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I

ABSTRACT

Regression toward tve mean is a phenomenon that is a
natural by-product of less than perfect correlation be-
tween,two variables, but regression effects have often
been mistaken forstreatment effects in poorly-designed
experiments. The purpose of this module id' to explain,
theoretically and empirically, this bothersome concept.

1. INTRODUCTIO11

Did you ever notic( that the sons of very tall men are
usually also tall but not quite as tall as their fathers?

And thatthe sons of very short fathers tend to be not as
short as their, fathers? The'famous anthropologist Francis
Galton did,"and he once believed that this woould ultimately

lead to the elimination of the very tall and the very
short, Will it?

yrobably not. As we shall see, this kind of "regres-
sion"llis a statistical artifact of the imperfect correla-

tionibetween any two variables (e.g., hight of father and
height of son). Unfortunately the lack of understanding of
the principle continues to be A problem in scientific re-
search.

. 2. WHAT IS REGRESSION TOWARD THE MEAN?

2.1 -Definition

Regressio,toward the mean is the phedobemon:whereby a
high (low) set.of observations on one variable is associa-
ted with a mean on another variable that is also high (low)

but that is closer to the overall mean for that other vari-
able. It ,is of. no real scientific importance whatsoever;

it is a necessary consequence of ]iess than perfect correla-
tion between Iwo variables.

2.2 A Numerical and Graphical Illustration

Consider the scatterplot in Figure for two variables
X and Y that are on the same scale (the Pearson produ4-

moment correlation coefficient for those data is 0.5) and
pay special attention to-the /eft-most array of four Voints
(for X=1). The overall mean for variable X is 4, so those
four observations are low relative to that mead. Note,

however, that the mean for variable Y for those same obser-
vations is 2.5, which is closer to the overall mean for
variable Y (als6 4) than the 1 is to the mean of 4 for
variable X. The reason for this is simply the shape of the
scatterplot. Since there is not a'perfect linear relation-
ship between tlie two variables, the\most extreme obsenia-

tions on X are not necessarily associated with the molt

extreme observations on Y.' When the very lowest X measures
5

1

are considered, the corresponding measures for Y have no-
where to go but up, so to speak.

This phenomenon also operates from the top dorin, as
well as from the bottom up. Again referring to Figure 1,
the right-most array of four points (for X=7) produces a
mean for variable Y of 5.5, .which is closer to the overall

Y-mean of 4 than 7 is to the overall X-mein of 4.,

For simplicity of illdstration, the Y measures of
Figure 1 were put on the same scale as the X measures:
That is not necessary,, however. The general shape of ths
scatterplot remains the same if either X or Y is trans-.
formed linearly. 9

Y on X regression
line

Y = 0.5x + 2

Figure 1. An illustration of regression toward the
mean. (Adapted from Campbell, D.T. and Stanley, J.C.,
Experimental and quasi-experimental designs for re-
search; Rand McNally, 1966, page 10. The numbers next
to some of the points are the frequencies of those ob-
servations. The points without numbers represent

. single observations. The total number of observations
is 58.)

2.3 MathemaSical Explanation

A single illustration is not a sufficient explanation
of a phbnomenon. The following algebraic argument treats
the, general case.

Consider the equation of the regression line for Y on
X, namely

(1) Y = bX + a,

2



where' .

J

b =
S.,,

(2) r' --L.xy Sx

and

(3') '.. , a = My bMx. .'

.."--

. (In,these equations, Mx and My are the overall means,, Sx

and Sy -are the overall standard deviations, arid -rxy is the
correlation between tie two variables.) Substituting the

,v, values given0,0110°Eqs.r(2) andt(3)
a
tor b and a into :Eq. (1) ,

we have .

. ,

..
S S

(4) 'Y .=' r --J. X + M - r -- N4 rxy Sx y rxy Sx x.

Rearranging Eg. (4) algebraically leads to
. ,

or

or

(5)

sv
Y rxy s (X M ) t My,xy. x

S
Y - My = rxy -g (X Mx) ,

Y-M
Y

X-Mx. .

Sy

(

-. rxy S
x

.
.

..

This is the so- called- "standardized" form of the regressio\k

equation.
.

'

A..- Now consider a set of obser,, vations for which -X i$ ,k -

standard deviations from M. Then
`,,

Y ...1,1 ' _ (m
X
+kS

X )-!1K
(6) ---Y - r -S ry Sx krxy

Y ...

Since Irxv1 K 1, the - value of Y. on.the regression line that

"goes with" this extreme.vue bf X (the Y-meah for the
array) must be less than or,,equal to k standard deviations
from M

Y
(equality holds onlyif rxy = + 1)., That's regres-

sion toward the mean, no matter what the values of k, rxy,
Mx, My, Sx, and Sy are.'

( 3 SOME OTHER EXAMPLES
. .

3.1 Rev:ling Improvement

rl

An educator gives a reading achievement test to a

group of third -grade pupils, picks out the pupils who
obtained the lowest scored on the test, gives theM a two-
Month remedial reading program, tests them againy and'ob- -

serves that their scores are significantly higher. Is this
evidence that the program has been successful? Nqt neces-
sarily. It could be regreds.ion toward the mean; Scores on

the two tests probably do not correlate perfectly with one
another.

,

7 5

3.2 Smoking and Lung Cancer'

,A physician examides .several cancer patients, obtains
a medical history of their .cigarette spoking behavior, and

discovers that those who smoked the most had only slightly
more. than an average aunt of lung cancer. Does'plis mean
thatqf you're goings to smoke cigarettes you might as well

smoke a lot? Pdrhaps; but.tilereNpay beregressipn toWara

the mean'here, too. Although there is apositive forreia-
tion between ,number df cigaret6es smokCd and amoUnt,Of lufig

cancer,' the correlation is far from perfect. ,

, .

4. BUT WHAT IS IT TBAT RERESSES
TOWAIN) WHICH MEAN?.

This queStkon canbe,best answered
1

in the context of
two technicali,but simple,.statistical Ctncepts, namely
expectation and conditionalitv. The expected value of a
variable, say Y, is the mean value of that variablt,pual-
ly written as'E(Yi: The conditional expected value of'Y is
the mean value given some constraint, say X', and is usual-
ly written as e(Y1X).

ft Regression towar.d the mean is concerned with the com-

parison between the quantities X - E(X) and .E(YIX) = E(Y).
Referring to Figure 1.again, the (standardized) distance
between any X and the mean of X is always greater then or
equal to thesdistance.between the mean of Y for that X an
the overall Y mean. So it is,E(YIX) that regressestowpp;
4(Y), relative to the. discrepancy between X and E(X). If

the correlation between-X and Y is 6, i.e., if the scatter-
plo4Pforms a ''buckshot" pattern, .the'regression is maximal

and E(YIX) = tjY). If the correlation is +1*on -1 there is
no reoression.toward the mean, since the'(standardized).
didtance between (Y1X) and E(y)'is'the same as the (stand-
ardized) distance between X and E(M).

4k . Ok Le Lei.
'

Take two.decks oforainary playing cards. Select the
sevens, eights; and nines from one deck and call this
reduced deck of 12 cards.Deck A. Select the aces (ones)'

through nines from the other 'full deck and call this re-
duced deck, of 36 cards Deck 4. 'Pencil in the, number -2 on

.ach of.the aces in Deck (5; the number -1 on each of the
.twos and threes; the number 0 on each of the fours, fives,
and sixes; the nun ter +1 on each of the sevens andteights;
and the number,+2 on each of the nines (all in Deck B).

' For each card in Deck A draw a card at random'(With
replacement from Deck B. ("With replaceMent" means that
you put the card back in the deck before you shuffle and

4



drat] another one.) Add the 12 paixs of ;lumbers (the actual

denoMinakion for the card in Deck/A and the number -2,
0, +1, or +2 drawn from Deck B). For example, paired with
the seven of spades in Deck A you Right have a -1 from Deck
B. Addingthese.together you have 7 +(-1):= 6.

Nowpick out the six largest sums (using any conven-
:"ient rndomizing procedure to resolve flies) and find their

mean. (See Table 1 for an example of this step and all
subsequent steps in the demonstration.) Set aside the six
cards fitom Deck A that did not contribule to thClargest .

-sums: They will no longer be needed.
,

11.

For the same six cards from Deck A that did'contripute
to the six largest Sums, repeat the pairing, .summing, and

averaging process rising six cards drawn at random from Deck.
B. Compare the two means. , The second one 'should be lower.
Do you know why? (Try to thidk of a reason before you read
on.) ."

TABLE 1*

One Set of Empirical Results

(regression toward the mean)

"First testidg"

Peck A cards Deck B cards

7 7 (+1)
7 9F(+2)

7 6 ( 0)

7 8 (+1)

8 8 (+1)

8 8 (+1)

8 7 (+1)

8 A (-2)

9 3 (-1)

9 ( 0)

9 6 ( 0)

9 6 ( 0J

"Second-testing"

Deck A cards
7

8'

8

9' .

9

9

9 . :

Sums

8

9

7'

8

'9

9

9

6

8

9

9

9

mean of checked
sums = 9.0

Deck B cards ,*

A (-.)

3 (-1)

6 ( 0)

8 (+1)

7 (+1)

M
5-

7

3 -

9

10)

_L1D__
48/6 = mean

of 8.0

5

4

The sevens, eights, and nines originally.chosen from

the firs% full deck of cards are Analogbus to scores on a
test that the 12 brightestkof,3/6 students'deservetto get.

(The other 24 deserve to get one through4`six.A Forget about
the tens, jacks, queens, and kings.) The4Ti sums are de.

scores that they actually slo get, scores that contain a
random error component. (They all deserve high scores, but
by chance some will "have a bad day" and obtain,Scores that
.are less tHan'the ones they deserve, while others will

.

"have a good'day" and obtain scores that are greater than
the Ones they deserve.)

At'the second "testing" the scores obtained tithe.
"people" who had the six highest scores.the first time
would not be expected to correlate perfectly (because of

the chance error components) with the first atypically high
scores. Ergo, regression Idownwerd) to the mean.

The moral to all(of this is: if a group of people
score very high on atest one time and get lower scores the
next tripe, don't be surprised and don't get too concerned.

The same implication holds at thy lbw end of the'scale: if

a group of4people score very low on a test ont time and get
higher scares the next time, don't get too elated. In both

tcases it could be wholly or partially regression oward, the
mean.

6. EXERCISES

1. Demonstrate for yourself that the implication just mentioned does

hold at the low end of the scale by carrying out the demonstration

described in Section 5 again. This time use the aces. twos. and

threes from the first full deck of cards as Deck A, and pick Out

the six lowest sums. -N

2. Referring back to example 3.1, think of a reading improvemen1 pro-

gram being given to the "people" who obtaiqthesix lowest scores

at time 1, with the scores at time 2 as a measure of their per-

formance at the end of the program. Do you see now why the "im-

provement" is a statistical necessity?

7.1 In Experimental Research

Whenever we're seriously interested in the effective-
.

. ness of a reading improvement program, a weight reduction
plan, a headachy remedy, etc., we should use two'groups of

people, raddomly assignee to either receive (the experi-
mental group) or not receive (the control group) the par-

,

ticular treatment in which we are interested. If all of
the people happen to be recruited from extremely nigh or

,extremely low portions of some score distribution and ate

10
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given a pre-test before the experiment and a post-test af-

'.ter the experiment, the fegre'ssion toward the mean effect

will still take place, but it will be balanced across the
two groups. For the reading program example,'.if people'who

get vety low, scores on the reading pre-test are randomly

ahsigned to experimental (they get the programr And control
(they don't) gFoups,,both groups' will do bet-ter on the

post=test due to regression- toward the mean; but if the
, program is' really effective the members of theexperiment'al

group'will score that much 4ghe.r.

7.2 In Non- txperimental R4search

The only thing that canlbe done in non-experimenta)
research is to do the best we can in distinguishing between

doi
a legitimate finding and a regression'effect.'''For:the

smoking and lung-cancer example, the heights of sons vs.
heights of fathers example, and similar studies, the ex.-

treme measures on one variable are usually associated with

less extreme measures on the qther variable for purely sta-
tistical reasons. (Selective mating has soMething to do
with imreasing the correlation between fathers' hekgilts -

'Aft: and sons' heights, buLthe regression effect provides a

-sufficient explanation for the reduction to "mediocrity"
.that Galton opserved.)

