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1. INTRODGCTION T
NF

4 - .
. .
. e .

. Integral transforms and orthogdmal fundticns prov.de

. the basis for widely used techniques in solving a large
number pf physical and engineering problems. 1In this
unit we present a method which fac1litates the finding
of \the Laplace transform,

the Fourler ellanstorm, and _

- the Epur1er series when the given function is preceunee -
cent1nuous (as areymost functions that are endounterpd

1dent1call» zero for t < 0 when we arn finding the dLaplace

.. . transtorm. ‘The Pcurrer transform of f(t) 1s° given bv
n pract1ce). ’ o .. .
: Y © . . -
‘ ‘ The transforms and the ser1es expans'ions thdt ‘can) C) Fif(t)} = I R **%??t)dt. .
. ‘be obtained by the method presented heré may be obtained ) .o

by various other techn1ques
. Normally the two transforms

that- are frequently used.
and the series expansion are.

-

There are,

!‘.‘

of course, "basic

questions that arise

concerning conditeons under which the serres (1) and

1 presented as three separate
the techniques for handling

include integration, use of

(but related) topics,

and

the

There

p1ecew15e contlnuous functions
tables

improper intergrals in (3) and (4) ex1st

is also the quest10n~Jf whether the series in (1) actually

and m&n1pulat10n with

represents f(t) and if so, in what sense.-

Answers to

unit step functions.

desirable characteristics:

. - ¢

The unified rethod has the folthlng

these questions can be found in textbooks on eng1neer1ng

mathemat1cs and aanqed.advanced calculus and we shall

RN

transforms and the series in quest1on. The Fourier series

expansion of'a function f(t) of
‘ o

. \ -

period 2p_is given by

0 by © .amt s nmt
. - (D f(t) ~ "+ ‘Z a_ cos + ] b sip ATt .
. KA n=1 M P’
where u N 1
* [ ’ -~
¢ .
- I - . SN g ' hd LS .
. G -

ERIC - R

r it Lo .
P e

. it avoids the dse'of tables; B limit our study to, functions tor which approprlate
. it avoids almost all integration; cond1t1ons are sat1sf1<d .
. . unit step”functions are unfecessary; - . _Thg‘&xnll1ar1ty between expressions (3) and {4 is
¢ ‘the method is quick; ) L apparent In addition, the integrals for ay and b 1n :
T I "1t provides a s1ngle, unified approach to - , (2) also resemble (3) and (4). 1In order to conneot (2) ,
all three problems T " w1th (3) and (4), we défine the coefficient transform t
) it employs graphical techniques. \ . . . \
- . () C{f(t)} = JZ” LTS B Y
‘THE METHOD EXPLAINED L o . "
We -ggin by recall1ng the- basic definitions of the ) ’ The, structural-slmilarity of (3), (4), and (5) is

apparent and the connect1on with (2) can bé seen from _the

Euler formula e16 = cosf + i sing. The coefflc:ent trans-
form may be}regarded as ar1s1ng from thescomplex form of

(1) ,%which is
) N

F(e) ~ ] ¢ M '

n=-ow

(6)

\ ] R -
1 f2p nnt I [»P. n-t
2 = - fit) gos ~— ¢ = 1 nov- - Jdt,
st T LT s S ey Led T
< . , . -
‘lhe Laplace transform of a tinct:on Y(t) as givenhy
' l’oo st . ’ -
(3) LUE(O)) = 1 e * P, e
. . )
4
- . Y
, Note that fit) need be defincd only tor t 2 0, howerver e
- throughout this unit we shall 1egdrdf£(tl as bewng " - .

.
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S ¢ ! p -innt/p
(7 T L £(t)e N/ Pgy

Formulas for C and C o may be obtained #rom (6) bs

£(t) f
. . :
f T\ /-i'inm"
e o L )
"1, |
! 3 A\ -
I —
. J
v - ' . l_ I
ola a,l g a a :
luo 0 . : 1/ 2 m.
1Nf”] ! - .

An }Ilustration that is appropriate for thet Laplace

ft)

transform. Note that f(t) = 0 for t <0; however,
need nét be discontinuouys at 0 in qenera]

.\ .substltutlng n=20 or by replac1ng n with -n. Ixpres-
’ sions (1) 4nd (5) may each be obtained from the other
.- v1a the relatlonshlps " - .
‘ - iy L C s L e
(8) C, = 7(an Ibn) o >a, C., slap +ib )
\ >0 - ¢ ’ = - “
8 = 290 ) v cn+c-n bn - 1(Cn C-n)
¢ : B
: §(The Euler formula, of course, provides the ba51s for (8) )
Suppose now that f(t) is a piecewise continuous
function. " In Figures 1 - 3 we show functions of this
* type that are appropriate or the three transforms 1n
question 3he graphs also shéw the information needed
. to apply thel uﬁifled method, namely , . -
NS the, 1ocat1on of the dlscont1nu1t1es of f(t)
(1nd1cated by a, ), *
() the "jump" in f(t) at a di§continuity
’ (indicated by M, ), °
. the d1rect10n of the Jump (tndicated by an
- : arrow up or down).
f(t) P

I . M
| - | ‘.m
l | -
s | [} - m-1 .
M | ! | e
0 | {
. 1 H . 1 >t
0 aoio a; ;32 ;am_] a =2P ’
. 1 .
, k ’ eoe - f
€
Figure 1. One,period of a 2p-periodic function f(t); this illustration
is appropriate for the Fourier series expahsion.
Q &5 . . 3
ERIC \ ,

Aruitoxt provided by Eic:

f(t) =

. }

T
3 4
. L/ 4
1)
Figure 3. INlustration of f(t) appropriate for the Fourier transform. °
. Under the conventlons that M will be p051t1ve if

the jump at ay

is up and negat1ve if the )ump is down,

we have the following unified formulas

M -inma /p
(9) C{f(;)} - T%*-kzn My e + ;g? cler (ol )
. M -a, s . ’
(10) * Lif(e)) = 1 (Lo o L .
=0
[ 9 *




. M '-.mak' . o
F{f(t)} = = 7§ Mee, « 0+ == T (1)},

(11) L

1 12 1a ' ‘

-Formulas (9), (183 Q&l) may now be
to find C{f'(t)}, L{f(t)h F{f'(t)},
a little practice the 1terative process-becomes -very

and so farth.

7qu1ck,rand graphical techniques make 1t _easy. to imple-

.we shall-see next.

mernft the algorithm for many elgmentary funttron-, as
PR &

We note that Formulas $9)
by elementary methods

(11) Eah be obtalneé
A derivdtion 1s. carried~out in
detail for the coe§f1c1ent trahsform i1n the appendix.

METHOD IN ACTION

. . 3. TH
3.1 Example 1 ) . ..
To find L{f(t)} for the sfunction . *
. ’ t?, 0<t<2
. f(r) = 3, 2<t<d * v
S ' Y, <t .o

T we flrst graph f(t) and its @1st1nct nonzere derlvatlves

Aruitoxt provided by Eic:

N

indicating 2all jumps (see Figure 4).

\
-

W) s Pgoy)
1

. i____;a -7, .

-t " : 2~ ’
2 i :-—___1 .

-t~ i N s 2 5 2 -

g | S ALy

0 LM 0

o
« 0
L]

- .2

Figure 4. Graphs of fdt) fit), 'f"[t) for Example 1,
showung Jumps at discontinuities.

