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1. INTRODUCTION
:k

Integral transforms and orthogonal funCtions provide
the basis for widely used techniques in solving a large
number'of physical and engineering problems. in this. ,

unit We present a method which facilitates the finding

(2Pf " wt
11 4 it) i i--

, 1 rit,in --- it.
r, .p

Ihe L.:place transform of a 0 (t)

(3) Lif(t)) = r'e St frtldt.

,

Note that ft) need e 6efine only or t - 0, howeverof\the Laplace transform the Fourierotransiorm, and . h d

throughout this unit we shall regardrf(t) as beingthe burier series when th,p given function is preceu.46e
,

1- ,
identically zero for t <,0 when we are finding the .Laplace

continuous (as areltmost functions that are ent:.ounteid
..

transform. The Paurier transform of f(t) is-givenby
.

in practice). ,

The transforms and the series expansions that 'can)
be obtained by the method presented here may be obtained
by various other techniques that'are frequently used.
Normally the two transforms and the series expansion are.
presented as three separate (but related)' topics, and

the techniques for handling piece174ise continuous functions
include integration, use of tables, and mAnitulation with
unit step functions. The unified r'ethod has Ihe following

desirable characteristics:

' it avoids the use of tables;

it avoids almost all integration;

unit step'functions are unnecessary; -

the method is quick;

--it provides a single, unified approach to
all three problems;

it employs graphical techniques.

2.`THE METHOD EXPLAINED

We-, by recalling thebaSic definitions of the
.

transforms and the series in question. The Fourier series
6

expansion of'a function f(t) of period 2p,is given by -

a
o

.:' .
° .rint notf(t) - 7?. .+ sl an cos --- + 1 b

n
silt

n=1 P n=1 P
,

.

(1)

where
1

(4) F{f(t); = t e f(t)dt.

There are, of course,'basic questions that arise

concerning condit1ons under which the series (1) and
the improper intergrals in (3) and (4) exist. There
is also the question elf whether the series in (I) actually
represents f(t) and if so, in what sense.- AngWers to
these questions can be found in textbooks on engineering
mathematics and applied _ advanced calculus, and we shall

4 limit our study to functions for which appropriate
conditions are satisfrect.

ThIsimiliarity between expressions (3) and 44) is. .

apparent: In addition, the integrals for an and bn in
(2) also resemble (3) and (4). In order to connect (2)

', with (3) and (4), we define the coefficient transform 1

.
t

=
f2p c-inTrt/p

\
(5) C t NO) f(t)dt. ..

Jo

Th6structural-similarity of (3), (4), and (5) is

apparent and the connection with (2) can be seen from the
0.Euler formula e = cos° + i sine. The coefficient trans-

form may 15regarded as arising from the.complex form oF
(1),twhich is

(6) f(t) C ein7t/P
" %2



where

1p
05 .c

n 2
= 1

p f(t)e-in7t/Pdt.. . ,

o

f"
Formulas

.

for
0
and

.

C may be obtained from (6) 1)4*n ,

k , sbbstituting n = 0 or by replacing n ;..ith--n. Expres-
sions (1) 'drid (5) may each be obtained from the othei

Expres-
sions

'.- via the relationships
es,

(8)
C a 1

(a''i-a C = .7 +lbn
= (

n
i
b
n

) C
o 2 0 -n . n n

)

; . .

4'
a = 2t

o
a
nv. C n n

+C bn = i(Cn-C.n)

4
(The Euler formula, of course, provides the basis for (8).

Suppose now that f(t) is a piecewise continuous
function. Figures 1 3 we show functions of this
type that are appropriate tor the three transforms in
question. he graphs also show the information needed
to apply theollfied method, namely:

the.;location of the discontinuities of f(t).
(indicated by ai);

the "jump" in f(t) at a discontinuity

(indicated by Mi);

the direction of the jump (indicated by an
arrow up or down).

f(t)

ftil,

tAo
0 a0 =0 a

1
tat

2

I p2

O

INA

t Mm-1

I

lam_

,

a
m
=2P

/7-74

t

Figure 1 One,per'iod of a 2p-periodic function f(t); this illustration
is appropriate for the Fourier series expa6sion.

3

I

f(t) f

2

140

0

a
.

all

lim

a
2

m

m

a
m,

Figure /. An illustration that is appropriate for thetiaplace
transform. Note that f(t) = 0 for t< 0; however, f(t)
need not be discontinuous at 0 in general.

c

f(t)

Figure 3. Illustration of f(t) appropriate for the,Fourier transform.

UndertheconventionsthatM.will. be positive if
the jump at ai is up and negative if the jump is down,
we have the _following unified formulas:

-irnak/p
C(f(t))

=
7T

/ Mk e + AF c{i"(0)/ 1(=-0

M
L {f(t)} =

s

mt. e-aks
k..=0

(

+
1

1.,(P-(t))

4
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Al -gaat
_1 r(11) F(f(t)) = M

k
e. + -3. lif"(t)1.la k=0

- 1
Apply fprmula (10) to f(t), f'(t), f"(t):

1..(f.(t) 1 7
s

(-e-25 + e-44) + 1.(fe
Formulas (9), (19 4-i- (dl) may nou he used `iteratively *

4 1 Le-ZS
+

1 R. (.4e_2s e-4s
ito

to find C {f'(t)}, I.{fy(t)}, Fif"(0), and so forth. with .? k
s ',Ls '

a _little practice the iterative proce!s.6ecomes:-ery
(*)

=..).. (.,,e-2!, e-4s) ,... 1 (4e-2s + e4s)
s t

2
quick, and graphical_.techniques make it easy_to_imple-

or -.
_ s

s

7
,we shallsee next. . t .

1(, 2s)-
meat the algorithm for many elpmentary functions, as

1

'

-1

.
.,

2 , -2s .1 i'' 4 2 '4i 1 1
We note that Formulas -0) .- (11) can be obtained (._ ....-.L.),.. e (_ . __).= _ 4., e

. 3 ' S 2 S 2,S S3' . s
by elementary methods. A derivation is. i:arried,out in

t. ..

detail for the'coefficient transform in the appendix.
.

X
,

i
At first, this method seems to offer llttld, if any,-s . .

ad(7antage.over a direct integration or the use, of unit
step functions. Howeverr, the calculation which we carried
out in' detail above can be vastly shortened' -- we nded-

.
., .

, .

only observe,'as can be- seen from'EqUation, (*), that-the.
th stk power of Vs:mui,tipliet rhe jumps in the (k-1)

11/4

. .
.

