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'POPULATION PROJECTION

1. INTRODUCTION

hhat will be the distribution of ages in the U.S.

population lu 'year from now, SO years from now, or' 100

;,ears from now' Many things depend on the answer to that

questionthe futurt of the social security' system, the

demand for health care serr.Lces, the enrollment in colleges

and anil'ersitiesto name a few If we know the present

age distribution of a population ,say, how many individ-

uals are years of age, S-T years of age, etc.) can we

predict the age distribution in SO years' It seems clear

that an), such - prediction would be subject to lots of

rror. \f ter all, we cannot foresee future chang in

birth and death ra,tes, mor an we estimate the effects of

migratic,n.

\ somewhat simpler question which can be easily_ for-
-

mulated and answered mathematically is this: If current

birth rates and surni rates continue unchanged, what

tne population distribution be at a future *date (assum-

ing the effects of migration are ignored)' ,Although this

juestioi is simpler, it is not withe-ut practical interest.

for example, it is of value to explore matliematically the

conseuuence' of various birth and death rates without hav-

ing to at until the population'actually experiences these

conscquenc-4,.

Seera.1 matnematical models hale beer? developed for

this simpler question. Here we shall examine one of these-

a mitrit model leised by P. H. Le-.11e and other In this

mhel, matrI\ multIplitation is used to update tne popula-

tion from one time/period to another. As we shall see,

tilt sta (1 such a process leads us to examine powers of

f-Atrice- .)ur object will he to learn something of the

1),,..ers of matrices and to sqc how knowledge

a C
1 J.



of eigenvalues nd eigenvectors helps in understariding

this behai6r.

2. THE MODEL
-A

2.1 Population ProjectionAn Example

:Let's begin wlt4 a simple example. Conrder a'fic-

titi9us animal mpulation consisting of 1000 ydung animals

?-1 ear old, 8t indi\i'duals 1-2 years old, and 600 indi-

.iduals 2J-3 years old. We will assume that iloze of these

anim-als lives longer, than 3 years. can record this

data in an lge

ti

-110u01

800

A
COO)

for ri-L7it. Ac shall can the a'e groups Class I 0-1 year),

Llass Ii ,1-2 years), and Class -11I (2-3 years.

Zf,r,e want, to know the age,distribution vector one Year

frog now we will need to Know two things
A

1.' the proportion of those animals currently ,1,114

ti at -survive until next year, and
.

'how many offspring will he horn and will survive

long enough td ne count.ed next Year.

In our example, suppose that 1/2 of,the indi\iduals

in Class I ii,e , 50(' ind.aduals) survive to he in Class

II the next year, and let us also suppose that 1/2 of the

individuals in Cl-aS4 II (i.e., -400 indIViduals) survive to

')e in Clas's III the next .,ear. (Under our assumpti.on,

viduals currenily in, Class iII4wi11 be dead by net year.)

This process is indicated by the solid lines in Table 1.

In addition let us suppose that indiriduals in Class I 'Filo-

duLe,no offspr'ing, that each individual in Class II produces 1

offspring on the average, and that each individual in Class

III produces offspring'on the L,.erage: (Here we are

including only those offspring who survive long enough to
'



TABLE 1

NOh NEXT YEAR

Class Number of Individuals Number of Individuals Class

1 1000 * 2(600) = 2000

1(1000) = 500 II

= 400

be counted the next year.) In Class I the next year 1,e

1,ould,expect to rave 800 young (produced by last year's

Class II individuals) and 2(600) = 1200 young (produced

by last year's Class III individuals),!, for a total of

2000 ne., Class I individuals. This process is indicated,

by the dottedines in Table 1.

ine:computations we have done can be summarized in

this matrix computation:
. -

10 1 2) (1000) f2000)
! 1

:11 0 0'
:

, 8(40, = I '001
1 1 :

I

(0 il 0) ( 600) ( 400)

This computation is of the form Ax(.1 = xl. 1,here A is

the matrix cdntaiping the birth and survival paralkters,

xo is the initial age distribution vector, and xi is the

age distribution vector afterone year. itie 1,111 ca,11 the

matrix A a Les:se.matrix.

2.2 xtending the Projectiton

By.lierforming a matrix multiplication 1,e have found

the age distribution after one year. What if 1,e 1,anted to

knol, the age distribution after 2 years' If 1,e belieVe

that birth and survival rates'will remain unchanged, then'

ke can again multiply by the Leslie matrix A, this time *-

using xl as our starting distribution. thus 1,e compute

'ro 1 2)(2000! (1300)

Axl = 0 0'
!

1 5001.= ;10-00!
!

10 0) ; 41)0) 1 250

4
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tot ice that x, -I= Axi = A(Ax0) = A2x0. We needn't stop with
2 Years of course: ?le could compute, .