~ Y

used ‘iteratively
With

“

Y oApply fermula (109 to f(t), f'(t), ey T - .
. . . 1t = . \xx
R O e B S S 4K €3 ) A Y
- T » i
1 -2 -4s 1 (1 -2s -4s , .
o =3 (-e” -3 )+ §v[§ {-4e +e ))+;Zﬁf‘$‘ (t)}] .
(*) =L (—e'“w'“) el NS I B
' iy fb - ,“ ¢ - s . \
" L:. Ltz -2e729)] .
’ oo sE L S
3 -
. = LW etis ol o2 Sas.l 1
- b5 e s 82 53)"+ 5 . s‘z)'. ’
\ l‘. * .
. . .
At flrst this method seems to offer lattle, 1f any,’

1dVantage over a direct 1ntegrat1on or the usgq of unit
Howe\eﬁ

Ny

step functions. the caleulathon which we carr1ed

<
t

out 1n’deta11 above tan be vastly shortened'~- we néed”

- only observe, as can be seen from Equatlon (*), that- thé

kth power of {/s mut.zplaes ‘the jumps in thé (k- Z)St *

‘

derzvatzvc' each ‘weighted with the appmopr~~té expO)crtnat

functzon Therefore, merely b} keeplng trach graphlcally

v &f the magnitude, direction, anﬁ lo%atlon ;}/the jumps °
‘for each derivative, we may h;xte down the transform in’
"essentially final form as sbon as the sketches are drawn

We use this shortened procedure 1n all subsequent examples,
and ask you to do the same for the exerc1ses *

. . 4 ’ .
Example 2 ‘ x .

- <

3.2

Suppose ue wish to, find l{f(t)} for the: funct1on whlch
is defined graphically in Figure 5. : V

.
’
~ .

' S1nce > need only the segment slopes (which afe
obtalnable from the end p01nt céordinates) in order to

Y

‘graph f'(t)], we do'not even need ekp11c1t £ormu]as *.
(See F1gqre 6.) , ’ .
K L 4

. . L]

. .é . )
., . 11 -
’ . ’ 6

i ', *

A '
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! - / , ' a SR
» Y . - .
. B t-1,  0< €< 2 ’
¢ ‘ f(t) 6-t>, 2< t<3 !
P ' 0, 3< ¢, .
. S “ < f(t) ' ‘
- - . i . - ‘e The function shown }
) ' ’ . ¥ . 4n the diagram to .
. . . ] . tr—= ”
. . . . ) N the right. N
. 14 1 1 T T L § 1 7t - -~
' ‘ . 1 2 38 4« 5. ¢ . . 1 1 12 o
. . . - - . - .
. " Figure 5. The function fft) in Example Z consists of . s ] ! 2 13
| ' \ the straight Iine segments shown, and is - = . Y
Jzero for t 2 4. . ’ . 3.3 Example 3 . oL __—
; . [ . i ' w
£ (t) <o Find thes.coefficient transform C{¥(t)} for the |
¢ |
N 2 "t H— periodic function whose formula over e period is ;
' ) . "‘": 3
/umi ! \ : ° t? o+ 1, 0 <t <.l
- Ll A 7| = -
' 3 12 . , Y 0 1 <t<2, .
. 2 éﬁfh’:&‘ﬁq, i H - * ' - ) . - y o
& L7 VN ‘ : - . Jt«,%{‘ R
- - I y ! ] e e . " L _
.t S T I ‘- T I l: v T 7, . Here we have 2p = 2, so p = 1. We proueed as 1n Examyte
“ "l . ? 3; 5 .06 " , 2,-graphing f(t) and its distinct nonzero derivatives }
T moel — ‘ . ET% (see Figure 7).
(IS SO ' ) ¢
~ PRI berereeed ' \*
~ v f “ - N .
M /,-.2 -+ 5, H
S R I L . f(0 (o) s
A . Figure 6. The graph of f'(t) for Example 2, showning . 1 ) } }
- jumps and their locations, * ' . T . . !
- .y : . 2 b \ 2 - 2 _\_T N
- From Figures-5 and 6, and using our uwderstandmg of 1 /qltz 1 L uz a - .. l‘z
o Farmula (10), we may write inmediately ?; : O ! : fz |
v . - ] o |
= N - -t R manl o
S~ . . ) 0‘- r)=' ‘? ‘ vy ) '
= L{fL,t)} -z— + iz {-1 + 3¢5 - %e 2_5 + %‘e 45] -, e ‘
. . s*® ) L . °
] ¢ : O\ . o ‘frg;ure 7. Graphs of f(t), f'(t), and f'(t) for Example 3.
’ . P t ’
KA Exercise 't
. -_— - . . . e
Use the’ um'fned method (the abbreviated form nllustrated in stng the data recorded 1in ‘Figure 7,-and applying Formula
.-W‘nrple 2) to fild L{f(t)} for the following functions: ? L (9), we may wrlte down immediately:
LA ) t, 0<t<t . - <
. flt) = J2-t, 1<t<2 ) > Tty ) -
"o 2< ¢, . -
-~ ¥ . ’ r £
' 7 "L A 3? - 8
i D ¢
O , A v

. \ . .
. .
. . . . 5
- B ‘ - . P i !
B ‘ - . . * -

.
. .




<

.. -in% T n .
Since ¢ =cosng = (-1)7, we ma) sioplify:
. L)

o z
.

1 LEYER n [
T e - + (-1 —_ -
C{:(t)} o (‘ ) ‘{nv 2
(This result holds, of coursc, for nf0.)

3.4 Exampie %. “

L] . .
Find the real form of the Fourier -series expansion
for "the functiop f(@ﬁ“fnmxﬁxamp!e 3. Since

c, = 7 Cl{f(t)} {see (5) and (M1,

and since p = 1 (see Example 3), we have for this example

. o

= Cif(t)n. . !

from which

c = 1 -
. -n - Zmr

In addition,

= % Jl (tz/ + 1)dt
[}

I'rom }8) w¢‘ha\o-

ERI

Aruitoxt provided by Eic:

The tourier seriel expansion 1s

fesl

f(t) = aosnrt + ] b sinnvt,
n=1 n=1

wigh aq,,bn ds given above.
4

- .

3
3.5 Exdmple § L
~ % 3
Pind the haif range sine expansion forfthe function

. ~

ft) =t - 20, 0'<t'<r,

- a .
he first-make an &dd extension of f(t) to include the

interval -1 < t < 0.* Since wp need only informat1on°

«h

on the jumps, the extension may be carried out graphicaliy
with no formulas necessary.  We save additional effort
by noting that the gerlvntivo of an odd function is even

and the derivatfve of én%even function 1s odd. See

.

"Figure 8,

‘\ C - ‘
Applying iormula (9) with the information displared

in Figure 8, and noting .that for the extended function: °
2p = 2 so that p = 1, we obtain

CLE(t)) ' v [-ze“E"
“(int)?

- 4 + e inm ‘1
(in:n)j inn

4i




I :Efm\/(exténded)' £ (o jumps)  J(0
. .- 3 i
r. T ,". T :‘2 %
"l \\‘ . . :
1 ; \ 1 -1 ?lg H
# ? :t f [ '¢ — vt
-1 :fl {
1 S
- )
!
. -+ . O = = -
Figire 8. The graph of f(t) extended to form an ddd function, and
the graphs of“f'{t) and f''(t). .
" ) . . .
Then we have for the  Fouriger coefficients
' . ip! ' I ~;
C = == C{f(t)} = 7 Cif(t)}
n 2 N ’
[ W -
. £y N v
n i 21 2i °
= [ - Cf o — - +
(1) { L nans-] 2L
EY
2 o
agq .o
c = (-n" i, 2? o 21 .
R nmw nin? nin? e
- 3
In the half range sine expansion a = 0 fo; all'’m, and’
we have . ) ’
- f(t) =. } b sinnrt, ’ .
s : n=1,
where
S _oanf2 ., 4) 4
bn.- 1(C,-Cp) (-1) [nn * n3n3] nind .
or N . !{:.
n 2 j n ’ 4 *
: by = (0" £ [en™ ]
v n nmw . - n3n3 .
. . .
;/l -
* 11
Q )
. WJ:EEE

-— e e,

Exercise 2 , o

Find the complex Fourier series expansion for the following

periodic functions, where thé_definition over one period is given

by; ’ . LT .
a. - . 0<.t<3 (

f(t) = 2, 3<t<6,

; . d

b. - % t, 0<t<?2 . X .

f(t) = T ) . .

2-3t. 2 <t < b .