..,'derivative', each 'weighted with the apppopi:J:ate exponv.tncc
,

.
function. 'Therefore, merely by keeping.trael. graphically
of the magnitude,

4

direCtion, arf lotion so)1',the jumps
a,'for each derivative, we may wprite down the transform in-'

c ,
3. THNMETHOU IN ACTION

a 3.1 Exampl' 1'

To find L{f(t)) for thelfuncUon
r .

. t2, 0 < t < 2

f(t) = 3 , 2 < t < 4 ,
_ -

k 4 < t
,

k.,

'we first graph f(t) and jts-eistinct nonzere derivative\,

.

indicating all jumps (see Figure 4).

t,

4---f(t)
ti

2

.

f"(t)

>t
a
0
=2

a 1=4 / 4 t 2

Figure 4. Graphs of fOt), ft(t).fflit) for Example 1,
showing jumps at discontinuities.

10

essentially final form as soon as the sketches are drawn.
We 'use this shortened procedure in all subsequent examples,-
and ask you to do the same for the exercises.

3.2 Example 2
144

Suapose we wish to, find L(f(t)} for the function which
is defined graphitally in Figure 5. ,

' Since we.." need only the segment slopes (which ate ,kr
'obtainable from the end pqni coordinates) in order to
'graph fi(tl, we do:not even need Oplicit formulas.
(See Figure 6.) ,

.
4



k.

1 2 34 4 < 5 6

figure 5. The function fit) in ExampTe 2 consists oft
the straight line .segments shown, and is

t-I, 0< f < 2

f(t) 67t2, 2 < t <, 3

0,.. 3 < t.

f(t)
c. The function shown

Anthe diagram to

the right.

Zero for t > 4.
3.3 ExaMple 3

f'(t)
Find the coefficient transform Ct (01 for the

2
periodic function whose formula over ne period is

Figure 6, The graph of f'(t) for Example 2, showning
jumps and their locations.

From- Figures'S and 6, and using our understanding of
Formula (10), we may write immediately
.-

Lff4,01 = 7 ± 1
{-1 3e -

-s 7 -2s

;

3
e
*--4s

Exercise

Use the
a

unilied method (the abbreviated form illustrated in

2) to U.64,1.{f(t)) for the following functions: 1 ;

a. -4:

..

f(t) =

t,

2-t

0.

0

1

2

<

<

<

t < 1

t < 2

t.

g(t) =
1

t2 + 1,

0

0<
1 <

t< .1

t < 2.

Here we have 2p = 2, so p = 1. We 'proceed as in ExamOkle-

2,.graphing f(t) and its distinct nonzero derivatives
(see Figure 7).

f(t)

t

f (t)

2

1 2

f"(t)

2

f'2

-t

a

'Figure 7. Graphs of f(t),' f'(t), And f"(t) for Example 3.

Using the data recorded in'Figure 7,-and applying Formula
(9), w.e mpy write ddwn immediately:

.

t

8



a

Ca(t)) = --- 11 - , -111'1 + 1 ( , -1,-1 a0 .

I
= Co = 2/3,in7 ( -e

) ^ I

.

n .

a = C C+ =
_21:1)

for n#0,

.
.

-

1
, e -in+) 13 n n

11;'.7"..: j4-

113n3

2(_1,n1 1
' 'nn

1
+ e in, ( 2

in-
lin- .1 irr7

tin-)

Since e = cosnl : (-1)n, i.e ma) 5impliC):

+ (.1) n 2(-1)
n+1

n27.n7
'n3n: a373

the louder serie:S expansion is

C{f(t)} =
n7 377,3

\

'4, )n
nC

n:1 2 n

1
,,

3 f(t) = -;.-" + i anifs n7t + i b
11
sin n7t ,

R
, n=1 n=1

(This result holds, of course, for W.)

3.4 Example 4,
;.. .

Find th(1,real form of the Fourier-series expansion
for.the funcVio6 iCIT'from Example 3. Since

, .

Cn = cff(t-)( Isee (5) and (7)),

and since p = 1 (see Example 3), he hal,e for this example

Thus,

C
n

1 r= C(f(t.
A

iC
n

=- 1
2n7

+ + (-1)n [1 +

n
3
1

3 n7
n 2

"f;

2
i137t31,

fr.om which

". Trrrr
n3 Tr 3

(aon
I

n7
n272 ,n373J

In, addition,

- Co = 1 11 (t2, + 1).it = 2/3.

From (8) we ,hate

9

_

%.11h an,,bn as given above.

a..

3.5 Example 5
V

Fine the half range sine expansion for-JO-the function

f(t) = t2 2t, W< t < T.
o

he first-make an Odd extension of f(t) to include the
interval -1 c t < 0. Since hp need only information
on the jumps, the extension may be carried Out graphically-
pith no formulas necessary. We save additional effort
by noting that the derivative of an odd function is even
and the derivattve of an even function is odd. $,ee

Figure 8.

Applying lormufa with the information.disp
in Figure 8, and noting,that for the extended function
2p = 2 sly that p 1, we obtain

1

n 3 n

C{f M} = [einn +e-inll +
1

2eir +inn
(inlf)3

e in7 1

inn
(inn) 3 ]

2 4
+ e 1 2

inn
(inv)1

1

= (-1)
n 2i 41 4i

nu
T13713 n 3

7 3 10

t)It-
-A,



f(t),1(ext,drided)

0

,
ri

ti:
,1

f'(t) (no jumps) .,f"(t)

1

11,1,2

-1 4

t
1

32:

FigZire 8. The graph of f(t) extended to form an ddd function, and
the graphs of'f!(t) and P.1(t)

Then we have for theFourier coefficients

ark('

1 I
C
n 2p

= C(f(t)} = C(f(t))

4

= (-1)n 1-.1i1F

C
n

= (-1)n
. - i-nr

Ordn3r3

2i 2i
+,

21 1 A, 2i

an
j

nave

Irt t,helialf ranlie sine expansion a .= 0 for all "n, and

we have

CO

f(t) =0 b sin not ,
n=1. 'n

where

= = + 4
bn i(Cn-C.n) _1_7](-1)14

n r

or 4.

=
2 es.

b
n

_1)11 _fl
n3r3

A. 3

Exercise 2

Find the complex Fourier series xpansion FO.r the following

periodic functions, Where the'definition over one period is given

by: 0

a.

f(t)

1

2, 0 <,t < 3.

-2, 3 < t < 6.