1.
_.x.= 'Ax, = nk-7 x0) A

3 xo, etc. $,-

. n n,

Mole generally, if the birth and` survi,val ivarame-ters remain
constant (or if we wish to know what luld happen if they
/ .....: remain const/nt), we could find t4., age distribution
rector after h years (let 's call it xk by computing xk =
'1 l1 t4 .

Lxer,:i,e 1. tontinuing the example of this section\,N-eompute x3, x4,
xs and x6. (Note You will probably find it easier to obtain x3 by
,:omputing kx. rather than first computing 43 and then computing A3x0.),
Do you notice aAy qualitative trends (e.g., does one class have con-
si,tently r)ore or fewer indZridua than, others)? Try the process
again using the same Leslie raatrix u a different stalking vector'x0.
Does the choice of starting vector seem to affect the trend'

2.1 Pmv.cr-, (,f ,the Matrix

The exercise raises two questions:
1. the multiplicative process is repeated again

and gain does the distribution of ages change ran-
domly or is there sonic recognizable' pattern .in the
successive age distribu.tion vectors?
Dec the tritimate benarior of the age distribution
lector depend on the initial dtdribut ion?

If there fzr.: any patterns they should show up as' we
compute higher and higher powers of the Leslie matrix. Let's
ccintinue our example. by computing some powers of A. `Cou can
do this by hand (a bit tedious, of course or by computer (a
program for doing this is showilkin Append' A). Here are
some results (numbers are rounded to 6 decimals):

1 0 1 21

A = I .5 0 01 =

0 .5 0i

.5 1 01

0 .5 1

.25 0 01 .

4



at;

1.25 . 1 11 1.4375 :75 .75 )

.25 .23 .5 A
8

= .1875 .4375 .375

,.125 .25 Of (.09375 .1875 .25 )

1.402344 .79'6875 .7908751 1.40n 09- .799988 .799988)
n

-A = .19)219..402544 4.398438
!

A
32' '.199997 .400009 .399991

.T_,90U9 .109219 .205125) (.0999)9 .199997 .1,00012

l.400000 .800000 .800000
64

= .200000 .4m0000 .40000,

L 100000 .200000 .2000001

).,e see that powers of A are much alike for "large" powers

it least this is true in our example-we will come to a more

ge,peral case later). What does this observation 14fy about

xk, ,1 age distribution vector' To see, let's suppose the

Initial ag'e distribution vector is

1a1
I

x0 b.
0

.

. .c.1

Then if k is)

V. 1.4

2

1.1

lage,

.8 .811a),

.4 4

.2 .2)ICJ

x
k

i

b.
l I

(

=

=A
k
x )

0

1.4a +

2a 4

i4
(.1a +

is approkimatelv

.8b + .8c)

.4b + .4c1 = -x

i

.2b + .2c)

1.41

.'
I

(.1)

.4

where -1 = a + 2b + 2c.
"---.

i

. )
The results are rather surprising Although the total

size of the yeTulation depends on the initial values a, b

and c, the relative 4; of individualsin the three

':age classes approach fixed,r los 4:2:1 as Ic--., and these

proportions do not depend on the initial age disti.bution

of the population. (fills is sometimes described by saying
x *

that the population "forgets" its initial age structure.)

Although the ratios 4.2:1 are never quite reached in

a finite length of time, it is interesting to notice that

if thc-f)opulation did achieve these proportions at some time

m, then the age distribution vector would not change during

subsequent time periods. For example, if

1 5

r.
.\

9



'40'

x =, 20

(10)

then

.11 10 1 2)(40)- (407-'

x
m*1

= A xm = 0 0 1201 = 120 = x .

10 1/2 0j (10j t104,

The, fact that Ax
m

= x
m

can be expressed mathematically

by say."1-11g that xm is an eigenvector corresponding to the

eigemaue 1. (Recall that a. nonzero column vector v is

an e::genvec,;or of a square matrix A if there is A scalar

called an eigenva:.i.e, such that Av = ;,v.)

In case it escaped your notice, go hack and observe

that the( ratios 4:2:1 which occur in the eigenvector also

,occur approximately in the columns of Ak when k is a large

number (seo A
64.

c for instance) .

2.4 Another Example

Based on the example of the preceding section we have

several hunches about possible theorems. Before exploring

these hunches it would he wise to look at one more example.

We need to know whether the behavior
set

shown'vn the previous

example was typical of population growth using Leslie
4

matrices. Consider the Leslie matrix

'1 4B=
0

(Can you interpret the entries of this matrix using "popu-

latiof' language'), Some powers of B are shown:

B2 =
2 1 3 4

B4 =

1.5 2,

11

2.5 6

8 (171 3401 B16 143691 87380
8 =

42.5 86j j10922.5 21846).

Here we have a real, population explosion! At first glance,

the clear-cut patterns observed in our earlier example seem

to be missing. But If you look closely at B
8

and B
16

you

"6



will see that the ratio of each first--row number to the

corresponding second-row number is approximately 4' to 1.