Exercisen3 °

Find the half range sine series expansion for the function

f(t)=-;'t, 0<t<s5,

3.6 Example 6 ‘ .

-

Find the Fourier transform of thg function

- 2
£(t) = 1 thN - It! <1

The process” is the same as before: sketch the function
and "its distinct nonzero derivatives, recording the

relevant data on all jumps (see Figure 9). .
f(t),(no jumps) f‘(t) 5 fn(t) )
\ ' \
2 4+ 4
N
.‘A ——
f\ N -1 1
T . Y ’t } - 4 4 t
-1 1 ; T ‘ : ;
T =+ 21 1
2 | : TZ .
» l .
4 -1 ‘ I : ,

.

Figure 9. The graphs of f(t), f'(t), and f'*(t) for Example 6, with
information on jumps.
. 1
:.7 ) 12

. |




Applying Formula (1}) and the 'format:,ron displayed 1n
Figure 9, we obtain

T OF(E(1)) !

. Exercise 4

For the foilowing functions f(t) find the Fourier transform
F{fF(t)}: ‘ . .

a. f(t) ={',
01

b. . P, -1 <t
() -t, 0<t
0, jey>1.

It} <2
t] > 2,

-

3.7 Example 7

Find the Fourier cosine transform of the function
£(t) = M,
cosine transform of the given functlo‘ is

We first note that by doflnltlon the .Fourier

o _, o e .
L e Mt cos ot dt = R j e 10t ¢ mtdt = R F{f(t)h
0

-

where f(t) in the latter expression is redefined as
- ’

e-mt

£(t) '
0, t < 0’ ‘ % .

and R denotes’the real part.of the, transform (See

, t >0

Flgure 10.) .

Aruitoxt provided by Eic:

»

Figure 10. Graph of the redefined f(t) for Example 7.

Since f'(f) -mf(t), we have by Formula (11)

= llu+i F{-nf(t)).

T{f(t)}
[

.

Therefore

F{(m+ ia)f(t)}

]

- from which

F{f(t)}

T m+ia

and the cosine transform is
£

Co{f(t)} = —B__ |
- m? + ok

Exaniple *8

¢

] .
As a {1inal example we expand the function

'}(t) = cost, 0 <t< 2m

in~a half range sine series.. The graph> of the odd

extension oﬁ;f(t) and its f1rst derivasive are shown

in Figure 11‘ "

-
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LAY Y -'] . . K H . -t
- » . . 7 4 » .
N ‘ ' . S . ; .. ' . ..
. o ¢ v b N
¢ . R (.' . ~ o . . 4 _{ - .
* o ’ P n ° 4
. \ ’ ! b = 1{C - C_ = , . .
." . @ . s ]:11 c"[ n n} (nz - 4)," . -
\ and - P\ ' E
f(t) odd function f'(t) (no jumps) . .
o : . . even function R ‘ R ~ . "
K\ - f(t) = y 4n s1in n-,t— . .
n=1,3,5.. (n? - 4)n “ N
. .- . . .
Examples 7 and 8 1llustrate that 1t 1s Rot necessary .
that f(t) have some derivative which vanishes in order . Ut
. . s ¢ to a?ply the unified method -- it is'possible.to use ]
Figure 1t. Grap.hs. of the odd extension of f{t) and |.ts first derivative ; thls method also when there is an,algebraic relationship
. , b St f)etu‘éen"f(t) and its first f®w derivatives. -This fact
- \ "will be useful in me of the following exercises. >
' In this example, 2p'= dw, p = 27, hence —J)— =15 e . .
Since f"(tJ\= -£(t), we have by Formula (9) -7 . The next exercises™wqll conclude the application .
’ . portion of this unit. For thase who wish to learn how
. -i 2 e < ps .
et C{f(t)} -%{fm"*rl-e lmh—“—z—,cv-t(t);. the unified method can be derived,. we carry out the
J' 2 \ (“:‘1* . derivation in the Appendix for the coefficient transform.
" <7 . . ’
* Therefore, . ’ Derivatien c_>f Formula§ (9) and (11) can be catrried-out 1
K t . . > “in 4 similar way. ’
. - 4- - n 4i 4i . <" ’ .
Cl(-L)gefy = (- 4.4 . . . .
. 2 n n . .
n . - . ’ : —
from which ’ . Exercise 5 ’ - SO e
’ D ) L Use the unified ‘method to find the Laplace transform of oo .
8ni ) ; f( ) = . h ‘ IS
- , n odd . - . t ’
. . n-4 - ‘ . . , .
P C{f(t)}‘- . .o - Exegcise 6 ) N .
B 0, n even. ' ’ . \ A
A R - Find the Laplace transform of the £(1) e
' . . . . : . ~ - d
Sifce R i ] . e - pe,r;lodlc square wave shown to the right. _ | X — ;
A 2p = 4w, } " This probiem will require an extension of Vo ! (.
T ’ . . +—————>
Lo ) . t fied method t -
] we have for n odd B X ' . oL he unified method to a g@se where the y {' ;2 !3 i’h :5 E6
., ‘ - 2ni o o . number of Jj umps dlscontug,u:tles in f(t) T
- €= - (n? e o : is countably infinite. 3 )
4, ) | - M ¢
, ~ . « N B)
: . C-n ; Zni ’ 4 T . " '
. *(nz - 4)." )_* B * « < ’
SR e . SRR S - . >
so that AN : o -
- - ’- \\‘\ . . - N . . 16
: ced .. o 15 . "o
Q . L ) . . lades? . '
. P , -.,;"‘; . ~
EMC . ' “oe A ) .
N " . N \ :;" ; ’-!: . .. ) . e % . . * ,




.. -~
° .
-

* * -
. v . 45 ANSWERS TO EXERCISES
. . - 25 .
- ! a. 1. 2 &4+ ¢ -
s? s? s* .
! ;;b —'--—]-+e-2S l-i-il+ -351-3-+6+2]
N s¢ 5 R R R st g3
e -5 -2s “-3s :
e l_e ", 2e _e " R
S s2 s s
”
+
o0 . ‘/ .
2. a f(t) 5 2 ¢ o'Mt 3, where . .
n=-w n - “ LS

¢y =72 [1 = (-1"] for nfo, ¢ =0

n inm
[+-] . /
b. f(t) = Z ¢ e'MMt/2 , where .
- N=—00 n - . >
< ” 4 s\ N ° 3
o e T o= - [(¥s (-D"] for n¥o, Co= &,
n2n? )
- ~; + t
3 f(t’)’= Z bn sinr‘;'—t,whgre b, = (-n" '_;51-'--
, | ) n:—'l‘/
. g 2 sin 2a )
Gk e fshm
i 2
b. = (1 - cosa)- i -
© ‘. a“ - N %x N
to. _ N
2ty 11 -2t o TN
5. t{e 77} st o277}, from which L{e™*"} = Py
~ ' . e
6.  L{F(t)} = -;- [1 - 27 4 20725 L 2735 L ]

wa"S
=lh-gze
s - l+e_s » ,
. = — tanh 2 .
; 5 Q .
1 ‘
. - ) ’ e
t4 0’)
\‘1 , At for o

ERIC ' . P

r * .
Full Tt Provided by ERIC.
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1

d

v

Find the Laplace transform L{f(t)} for the functjons:

Find the Fourien transform F(f(t)} for the functions:

a.

‘b.

