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high (low) set, of observations on one variable is associa-

ABSTRACT

~ V-
[y . -

- Regression toward th%e mean is a phenomenon that is a
natural by-product of less than perfect co;relatxon be-
tweenctwo variables, but regression effects have often °
been mistaken for «treatment effects in poorly-designed
experiménts. The purpose of this module is to explain,
theoretically and empirically, this bothersome concept.

. 1. INTRODUCTION . .o

Did you ever notlcq’that the sons of very tall men are ¢
usually also tall but not guite as tall ‘as their fathers? E
And that .the sons of very short fathers tend to be not as
short as their fathers? The ‘famous anthropologlst Francis-.

Galton did,” and he once believed that this would ultlmately .
. lead to the elimination of the very tall and the very
short, Will it? ) , .

robably not. ‘As we shall see, this kind of "regres-
sion™ is a stgtistical artifact of the imperfect correla-
tion® between any two variables (e.g., Meight of father and
height of son). Unfortunately the lack of understanding of
the principle continues to be & problem in scientific re-

search. . ’ -
. . . b
. N?
. .
- Sev ) . & - AN
2.1 -Definiti -7, ] .

Regressio;,toward the mean is the pheﬁbmenon:whereby a

ted Wlth a mean on another variable that is also high (low)
but that is closer to the overall mean for that other vari-
able.
it is a necessary consequence of Yess than perfect correla-
tton between two variables. .

Consider the scatterplot in Figure for two variables k
X and Y that are on the same scale (the Pearson product— L.
moment correlation coefficient for those data is 0. 5) ,: ‘and :
pay special attention to-the left-most array of four p01nts @ .
(for X=1}. The overall mean for variable X is 4, so those !
four observations are low relatlve to that mear. Note, H
however, that the mean for variable Y for those same obser-
vations is 2.5, which is closer to the overall mean for -
varlable Y (alsé 4) than the 1 is to the mean of 4 for =
var{able X. The reason for this is simply the shape of the
scatterplot. Since there is not a perfect linear relation-
ship between the two variables, the most extreme observa-
tions on X are not necessarily associated with the most .
extreme observations on Y. When the very lowest X measu:eguu‘ N

5 - o o L

_where to go but up,

It is of.no real scientific importance whatsoever,’ ! )

. ) . L, ‘- PN »
: - .- .
, Lo .
S . .-
(&

P
£ Y v

are considered, the corresponding measqres for Y have no-
so to speak. ¢ :

This phenomenon also operates from the top down, as

well as from the bottom up. Agaln referring ¢o Figure 1,

the g;gb; most array of four p01nts {for X=7) produces a

mean for variable Y of 5.5, whlch is closer to the overall

v-mean of 4 than 7 1S to the overall X-mean of 4.. ,
For simplicity of 1illustration, the Y measures of
Figure 1 were put on the same scale as the X mecasures. .
That 1s not necessary, B however. The general shape of\tng

scatterplot remains the same 1f either X or Y is trans-~
formed linearly. Q

[3

"Y on X regression

2 [ [ o2 e [ line »
€ -
1 o o e e Y = 0.5x + 2 .
-
1 L 1 1 1 1 |4>
01 2f 3 4 s 6 7 ®
L] . ) . .
Figure 1. An illustration of regression toward the ; g',,
mean. (Adapted from Campbell, D.T. and Stanley, J.C.,

Experimental and quasi-experimental designs for re-
search, Rand McNally, 1966, page 10. The numbers next
to some of the points are the frequencies of those ob-
servations. The points without numbers represent

. 51ng1e observatlons. The QOtal number of observations:

is 58.) . 3

A single illustration is not a sufficient explanation
of ‘a phenomenon. The following algebralc argument treats

the general case. :
Consider the equation of the regression line for Y on

X, namely -* - "

(1) Y =DbX+ a,
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where- N ‘e P ) :
J N

(2) b = 1y gﬁ o -

and . ¢ - ’ ISR

(3) '; - a = ﬁy - bM,. - . o ) -

- (In these eduations, M x and M& aré the overall‘means, Sy

-

and S, -are the overaIl standard dev1at10ns, and r 1s the
correlation bethen the two variables.) Substltutlng the
e values glvenggy‘Eqs 1(2) and:(3) tor b and a 1nto £q. 1),

we have . . .t
. S i S
. on . v - oy
. }4) N Yy = Iyy S, X + HYM Tyy 5, iy, . *

Rearranging Eg. (4) algebraically leads to .

S .
- ¥ ox -
] . Y=gy 5, (K- M) ¥ Ny
r ~ T - - ;
to Ve . : q . o
\ Y - Hy = gy s (x - M), .
or ° ot .
Y-M X-M R :
(5) _'—xs =, rxy 3 X ) . . .
Y ‘ X R - ’
This is the sox called "standardized" form of the regre551ehe
equation. - ;o
=~ Now consider a set of observatlons for wh1ch Xis k =«
standard deviations from M, Then
Y-M, - (M_+kS_)-!1
— X X X
(6) —¥ = = Kr .
S Xy S Xy .
Y ‘ - X .
hid - - P >
Slnce £ 1, the.value of Y'on.the regression line that
"goes w1tK this extreme va*pe of X (the Y-mean for the

array) must be less thah or,equal to k standard dev1at10ns

fron My (equallty holds only, Af Ly +1)., That's regres-
sion toward the mean, no matfer what the values of k rxy'
My, My, X’ and SY are. i

. ) 3. SOME OTHER EXAMPLES - .

(

An educator gives a ;eading achievement tesf to a
groupnof third—grade pupils, picks out the pupils who
obtained the lowest scored on the test, gives them a two-

4 thonth remedial reading program, tests them agains and ob- -
serves that their scores are significantly higher. 1Is this
evidence that the program has been successful? Not neces-
sarjly. It could be regregsion toward the mean; scores on
the two tests probably do not correlate perfectly with one
another, ..

K 17 . ’ 3
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mokl nd cer’ *
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. A phy51c1an exanlﬂes'several cancer patients, obtains
a medical h1story of the1r c1garette smoklng behavior, and
discovers that those who smoked the most had only slightly
dd}e than an average ameunt of lung cancer. Does’this mean
that ’if you're 901ng to smoke cigarettes you mlght as well
smoke & lot? Perhaps, but theremay be regres51on toward
‘the mean here, too. Althou h there 1s a-posltlve Gorrcia—
tion between niumber Jf clgaretées smok€d and amount of luhg

« cancer,’ the corrélatlon 1s far from perfect. <
. * <4, BUT WAAT IS IT THAT REGRESSES = -

’ ‘ 12} 1} 1EAN?. -

* .

‘.
This questlon can- be‘best answered in the context of

- two techr1ca1;rbut s1mple,_stat1<t1ca1 c ncepts, nhmely

expectation and conditionalijty. The expected value of a
variable, say Y, 1s the mean valué of that varlablé nJsual-
ly written as’ E(Y). The conditional expected value of ‘Y is
the mean value qiven constrajint, say X, and is usual-
ly wretten as E(YIX). ’
- Regression toward the mean 1s concerned with the com-
. parison between the quantities X - E(X) and E(YIX) - E(Y).
Referring to Flgure 1.again, the (standardized) distance
between any X and the mean of X is always greater than or
equal to the .distance:between ths mean of Y for that ¥ an?
the overall Y mean. So it is<E(YI[X) that regresses-towgra
4(Y), relative to the. discarepancy between X and E(X). 1If
the correlation between-X and Y 1s 6, i.e., 1f the scatter-
4 ploﬁ>forms a "buckshot" pattern, xhe'regress1on is max1ma1
and E(Y|X) = E(Y). If the correlation is +l ‘or. -1 there js
ng_rggrgssign_;gwg;g_;ng_mggn, SlnCe the (standardized)
didtance between E(YIX) and E(Y)* 1s the same as the (stana—
ardized) dlstance between X and E(ﬁ) \

54__AN_EMBIB1QAL_DEﬂQNSIRAIIQH_QE_IHE_EHEEQMENQN .

Take two decks of orérnary playlng cards Seleqt the
sevens, eights; 2nd nines from one deck and call thas
reduced deck of 12 cards.Deck A. Seolect the aces (ones)"

" through nines from the, other'full deck and call this re-
duced deck. of 36 cards Deck B. 'Pencil in the number -2 on
. each of the aces in Deck B; the number -1 on each of the
.twos and threes; the number 0 on each of the fours, fives,
and sixes; the number +1 on each of the sevens and eights;'
and the number,+2 on each of the nines (all in Deck B).

* For each card in Deck A draw a card at random (with
Leplacement) from Deck B. ("With replacement" means that
you put the card back in the deck_befdre you shuffle and

Lo o L 4
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' draw another one.) Add the 12 paixrs of numbers (the actual . “ The sevens, eights, and nines originallyschosen from
denomlnat;on for }he catd in Deck”h and the number -2, -1, ) “the first full deck of cards are analogous to scores on & \f
0, +1, or +2 drawn from Deck B). For example, palred with . test that the 12 brightest. vof .36 students ‘desérve to get,
. the seven of spades in Deck A you npight have a =1 from Deck (The other 24 deserve to get one through six, =~ Forget about
i B. Adding these together you have 7 +(-l):= 6. the tens, jacks, queens, and kings.) The'IZ sums are o,
- ) Now-pick out the six largest sums (using any conven- ' : scores that they actually do get, scores that contain a ’
- J'ient. randomizing procedure to resolve tles) and find their random error component. (They qll deserve high scores, but
. : " mean. (See Table 1 for an example of this step and all by chance some will "have a bad day“ and obtain Scores that
’ subsequent steps in the demonstration.) Set aside the six - .are less tHan ‘the ones they deserve, while others will
. ., tards ffom Deck A that did not contribute to the“largest . "haye a good'day” and obtain scores that are greater than *
.syms.’ They will no longer be needed. o . the ones they® deserve.) .
. For the game six cards from Deck A that d;d’ contribwmte At 'the second "testing" the scores obtained by the .
R R to the six largest sums, repeat the pa1r1ng,~sumn1ng, and L "people" who had the six highest scoress the far time ’
- averaging process uUsing six cards drawn at random from Deck would not be expecfed to correlate perfectly (because of
B. COmpare the two means. ¢ The second one 'should be 1ower. ‘the chance error components) with the first atypically high -
Do you know why? (Try to thirnk of a reason before you read scores, Ergo, regression (downwarc) to the mean. Te
on.) -+ R ™ The moral to all{of this is: if a group of people
. TABLE 1 ¢ . . . Score very high on a test one time and get lower scores the
) T . e N\ next time, don't be surprlsed and don't get too concerned,
. s One Set of Empirical Results - The same implication holds at the ow end of the'scale: if -
. . . (regression tovard the mean) " a group offpeople score very low on a teSt om® time and get
. "First testing” o higher scores the next time, don't get too elated. In both
Deck A cards Deék B cagdé . Sumg ‘@ Cases it could be whqlly or partially regre551on toward‘the .
) 7 v 7 (+1) 8 mean. . ¢
i 7 , 9: (+2) 9 . L . ¢ mxercises T - . '
~ 7 . 6 ( 0) ! 7. ’ T . )
7 8 (+1) 8 R 1. Demonstrate for yourself that the implication Jjugt mentioned does i
' ‘8 8 (+1) ‘9 » hold at the low end of the scale by c:;rrying out the demonstration
g8 - .l g (+1) . 9 . . described in Section 5 again. , This time use the aces, twos, and N
. " 8 ’ 7 (+1) ‘\ 9 threes from the first full deck of cards as Deck A, and pick dut - .
8 A (=2) N 6 . . the six lowest sums. -~ )
. 9 3.(-1) ) ., 8 ) N 2. 'Referring back to example 3.1, think of a readin.g improvement pro-
. - . 9 ’ 5 ( .0) . <9 . gram being given to the "people" who obtain the 61x lowest scores
* . . 9 6 ( 0) © 9 * *.at time 1, with the scores at time 2 as a mepsure of their per-
- . 9 6 ( 0) . , 9 . © formance at the end of the program. Do you see now why the "im- _
' ' . ' mean of checked . ' provement'" is a $tatistical necessxty" . -
: - , : - sums = 9.0 . . h
) "Second-testing" . . . - 1. _MWHAT.CAN BE DONE ABQUT IT - =~  * ' |
' ° re )
' Deck A carde Deck B cards +  Sums 2.1 _In Experimental Research ‘ . Lo
N 7 A (-2) 5 e . Co
8" . 2_(-1) - 7 ‘ Whenever we're seriously interested in the effective- -
8 3 (-1) N 7 . . ness of a reading improvement program, a weight reduction
. 9 . 6 ( 0) ’ - 9 plan, a headache remedy, etc., we should use iwo'groups of
. e "9 8 (+#1) « * .10 people, rarddomly assigned to either receive (the experi- .
. "9 . 7 (1) 10 mental group) or not receive (the control group) the par- .
~ v . ’ 48/6 = mean . ticular treatment in which we are interested. If all of
- . . 5) ". . ] ) ) of 8.0 the people happen to be recruited from extremely Migh or
. . . ‘ .extremely low portions of some|score distribution and ate
N .
o ] . 5 ‘ . . 6