7 t, 0 < t < 2

f(t) =I
2 -Zt. 2 f- t < 4.

Exercise 3

Find the half range sine series expansion-for the function

f(t) = 7 t, o < t < 5.

3.6 Example 6

Eind the Fourier transform of th,9 function

f(t) = t.2,\ . Itl <1

Itf

J
The process' is the same as before: sketch the function

and'its distinct nonzero derivatives, recording the

relevant data on all jumps, (see Figure 9).

f(t),(no jumps) -
f' f' (t)

2 7

1

-2

Figure 9. The graphs of f(t), f'(t), and f"(t) for Exafiple 6, with
information on jumps.

1 1
i

12



O

Applying Fo-rmula (11) and the formation disp1aed in

Figure 9, we obtain

F {f(t)} = l [2e1I + 2e-31
oco2 (la):

1 r IA , -1tA)
e + e

(

2 la -114 2 ( la- -iaI ).
- e

3
VA

2
a

4 cos a 4 sin u_

-ce2 a3

Exercise 4

For the following functions f(t) find the Fourier transform

Fff(t)):

a. < 2
f(t) =1 1, ItI

0, > 2.

b. % 1 + t , -1 < t < 0

f(t) = 1-t, 0 < t < 1

0, Itl>1.

3'.7 Example 7

Find the Fourier cosine transform of the function
f(t) = e-mt. We first note that by definition the- Fourier

t

cosine transform of the given function is .

re-mt
-iat

e
-mt

dt = R Flf(t)}cos at dt = R
o

e

where f(t) in the latter expression is redefined as
.

e-mt, t> 0
f(t)

0, t < 0,

and R denotes'the real part of the,transform. (See
Figure 10.)

t 13

.
1

c.)
Q

f(t)

Figure 10. Graph of the redefined ft) for Example 7.

Since f'(f) = -mfCt), we have by Formula (11)

T{f(t)} = 1 +1
a f(t)}.

Therefore

+ i)f(t)) = 1,

,. from which

F{f(t)} 1

111+ is

and the cosine transform is

Co {f(t)) M .

3.8 Exam"ble'8

m - ia

m2
+

2

As a final example we expand the °function

f(t) 0 < t < 27T_

is

in-a half range sine series., The graphs of the odd

extension oy(t) and its first derAX.-ive are Own,
in Figure 11'.

14

4



V

kb

f(t) odd function

o

f'(t) (no jumps)
and

even function

Figtire 11. Graphs of the odd extension of f(t) and its first derivative.

In this example, 2p'= 4r, p = 2r, hence

Since f"(t) = -f(t), we have by Formula (9)
2 = 2inr In

c{f(0} .14,/pin7+2.einr), 2

/

Therefore,

C{(1
n

-4')f(t)} = (-1)/1 - 4
n 'n2

from which

C{f(0)

..

"1

iSiitce 2p

=.

\

=

8ni

n2-41

0,

417;
. .

we have

so that

for n odd

C
n

n

60 .

n odd

n even

15

b
n

= IrC
n

-,C
-n .

(n2 - 4)r

4n

f(t) =

n=1,3,5..

4n nt
sin

(n2 4)7

Examples 7 and 8 illustrate that it is spot necessary

that f(t) have some derivative which vanishes in order

to..afply the unified method -- it is possible.to use

this method also when there is an,algebraic relationship
;etOen'f(t) and its first ftw derivatives. This fact
wi1,1 be useful in me of the following exercises.

The next exercises 11 conclude the application

portion Of this unit. For t use who wish to learn how

the unified method can be deFive4 we carry out the

derivation in-the Appendix for the coefficient transform.

Derivation of Formulas (9) and (11 can be catriedout
'in a similar way.

Exercise 5 .

°

Use the unifiecime$hod to find the Laplace 4f;transform of
f(t),. e;2t A

Exercise

.1k
Find the Laplace transforw of the

periodic square wave shown to the right.
1

This problem will require an extension of

the unified method to alOse where the

number of jumps discontinuities in f(t) -1

is countably infinite.

f(t)

-1. :

I I
. 11 2 43 .14 1,5 .6111 t

' I I

16



1 a.

. V

C.

lk ANShERS TO EXERCISES

-s' -2s

5
2

52 52

l e-2s [1 5 2) e-3s 13 6 21'.

S2
S

52 *53j. (S
52 53)

5. 10DEL TAN

..

Find the following transforms an series expansions rising the

.

\
unified method.

1. Find the Laplace transform L {f(t)} for the functions:

1 - e,5 2e
-25

e
-35

a. t2, < < 1

f(t)"=
5

5
2

52 5'

.[ 1, 1 < t.

CO

2. a. f(t) C
n

e
innt/3

, where
n=-0.

Cn = -T-127 [1 (-1)11] for n#0, C0=0..

.
b. f(t) = 1 C

n

innt/2
, where

n= -m .

AI t =

411

n [YIN -(-1-)n]
n

2
ir 2

for n#0
i
Ca= 4.

b. f(t) = cos t .

2. Find the Fourienrtransform F(f(t)1 for the functions:

a. 4-t2, Iti < 2
f(t) =

0,

t-210,
all t.

3. .Find tkz)half range sine series for function3. f(ty b
n

sin
rmt

nn
, where b

n
= (-1)"1 5

-
-

n =1
f(t) = 1 - Tt, 0 < t < 1

4. a.
2 sin 2a

a

b. 27 (1 - cosa)
a' -

=

,5. Lfe
-2t

I = I Li-2e -2t ), from which 1.(e -2t ) =
1

5 5 5+2

6. L{f(01 = 1
fl - 2e-5 + 2e

-2s
- 2e

-35
+- ,..]

1 [1 - 2
-e.-s

l+e:s JJ

tank .

S
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6. ANSWERS TO MODEL EXAM

1 - 2e-s +.
S3

52 3
S )

1 1 1

b. Ltros t) =
s

+
s s

( Li-cos 6), from which .

L{cos

7. APPFNDIX: THC/MEl'HOD DERIVED

In this section we carry out the derivation of lormula

(9). The Lormal prOof for a function with a finite number

of jump discontinuities requires an induction argument,

but the 14a can he seen by concidering NI function f(t).

s with jumps only at t=0, t=2p and one intermediate point

s2+1
.