.Find

. /o0
‘ L4

5. MODEL £Xav

\ ) -

t?, T0<t<
fle)= .

f(t) =

-

‘ h-r?, ltf <2
f(t) =9

0, . it > 2.
f(t) =é'2lt|, all t.

e half range sine series for function
1

«

fle) =1 -2t, "o<ecn,
»
N ° ’
!
" 2
” . 9 »
, 0
- ~u

¢ AN *
Q .
Find the following transformsxseries expansions Udsing the
. B .

unified method.

e

°

°

. v
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“ 6. ANSWERS TO MODEL EXAM -  §
. 2., -s 11 +.l4 N - 'R
“ s? s? Y
N .
b. Licos t} = % + % (% L{-cos t}), from which .
L{cos t} = —2—
" sz+l *
a. LR sin 2a - 2 cos 2a-
ol - a’~
B. -2|tl) . + ——l—— F{he-zlml}, from which
. (ia)? -~ (ia)? .
l\\
F{hezlt]}‘=L- )
bro? .
f(t) = 2 b, sin nmt, where
n=t’®
1 n+1
b, = 2+ ( -1) ]
P
’
. o
-
' «
N P4
-
!
A ] .
21
~ X
“,
. - »

19

7. APPENDIX: THKIMETHbD DERIVED

In this section we carrv

{9). The formal proof for a function with a finite number

of jump discontifuities requires an induction argument,

but the 1dga can be scen by considerang a function {{t)

with jumps only at t=0,
Thus we take {(t) of the form

&

t=a (see Ylgure.Al).

t=2p and onc intcrmediate point

. . .
. fo(th, < t <a ¢ .
. f(e) = ! bt .
f,(t), a <t < 2p.
. . . .‘ ¢
’ f(t) . . .8
: 4 MG : ©
'/——\’l r
. lT 2 ! '
;l(t) : H2 :lHZp ’
/-? ,: T, = N
fn 4 ) "
i 0 e i . 1 - t
0 - 2. ¥ - 2p
’ « . Fi%ure Al. Graph of f(t) with ong |ntc(‘ed|ate

, ‘\\)gnscontlnulty . - ’
By the definition of C{f(t)}, (see Formula (3))
-we have - . e

va

' -

< CHE(t93en Ja e inmt/p fl(t)dtf‘#pe-i.n‘ht/pfz[t)‘dt. ~
0 . " L3

e [y

We 1ntegrate by parts, with u=f,(t), f {t) and ;“

dv = e'“‘“/p, so. that' d;u NOLIAE: '(t)dt and
- \,‘/ ‘7 _ Sl - - ~ n? : -
- // ” H') "é

out the derivation of tormula

-

¢
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. b "
W}.
- v chkas
p

A e
™~ . ﬁpw
- =

.

i -1nmt/p @
[fl(t)e ’0 f~

s -

CLE(L)) = B

nn

) - -

+ D r]a -;mrt:/pf

' Po-anmt/p.
_y-inm Ln (t)dt+L e rrz(t)dt

.‘ ¢
Collecting terms we find

A S

TG =g (£)(0) *[£,(a%) - £ (a-)] o7 INTE/P - £5(2p)}

(A1) .
« 2 (2.

13 inw [

I eveyde, L.

o

" s1nce e--nnt/p =1 foér t= Zp det W),.ia, 2p denote the

)umps" 1n “f(t) as shown in Figure Al; mereover we assume
that the value is p051tLVe when the yump #s up and
negative when aown (Thus, -
. Figure (A1, M0>0 l>0 42p

the expr6551on {Al) as. - ‘ - .

for.the function pictured 1in
<0.) We may therefore write

. o X
-ir}ﬂayp +M }+ -rL C{f (t)‘ .

2 inm

(AZ) C{f(t)}‘,= .i-%ﬁ-vglx\io 4.Mae e e
svv.f-

‘qﬁe first term in (AZ) is more systematic that it appears

) Since rt can’ be wrltten as’

.

' inn2p/p

7‘,. “~‘
'Thus, 1n actuality, each signed jump is mu1t1p11ed by the
exponential e -innt/p

’Moe-mvm/p + M e~inzrafp. + M pe'

evaluated at the valub of t where
the jump 1s made, and the resultlng products are summed.
Finally, as may be ver1f1ed by “an easy induction argument
wherl. a3 =0, @,=2p, and the functlon f(t) has m-1 Jump

d1scont1nu1t1es 1n@betWeen at a1 cees 8p 1, We have
. - ‘ /i~ - - . ' Calr
~ hd P Y . M
21
Q on
<0

=
inw

¢

C{E()} =

. @

where My is the signed jump at ay -

i3
33
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-inma, /p

+ L C{f (t)},

mn
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“Student: If you have trouble with a specific part of this unit, ple;se fil11
_out this form and take it to your instructor for assistance. The information
you give will help the author to revise the unit. : -

Your Name ) Unit No.
Page )
e : o Model Exam
Section
.. 0 Uéégr —_— S Problem No
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OMiddle | Paragraph ' 1. Text
() Lower . - .  Problem No.
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i
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(::) ‘Corrected errors in materials. List corrections here:

(::>'Gave student better explanation, example, or procedure ﬁpan'in unit.
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~
<

. ‘ e £
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skills (not using examples from this unit.) :

. 0
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1. How useful was the amount of detail in.%he unit?

Not enough detail to understand the unit - .
Unit would have -been clearer with more detail ) . . .

Appropriate amount of detail e
Unit was occasionally too -detailed, but this was not distracting
Too much detail; I was often distracted

- »

.

-

B 2. How helpful were the;problem answers? ) a - v T !
Sample solutions were too brief; I could not-do the intermediate steps- :
Sufficient information was given to solve the problems, *. ’ .

Sample solutions were too detailed; I didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor, friends, or other books) in order to understand the unit?

__A Lot ¢ ~ )' Somewhat: C . A Little ° ____Not at all
1 - -
4. How 1ong was this unit’ in comparison to the amount of time you generally spend on
{ a lesson (lecture and homework assignments in a typical math or science course?
X Much .~ Somewhat -~ About Somewhat Much
‘ Longer ____Longer ‘ the Same g Shorter Shorter . ’

5. Were any of the following parts of” the unit confusing or distracting? (Check

as many as apply ) ..
Prerequisites . .
' Statement .of skills and concepts (oojectives) .o .
Paragraph headings FLA -, o .
Examples . ) N o
_____Special Assistance Supplement (if present) . -
T ____Other, please explain i . .

6. Were any of the following parts of the unitpparticularly helpful7 (Check as many
as apply.) . .
Prerequisites R ’ _
Statement of skills and concepts (objectives) “ ]
e Examples . . . \
. Problems ' -
: Paragraph. headiﬂgs ) .o
. Table of Contents . -
Special Assistance Supplement (if present)

Other, please explain ‘ ' -

]

Please describe anything in 5he unit that youy did not_particularly like.

! . .
.

‘e

Please describe anything that you found particularly helpful. (Please use the back of
. this sheet if you need more space.) . »
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from L{{(t)} or from F{f(t)}.

—frndmg Lapla;'e'tx:a‘;wfo'rﬁs, Fc“rie'r traﬁs&oms. a.hd - l
Fourier’ scrxes " The: pte&ent un&z~1s ‘a squel o :

Unit 324, and ke shakl freef)*earrv'over the nctatlon -~
and. terminology used thefe In p@rtrcuiar ' )
concerned pr1mar11) W1Lh/f/e tvansiorms L{f%t)}, ’ R

Wwe are . _ -7

A - e

F{f(t)}, and cff(t)} "15L'- ST o -;”;ﬁ'“z . /'f-f"

- t = - .