Taking our cue from the ,example of Section 2.3, we might

wonder' whethar a vector having a 4 to 1 ratio is an eigen-

vector of B. Brcomputing

(1 4
1

(4)
=1 i

(8)
I

f 2[

.(11 0 (lj (2j - (1,

we see th t the answer is yes. However, here the eigen-i
"ik, yes.

is L and that_ gives a clue to the reason for the

population explosion' even if the ratio in the age dis-

tribution vector stabilized at 4 to 1, the population

would continue to grow and would, in fact, doub7.e every

time period-.

The.analysis of the powers of B might have been

clearer had we accounted for the doubling tendency of the
,

population by dividing entries of by 2
2

, of B
4

by 2
4

,

and so on. Here

13

are-the results: , .

I 1 B2 1.75 1

7 .
1 B4 1.25

L125 .5 2 .15625 :375

1e 8 1.667969 1.328125

2 (.166016 .335938

1 B16 (.666672 1.3333131

2
16

[.166664 .333344j

(Computations are rounded to six decimals.) The pattern,

now is much,clearer, and oar computation would lead us to

guess that
1

[4/3 4/3

lim ,TB = (1/6 1/3

Of course, computation, however useful, is no substitute

for understanding. How can we analyze the behavior of Ak?

Can we predict the ultimate form of Ak without actually ,

computing the powers?

i
By lim C

k
we mean.the matrix, if it.exists, whose (i,j)-th entry is

(k)

liras

ci,

.m
J where cif) denotes the (1,3)-th entry of C

k
.

7



Our obser-- ations up to this point suggest that a knowl'

edge of eigenvalues andieigenvectors would be valuable in

our analysis. We already know one eigenval&e and a cor-

e responding eigenvector for the matrix B. .Let's find thet

other eigenvalue.' Recall that the eigenvalues of B 17,7711

be roots of the characteristic polynomial,

f

det(A! B) cleti

'1 01
1)

(1 41i (A-1 -41 ,

= detH

A 2 = 2)(A + 1) .

rh.ere are twa eigenvalues, = 2 and A, = -1. An eigen-

vectorvcoriespondingtoeigenvalueAjcan be found by
_soling the equation

matrix equation is

1,, 1 -111x) _16)
-,

1-'-4 .YJ

One solution-for v1

(Al

.

is

- B)vi

4y

+ 2y

=

=

=

0.

0

0

For ;'1. =

where v
1

2,

=

this

(Am. multiple

O

(41

il).

f this vector is also an eigenvector cor-

responding to ,1--the cigenspace is one-dimensional.) An

eigenve.ctor corresponding' to A, = -I can be found i.n a

similar manner

21
= I

t-1J
.4--

the general theory of eigenvalues tells us that if we let

v
1
and v, he the columns of a matrix P, then P will be

iertible and PbP1 = 13,- where

.14 2) 0 2 0'

P
-ii

and Il =
0 0 -1

Of what use is his In computing powers of B9 We

see that

B- = PD
1

P PDP
41

= PD-' P
1

A ti

4,

8



0

B
3 = PH3

P
-1

k I
B
k

,--, PD P . l

This observation is useful becauseower, of a diagonal

matrix are very easy to compute. In oul'ilexample

It follows that

B
k

=

p

.
=

k
D =

4 21[2

a -1

4 2

1 -1)

2
k

so

k

o

'2k

0

0

.(.1)1(.

It is helpful to rewrite this ill the form

1 k

a
( 4 1' '1 0

,1 -f o (-1/2)k

Since lim'C-410k = p, we see that
k-,c0

A

1 im
IT

Bk
,.k-. -2"

4 2

1 -1

1 i
T 3
1 2

T 3

1 1b 3
2

3
0

,

which checks with our initial computations.-

f

2 4

1 1

T T

li.

Now that we have determined.the limiting matrix for

(it
k
)B

k
, what can we say about x the age distribution vec-

ior'' If-

its

...

'
the initial age distribution vector, then (II

k)xk, which

equals' C.2
k
j (B

kxo), approaches

9

4 Q

.,



I

2,4 2

33 : (a + 2b)

1 1
6 3 b] 6

.

as k+,.. Thus xk is proximately 2
k

4/6
(a + 2b). when k

is large. Notice again that the, relative proportions in

the.age classes are eventually almost constant (80% in

Elass I, 20% in Class II--ratio or 4 to 1). Also notice

that this 4 to 1 ratio found in'the eigenvector cor-

responding to AI = 2. The difference between this example°

and the example of Section 2.3 is that now the total popu-

lation grows by la factor of approximately 2 each, time k

increases by 1.

Exercise 2 Let

3'

A =
A 0,

a. Interpret the entries of A in terms of births and survivals.

b. Compute the eigenvalues and eigenvectors of A.

c. Determine lim where e AI is the larger of the eigenvalues.,

of A.

d. Approximately what percent of the population is in Class I andO

what percent in Class II eventually?

e. How ast does the total population grow each time period when k

large'

Z. THEORETICAL BACKGROUND

3.10 Some Observations

In all the examples and exercises of the preceding

sections there were certain common characteristics:

1. The age distribution vector eventually behaved

like a multLple of some fixed vector.