.
t=a (see figure.A1). Thus we take f(t) of. the form

s

/
fl(t)6, 0<t<a c

4 8 ' f(t) =
L

2. a. -- sin 2a - -- cos 2a-
- a3

cos
a, < t < 2p.

a

b.
Fle-21t1) =4 I Foie-21111,

from which
(ia)2 (ia)2

F{4e-21t1}1=

3. f(t) = bn sin nrt, where
n=1''

b
n

= (2 +
k

a

f(t)

Imo

f

vf

*

f (t)
2

A
1

o - 2

1

2P
t

Figure Al. Graph of f(t).with ong intetmediate
\ ,discontinuity.' .= ,1

By thq definition of CUM), (see Formula

.we have a

4

Cff(t)J =
ja ,e-inrt/p

fl(t)dt +
ifipe-iiirt/

0

Pf
2
(t)clt. .---.

_ --a_

A .-'5,-

We integrate b' parts, with .t.=f1(t), f2ft) and

dv = e----inTrt./P, so_that-411=fiqt)dt f 'Mdtiand
, 1

'0 p -inrt/p
-inn e Thus
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C(f(t)) =
1-12i7

[ f 1
(t)e-1"t/P r i_f,(tat-in7t/p 217

rja'e:Innt/
,.inn

Lion

a
!(t)dt+r11"e-1/Pf.,'(t)dt

Collecting terms we find'

C(f(t)) = {f
1 2
(0) + [f (a+) f

1
(a-)] e-innalP

2 -P)iinn

(AI)

p 12p '-ihnt
inn Jo e f'(t)dt,

since einTrt/P=1 for t=Zp. /et 4
0'

M
a'

M,
p denote the

"jumps" in'f(t) as shown in Figure Al; moreover we assume
that the value is positiV,e when the lump l.'s up and

negative when down.' (Thus,'for4the function pictured in

,Figure,A1, Me0 Ma>0, 12p<0) We ivy therefore write
the expression -(Al)

A i
(A2)'Clf(t))=

nn {,M 4'M
a
e-iira7P + M

2p i,E Clft(t)).,
fps

nn
,

he first terM'in (A2) is more systematic that it appears,
.

since rt.can'be-wYitten gs
.

4 innO/p -inna/p,
M -inn2p/p0e- q + mae
2p

e

Thus, in actuality, each signed jump is multiplied by. the
exponential e -innt/p evaluated at the valua of t where
the jump is 'made, and the resulting products are summed.
Finally, as may be verified by an easy induction argument,
when. a0=0, An1=2p, and the function f-(t) has m-1 jump
discontinUities inqbetween -at al, am we, have

21

414

1

-C{f(t)} = iE dike ' E c{i1(0),nn inn
k=0

. .

where Mk is the signed jump at ak.

4

r) t"1
1
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STUDENT FORM 1

Request for Help

Return to:
EDC/UMAP
55 Chapel St.
Newtqn, MA 02160

°Student: If you have trouble with a specific part of this unit, please fill
out this form and take it to your instructor for assistance. The information
you give will help the author to revise the unit.

Your Name

Page

up

()Middle

. 0 Lower

. OR

/-
Section

Paragraph

Description of Difficulty; (Please be specific)

4

OR

Unit No.

Model Exam
Problem No.

Text
Problem No.

Instructor: Please indicate your resolution of the difficulty in this box.

0 Corrected errors in materials. List corrections here:

0 Gave student better explanation, example, or procedure than in unit.,
Give brief outline of your addition here:

-
,

(2)Assisted student in acquiring general learning and problem-solving
skills (not using examples from this unit.) '

9

Instructor's Signature

se use reverse if necessary.



Return:tor -

STUDENT FORM 2 EDC /.UMAP

Unit Questionnaire 55 Chapel St.
Newton, MA 02160

Name. 'Unit No. Date

Institution Course No.

Check the choice for each quiestion that comes closestto your personal opinion.

1. How useful was the amount of detail in 'h'e unit?

Not enough detail toT understand. the unit
Unit would have-been clearer with more detail
Appropriate amount of. detail

Unit was occasionally too detailed, but this was not distracting
TOo much detail; I was often distracted

2. How helpful were the problem answers?

Sample solutions were too brief; I could not'do the intermedi4e steps
Sufficient information was given to solve the problems. '

Sample solutions were too detailed; I didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor) friends, or other books) in order to understand the unit?

A LOt & Somewhat. A Little ' Not at all

4. How long was this unit'in comparison to the amount of time you generally spend on
a lesson (lecture.and hoinework assignmentS in a typical math or science course?

Much Somewhat, About.; Somewhat Much
Longer Longer , Ihe_Same Shorter Shorter.

5. Were any of the following parts of'the unit confusing or distracting? (Check
as many as apply.)

Prerequisites
Statement.-of skills and concepts (objectives)
Paragraph headings
Examples .%

Special Assistance Supplement (if present)
Other, please explain

6. Were any of the following parts of the unit particularly helpful? (Check as many
as apply.)

Prerequisites
Statement of skills and concepts (objectives)
Examples
Problems
Paragraph headiAgS
Table of Contents
Special Assistance Supplement (if present)
Other, please explain

Please describe anything in the unit that yo* did not particularly like.

Please describe anything that you found particularly helpful. (Pleaseuse the back of

this Sheet if you need more space.)
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1 IMItgglc-x4-0-ix

in :Unit. 3--.N=AtE.

Four ier The:::tyr&kOit-:.-illi--ita -Sequel is

Ufiit 324, and _we shakl fTeit4---aariover the notation
and_ terminology USed,thefe.; -111-:-ITarficUta?-, are___

concerned primarily With. he art L(f4t)-)y-

it does -offer most of the same a-dvantays 11-Sted iii
--- tiit 324 for the unified (forward) method.

F{f(t)}, in4.1C(f(t)}.
- -

. Some apli--L-ieaP.rohlems,require-ohly.the-us-gr=oS

the forWard'transfIlirmsc. --...nilar.p-rdbfre-Ii-r=the

calculation of the 'transform represents_ passage-fiM

time domain to iie_freque;6.1.0.04i4-3'il:idilIfor.-

mat ion obtained by -stUdv0g..frequ-enEV-reiSted

properties is ail-that is required-,-Other-problems

(such -as solution of di Nrential equations by_-:
,

transform techniques), however, require determination

of inverse transfofms; that,is, recovery of f(t)

from L( (t)} or from F(f(t)).