.Some people think that.matching...can take care of prob-

lems associated with,reciression toward the mean but,.alaS,-
it can't. In a well-known study 'by Helen Christiansen of-

' the effect of high.sehopl graduation owecanomic adjustment

during the early days of the depression, an original sample
of 2127)people w's reduced to 23 matched (on six background

f, variables)' pairs QS graduates and non - graduates, with the

graduktes exhibiting better adjUstment then the non-gradu-
ates. But,the regression effect could very well aCdount
forthe difference since the non - graduates who had been

' matched with the geaduates on such things as mental ability
and neighborhood status (both of which. are positively

rdlatediwith.tconomie-agustment) were well above average '

relative to their fellow non-graduates an'd would_ge expec-
,-

.

A
ted to regress fdrther i(to their own ,population mean) tnao

S

the gYaduates at thelfollow-up testing ten years later;

ttlereby Making the graduates appear to be better adjultAd
economically. .s.

Note that it is -nott-feasible to study the effect of.

'high school graduat4on on economic Adjustment experimen-
tally: since itis socially unacceptable to assign some
'people to receive a high.school.education and to withhold
' it fromIthers, However, there are better ways than the .

. matched- airs technique to Contr.ol for confoundir?g back-
: . f

11
7o

ground variables, techniques that-1re also lops subject to

regression effects and do not result in the shrinkage of
the research sample. )

One final point: the regression effett. works "back-

waids" as well as "fdrwards" statistically, even though it

makes absolutely no sense sCientifically. Very tall sons
have Lathers whd are closer to average height than they
are, which should conv.inceyod, if this moauld,and your'
previous exposure to statistics have not qreasly done so,
that correlatioil per se does not necessarily imply causa-

tion.

1.'1
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9. END-OF-MODULE OUIZ

1. If a 3No,..1 of people whp exhibited great test anxiety before

, counseling had greater test anxiety after counseling, is regres-

sion toward the mean a likely exEliination? .Why or why not?'

2. If the regression mquation for Obn X is Y = 0.75X +1.5e

Mx ) My = 6, and Sx = SY = 2. what is th;,pean on variable Y for.

. ten observations for which X = 5?. Does that Cake sense? WitS, or

why not?

3. (Anus question) In some experiments the people in the exigleri-.

mentll group and the people in the control group are Ihe-A.=

people, i.e:, they receive both treatnnts. Is regression toward

the mean a problem in such experiments? Why or why not?

1 2

. L
Y.,.

,
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10. ANSWERS

10.1 Anwers to. 4erciies
1. It woil'ced fine:fdr*MThe six lowest sums that I got were fqpr

l's and two 2's, with a mean of `1.33. The corresponding sums the

next time.wPre O. 1, l. 3. 4. and 5,,with a mean of 2.33, which is

a point higher (and clo'ser to the overall mean) than the.first

one;

2. It is artifactual because the six lowest "people" ha4 had luck the

first time; and since luck )14a#s no fdvorites ,they couldn! t all

have biid luck the second tilte: therefore, as a group they scored

higher and would have done so ulith or without the program.

10.2, Answers to the Ouiz
I. No. regression toward the mean is not a likely, explanation, since

they scored high 'the first time and higher, not lower, the second

.time7:"The-kegpgsion effect is only-relevant for high to lower

and low pc$ higher mean differences, i..e., an originally high:group

scores lower the second time or all originally low group scores

higher thesecond time.

The evidence suggests that the program wiS not only not ef-

fective, but harmful. However. since there was no'control group

(whiCh would be treated in l'-he same way as the experimental group

except that they don't get the counseling) we cannot be sure that

thd counseling itself was ineffective. The disappointing results

may be dne to the counselor. the office in which the counseling

*
ipbklrlace. someother event that transpired during the counseling

etc.

2:,Substituting X = 5-in th6 regression equation. we obtain Y = 5.25.

the 5.25 is closer to the mean of Y than the 5 is to the mean of

so'it indeed does make sense. X = 5 is not-an extreme observa-

-ftion one-half.of'a standard deviation below thkmean
of X). bittS,,the regression effect actually works on All, of. the

observationir' not just the extreme ones. as Eq. (5)` attests.

The cdtrelation coefficient,foe
te

r thes4viata, by .the way, is

the same as the regression slope, b, i.e.. 0.75. since

' "0' S
b = rxy 3fc

and
r

- Sy
= Sx .

3. Yes, since pre-test and post-test scores still won't.,,correlate

perfectly. Things get a little more complicated, however. since

yorcould have three or four, rather than two, testings to contend
with: pre-testing before Treatment A, post testis - -after Treat--

mentA. pre- testing before Treatment B (which may be the same

1.3
9

E

testing as the post-testing after Treatment A). and post-testing

after Treatment B. The pose. -1k scores should be closer to the mean

than the prdA scores, due to the regression effect, but since the

.experience of Treatment B is often not contemporaneous with the

experience of Treatment A (the people usually undergoing

both treatments at once), the regression from pre -Bu post-B may

not be comparable.

10



STUDENT FORM 1

Request for Help

Return to:
EDC/UMAP

55 Chapel St.

Newton, MA 02160

Student: If you have trouble with a specific part of this unit, please fill
out this form and take it to your instructor for assistance. The dnformation
you give will help the author to revise the unit.

Your Name

Page

O Upper

()Middle .

() Lower

OR .

Section

Raragraph

Description of Difficulty: (Please be specific)

OR

Unit No.

Model Exam
Problem No.

Text

Problem No.

Instructor: 'Please, indicate your resolution of the difficulty in this box.

Corrected errors in materials. List corrections here':

Gave student better explanation, example, or procedure than in unit.
Give brief Outline of your addition here: d

t .

(:2)Assisted student in acquiring general learning and problem-solving

skills (not Using examples from this unit.),s..-
- ---.--71,

J
Instructor's Signature

Please use reverse if necessary.
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Return to:
STUDENT FORM 2 EDC/UMAP

55 Chapel St.
Unit Questionnaire

'fb Newton, MA 02160

Name Unit No., Date

Institution Course No.

Check the choice for each question-,that comes closest to your personal opinion.

I. Hiov useful WAS the amount of detail in the unit?

2.

3.

4.

5.

Not enough detail'to understand the unit

istracting

steps

use other sources (fot
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BASIC DESCRIPTIVE-STATISTICS

1. THE N1;ED TO SUMMARIZE DATA AN HAMPLF

There is a quantitative side to almost ever: aca-

demic field. The geologist measures the hardness of

various rock.specimens. 'flie psychologist pleasures reac-

tion times to a certain stimulus. The educator measures
learning as it is ieflected in scores,bn achievement

tests. The economist records income. The list could
be extended for many pages.

After a set of data has,been cellected the next

task is todecide how to best present'it so that it is

available to others in a quick and useful way. The

methods used to do this belong to a branch of study

called descriptive 4,tatistics. Included in descriptive

statistics are the methods of collecSlon, organization
and description of numerical information. The topics

covered in this module are all from the fields of

descriptive statistics.

Suppose we have. collected the data below.

HEIGHTS OF ONE-HUNDRED-EIGHTY

17 YEAR-OLD FEMALES IN CENTIMETERS (cm),
(hypothetical)

162 157 160 160 162 160 158 148 160 170. 160 152 '

152 162 159 149 166 167 174 159 153 154 164 165
170 161 166 162 158 168 164 164 159 160 165 166
149 160 174 170 167 145 155 154 180 159 154 161 .
165 167 172 152 171 164 156 156,, 165 156 156 147
147 157 -.162 158 170 157 164 161 158 153 148 ,158
165 159 101 167. 157 148' 146,. 169 .161, 166 151 15$
173 161 168 160 164 157 155 170 157 163 -156 157",:,
157 160 168 167° 166 177. 150 154 153 167° 149 158
160 156 150 168 168 158 177 157 164 151 160 161
157 168 152 159 168 165 154 157 .166'171 160 174
160 160 161 157 153 1/6 147 167 160 157 15$ 154
159' 160 100, 164 145 155 162 154 £63 155 169.., 4
161 14' 163 166 162 159 163 162 158 164 160
169' 158 168 158 162 161 159 163 163 170 165 176

t

Data in this, form are called raw data. In this un-

organi ;ed form the data can only be understood after a .

certain amount of time- consuming 'examination.- If the

.data set included several fliousan3 numbers the need to
or"ganize and summarize would he q,en greater.

\ILIHODS 01 SUMMARI:ING DATA

le thi'- see -Cron we will discuss two Important

methods of summarizing data: the frequency distribution
and the histogram.

2.1 Frequency Distribut ion

=e simplest way to organize data is by means of a

frequency distribution with one value in each class.

Su4 a distribution consists of a list of the values

which appear in the data set, arranged in increasing

order, and the frequencies which indicate the, number of
times the various values appear. Such.a frequency

distribution for the data on page 1 appears below.

11EIGHTS OF 17 YEAR-OLD FEMALES

HEIGHT (in cm) TALLY FREQUENCY

. 145

146

147

148

149

150

1

15

. 153

154

155

r' 156

1$7

15

159

160

161
162

' 163

164

165

401,}4 lr

.14a lilt

40-44 4Ht tl if
414 H44--

Itft

lift II

Ito lItI

0 9

2

1

3

3

4

2

2

4

4

8

4

6

13

12

9'

19

10"

10

7

9

6

2



166

167

168

169

170

I71

172

173
174

..1rn

176

177

178

179

180.

p

o'

-4ftf.

in* t,

tokw

1

4.11

. ,

w

0

7
7

8

2

6

4

1

3
0

.
2

0

0

1

a

much detailed information; there are too ma fferent

values. . ,

In other cases it may happen that a frequency.dis-.

tributionof the type Just given is a very effective

sumal-y. For'example, the frequency distribution shown

below gives a quick and accurate description of the

number of games played in the World Serie-5 of Baseball..

NUMBER OF GAMES IN THE-WORLD SERIES (1923-1978)

No. of Games Frequency

0 'TOTAL = 180

The tallies in the middle column above are included

only as an indication of how the frequency distribution

was obtained. It is not necessary, or even. desirable,

to include these tallies with a frequency distribution.

Already web ave made' significant progress in the

process of summarizing the data. this frebency dis-

tribution allows us to "get a feeling" for the data

much more quickly than was possible from, the raw data.

Furthermore!, nothing has been lost. All of the dnfor-

"mation which was available from the raw data is dvail-

able in this frequency distribution. This summary is,

however, less than perfect. There are 37 different

classes; it takes nearly aa full page to present this
..

frequency distribution; and even -with the data in this

form it takes some time to digest it.

The situation might have been worse. Each height

in this data set has apparently been rounded to the

nearest centimeter. If, instead, each height were

rounded to the nearest tenth of a centimeter then there

would have been many more classes and each class would

have a very small freqdency. In such a case the fre-

quency distribution would reprsent only a small

,'improvement over the raw data because it contains too

2a

4 11

5 10
'6 11

7 24

TOTAL.= 56

B
Let us return to the set of data representing

heights. We can condense the frequency distribution-on

page 2 f)5, using intervals as our classes, rather than

individual values. Eor example:

. HEIGHTS OF 17 YEAR-OLD FEMALES

HEIGHT (in cm) FREQUENCY

144.5--150.5 15

150.5--156.;)/ 28
156.5--162. 73
162.5--168.5 44
168.5--174.5 , : 15
174.5--180.5 5

,

0

The first:class contains all 'of the heights which

fall between 144.5)cm: and 150.5 cm. The number 144.5

is called the lower boundary of the class and 1507:5 is

called the upper boundary. Note that the upper boundary

of one class is the Lower boundary of the next class.

In this example the class boundaries have been chosen.

in such a way that no number from the data set is equal

to a clasSe boundary. Thus each number-can be placedin

one and only one class. By selecting class boundaries
#!!!!

which contain one more significant digit than the data'

24 4
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it is always possible.t6 choose these boundaries so' .

that they are 'distinct from the data. This is desirable
in order to avoid ambiguity.

The midpoint, or class mark, of each class interval

may be found 1)5, adding the upper and lower class bound-bound-

aries and dividing the sum by 2. In the frequency

distribution given above the class ma's are 147.5,.'