. .
T »
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given a pre-test before the experiment and a post-test af-
“-ter the experiment, the regre’ssion toward the mean effect
will still take place, but it will be balanced across the
two groups. For the reading program example, if people'who
get yefy low, scores on the reading pre-test are randomly
adsigned to experimental (they get the program} and control
(they don't) groups,<both groups'will do better on the
post>test due to regression-toward the meéh/‘but if the
. program ig really effective the members of the experlmental

group will score that much hjigher. . .
. . s .
n-Ex i a

N

4

h . E

. The only thing that can %e done 1in non-experimental.
research is to do the best we can in distinguishing between
; a legitimate flndlng and a regress1on ‘effect. or. the »
) smoklng and 1ung cancer example, the heights of sons vys.
helghts of £3thers example, and similar ftudies, the ex-r
tr'eme measures on one variable are usually associated with
less extreme measures on the cher variable for purely sta-
.tistical reasons. (Selegtive matlng has something to do
with 1ntreas1ng the correlation between fathers' herghts—
‘-\ and sons' helghts, bub Jthe regression effect provides a -
. -sufficient explanation for the reduction to "medlocrlty"
£hat Galton opserved.) N '
-Some’ people think that. matchlng;can take care\of prob-
lems associated w1tm reqresslon toward, the mean but,'alas, -
it can't In a well-known study 'by Helen Christianseén of -
* the effect of high. sehopl graduatlon on'economlc adjustment
.~ during the early days of the- +depression, an original sample

. of 2127 beople was reduced to 23 matched (on six background

variables): pairs Qf graduates and Jnon-graduates, with the
- graduates exhlbltlng better adJustment thaﬁ’the non- gradu-
N ates. Bute«the regression sf£dct gould very well account L)

. for ‘the difference since the non-graduates who had been
z matched with the gfaduates on such things as mental ability
“and nelghborhood status (both of whlch arecpos1t1ve1y cor—
reélated w1th %conomlc‘adjustment) were well above average °
rela&Lze_tg_;heLr_fellsuLJnurzara_nﬁtes gnd would_be expec-
ted to regress further (to their own population mean) tnan

* the graduates at the follow—up testing ten years later;

thereby making the graguates appear to be better adJusted
ecenomictally. 8,

. Note that 1t 1s hot*feas1b1e to study the effect of
*high school graduation on economic adjustment experimen-
tally, since it.is socfally unacceptable to asslgn some
‘people to receive a high school -education and to withhold

it from. thers. However, there are better ways than the

. matchea—ia}rs téchnlque to contnol for confoundldé back- '

o - - . 7
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ground vquables, technigues that~3re also less subject to
regression effects and do not result in the shrinkage of
.the research sample. - -
One final point: the regression effert works "back-

ds" asewell as "fdrwards® statistidally, e&en though, 1t
makes absolutely no sense sdlentlflcally Very tall sans
have fathers whd are closer to average height than they
are, which should convince you, if this modulé ,and your:
previous exposur®e to statistics have not alregdy done so,
that correlation ber se¢ does not necessarlly imply cadsa—

tion. | o . ‘ o N )
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9, END-QF-MODULE OUIZ . »

. s —
1. tf a 33041 of people who exhibited great test anxiety before
" counseling had greater test anxiety after counselrng. is regres-

sion toward the mean a lvkely exgtanatron° Why or why not? -
2. 1f the regression equatxop for Yon X is Y = 0. 7SX +p1.5¢

M, 7 My = 6, end S, = = 2, what is the mean on varrable Y for.
© ten observations for which X = 5?. Does that make sense? Why or
why not? ‘ . » .

3. (B¢nus question) In ‘some experrments the people in the experr-
mentdl group and fne people xn the control group are the «same
. people, 1.es, they receive both treatm’hts. Is regressron toward
the mean ‘a problem in such experiments? Why or why not?
- M . -

, . -

- A3 - N » ‘ -
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~testing as the post-testing after Treatment 4), and post-testing
after Treatment B. The postf-A scores should bé closer to the mean
than the pre<A scores, due to the regression effect, but since the
.experignce of Treatment B is often not contemporaneous with the
experience ‘of ‘Treatment A (the people usually can"j undergoing
both treatments at once), the regression from pre-B post-B may

1. It wor%ed fine for me.“vmhe sxx lowgst sums that I got were fopr

1" and two 2's, with a mean of 1.33. "The correspondxng sums the
next tzme wﬂre 0. 1,1, 3, 4. and 5, 'with a mean of 2.33, which is

a point higher (and closer to the overall mean) than the.first not be comparable. :

*
onea i * )

- . .

t ’, .
It is artifactual because the six lowest "people” haﬁ bad luck the
fxrst time, and since luck gfa s no fdvorites _they couldn!t all
have bad luck the second tide; therefore. as a group they scored
higher and would have done_so with or without the program.

St o_th

.

i. No, regressxon toward the mean is not a likely explanation, since
they scored high ‘the first time and higher, not lower, the second
«time™>The ;eg&gssxon ‘“ffect is only“relevant for high to lower

and low to higher mean dxfferences. Lee., an originally high group

f

scores lower the second txme or an originally low group scores
higher the'second time. ‘
The evxdence suggests that the program was not only not ef-
, fective, but harmful. However, since there was no ‘control group @
. {which would be treated in the same way as the experimental group
gxcept that they don't get the counseling) we catnot be sure that
the counseling itself was ineffective, The disappointing results
-may be ddé to the ceunselor, the office in which the counseling
onk“ﬁlace. some- other event that transpxred during the counseling
perlod. etc, ' ,
. . X
T 2., Substituting X = 5-in the regression equation, we obtain Y = 5.25.
The 5.25 is closer to the wean of Y than the 5 is to the mean of
~u~X. s80-it indeed does make sense., =5 is not an extreme observa-
txon (1:«15 _only one-half of a standard deviation below thé mean !
- of X, bu& the regreSSLOn effect actually works on 311 of the .
observatxoﬁs; not Just the extreme gnes. as Eq. (5)° attests.
. The con;elatxon coeffxcxent for thesésdata, by the vay, is

the same as_the regressxon slope, b, x.e.. 0.75, since
K
o~
'S

¢

and
L

3. Yes. since ‘pre-test and post-test scores still won't correlate
perfectly. Things get a little more complxcated however, since
you™could have three or four. rather than two, testxngs to contend
with: pre-testing before Treatment A, post- testxng .after Treat-
ment A, pre- testxng'pefore Treatment B (which may be the same

N . - 9
13
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Name ’ ' i Unit No. » " Date

»
»

Institution Course No.

Check the choice for each question .that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?

oL + - Not enough detail to understand the unit ’ o

" Unit would have been clearer with more detail 0
_____Appropriate amount of-detail - x - A

Unit was occasionally.too detailed, but this was not istracting
Too much detail; I was often distracted

2.  "How helpful were the problem answers?

1
’

%o L

Sample solutions were too brief; I could not do the intermediate steps §j?
Sufficient information was given to solve the,problems
Sample solutions were too detailed; I didn't need them -
3. Except for fulfilling the;prerequigites, how much did you use other sources (for
example, instructor, friends, or other books) in order to understdnd the unit?

A Lot Somewhat A Little ~__Not at all

& 3

£

4. How long was this unit in comparison to the amount of time you nerally spend on
a lesson (lecture and homework assignment) in a typical math‘?égicience course?

/ I

MUChf " Somewhat " About ‘. Somewhat Much

Longer Longer . the Same \ Shorter ____Shorter
Were any of the following parts of the unit confusing or distracting? (Check
%s many as apply ) . s

Prerequisites v

Statement of skills and concepts (objectives) .
Paragraph headings b .
-Examples . . '
Special Assistance Supplement (if present)

Other, please explain

r
!
|
\
.

as apply.) . .o i
Prerequisites , . ‘ N .
* Statement of skills and concepts (objectivés)
. Examples
Problems ) '
Paragraph headings : . .
. Table of Contents o

Special Assistance Supplement (if. present)
Other, please explain

"

Pleasé describe anything in «the unit that you did not particularly like.

T

>
. "

Please describe anything that you found particularly helpful. (Please use the back of

this sheet if you need more space. ) .

o
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THE NﬁED TO SUMMARIZE DATA - AN EXAMPLF

BASIC DESCRIPTIVE STATISTICS

e

.

te

.

-

.

There 1is a quaﬁt;tatxve side to almost evérv aca-

demic field.

various rocks specimens.

tion times

to

The geologist measures the hﬂrdHEs% of

' The p%VLhOlOﬂl\t measures reac-

.
a certain stimulus.

The educator measures

learning as it is 1eflected 1n scores jon achievement
The list could

tests.

be extended for manv pages.

task is to decide how to best present it so that 1t is

0 °

The economist records income.

i

-

After a set of data has-been collected the next

available to others 1in a quick and useful way.

The

methods used to do this belong to a branch of study

called deécriptive<?tatistics.

&

Inctuded in descriptive

© statistics are the methods of collectton,

and description of numertical information.

The

organization

topics

covered in this module are all from the fields of

descriptive statistics.

[y

Suppose we have. collected the data bedow.
S 3

‘Tez 157
152 162
170 161

149 160 _
165 167

147 157 -
Y165 159
173 161
t 157 160
160 156
157 168
160 160
159 160
161 149
169 * 158

160
159
166
174

172

162
151
168
168
150
152
161
160
163

168

,

HEIGHTS OF ONE-HUNDRED-EIGHTY g
17 YEAR-OLD FEMALES IN CENTIMETERS (gm)

160
149
162
170
152
158

167 ,

160
167
168
159
157
164
166
158

162
166
158
167
171
170
157
164
166
168
168
153
145
162

162

(hypothetical)
160 158 148
167 174 159
168 164 164
145 155 154
164 156 156,
157 164 161
148 * 146. 169
157 155 170
177- 150 154
158 177 157
165 154 157
176 147 167
155 162 154
159 163 162
161 159 163

160
153
159
180
165
158

161,

157
153
164

.166°

160

163

158
163

170

154
160
159
156
153
166
163
167°
151

171

157
155
164
170

160
164
165
154
156
148
151

- 156

149

A | "

Data in this form are called raw dage. 1In this un-
organized form the data can only be understood after a .
if the

.data set included several fhousand numbers the need to

certain amount of timc-consuman examination.

.organize and summarize would be eyen ﬂleator

2. MLTHODS 0Ot SUWVARI ING DA]A

Ea I thi~ seetion we will discuss two mmportant

methods of summarizing data: the frequency distribution

x

and the h:istogram.
. L .

2.1 Frequency Distribution .
0 w

-The simplest way to organize data i< by means of a
frequency distribution with one value 1n cach class. “_
Sugh a distribution consists of a list of the valyes
{hxch appear in the data set, alranged 1h 1ncreasing
order, and the frequencies which indicate the.number of
times the various values appear. Such A freqﬁencv

d1str1but10n for the data on page 1 appears below

hEIGHTS OF 17 YEAR-OLD FEMALES

’ ’
HEIGHT (in cm) TALLY FREQUENCY °
145 1] 2 *
' 146 | o1
147 . . W . 3
: 148 : *m e, 3
2 0 . " 4
© 150 . . " i 2
" 1 [T - 2
.15 - o °, . a4
. 153 i . a4
Lt 154 - 1te 8
%158 ) m . 4
rlf N 156 ” . W} . 6
frvd o [0 ’ . 13
. . Huny - ¢ 12
vt ¢ 9
s B S (11t 19
H - 10°
Hit pit . .10
i - 7
w1 9
hiud! . 6
AN
. 22 z

AV
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4
166 * 11y
167 . e
168 - . ) W .
169 \ ’
170 [e) N
7 .

A73 A
174 - i

176 P ..

177 S

178 -.

179 . *

180, ! } -
° ] _ 'TOTAL = 180

-

— O OIS U e DD 00 N~

.
The tallies in the middle column above are included
only as an indication of how the frquency distribution
was obtained.

It is not necessary, or even desirable,
,

td include these tallies with a f}equency distribution.
*

]
- Already we have made significant progress in the
This freahency dis-
tribution allows us to '"get a feeling” for the data

process of summarizing the data.

much more quickly than was possible from the raw data.
, nothing has been lost. All of the ‘infor-
mation wh1ch was available from the raw data is dvall-

Furthermor
able in this frequency distribution. This summary JS,

however, less than perfect. There are 37 different
classes; it takes nearly .a full page to present th1§
?requency d1str1but10n, and even with the data im this

form it takes some time to digest it.

The situatiop might "have been worse. Each height-
in this data set has apparently been rounded to the
nearest centlmeter. If instead, each helght were
rounded to the nearest tenth of a centimeter then there
would have been magy more classes gnd each class would

have a very small frequency. In-such a case the fre-

quency distribution would represent only a small .

, improvement over the raw data bBecause it contains too

23 -

Q ’

RIC - }

r «
P e

e

5

<individual values.

- S

much detailed information; there are too m(&{;glfferent
values. - .