) .Some appdqe& prohiems requrxe only _the- -use-of
the forward transforms
calculation of the transform represents passag& ircm
time domain to the frcquenc)-doma;n and the 1nfor-
mation obtained by &tuari i freQuency related el T
properties is all- that is requ1red(, Other -problems
(such'as solution of d1££Eren£1a1 equatlons by._-
gransform techniques), however, requxre determlnatlon .

of inverse transforms, that is, recovery of f(t)

In this unit we build‘upen the ideas presented

in Unit 324 to attack the problem of flndlng a function
from its gi%;n transform or series expansion. G1ven

a transform L{f(t)}, F{£(t)} or C{E(t)} we attempt

to reconstruct first the derivatives of £(t), and
Sfinally f($
to find the forward transform. Since the forward
process is based on integration by parts, the method
is generally applicable. Hence the inverse methods
presented here are also generally applicable --
theorctically!! The problem, is primarily that in
f1nd1ng a forward transform we _may cancel terms
which, if present, would provide clues to the nature

of the derivative. For thls reason, the inverse

process does require pat1ence and pract1ce, nevertheless @

1 .
a1 "

Py

Jn SuCh” prdbfems;'the - .. -<ti5”

X¥self, by reversing the process used <.

ft does offer most of the same Jdvante}ps 11stcd 1n
Urxt &’4 far the’un1f1ed {forkard) method. - 'Zj‘ :

) ? 2. INVLRSF LAPLACE TRANSFORMS  © -

Fhe/proce>s will- beAdeveloped.b) examples« A5aln

it s assumeﬂ that’ you are familiar-with the unified
mcthod pleb&ﬂth«lh Un1t 324, 1;51,—,

Examgle : : © .
~ ‘«Suppose we @ish- to find f(t) if -

<. L{f(t)? = % &3S . % e 4s

We f1rst note that the right side can be written

. in sl1ghtly more revealing form as
-’ . .
Lo ) e gdy et

S

. . e
The factor é in each term indicates a. jump in the

2-and -2 show the
each jump and, finally,

function f(t), the multiﬁiiers
magnitude and the direction of

. the factors e >S5 and e 45 show that the jumps 'occur
at t =°3 and t = 4. Therefore the function must be
given by "

fZ, 3 <t <4 “
3N . f(t) =
SN 0, -elsewhere.

(See Figure 1.) *

[ ‘}f(t) P
i 3-.
3 . - 4
'2 M,
, . | ' .
. 1 TZ . !lz
{ i
1 [ -
- ———— 14 f T -t
1 2 3 4 5
- % .
o Figure 1.. The graph' of f(t) for Example

1.
I rz
s [

1
/




. 4
Example 2. )7 : - - " ¢ there can be no lump in f(t) or any of its derivatives
Find f(t), #f i at the origin, so ¢, =o. "The term 2(1/g¥)e" S .
N -4s ©  reveals a jump of fZ in f! (t) at t=1 and since C =0,
L{f@} = ¢S 2,2,2 +e'2§ 2.3 3} ,e . . h
¢ cls? sz S . 3 g2 S 2 we must have
; -5 25 Tash : 2= £'(1) =2 +¢,,
The exponentialsee >, e , and e tell us to,look . s
for jumps at t = 1, 2, and 4, %o we must watch these ‘ i from which C2 = 0. Next, the term -S(l/sz)e-zs
positions. However, we begin construction of the < shows a jump of +5 at t=2. But f'(t) = 2t to the
ii function with the terms 2(1/s*)e”® ang -2(2/si)e'25, .+ left of t-z,iand f'(t) = C; to the ;ight of t=2.
which lndicateﬁjumpstof t+2 at t=1 and +27at t=2 in ’ Hence at t=2 we jump 5 units from 4 down to C so
the second derivative. 'Hence, we have . that C = -1. Finally, the term 1(1/s%)e” -4s is
- 2 1% ¢t < 2 . con51stent with the value C3 =-1, since it shows 4
£ (y) = . unit jump back to the t-axis at t=4. Therefore
0, elsewhere LT N
. : o 2t, 1.<t<2
as shown in Figure 2. . . - TUOfN(t) =4-1, 2.<t< 4 . .
£ s . 0, elsewhere - -
" i
e 3ﬁf (t) (Figure 3).
b » Y : ;
\ 1 : . 5
- 14 2y ILZ )
l ! ¢ N ]
.- ! -~ . 31 ]
Tz 3 o E ‘
N N 3 -
. < 7 R
Figure 2. Graph of " (¢) for Example 2. ~ : T 2 : : *
R * t { C
: ~ 1 > .
By integrating f'"(t) we obtain the following expression: v | T2 3 %tl
. , -1 4 I |
Ci» , 0<t<1_ = ' ’ A
. £1(t) =1 2t+0C: 1<t<?2 Figure 3. Graph of f'(t) for Example 3.
» 2’ R .
€55 2t - While the above explanation of how to find f'(t)

- where C é. C. are c&nstants to be determined may seem compliéated in actuality by observing the
) S A ’ )

transform caﬂbfully and proceeding from left to right,

. - , <
Now the detective story begins giie must look to we can (after 'a little practice) sketch f'(t) section

L{f(t)} to evaluate these constants.  Since there is by section rather quickly. We illustrate by obtaining

no term of the form T f(t) from f' (1) graphjcally. The result.is (See Figure 4):

1 .1 -0s . 4
' F e - 3 .
. vy . . - -
Qo . . u .
ERIC . : - -

\
Aruitoxt provided by Eic .

-



?

O

ERIC

Aruitoxt provided by Eric:
3

i -2s L .
J:2+1, 1 <t <2 ‘ ) %+e25 l_lﬂ.-_l‘ ]
. N 25‘ S)
f(t) = 5=t + 4, 2 <t <4 ' ' ‘ .
. N ‘0, elsewhere, : 4 e (.3.5 _2), ebs (2 L), 0, 2,
- _— s 2 3 s : s 3 : S
‘' S S S S
. . N .‘ -k
5.tf(‘) . : .
\
- ke a 3.~ INVERSE FOURIER TRANSFORMS
, 34 , .
o We 1llustrate the procedure for finding the inverse
2T : Fourier transform by an example. Again, a familiarity
14 TZ: . with the forward transform from Unit 324 is assumed.
' 1
. - —t .Example 3 : .
. L - . ) -
. Figure 4. Graph of f(t) for E;<ample 3. ’ . Suppose: e wish. to find f(v), if .
o . ‘ TF{f(t)} =%(-i + cos a) +§sina
1 . A} a
The result was -obtained section by section,. as follows. - ” ) o .
© First, we have previously observed that f(t) = 0 for ' . e begin by,convertlr-lg FLE(D)) to.exponent‘lal form
0 <t <1. Then, from the graph of f’(t) we obtain . . 'sc-> that.: we can 1de-3nt1fy the location, magnitude and
f(t) . N b for 1 < t < 2, but the term 2\(1/5)9 -5 . ) d‘1rect1on of all jumps. Hence we have .

d - =1. = = , . . .
indicates a Jump of, +2 at t=1 %Hence, 2 = f(1+) 1+b1 . FlE()) - L [Jia, -ia) _ 2 ,.1 o vid) |
so that B} = 1, ard f(t) = t2 +%1. Now for 2 < t < 4, *: = g2 \° € I TH O
the graph of f'(t) y1e1ds f(t) =.-t + b,, and the term . . : ’ /

-3(l/s)e 25 y1e1ds a Jump of +3 at t=Z. . Since ‘ We now recgll that information on Jumps for the forwa.rd s

£(2-) = 5 (from t2 + 1), and f{2+4) = -2 + bZ’ we © transform is recorded in terms of powers of Wia; hence

1 ‘ . . .

have 3 =5 - (-2 + ,bz]’ from which b2,= 4 and . s we must make a further adjustment to, obtam .

f(t) = -t + 4 for 2 <-t < 4. Since there is no jump : . . . \
“in f(t) at t=4 we have f(t) = 0 fOor.t.> 4. ‘ T F{f(®)} = em(-——l—.+ -ll—a] + - 2 )

3 ] . e O s 2 -
g . , , , : (ia) (ia)?

“Exercise 1 g _ ' ’ : T 1 1) ‘

+ For each of the following, find f(t) from the given « (ia)
expression for L{f{t)}: . . . ’ / .. The terms . ‘

Al %e-s; . ) ) ‘ 1 eiav, 2 . 1__e-ia .
: . 5 (ia)? (12" (ia)? :
<b) L5 L3, - :
s s’ ’ - indicate Jumps of ¥1 at t = -1,42 at t = 0, and +1,
. 5 B . _— Y6
20 ’ - | ’
-9 : 2!
‘ . .‘ ’ ‘\' . -~ N @ °
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at.t = 1.
(Figure 5).