153.5, 159.5, 165.5, 171.5 and 177.5. j!lie width of

each class interval is called-the ciass"width. The class

width may be found by subtiting the lower class bound-
ary from the upper. Each class in the example has a

class width of 6. +It is desirable, but not necessary,_

to have all classes of the Same

A frequency distribution which uses class intervals

is. called a,grour,Pd frequericy distribution' and thC data

in such a frequencAldistribution is called grouped data.

The frequency distribution given on page 2 is som'times

called an ungrouped frequency distribution.

The grouped frequency distribution has been obtained,
at the cost of a certain loss of information. While the

frequency distribution has been'obt'ained from the taw

data, the raw data cannot be recovered from the fre-
e.

quency distribution. ...For example, in the frequency

distribution for heights we know that fifteen numbers

lie between 144.5 and 150.5. But that is all we can
tell.' The exact values of thege fifteen numbers cannot

be determined from the frequency distribution.

.Exercise 1.' Forty students in a chemistry cou'ise did a laboratory

experiment to determine the pH of a solution. The results are

recorded below.

<1a. construct a frequency distribu on for these data in whi 1

each class consists of single value.

b. Construct a grouped frequency distribution for these data in

which the boundaries of the first class are 7.895 and 7.995.

Use classes of equal width.

Exercise 2. Tliirty laboratory rats are run through a maze. The

time required to complete the maze on the first run is recorded

below for each rat. The times are in seconds.

10.8. 23.2 11.6 13.1
17.5 15.9 42.9 _164
38.3 15.7 15:1 19.8
16;9 29.8 14.0 , 21.3
14.4 18.3 , 34.6 13.9

16.1

wc56.2

14.8
13.3

2043

17.7

14.1

39.7
11.8

10..7

Colstruct, frequency distribution for these data.

2.2 Histograms

A picture is worth a thouSand words. If this is so

then it makes sense to find-a pictorial method of

presenting data. The histogram is such a method. the

histogram below is based on'the frequency distrOutivin,
for height datadon page 4.

70

6Q

50 -
u

40 -

cr _-30
co -

c4

". 20

10 -

HEIGHTS al: 17 YEAR -OLD FEMALES

A
0 144.5 150.5 156.5'162.5 168.5 174.5 180,5,-

8.00
8.20
8.05

8.20
8.05
8,25
8.05

8.10

8.15

8.00

8.10
8.10

8.15

8.30

8.25

8.05

8.10

7.95
8.10
8.30

8.,00

8.15
8.05

8.15

8.15

8.05

8.15
8.15

8.20
8.20
8.15

8.25

8.05

8.15

8,25

8.20

8.10 '

8.10
8.00

8.05

HEpHT.(in cm)-

Figure 1: Histogram of height data:
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On the horizontal axis in Figure 1 we see the

class boundaries from the frequericy'distribution on

page 4: On the vertical axi, we see class frequencies.

The areas of the rectangles in the histogram must be

proportional to the frequericies of the classes which

they represestit. 'If, as irt purexample,/611 classes

have the same class width then_the area of each rec-

tangle is proportional to its height. In this case

the height of each rectangle may-be thought of as

representing the frequency of the corresponding class,

The use of a vertical. axis for frequencies is, in this

case, desirable and recciMmended. However, should the

frequency distribution contain classes of varying

widths then a vertical axis fot frequencies.is impos-

sible
,

and-mustlbe avoided. (See the solution to

.Exercise,4, below, fob- an 6xample of a histagram with

unequal crass widths.)

Exercise 3. Draw a histogram for the frequency distribution in

Exercise I. part b page 6.

Exercise 4. Draw a histogram for the frequency distribution in

Exercise 2 on page 6.

3, MEASURES OF LOCATION - ANOTHER METHOD OF
SUMMARIZING DATA

.
-%

In many cases an even more drastic summary of the

data is required. For example, we might seek a single

number that can be thought of as representative of the

entire set of data. Such numbers are called averages,

or measures 'of location, or measures of central tend-

ency,'or measures of position. We shall call them

Measures of,location. This'conveys the important .idea

that such measures sell us wherethe data are, or,

equivalently, how large thedata are. At the same time

7 ;

27

it avoids-.the word "average" to which some people are :

prone to give improper interpretations.

There are manyymeasures of location. In this

section we will discuss three of the most useful: the

mean, the mediln and the mode.' Each of these may be

thought of as, in some sense, locating the center of -the

data.

3.1 The Arithmetic Mean

The most common measure of location, the one most

people are thinking of When they say "the average of

these numbers is such- and such`', is the arithmetiq medn.

Although there are other means than the arithmetic mean

(for example: the geometric mean or the harmonic 'mean)

when the word mean is used alone it is safe to assume

that the jrithmetic'mean is the mean to whiCh we are

referring.'''

3.1.1 Computing the Mean from Raw Data

The arithmetic mean is the number obtained by

adding all of,the numbers together and dividing tlris

sum by the number of numbers:' For example, the mean

of 6, 11, 7 and 5 is (6 + 11 + 7 + 5)/4 = 29/4 = 7.25.

, If the variable x is used to represent the individ-

ual numbers in the data set, then 7 is used as a symbol

for the mean. If the variable y were used to represent

the individual numbers then 7 would be the mean of

thes6 numbers, and similarly for other variable names.

Let -us use n to represent the number of numbers in

a set of data. If we use x to represent the individual

numbers then Ex will be used to represent the sum of

the numbers:' Then we have"the following formula for ak

the mean:

-' .Zx

28
4

8



z
For example, if the data set consists,of the num-

bers 6.2, 5.8, 2.9, 3.3 and 4.1 then n = 5, .Ex = 22.3

and

g =
2253

4.46.

For the data on page 1, n = 180, Ex = 28900 and

71_ 2880 900
1605- = 160.6.

9

The symbol "=" indicates approximate equality and is

used here to indicate that the final answer has been

rounded.

3.1.2 Computing the Mean from a Frequency Distribution

Sometimps the data are available to us only in theme

form of a frequency distribution.' Thus it is necessary

for us to have a method for calculating the mean from a

frequency distribution. If the frequency distribution

has only one value in each class, we use the following

method;

a. Multiply each value by the corresponding

frequency and add'the products.

b. Add the frequencies to obtain n.

c. Divide the first number by the second.

This method is illuttrated below using the World

Series data from page 4,

- NUMBER OF GAMES FREQUENCY

x

4

5

6

. 7

29

f

11

10

. 11

24

Ef = 56 E( f

32$ .

= 5.9
56

x f

44

50 .

66

168

= 328

I

This method can he expressed as a formula:

E(x f)

Ef

If the classes in the frequency distribution are

intervals rather-than individual values it is not

possibld to compute the mean exactly. This is because

we cannot determine the exact value of each piece of

data. It is, however, possible to make a very good

approximation of the mean.

The sum of the numbers in each interval be

found approximately bylmultiplripg the class frequency

by the class midpoint. Thus the mean may beapPToxi-

mated by using the same formula as before:

E(x - f)

Ef

But now the x on the right hand side represents the mid-

oint of the class. The next example illustrates the

use of this formula for the height data from the

frequency distributiol on page 4.

HEIGHT

(in cm)

144.5--150.5
150.5-156.5
156.5--162.5
162.5--168.5
168.5--174.5
174.5--180.5

FREQUENCY 'CLASS MARK

f

15

28 ,

73,

1 44

15

5

Ef = 180

147.5
153.5
159.$

165.5
171.5
177.5

2212.5
.4298.0

11643.5
7282.0
2572.5

887.5
E(x f) = 28896.0

A 160.5.
2886%
180

How does this answer compare with the value of g obtain-

ed from the raw data? Can you account for the differ-

ence?
ti

10



-31.3 Properties of the Mean

The advantages of the mean as a measure of loca-

tion include:

a. It is the most commonly used measure of loca-

tionand thus is familiar to many people.
b. It is rel=atively easy to compute.

c It lendsitself to algebraic manipulation.

d. Each number in the data set has as effect on
' the mean.

e. The mean is the most stable measure of loca-

tion under repeated sampling.

The last statement above requires some explanation.
As we become more knowledgeable about statistics we find
that the data which we havein hand, called a sample, is
often just a fraction of some larger set of data called
a population. It is of central importance to use the

data in the.sample to draw inferences about the popula-
tion. The study of how this is done is called inferen-
tic/I statistics. One of the reasons that the mean, is

often used in drawing inferences is 'that the varia-

bility of the mean among several samples is less than

the variability of other measures oflocation. ThiS.js
what we mean when we say "the mean is the most stable

b.- measure of location under repeated sampling."

The chief disadvantage of the mean as. a measure cf

location is that it is unduly affected by extreme
values. For example, the mean of 500 and 3 is
129, which does not seem representative of the originh
numbers.

Exercise 5. Compute the meanof the data given in Exercise 1 on

page 5.

Exercise 6. Compute the mean of-the data given in Exercise 1 on

page-5 from the ungrouped frequency distribution obtained in part

a of that exercise.

31 11

Exercise 7. Approximate the mean of the data given in Exercise

1 on page 5 from the grouped frequency distribution obtained in

part b of that exercise.

Exercise 8. Compare the results of Exercises 5, 6, and 7.

Exercise 9. Compute the meanof the data given in Exercise 2 on
page 6.

Exercise 10. Approximate\the mean of the data in Exercise 2 on

page 6 from the frequency distribution obtained in that exercise.

3.2 The Median

For a given set'of data, a number which is greater
than half of the data,and less than the other half ,

would be a useful measure of locatidn. In practice
there may be no such number. For example, if the
numbers in the data set are 3, 4, and 5 then the number
in the middle is 4. But only one-third of the data are
smaller than 4. In order to insure, that the measure
we are defining will always exist we must make a
slightly more elaborate definition.

The median oT a set of data is a number which:
a) is not greater than more:than half of the data,
and b) i5 not less than more than half of the data.

If the variable x is used to represent the individual

numbers in the data set then x will be used to repre-
sent the median.

3.2.1 Computing the Median from Raw Data

,To calculate the median it issfirst.necessary to
rank the data from smallest to largest. The median is
then the "number in the middle."

If n, the numbeal_of numbers, -is odd ther this num-
ber n the middle is easy'to find.. For example, to

ind the median of 11, 17, 12, 23 and 13 we rank the

ts
ts

32
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data,(11, 12, .13, 17, 23) and observe that the number

in the middle is 13. This is the median.

If n is even then there is a small problem. If,

for example, the ranked data a,re 7, 9, 10, 15, 18 and

20 then any number between 10 and 15 satisfies the

definition of the median. To be technically correct

we should speak of a median rather than the median.

But this ambiguity is avoided if wp define the'median

in this case to be the mean of the two numbers'in the

middle of the ranked data. B{this agreement the

median of 7, 9, 10, 15, 18 and fo is

x =
10 15

2
12.5 .

In both. examples above, no matter whether n is

exeu'or odd, the median is the number in the 1/2(n+1)

Position in the ranked data. When n was 5, 1/2(n+1) was

3 and the mediam_wasth_q third number in the ranked

data. When n was 6,1/2(n+1) was 31/2 and the median was

halfwaY-5-61WiiiTgi-TEird and fourth numbers in the

ranked data. Thus the procedure for finding the median

from raw data may be summarized as follows:

a. Rank the data.

b. Find the number in the 1/2(n+1) position in

the ranked data.

3.2.2 Computing the Median from.

I

a Frequency Distribution

If the data are available to us in a frequency

distribution then the data have,-in effect, been

ranked. If each class in the distribution contains a

single value we need only determine the position of the

median and find the number in that position.

. For example, in the distribution of height dat.a on

page 2, n = 180. Thus the position of the median is

1/2(181) = 90.5, or halfway between the 90th and 91st

numbers. Adding the frequencies from the first class

onward we find that 77 numbers are in the classes upto
,

jIN . 13

1

4

and including 159 cm. and 96 of the numbers are in the

'classes up to and including 160 cm. Thus both the 90th

and 91st numbers are equal to 160 cm. and the median

x
- 160 + 160

2
160.

If the classes in the frequency distribution are

intervals then, as with the mean, we cannot calculate

R exactly, butonly approximate It. The procedure used

to approximate the median is as follows:

a. Find the position of the median: 1/2(n+1).

b. Find the class which contains the median,

c. Use the formula

1X = L + 1/2(71+1)
f-

-

where: L = lower boundary of the class containing the

median.