IP

-A_

In



2. This. fixed vector leas an eigenvector corresponding

to tilt! largest eigenvalue.

'3. This largest eigenvalue was real and positive.

4. The population eventually tended to groh at a rate

equal to this largest eigenvalue.

The natural question now /s: "How typical here these exam-

plesV1 Could he expect this behavior to ho'd in general

(probably too much to.:expect) or under valat conditions wf..i;:d'

it hold?_

3.2 The Perron-Frobenius Theorem
/

Since everythiw seems to depend on having a positive

--eigenyalue which is''larget than the other eigenvalues, our

first question might logically be: "Is there always such

an Tigenalue'" Also, can he find a nonnegative
2
eigenvec-

tor corresponding to this eIgerWalue? (After all, tom

realistic, age distribution vectors must have nonnega re

components.) It Is' surprising that pith only some mil`

assumptions the ansl,er to these questions is "yes." A

famous theorem, known as the Perron-Frob,,nias Theorem goes

a long hay TI-51,ard ansl,ering these questions. _The proof of

this theorem is-Je)ond Ii4at we intend to do here,3 but we

shall at least sec hol, the theorem applies t4o Leslie matrices.

Recall that a Leslie matrix has the form

(al a2 a3 ... an a )
-1 n1

b
1

0 0 ... 0 0 ;

A= (0 b, 0 ... 1) ( 1.1

10 0 b, . 0 0

0 0 0 bn fr

).ector is one for which all components are nonnegative. If

all components are positive, the vector is called a pool :t vector.

If you want td see more abgut this theorem you can consult the book by
'arga (see the references).

f



here a (1 = 1, n) gives .the average-number of off,

piing horn to an individual in the ith class and

bite = 1, ..., n-1) gives the probability that an indi-

idual in the ith ,ill'sutoVivo to be counted in the

(14-1):,t ,lass during the next tire period. Naturally we

assume that a = 0 for i = n: We ,111 assume that

the survivat probabilities are poiltive, i.e., bl > 0

= 1, losatisry the hypotheses of the

Perron-lrobenius Theorem, we must also assume that an is

,sir: t1 positive. 71-11 assures tnat the Leslie matrix

is irredus:Ible--a concept Ise shall not explore here. Under

thee assumptions, .the Perrdn-Proheni71.15 Theorem guayantees

tne

1 .1,h1e+mit;rix has a posYtie eigenvalue, call it
v;,

such that A
1

other eigenvil'ues

can be real Or complex).
s

orresponding to :1 -there exists an eigenvector,

ill it ,1 having ail positive components.

3. ;he eigenspace k_orresn nding to- Al is one-

dimensional, i.e., any eigenvector corresponding

to ,1 is a multiple tof'v1.

fxc.r,ise 3 fhe structure of a Leslie matrix is rather simple and

'imaXes it possible to make some conLlusfons about eigenvalues and

eigen^.ectors 1,ithout appealing to the ,Eerron-Frober)ius Theorem

..;ef

a Write out the charaCteristic equation for an arbitrary 3 e, 3

Leslie matrix of the form (L) Using Descartes' rule, of signs,
4
what

can you say about the number of positive eigenvalues' What about an

arbitrary n x n Leslie matrix'
(xi

b If yt is.Ao be an eigenybceor of Leslie matrix A Lorre-

sponding to eigenvilue i1, it must sausfy

0
ial a, a311,x1 fx1

Ibl
0 0 = )11y

10 b7 0 J z) tz,

li you are not familiar with Descartes' rule of signs, you may soak

it up in Uspensky, J V., TpeqEy of Equations, McGraw-Hill, 1948

4.

7-

I
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42y + a32 = X

bl"c

b,y = ,1:..

Using the second tAo equations suhe for y and z terms of x (Z may

, be assigned any salve, say x= 1), and in this way obtain a ,foam.::;

for a positise eigern.ector correspbn6ing to Al. Explain why the

values of x, y and : whicia you found automatically satisfy the .

remaining equatical, a1x * ayy + Can= ix' Can you write a formula

A for a positie eigen.c.):tor in the a n case'

J

3.3 \ff LxUnle %,:th Oscillations

.°
As you can see, the Perron-I,robenius Thcorer gives us

whatli.e want Howeer, in analyzing the examples

of Sectin, 2.3 and 2.4 it was important that for each

i 1

1

/.
i

) -n as This required, that ',
C
/I

I
be

'

strict)y less than I, i.e., that /.1 be stpfatL2 greater

titan the modulus of any other eigeni.-alue. lhhen ,1

Air
all !other cigemalues rt we will say that .1 is,

r, Unfortunately, the Perron,Frobed/us

Theorem guarantees only that %1 t ;AI:, and_in fact m ,

little experimentation shows that the assumptions we made

fdr that theorem a4c not sufficient to Justify strict

,inequality. 1r) tills exercise

Ixer,..ise 4. Consider the Leslie matrix

(0 81

i'z OJ

starting Aith the initial age distribution vector x0 =
(10

0 {101' compute

oxi, x,, x3, . x6. what do you erve' Find the eigenalues and

eigentectors of A. Then try ,to 11111r out the limiting argument used

in Section 2.1. What happens'