In other cases it may happen that a frequency,dis-

tribution-of the type just given 1s a very effective
summatry. For‘example, the frequency distribution shown
below gives a quich and accurate descrlntlon of the

number of games pla)ed 1n the World %erles of Basehall

NUMBER QF GAMFS IN THE WORLD SLRILS (1923-1978) -

. No. of Games Freq;gncy
4 , , 11
5. 10
h 6 11
7 i 24

TOTAL =

Let us return to the set of data representing
heights. We can condense the frequency distribution -on
page 2 By using intervals as our classes, rather than

Eor example:

M t

HEIGHTS OF 17 YEAR-OLD FEMALES
HEIGHT (in cm) FREQUENCY  *
144.5--150.5 - 15

150.5--156.5 / ) 28
156.5--162. ’ 73
162.5--168.5 44
. 168.5--174.5 : - 15

174.5--180.5 | , 5

The first.claﬂe géntains all of the heights which
fall between 144. 5 cm! and 150.5 cm. The number 144.5
is called the Zower boundary of the class and 15075 is
called the upper boundary. Note that the upper boundary

of one class is ‘the lower bounda}y of the next class.

- - -
In this example the class boundaries have been chosen.

in such a way that no number from the datd set is equat
to a class boundary. Thus each number-can be placed- in

one,and only one class. By selecting class boundaries

. . . P - s .
which corrtain one more significant digit than the data’

N

Azzfi ’4 . ” 4
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it is always possible, to choose these boundaries so:
that they are distinct from the data. This is desirable

in order to avoid ambiguity.

¥

ERIC
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The midpoint, or class mark, of each class interval
may be found by addlng the upper and lower class bound-
aries and dx\xdlng the sum by 2. In the fxequenu\
distribution given above the class maxks are 147, 5“
153.5, 159, 5, 165.5, 171.5 and 177.5. he width of
each class ingerval 1s called the class width. The class
width may be found by subtraétlng the lower class bound-
ary from the upper Each class 1n the example has a
class width of 6. 'It 1s desirable, but not necessary,
to have all claSSes of the same width.

A frequency distribution which uses class intervals
is.called a:grnwpad frequency distribution’ and thé data
in such a frequencdistribution is called groupegi\d“ata.
The frequency distribution given on page 2 is sometimes
called an ungrouped frequency distribution.

-

The grouped frequency distribution has been obtained,
at the cost of a certain loss of information. Wh11e the
frequency dlstrlbutlon has been obt'ained from the raw .
data, the raw data’ cannot be recovered from the fre-
quency distribution.beor example, in the frequency
distribution for- heights we know that fifteen numbers

lie between 144.5 and 150.5. But that is all we can

" tell. The exact values of these fifteen numbers cannot

be determined from the frequency distribution. '

‘Exercxse 1.+ Forty students in a chemlstry course did a laboratory .

experxment to determine the pH of a solution. The results are .

recorded below,

8.00 8.15 8.10 8.15 8.05
8.20 8.00 7.95 8.05 8.15
8.05 * 8.10 8.10 8.15 8,25 -
8.20 8.10 8.30 8.15 8.20
8.05 8.15 8.00 8.20 8.10 *
8,25 8.30 8.15 8.20 8.10
8.05 8.25 < 8.05 8.15 ~ 8.00
8.10 8.05 8.15 8.25 8.05
. . 5

M
ar

*
a. Construct a frequency distribuNon for these data 1 wH§:l

each class consists of single value.

b. Construct a grouped'frequency distribution for these data

in

~
which the boundaries of the first class are 7.895 and 7.995.

Use classes of equal width. .

Exercise 2. Terty laboratory rats are run through a maze.
SALICRSC «

The

. J‘7
time required to complete the maze on the first run is recorded

below for each rat. The times are i1n seconds.

10.8, 23.2 1.6 3.1 . 16.1 17.7

17.5 15.9 42.9 - 16.0 6.2 14.1

38.3 15.7 155% 19.8 " 14.8 39.7 .

16:9 29.8 14.0 ., 21.3 13.3 11.8 )

14.4 18.3 , 34.6 - 13.9 20.3 10.7

; “ ® q

Coqstructee frequency distribution for these data. -

)

2.2 Histograms .. .

A picture is worth a thousand words. If this is so

then 1t makes sense to find-a pictorial method of

presenting data. The histogram is such a method.

’The‘

histogram below is based on ‘the frequency distriputipn

for height datagon page 4. . AN

HEIGHTS OF 17 YEAR-GLD FEMALES

70 F - ;

ol L ‘
>~ 50 ’ o . .
2 .
g 40T . e
g 30 1 . . ‘ " o
= 20 ¢ ] by ’

10 + . , L

ye) ~ h ] . "_5‘ *.

0 7 144.5 150.5 156.5 162.5 168.5 174.5 1805

HE}GHT\(ln cm)

Figure 1. Histogram of height data. -

<




On the herizental axis in Figure 1 we see the .

class boundaries from the frequency distribution on

page 4. On thé vertical axis we see class frequencies.
The areas of the rectangles in the histogram must bte
proportional to the frequeﬁcies of the classes which

they represént. ‘If, as it pur example, /éll classes

have the same class width then.the area of each rec-
tangle is proportional to its height. In this case

the height of each rectangle mgy‘be thought‘of as
representing the frequency of the corresponding class.
The use of a vertical-axis for frequencies is, in this °
case, desirable end recammended. However, should the
frequency distribution contain classes of varylng
widths ,then a vertical axis for frequenc1es is impos-
sible and must—he avoided. (See the Soiukion tQ T
sExercise 4, below, for an bxample of a histcgram with

unequal class widths.) - . ‘

‘

.

Exercise 3. Draw a histogram for the frequency distribution in
Exercise 1, part b on’page 6.
Exercise 4. Draw a histogram for the frequency distribution in

Exercise 2 6n page 6. ,»

b )

"W 3. MEASURES OF LOCATION - ANOTHER METROD OF
_ » _ SUMMARIZING DATA .
, - - 3

e ! In ménx cases an even more drastic summary of the

., . .

data 1is requgred. For example, we might seek a Single

number that %an be thoughtAof as representative of the -

entire set of data. Such numbers are called averages,

or meagures of location, or measures of central tend- ®
ency,*or meagureg of position. ﬂe shall call them

.~ measures of‘lozation.' This‘conveys the important .idea

that such measures gell us where‘ the dafta are, or, ) e

equivalently, haw large the’dq;a are. -At the sdme time

B - ’ ' 7 Ll
R R7
e ) » s

e - - ».

it avoids>the word "average" to which some people are .
prone to give improper interpretations. -, . ’

There afe'many'measures of location. In this
section we will discuss three of the most useful: the
mean, the median and the mcde.” Each of these may be
thought of as, in some sen$e, locating the center of the

data.

3.1 The Arithmetic Mean ¢ .

, The most common measure of location, the one most
people 2re thinking of when they say 'the average of
these numhers is suchrand-such', is the arithmetic medn.
Althoygh there are other means than the arithmetic mean
(for example: the geometric mean or the harmonic mean)
when the word meaen is used alone it is safe to assume
that the {rithme%ic‘mean is the mean to which we are

referring.*

3.1.1 Computing the Mean from Raw Data

The arithm;tic mean is- the number obtained by
adding all of the numbers together and dividing'thﬁs
sum by the number of numbers:’ For example, the mean
of 6, 11, 7 apd 5 is (6 + 11 + 7 + 5)/4 = 29/4 = 7,25,

« If the variable x is used to represent the iqﬁivid-
ual num?ers in the data set, then X is used as a symbol
for the mean. 1If the variahle y were used to represent
the individual numbers then ¥ would be the mean of ’

thes® numbers, and similarly for other variable names.

.

e

Ny Let;as'use n to represent the number of numbers ‘in
a set of data. . If we use x to represent the individual
fnumbers then Ix will be used to represent the sum of
the nyggers:‘ Then we have the following formula for »
the mean:

X



e
P

) <

For example, if the data set consists,of the num-

s

Sometlmes the data are available to us only in the =
form of a frequency distribution. ' Thus it js necessary
for us to have a method for calculating the mean from a
frequency distribution. If the frequency distribution
-has only one value in each class, we use the followihg
method;

a. Multiply each value by the corresponding

*

1)

frequency and add °the product§. ; ¢

“b. Add, the frequencies to obtain n.'
A

¢. Divide the first number by the second.

This method is 1llu§trated below using the World
Series data from page 4.

- NUMBER OF GAMES FREQUENCY;
- X R f x . f,
. ' -
4 .. 11 44
5 . 10 . 50
6 .1 66
, 7 . 24 . 168 :
, If = 56 Z(kx - f) = 328 )
: —_38. .
; X 3 5.9
9
’ * -~

ERIC - 29 | L
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bers 6.2, 5.8, 2.9, 3.3 and 4.1 then n = 5, Ix = 22.3
and ~
. - . 22.3 _
X = -——S—— 4.46., i ) N
For the data on paée 1, n = 180, £x = 28900 and
1. 28900 _ 5 .
) X'= 950 1609 160.6. ‘
The symbol "#" indicates approximate equality and is
used here to indicate that the final answer has been .
rounded, )
L) . ) ! .
3.1.2 Cq;puting the Mean from a Frequency Distribution

‘.

point of the class.

HEIGHT FREQUENCY »CLASS MARK
(in cm) ’ f X x - f
*144.5--150.5 15 147.5 & s
150.5--156.5 . 28 153.5 ,4298.0
156.5--162.5 73. 159.5 11643.5
. 162.5--168.5 744 165.5 7282.0 .
168.5--174.5 15 171.5 2572.5
174.5--180.5 5 . 177.5 887.5 -
If = 180/ L(x - f) = 28896.0
T _ 28896,

) x’-x- 180 - 160.5 - s .
How does this answer cdmpare with the value of X obtain-
ed from the raw data? Can you account for the differ-
e?ce? . s

o N ~ . 3 -

5 10

This method can be expressed as a formula:
- _I{x + f)
. A ¥ S
. .
If the classes in the frequency distribution are
intervals rather-than 1qd1v1dual values it is not
possiblé to compute the mean exactly. This is because
we cannot determine the exact valuc of each piece of
data.
approximation of the mean.
)

It is, however, possible to make a very good

*  The sum of the numbers in each interval can be
found approximately byimultiplyﬁng the class frequency
by the class midpoint. Thus the mean may be‘apptoxi-

1
mated by using tbe samé formula as before:
. ’ 1
T
¥ = Z(x f) '

. ot )

But now the x on the right hand side represents the mid-
The next example illustrates the
use of this formula for the height data from the

frequency distributio? on page 4. -
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- tion.

3.1.3 Properties of Fhe Mean
f The advantages of the mean as a measure of loca-
tion include: ) :
a. It is the most commonly used measure of loca-
tion and thas is famjliar to many people.
b. It is rekatively easy to compute.
c. It lends'itself to algebraic manipulation.
d. Each number in the data set has as effect on
* the mean.
e. The mean is the most stable measure of loca-

’

tion under repeated sampling.

The last statement above requires some explanation.
* As we become more knowledgeable about statistics we find
that the data which we have.in hand, called a sample, is
often just a fraction of some larger set of data called
a population. It is of central importance to use the
data in the.sample to draw inferences about the popula-
The study of how this is done is called inferen-
tial statistics. One of the reasons that the mean, 1s
often used in drawing inferences is °that the varia-
b111ty cf the mean among several samples is less than
the variability of other measures of locdtion. This is
what we mean when we saf "the mean is the most stable

v- measure of location under repeated sampling."

The chief disadvantage of the mean as a measure of
location is that it is unduly affected by extreme
Y 500 and 3 is
of the original

values, the mean of 6,-ﬂ,
129,

numbers.

For example,
which does not seem ‘representative

.

Exercise 5. Compute the mean- of the data given in Exercise 1 on

S . .

page S. .

- Exercise 6. Compute the mean of the data given in Exercise 1 on

pagé .5 from the ungrouped frequency d15tr1butlon obtained in part

a of that éxercise, v
\)‘ | I 1 . . . .
ERIC . |
s i e . . N

. . &
Exercise 7. Approximate the mean of the data given in Exercise .

' 1 on page 5 from the grouped frequency dastribution obtained in
part b of that exercise.

Fxercise 8. Compare the results of Exercises S, 6, and 7.

Exercise 9. Compute the mean-of the data given in Exércise 2 on

page 6. |

.

- N
Exercise 10. Approximate ‘the mean of the data in Exercise 2 on

page 6 from the frequency listribution obtained in that exercise.

< 3.2

The Median ( : '

i

For a given set of data, a number which is greater
than half of the data.and less than the other half:
would be a useful measure of locatioh.

>
In practice ’

there may be no such number. For example, if the
numbers in the data set are 3,
in the m%ddle is 4.

smaller than 4.

4, and 5 then the number

But only one-third of the data are

In order to insures that the measure

. we are defining will always exist we must make a
slightly more elaborate definition”

~
¢

The median of a set of data is a number which: = -
a) is not greater than more :than half of the data,
and b) 1& not less than more than half of the data.
If the variable x }s used to represent the individual
numbers in the data set then x will be used to repre-
sent the median,

3.2.1 Computing the Median from Raw Data

-

- To calculate the median it is, f1rst necessary to
rank the data from smallest to largest.
then the "number in the middle."

The median is

If£-n, the number of numbers, <4s odd ther this num-

ber in the middle is easy to find. , For example,
ind the median of 11, 17, 12, 23 and 13 we rank the

)
P .
1

to .

v .

12
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Aruitoxt provided by Eic:

Y

'

* for example, the ranked data are 7,

- position in the ranked data.

’

ieuen'or odd,

. . . 4
data. (11, 12, 13, 17, 23) and observe that the numbe;

in the middle is 13. This is the median. .