-

Hence ‘we ‘may now sketch the graph of f'(t) - T

v

we find first that f{t) =

T

Then working' from left to right as'before, Exercise 2 :_i
. - For each of the following, find f(t) from the givern expression ° .
f f H ~ N
A er iRk .
. ¢ 1 . ¢ { i
L a.. = (i sos 2max - sin2na - i) . . ! ,
. 'ﬁ+' ¢ . . t - - \
o : > t ' 4 b Z; (sina - sin 2a); . , .
4 ¥ P .
1+! 2| 1 : : . ¢ ’
- - v Al-mzﬁna+2dmsa-ZSMaL ,° .
L, , , : , o’ .- -
Figure 5. Graph of f'(t) for Example ‘3. ° . - -
¢ ’ '
e, . < . 4. INVERSE COEFFICIENT TRANSFORMS
"t *+Cpy -l <t<0. But ‘ ©

L

the term T ia

hence f( 1+ =1 #
flt) =

Cl’ from which Cl =0,
t + CZ’ but the term
+1 in f(t) at t = 1, and in addition, no jump in f(t) .

shows a jump of +1 ir f(ta at t =

1 -ia

€
.i_

is 1nd1cated ’t = 0. Therefore, C2,= 0; hence we
obtain- .
.M, M -
[t], lt] <1
f(t) .
0,‘ ft] > 1 ’
(See Figure 6.)
.‘ - ‘} Fe) .
- —= ———— tr ~
'J; — $ '44; t
B L4 _' ' .
Figure 6. Graph of f(t) for Example 3.
) .
. sdy ~
O

For 0<t<1,
shqws a jump of

For our final examples we, shall find the "inverse"
of three Fourier ser1es /fﬁat is, the problem we solve
is the £ollow1ng

-1;

g1ven a ‘Fourier series, find the

functiom to which the serles converges Those of you
who are familiar with Fourier series may well be sur-

) prised to learn that this Rroblem may have a reasonable

o solution.

s

“ The problem of ‘recovering a fundtion® from its
Fourier -series representation may well require con--
siderable ingenuity;‘iﬂgight and, perhaps, even some
; " experimentation. The reason for this is three-fold.
’ The first reason is the nature of the expans1on

itself -- very 51mp1e functions may y1e1d expansions .

. ! with coefficients of considerable complexity. The- \
second difficulty arises from the terms ofwthe form Fop,
~inma, /p ° *
ga . K -

[see formula (9) of Unit 324].
— \
for ay =40 -and for a = 2p,'we have

The problem is that

-innd, /p -
. e k = 1.

Therefore, we ﬁay not know whether the juip is at t = 0
7 . a
' 41




- - 2 .

or at t = .2p, or perhaps both. Similarly, if terms of
the form (-1)" occur in the expansion, we may have

. L n : inm
e1ther a, = -por g = p, since (-1)" = cos nw = ¢
= e 107, Therefore, in this case the actual 1ntegrat10n
in C{f(t)} would have been from t = -p to V\\Bgt
again, we may not- know whether the jump wgf at -p or

- [§ )

' at P _"",

-

The third diffjculty is related to the second.
Since the exponentials involved are equal at the end
points of the interval in question, it follows that if
the corresponding coefficients are equal- in magnltude
but opposite in sign, then the sum of these terms will
vanish! Hence, we may be looking at a situatiog in
which there is actu;${y a juﬁp present, but no indica-
tion of it. It may well require some patience to
overcome these difficulties!

Example 4 S i
Suppose we wish to find the function f(t) whose
* Fourier series expansign is . -
1 8 Py [ 4nﬂ .
T+ ) (cos 1)
-~ 3 n=1 2n2
h 4 dnw 2nrt '
. + { Tl n? sin “?“] S _ff—:]

. Ty N
. aO&;&jg ’ ! -
. and for 1‘= sy 2, 3, we have ~
: 3 [ 4nm )
a_ = cos—g—-l .
n nZ,n.Z ’ .
— b - [__4_ + 3 si 4mr]

n nm nznz 3

. O ‘,jfo..a )

ERIC
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2 .

y -

that for this example . ’

" bothersome one -- it could indicate a jump of 42 at

’

The approach we use is: first find C,» next find
C{f(t)}, and then recover the function f(t). Since,

¢, = (a, - ib)/2 (formula (8) from Unit 324)
we have -
a ’ -
Cn = % 3 {cos ﬂ%l - 151ni%1]- 5 L4 ]
‘n?n P nin2 N7

L J—

w
n2n? ‘ nin? n

_ 1\( 3 - 4nmi/3 3 4i }
_2-——6 - em—— .

From the general form of the Fourier expansion we obtain

cos ROt _ ., Znmt
T\ p p
. .
from whi¢h
‘ p=.3/2 - ’

Since

ClE(t)) = 2pC_ = 3C_,
N ‘ v - <
we have " N

CLE(t)} = —2 2 74n®/3 9 - 6i

2n?n? 2n2e M7

Because the coefficients in the C-transform involve

powers of "B =
inw . 21nn

and exponentials of the form , '

-1nnak/p
e , We write ~

2 _2Zinm ‘
ClE()) = -2 [“——Ziﬁm]‘e o 2 *0['71"35;]2 =4[71%;] .

k4

The first term indicates a jump of--2 in the first
derivative, f'(t), at t = 2. The second term is "the
*
t = 0 or a jump of 42 at t =2p = 3, or it could be
the result of a combination of - jumps at both places.
’ Toe 10

43
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In order to allow for the various possibilities, we -£(3-).- Since these jumps must combine sto produce the
write for one period: . . value -4, we have
I 2-a, 0 <t <2 i -4 = £(0)-£f(3) =b - (-3a + ¢)
f'(t) = . = (b - ¢c) + 3a
l -a, 2 <t <3, = -4 + 3a,
. -
(See Figure 7.) From the expression for f'(t) we from which
®
¢ . i ] a=20.
A f(e) - So far we have for one period
i 2t + b, 0 <t <2
. 2-a . © () -
2 .
) Tz-a ']l . e b + 4, 2 <t < 3.
LY H b -
‘ . ‘ - t } =t » ¢ - Finally, since
° 21 i
: . ! ! | 16 _ 1 (*
-al V -a i P =3 =35 I - f(t) dt,
’ ) , we have
Figure 7. Graph of f'(t) for Example 4.
2
/ . 13—6=§H (2t+b)dt+J(b+4)'dt],
obtain for one period: ’ . - 0 '
from which
(2-a)t + b, 0 <t <2 : <
£r(¢) = : 2 2
) 8§ = [tz + btﬂ + [ (b + 4)t]
X -at + ¢, 2 <t < 3. . 0 3
The expression for C{£(t)} above shows no jump in =8 + 3b. -
f(t) at t = 2, and therefore the left and right sections . )
of f(t) agree at t = 2. Thus, - so.that : .
((2-2)(2) + b= (-a)(2) + c, : e b= 0. o .
. Hence the given series converges to a function of period

from which

. ’ 5 3 whose definition for one period is
. : ' c=b+ 4,
- . ' 2t, 0 <t<2
The last term in the expression for C{f(t)} could arise £(t) = . .
from a jump of 44 at t = 0 or at t = 3, or from a ‘ 14 2 <t < 3.

“combination of jumps at both ends. Now observe that .
the jump at t = 0 is €(0+) and the jump at t = 3 is (See Figure 8.) h B
,1 1 11 A 12

EI{I(j , . . : | A SN - : -

s v ‘
Z




) A f(r)
o1
1
. i
.4 ot 1
> !
[}
$
[}
1
. ]
- 1
1]
]
!
— } >t -
. . ! 2 3
. R Figure 8. Graph of f(t) for
. Example 4.
. Example 5 é - i

23

‘Suppose we wish to find the function f(t) whose
Fourier series expansion is given by 4
Cf(e) = .} ('-'1)n+1 113— sin nnt.
L n=1 + nial,

We first note that from the’given expansion, a, =0
for n = 0, 1, 2,
In add1t1on, from the terms sin nw#t we have P = 1,

hence f(t) has period 2, .and we must find an expre551on

-+, so that f(t) is an odd function.,

for, f(t) over any interval of length 2; we choose
) -1 <'t < 1. -

Next we find C _:
S (N

=3 -y - CUTIEb | sen”
. . n n wnin? ‘ (inm)?3
5 ‘Therefore, S i
B n
C{f(t)} = ch =’ M. -
M. (inm)? . .