In this unit we build-upon the ideas presented

in Unit 324 to attack the problem of dinding_a function
from its givin transform or series expansion. .Given

a transform L{f(t)}, F {f(t)} or C{f.M} we attempt

to reconstruct first the derivatives off(t), and

finally f(44..ielf, by reversing the process used
to find the foAard transform. Since the forward

process is based on integration by parts, the method

is generally applicable. Hence the inverse methods

presented here are also generally applicable --

theoretically!! The problem, is primarily that in

finding a forward transform we.may cancel terms

which, if present, would prov"ide clues to the nature
of the derivative. For this reason, the inverse

process does require patience and practice; nevertheless

14)1

"41
2. -.INVERSE LAPCAtE TRANSFORMS

Ilie--process, v1-t11- he-developed-by examples.,

-it is-assumed that:-iteue fa&ailar-with the unified
Jmc "t hod prieneed-in Unit .324

Example I

',Suppose we wish-to find
-.:

L{f(t)7 = e-3s

-We first note thA the right

in slightly more revealing form as

f(t)'

e
-4sS

side can be

-
10 3s 1 -4s

. 2( e 2C) e

The factor
1

in

written

r

each term indicates a. jump in the

function f(t), the multipliers 2-and .-2 shoes the

magnitude and the direction of each jump and, finally,

the factors e -3s
and e -4s

show that the jumps'occur
at t ='3 and t = 4. Therefore the function must be
given by

f(t) 10,

(See Figure 1.

3 < t < 4

elsewhere.

--r

Figure 1.. The graph' of f(t) for Example 1.
r)r",
(J.;

(-2



. .Example 2- X
. e there can be no jump in f(t) or any of its derivatives

Find f(t), if
. at the origin, so C1 = O. The terip 2(1/42)ess; N

reveals a jump of t2 in f'(t),at t=1 and since C1 = 0,L{fAlo} = e-siL+ _L+ a] + e-21___2_ .....5._ _ 1 4.e
-4s

. s' s2 s
.i

s' s
2 S

S
2

.

° we must have

, i
2 = f'(1) = 2 + C2,The exponentialsqes s, e-2s,

and es's tell us to ,look
l'....,for jumps at t = 1, 2, and 4, *so we must, watch these

positions. However, we begin construction of the

function with the terms 2(1/3)ess and -2(2/s3,)e-25,

which indicate jumps. of 42 at t=1 and +2'at t=2 in
the second derivative. 'Hence, we have

2, 1 I< t < 2

f" (t)
0, elsewhere

as shown in Figure 2.

from which C
2

= O. Next, the term -5(1/s2)es2s

shows a Jump of +5 at t=2. But f'(t) = 2t to the
.left of t=2,sand f'(t) = C3 to the fight of t=2.

Hence at t=2 we jump 5 units from_4 down to C3, so
that C

3
= -1. Finally, the term 1(1/s2) e45

consistent with the value C3 =-1, since it shows a
unit jump back to the t-axis 'at t=4. Therefore

2t, 1 ,< ,t < 2

" (t) = -1, 2 ,< t < 4

0, elsewhereAju(t)

3- (Figure 3).

2- A fl(t)

1
t2: :12

1 ' '
1 t

3

44

1 2 3 4 2 - /.........-.-.-_1.1.-....0.- .,

/7
1
IFigure 2. Graph of f" (t) for Example 2. "" I -
1

2

1

By integrating f"(t) we obtain the following expression:

Cl, 0 < t < 1

f' (t) = 2t + C2, 1 < t < 2

C
3

2 < t

where C1,
2

C'
'

C
3 are constants, to be determined.

Now the detective story begins! We must look to
1,(f(t))*to evaluate these constants. Since there is
no term of the form

1 1 -OsE - e

s a) rN
vu 3

5

-1-
Figure 3. Graph of f' (t) for Example 3.

While the above explanation of how to find f'(t)

may seem complicated, in actuality by observing the

transform carefully and proceeding from left to right,

we can (after 'a little practice) sketch f'(t) section
by section rather quickly. We illustrate by obtaining
f(t) from f'(t) graphically. The result. is (See Figure 4):

4



.

t2 + 1, 1 t< 2\
f(t) = 4v.-1 + 4, 2 < t < 4

10, elsewhere.

3

1

t21
'

11 t

1, 2 3 4

Figure 4. traph'of f(t) for Example 3.

The result wasobteined section by section,.as follows
Firs,t, we have previously observed that f(t) = 0 for
0 < t < 1. Then, from the graph of f'(t) we obtain

= t41'+ bl for 1 < t < 2, but the term 21(1/s)e-s

indicates a jump of +2 at t=1. Hence, 2 = f(1 +) = 1+ hit

so that bl = 1, and f(t) = t2 4J1. N9w for 2 < t < 4;
the graph of f'(t) yields f(t) + b2c, and the term
-3(1/s)e-2 yields a jump of 43 at t=1":". Since

f(2-)= 5 (from t2 + 1), and f(2+) = -2 + b2, we
have3'= - (-2 4- b2), from which b2,=. 4 and

f(t) = -t + 4,for 2 < -t < 4. Since there is no jump
in f(t) at t=4 we have f(t) = 0 fOrt> 4.

"Exercise 1

, For each of the following, find f(t) from the given

exp'ression for L{f(t)};

al.
1

e
-s

b)
2

e
-s

-
1

e
-3s

7n

zt

5

2 -2s ( 1 41

It
2s' ')

c) 7 + e

e-2s ( _ 3 5 2_

S
+e -6s 12 1 ) 2

S s- 4

3. INVERSE FOURIhR TRANSFORMS

We illustrate the procedure for finding the inverse

Fourier transform by an example. Again, a familiarity

with the forward transform from Unit 324 is assumed.

Example 3

Suppose we wish-to find f(t), if

'F{f(t)} = (-1 + co,s a) + 2 sin a .

a 2

*begin by,converting F{f(t)} to exponential form
so that we can identify the location, magnitude and
direction of all jumps. Hence we have

F{f(t)} =

a

1 ( ia ia ) 2 ( lia]
+1 *-- e

ia
- e

, la2

We now recall that information on jumps for the forward

transform is recorded in terms of powers pf.lYia; hence
we must make a further adjustment toobtain

=
+ 2

ttt

F{f(t)}
(ia)2 la

(ia)2

1
a + ela(- 1

(ia)2 ia

The terms

.

1 is 2 1 -iae e(ia)2 (ia)2 (ia)2

indicate jumps of 41 at t = -1,+2 at t = 0, and 41.
.

6



.

aft = 1. Hence me may now sketch the graph of f'(t)
(Figure 5). Then working'from left to right as'before,

41 t__

-1

f'(t)

-1

44. t

Figure 5. Graph df f'(t) for Example '3.