If n is even then there is a small problem. If,
9, 10, 15, 18 and
20 then any number between lb and 15 satisfies the
definition of ihe median. To be technically correct
we should speak of a median rather than the median.
But this ambiguity is avoided if wg define the 'median
ir this casé to be the mean of the two numbers in the

middle of the ranked data. By~ this agreement the

median of 7, 9, 10, 15, 18 and 20 is
L . % = lg_%_lé =12.5 .° :

In both. examples above, no matter whether n is
the median is the number in the %(n+l)
When n was. 5, %(n+1) was

3 and the median.was the fhird number in the ranked :
data. When n was 6, %(n+l1) was 3% and the median was

hal fway between the t ird and fourth numbers in the

ranked data. Thus the’ procedure for f1nd1ng the median

from raw data may be summarized as follows: .
2. Rank the data. ~
b. Find the number in the %(n+1) position in
the ranked data. , ° ' i
2.2 Comphting the Median from-
[ ) a FrequenCX Distribution :, N o e

If the data are available to us in a frequency
distribution then the data have, in effect, been
ranked.

single value we need only determine the position of the

If each class in the distribution contains a

med¥an and find the number in_that position.

For example, in the distribution of helght data on

page 2 n = 180. Thus the position of the -median is
(181), 90.5, or halfway between the 90th and 91st
numbers. Add1ng the frequenc1es from the first class

onward we find that 77 numbers are in the classes up -to

$e

23 .

v

-

.

‘classes up to and including 160 cm.
. and 91st numbers are equal to 160 cm.

=

?
and 96 of the numbers are in the

Thus both the 90th
and the median

and including 159 cm.

~ _ 160 + 160 _

X—‘T--160-

If the classes in the frequency distribution are
intervals then, as with the mean, we cannot calculate
X exactly, but-eonly approximate “it. The procedure used
to approximate the median is as follows:
a. Find the position of the median: (n+1).
b. Find the class which contains the median.
c. Use the formula ,
o XL[M%_SJ‘

where: L = lower boundary of the class containing the
median. l
S = sum of frequencies fon classes lower than
the class containing the median.
" f = frequency of the class containing the

median . .
w = width of the class contalnlng the median.

Applylng this rule to the grouped data on heights
on page 4 we f1nd

a. P051t10n of the med1an %(181) = 90.5.

b. The median is in the third class (156.5-162.5).

c. L =156.5, S =15+ 28 =43, f = 73, w =6,
. 90.5 - 43y . _ \ _
X : 1‘56.5 + [—ﬂ——-] 6 = L56.5 + 3.9 = 160.4.
This answer compares favorably with the act result,
160, obtained above. ¢

3.2.3

’

Properties of the Median -

The medién has the following advantages:
a: It is an gasily understodd measure
~ ‘*location. - \ .
b. It is not affected b?xextreme‘V§1ues and
thus is sometimes more typical of the

, . numbers in thegdata -set than is t’mean.

\
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& the medlan/eougs/(g1adb 1a B~

chIldren 1n a*ﬁamaly tﬁe top”tlasn mlght
bE'"lﬂ or'moreu .

- point-of-ihxs tqﬁ EIas& 119.daf$4cuit‘
. “to agproxxmaxe'tﬁeaﬂean é," i

K .t But since the top.elass 1% not . uiupaily
1nvolved in the process of flﬁdlng fﬁe

median, it may be found asg before. -

The chief dlsadvantage of the median is that it -
does not lend itself to algebraic_manipufation as
readily as does the mean. We’ﬁight;also regard the
necessity to rank the data as a disadvanfage. For
large sets pof .dlta the ranking procedure is time con- .
suming, even if done on a computer. - }

amkjnangfﬁimtgcsgv that i”

Slnce thg;e‘?s~no~mlé,_

PR

Compute the median of the data on World Series
games given in the frequency distribution on page 4.
Exercise 12.

‘page 5,

* Exercise 11.
‘Compute the median of the data in Exercise 1 on
Compare x w;th for this data set.
Exercise 13. Compute the median of the data in Exercise 1 on
pagé 5 from the freqUency distribution constructed in part b oé
that exercise. - Compare th1s with the-result obtaided in Exercise -
12. e : S
Exercise 14.

page 6.

Compute the median of thq.data in Exercise 2 on

Compare X with X for this data set,

Q
ERIC
P v
o

\\
t\‘

_other,

For

&ample,zln ‘the data set‘?rexented
agaan oh pagq,i} the/moda JS~160

P

-

_:;, If a11~ﬂ{ the’ nuﬁbers rn the data set are d1<t1h
'heu there xs no mode.. ?an when’theré is a mode it -
may—Be of, no partlcular 4mportance:f Fra data set con~_
’51St5 of 100 yalues with two of these'belng equal and:

the remalnder dlstlnct it is unllkeiy to be of any use

- tO'ﬁotE'fhatrthe value Wthh occurs twice is the mode

/ On the other hand if the mode represents some
'relaxlvely large fratilon of the -data,
Yeport it

it is useful to
In the data on World Series games on page

"”@c'see that nearly half of the World Series have
"taken seven games to complete.
" feature of the data.

This is dn 1nteresting
Thus it makes some sense to men-
tion this if the four class frequencies had been 11,
10, 1F and 12 The importance of the mode as a measure
of location is diregtly related to the relative fre-
quency of this value: The larger the fraction of the
data représented by “the_mode,
mode becomes

the more important the
L] ‘ . [

Sometimes a data set will have two values which
Qﬁgcur much moére frequently than the others. For ex-
‘ample, the salarles‘of employees of a business might

fall mainly into two categories, 1ow salarles for
laborers and higher salaries for management personne]
Such a, data set is said to have two modes, even if the
frequency for one mode is somewhat larger than for the
Such data may also be descrlbed‘as_bzmodal.

It is appropriate to report both modes for bimodal data.

¥ the data are in a grouped frequency distribu-
tion. we may choose the class with the largest frequéncy

.o : . ')(;
‘ . » )

ﬁg\\aage 1 (and RS

T

=

- lk—
& + M - .
. i . -
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and call this the modal class, Alternatively, the mid-
point of the modal class may be nppgfted as the mode.

@ short, if one or two yglues, or intervals,

- k)
represent a relatively 1arg¢/£€action of the data then
.this is interesting and should be mentioned when-'de-

scribing the data. >

Otherwise we should not use the |
&
mode as a measure of location.

¥
-4,

CHOOSING A MEASURE OF L?éRTION
Now that we have three ﬁ;asures of location at
our disposal, which one should we vse? The answer to
this questiog depends both on the data set itself and
on the use we intend to make of the measure of loca-
our purpose{is simply
to describe the data effectively we should use what-

tion once it has been found. £

) .
ever measure or measures are suggested by the data.

The shape of the histogram of a data set is useful
in deciding what measure to use. Four possibilities

.are illustrated in Figure 2.

"

|
T

(@)
Symmetric

) - .
Positively Skewed

1

_'r-ﬁ_-f—jj—f- -

(@
Negatively Skewed
=

Figure 2.°

—eva et s

‘mately equal.

If the histograﬁ of 'the data  is approximately
symmetrtc, as in Figure Za; then the mean and the
) If the histo-
gram is approximately symmetric and has a single modal

median will be apprpoximately equal.

class then the mean, median and mode are all approxi-
If the data are concentrated toward

the lower end of the range with a few larger values, .
as in Figure 2b, then we say the data are positively.
skewed. ,The reverse case, 1llustrated in Figure 2c,

1s referred to as nejatively skewed data. The more
the data are skewed, the greater will be the differ-

ence between the mean and the median. * .

The histrogram on page 6, which represents the
height data gliven on-+page 1, is approximately symmetric.
For this data set the mean was 160.6, the median was 160
and the mode was 160. The data set summarized in the

frequency distribution below is negatively skewed.

Class . Frequency
0.5--100.5 3
100.5--200.5 2
200.5--300.5 7
300.5-~-400.5 . . 24
400.5--500.5 52

For this. data set X % 387, X 2 417 and the midpoint of

the modal class is 450.5.

The outstanding characteristic of the daté repre-
sented by the histogram in Figure 2d is that it is
biomodal. This fact should be included in any descrip-
tion of the d#ta. ' ’

If we intend to follow the calculation of the mea-
sure gf.location with further statistical computations
then this fact must be considered when choosing the
measure of location. The great majorit; of statis-
tical tests and procedures are desigﬁéd to use the mean

rather than some other measure of location.

-

Hence

L i ‘ 38 18




Al
there is a strong inclination to choose the mean 1n
those cases where further statistical i1nYestigation 1s
anticipated.

With these facts in mind we list below some sug-
gestlons.

-1. In general, use rthe mean. It is the most

commonly used measure., It is especially appropriate

1f you expect to do further statistical computatid@s.

2, If the data are highly. skewed, use the median.

The median is, in general, less affected by a small
number of very extreme values than is the mean.
3. If the data are in a frequq&cy dlstrlbutlon
which uses an open- ended interval, use the median,
4. If Qhe data have a pronounced mode, mention
this fact. If ‘the data have two pronounced modes,
mention this alsa. * -+ ! .
. 5. There is*no law @hich forbids you to .report

morée than one measure of .location.

Exercise 15. ‘?he frequency distribution below, %aken f§om the

1978 edition of the Statistical Abstract of the United States,

gives adjusted gross incomes as reported on individual income
R
tax returns in 1976. Which measure of locat1on is most appro-

priate for these data, and why‘? ! ) '-/

[}

ADJUSTED GROSS INCOME NUMBER OF TAXPAYERS

* (IN DOLLARS) (IN THOUSANDS) S
0.to 3,000 e - 15,015
. 3,000 to " 5,000 ; s 8,837
5,000 to 10,000 ' « 19,891
10,000 to 15,000 ° - 14,182

15,000 to 20, 008~ . 11,182 .

" 20,000 to 25,000 . 6,662 :
25,000 to, 30,000 . 3,611
30,000 to- 50,000 . . 3,632
> .50,000 ¢0 100,000 ) 945
100,000 to 500,000 - T, . 221
soo,ooo to 1,000,000 4

| e over 1,000,000 . 1

.

Exercise 19.

the data given in Fxercise 1 on page 5, and why?

Exercise 20.

Exercise 16.

to choose, from among the five films listed below, their favorite.

Suppose that two hundred f11m reviewers were asked

Suppose further that the responses were as indicated. What mea-

sure of location 1s most appropriate for these data and Why?

*PICTURE NUMBER
High MNoon ZJv
The Godfather 35
Gone With the Wind 90
* The Sound of Music 8 ¢
Casablanca . . 40 ¢

Exercise 1;. On an opinionnaire 450 people were asked to state
whether they "strongly agree,'" "agree," are "neutral,” "*disagree"
or "strongly disagree" with the following statement: 'Gas
rationing 1s one good way to deal wlth the energy shortage."

‘The results of this (hypothetical) poll are presented below.

Which measure of location is appropriate for these data and why? -

RESPONSE NUMBER
Strongly Agree 54
Agree 97 -
Neutral 150
Disagree 108
‘Strongly Disagree 46

Exercise 18- The grades of thirty high school students on a
French examination are recorded below, Which measure of ‘location
L]

is appropriate for these data and why?

80 - 8 79 81 75 68
76 72 90 - - 96 85 8 .
88 85 70 9% 87 . 90
80 80 72 73 84 91
© 64, 76 71 .76 81 68

What measure ?f location would be,appropriate for

-

What measure of locgtion would be appropriate for
the data given in.Exercise. 2 on page 6,-and why?
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5. PERCENTILES, DECILES AND“OUARTILES

04 .

. The measures discussed in this sect1on are mea-
,sures of location or position, but are not properly
descr1bed as measures of central tendency These are
the percentlle scores, decile scores and quartlle
Percentiles will be described in. detaxl
Deciles and quartiles may be thought of a spec1al cases

of percentiles. ’ .

o 5.1, Percentiles 1-: ) . v
Percerftiles éreédefined and computed in a_matter
apalogous t6 the median. As with the median, care must
be tﬁken _té"insure that percent11es ex1st and are
unique. To begin with an example, the etghtieth per-
centile, denoted by Pgp, may be thought of 3s a number
which ts larger than 80% of the data' and smaller. than
0% of the data. S1m1lar1y, the thirty-fifth percen-
t11e, P? may be thought of as_a number which is
mégiger han 35% of the data and smaller than 65% of the

datas ssThe formai def1n1t1on is given below

°scores.

~

o

} If r is any numher from i to 99 then the rtr per—
¢centile for a set of data is a number, fr' such th?t
at most 1% of the data are less than Pr and at most ‘Y
(100_r,% of the data are greater than P, /

5.2 Comput1ng Percentiles

v

The method for f1nd1ng a percentile score is very !
similar to that for finding the redian. In fact you
may have already noticed that ‘the fiftieth percentile

and the median are identical. To find the rth percen-

-tile: - o
a. Rank the data. o ‘ ‘
b2 Find the number in the T%F(n+1) position. in -
e the ranked data. _ . ¥
‘ * - 21

o

" the 153rd number is 168.

; Suppose "for example that we wish to find the 84th
percentile score for the height data given on pagé 1.
The data have béen ranked in the frequency distribution
on page 2. -
. ® 4
) The positign of Pgq is | j

[}

- - v

~

llg%(nﬂ) =-mc181) = 152.04.