In the exercise we found'that ';2,P,--something

dial not happen in our previous examples. A quick

13



review of the methods used in our other examples shows

that the limit ink; argument that we used breaks down for

the example in Exercise 4. As t.e see, the existence of a

second eigenvalue whose modulus equals %,1 leads to oscil-

lating .9eha,.ior in the age distribution ectflrs:

There are rather simple condition, which will guaran-

tee th*t , is strictl; dominant. One suer, condition is

used irltl is thee:um

If a Leslie ratrI\ of the fdrm LI.) satisfies the

c'ondition, ofSection(3.2 and if in addition

there are two conseeative indices rand 1'1 such

that al and al.1 are hotn pcsitie, then is

strict) el-minant.="

of 1:-pulatiens, this thecrem requires t'at there

r,e age cla,,cs raving pc,it:ve

11 1St' 11'. he met in praetice.

ae:ain tne e:aples of Sectior. 2.3 and 2.4,

cne final que-tiorl mi,ht arise. In the,e exarple, ,e ,ere

irle diagc-,nall:!c'the Icslic 7,atrix. ;Oat if couldn't

iertunatel., ccnclusion, about

Dt r%c ai;c distrinutioT1 kectoi do, not derend on

i-l t, diage,alize the matrix. Ii .oi ire

far-, 'liar .itr the ;srdan cancn.leal form, :ou

extend our 3;.al),1, to tile more general ease

e nondiagenalj:ahic easelrre.

3.4 -31.1-1-ar.

,ortr-.1.11, to ,.cop aria pull together the thec.r,

w_ tir. first let'- recalloar

-The'popuiation is gol(r,Ieu t a leslie

ci the foam in .shich

If you ire intere',ted in the proof of this theorem, see the hook by '

Poll ird "Icntioncd in the references A fascinating (and more general
tneorem require, only that the grettc-,t ,_ommon dtki-,or of the set of
.ndl,c,s 1 for wht _11 at - 0 he ow



1. a
l'

a
2
or..., a

n-1
are nonnegative

2 . a
n

and b1, b
2'

b
n-1

are positive, and

5. at least two consecutively indexed al's are

Hopefully you are convinced by now (although we have

given no formal proof) that the method o Section 2.4 can

be carried out for any matrix 'satisfyin our assumptions

and that the following conclusions will n ld:

Conclusions: As the proportions of indivi-

viduals in the various age classes of xk approach

fixed val4s, and these values are dritermined by

a positive eigenvector corresponding tithe domi-

nant eigenvalue. The dominant eigenvalue gives

the eventual growth rate of the population.

3.5 A imp"i}fication Using_ Left and Right Eigen:ectors

in the exampl e saw that A
k02k equals

l 0

1,, )k

C

0 "5/: .0

l 11

0

0

0

I

4 p1

. ,

, I

0
ni.

Al) 4

which for k large, is approximately

P(1 01
P
-I

1

tO 0)

where (_1's represent blocks 11,f zeros of the appropriate

size:. In other words, the effect of the eigenxalUes other At

than the dominantelone,
l'

is less and less as k grows

larger. lie might wonder whether we could approximate A
k

without baying to compute the smaller eigent:alues (or their

eigenvectors) at all. It it/1'ns out that we can do this.

We will state'the facts that we need here. If you want to

understand the justification for these facts, see Appendix

B. IS
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I

In order to ,t4ate the desir conclusions we must

Ygdfirst mention the eigenvalues nd eigenvectors of AT , the

transpose of the Leslie matrix A. Perhaps you
'
already

know. from your study of linear algebra that A and A T have

the same eigenralues.,lf not, do this exercise.

Exercise S. Let A be an n x^n matrix. Prove that A and AT have the

same characteristic polynomial and hence the same eigenvaluet". Give
4-
an example to show that A and A

T
do not in general have the same eigen--

vectors.

o

Let's turn again to our analysis of powers of a Leslie

matrix A. Suppose II is the dominant eigenva?ue of A. Of

course, b-y the exercise above; is also the dominant'

eigenvalue of A
T

. Let v
I
be a positive eigenvector of A

corresponding to and let ul be a,p1ositive eigenVector

of A corresponding to ,

1.

6
The theorem we have is this

Under the same assumptions stated in Sec#16 3.4,
- .

A
k
/A

1

k
tends

.

to v
1 1

1

1
u
T
/u v

1
as4 k-0...

It is Important to examine the dimensions of the products
T .