S = sum of frequencies for classes lower than

the class containing the median.

f = frequency of the class containing the

median,

w = width of.the class containing the median.

Applying this rule to the grouped data on heights

on page 4 we Sind:

a. Position of the median 1/2(181) = 90.5.

b. The median is in the third class (156.5-162.5).

c. L = 1$6.5, S = 15 + 28 = 43, f = 73, w ='6,

x = 156.5 + ("'S
7

43f 6 = 156.5 + 3.9 F 160.4.
, % 3

This answer compares favorably with the act result,

160, obtained above.

3.2.3 Properties of the Median -

The median has the following advantages:

a. It is an easily understood measure

'location.

b. It is not affected b)' extreme Values

thus is sometimes more typical of the

numbers in theodata set than is ttmean.
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The chief disadvantage of the median is that it
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= Exercise 11. Compute the median of the data on World Series
games given in the frequency distribution on page 4.
Exercise"12. 'Compute the median of the data in ExerciSe 1 on

page 5, Compare x with .5c7 for this data set.
Exercise 13. Compute the median of the data in Exercise 1 on
page 5 from the frequency distribution constructed in part b of
that exercise.- Compare this with theresult obtairied in Exercise
12.

Exercise 14. Compute the median of thet.data in Exercise 2"on

page 6. Compare x with 31" for this data -set.

a

15

lbe Value which occurs twice is the mode.

.911 the;other hand, if the mode represents some

relatively large ftaXtion of the-data, it is useful to

Lreport'tt. hi the data on World Series games on page

liv.e.seethat nearly half of the World Series have

taken s-evengames to complete. This is dm interesting

feature of the data. Thus it makes some sense to men-

tion this if the four class frequencies had been 11,

10, ,1 and 12, The importance of the mode as a measure

of location is direCtly related to the relative fre-

quency of this value: The larger the fraction of the

data reprsented by-the mode, the more important the
mode becomes

4

Sometim s a dat'a set will' have two values which

Nicur much m e frequently than'the others. For ex-

'ample, the salaries.of employees of a business might

fall mainly into two categories, low salaries for

laborers and higher salaries for management personnel.

Such a,data set is said to have two Modes, even if the

frequency for one.mode is somewhat largef than for the

other. Such data may also be described as bimodal.

It is appropriate to report both modes for bimodal data.

X the data are in a grouped frequency distribu-

tion.we may choose the class with the largest frequency
36
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and call this the modal class. Alternatively, the mid-
point of the modal class may be reported as the mode.

40 short, if one or two viilues, or intervals,

represent a relatively largp'fiaction of the data then

this is interesting and should be mentioned uhende-
scribing the data. Otherwise we should not use the

mode as a measure of location.

4. CHOOSING A MEASURE OF LOCATION

Now that we have three measures of location at

our disposal, which one should we vse? The answer to

this question depends both on the data set itself and
on the use we intend to make of the measure of loca-
tion once it has been found. If our purpose is simply
to describe the data effectively we should use what-
ever measure or measures are suggested by the data.

The shape of the histogram of a data set is useful

in deciding Oil-measure to use. Four possibilities

are illustrated in Figure 2.

(a)

Symmetric

(c)

Negatively Skewed

(b)

Positively Skewed

Figure 2.*

(d)

Bimodal

...116

1

17

If the histogranl ofthe data-is approximately
symmetric, as in Figure 2a, then the mean and the
median will be approximately equal. If the histo-

gram is approximately symmetric and has a single modal
class then the mean, median and mode are all approxi-
mately equal. If the data are concentrated-loward

the lower end of the range with a few larger values,

as in Figure 2b, then we say the data are positively.
skewed. The reverse case, illustrated in Figure 2c,
is referred to as negatively skewed data. The more
the data are skewed, the greater will be the differ-

,
ence between the mean and the median.

The histrogram on page 6, which represents the

height data given Onpage 1, is approximately symmetric.
Foi this data set the mean was 160.6, the median was 160
and the mode was 160. The data set summarized in the

frequency distribution below is negatively skewed.

Class Frequency

0.5--100.5 3

100.5--200.5 2

200.5--300.5 7
300.5- -4Q0.5 24
400.5--500.5 52

For this. data set X = 387, X-= 417 and the midpoint of
the modal class is 450.5.

The outstanding characteristic of the data repre-
sented by the.histogram in Figure 2d is that it is
biomodal. This fact should be included in any descrip-
tion of the dta.

If we intend to follow the calculation of the mea-
sure klocation with further statistical computations

then this fact must be considered when choosing the
measure of location. The great majority of statis-

tical tests and procedures are designed to use the mean
rather than some other measure of location. Hence

.18



there is a strong inclination to choose the mean in

those cases where further statistical in''estigation is

anticipated.

With these facts in mind We list below some sug

gestions.

.1. In general, use she mean. It is the most

commonly used measure.,-It is especially appropriate

if you expect to do further statistical computatidWs.

2. If the data are highly skewed, use the median.

The median is, in general, less affected by a small

number of very extreme values then is the mean.

3. If the data are in a frequency distribution

which uses an opeh-ended interval, use the median.

4. if the data have a pronounced mode, mention

this fact. If the data have two pronounced modes,

mention this also. I

5. There isno law -which forbids you to .report

more than one measure of.location. ,

Exercise 15.4Fhe frequency distribution below, 'taken fNom the

1978 edition of the Statistical Abstract of the United gtates,

gives adjusted gross incomes as reported on individual income

tax returns in 1976. Which measure of location is most appro-

priate for these dath, and why? '

ADJUSTED GROSS INCOME
' (IN DOLLARS)

0 ,to 3,000,
3,000 to ' 5,000
5,000 to 10,000
10,000 to is,opo-
15,000 to 20,00d-
20,000 to 25,004
25,000 to 30,000
30,000 to 50,000

.50,000 to 100,000
100,000 to 500,000
500,000 to 1,600,000 e

over 1,000,000

39
A'

NUMBER OF TAXPAYERS
(IN THOUSANDS) 4..

.15,015
8,837

',19,891

,14,182
11,182
6,662
3,611
3,612

945

221

4

1

Et.
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Pxercise 16. Suppose that two,hundred film reviewers were asked

to choose, from among the five films listed below, their favorite.

Suppose further that the responses were as indicated. What mea-

sure of lOcation is most appropriate for these data and Why?

PICTURE

High Noon
The Godfather
Gone With the Wind
The Sound of Music
Casablanca

NUMBER

1-fr

35

90

8

40

Exercise 17. On an opinionnaire 450 people were asked to state

whether they "strongly agree," "agree," arc "neutral," "disagree"

or "strongly disagree" with the following statement: "Gas

rationing is one good way to Ideal with the energy shortage."

The results of this (hypothetical) poll are presented below.

Which measure of location is appropriate. for these data and why?

o.

RESPONSE NUMBER

Strongly Agree
Agree
Neutral

Disagree
Strongly Disagree

54

97

150

103

46

Exercise 18: The grades of thirty high school students on a

4 French examination are recorded beloK. Which measure of 'location
.

4. .- is appropriate for these data and why'?

80 84 79 81 75 68
76 72 90 - 96 85 86
88 85 70 .. 92 87 , 90
80 80 72 73 84 91

' 64 76 71 .76 81 68

Exercise 19. What measure location would be. appropriate for

the data given in Fxercise 1 on page 5, and why?

Exercise 20. What measure of location would be appropriate for

the data given in_fxercise 2 on page 6, and why?

40

4

20
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5. PERCENTILES, DECILES ANDQUARTILES

The measures discussed in this section are mea-
,

surf's of location or position, but are not properly

describedsas measures of central tendency. These are

the percentile scores, decile scores and quartile

°scores. Percentiles will be describedin-detail..4

Deciles and quartiles may be thought of a Special cases

Of percentiles.

5.1. Percentiles
r.

Percedtiles are defined and computed in a_matter

analogous }6 the median. As with the median, Care must

be taKenjei'insure that percentiles exist and are

unique. To begin with an example, ,the eightieth per-

centile, denoted by P80, may be-thoUght of 9S a number

Which is larger-than 80% of the data and SMaller_than

20% of the data. Similarly, the thirty-fifth percen-

tile, P may be thought of as a number which is

,,larger (han 35% of the data and smaller than 65% of the

dati.*.The formal definition is given below.

If r is any number from. 4 to 99 then the rah per-

centile fo'r a set of data is a number, Pr, such that

aV-most r% of the data are less than Pr and at most

(100_0% of the data are greater than Pr:

5.2 Computing Percentiles

The method for findinga peicentile score is very

similar to that for finding the medan In fact you

may have already noticed that 'the fiftieth percentile

and the median are identical. o find the rth ped-cen-

-tile:

a. Rank the data.

b. Find the number in the
10r (n+1) position. in

the ranked data.

41
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Suppose for example that we wish to find the 84th

percentile score for the height data given on page 1.

The data have been ranked in the frequency distribution
on page 2.

4

The posi'tio'n of P84 is

-84 84
10u 100(181) = 152.04.

Thus P84 is between the 152n1 and 153rd numbers in the
, 4 ,ranked data. To avoid ambiguity we will take P84 to be

four one-hundreds of the way between these two numbers.
That is

P84 = 152nd number + 0.04 (153rd number 152nd number),

Counting through the frpquency distribution from the
sm allest class we find that the 152nd number is 167 and

the 153rd'number is 168. Thus

P84 = 167 + 0.04(168 - 167) = 167 + 0.04 =
.

CJ

Exercise W. Find P24 and P75 for24 75
for the height data on page 2.

,

If the data are given in frequency distribution

with class intervals then the method for finding Pr is
similar to :the method for-finding the median given on

page 12, The position of Pr is, as before,

iien+1).

First we find the class containing tfiis number,,a1id

then wedefine Pr by

,

/ P
r
= L + (100("1) 1

f
w

: - . .

't

where:, L = lower limit of the class containing Pr

S'='sum of frequencies for classes lower than

the class containing P

triJ

0

42
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f = frequency of the class containg Pr

w = width of the class containing Pr .

Exercise 22. .Compute P30 and P89 for the height data in the fre-

quency distribution on page 4.

5.3 Deciles and Quartiles

The median divides the data into halves. The per-

centiles divide thp data into hundredths. Similarly,

the deciles divide the, data into tenths'and the quar-

tiles divide the data into Cluarters. The sixth,decile,

denoted D6, is that Timber such that six-tenths of the

data are less than The third quartile, Q3,°is that

number such that thre-quarters of the data are less

than Q3. Etc.

It is not necessary to present methods for finding

quartile and decile sore.S as these may be found by

computing the corresponding percentile scores.

DI P10

D2 = P20

D6 P60

D
7

= P
70

QI p25

D5 Q2

43

Q3

D3'

D
4

= P
40

P50

P75

D . =
8

-

r-
8 0

D = p9090

4
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6. MODEL EXAM

1. Compute the mean and the median of the data below:

8.1

11.3

7.9

9.0
10.9

12.5

7.5

8.4

11.0

6.9
8.3

10.6

9.0
9.6
10.5

a

2. Construct a frequency distribution for the following set of

data using 130.5 as the lower boundary of the first class and

having all classes of Oidth 15.

189 233 180 181 200
216 215 190 141 165
193 201 177 217 175
168 138 149 199 223
143 148 203 185 183
192 163 168 166 177
140 193 230 181 173
201 136 158 174 195

3. Compute the mean and the median of the data in problem number

two from the frequency distribution.

4. Compute Q3, D4 and P21 from the

twp.

w data in problem number

5i What are 'positively-skewed' 002

6. When is the mode an important measure which should be reported?

24
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7. ANSWERS TO EXERCISES

1.a. b.

CLASS
BOUNDARIES f

7.95 1 7.895-7.995 1

8.00 4 7.995-8.095 12
8.05 8' 8.095-8.195 16 ,

8.10 7 8.195-8.295 9

8.15 9 ' 8.295-8.395 2

8.20 5 or

8.25 4

8.30 2

2. The frequency distribution you obtain depends upon yo/ur choice

of classes. One possible result is shown below.

TIME
(in sec.)