Thus Pg, 1< between the 1%’nJ and 153rd numbers in ‘the

,ranked data To avoid amblgulty we will take Pgy to be
four one- hUﬁdreds of the way between these two numbers.

That is s r

A 4

3

Pgy = 152nd n?mber + 0.04 (153rd number - 152nd number) .,

Countlng through the frgquency distribution from the
smallect class we fjnd that the 152nd number lS 167 and
Tth

Pgq = 167 + 0.04(168 - 167) = 167 + 0.04 = 16@3@4
s {
Exercise‘ﬁi{ Find P,4 and Poe fod\the height data on page 2.

If the data are given inNP frequency distribution
with class intervals ther the method for finding P, is
7.
s1mllar to .the method for.finding the median given on
page. IZJ?‘Ihe position of P, is, as before,

-

) ' o5 (n*1). . .
First we find the class containing tﬁ1s number néhd
then we|define P by : s ,
° S - e g 'Q;r"'} ‘ I
A o5l - S. -
/ P =1+ w
~ w? f .

.
. P

1
where: L = lower 1imit of the class containing |
S = 'sum of frequencies for classes lower than
. the class containing P -

CAN

i
£
.




.tiles divide the data {into quarters.

Aruitoxt provided by Eic:

i

frequency of the class containg P,

[

w = width of the class containing P, .

Exercise 22. .Compute Py and Pgy for the height data in ‘the fre-

.

quency distribution on page 4.

5.3 Deciles and Quartiles

The median divides the data into halves. The per-
centiles divide the data into hundredths. Simflarly,
the deciles divide the.data into tenthsvand the quar-
The sixth ,decile,
denoted Dy, is that njmber such that six-tenths of the
data are less than Dg. The third quartile, Q3,%is that
number such that threé—quartars of the data are less

than Q3. Etc. ‘ -

It is not necessary to present methods for finding
quartile and decile skoreﬁ as these may be found by
computing the corresponding percentile scores. )

D = P . N N . .
1 = P1o | LR
Q = Pys Q ‘
D, = Pao S, Dy =Py
Dg = Q = Pgg = x ,
D, =P ¢ o
6 = 760 Dg = P,
Qg = Pyrs \
D, =P .
7 = P20 . D; = Py,
&%, '
-~ L
e
' !
43 é
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-~ ' 6. MODEL EXAM /

o

Compute the mean and the median of the data below:

8.1 .9.0 7.5 6.9 9.0

11.3 10.9 8.4 8.3 9.6

7.9 12.5 11.0 10.6 10.5
a L

Construct a frequency distribution for the following set of
data using 130.5 as the lower boundary of the first class and
having all classes of ®idth 1§.

189 233 180 181 200

216 215 190 141 165 )
193 201 177 217 175

168 138 149 199 223

143 148 203 185 183

192 . 163 168 166 177 .
140 193 230 181 173

201 136 158 - 174 195

Compute the mean and the median of the data in problem number

j two from the frequency distribution.

) -

Compute Q3, D4’and P21 from the

two. . !M

- {
What are ‘positively-skewed' data?

w data in problem number

When is the mode an important measure which should be reported?




had > ¥

ERIC

< T f
! o

[y

l.a.

2.

&

7. ANSWERS TO EXERCISES

©0 00 00 00 00 00 00 ~J
PPN
—
%]
& O 00 S

w
o
g

[ V]

A

¢

' CLASS
BOUNDARIES

7.895-7.995
7.995-8.095
8.095-8.195
8.195-8.295
8.295-8.395%

[

——
NOON =

-

The frequency distribution you obtain depends upon your choice

of classes. One possible result is shown below.
TIME .
(in sec.)

9.95-14.
14.95-19.
19.95-24.
. 24.95-29.
= . 29.95-39.

39.95-49.
46.95-59.

0
[
o—-»-l
oz}

b

—— ) O
1

1
o
t

L
T
I

S68° L

Frequency

—

£V

§66'L
S60°8
S61°8
567" 8
‘562'8

pH

’
M &
Your result here depends on your choice of class intervals

back in Exercise 2. If you, as I did, chose intervals of

* varying widths, remember that in a histogram it is the area

i

of the rectangle and not its height, which is proportional to
the frequency. Note in addition that a vertical axis for

frequengy is not possible when the classes are of varying

' . “ A f% : : ‘ ‘/' c

‘
» ~ - . — . “

25

4

&

widths.

dicate the frequencies of the classes.
f H
{ i

“

The numbers inside parenthesis on this histogram in-

(1)
(10)
7.5
1 Yi?;_ ~,;'m -
(3} /
S (3)
- - | Y | (1) 1
© . = s o o - IS .
. . &~ © & 71 © ® ©
& © © v w© © 0 o
wn wn wn wn wn wn wy
4
" 5. n=40, 5x = 325.00, X = 5%% = 8.125: .
S
6. x £
7.95 1 7.95 )
8.00 4 32.00 e
8.05 8. 64.40 if,= 40
= 8.10 7 .56.70 I(x - f) = 325.00
8.15 ® 9 73.35
8.20 5 41100 X = i%% = §.125
8.25 4. 3300 )
8.30 2 16.60 / ;
' If = 40 5(x - f) = 325.00 A
7. CLASS f X x - f
7.895-7.995 -1 7.945 7.945
/' 7.995-8.”95. ’ 12 8.045 96.540
8.095-8.195" 167 8.145 130.320
8.195-8.295 9 8.245 74.205
8.295-@.395 2 8.345 16.690 \
£f = 40° I(x - £) = 325.700  nd //,
‘
' -, 325.7 _ ‘ N
. - ' % T 8.1425 . L, .
& .
8. The mean obtained in Exercise 6 agrees exactly with the mean
obtained in Exercise 5, as it should. The mean of these da . .

is 8.125. The mean obtained. in Exercise 7 is only an approxi-

*

3%
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mation to the.true mean. This loss of exactness is caused by
the loss of information which occurs when the data are grouped
into class intervals. Notice that the error of approximation

is not large.

n =30, Ix = 618.2, x = 20.61.

CLASS f x - . x - f
9.95-14.95 117 12.45 136.95
14.95-19.95 10 17.45 174.50,
19.95-24.95 3 22.45 67,35
24.95-29.95 1 27.45 -t 27.45
. 29.95-39.95 3 34.95 * < 104.85
39.98-49.95 1 44.95 - 44.95
49.95-59.95 1 54.95 54.95
o £f = 30 © x - ) =e6l1.00 )
~ _ 611 .- o L
X—“I3—6-20.67.

* The answer to this exercise depends upon your cheice of

class intervals in Exercise 2. ° ° o
= If #'56. Position.of X = L(n+l) = 4(57) = 28.5
The 28th and 29th numbers are both 6. Hence X =6

3.

The data have already been ranked in Exercise 1, part a.
40 “The position of x = %(40+1) = 20.5. The 20th
number is 8.10 and the 21st is 8.15. Thus X =
(8.10 +'8.15)/2 = 8.125. . . '

We note t‘hat the mean and the median are equal. Al-
%hough exact equality is sofiething of a coincidence, the
mean and the median of a data set will be approximatefy
equal whenever tﬂe histogram of the data is symmetric. This

point will be discussed further in Section 4.

The posjtion of the median is 20.S, as in Exercise 12. fhe

median is in thé third class. = 8.095, S =1+ 12 = 13,

f =16, w=0.10.

©

%f .095 + 139-§Té—l§] 0.10 =

8.095 + 0.047 =

Jé-Lq»(’f(ﬂ*l -sJ ‘3
= ___J__f‘

Ao

8.142.

%
~

W 42 77 . ‘ 27

5 7

14.

. 15.

16.

17.

.“ . The dqtq also seem to be bimodal,

“

. . -
The approximate value of the median obtained here is reason-

ably close to the true value obtained in Exercise 12.

First we rank the data: 0.7, 10.8,.11.6, 11.8, 13.1, 13.3,
13.9, 14.0, 14.1, 14.4, f4.8, 15.5, 15.7, 15.9, 16.0, l6.1,
16.9, 17.5, 17.7, 18.3, 19.8, 20.3, 21.3, 23.2,‘29.8, 34.6,
38.3, 39.7, 42:9, 56.2. The position of X = ,(30+1) = 15.5.
fhe ISth number 1s 16.0 and the 16th number 1s 16.1.
x = (16.0 + 16.1)/2 = 16.05.
20.61,

Thus
~
The mean for these data was .

which ‘is markedly larger than the median.

There are two reasonssto choose the median as the measure of
location for these data. One 1s that'thb data are positively
skewed, as ﬂs usually the case with income data, The othed
is that the' last class is oben- ended which prevents the
caiculqtfgn of the mean unliess we are willing to guess at

an average value (midpointf) for this class.

+ . Al
but not to a remark-
- -

able degree

M s e
Lnethls example the categoraes are pot numerlcal In factézbé
Thuiggelther the mean nor the
Th1JJeaves the mode.

titere 1s a pronounced mode:

they ane not even ordered,
med1an cqn be used. Fortunately
Gong" With The Wind received the

vote ﬁ? almost half of the people pokled

[

s
e

As ‘ip, Bxercise 16, the categories are not numerical. Thus
the mean is not a candidateigor the measure of location.

With such ordinal

" The position of the median is
This is

It seems that this aceurately re-

~The categories are, however, ordered
data the median may be used.
z(4SD+1) = 225. 5

also the modal . response

The medlaﬁQresponse is '"neutral.”

flects the fact that «accordlng to these,responses, opinion

4
‘on irls question I$grather evenly divided.

-




. 18. A frequency dlstrlbutlon ‘and h:.strogram for this data set are 8. ANSl.\'ERS TO MODEL' EXAM N
N shown” below. T . N
. : Ny . ' L. @) n=1s, mx= 1415, K= M5 . gy
¢ CLASS f. T o, - ’ o - )
60.5-66.5 1 61 ‘ . b) Ranked data: 6.9, 7.5, 7.9, 8.1, 8.3, 8.4, 9.0, 9.0, :
66.5-72.5 6 > - ' ' . . 9.6, 10.5, 10.6, 10.9, 11.0, 11.3, 12.5.
72.5-78.5 5 £ 44, . . . . ~ ~
; % . : Position of x = !3(15+1) = 8. x = 9.0.
- 3 N
‘ s M - R
: : YO4T 2. CLASS f :
90.5-96.5 3 & 1 . 2290 =
L q,—r_ 130.5-145.5 5 .
0 & &8 3 3 & 8.8 . 145.5-160.5 3
th w o o “voow 160.5-175.5 8
R T = ! 175.5-190.5 9
. Grad . -
rade 190.5-205.5 9 .
205.5-220.5 3
The histogram above indicates that there i$ nothing about - 220.5-235.5 | 3
atlv.s data set to indicate we s‘lhould use a measure other than 3. ; CLASS . £ x - < - £ ) |
the mean. Thus we choose the mean. *  130.5-145.5 5 138 . 690 . |
145.5-160.5 3 153 459 e
19.\ As in’'Exercise 18, we choose the. mean because there seems to . 160.5-175.5 8 168 1344 "
. be no strong reason to do otherwise. . ’ 175.5-190.5 9 183 . 1647 . \
¢ J . 190.5-205.5 9 198 1782 :
20. Choose the median because the data are positively skewed. 205.5-220.5 3 . 213 639
p ' *. 220.5-235.5 3 228 684
21. Position of Pyy = m(180+1) = 43.44. The 43rd number is ) SE = 40 SI(x - £) = 7245
‘ . 156 and the 44th number is 157 Therefore_ P24 = ’ . :
156 + 0.44(157-156) = 156.44. |8 ' ) a) X = % = 181,125 £ 181.
- M . B . ‘ -
A *Position of P = 100(180+1)’ = 135.75. ‘The 135th and X b) Position of ¥ = k(40s1) = 20.5 . . Lo oL
136th numbers are both 165. Thus P = 165. . ’ LT
. 75 . ‘ N 20.5 - 16 <t .
- A o s . Xz 175.5 + (_.__] 15 = 183.
22. ‘Pos:;tx.on bf pSQ. 100(180+1) = 54.3. Thus P30 is in fhird . 9 . .
- = = = = 73 = . 4 © e~
\ class, L = 156.5, S‘ lf +28=43, f=73and w = 6. . <4, Ranked data: . . . . .
L& 54.3 - 43 _ " .. - - &
| Pyg = 156.5 + [TJ 6 = 156.5 + 0.9 = 157.4. 136 . 163 177 \BO vt 01
o .89 . : s © 138 - 165 | 177 92 203
Position of P = 100(180+1) = 161.09. Thus P89 is in , 140 166 ° 180 , 193 215
[ the fifth class, L 168.5, S =160, £ 215 and w= 6. 141 1‘68'e 181 193 216
- 161.09 - 160 : ' . - 143 . 168 181 195 217
o P89 = 168.5 + lT] 6 = 168.5 + 0.4 = 168.9. W . 148 . 173 ' 183 199 223 - s
: . 149 174 185 Y200 230
R . ’ ‘ N 158 175 189 201 233 .
> " PR * > . 3 ‘
- . ‘. a) Position of Q3 = 3-(404»1) = 30,75 °
: b= ""..’?”';'f - - - T - - - - [y - - = R e~ . . |
’ i : R . - Q3 = 199 + 0';75(200-199) = 199.75.
D i E N -
’ — - .29 ) . 2 ; ~‘_30 » .
. - + . - . I

O - . . ’ . ' " - o

FRIC". .. 49.. - e . ] 50 o .
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P 4
b) Position of D4 = -1—6(40+1) =16.4 -~

D4 = 175 + 0.4(177-175) = 175.8. b )
- L3

<o _21 i
¢) .Position of P21 = 1—06-(40f1) = 8.61

P21 = 158 + 0.61(163-158) = 161.05.