In v
1
u

1'
/

1
u
T
r
l'

If A is n x n,'then both u
1

and v
I
are n x 1,

vectors. So u
1
v

1

is 1 x 1 and so can be treated as ..a

Scalar. However, v
1 1

u
T

is the product of ah n x 1 matrix

by a 1/A n matrix and so has dimensions n x n (the same as

A, as it sheuld). Incidentally, you perhaps noticed in

previous examples that A k
/A,

k
tended to a matrix of rank one.

Can you convince yourself that vlui
T
always has rank one?

NOW
k
;,hat about x

k*
We see that for k large,'

6
u1 is sometimes called a :eft e-,i2envetcr of A. The reason. by

definition, ul satisfies ATui = Alul, but this equation is equivalent

to
u1F /,'
\ . tiol, hence the reference to :eft eigenvector. As you might

guess, 1,1 is sometimes referred to as a right eigenvector of A.

.
16



( v UT)
Akx >k

1 ic,Julx0)xk =
u i(ury x0

1
(u

1
v1)

,

u
1

x is also 1 x I, you can see that xk, is approxi-
mately a scalar multiple of v1, -where the scalar is

k T T yf course, s..e already knew that xk behaved
like a scalar multiple of the right eigenvector v1 for
large k, but now we havea formula for the scalar.

Exercise t. Return to the example of Section 2.3. Find an eigenvec-

tor of,
T

corresponding to A = 1. Use this, together with the right

eigenvector

vl =

to find 11m Ak/,k
1

i I

i'J

Exercise 7. Let

A = 1, 1

1 01

Compute the dominant eigenvalue /1 of A.

b. Find a positive eigenvector of A corresponding to )1.

c. Find a positive eigenvector of AT corresponding to )1.

d. Find lim A
k
/)

e, Describe the population distribution vector xk as
01
Exercise 8. Carry out 4 analysis of Exercise 7a -e for the matsix

(0 7-4'

A - 40 0, .

I

to 1/4 0)

that will eventually nappen to a population whose growth is governed

by such as matrix A'
0

4
17 .



4. A HUMAN POPULATION EXAMPLE

Although we -began this unit by referring to the U.S.

population, all of the example.:s.so far have dealt with

fictitious populations whose matrices were concocted to

make the Computations simple. Let's end the unit by

returning to the U.S. population. Specifically, we will

ccnsider the population of U S. females in l96-. It is

ccmenient to ditide.the population into 10 age classes

_1-40 5-1., ..., 45-4J. Since the number of births

to females over SO'is negligible we wi11 consider only

females aged 0-4). The Leslie matrix consists largely ,of

_erns. The only non:ero entries are in the firs't row (the

ai's, an] in the sub-diagonal (the bi's)' These entries

are gi'.en in table 2.

lABIE 2

Stdrt of
age Inter4a1

first Rol. Sub-diagonal

(1)1)

00000 .99694

3 .00105 99842
4

lu 08203 99-83

15. 28849 , .99671

21, .3-780 .99614,

25 .26478 .99196

30 .14055 99247

35 05857 .98875

Iu .01311 98305

IS 00081

Sour,e ke)fitz and Flieger (see References)

the dominant eigen4alue can he atoximated using numerical

mcothods. It is approximately 1.0376. (Recall that each

time period la-t years, so '1 = 1.0376 means that the

total population ...size is multiplied by approximately

r, '' )

IS



.1

1.0376every S years.) A corresponding positive eigen-
..vector is

(8.5391

18.2041

17.894,

17.2921
1 1 7.000,

1

16:-12

6.420!

1

6.117
1

CS.79S)

Of course any positive scalar multiple of v1 would do. The.

particular chofQe, of vl given here is useful because the

entrles represent percentages in the various age classes.

For example, if 196- birth and survival rates persisted,

then eventually approximately 8.539% of the population

would be aged 0-4. 8.204% would be aged 5-9, etc.

Naturally the percentages shown do not add up, to UV,.

The remaining 28% (pprox).mately) of the population would

have age SO years or olden. It is interesting to note

thatin 1967 only about 24% of the population was SO years

of age or older. It is well known that the average age

of the U.S. population is continuing to increase.

Demographers helieve that this increase will continue well

into tlie twenty-first century, hence the concern about

pension plans, etc.

1.xercise 9.

a. Explain how to use high powers of a Leslie matrix A to approxi-

mate left and right eigemectors of A. (For a hint abo4 finding

righteigenvectors see the final sentence of Section 2 3.)

o. Based on your answer to part (a) show how to find positive left

and right eigeh,ectors for the Leslie matrix of this section (U S.

'females, 1967) using the computer program from Appendix A (or

ti
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a

anothei- program of your own writing). How could you use high powers of

the Leslie matrix to find the dominant eigenvalue?

S. REIERENCFs

In this unit w.e have given only a brief introduction

to the Leslie model foropulatiOn growth. There are many

interesting extensions bf the model and uses of the model

in related applications. If you want to read more about.

this model and see some applications to harvesting, you

mignt begin by examining

RorfP es, C. and-H. Anton. Applications of Linear

Algebra. John Wiley and Sons, 1977.