. In general, we must express C{f(t)} in powers of
\l_ " p/inm = 1/inm,
. Iere. The single tern in C{f(t)} indicates a jump of
s 13
Q AL
| A%

.but this task is already accomplished

.
o o
- of

magn1tude 12 in f"(t), and the factor ( 1)

ﬁnn

= o inm shows tHat the jump is at t = 1 or t = -1 or
that, perhaps, the wholé term results from a combina-
tion of jumps at both ehds. However, a little reflection
shows that we simply cannot have a positive jomp at

just one end of the interval -1 <t <1or, for that
matter, any combination ofsjumps at both ends with

sum total pos1t1ve 1f, after a jump is made the function

remains constant until the next jump.

The following fupctlon is a possibility for f'"(t)

and we take it as our startifg point:

f'(t) = -6t + a, -1 <t < 1., .

(See Figure 9.) If we tr} the above function for

Aer(e) : v
" M ! i *
; |
¢ . ‘1 .
. } )
" 6+a: 2\ °* ) .
. e ! 4 :
,‘ ‘ ) ° .
. : —+—= } —-t
¥ _.' 'l
® 16'8 .
¥ -
" dﬂ ’ ° 60
o . *
s o Figure 9. Craph of a possible f'(t) .
for Example 5. . &
P . :

- -

.
. . -

£'"(t) as a point.of departqge” then

f'o(eY = -6,

-

1 <t<1. .

- with f"'({)
as above, C{f(t)} would conta1n the expression

.

(This is where 2 bothersome p01nt arises:

) N ‘6 e-1nn(-1) . 6 e-1nn(1) R ° .
(inm)* . -(inn)“ :
wh1ch results from jumps of t6rat t ="-1 and 16 at ’
t=1. However, since eln“ e In7 (-1)®, the sum
[ R r\ "‘1.
S ¥
°
v Ay

14




o g
. 'Y . ~ . 2
R . -
" \\ ‘
.reduces to zero. Because of this cancellation the jumps » and hence a = 0. An alternative argument which is also
made by £ t from view in the transform . . useipl in general is that by contf&nuity and periodicity
. Ci{f(t)}.) we have ‘ \ -
We progeed from our point of departure From ' £r(-1) = k'(l)’ )
the expression for f''"(t) we|obtain * - so that
f'(t)=-3t2+a+b, dct<l . 3-a+b=-3+a+b, .
- el . - .
To evaluate the constants it helps if-we know as much from which a = 0. Hemce, either way we find
about the nature of the function as possible. The , f(t) = -t + bt + c. N
following argument will be very useful. . = ‘ ) |
& 8y . Y - S1mllar1y, to find ¢ we may observe that f(t) is
) Both the series N an odd functlon so that c'= 0. We could also argue ﬂ‘ s
o that since f(t) is a sine series, we must have £(0) = 0,
e -
21(-1)W@} ; sin nnt from whlqh ¢ = 0. Finally, to find b, we observe that
n= n’w . . N
- by the %eries definition of f(t) and its continui
and the series of its derivatives with respect to t T which precludes jumps from one period to the\nextf
» ’Y‘ -
. - \\* . . we have f(1) = 0, hence -1 + b = 0, and b = 1, Alter-
R :
Zl(-l) ; cos nmt j natively, by the continuity and thg periodicity of
n= N n°mw . ° - N (3
"f£(t) wdhave £(-1) = f{1), so that
converge uniformly by the Weienstrass M-test, applied : .
S '8 y by elenstrass | » 3PP 1-b=-1+b, and b =1.
with the series of constants . )
o . - L ’ Thu€, for one perlod
e L7 12y L : ' ' ¢
- 7? n=1 n® 7% ne1 n? | f£(t) = -t? +.¢, -l<t<1 v,
- . . 3 —-. - . v.‘ (
.respectxveLy, usgd for comparlson Since the sum of R (See Figure 10:) . N : .
a uniformly .convergent series of continuous functions , - . ,
is contlnuous, we have continuity of f(t). In addition, v e 'Ak £(t) ; ! ¢
since the serles,fbg f£(t) converges and the series of ° \ ’ \\\\f o
derivatives convéngés uniformly, we have that :
s P ) . i
’ fr(t)e= 7§ 1™t A2 o nrt, . -
‘ -n=1 nzﬂz ’ ) » ‘] . ] rt ) ' .
.- -and hence f'(t) is also c%ptinuous. .
-
Now, there are two easy arguments we can use to / - s -
find the constant a.in f'(t).\ First, since f'(t) is * Figure 10._ Graph of f(t) for .
’ = - - . IN [
given by a2 cosine series, it is an even function, . Example €. ) .
! .
15 N
) o > . . N 16 .
. . ' . , &
, . . . . i . -~ 1
o | | A9
ERIC 43 ., ‘ ’
i o S ¢ ! # . ° .
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Example 6

Suppose we wish to_find the functlon f(t) whose
Fourier series expansion is given by

8 . ; (_1)(n-1)/2

f(t) =
72 n=1,3,5... n?

sin nt.

We first note that nwt/p = nt, from which p = =,

2p = 2w. In addition, a, = 0 forn =~0, 1, 2, ...,
so that f(t) is an odd function. The coefficients bn
are given by

. I (-1(n-1/2, n odd .
242 X
bn = .
0, ) n even
S{nce .
=1 o
C, = 5(a ib ),
we have -
“ e
ALy oaa
nin?
Cn = '
0, n even

from wﬁich

"§i_(-1)(“'1)/2, n odd

nim
C{f(e) = chn \ 5
PRIEN 0,

¥

M L
~

Since the transform coefficients in formula (9) of
Unit 324 are expressed in powers of p/inm, we Tewrite
the preceding expression in the form

5) -

n even,

C{f(t)} =
0, . n even .~

We now face the crucial problem Qf finding the way
im which the two distinct expressions (for the odd angd
the even coefficients) in C{f(t)} can be unified into
a single form. Your ability to make this. step requires
careful observation in work1ng with the forward trans-
form, and with tr1gonometr1c functions in general.
We simply note the resurlt

(D o, g, s, L
(Check out a few values of n for yourself!) We therefore
have .

>

2 -
Y b 8i _. nm - _
C{f(t)} = Tﬁ?]. 5 sin 5=, n =1, 2,3, ..gﬁ?'
We now convert to exponential form: .

inw

ctee) = (&) & [o1n2 7ine/2),

With p = m, we now obtain the coefficient transform in
the form of (9) from Unit 324: 4

) _ 7 1% (4 -inn(-n/2)/7 4 -inn(n/2)/nw

C{f(t)} = [m] [Fe -qe .
This' form reveals jumps of +4/7 at -n/2 and Y4/7 at w/2
in the first derivative f'(t). However, we must also
be alert to poéiﬁble cancellation of terms, especially
at -m and w. The simplest type of- function whose
behavior agrees with what we have so far is one with
derivative of the form

Si




v

R |
, a, -1 < t < -n/2 and p/2< t<w . . -at + b, T <t <-u/2,1.e.,0/2<t <y |
fi(t) = , _ 4 - ‘ ' |
. 4 . . f(-t) = 5- Frajtre, -w/2<-t <w/2, i.e.,-1/2<t<n)2
Tt a, -m/2 <t < w/2 - )
. I -~at + d, w/2<-t <7, i.e., -m< t< -n/2
Y - .
. . . -
(See Figure 11. We note that because the period is w, -at - b, <t o< -n/2
and contributions at - and 7 would cancel: .
. = -f(t) = -[% + a]t = C, /2 <t < w/2
aeinn ) ae-inn =0 .. . -
. . -at.- d, §/2 <t <
Such cancellation does not occur at n/Z:)
from which
° s ' b = -d and ¢ = 0,
Af(b) . N By continuity of f(t) at t = n/2,
_ {4 gom !
A, . an/2 + d = [F + a] 3 -
from which d = 2 and hence b = -2. From the serdies

definition of f(t) and continuity, f(n) = 0, hence
anm + 2 ='0,and a = -2/n. T

A
I
A
‘ .