. e
See pages 17-18. o~
See page 16, . g B
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1. INTRODUCTION . .
-~ Pl -

* ’»’ -
1.1 Approximation in Statisticss~;

e e . :

Approximation playg/a.centraljrolef1n'the application

.and interpretation of statistical methods. For instance,
parametric babi1lity representations of populations--

fundamental tools of statistical analysis-- are usually

“
)

only approximAtrons of the actual natufes of the popu-
lations. Sampling distributions in use for these proba-
balistic models are often themselfes approximations to

those which are derived mathematically. g

+ .

There are two principal areas in which approxima-
tions are vital 1n formulating statistlcai problems:
in formgqg a convenient model of ? population when the
actual structure of the population is either very complex
or unknown; and En developing easy, reasonably accurate
methods of cohphtlng probabilities when exact ,methods are

cumbersome. . X

-

We shall consifer experiments consisting ofgn
"trialg, wherg each tr1a1 results in one of two possible
outcomes (arbltrarrly labeled '"success” and "failure"”).

We shall’ look at two probability models for "the number
of successes in the n trials" and study ways toc ‘falculate,
exactly .and approximately, the probabrllty of k4successes

- x\ﬂzlle the§e experiments are of a very special nature,
t

Q

ERIC

Aruitoxt provided by Eic:
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e use of approximations, both structural and mathemati-

cal, in this cont?xt serVe to illustrate the more general
application of approximations.

! Before turning to 'approximation of probabilities,
!

however, we shail look at some examples of typical nu-
merical approximations and at.a complementary way of .
“making cdmputation more manageable‘

.

1. Someigxamples of Numerical ApprOXImatlon

2
{
i Suppose that,
n

for some reason,-we wanted to know

N,

£

.

. 10 . .
about how large .7 0 is, but 'wve did not have the time or

patience (or the computer) to do all the mulmﬁpllcatlons.

Recalling the algeb:alc rules for exponents, we can write

.'10\:(7) = .49° : .

Now, .49 is approx1matelr'1/2. We abbreviate that

".49 = 1/2" (the symbol '-= " means "is approximately

equal to"). So .
10 , (1,5 1 _ 1 _ I _ -
7 ® (5} S v A s S .03. .
10 . ;;
Actually, .7 = .0282, to four decimal places, so the ™~

approximation is nearly corfect.* Whether the approximation
1s close enough depends on the purpose of the calculation.
For some applications, egpecialjy those which involve
further cémputation using the results of the approximation,
a simple approximation ﬁay'not be closé enough to the ¢

value being approximated te be dependable.

Numerical approximation may take more complex forms.
LA frequently encountered:* mathematrcal problem is flndlng
#

the area urider a curve, like the shaded area-in F1gure'

la, Je canlapprox1mate the area and perhaps simplify the
computation by using a series o@ regmapgles whose total )
area nearly 601nC1des with the area} u&ﬁer the curve (see
,Figure 1b). The height of each retangle at its center
is the height_of the curve there. Some corners of the

rectangles are above the curve (overestimafing theﬁpre )
and some are below the curve~(underest?mating the éfea?
1f the rectangles are narrow enough, the approximation of
the area will be quite accurate. (Students of calculus
will recognize that the exact atea is given by the defi-

nite integral of the function defining the curve.)

-Some of*our probabilistic approximations will use
the reverse of this process: we shall use the area -
under a.cont1nuous curve (wh1ch happens to be conveniently
t?pulated) “to approximate the area under a series of

7

narrow rectangles. . @

¥y
[y
—
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b. Rectangles whose area approximates the, area
under the curve.
Figure 1. Approximating the area under a curve.

£
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.mathematics but beyond the scope of this module.

There are some general strategies for designing
approximations; they are part of the theory of numerical
approximation, which 1s an important branch of applied

1.3 Exercises

. e

Area to be approximated‘(shaded).

cd.

approximate areas you compute with'the exact area, 2/3.

f(x)

.
e\l

A
S

%
R
>

Approximate the area under the curve defined by f(x)

=/X between x=0 and x=1. Try the following methods and compare the

a) Approximate the area from below, using a straight line:

-

L]

0-

2

b) Approximate the area from above, using

% the same slope as the line in part (a):

f(x)

1 4

Zsftraight line with
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(If you know calcuwlus, you can determine exactly the point at which
the line must be tangent to the ¢urve and thus ‘the algebraic repre-
sentation of the line. If not, §ou can use graph paper and a ruler
to plot !f(x), draw the tangent line that has the proper slope, and
estimate its height at x=0 and x=1.)

c)ﬁépproximate'the area using two rectangles, with heights

determlagi’by the height of the curve on the right-hand sides of the

rectangles: . ‘
f(x)

At

.

0 .5 1 i

IS -

d) Appro§imhte the area using two rectangles, with heights de-

termined by the height of the curve at the midpoints of the rectangles:

“Ex) e

©

-those in part (c). .

f) Approximate the area u51ngagé§ht rectangles constrd%ggﬂg

o

ke,
those in part (d). .

g) Compare. the differgnce between your answers to (c) and (d)

with-the, difference between your answer$ 'to Xe) and (f).

o
«

1.4 Recursive lormulas,

. [N

Sy

Computing nymerical values for a mathematical ex- :
pression 1s often easier when the eXpress1on 1s represented
as a recursive formuli. Simply -stated, recursive formulas
are "bu1ld1ng blocks' which permlt the definition (or ’

computatlon) of the valye of a function at some point

from the function's value at another: poipt. Usually,
some starting value 22s determined or given, and the func-
tion 1s constructed from this starting value.

For example, consider the function

Y
[ed

£(k) = k&

for the integers k = 0, 1, 2
sentation of the same function could be given by

A recursive repre-

>

specifying the function's value for 0, & v -

o £0) =0 ' )

--which is the starting value--and the recursive formula

© f(k+1) 3 £(k) + 2k + 1. , ,
Table I illustrates the process. )
H
/ .
: ¥ ‘. . 6 -
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f(k) + 2k + 1
£(K) = k)

1

L4

computation.

computing (k) directly, and comparlng the results.

>

Recursive formulas need not be additive, as our
They may involve any kind of mathematical iy

example was.
The recursive formulas used in our proba-
bility calculations will call for f(k+1) to be determined
by mulégﬁlylng f(k) by several quantities. Multiplicative
recursive formulas in particular tend to provide signifi-
cant Teductiog in the complexity of computations.

2 , .
Recursive formulas can also be helpful 1n suggesting

approximations which would hold for large values of one
or more of the va¥iables in the expression. Exercise 13
illustrates this use. | )
) “ )

1.5 Exercises . o ) .
Let £(0) = 1 and £(ku1) = 535 £(k) for k 5 1, 2, 3, 4,
and S. f

7a) Show that f(k) =

Exercise 2.

(k) by compptlng f(k) recursively,

P
3

\ b) Show algebraically that f(k) = (k)' Hint: Prove that

(o)
¢

+ S-k

= 1 Y

- 63

Sy
k

STRUCTURAL APPROXIMATION

\

Approximation of Hypergeometric Probabjlitiesggy

Binomial Probabilities

Suppose that the trials consist of sémpling without
replacement n items at random from a finite population of
N 1temsq K of which are successes. (Sampling without re-
placefient means thdt an item once chosen for inc¢lusion in
the Sample cannot be chosen again.) Then the exact prob-
ability model for the number of successes is the hyper- |

geometric probability dlstrlbutlon, the probability that

k successes are selected is .

(1)

°

h(k;N,n,K) =
]

(We are considering here only values of k that are less
than K and also less thap n.).

Fo;&éxample 1f there are three pink grapefruits and
four yellow grapefruits in ag and three grapefruits
are drawn at random ‘then the probability that exactly
one grapefruit in thé sampfe is yellow (a success) and

the other two are pink (failures) is given.by’

t

For this example, N = 7 (the total number of grapefruits

-in the bag), K = 4 (the number of yellow grapefruits in

the bag), n = 3 (the number of grapef%uits in the sample)
and.k = 1 (the number of yellow grapefruits that must
appear in the sample to realize the eﬂéthwe described).

) The ‘mathematical derivation of h(k;N,n,K)liis based on

counting the total number of possible collections of n
items from a population of N items -- which is the de-
nominator, ( ) --"and the number of those collections

wh1ch contaln exactly k sutcesses (and n-k failures).

<
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-‘The latter number is the numerator,

+

‘dent, and the binomial distribution is applicable.

@ -

( ) (N ). there are

):
n-k
( ) ways of collecting k successes from,among the K suc-
cesses in the populatlon, and for each of those ways

there are ( k) ways of putting together the n-k fallures

from the N- K failures 1n the population.

-’

In principle, wg—ceﬁ%d evaluate the hypergeometric

probahilities for va s 3f N, K, n and k which should
for eV&n moderately large values of

arise. However,

" these four parameters, computation of the binomial co-

efficients is time-consuming and- tedious, and it is use-

ful to have an approximation which involves less tedious

calculation.

.

One of tﬁe most convenient methods for simplifying
the evaluatlon of hypergeometric probabilities involves
approx1matlag with the binomial probability distribution.
This distribution represents the probability of a given
number of _successes wﬁen the results of the trials are
statistically independent. 1If one is sampling with re-
the probability p of success on any given trial
(In
sampling with replacement, an item is "returned” to the

opulation after having been chosen for the sample; so
the item could be chosen again.)

cement,

is hot affected by thé outcomes of previous trials.

The trials are indepen-¢
In the
if the populatlon size N is
small or if the-number of trials is an appreciable fraction
of N, then the probabilities:- rgoverning the later trials
will be noticeably dependent on the outcomes of the earlier
trials.

hypergeometrlc situation,

Even when N is lqrge and a very small portion of
the population is drawn, the exact probability that k
successgs will be chosen must be calculated from the hyper-
geometric probability function, but the effect, of depen-
dence is silght when N and XK are large. 1If p 1s taken to
be the proportion of successes in the population - (i-.e.
N) the approximation of the hypergeometric prObabll-

ities by binomial probabilities

Al ‘ - i ' 9

s |

.

=~/

-

(2)

ooy
P ¥

Saod .
1S quilte accurate,

h(k;N,n,K) = b(ksn,p) = (Mp¥(1-py™ &

for N > 20, or so.

Although N is not large enough fQ{}fhe approximation
to be valid, we can demonstrate its applNcation to our

previous example.—~We would approximate h(1;7,3,4) = .343
by \ffnﬁ .
. /3 1 - 8 -
b(1;3,4/7) = (1) (4/7) (3/7) = z7%, = 315
. 1 -
TABLE 11
ILLUSTRATION OF THE BINOMIAL APPROXIMATION TO HYPERGFO“ETRIC
\ E& PROBABILITIES v
] N=17,n r 3, K=4 | . Y
(N and K not large-enough for approximation to be very o
accurate) * ' '
Number of Hypergeometric Binomial
Successes . Probability Approximation
k h(k;7,3,4) btk;3,4/7)
0 .029 .079
1 e .343 .315 ~.
3 .514 .420
3 114 .186
Total 1.000 ‘_ ¥%000° '

> .

Table I1 shows .the exact and anproximate probabilitaies

for e@cb of the possible numbers of successes in this
example.

This simpliflcatgon of the calculation of hypergeo-
metric probabilities is based on consideration of the
structures of the sampling pgpblems in the two s1tuatlons.
When the population is large -- say, 20 or more times the
size of the sample -- sampling wit replacement, as in the
binomial situation, differs little from sampling without
replacement, You are
un11ke1y to sﬁlect randomly the same 1tem twice from a very

large populat

as in the hypergeometric s1tuat10n

on, even 'if you are replac1ng items after r

sampling them We can think of such an approximation as a .