...

we find first that f(t) = -t + Cl; .1 < t < 0. But
the term ,e shows a jump of +1 it f(t) at t = -1;
hence f (-1+) = 1 t Cl, from which C1 = 0; For 0,< t< 1,

1fet).=t + C2; but,theterm ia
shows a jump ofla

11 in f(t) at t = 1, and in addition, no jump in f(t)
is indicated lit = D. Therefore, C2,.= 0; hence we
obtain

f(t) =

(See Figure 6.)

1 t* 1, it 1 < 1

0,1 Itl > 1.

f(t)

1

t

Figure 6. Graph of f(t) for Example 3.

4

4

Exercise 2

For each of the following, firkl f(t) from the given expression
for F {f(t) }:

1 A

a. ( i Cos 2ra - i in 27aa 4

b.
21 (sina - sin 2a);
az

i);

a

c... (aZ s i n + 2dr cos a - 2 sin a) .

ce,3
IT

4. INVERSE COEFFICIENT TRANSFORMS

For our final examples we shall find the "inverse"
of three Fourier series,, /(hat is, the problem we solve
is the following: given a'Fourier series, find the

function to which the series converges. Those of you

who are familiar with Fourier series may well be sur-

prised to learn that this problem m y have a reasonable
solution.

The pro.blem ofrecovering a fun tion.from its

Fourier-series representation may well require con-.

siderable ingenuity; Altight and, perhaps, even some
experimentation. The reason for this is three-fold.

The first reason is .the nature of the expansion
itself -- very simple functions may yield expansions

with coefficients of considerable complexity. The-

second difficulty arises from the terms of.rthe form

in7a
k
/0

[see formula (9) of Unit 324]. The problem is that--_-/
for ak = Ap and for ak .= 2,p,' we have

-in7a kip
e = 1.

Therefore, we may not know whether the jump is at t = 0.
7

.

A 8
'

'.1 k

1



or at t = 215, or perhaps both. Similarly, if terms of The approach we use is: first find Cn, next find
the form (-1)n occur in the expan:sion, we may. have C{f(t)}, and then recover the function f(t). Since,,

either a
k
= -p or a

k
=, p, since (-1) n= cos nn = e inr

C
n

= (a ib
n
)/2 (formula (8) from Unit 324)= e

-inn
. Therefore, in this case the actual integration

,-.

in C{f(t)} would have been from t = -p to t = pY-But we have
again, we may ndt'know whether the jump at -p or

a
k.,, i 1 I 3 4nn

i sin 4n_ivi- 3 + 4i I
at p.

C
n 2 I 2 2

(cos
3

,,

,-n n
The third difficulty is related to the second. .1

14 3 l'-4nTri/3
Since the exponentials involved are equal at the end

3 4i=
points of the interval in question, it follows that if 4 n212 e 2 2n r

n 2 , 2 nn

nn ]

the corresponding coefficients are equalfin magnitude
From the general form of the Fourier expansion we obtainbut opposite in sign, then the sum of these terms will
that for this example

, .vanish! Hence, we may be looking at a situation in
)which there is actuNy a juMp present, but no indica- not

cos -F- = cos 2nnt
tion of it. It may well require some patience to P

overcome these difficulties!
from whi.Ch

Example 4
k ,ri-'/, p = 3/2.

a
Suppose we wish to find the function f(t) whose Sinde

.Fourier series expansion is
/ C{f(t)} = 2p Cn = 3C

n
,

. e - er8 3 4nr ,)

3

2nnt
.+ I [ -(cosCOS - 1 cos we have3n=1 1127.2 ,

j

9
.e
-4nir/3 9 6i

+ +
2 2

sin
4nnl 2nyt nn
3

sin ------- .

C{f(t)}
2n2n2 2n27/1,2

r 4 3

nr

We obseive immediately that

10
a0\,,.72.7 '

and for 4= 1, 2, we have

a
n

=
3 (

cos
4nn )

n2n2

b
n

4
+ 3 4nnl

sin
3

n
2 2

9

42.

Because the coefficients in the C-transform involve

powers of'2,-
inn 2inn and exponentials of the form ,

-inna
k
/p

e , we write

3 2
C{f(t)) = -2 (7-AIT)2,e 14P-' 2 +

"inn
= 4(Tild .

The first term indicates a jump of--2 in the tirst

derivative, f'(t), at t = Z. The second term isethe

bothersome one -- it could- indicate a jump of 4.2 at '

t = 0or a jump of 4.2 at t = 2p = 3, or it could be

the result of a combination ofjumps at both places.



In order to allow for the various possibilities, we

write for one period:

f'(t) =

2-a, 0 < t < 2

[ -a, 2 < t < 3.

(See Figure 7.) From the exptession for f'(t) we

Figure 7. .Graph of f'(t) for Example 4.

obtain for one period:

-f(3-). Since these jumps must combineto produce the

value -4, we have

-4 = 1(0) f(3) = b (-3a + c)

= (b c) + 3a

= -4 + 3a,

from which

a = 0.

So far we have for one period

Finally, since

we have

(2-a)t+b, 0 < t < 2
from which

2

f'(t) =
8 = [t2 + bt12 + [(b + 4)t]at + c, 2 < t < 5.

0 3

The expression for C(-f(t)} above shows no jump in

f(t) at t = 2, and therefore the left and right sections
.

of f(t) agree at t = 2. Thus,

2t + b,

f(t) =

b + 4,

2

a0 =
16

= I I
p.

f(t) dt,
0 3 p

0 < t < 2

2 < t < 3.

2
16 2

= 3- [ (2t + b) dt + j (b + 4)at 1. ,
,

..(2-a)(2) + b = (-a) (2) + c,

from which

c = b + 4.

The last term in the expression for C(f(t)} could arise

from a jump of 4,4 at t = 0 or at t = 3, or from a

combination of jumps at both ends. Now observe that

the jump at t = 0 is T(0+) and the jump at t .= 3 is

a

11

so that

= 8 + 3b,

b =

Hence the given series converges to a function of period

3 whose definition for one period is

2t,

f(t) =

4,

(See Figure 8.)

0 < t < 2

2 < t < 3.

12
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f(t)
14

magnitude 12 in f"(t), and the factor (_1)n einn

-inn= e shows tHat the jump IS at t = 1 or t = -1 or

that, perhaps, the whole term results from a combina-

tion of jumps at both ends. However, a little reflection

shows that we simply cannot have a positive jump at

just one end of the interval -1 < t < 1 or, for that

matter, any combination ofjumps at both ends with

sum total positive if, after a jump is made the function

remains constant until the next. jump.