[STE]
l’ bl
=5
[
Y

.# - -T
2

Figure 41. A possible form of f'(t)

Aiternatively, we could have used the series
definition of f(t) to obtain f(t) = 0, from which ¢ = 0.

for Example 6. . Continuity of f(t) at t = %/2 now yields the equation
- » - ) . >~ ¢
_ (4. 7 * . t

. an{Z +d = [; + a] 7 .

Proceeding from our.point of departure, we have : ‘ . -
. from which d = 2. Similarly, from continuity of f(t)
I at + b, . T <t < -7/2 » at -m/2 we obtain b = -2, The constant a is determined
f(t) = [% + a]t + C, “m/2 <t < w/2 as above. ’ : .
l at + d, - n/2 <t < 7w, By either apﬁroach we obtain

To evaluate the constants, we first apply'the M-test -%t - 2, r o< i <;-n/2

(as in Examiple 5),wsing (8/n%) b 1/n% for . . :
n=1,3,5... =42 }
comparison to see thdt f(t) is continuous everywhere. £(t) = w o m/2 <t <w/2
. Again, we illustrate two alternative methods for - ' -%t . 2, $/2 <t < 7.

determining the constants.

First, since f(t) is an odd function, f(-t) = -f(t), (See Figure 12.)
so that - ’ . 20 °

’ 19

) : - . )

O ‘ : o - ov . .
ERIC ‘ 02 , S
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A
1%’1\*‘3& i } i ) ‘\ ’ \ .
) ) e _ 5. MODEL EXAM®H .
- : A ) - . . . .
. f(t) K 1.  Find f(t) if . -
. - a. L{f(Y)) = —1—2 [3-e'25-4e‘35+_2e'55] -%[1+e-35];
» 2s ‘e
- 14 [ . .
n 7 , . /\ / “* q , »
| e gy Yol 2
a1 7 m E ?3 2s? s s?
| +‘..Z._ + —1- + l.
i N , @ . ( [ 53 . ‘sz . S
Figure 12. Graph of f(t) for Example 6. . . . V- . *
- . e i B * 2
¢ o _ 2. Find f(t) if~ .
s L " Fif(e)y = &sin e o001y | ,
Pl . * @ .
Exercise 3 - ’ . s
ot T . W
% For each of the following, find the funct\ion f(t) whose - . 3. Find f(t)eif f(t) is periadic of period 3, f(3/2) = 0
Founer ‘series expansion is given: - and if
s fly=g 3. Ly _ [-23;“ v 2 n odd
n=l,3,57... C f(tl - n3g?
[it may be helpful to note that cos nm = (-1)" and that . . o 3.
2, nodd ’ - ) A\ Znw neven.
L 1-(-1)" = . ] ; ’ ‘ T
. 10, neven L . Coe . R < N
‘\ © n n+l . ¢ l !
. b. f(t) =;—+ Lz E-I) cos n1rt+-(-1)—“sin mrt]. ) o )
. nx=1 n? n . - :
- i /' ~ I
T~
- - - )
. . - 3
. . -
. . ol
. -3 y - .
: ' ¢
by - . 21 ' - ' ‘ 22
‘km#‘ ~ A . ) » .

x \‘1 ‘ . ) '
. ERIC .
L
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6. ANSWERS TO EXERCISES

v

~0, P
1. a. £{t) = 3
11 0,
b. f(t) = 2,
1,
) 2,
o: o C. f(t) = J
S %t - 3,
. [ t? + 1,
cd. f(t) =% -t + 4,
L] 0’ ’ “
. -1,
2. a. f(t) =
’ 0,
. [t . 2 ~
1,
b. f{t) = 2 - ¢,
c Lo, '
N e
C. f(t) =
b . 0

"

) -1,
*3. a. f(t) )

b, £{t) = t? + 2t,

. ERIC

Aruitoxt provided by Eic:

1
-2m <t <
elsewhere.
-2 <t <
-1 <t <
1 <t <
2 < |t].
ft] <1
ftf > 1.

-2 <t <

~
.

23

f(t)

£(t)

f(t)

f(t)

7. ANSWERS TO MODEL EXAM y
(
3¢ o0, 0<t<2
2
t, . 2<t<3
5-t, : 3<t<.5§
0, , 5 <t ‘
[(t2 + ¢t + 1, 0 <t <1
=4 2, 1<t<3
1 1
,th'-z- I <t
[t + 2, -2 <t < -]
Itlyl B -1 <t <l *
12 -, , 1<t<2.
‘Lo, 2 < Lp}:} .
(s ¥
-2-t+1, -7<t<0 .
et o+ 2, 0 <t < %;
- 5
- . s
‘L
e ':""
LW N i
. - ‘ 24
Al
\

.




! * Return to:

STUDENT FORM 1 . EDC/UMAP
) 55 Chapel St.
- Request for Help -Newton, MA 02160
Studenp: .If you have trouble with a specific part of this‘unit, please fill
out Ehis form and take it to your instructor for assistance.The information
you give will help the author to revise the unit.
Your Name S < . Unit No.
N ol
Page Model E
- 1. secti odel Exam
‘,M:Q Upper OR }fwf‘ etfon___ 0 Problem No.
§ L &g} . R _
¢ Middle Paragraph ) Text
%i Lower T Problem No. o
. -3 N
) Description of Difficulty: (Please be specific) ’ i:
/- “
~ N
{ .
S .
Instructor: Please indicate your resolution of the difficulty in this box.
, (::) Corrected errors in materials. List corrections here:
e
(::) Gave student better explanation, example, or procedure than in unit.
Give brief outline of your addition here:
. 7}%‘* ' . ’ . ‘ A
'gz;;} (::) Assisted student in acquiring general learning and problem-solving
: skills (not using examples from this unit.) -
[}
: s *
T oa (J
e
T |
R Instructor{ikﬁignature
O

[ERJ!:‘ ’ Please use reverse if necessary. .

re
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- Return to:
- STUDENT FORM 2 EDC/UMAP
. Unit Questionnaire . * ? izwsgi?eiésgél6o )
Name : Unit No. Date
Institution ) Course No.
o Check the choice for each question that comes closest to §our Personal opinion. !

1. How useful was the amount of detail in the unit? o

Not enough detail to understand the unit
- Unit would have been clearer with more detail
. Appropriate amount of detail
e ___Unit was occasionally too detailed, but this was not distracting
. Too much detail; I was often distracted . .

2. How helpful were the problem answers?

Sample solutions were too brief; I could not do the intérmediate steps
Sufficient information was given to gsolve the problems ...
Sample solutions were too detailed; I didn't need them }

o - -

3. Except for fulfilling the prerequisites, how much did you use other sources (for
gxample, instructor, friends, or other books) in order to understand the unit?

A Lot . 7 Somewhat A Little ‘ Not “at all

Y
¥

4. How long was this unit in comparison to the amount of time you generally spend on
a lesson (lecture and homework assignment) in a typical math or science course?

Much Somewhat About Somewhat Much
Longer Longer the *Same Shorter Shorter
R I - - T T s

5. Were any of the following parts of the unit confusing or distracting? (Check
as many as apply.)

Prerequisites

/ - Statement of skills and concepts (objectives) °
Paragraph headings ) .
Examples ’ . .
Special Assistance Supplement (if present)

Other, please explain

6. Were any of the following parts of the unit particularly helpful? (Check as many

as apply.) i .
P;erequisites ) - N
Statement of skills and concepts (objectives)
‘ Examples . ' o ) o
Problems v -
\ ' Paragraph headingg . .

«r Table of Contents - \
7. Special Assistance Supplement (if present) - v

Other, please explain i . N

Please describe anything in the unit t@ﬁt you did not particularly like.,
- ‘\-;,/ .

¢y

Please describe anything that you found particulatly helpful. (Please use the back of
this sheet 1f you need more space.) -

\ * i