' - 86 10
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structural approximation; the structures of the two problems 3. MATHEMATICAL APPROXIMATION ,' :
are similar, so the probability distributions are similar. n .. .
R * ‘, 3. ,:\pprct&mjtlon of Bapomial Probabilities Using the
] [} . ‘ .
2.2 Exercises o . * Normal Dtstrlhutlon . .
In performing the following exercises, try to visualize why each When the number of trials n 1s 1a[rgc, even binomial
- of the approximations should be as accurate (or inaccuraté) as it is. probabilities are cumbersome to gcompute, and 1t helps to
Use a computer or a calculator to do the calculations. Tabulating have a simple method of approximating them. For large
. the hypergeometric and binomial probabilities 1s easier when you use v ., values of n and values of p which are ndét too close to
the recursive formulas ' zero or one, the cumulative hlnomla;/dlstnbutlon dis-
. ) . *tribution function - ’ e
(3) - (K-k) (n-h) LR - . . -
h(ke1,N,n,K) = o Nk D) h(k,N,n,K{ . ) . ) ]

P and ?(k;n,p) Ia b(i;n,p) A ’
a ’ ~ . 1=0 - 'y
L@ blkel;n,p) = BB pkin,p) ' be approximated by the cumulati I distributibn

n, x+1) (1-p) M, may be approximate y the cumu atlvei norma 1stribution
. ‘ . % function thus: . . :
after calculating h{0;N,n,k) and b(0;n,p) directly. N ‘}*‘ » .
! Exercise 3. Tabulate the _hypergeometric probability function and its s () B(k;n,p) = ¢( kon =) . % ’ |
. R /np(1-p) ’ "
binomial apgroxunatxon for: . . v /
) R Vi The function ¢(y) 1s the cumulative Alstrlbutlon functlon Y
a) N=10,n=5,K=35 .
) ¢ . of the standard normal dlStI‘lbUthn which hds mean zero
b) N=10,n =35, =1 .- . .
; 100 ¢ 7/ -and variance one. To apply this approximation, .you calculatc
¢) N =100, n=5, K=50 :
. & N = 100 . 103._ . . ™ the quangity y = (k- np)r//np(l ?) and refer to a table of
- N = , N = . =
- the standard normal cumulative distribution function to de-
Exercise 4. Repeat parts (c) and (d) of Exercise 3 for n = 20 instead | termine approximately the probability of k or fewer succes-

_Q{Q of n = 5.. Has the quality of the approximation changed? . ses 1n the n t’fialé. ’ - “
Exercise 5, Rose Maybud is choosing at random six members of the For example, suppose that w'e -are interested in finding
United Statées House of Representatives and determining whether or b the probabl"lity of 20 or fewer successes 1n 56: indc‘pendcnt

. . " . - )
pot each™of them supports a partlcular blll £xplain why this situa- tr1315 where each trial has probability .45 of resulting
tion is hypetrgeometric, and 1dent1fy N, K,,n and k. Which of their \ n 4 success. In order to compute this quantity‘exactly,

- values can you determine from our statement of Roseyactivity? . we would have to add up _’the binomial probabilities for 21
Would th/e binomial approx’xmatlon of the hypergeometnc probabili- " values of k (0, 1, 2, ..., 20). For each k, cwe would have
ties be adequate? Why? to A\ompute the binomial cocfficient (k) raise .45 to the

“E ] power kK, and raise .55 to the power 56-k for at-.least’com-
t that uantity for k ® 0,and then use the recursive
, —— Rute q Y
» . . . .. . . ' formula 4) r*peatedly) W; might find an answer in a pub-
d lished table of binomjal distributiens, but such tables do
: ‘ 1= . . . ‘ s -~ °
> R ' - 12 B

Qo 67 . . o €8 ¢
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not cover all possible valdes of n and p. A computer structural similarity between binomial sampling schemes

. might be used to perform. the calculations, but for values and those Fhich commonfy grve rise’ to normally Fistrxbuted
of n much larger than 56, even computer calculation would , . rangonlémriables. A normal random variable is, after ally
be rather time-consuming and subje nd-off error. continuous, while a binomal or hypergeomefric random vari-
Hence we find EWé normal approxlmaif;:0::j$;btkig. aﬁle ls discrete, and it would appear that they are not -~ -

1 v

" To apply 1t, we compute : sqructhrally similar. A less immediately apparent similar-

1ty between binomial and normal random variables is re- :
sy e
y = =0-56(.45) = -1.39" vealed, though, by mathematical manipulation. But rather
S . 5 b—— - -
. /560357 (.59) than being a property of these two specific distributions, ~
\ and refer td a table of the standard normal distribution it applies more genetally to the normal distribution.
to find that ) , . Recall that a Central Limit Theorem states that if
\, B(20;56,.45) = .081 . \ \ Yl’ YZ’}"" Yn are 1ndepend§nt random variables, each with
¢ ) ’ - mean y and finite variance o°, then for large n . .
By referr}ng to a table of binomial distributions or—by (é) BT < V) = e(o ) ¢
computing, we can find the exacgsuaLae/Sf B(20;§6,.4:) - O;/Tr .
= .103. (For a better approximatiol see page 15.) h
or equiva tly, . '
Just as the cumul,ative‘bi’al distribution may be ~ . -
. o 7 . . . . n {Y-u) .
roximated by the cumulative n®®mal distribution, so P(—m———* < =
lapproxin by the cumul L di 0. o PR < gyt gy .
may the individual binomial probabilities be approximated o
; for any v. '

by the density function of the normal distribution,
bl -~ ’

(M) . - 1 k-np X
blk;n,p)= $( ) - - : .th .
/p(l-p) ° /ap(l-p) problem, we let Y, take on the value 1 if the i - trial

To apply the Central Limit Theorem to the binomial

. results in a success or 0 if it results in a failure.

¢ is the density function of the standa(d normal distribution, Theh Y is the total number of successes divided by n The

T :
(8) o(y) = L e_yZ/Z ' ﬁw‘~ mean of each Y is
. T <oLoan W= Zyp(y) = 0+ (1-p) + 1-p = p ,
‘ We approach the djrivatron of the normal approximation i and the variance of each Y, is -
o{ binomtal probabilitres somewhat differently from the way ° (12) 2 2 . 2 ’ 2‘ el
we discussed the previous approximation. In that discus- ? = Zy-m7p(y) = (0-p)7(1-p) + (1-p)°p = p(1l-p)
sion, we noted the structural nature of the binomial ap- The Central Limit Theorem states that Y 1s approximately
proximation of hypergeometrié probabilities. The normal ) normally distributed, so nY, the total number of successes
‘approximation, however, is derived from a more intrinsicqlly in the n irials, is‘also appro*imately nBrmglly distributed.
mathematical formulation,land we consider the nature of the \ You should verify tﬂat the thedrem as stated here leads to
dppreximation to be more mathematical. That is to say, the normal approximatior given above for binomial proba-
. we chose to employ this particular approx;matioh becapse . bilities. w
‘ of a mthematical derivation, rather Whan an elehentarz The difference in the application of the two types of ’
4 - - ) & - ' 14 °

Q . . o 7’()
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approximation--structural and mathematical -1s therefore .three decimal plaues—-muuh@w}pser than the appxoxlmatlon
~ *
more conceptual than praltical. (.081) which was ohtained without using the Contlnugty
3.2 Accuracy of the Normal Approximation correction.
e B - » R 'k = 8 91011 121314151617 1819
The normal approximation to the bynomial distribu- - ;ﬂélq || BENEE || |
‘tioh 1s quite accurate for situations in which the;ezare i L | li | V/\V : :: i Il Normal approxi- )
both large values of“n and values of p not too close to | |1 ! |l 1 | L mation without
- - MO<ST StaTietielanc ard the b | | P i | continuity
Zero or one. fost 3thlstltldns regard the approximation ! || [ II Ii || | cortection
as satisfactory whenever np(l-p) 1s greater than 5. When - l‘ || by i I' P
this «wondition 1s vfolated, one of two alternative ap- ’ | gl H i I '1 i
- proximations may be applicable. : || :A | | |
= | | B
? s »
3.3 The Continutty Correction to the Normal Approximation ' i |: ) ' | :|
» I ‘ |
The first alternative approximation 1s°a refinement = I| Iy
, of the normal approximation. It 1nvolves the use of a 0 N NERRRE
" . w ' el v “ ! :
conti?:xty correction'. Instead of f1nd1ng oy} for | l| | |I | ’7| | l' ] ] Normal approxi-
y = ———+J1———, we evaluate rt—for a slightly different yv: f || || || | i |: || ; matign\yith
. /np(i-p) . | continulty cor-
; . ; :I Il =| : b :' i rection (curve
3 k-np + .5 ' shifted one-
(13) B(ksn,p) = ¢ (22T 9 : |4 | l l Yt half funit to
/np(1-p) A b Pyl
. . ) ||I|l/ Phag left)
_In effect, thi1s modification assigns t? k half the proba- [ L | || | g
bility between k and k+1 in the normal approximation. (See 1y : by |I
Figure 2.) Although 1t generally improves the accuracy of Il I: I g
. " the normal approximation, this refiﬁement_is less impor- - 0 1! L
- tant for larger n, since the effect on y of the added 1/2 . ) . -
diminishes as n increases. (Compare Exercise 1, part (g}.) b Exact binomial
. . - ‘ I probabilities
The continuity correction extends the validity of the nor- 1 ' b(k;20,.6)
y L
mal approximation to considerably smallér n. ‘ . :I
' f
To illustrate the application of the continuity cor- 1k Il
rection, we take another look at the ‘example of Section 'l
3.1. The value of y would now be ‘ / !i /
g ) I '
' y = (20-56(.45) + .5) _ “1.262 ll
/56(.4 .55 (! v
- ‘ 4 1
. L3 ’ 0 .
and
' / Figure 2. Normal aﬁproximatiéns to binomial probabilities
B(20556,.45) = #(-1.262) = .103 . . for n = 20, p = .6. (Area between lines under
= . . g g t esses,
Notice that this value is .the same as the exact value to ? . curve is probigi;1ty assigned to k succ )
F .
) 15 ~ 16
ERIC 71 | | -
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3.4 Aﬁproximatlon of Binomial Probabilities by Poisson
% ) Probabilities
¢~ AL LR R R R LS

Jhe second alternatlve approximation may be applicable
when values of p are very small (near zero) or large (near
one}. We need consider only small values of p; 1f p 1s
large, we can interchange our definitions of "success"
and "failure'" and apply the discussion below. (We can
make the exchange because "success™ and "failure" are
arbrtrary designations, and 1t will suffxce'because a very -
large probabrlity of "success" irplies a very small proba-

bility of "failure".)

When n is’falrly large, p 1s small, and np *1s moderate
(perhaps somewhere between 0.5 and 5), the probability of
ksuccesses in n trials may be approximated by the Poisson

probability distribution:

. ok -np
(14) = p(k;np) = (22L&

b(k;n,p)

B

a

The values of p(k;np)\are easily computed with a calculator

or by a computer. . K

In illustrating the Poisson approximatxoﬁ; we shall
suppose that we want to obtain an approkximation of the
probability of no successes or one success 1in one hundred
independent trials,
.02. To apply the Poisson approximation,
100(.02) =

bilities of zero successes and one success,

each trial with probability of success
we find np =

2 and compute the approx1mat10ns of the proba-
obtaining

B(1;100,.02) 4= b(0;100,.02) + b(0;100,
= p(O;f) + p(1;2)

. 20 e-Z . 21 -2 / '
1r47

.02)

- 0!
/ = .406 -

The exact probability,
butign, .403;
.238, and the corrected normal approximation’is ,361.
this example,

-

‘is the uncorrected normal approximation 1s
In

the Pqisson approximation is considerably

17

73 o

computed from the binomial distri- .

more accurate than either of the normal approximations.

The basis for the continuity correctxon 1s essen-
tially mathematical--it exploxts the partlcuiar way in
which binomial probabilities begin to resemble normal
probabilities as n becomes large. Although the Poisson
approximation may be derived mathematically, we can see
If we
imagine that we are h lding consitant the number of successes

it as manifested more intuitively 1n structure.

likely to be ,observed{but allowing the number of trials to

increase, then the experiment begins to resemble a process

Such
a process gives rise directly to a Poisson distribution.
In this sense,

1n which successes occ at random" across time.
»~

the Poisson approximation is structural,
although its derivation is frequently represented mathe-
matically. The analogy between the Poisson approximation
and the Poisson,process of stochastic-process theory is

discussed in most elementary probability texts.

3.5 Exercises
To do the following exercises, use the recursive formula (4)

for computing binomial probabilities and the corresponding formula

(15) p(k+1;np) = 2B (k;np) .

for computing Poisson probabilities:

Exercise 6. Tabulate the cumulative binomal égz:zjgution function
ahd its normal and Poisson approximations for n = S, 20 and 50 for
.25, and .1 .

does each approximation appear to be valid? Which method of ap-

each value of p = .5, For which values of n and p
proximation gives better results in the "tails" of the distribution
when p is small? Compare the results of using differences between
successive values of k in the normal approximation to the cumulative
binomial distribution with the results of using the direct approxi-

mation of b(k;n,p) described by equation (7).

Exercise 7. Recompute the normal Qpproleatlons of Exercise 6 '
using the continuity correction, and describe its effect on the

accuracy of the approximations.

18
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Exercise 8. A jury panel of 100 members was selected from a com-

munity 1in which 25% of the jory-eligible residents own no land. 90
of the panel members were land owners. How likely is 1t that non-

land-owners are that scarce on a panel when selection 1s truly random”

Exercise 9. Suppose that in the community of Exercise B, f{.of the
jury-eligible residents have coqpleted fewer than 8 years of school.
what 1s the probability that every member of a randomly selected jury

panel has completed 8 or more years of school?,

{

. 44 CONCLUSION

¢

Summary

The following diagram summarizes the approximations

we have_discuﬁsed. ; [

Hypergeometric N,n ®

n/N—»0

nK/N—» )

Poisson}
i 1

N~

Binomial'

n,np —»

That 1s, the hypergeometrxe probabilities are approxi-

rated by [he binomial probab111t1e> for large populations.
The binomial probabilities In tufn have normal and Poisson

approximations; S0, therefore, do the hypergeometric

probabilities. ' The: diagram shows that Poisson probabili-

t1es have a normal approximation for large values of the
Parametif X, but we have not discussed that appro%xmatxon
here. s . .