I

1

f

2

t

3

.

Figure 8. Graph of f(t) for
Example 4.

Example 5

'Suppose we wish to find the function f(t) whose

Fourier series expansion is given by

f(t) = 1 ('-1)/141 IL- sin nnt.
n=1 3 3n n

We first note that from the'given expansion, an = 0
for n= 0, 1, 2, ..., so that f(t) is an odd function -.

In additipn, from the terms sin nnt we have p = 1,
hence.f(t) has period 2, .and we must find an expressiOn

for, f(t) over any interval of length 2; we choose
-1 < 1.

Next we find C :

. n,,

1 (-1)1141(-bi) 6(-1)nCn= y(an- ibn)
113n3 (inn) 3

Therefore,

C{f(t)) = 2pC 12(-1)n
,n.

(inn)3

In general, we must express C{f(t)} in powers of

= 1/inn.but this task is already accomplished
here, The single tem in C{f(t)) indicates a jump of

13,jr
)

The follqwing function is a possibility for f"(t)

and we take it as our starticig point:

f"(t) -6t + a, -1 < t < 1..

(See Figure 9.) If we tr)F the above function for

16+a

116 -a

0

45

Figure 9. Graph of a possible f"(t)
for Example 5.

f"4t) as a point, of departure,, they
42

fm (tI = -6, -1 < t < 1.

(This is where a bothersome point arises:. with f"'

as'abov.e, C{f(t)} would contain the expression

6
e
-inn(1)

e
-inn(-1)

+
6

(inn)" (inn)

which results from jumps of +6'at t =--1 and +6 at

t = ,However, . since
elan

e
-inn

=" (-1)
n

, the sum

X
O



reduces to zero.

made by f'"

C{f(t)).)

We ro eed from our po

the expression for f"(t) we

Because of this cancellation the jumps

t from view in the transform

nt of departure. From

obtain

f'(t) = -3t2 + of + b, -1 < t < 1 .

To evaluate the constants it helps ifwe know as much

about the nature of the function as possible. The

following argument will be very"useful.

Both the series

(.1.)np 12

n=1 n 3 n 3
sin not

and the series of its derivatives with respect to t

n+1 121 (-1) cos not
n=1 n 2 7 2

converge uniformly by the Weienstrass M-test, applied
o

with the series of constants

12 1
.11 ..21,A

V2 n=1 n3 n2 n=1 n
2

.respectively, usid for comparison. Since the sum of

a uniformly convergent series of continuous functions

is continuous, we have continuity of f(t). In addition,

since the series,fih f(t) converges and the series of

derivatives cony 4.4s uniformly, we have that

P(t)..= (-1)
n+1 12

-n=1
cos nnt,

n
2
n 2

and hence f'(t) is also continuous.
%,*

Now, there are two easy arguments we can use to

find_the constant a.in f'(t). First, since f'(t) is

'given by a cosine series, it is an even function,

15

r

and hence a = 0. An alternative argument which is also
useil in general is that by continuity and periodicity
we have

f'(-1) =

so that

-3 -a + b = -3 + a + b,

from which a = 0. Hence, either way we find

f(t) = -t3 + bt + c.

Similarly, to find c we may observe that f(t) is

an odd function, so that c.= 0. We could also argue

that since f(t) is a sine series, we must have f(0) = 0,
from which c = 0. Finally, to find b, we observe that

by the Series definition of f(t) and its continuity,

which precludes jumps from one period to the\next,

we have f(1) = 0, hence -1 + b = 0,

natively, by the continuity and they

,f(t) wathave f(-1) = f(1), so that

1 - b = -1 +4b, and b =

Thu'', for one period.

f(t) A -t3 +7t,

(See Figure 10.)

and b = 1. Alter -

periodicity of

-1 < t < 1.

Figure 10,, Graph of f(t) for
4ample 5.

16
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Example 6

Suppose we wish to.find the function f(t) whose

Fourier series expansion is given by

f(t) =
(-1)

(n 1)/2
sin nt.

n2 n=1,3,5...

We first note that nnt/p = nt, from which p = Tr,

2p = 2/. In addition, an = 0 for n =-0, 1, 2, ...,

so that f(t) is an odd function. The coefficients bn .

2

are given by

8 ( 1)(n-1)/2

n r 2

Since

we have

from which

n

0

1
C
n

= 1-(a
n

ib
n
)

'

4i
(-11

(n-1)/2

n
2
7
2

C =
11

{

C{f(0) = 2p Cn = \

n odd

n even

n odd

n ev

_8i (..1)(n-1)/2,

n2 7

0,

C {f(t)} =

8i (n-1)/2
7.(-1) n odd

0, n even

We now face, the crucial problem V finding the way .

in which the two distinct expressipns (for the odd arkd

the even coefficients) in C{f(t)} can be unified into
a single form. Your ability to make this. step requires

careful observation in working with the forward trans-

form, and with trigonometric functions in general.

Wb simply note the regira

(..1)(n-1)/2e=
sin y, n = 1, 2, 3, ..

(Check out a few valUes of n for yourself!) We therefore
have

2

C {f(t)} =
inn -- sin n = 1, 2, 3,

j Si

2

n/
,

We now convert to exponential form:

4
(C{f(t)) = [ET) 2 7 e

inn/2
e
-inn/2).

With p = n, we now obtain the coefficient transform in

n odd

n even.

the form of (99 from

C{f(t)) =

This form reveals jumps

in the first derivative

Unit 3,24:

2 ( 4
e -

4
e

-inn(-//2)// -inn(n/2)/n
n

of 44/n of -n/2 and +4// at n/2

ft(t). However, we must also

ann

Since the transform coefficients in formula (9) of '

Unit 324 are expressed in powers of p/in/, we rewrite

the preceding expression in the form

17

be alert to polible cancellation of terms, especially
at -n and n. The simplest type of-function whose

behavior agrees with what we have so far is one with

derivative of the form

5

18



1

f'(t) =

a,

4
T + a,

-n < t < -n /2 and 7/2 < t< 7 + b, -7 < -t < -7/2, i.e., 7/2 < t< 7

-Tr/2 < t < Tr/2

(See Figure 11. We note that because the period is 7,

and contributions at -7 and 7 would cancel:

ae
in7

ae
-inn

= 0.

Such cancellation does not occur at Tr/2.)

Figure 41. A possible form of f'(t)
for Example 6.