9.95-14.95 11

14.95-19.95 10
19.95-24.95 3

24.95-29.95 1

?9.95-39.95 3

39.95-49.95 1

46.95-59.95 1

3.

=0 10 -
V
=
0 5

.4 co co OO

0 O .- ,..4

o 0 0 0
vi v' tr.- c.,,

pH

4. Your result here depends on your choice of class intervals

back in Exercise 2. If you, as I did; chose intervals of

varying widths, remember that in a histogram it is the area

of the rectangle and not its height, which is proportional to

the frequency. Note in addition that a vertical axis for

frequency is not possible when the classes are of varying

25

widths. The numbers inside parenthesis on this histogram in-

dicate the frequencies of:the classes.

(10)

(3)

(1)
(3)

n) I (1)

t0 o
JA.

5. n = 40, Ex = 325.00,
325

40
= = 8.125:

6. x f

CO

7.95
8.00

88.160

1

4

7.95
32.00

64.40'
Ef,= 40

7 ,56.70 E(x f) = 325.00
8.15 9 73.35
8.20 5 4,L100 = 5.125=

8.25 4. 33000
8.30 .2 16.60

Ef = 40 E(x f) = 325.00

7. CLASS x x f

7.895-7.995 -1 7.945 7.945
7.995-8./1)95 12 8.045 96.540
8.095-8.195' 16' 8.145 130.320
8,195-8.295 9 8.245 74.205
8.295-8.395 2 8.345 16.690

Ef = 40 E(x f) = 325.700

x 340 25'7 8.1425=

8. The mean obtained in Exercise 6 agrees exactly with the mean

obtained in Exercise 5, as it should. The mean of these da

is 8.125: The mean obtained;in Exercise 7 is only an appr

'".

xi-

26
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mation to the,true mean. This loss of exactness is caused by

the loss of information which occurs when,the data are grouped

into class intervals. Notice that the error of approximation

is not large. ,

-9. n = 30, Ex =

10. CLASS

618.2, x =

11

10

20.61.

x

12.45

17.45

x f

9.95-14.95_
14.95-19.95

136.95

174.50.
19.95 -24.95 3 22.45 ', 67.35
24.95-29.95 1 27.45 t 27.45
29.95-39.95 3 34.95 104.85
39.99 -49.95 44.95 44.95
49.95-59:95 1 54.95 54.95

Ef = 30 E(x f) = 611.00

611 '

x = = 20.67.

The answer to this exercise depends upon your choice of

class intervals in 'Exercise 2.

11. n = E# a 56. Position -of x ='1/2(n+1) = 1/2(57) = 28.5.

The 28th and 29th numbers are bOth6. Hence x = 6.

'12. The llata have already been ranked in Exercise 1, part a.

'n =,40. The position of:), = 1/2(40+1) = 20.5. The 20th

number is 8.10 and the 21st is 8.15. Thus, X' =

(8.16 +8.15)/2 = 8.125. .

We note that the mean and the median are equal. Al-

cthough exact equality is something of a coincidence, the

mean and the median of a data set will be approximately

equal whenever the histogram of the, data is symmetric. This

point will be discussed further in Section 4.

-13. The position of the median is 20.5, as in Exercise 12. phe

median is in the thitd class. L = 8.095, S = 1 + 12 = 13,

'f = 16, w = 0.10.
0

; (1/2(n+1,) - 5) '

f
(20 .5w 1.095 + I- 11 0.10 =

16

8.0/5 + 0.047 = 8.142.

447
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The approximate value of the median obtained here is reason-

ably close to the true value obtained in Exercise 12.

14. First we rank the data: 10.7, 10.8,.11.6, 11.8, 13.1, 13.3,

13.9, 14.0, 14.1, 14.4, t4.8, 15.5: 1517, 15.9, 16.0, 16.1,

16.9, 17.5, 17.7, 18.3, 19.8, 20.3, 21.3, 23.2,29.8, 34.6,

38.3, 39.7, 42:9, 56.2. The position of a = '2(30+1) = 15.5.

the 15th number is 16.0 and the 16th number is 16.1. Thus

x = (16.0 + 16.1)/2 = 16.05. The mean for these data was

20.61, which Is markedly larger than the median.

.15. There are two reasons-to choose the median as the measure of

ldcation for these data. One is that 'tt* data are positively

skewed, as is usually the case with income data; The other',

is that the 'last class is o en-ended, which prevents the

calculat of the mean unless we are willing to guess at

an average value (midpointf for this class.

. The data also seem to be bimodal, but not to a remark-

'able degree.

en-1
16. 4n4this example the categories are pot numerical. In fact

b

they are not even ordered. ThuUteither the mean nor the

mc4han can be used. Thiztleaves the mode. Fortunately

tifere is a pronounced mode: Golp.With The Wind received the

vote pf almost half of the people pokled.
* 0 s

17. As Ip. Exercise 16, the categories are not numerical. Thus8

the mean is not a candidate4pr the measure of location.

Fhe categories are, however; ordered. With such ordinal
.

data the median may be Used. The position of the median is

l2(450+1) = 225.5. The mediarPresponse is "neutral." This is

also the modal,response. It seems that this accurately re-
.

flects the fact thato according to-these.responses, opinion

`on his
i ;

question iSrather evenly divided.

28
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18. A frequency distribution 'and histrogram for this data set are

shown below.

.

CLASS f 8

60.5-66.5 1 6 -
66.5-72.5 6

72.5-78.5 5 4--.

78.5-84.5 8 g.

84.5-90.5 7 E 2-
90.5-96.5 3

0 O
cr, J -4 OD LO tp
C' 1,..) CO 4=.

to tn in Co Co..
Grade

The histogram above indicates that there is nothing about

this data set to indicate we should use a measure other than

the mean. Thus we choose the mean.

19. As in'Exercise 18, we choose the-mean because there seems-to

be no strong reason to do otherwise.

20. Choc/ the median because the data are positively skewed.

21. Position of P24
24
100(180+1) = 43.44. The 43rd number is

156 and the 44th number is 157. Therefore.
P24 7

156,+ 0.44(157-156) = 156.44.

75
4Position of P

75 100
= ---(180+0 = 135.75. The 135th and

136th numbers are both 165. Thus P
75

= 165.

22. Position 'bf P
30. 100

= 3° (180+1) = 54.3. Thus P
30

is in third

L = 156.5, S. 15 + 28 = 43, f = 73 and w = 6.

P
30

= 156.5 + [513- 43) 6 = 156.5 + 0.9 =

89
Position of P

89 100
= (180+1) = 161.09. Thus P

89
is in

the fifth class, L = 168.5, S = 160, f = 15 and w = 6.

(161.09P89 = 168.5 +
1

- 160)
6 = 168.5 + 0.4 = 168.9.

WD
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S. ANSWERS TO MODEL' EXAM

- .1. a) n = 15, Ex = 141.5, x = 14115 .5
9.4.

b) Ranked data: 6.9, 7.5, 7.9, 8.1, 8.3, 8.4, 9.0, 9.0,

9.6, 10.5; 10.6, 10.9, 11.0, 11.3, 12.5.

Position of Z = W15+1) = 8. x = 9.0.

'2. CLASS

130.5-145.5 5

145.5-160.5 3

160.5-175.5 8

175.5-190.5 ' 9

190.5-205.5 9
205.5-220.5 3

220.5-235.5 3

a
3.

.o
CLASS f x x - f

1P 130.5-145.5 S 138 690
145.5-160.5 3 153 459
160:5-175.5 8 168 1,344
175.5-190.5 9 183 1647
190.5-205.5 9 198 1782
205.5-220.5 3 213 639

*. 220.5-235.5 3 228 684

Er = 40 ..-E(x f) = 7245.

a) x =
745

0
181.125 a 181.

b) Positioq of x = 1/2(40+1) = 20.5

(20.5 16)
9

15 = 183.

.4. Ranked data:

136 . 163 177 0 '/' 1 201
138 165 177 7792 203
1,40 166 180. 193' 215
141 168' 181 193 216
14'3 168 181 195 217
148 173 , 183 199 223
149 174 185 200 230
158 175 189 201 233

a) Position of Q3 = -(40+1) = 30.75

Q3 = 199 + 0-J,75(200-199) = 199.75.

50
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4. b) Position of D4 = i-6,(40+1) = 16.4

0
4

= 175 + 0.4(177-175) = 175.8.

21
c) Position of P

21 100
= ---(40+1) = 8.61

P
21

= 158 + 0.61(163-158) = 161.05.

5. See pages 17-18.

6. See page 16,

51
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Name

Return to:
STUDENT FORM 2 EDG/UMAZ

Unit Questionnaire 55 Chapel St.
Newton, 14A 02160.

'Unit No. Date

Institution Course No.

Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?'

Not enough detail to understand the unit
Unit would h.lve been clearer with more detail
Appropriate amount of detail
Unit was occasionally too detailed, but this was not distracting
Too much detail; I was often distracted

2. How helpful weg the pr6blem answers?

Sample solutions were too brief; I could not do the intermediate steps
Sufficient information was given to solve the problems
Sample solutions were too detailed; I'didn't need them

. Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor, friends, or other books) in order to understand the unit?

A Lot Somewhat A Little. Not at all

4. How long was this unit in comparison to the amount of time Sfou.generally spend on
a lesson (lecture and homework assignment) in a typical math or science course?

,Much - Somewhat About Somewhat Much
Longer Longer the Same ; Shorter Shorter

, .
....

5. Were any of the following parts of the unit, confusing or distracting? (Check
as many as apply.),

Prerequisites 0

Statement of skills and concepts (objective
Paragraph headings
Examples
Special' Assistance Supplement (if present)
Other, please explain

6. Were any of the following parts of the unit particularly helpful? (Check as many
as apply.)

Prerequisites
Statement of skills and concepts (objectives)
Examples
Problems
Paragraph-headings
Table of Contents

. Special Assistance Supplement (if present)
Other, please explain

.Please describe anything in the unit that you did not particularly like.

Please describe anything that you found particularly helpful. (Please use the back of
this sheet if you need moTe space.)
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INTRODUCTION

1.1 Approximation in Statistics,;

Approximation pla,y<a.central-role,-'in-the application

and interpretation of statistical methods. For instance,

parametric Obability representations of populations- -

fundamental tools of statistical analysis-- are usually

only appfoxim'ations of the actual'natufes of the popt.1

lations. Sampling distributions in use for these proba-

balistic modelS are often themsel4es approximations to

those which are derived mathemdtically.

There are two principal areas in which approxima-

tions are vital in formulating statistical problem*:

in forming a convenient model of a population when the

actual structure of the population is either very complex
.

ior unknown; and, in developing e sy, reasonably accurate

methods of compliting probabilities when exact,methods are

cUmbersome.

We shall consiper experiments consi-stfng ofIn

"trials", where each trial results in one of two possible

outcomes (arbitrarily labeled "success" and "failure").

We shallilook at two probability models -for "the number

of successes in the n trials" and study ways tor6:alculate,

exactly,and approximately, the probability of k successes.

While these experiments are of a very special nature,

the use of approximations, both structural and mathemati-

cal, in this contlxt serve to illustrate the more general

application of approximations.

Before turning to'approximation of probabilities',

however, we shall look at some examples of typical nu-

merical approximations and at,a complementary way of,

-making cdmputation more manageable:

1.2 Someilamples of Numerical Approximation
O

Suppose that, for some reason,-we wanted to know

1

about hbw large .7
10

is, but 'we did not have the time or

patience (or the computer) to do all the mul.nrlications.r

Recalling the algebraic rules for exponents, we can write

-10 2'
.1 (.72)5 = .495

Now, .49 is approximately' 1/2. We abbreviate that

".49 = 1/2" (°the symbol ",means "is approximately

equal to"). So

.7
10 (1,5 1

03'=TS- -32 33

Actually, .710 = .0282, to four decimal places, so the

approximation is nearly corfect. Whether the approximation

is close enough depends on the purpose of the calculation.

For some applications, especially those which involve

further computation using the results of the approxima,tion,

a simple approximation maynot be close enough to th,e,

value being approximated to be dependable.

Numerical approximation may take more Complex forms.