-

'

o
. In all*of the populations we discussed,

values are elther zeros or ones, representing dichotomous

'
‘

19

.
the numerical |

OULLOMES - -SUCLESS or.fd1lure,‘yellow or pink, etc. There
arc dpproximatiun techniques for other kinds of populations.
Many such technigues are 1n Common use 1N Statketics,
espectally techniques bdased 1n some way on Central Limit

ap-

proximate proBubility calculations, are widely used by

based on

Theorems. - Approximate statistical methods,

statisticians. Discussion of the theoretical bases for

approximate statistical methods 1s beyond the scope of this

module; however, the techniques have the same two bases--

structural and mathematicatl abproximat1ons.

you should be

From these and similar approximations,

_gaining the feeling that 1t 1s possible for several proba-

4.2 Lxercises *

bili1ty models whose similarity 1s not immediately apparent
to reflect a given sampling problem. As you progress in
your study of inferential statistical methods, 1t wikl
become more and more necessary for you to rely on the
1dea> of approximation in choosing mgdels for populations
and 1n deriving approximate sampling distributions for the
statistics vou will be using 1n reaching conclusions about
the populations. The approximations here of hypergeometric
and binomial distributions are useful as presented, for
determining the probabilities of given numbers of succes;
ses, but examining tlem should 1n addition nge you some
familiarity with the\advantages and limitations of ap-

proximation in general.

T

Exercise 10. How might one obtain a normal approximation to hyper-

geometric probablliples? For what values of N, n, and K would it
be valid? ! ) b/

Exercise 11.

,g committee of 25 people 1s to be drawn at random from

a group consisting of 120 men and 80 women. Obtain an approximation .
of the probability that more than half of the commttee members will

be men.
Wilfred Shadbolt is inspecting brackets. He tests

»
75 2

Exercise 12.
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30 of them, choosing the 30 randomly (without replacement) from a

lot of 5Q00.

that at least one defective bracket will be among the

babiTit
pro ”}*

5. ANSWERS TO EXERCISES

If the 5000 include 150 defective brackets, what is the

'

Exercise 1.(a) ’ ! .

k3
ry
30 tested”? " Area of triangle = 1/2 x 1 x | = 1/2. /
‘ ° »
ExerciseY 13. Show that Exercise 1.(b) . _/
a} as N becomes very large (while K/N = p remains constant), ) Slope of tangent line = 1. To find thngernt point, set
i £ h(h;N,n,A) in formula (3 oaches the coefficient / )
the coefficient of h( n,k) in formula (3) appr 1es the coefficien g_g . _2_1_ = 1, and solve to obtain x i 1/4. Line intersects
of b(k;n,p) i1n formula (4). X /X s
b) as n becomes very large and p becomes very small (while vertical axis at £(1/4) -1/4 ="1/4, height of line at x = 1 is
np remains constant), the coefficient of b{k,n,p) 1n formula (4) £(1/4) + 3/4 = 5/4. Area of trapezoid 1s 1 x (1/4 + 5/4)/2 = 3/4.
approaches the coefficient of p(k,np) in formula (15). Exercise 1.(c)
(Rigorous demonstration of these propositions, each of which cor- £(1/2) = .7071; f(1) = 1. Area of first rectqngl'e = .3536; area
responds to a segment of the diagram of Section 4.1,r(€qu1res some of second rectengle = .5. Approximate area = *.8536. ‘
lculus.
caleulus.) Exercise 1.(d) 4 N
= £(1/4) = .5; £(3/4) = .8660. Area of first rectangle = .25; area
of second rectangle = .4330. Approximate area = .6830. .
. - o
Exercise 1.(e)"
< X f(x) Area of rectangle
.125 .3536 .0442 .
> - .250 .5000 .0625
, . .375 .6124 .0765
.500 L7071 .0884
- .625 .7906 .0988
.750 | .8660 .1083
.875 .9354 L1169
1.000 1.0000 .1250
v » .
. Approximate Area = .7206
Exercise 1.(f) .
b f(x) Area of rectangle
- ? .0625 .2500 .0313
- . 1875 .4330 .0541
.3125 .5590 .0699
.4375 .6614 .0827
¢ . g .5625 .7500 .0938
.6875 .8292 .1036
. ~ .8125 .« .9014 L1127
) .9375 .9682 .1210
r - ’ ; ~
' Approximate Area = 6691, which is vety
* . ’ close to 2/3.
"

: 78 7
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?Exercxse L(2) Exercise 3. (a)

Thé answers to (c) and (d) are farther apart thah the answers to ) Exact Binomial
i Hypergeometric * Approximation

.0040 .0313
.0992 +1563

(e) and ¢f). Taking the height of a rectangle to be f(x) at the
. i Q
, 0
to the success of the approximation when fewer, broader rectangles * .3968 0.3125
0
0
0

center of the rectangle rather than at the edge is more critical

.3968 .3125
.0992 .1563
.0040 .0313

-~

are used,

Exercise 2.(a)

k f(k) (i) = ET_%éTFTT Exercise 3. (b)

0

Sxax3x2xl !

B L
T 1x5x4x3x2x]
5 x4 x3x Exercise 3. (c)

1x4x3%2x1

S5x4x3x2x1
2x1x3x2x1

5x4x3x2x1
3Ix2x1x2x1

Sx4x3x2x]
4x3x2x1x1

5x4x3x2x1 _
5x4x3x2xixl  ~ : .5838 .5905
. . . - .3394 .3280
Exercise 2. (b) .0702 .0729

_ 5 5y ! .0064 .0081
Suppose that f(k) = (k). Then f(0) = (0) = 5T .0003 10004

T

Exercise 3.(d)

f(k+1) = ( ' Therefore

5
) .
kel 5 51 Exercise 4.(c) Exact Binom:ial
£(k+1) (k¢1) D! @K1 k Hypergeometric Approximation
f(k) (s) - 51 * 0.0004 .0011
kK k! (5-k)} » 0.0021 .0046
k! (5-k)! .0089 .0148
2 KD T (4007 .0278 .0370

L0661 .0739
k! (5-k) " (4-K)! L1216 .1201
(k+1) k! (4-X)! 1746 .1602
5.k 1969 .1762

-
= T .R746 .1602
.1216 L1201
L0651 0.0739
.0278 -0.0370
.0089 0.0148
.0021 0.0046
.0004 . 0.0011

[

ocoocOococococooo

5-k

*
ol f(k), which is the recursive formula sought.

So f(k+l) =

COO0OCOOCOOoOOCOoOOCOOCOOCO
P
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5000,30;150)
0,.03)
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.38) = .0004

3
1 - P(no brackets defective)

1 - h(0
} - b(0

¢(-

4

L ]
N, and n should be large’ (but still a small -frac-

200,25,80)

>

should be very large, K should be an appre-
25(.4)(.6)

P(number of women < 12)

H(12
$(-1.02)

N
. gl225(4)r.5)
;

2

100(.25) (.75)

b(0;100, 04)

The hypergeometric probability can be approximated by

~

The hypergeometric probab11it1és can be approximated by
tion of N).

B(10;100,.25) = Q(IO-IOO‘(.ZS)O.S)

Exercise 8.
Exercise 9.

bilities, and approximate the binomial probabilities with ohe of the
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P(at least one bracket defective). =

normal approximationms.
ciable fraction of
P{number of men > 13)
Exercise 12.

Exercise 10.
Exercise 11.
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. ’ Exercis; 13.(a)
' K-k ,
T . & D 2k
(k+1) (N-K-n+k+1) NoK-nekeT -

(o) (=) (keny(1 - & Dtkely

As N becomes very large, % and Q;%ii become so small as to be
negligible,tso tﬂé expresslon above 1s approxbsately

K
g(n-k) .
e D) (1-)

{n-k)

Because 5 = p, we can write that as TI?TTTT_ET , which 1s the
coeffxcxent of b(k; h p) 1n formula (4).

Exercise 13.(b)
) - tn-k)p np - kp . D
* eDO-p) T ®D - (kDp _ -

become so small as o be negligible, so the expressxon above

(15}. . ’ !

ERIC

s . Y

As p becomes very small (but np remains constant), kp and (k*l)p

. approdches IJ% » which is the ce¢fficient of p(k;np) 17 formula

29

. geometric probab111t1e< >trdgtural°
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.
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6. MODEL UNIT EXAM s

[
v

In what sen:e 1s the b1nomxal apg;gx1mat1on to hyper-
In what sense 1s
the normal approximation to bxnomlal probabilities

structural”

You are worhing for an automobilg dealer. Invent a
hypergeometric random variable related to your work,
and describe what N, K, n, and k are. Can you approxi-
mate 1ts distribution adequately with a bknomlal dis-
tribution? How would you change your answer to the
first question to make the random variable genuinely

binomi?i? What would p be? -

Thomas To}loller plays a gambling game at which he -
has probabil1iy R = .492 of winning $1 and probability
p = .508 of losing §S1. What’is the probability that,
after 100 plavs he has won more than he has lost?

What is the probability that after 100 plays, he has

'won exactly as many times as he has lost?

Thomas* Tolioller plays another game at which he 1is
told he has a 1/38 chance of winning on each play.
After 100 plays, he has won only once. How likely is

winning no more than once in 100 plays if the game is

as described?

<
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7. ANSWERS TO MODEL UNIT EXAM

The sampling schemes in binomial and hypergeometric situations
are similar. The binomial and nbrmal distributions are both
sampling distribytions of sums, and they Tan be shown mathe-

maticallf to be simlar for large sample sizes.

For example, Y could be the number of people in a random sample
of 15 of this year's customers who bought Model PQR. (the random

sample 1s chosen without replacement). N would be the total num-

.ber of this year's customers; K would be the number of this year's

customers who bought Model PQR; n would be 15, the number of cus-
tsmers in the sample; and k would be the number of customers in ~
the sample who bought Model PQR. If the dealership 1s active

this year (selling more than 75 cars, say), then the binomial

approximation should be adequate. To make Y genuinely banfxal, - .
the sample should bg chosen with replacement (i.e., a customer R

Pt

could appear in the samp\e more than once.) ' P =

/
¢ -
B(49;100,.508) = o(32100UPO8I .5 4 | o) 260y = 397 -
/100(.508) (.492) . A
and | . . i .
b(50;109,.492) = — 1 o (—30-100( . 492)
v100(.492)(.508)  /100(.492) (.508)
| 60.260) _
® 3999 ° .079. ‘
B(13100,1/38) = b(0;100,1/38) + b(1;100,1/38) a . .
= p(0;100/38) + p(1;100/38)/ = .261. .
' .
i .
, &7 |
’ 31 .
. . _ )




.

ANy

L4

STUDENT FORM 1

Request for Help / ‘

) .-

Return to:
EDC/UMAP
55 Chapel St.
Newton, MA 02160-

-

.

" Student: If you have trouble with a specific part of this dnit, please £111
out t@is form and take it to your instructor for assistance. The information
you give will help the author to revise the unit.

Your Name Unit No. /
Page v
é) Section Model Exam
Upper ’ Problem No
. OR P OR .
OMiddle Paragraph . Text ’! -
O Lower - Problem No. :
[ A ]

Description of Difficulty: (Please be specific)

Instructor:

(::) Corrected errors in materials. List corrections
-

-

<::> Gave student better explanation, example, 'or pro
0 Give brief outline of'your addition here:

P

.

skills (not using examples from this.unit.) °

Please indicate your resolution of the difficulty in this box.

. v ) C . .
(::) Assisted student in}acquiring general learning and problem-solving -

here: i . -

LN .
cedure thgn in unit.

- o

Instructor's Signature

/ ; Please use reverse if necessary.

s [




- ‘ Return to:
STUDENT FORM 2 . EDC/UMAP
55 Chapel St.
Newton, MA 02160

Unit Questionnaire

Nanme Unit Wo. Date

Institution ' Course NG. ul

Check the choice for each question that comes closest to your personal opinion.

l: How useful was the amount of detail in the unit?

___Not enough detail .to understand the unit
. " Unit would have been clearer with more detail
_____Appropriate amount of detail
Ugit was occasionally too detailed, * but chis was not distracting

Too much detail; I was often distracted

2. How helpful were the problem answersf

. Sample solutions were too brief; I could not do the intermediate steps

. . _Sufficient information was given to solve the problems

Sample solutions were too detailed; I didn't need them
"Excepc for fulfilling the prerequisites, how much did you uyse other sources (for
example, instructor, friends, or other books) in order to understand the unic?

/

J , A Lot Somewhat . A Little, | Not at all

4, How long was this unit in comparison £o the amount of time you generally spend on
a lesson (lecture and homework assignment) in a typical math or science course?,

) Much Somewhat : About Somewhat + Much
. Longer Longer . the ' Same Shorca%} Shogfer

Prerequisicas
Statement of skills'and concepts (objeccives)
Paragraph headings
Examples
Special Assiscance Supplemenc (if present)
Other, please explain

l |

6. Were any of che following parts of the unit particularly helpful? (?héck as many

- as apply.) .
) Prerequisites
Statement of skills and concepts (objectives) -
Examples s .
Problems

Paragraph headings
Table of Contents ) . .
Special Assistance Supplement (if presenc)//

Other, please explain } .

s %lesge describe anything Am the unit that you did mot particularly like. -

" Please describe anyithi g that you‘?ound particularly helpful (Please use the back of
this sheet if you need Wore space.) @ <{