+see particilarly Chapters 6, 9 and 10.)
*ow

1,ir a discussion of population models, including the Leslie

model and others, you will find these helpful

Pielou, I. C. An Intrqduction to Mathematical Ecology.

John Kiley and, ohs, 1969.

Pollard, J. H. Mathematical Model for the Growth of

Human Populations. Cambridge University Press,

19-3.

S, book which considers many interesting questions about

human populations is

Keyfitz, N. A lied Mathematical Demography. John

Wiley and Sons, 971c.

A good source of data on human mulations is

Keyfitz, N. and W. Flieger. Population: Facts and

Methods of Demography. W. H. Freeman and Co.,

1971.

The study of nonnegative matrices is fascinating and you

may wish to pursue it further. If so; you may.look at

Chapter 2 of

--karga, R. S. Matrix Iterative Analysis. Prentice-

Ha11, 1962. 20

fi I
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---)
in this unit we Lao generally dealt with 'small-sized

matrices. for su,11'matri,es we could easily find the eigen-

alueb and eigemectorb and then use these to comp-Lite

powers of the matrix. Ior large matrices hand computation

is not \ number of numerical methods are avail-

sole for ,omputing eigernalnes and eigenvectors of large

matrices. To see more about these methods consult
le& .

for, 1. An introduction to Numerical Linear Algebra.

Oxford Unieisit;, Press, 1905.
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6.. ANShERS TO EX:CISES

1.

, 2a.

risisot (1650) (14001 (1575,
I

I650,
1

1 750t
'

700' 1 824,

I 500) ( 325) 375) .112.51

There are sore Individuals in Class I than

twice as manyI and more Class IL than in

twice as many). If we begin with

(100,

xo = 200j , we nave for x1, x2, x6

(400J

(1000) (250) (5501 (625 .

1 1 I 1 1

50 , ,500,
I

,275

100j I 2Si t2501 62.5)

If you try several other starting vectors,

\,inie yourself that the trend mentioned abovri

regardle's of which starting vector is chosen.

Individuals in Class I produce 1 offspring

1.

In'Class II

Class III

(400 'I

312 51,

137.5j

you can probabLy

seems to

on the average,

(roughly

(again, about

(587.5 1

I

136.25j

con-

hold

+Ind'-

vidua1-.111,12ss II produce 3 offspring on the average. Of the

individuals in Class I, one-fourth can be exmcted- to suxvil.e

until the next 'Clime period

bt = 3/4 = (.-1)1/4), so the eigcm.alues are 5.,

and

r61
1 = 1 and

11J t-1

1

are corresponding eigernectors

c. 1,
k approaches

(6 21(1 01(6
! 11

-1(
1

i0 0j 11

21 -11=
-11

(3/4

11/8

1/21

1/1)

d. The percents are determined by v1. b/7 or about 85 7% will he in

class I, 1/7 or about 14 3, will be in Class II

(al
c. If ) is the initial age distribution vector, xk is approxi-

lbj

)111',

mately

a

ti

22
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3L2 a

(1.5)1/8
1/4 b

6'
1 1

= (1.5)
k
(--a + Tb41,

Each time k increases by 1, every entry in the age distribution

vector is multiplied approximately by 1.5, so the population

grows by 50%.

3a. -a2 -a3

-b
1

X 0

0 -b
2

X

= - a X bla2 X - blb2a3 = 0.

There is one variation in sign (remember that all the al's and

bi's are nonnegative). It follows fr.om Descartes' rule of signs

that there is exactly one positive root. You can show by induc-

tion that the characteristic polynomial fpy the n x n matrix is

an - a
1

Xn-/'-b
1
a
9
Xn-2-b

1 2 .)

b_a_An-3...-b
1
b
2 ...b n-lan

Descartes' vile of signs again implies that the

C

e is one positive

\root.
b. y = bix/Ai (note tht X1 is nonzero); z = = bib2x/A, .

2

If we set x = 1, we see that

64.
b b /X2

1 2 1,

1.

b
1
/A

1

Is a positive eigenvectOr corresponding to Xi. Substituting

these compOriell t into the equation aix + a2y +a3z = Aix, we have

al + a2b1/X1 + a3b1b2/X1 = XI. This j.s equivalent to

3 2
Al - a1X1 b1a2X1 bib2a3 = 0, which is just the result of

substituting Al into the characteristic equation

4. [80

5

160];

' 640

The distribution vectors alternate between ones wittratio 16:1

. and those with ratio 1 1. Every two periods the total population

size grows by a factor of 4. The eigenvalues are 2 and -2, with

corresponding eigenvectors

) 1
Afts,

23



thus,

[411

and
1

-4' '1 0 '4 -4

A
k
/2

k
=

1 '1, 0 (-1)
k
) 1 1,

-1

Here (A
2
/A

1
) = (-1)

k
, which does not tend to zerel but rather.

produces the oscillating effect.

