P o= (v, Iv,iva., "7 v
. Vitvae Vs V!
Ve
i D IR
1 o = plp e ptfy iy ‘
0w uJ L k = {\\1 \2. \n}, > .
Pl ' o 1;
(1 .
] ] 4 -.
50 poly = 0. ’ (B-1# .
! V! '
“ ¢ ’
10}
—
r. |
-1 1 .
Also since P "AP = =~ i
< .
Ay
| L nj s

N and since a diagonal matrix 1S 1ts oOwh transpose,

. N \
1 !
plap = (plapT = pTAT(p )T - { o
{ “n

<
We will assume, as before, that A 1s diagonalizable, the final

result 1s true without this assumption.
. 28
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This neans that ”,-1)1 = (3137...§n) where the 61 are
eigenvectors of AT. uy need not be the same as ﬁl, but 1t
will pe a multiple of El, say u, = 331.
\
. ‘fl 0 g 05
" lo 1 0]
. ; T,- = - T T ! !
It follows that P »’uluz ceup) = P*(P ") = ,
! 4 07 0 1j
1 i ‘
0. .- 0
so P = ', . Therefore PTul = ;?Tﬁl = ’ .
. P
O’» ’ loj
an > implies that urP = (40...0). (B-2)
Putting (8-1, and (B-Z} together, we have
. '/1]()”()) (l 0,0:“‘1
-1 T 0. ;0 !
P = = s N *
F \lulp i ! :
) L0y . J
"
o m
:li d '
. T, . Tpo-l  _ . 0, .
\ and uivy -ulPP Yy [.10...0):.‘ 2
. 0y
p'l\,uﬁ 10 .
So « ’rl = ' 3
vy 0 0y .
. vul 10 ‘
.’ and therefore, - = P P
. ! upvy {0 0} .
Thus we have b\v .
29
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