A frequently encountered mathematical problem is finding

the area under a curve, like the shaded areain Figure

la. ,We can approximate the area and perhaps simplify the

computation by using a series of reFapgles whose total

area nearly coincides with the areaAunaer the curve (see

,Figure lb). The height of each retangle at its center

is the height:of the curve there. Some corners of the

rectangles are above the curve (overestimating the are )

and some are below the curve-(underestimating the area .

If the rectangles are narrow enough, the approximation of

the area will be quite accurate. (Students of calculus

will recognize that the exact aua is given by the defi-

nite' integral of the function defining the curve.)

_Some ofiour probabilistic approximations will use

the reverse of this process: we shall use the area

under axontinuous curve (which happens to be conveniently0,,

t?bulated) to approximate the area under a series of

narrow rectangles.

2

1



f(x)

a. Area to be approximated (shaded).

f (x)

b. Rectangles whose area approximates the, area
under the curve.

Figure 1. Approximating the area under a curve.

4

There are some general strategies for designing

approximations; they are part of the theory of numerical

approximation, which is an important branch of applied

,mathematics but beyond the scope of this module.

1.3 Exercises

Exercise 1. Approximate the area under the curve defined by f(x)

=b5 between x=0 and x=1. Try the following methods and compare the

approximate areas you compute with'the exact area, 2/3.

a) Approximate the area from below, using a straight line:

f(x)

0-
1

b) Approximate the area from above, Wing traight line with

the same slope as the lbne in part (a):

f(x)

I

0

3

53. 4
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(If you know calculus, you can determine exactly die point at which

the line must be tangent to the Curve and thus%he algebraic repre-

sentation of the line.

to plot liE(x), draw the

esTimate its height at

If not, you can use graph paper and a ruler

tangent line that has the proper slope, and

x=0 and x=1.)

c)approximate the area using two rectangles, with heights

determined by the height of the curve on the right-hand sides of the

rectangles:

f(x)

0 .s
1

d) Approximate the area using two rectangles, with heights de-

termined by the height of the curve at the midpoints of the rectangles:
a

f(x)

x

I

61

I

e) Approximate the area using eight rectangles constru

-those in part (c).

f) Approximate the area usingNeht rectangles constrItted- ike
.

those in part (d). ..
.

g) Compare the differpnce between your answers to (c) and (d)

with-the.difference between your answeit'tO "(er) and (f).

1.4 Recursive Formulas

Computing numerical Values fol.; a mathematical ex-

pression is often easier when the expression is represented

as a recursive formula. Simply-stated, recursive formulas

are "building blocks" which permit the definition (or

computation) of the valt,ie of a' function at some point

from the, function's value at another'point. Usually,

some starting value 'is determined or given, and the func-

tion is constructed from this starting value.

For example, consider the function

f(k) = k
l

for the integers k = 0, 1, 2, .... A recursive repre-

sentation of the same function could be given by

specifying the function's value for 0,

f(0) = 0

--which is the starting value--and the recursive formula

f(k +l) f(k) + 2k + 1.

Table I illustrates the process.

6



TABLE I

''ILLUSTRATION OF RECURSIVE FORMULA f(k+1) = f(k) + 2k + 1

(EQUIVALENt TO NON-RECURSIVE FORMULA f(k) = k2.)

0 0
(starting value)

1 1 3

2 4 5

3 9 7

4 16 9

Recursive formulas need not be additive, as our

example was. They may involVe any kind of mathematical

computation. The recursive formulas used in our proba-

bility calculations will call for f(k +l) to be determined

by multiplying f(k) by several quantities. Multiplicative

recursive formulas in particular tend to provide signifi-

cant TeduCtioel,in the complexity of computations.
4

Recursive formulas can also be helpful in suggesting

approximations which would hold for large values of one

or more of the vaiiables in the expression. Exercise 13 -

illustrates this ,use.
1

1.5 Exercises

Exercise 2. Let f(0) = 1 and f(k +l) =
5k

f(k) for k T 1, 2, 3, 4,

and S.
1

Ws
a) Show that f(k) = (k) by compliting,i(k) recursively,

5
computing (k) directly, and comparing the results.

b) Show algebraically that f(k) = (
s
). Hint: Prove that

( 5
k+1

)
1 5-k

t 5 ) k+1

63

2. STRUCTURAL APPROXIMATION

2.1 Approximation of Huergeometric Probabilities by

Binomial Probabilities

Suppose that the trials consist of sampling without

replacement n items at random from a finite population of

N items K of which are successes. (Sampling without re-

plat ent means thSt an item once chosen, for inclusion in

the ample cannot be chosen again.) Then the exact prob-

ability model for the number of successes is the hyper-

geometric probability distribution; the probability that

k successes are selected is

(1) K N-K

h(k;N,n,K)
(k) (n-k)

(n)

(We are considering here only values of k that are less

than K and also less thap n.) .

For example, if there are three pink grapefruits and

four yellow grapefruits in ag and three grapefruits

are drawn at random, then the probability that exactly

one grapefruit in tfe sample is yellow (a sutcess) and

the other two are,pink (failures) is given-by'

4 3

12
41(1;7,3,4)

(1):(2)
35

.343 .

(7 3)

For this example, N = 7 (the total number of grapefruits

in the bag), K = 4 (the number of yellow grapefruits in

the bag), n = 3 (the number of grapefl-uits in the sample);

and.k = 1 (the number of yellow grapefruits that must

appear, in the sample to realize the eTent\we described). ,

The'mathematical derivation of h(k;N,n,K0s based on

counting the total number of possible colectionsof n

items from a population of N items which is the de

nominator, (II)' --sand the number of those collections

which contain exactly, k successes (and n-k failures).

C4
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K N-K%.:The latter number is the numerator, (k) (11.k): there are
(k) ways of collecting k successes from ,among the K suc-

cesses in the population, and for each of those ways

there are (
N-K

) ways of putting together the n-k failuresn-k
from the N-K failures in the population.

In principle, w9,co d evaluate the hypergeometric

probabilities for va es f N, K, n and k which should

arise. However, for even moderately large values of

these four parameters, computation of the binomial co-

efficients is time-consuming and-tedious, and it is use-
ful to have an approximation which involves less tedious
calculation.

One of the, most convenient methods, for simplifying

the evaluation of hypergeometric probabilities involves
approximing with the binomial probability distribution.

This distribution represents the probability of a given

number of,successes when the results of-the trials are
statistically independent. If one is sampling With re-

cement, the probability p of success on any given trial
is of affected by the outcomes of previous trials. (In

sa piing with replacement, an item is "returned" to the

opulation after having:been chosen for the sample; so
the item could be chosen again.) The trials are indepen-°

'dent, and the binomial distribution is applicable. In the

hypergeometric situation, if .the population size N is
small or if the number of trials is an appreciable fraction
of jg, then the probabilities governing the later trials
will be noticeably dependent on the outcomes of the earlier
trials. Even when N is lvge,and a very small portion of

- the population is drawn, the exact probability that k

successes will be chosen must be calculated from the hyper-

geometric probability function, but the effect,,of depen-

dence is slight when N and K are large. If p is taken to
be the proportion of successes in the population-(i-.e.,

K
p = 0, the approximation of the hypergeometric probabil-
ities by binomial probabilities

9

/
(2)

h(k;N,n,K) = b(k;n,p) = (111c)pk(1_p)n-k

is quite accurate, for N > 20, or so.

Although N is not large enough fqz the approximation

to be valid, we can demonstrate its application to our

previous example.---We would approximate h(1;7,3,4) = .343
by

108b(1 ;3,4/7) = (13 ) (4(7)
1

(3/7)2 = :7%7= .315 .

TABLE II

ILLUSTRATION OF THE BINOMIAL APPROXIMATION TO HYPERGEOMETRIC

PROBABILITIES

N = 7, n r 3, K = 4

(N and K not largeenough for approximation to be very
accurate)

Number of
Successes

k

Hypergeometric
Probability
h(k;7,3,4)

Binomial
Approximation
h(k;3,4/7)

0 .

a
3

Total

.029

.343

.514

'7114

1.000

.079

.315

.420

.186

k:000.

Table II shows the exact and approximate probabilities
for of of the possible numbers of successes in this
example.

This simplification of the calculation of hypergeo-

metric probabilities is based on consideration of the
structures of the sampling problems in the two situations.

When the population is large say, 20 or more times the

size of the sample -- sampling withl replacement, as in the

binomial situation, differs little from sampling without
replacement, as in the hypergeometric situation. YoU-are
unlikely to splect randomly the same item twice from a very
large population, even If you are replacing items after

sampling them. We can think of such an approximatibn as a

66 10



structural approximation; the sIructures of the two problems

are sim4larr so the probability distributions are Similar.

I
2.2 Exercises

In performing the follewing exercises, try to visualize why each

of the approximations should be as accurate or inaccuratb) as it is.

Use a computer or a calculator to do the calculations. Tabulating

the hypergeometric and binomial probabilities is cosier when yoy use

the recursive formulas

(3) h(k+1,N,n,K)
(K-k) (n-k)

1(k;N,n,k)
(k+1) (N- K- n +k +l)

and

(4) (n-k)p
b(k+1;n,p)

(1 -p)
b(k;n,p)

after calculating h(O;N,n,k) and b(0;n,p) directly.

Exercise 3. Tabulate the,hypergeometric probability function and its

binomial. approximation for

a) N = 10, n = 5, K =

b) N = 10, n = 5, K = 1

c) N = 100, n.. 5, K = 50

d) N= 100, n = 5, K = 10

Exercise 4. Repeat parts (c) and (d) of Exercise 3 for n = 20 instead

of n = 5.. Hap the quality of the approximation changed?

Exercise 5, Rose Maybud is choosing at randol; six members of the

United States House of Representatives and determining whether or

pot each'of them supports a particular bill. -Explain why this situa-

tion
.

tion is hypetTeometric, and identify N, Kn, and k. Which af tkeir 1

values can youdetermine from our statement of Roselloactivity?

Would the binomial approximation of the hypergeometric probabili-

ties be adequate? Why?

67
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S. MATHEMATICAL APPROXIMATION do.

3.1 Apprcluvtion of Binomial Probabilities Using the

tOrmal DIstributibn

When the number of trials n is large, even binomial

probabilities are cumbersome to compute, and it helps to

have a simple method of approximating them. For large

values of n and values of p which are riot too close to

zero or one, the cumulative binomial/distribution dis-

tribution ftinction / V..
(S) k t ,

B(k;n,p) = E. b(i;n,p)

may he approximated by the cumulative normal distributibn1

function thus:
Nr

(6) B(k;n,p) = 4 (
k -nf

np(1-p)

The function 4)(y) is the cumulative .distribution functidn

of the standard normal distribution, which hds mean zero

and variance one. To apply this approximation, you calctil'ate

the quantity y (k-nple/np(1-p) and refer to a table of

the standard normal cumulative distribution function to,de-

termine approximately the probability of k or fewer succes-

ses in the n

For example, suppose that we.are interested in finding

the probability of 20 or fewer successes in 56, independent

trials, where each trial has probability .45 .of resulting
, .

in a success. In order to compute this quantity exactly,

we would halie to add up The binomial probabilities for 21

values of k (0, 1, 2, ..., 20). For each k,we would have

to 4Tipute the binomial coefficient (
S6

), raise .45 to the;,

power ), and raise .SS to the powqr S6-k (or at,least.com-

pmtqq, that quantity for k I 0,an,d then use the recursive

formula (4) +eatedly). We might find an answer in a pub

lished table of binor4i1 distributions, but such tables do

68
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\4.

not cover all possible values of it and p. A computer

might be used to perform. the calculations, but for values

of n much larger than 56, even computer calculation would , ,

be rather time-consuming and subje nd-off error.

Hence we find rff.6 normal approximation attraL ve

To apply it, we compute

20-56(.45)
Y 1.39"

and refer tO a table of the standard normal distribution

to find tna1

B(20;56,.45) = .081 .

By referring to a table of binomial distributions or by

computing, we can find the exar...rca.:44..a-e-6f B(20;56,.45)

= .103. (For a better approximation. see page 15.)

structural similarity between binomial sampling schemes

and those which commonly give rise to normally distributed

random variables. A normal random variable is, after all;
4'continuous, while a binomial or hypergeometric random vari-

able is discrete, and it would appear that they are not

structurally similar. A less immediately apparent similar-

ity between.binomial and normal random variables is re-

vealed though, by mathematical manipulation. But rather

than being a property of these two specific distributions,

it applies more generally to the normal distribution.