1

Proceeding from our, point of departure, we have

f (t) =

at + 13) -7 <rrt < -n/2

+ a)t
Tr

+ c, -"Tr/2 < t < Tr/2 as above.

at + d 7/2 < t < 7 .

f(-t) = -(1-+ a)t +C, -7/2 <-t < 7/2, ,i.e.,-7/2< t < 7/2
i Tr

(-at + d, 7/2 <-t < 7; i.e., -Tr< t< -7/2

'-at - b, -7 < t < -7/2

= -f(t) =
. -[

+ a)t c, -n /2 < t < 7/2

-at.- d 4/2 < t <

from which

b = -d and c = 0.

By continuity of f(t)

aan
/2

d

at

4

4.

t=

a]

7/2,

from which d = 2 and hence b = -2. From the series

definition of f(t) and continuity, f(y) = 0, hence
an + 2 = 0 and a = -2/7.

Alternatively, we could have used the series

definition of f(t) to obtain f(t) = 0, from which c = 0.

Continuity of f(t) at t = 7/2 now yields the equation

,

a7/2 + d = ( 4 + a)
, 7

from which 4 = 2. Similarly, from continuity of f(t)

at -7/2 we [obtain b = -2, The constant a is determined

To evaluate the constants, we first apply the M-test

(as in Exaffiple S),Iusing (8/n2) E 1/n2 for
n=1,3,5...

comparison to see that f(t) is continuous everywhere.

Again, we illustrate two alternative methods for

determining the constants.

First, since f(t) is an odd function, f(-t) = -f(t),

By either approach we obtain

f(t) =

2

Tr

2
77-t

--2 t
Tr

+

2,

2,

-7

-Tr/2

Tr/2

<

<

<

t

t

t

<,

<

<

-11/2

7/2

n.

(See Figure 12.)
so that

20
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-n
IT 2 ,

f(t)

2

Figure 12. Graph of f(t)for Example

Exercise 3
,, --

For each, of the following, find the function f(t) whose

Fourier series expansion is given:

a. f(t) =
4 1 nnt

. sin 2

(it may be helpful to note that cos nn

2, n odd

0, n even

(..on
and that

.n+1
b. f(t) =

1

+ 4 E 1:2j)
- cos not + (-1) sin null] .

n.1 ,2 nn

5. MODEL EXAM.1,)

1. Find f(t) if

a. L{f-(1)) =
2s2

b.

(3 e
'

2s 4e-3s + 2e-51

Lcf(tI3.=, e'31 1
1 _) e s( 2 3+ +

11
2s2 S3 52 2 S

2 1+ + + 1

# s' 's2

2. Find f(t)

F{f(t)} =

.

4 sin a
(cos a - 1) .

a

ta;

3. Find f(t)e if f(t) is ueriQdic of period 3, f(3/2) = 0
and if

3i
2nir

9
n odd

n21.2C f(t).

2nir '

3i
n even.



6. ANSWERS TO EXERCISES 7: ANSWERS TO MODEL EXAM

0, 0 < t < 1 -1, 0 < t < 21 a. f(t)

1 < t.
2 < t < 3

1. a. f(t) =

0, 0 < t < 1
s: t , 3 < t <,S

b. f(t) 1 < t < 3 0, S < .t

1, 3 -< t.

c. f(t)

0 < t < 2
2 + t + 1, 0 t < 1

2t 3, 2 < t. b. f(t) = 2, 1 < t < 3

t2 + 1, 0 < t < 2

11
t

2
3 < t.

d. f(t) -t + 4, 2 < t < 6

0 , 6 < t. t + 2, -2 < t < -1

it!, -1 < t < 1
2. f(t) =

2 - t, 1 < t < 2
-1, - 21T < t < 0

u 2 < 1.02. a. f(t)
0, elsewhere.

t + 2 2 < t < -1 -2-t +1,- t < 0

b. f(t) =
1,

2 - t,

1 < t < 1

1 < t < 2

3. f(t) =

--
3

t + 2, 0 < t < 3

0, 2 <

c. f(t) =
t

2
It' < 1

0 ILI > 1.

a. l f(t)
-1, -2 < t < 0

1, 0 < t < 2.

b, f(t) = t2 + 2t, < t < 1.

4'
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1

STUDENT FORM 1

Request for Help

Return to:

EDC/UMAP
55 Chapel St.
Newton, MA 02160

Student: If you have trouble with a specific part of this'unit: please fill
out this form and take it to your instructor for assistance..The information
you give will help the author to revise the unit.

Your Name

OR
Section

Paragraph

Description of Difficulty: (Please be specific)

OR

Unit No.

Model Exam
Problem No.

Text

Problem No.

4

Instructor: Please indicate your resolution_of the difficulty in this box.

Corrected errors in materials. List corrections here:

0 Gave student better explanation, example, or procedure than in unit.
Give brief qutline of your addition here:

(2) Assisted student in acquiring general learning and problem solving
skills (not using examples from this unit.)

Instructor's ,Signature

Please use reverse if necessary.



lb

Name

Institution

STUDENT FORM 2

Unit Questionnaire

Unit No. Date

__Course No.

'

Return to:
EDC/UMAP
55 Chapel St.
Newton, MA 02160 .

Check the choice for each question that comes closest to your personal opinion.
1. How useful was the amount of detail in the unit?

Not enough.detail to understand the unit
Unit would have been clearer with more detail
Appropriate amount of detail

--Unit was occasionally too detailed, but this was not distracting
Too much detail; I was often distracted ,

2. How helpful were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps
Sufficient information was given to solve the problems,.
Sample solutions,were too detailed;)I didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for
dxamp le, instructor, friends, or other books) in order to understand the unit?

A Lot Somewhat A Little Not all

4. How long was this unit in comparison to the amount of time you generally spend on
a lesson (lecture and homework assignment) in a typical math or science course?

Much Somewhat About Somewhat Much
Longer Longer theiSame Shorter Shorter

5. Were any of the following parts of the unit confusing or distracting? (Check
as many as apply.)

Prerequisites

Statement of skills and concepts (objectives)
Paragraph headings
Examples

Special Assistance Supplement (if present)
Other, please explain

6. Were any of the following parts of the unit particularly helpful? (Check as many
as apply.)

Prerequisites

Statement of skills and concepts (objectives)
Examples
Problems

Paragraph headin
Table of Contents

Special Assistance Supplement (if present)
Other, please explain

Jr
Please describe anything in the unit that you did not particularly like.,

/

*N-1,-1

Please describe anything that you found particularly helpful. (Please use the back of
this sheet if you need more space.)

r.