5. det(XI - AT) = det(AIT -AT) .= det((AI - A)T) = det(AI - A). An

example: for the matrix

A =

'0 8
11 0

an eigenvector corresponding to eigenvalue 2 is

.i41)

4
C

You can easily check that thi,s vector is not an eigenvector of A
T

.

6. '1'

2

2

is an eigenvector of A
T

corresponding to AI.

The limiting matrix is vidI /ulvl
10

4 8 8

2 4 4

1 2 2

7a. Eigenvalu es are 2 and -1.

(b.An eigenfector of A corresponding to 2 is 6 . '

1
o

c. An eigenvector of A
T

corresponding to 2 is
[1 31.

m.
d. The limiting matrix for A

k k T T
/A, is vlui/uivi = g'11

e. x
k
behaves like a multiple of f6 J. Each time k increases by 1,

1

the entries in the age distribution vector are multiplied by ,

approximately 2.

8a. Eigenvalues are 1/2, 4(-1 1),

24



d -

b. An eigenvector of A corresponding,to 1/2 is 2

,1

ri,
c. An eigemector of A

T
corresponding to 3 is 1

(.4 .4 .4'

d
1

The limiting matrix for Ak /AT .4is .4S.4

L2 .2 .2)
\ t

21

e. x
k
behaves like a multiple of 2 . The entries in the age dis-

0)

tribution vector are multiplied by approximately 11 each time k

increases by 1. The population will eventually die out (prac-

tically, if not mathematically).

9. For large k, A
k

is approximately a scalar multiple of v
1
u 1T

But

in the matrix viu,
T

the columns are all multiples bf vl and the

rows are multiples of ul.. Hence, any column of A64 isdan approxi-
.

Trianon to a right eigenvector of A and any row of A
64

is an

approximation to a left eigenvector of A. Each time k increases'

by 1, the entries of A
k

are multiplied by approximately A1.

Therefore, to find AI we can take any entry of A
k+1

(e.g'., the

program of Appendix,A could easily be modified to compute A
65

) and

divide by the corresponding entry of Ak

Af ' ) rv L;

(A A in our program).

41
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APPENDIX A

Here is a BASIC prograt which computes powers of a

matrix A. A sample run is also

LIST
POWERS
5 DIM A(10.10)
10 INPUT N

1'541411,1AT INPUT A(N,N),
20 PRINT
25 PRINT "MATRIX A"
30 PRINT
35 MAT PRINT A;
40 FOR I =el TO 6
4,p MAT B = A*A
50 PRINT " MATRLX 1Z**I
55 PRINT
60 MAT 'PRINT 8;
65 MAT A = B.
70 NEXT I

75 END

READY

RUN
POWERS
? 3

? 0,1,2,.5,0.0,0..5,0

MATRIX A

O 1 2

,5 0 D

O .5 0

CATRIX A 2

.5 1. o

O .5 1

.25 0

MATRIX A 4

.25 1 1

:25 .25 .5

..125 .25 0

4

O

t.

26



MATRIX A 8

.4375 .75 .75

.1875 .4375 .375

.09375 . .1875 .25

MATRIX A 16

.402344 .796875 .796875

.199219 .402344, .398438

.996094E-1 .199219 .203125

MATR1I A 32

.400009 .799988 .799988

.199997 .400009 .399994

e

s.

.199985E-1

MATRIX A 64

.199997 .200012

.4 ...8 .8

.2 .4 .4

;"s

1 .2 .2

READY

Ai

27
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APPENDIX B

he will look once more at powers of a Leslie matrix A

and show hos, the limiting behavior can be described using

' left and right eigervecto-rs. he wtrl continue to make

those assumptions about A which are stated in Section 3.4.

As before, let u
I
be a positive eigenvector of A

T
corres-

. ponding to the dominant eigenvalue AI, i.e., ATu1 = Alui;

alsc, let vi be a positive eigenvector of A corresponding

to u.e., Av1 = 1v. Let P be the square matrix whose

columns are made up of the eigenvectors of A, with vi

being the first column,' i.e.,

P = :v
,5 :vni1 2

)

'1' 0 ,.. 0,

nos, ... 0, = P
-1 1(

P = P
1v1

:v
2

:

nj

1

SO P
-1

v
1

=

Also since P 1AP =
A
nj

and since a diagonal matrix is its own transpose,

wA
1

P 1AP = (P
1
AP)

T
= P

T
A
T
(P

1

)

T
=

I.
n

We will assume, as before, that A is diagonalizabl.e, the final
result is true without this assumption.

zt
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r

This means that (P
-1

)
1

= where the ui are

eigenectors of A T
. u

1
need not be the same as U
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Putting 18-1) and (B-2) together, we have
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Thus we have
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As ;.e see that Ak/r/i approaches v
1
u

1
/u

1
v

1
which is ;.hat

we ;.anted to see.
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