Recall that a Central Limit Theorem states that if

Y
l'

Y
2'

Y
n
are independent random variables, each with

1

mean 4 and finite variance o 2
, then for large n

(5) -P(7 < y) = 4 (,P1 )

or equiva tly,
Jiist as the cumulativelpi 1 distribution may be

\approximated by the cumulative n mal distribution, so ./..r.' P(/ Y il) W< '="-.. 4)(Y)
-

may the individualibinomial probabilities be approximated

,-by the density function of the normal distribution,

b( 61,p)=
np(1-11) liTITCFTT

1 k-np(7)

0 is the density function of the standard normal distribution,
(7,F00iff

2

e-y/2
(8)

1
st--,

of binomiPall probabilit

rivatkon of the normal approximation

a

and the variance of each Y is

for any y.
1

To apply the Central Limit Theorem to the binomial

problem, we let Yi take-on the value 1 if the iti) trial

results in a success or 0 if it results in a failure.

Theh Y is the_total number of successes divided by n. The

mean of each Y Is

(11) u = Eyp(y) = 0 (1-p) + 1p = p

We a roach the

es somewhat differently from the way

we discussed the previous approximation. In that discus-

sion, we noted the structural nature of the binomial ap- The Central Limit Theorem states that Y 3S approximately
proximation of hypergeometric probabilities. The normal normally distributed, so nY, the total number of successes -j

'approximation, however, is derived from a more intrinsically in the n trials, islalso approifimately normally distributed.
mathematical formulation,

./

and we consider the nature of the 4 You should verify diat the thedrem as stated here leads to
approximation to-be more mathematical. That is to say, the normal approximatio given above for binomial probi-
we chose to employ this particular approximation becaise bilities.
of a mathematical clerivation,rather han an eleMentary

t\ 4 13

1

(12)
02= 24Y-0) P(Y) = (0-P) 2(1-1)) (1-P)21) = P(1-1))

The difference in the application of the two types of

14
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approximation--structural and mathematical -is therefore
;4

more conceptual than prai:tical.

3.2 Accuracy,of the Normal Approximation

The normal approxrMation to the bitnomial distribu-

%ion is quite accurate for situations in which there, are

both large values of'n and values of p not too close to

zero or one. Most statisticians regard the approximation

as satisfactory whenever np(1 p) is greater than 5. Mien

this condition is violated, one of two alternative ap-

proximations'may be applicable.

3.3 The Continuity Correction to the Normal Approximation

The first altern1ative approximation is'a refinement

of the normal approximation. It involves the use of a

"continuity correction". Instead of finding' 0(y) for
k-np

y , we evaluate rt---for a slightly different y:
inp(1-p)

(13)
B(k;n,p) = 4)(

k-np + .5
)

/np(1-p)

,

In effect, this modification assigns to k half the proba-

bility between k and k+1 in the normal approximation. (See

Figure 2.) Although it generally improves the accuracy of

the normal approximation, this refinement js less impor-

tant for larger n, since the effect on y_ of the added 1/2

diminishes as n increases. (Compare Exercise 1, part (g).)

The continuity correction extends the validity of the nor-

mal approximation to consiterably smaller n.

To illustrate the application of the continuity cor-

rection, we take another look at the example of Section

3.1. The value of y would now be

and

(-20-56(.45) + .5)
Y 1.262

/56(.45)(.55)

B(20;56,.45) = 4)(-1.262) = .103 .

Notice that this value is Ahe same as the exact value to

15
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.three decimal places--mucser than the approximation

(.081) which was obtained without using the continuity

correction.

5 6 7 8 9 10 11 12 13 t4 15 16 17 18 19

0

I I I I
I II

Normal approxi-
mation without
continuity
correction

Normal approxi-
mation, with
continuity cor-
rection (curve
shifted one-
half/unit to
left)

Exact binomial
probabilities
b(k;20,.6)

Figure 2. Normal approximations to binomial probabilities
for n= 20, p = .6. (Area between lines under
curve is probability assigned to k successes,)

s
16



3.4 Approximation of Binomial Probabilities by Poisson

Probabilities

,the second alternative approximation may be applicable

when values of p are very small (near zero) or large (Aear
one). We need consider only mall values of p; if p is
large, we can interchange definitions of "success"

and "failure" and apply the discussion below. (We can

make the exchange because "success" and "failure" are

arbitrary designations, and it will suffice because a very
large probability of "success" implies a very small proba-
bility of "failure".)

When n is 'fairly large, p is small, and npais moderate

(perhaps somewpere between 0.5 and 5), the probability of
Csuccesses in n trials may be approximated by the Poisson

probability distribution:

Ic
-np(14) (np) eb(k;n,p) = p(k;np)

k!

The values of p(k;np) are easily computed with a calculator
or by a computer.

In illustrating the Poisson approximation, we shall
suppose that we want to obtain an approkimation of the
probability of no successes or one, success in one hundred

independent trials, each trial with probability of success
.02. To apply the Poisson approximation, we find np
100(.02) = 2 and compute the approximations of the pioba-
bilities of zero successes and one success, obtaining

B(1;100,.02) = b(0;100,.02) + b(0;100,.02)

= p(0;2) + p(1;2)

2
0

e
-2

2
1

e
-2

0! 1.
= .406

The exact probability, computed from the binomial distri-
butiop, -is .403; the uncorrected normal'approximation is
.238, and the corrected normal approximation'is .361. In

this example, the P %isson approximation is considerably

17

more accurate than either of the normal approximations.

The basis for the continuity correction is essen-

tially mathematical -it exploits the particular way in
which binomial probabilities begin to resemble normal
probabilities as n becomes large. Although the Poisson
approximation may be derived mathematically, we can see
it as manifested more intuitively in structure. If we
imagine, that we are h lding constant the number of successes
likely to be/observed but allowing the number of trials to
increase, then the exieriment begins to resemble a process
in which successes occ at random" across time. Such
a process gives rise directly to a Poisson distribution.
In this sense, the Poisson approximation is structural,

although its derivation is frequently represented mathe-
matically. The analogy between the Poisson approximation
and the Poisson/process of stochastic-process theory is
discussed in most elementary probability texts.

3.5 Exercises

To do the following exercises, use the recursive formula (4)

for computing binomial probabilities and the corresponding formula

(15)
p(k+1;np) (k;np)

for computing Poisson probabilities

Exercise 6. Tabulate the cumulative binomial distribution function

acid its normal and Poisson approximations for n = 5, 20 and 50 for

each value of p = .5, .25, and .1 . For which values of n and p

does each approximation appear to be valid? Which method of ap-

proximation gives better results in the "tails" of the distribution

when p is small? Compare the results of using differences between

successive values of k in the normal approximation to the cumulative

binomial distribution with the results of using the direct approxi-

mation of b(k;n,p) described by equation (7).

Exercise 7. Recompute the normal approximations of Exercise 6

using the continuity correction, and describe its effect on the

accuracy of the approximations.

74 18



That is, the hypergeometric probabilities are approxi-

mated by

Exercise 8. A jury panel of 100 members was selected from a com-

munity in-which 250 of the jtry-eligible residents own no land. 90

of the panel members were land owners. How likely 1s it that non-

land-owners are that scarce on a panel when selection is truly random'

Exercise 9. Suppose that in the community of Exercise i, .of the

jury-eligible residents have completed fewer than 8 ye4rs of school.

What is the probability that every member of a randomly selected jury

panel has completed 8 or more years of school',

41 CONCLUSION

4.1 Summary

The following diagram summarizes- the approximations

we have discu,ssed.

Illypergeometyic
N ,n

Poisson

Normal

That
/is,

binomial probabilities for large populations.

Tfie binomial probabilities in turn have normal and Poisson

approximations; .so, therefoie, do the hypergeometric

probabilities. :The diagram shows that Poisson probabili-

ties have a normal approximation for large values of the

parametyA, but we have not discussed that approlimation

here.

ell "s

, In allwof the populations we disdussed, the numerical

values are either zeros or ones, representing dichotomous

J
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outcomes success or failure, yellow or pink, etc. There

are approximation techniques for other kinds of populations.

Aany such techniques are in common use in statiotics,

especially techniques bdsed in some way on Central Limit

Theorem. Approximate statistical methods, based on ap-

proximate probability calculations, are widely used by

statisticians. Discussion of the theoretical bases for

approximate statistical methods is beyond the scope of this

module; however, the techniques have the same 'two bases-

structural and mathematical approximations.

From these and similar approximations, you should be

gaining the feeling that it is possible for several proba-

bility models whose similarity is not immediately apparent

to reflect a given sampling problem. As you progress in

your study of inferential statistical methods, it w111

become more and more necessary for you to rely on the

ideas of approximation in choosing 9,41els for populations

and in deriving approximate sampling distributions for the

statistics you hill be using in reaching conclusions about

the populations. The approximations here of hypergeometric

and binomial distributions are useful as presented, for

determining the probabilities of given numbers of succes-

ses, but examining them should in addition give you some

familiarity with the'advantages and limitations of ap-

proximation in general.

4.2 Exercises '

Exercise W. How might one obtain a normal approximation to hyper-

geometric probabilities? For what values of N, n, and K would it

be valid?

Exercise 11. committee of 25 people is to be drawn at randOm from

a group consisting of120.men and 80 women. Obtain an approximation

of the probability that more than half of the committee members will

be men.

Exercise 12. Wilfred Shadbolt is inspecting brackets. He tests

P*)
s

20



30 of them, choosing the 30 randomly (without replacement) from a S. ANSWERS TO EXERCISES
lot of 5000. If the 5000 include 150 defective brackets, what is the

probability that at least one defective bracket will be among thepth

30 tested.

Exercise 1.(a)
Kx

Area of triangle = 1/2 x 1 x 1 = 1/2.

Exercise 13. Show that Exercise 1.(b)

a) as N becomes vtry large (while K/N = p remains constant), Slope of tangent line = 1. To find tiingent point, set

the coefficient of h(k;N,n,k) in formula (3) approaches the coefficient df
= 1, and solve to obtain x 1/4. Line intersects

of b(k,n,p) in formula (4). dx 2f

b) as n becomes very large and p becomes very small (while vertical axis at f(1/4) -1/4 =1/4, height of line at x = 1 is

np remains constant), the coefficient of b(k,n,p) in formula (4) f(1/4) + 3/4 = 5/4. Area of trapezoid is 1 x (1/4 + 5/4)/2 = 3/4.

approaches the coefficient of p(k,np) in formula (15). Exercise 1.(c)

(Rigorous demonstration of these propositions, each of which cor- f(1/2) = .7071; f(1) = 1. Area of first rectangle = .3536; area
responds to a segment of the diagram of Section 4.1,r4quires some

of second rectangle = .5. Approximate area ='.8536.
calculus.)

Exercise 1.(d)

f(1/4) = .5; f(3/4) = .8660. Area of first rectangle = .25; area

of second rectangle = .4330. Approximate area = .6830. .

Exercise

x

1.(e)'

f(x) Area of rectangle

.125 .3536 .0442
.11`

.2S0 .5000 .0625
.375 .6124 .0765
.500 .7071 .0884
.625 .7906 .0988
.750 .8660 .1083
.875 .9354 .1169

1.000 1.0000 .1250

21^

Exercise 1.(f)

x

Approximate

f(x)

Area = .7206

Area of rectangle

.0625 .2500 .0313

.1875 .4330 .0541

.3125 .5590 ,.0699

.4375 .6614 .0827

.5625 .7500 .0938

.6875 .8292 .1036

.8125 .9014 .1127

.9375 .9682 .1210

Approximate Area = .6691, which is veil,

close to 2/3.

78 22



,Exercise 14(g)

The answers to (c) and (d) are farther apart thah the answers to

(e) and (f). Taking the height of, a rectangle to be f(x) at the

center of the.rectangle rather than at the edge is more c'ritical

to the success of the approximation when fewer, broader rectangles

are used.

Exercise 2.(a)

k f(k)
5-k

k+1

5 5!
(
k

) = k! (5-k)!

0 1

1

2 10

x

41 3 10 2/4

4
4 1/5

5 1 0

Exercise 2.(b)

5x4x3x2x1
,

lx5x4x5x2x1

5 .4 x3)`24(1

lxhx3x2x1

5x4x3x2x1
2x1x3x2x1

5x4x3x2x1

3x2x1x2x1

5x4x3x2x1
4x3x2x1x1

5x4x3x2x1
5x4x3x2x1x1

1.

5

= 10-

= 10

= 5

= 1

5!
Suppose that f(k) = (k). Then f(0) = ( =

0
)

0! 5!

f(k+1) = (
'k+5 1"

Therefore

So f(k+1) =
5-k

k+1

- 1, and

5
5!

f(k+1)
)

(k+1)! (4-k)!
f(k) 5, ) 5!

( k J k! (5-k)

k! (5-k)!

(k+1)! (4-k)!

k! (5-k).(4-k)!

(k+1)k! (4-k)!

51k
4 =

k+1 .

f(k), which is the recursive formula sought.

73
A

23

Exercise 3.(a)

k'

Exact
Hypergeometric

Binomial
Approximation 4

0 0.0040 0.0313
1 0.0992 0:1563
2 0.3968 0.3125

3 0.3968 0.3125
4 0.0992 0.1563
*5 0.0040 0.0313

Exercise 3.(b)

0 0.5000 0.5905
0.5000 0.3280

Exercise 3.(c)

0 0.0281 0.0313
1 0.1529 0.1563
2 0.3189 0.3125
3 0.3189 0.3125
4 0.1529 0.1563
5 0.0281 0.0313

Exercise 3.(d)

0 0.5838 0.5905
-1 0.3394 0.3280
2 0.0702 0.0729
3 0.0064 0.0081
4 0.0003 0.0004

Exercise 4.(c)
Exact Binomial

k Hypergeometric Approximation

1

Ti'

t

3 ' 0.0004 0.0011
4 , 0.0021 0.0046
5 to 0.0089 0.0148
6

7

0.0278
0.0661

0.0370
0.0739

8 0.1216 0.1201 4
9 0.1746 0.1602
10 0.1969 0.1762
11 0.1746 0.1602
12 0.f216 0.12d1
13 0.0661 0,0739
14 0.0278 -0.0370
15 0.0089 0.0148
16 0.0021 1 0:0046
17 0.0004 10.0011

80
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Exercise 8.

LThe hypergeometric probabilities can be approximated byx rs N IN tt IA LI1 CV p- N) NI - eg V. V: LII
O 0 0 MI V' 0 IA LI1 0) qt. IA s0 CO 00 In .-. 0
U1 I. 0 VI CO .0. I, N tt 0 sn in .-. 0 0 0 0 S01C.0 0 0 0 0 0 0 0 0 0 10-100(.25)4.5

a,.,..,

c...

.' - B(10;100,.25) = 4)( ) - 0(-3.3!,) = .0004 ,0<0 0 O/ 0 000 C) 0 000 000
100(.25)(.75)

I

Exercise 9. .

The hyperieometric probability can be approximated by... X N CO N .0 M 0 e) .0 tsi c0 I, .0 03 0.1 0
2 2 -- 1,1 .0 CV sO CO ,t, <V 0 i..1

... Ci 0 CO CO CO 0 Ci -. ... i..1 0 0 00 0 0 0
S. 0. 0 0 0 0 0 0 0 0 0 0Z<0000000001000000

...4
0 Cq 0 01 N.

4.) ...1 La CO
U- Evo 00 IN0
a:-. 0 o

co

-0o
. 4-) ... X 01 tn0 0

0 E
0
k

s0
....

0
..a.

S. S.
S.0

A.
0.

0 0
0 Z< 0 0

. .

O 1.1 0% 111 ... h h ... in Ci ,..) N ..... in 0 en
4A ,f CI CO h ifi In I, CO Ci ...i eV tr In CO

U 'eV cr h 0 VI 01 0 h .0 0.1 Ci s0 In 0 I--
O >. ..-. .0 -. I, IN C.,1 h -... 0. ... In 0 in co cr
L. . . . . .
L. CV - .- 0 0 0 0 . . IN Cs) VI 1.1 .0 .0
o I t 1 I

o

o .

4.)

U .-.. >i ts, n ,t, Ci N 0 .)
0. In CO I, in C1 0

2 q 0 Ci Cn CO 0.1 CO 0 ., N .. 0 0 I, 01 01 0
E S. 0 C.4 N N -I CI CO CV CV N 01 01 Ci Ci 0k k 0. 0 o 0 ..-. 141 in s0 CO Ci CI Ci 01 C$ Ci 0

O 0 0. 0 00 00 0 0 00 .
U Z < 'd 0 0 0 0 ...4
C
M

C. 0 .0 t^. r% <V -. (..f n ("4
I, CO 0 .0. .0 I, .0 in in 0 <V 0 C
N r% 0) CO to C ...0 ,..) ..... 0 C C 0
o = 0 0 C 0 0 0
0 0 0 0 0 Q 0 o 0 0 0 c

1.

tn 0 0 --6.2 t4 - n in - c,. 0 co 0 0
Ci Ci s0 tn 0 0 0 in in CO Ci 0 0. 141 0 CA s0 CO in CO Ci Ci Ci 0 0
,-, cv .s. in rs co c$ 01 Ci C 0

. . .0 0 0 0 0 o 0 C c, O 4::::, - -
IN

.
CS C.4 CO N t o co n

4-> rn :r 0 N N 1.11 0 s0 iC71 C. 01
C.) IE O. 01 to VI 4 N t. tl N al a Q1 C1 Q1
OS O IN .3. 0 I, CO C.1 O C.1 01 C1 C1 C.1X0

CU .14 0 0 0 CI 0 000000000
CO

0 ,O'--N CO tt O tt CO CV tt CO CV
N csi sr in N co ol cs)
to .00 Tr N O r, Tr In CV 01 N

T. 1.1 CO V' 01 .0 0 V' 0 1. CO MI CO CV N
.4 0 0 CS O O 4 1-4 N CNI tel

I

S3
to cs- a, CI 0 C.1 In
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4

0!

0 -4

b(0;100, 04) = p(0;4) = = .018
e

Exercise 10.

Approximate the hypergeometric probabilities with binomial proba-

bilities, and approximate the binomial probabilities with obe of the

normal approximations. N should be very large, K should be an appre-

ciable fraction of N, and n should be large'(but still a small-frac-
,

tion of N).

Exercise 11.

P(number of men > 13) = P(number of women < 12)

= H(12;200,25,80)

= B(12;25,.4)

4)(
12-25(.4)4-.5

)

v725( 40Y 4

= 4)(-1.02)

= .154

Exercise 12.

P(at least one bracket defective). = 1 - P(no brackets defective)

= 1 - h(0;5000,30;150)

I - b(0;30;.03)

1 --p(0;.9)

.9
0

e
-.9

1
01

= I- .407 = .593 s,

1LJ
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Exercise 13.(a)
(K-N k)

(l'i - 1)(n=)(9-k)(K-k)(n-k) = = N N
(k+1)(N-K-n+k41)

(k+1)(
N-K-n+k+1

) (k+1)(1
K n+k+1

k il +k+LAs N becomes very large, t,71 and N.; become so small as to be
/

negligible,'so the expression above is approx mately

(n-k)

fk+1)(1--0

Becpuse = p, we

coeffidient of-b(k;p,p) in

can write that as
(k+

110-1k)
which is the

)(1-p) '

formula (4).

Exercise 13.(b) "
fn -k)p np - kp

(k+1)(1-p) (k+1) - (k+l)p
.

As p becomes very small (bst np remains constant), kp and '(kl)p

become so small as to be negligible, so the expression above

approaithes :a :which it the coefficient of p(k;np) in formula

(15).

85
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6. MODEL UNIT EXAM

1. In what sense is the binomial apgxaximation to hyper-
.

geometric probabilities strctural? In what sense is

the normal approximation to binomial probabilities

structural'

You are working for an automobili dealer. Invent a

hypergeometric random variable related to your work,

and describe what N, K, n, and k are. Can you approxi-

mate its distribution adequately with a binomial dis-

tribution? How would you change your answer to the

first question to make the random variable genuinely

binomial? What would p be?

3 Thomas Tolloller plays a gambling game at which he

has probability p = .492 of winning S1 and probability

p = .508 of losing Si. What'is the probability that,

after 100 plays, he has won more than he thas lost?

What is the pfobability that, after 100 plays, he has

won exactly as many times as he has ost?

4 ThomasTolloller plays another game at which he is

told he has a 1/38 chance of winning on each play.

After 100 plays, he ha's won only once. How. Jikely is

winning no more than once in 100 plays if the game is

as described?
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7. ANSWERS TO MODEL UNIT EXAM

1. The sampling schemes in binomial and liypergeometric situations

are similar. The binomial and nbrmal distributions are both

sampling distributions of sums, and they can be shOwn mathe-

matically to be similar for large sample sizes.

2. For example, Y could be the number of people in a random sample

of 15 of this year's customers who bought Model PQR.(the random

sample is chosen without replacement). N would be the total num-

ber of this year's customers; K would be the number of this year's

customers who bought Model PQR; n would be 15, the number of cus-

tomers in the sample; and k would be the number of customers in

the sample who bought Model PQR. If the dealership is active

this year (selling more than 75 cars, say), then the binomial

3.

approximation should be adequate. To make Y genuinely binomial,

the sample should be chosen with replacement (i.e., a customer
EZ

could appear in the samp e more than once.) 'P = v.

B(49;100,.508) =

and

b(50;10q,.492)

r

(
49-100( 508)+.5

1100(.508)(.492)

1

.2100(.492)(.5D8)

_ 4(.160)
4.999

= 4(1.260) ='.397

4(
50-100(.492)

/100(.492)(.508)

4. B(1;100,1/38) = b(0;100,1/38) + b(1;100,1t38)

= p(0;100/38) + p(1;100/38)/= .261.
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STUDENT FORM 1

Request for Help / 41

Return to:
EDC/UMAP
55 Chapel St.

Newton, MA 02160

Student: If you have trouble with a specific part of this unit, please fill
out this form and take it to your instructor for assistance. The information
you give will help the author to revise the unit.

Your Name Unit No.

OR OR

Page

Section Model Exam
Problem No.0 Upper

()Middle

0 Lower

Paragraph Text

Problem No.

Description of Difficulty: (Please be specific)

Instructor: Please indicate your resolution of the difficulty in this box.

0 Corrected errors in materials. List corrections here:

-4'

Gave student better explanation, example,or procedure than in unit..
Give brief outline of'your addition here:

0
.

..,

Assisted student iniacquiring general learning and problem-solving
skills (not using examples from this unit.) -

SS
Instructor's Signature,

I Please use reverse if necessary.
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STUDENT FORM 2

Unit Questionnaire

Na)e Unit No. Date

Institution Course NO.

Return to:
EDC/UMAP
55 Chapel St.
Newton, MA 02160

Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?

Not enough detail_to understand the unit
Unit would have been clearer with more detail
Appropriate amount of detail
Ullit was occasionally too detailed, but this was not distracting
Too much detail; I was often distracted

2. How helpful were the problem answers? :

Sample solutions were too brief; I could not do the intermediate steps
Sufficient information was given to solve the problems
Sample solutions were too detailed; I didn't need them

3.--Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor, friends, or other books) in order to understand the unit?

A Lot . Somewhat A Little. Not at all

4. How long was this unit in comparison to the amount of time you generally spend on
a lesson (lecture and homework assignment) in a typical math or science course?.

,Much Somewhat About Somewhat Much

Longer Longer' , the'Same Shorter' _Shorter
/

5. Were any of the following parts of the unit confusing or dtstracting? (Check

as many as apply.)

)(
l'

Prerequisites
1

Statement of skillsand concepts °(objectives)

Paragraph headings.
Examples
Special Assistance Supplement (if present)

Other, please explain .

4

6. Were any of the following parts of the unit particularly helpful? (theck as many

as apply,)
Prerequisites
Statement of skills angl concepts (objectives)

Examples
Problems
Paragraph headings
Table of Contents
Special Assistance Supplement (if present)/
Other, please explain

4Pleae describe anything n the unit that you did mot patticularly like. ,

Please describe an
this sheet if you n

g that you 'tound particularly helpful. (Please use the back of

ore space.)

Q


