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1. INTRODUCTION'

Our basic problem is the computational evaluation
of a polynomial

(1) p(x) = anxn + an.ix + a
n-2

x 1,1

-2
+

+ a x2 +- a x a,
. 2

and its derivatives p'(x),p",(x), p(n)(x) for a

prescribed -value x = xo. Here the coefficients an,
an ao are given real numbers.

Let us consider. first a simple cubic polynomial\

(2) p(.;() = 3x3 - 4x2 + 2x 3.

For any given number xo the evaluation of p(xo) does
not present any principal d'fficulties. We may compute
x20 and x3 and they combine (hem together appropriately.

AIr) an informal programming language this may be written
as- the folloviing' algorithmo

Input {xo)

2. u := xoxo

(3) 3. 'v := dx0

4. p := 3v - 4u + axo - 3

5. Outpdt.{xp}.
(:= is used to represent assignment of a value to a
variable.)

Altogether there are five multiplications and three
additions (or subtractions). For the general polynomial

(1).this approach would require the computations:

u1 xo, u2 .,2o, un1
=

0, 2
=u

1
x0' u

3
= ux = Un_iXo,

(4)

p = anun + an_lun_i + + + ao.

Thus altogether we need 2n-1 multiplications and n

additions. Suppose that a particular computer uses a
sec and u sec for any addition (or,sUbtraCtion) and

ti
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multiplication, respectively. Then, our method (4) fakes

at least (2n-1)u + na seconds. Without question a prac-

tical computer program woul& run longer than that, since

it, fakes time to fetch and store the data, to control

the loop involved in (4), and to perform the input and

output. But the overall timeshoul/ be'proportional to
et

((2n-1)11 + na). The next section shows that we can'do
a

better than tha%.

2. HORNER'S SCHEME °

- How can we reduce 'the numbth- of arithmetic operations

in the evaluation of a polynomial'? The clue is a sditable

'factoring of p(x). In fact, (2) can be written as follows:

Mt
p(x) = ((3x-4)x+2)x-

Now ther$, are only three multiplications and three adda-

tion§. That does not appear to be much of a savings in

this case but it does represent a big savings when the

'degree of p(x) goes up.

We shall discus's this approach of evaluatinisa poly-
,

nomial-in the for;11 of a scheme foy hand computation.. Let

a general cubic polynomial, be given:

(5) p(x) = a x' + a x2 +a x+ a.
2 1 0

We may rewrite it as

p(x) =,((a
3
x+a

2
)x+a.):(4-a

o

To evaluate this for x = x, we use a table with three

rows and four columns. Into.the first row we write the

four coefficients a3, a2, a
1 , as (in that order), and

into column 3, row 2 we place a zero. The rest of the

boxes are initially blank.

2
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(6).

Col 3 `Col 2' Col 1 Col 0

Now i a
3 al v: :

40.

Row 2 0 a
3 x 1) (a3x0ca2)xo (Ca3x0:-a2)xo+al

0

Row i''' a
)l133:Kzta x

0 +a 2)x 0
+a

1 ((a,x04-a2)xo+a,)x:a0

The computation proceeds frothe left-most corumn to the
Yigh*t and consists of looping through the following two J'
'steps for k = 3,2,1,0:

(a) Add the numbers in. rows. Land 2 of column k
and write the result into row 3 of the same

. column.

(b) For k > 1 multiply the number in row 3 of

column'k by xo and place the result into

row 2 of column k-.

.This probess is indicatediby arrows in he-Table (6)
and the results are indicated in each field. The final
result in row 3.ofthe last coLumn is the value of,p,
atthe point xo.' ThiSmethod of computing the value
of a polynomial is,called Horner's Scheme,,

We give Horner'ss,cheme for our'spetial polynomial
(4) and two different values of xo:

-x0 = 2 oNkt°
_

3 -4 2 -3

0 6 4 12

3 , 2 6 r.9 p(2) -4 9

\ (7)
xo 5 -1 .

.
r

3 -4 2 -3

0 -3 7 ' -9

3 -7 9 -12 , p(-1) = -12

. .As another example, consider the quartic polyndbial

(8) p(x) = -x" -,2x3 + x - 1.

Notehere that the cciefficierit of x2 is zero; it should
be included. in the computation with ghat value.

3
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OF S. 1

x- ,- -1

r

-2 0 1

I

:1

= 1

I

(9)
1

-1_ 3 -3 2 °

. 1 -3. '3 -2 p(-1)

"Exercises a.

1.. Evaluate (2) at x. = 1, xo = -1, )20 = 10. Check your answers.

2. Evaluate (8) at xo = 0, xo = 1, xo = 2. What can you say f

about the behavior of p(x) in the intervals -1 < x < 0 and

1 < x < 2?

(

3. Differentiate the polynomial (8) and evaluate the resulting

cubic polynomial at xo = -1 and xo = 2. -4.

3. IMPLEMENTATION OF HORNER'S SCHEME

How can we program (6) for a general polynomial (1)?

Assume that,t he coefficients ao, al, ... an are stored in

an array of length 'n +l. If we are in column k of Table

(6) and the number in row 3 of that column is stored in

p, then.the numbers inrows 2 and 3 of column k-1 will

px; and pxo+ ak_1, respectively. (In the left-most

column the corresponding numbers are, of course, 0 and

an.) Thus we can write the overall process in the form

of a simple loop:

1. Sao, al, x0) °.

2. p := an

(10) 3.. For k = n-1, n-2, ..., 0 do

3.1 p := pxo_+ak

4. Output {x.,p}.

'. Each execution of step 3 involves one multiplication
.

and one addition, that is, altogether there are n multi-
.

plications and additions each requiri.ng n(u+o) seconds.
4
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This represents a considerable saving over the (2n-1) u+na

.seconds needed for (4).

Exercises

4.
%raw a flow chart for the algorithm (10).
1

5 If a programmable calculatpr or computereis available,

implement (10) for cubic and quartic polynOmials. 'cpst

your, program'wiCh the polynomials (3),and(8) and, the

values of x Used in Exercises 1 and 2 of Section'2.

6. Do a hand calculation or run your program on another

polynomial such as p(x) = x3 + x2 + x + 1 at xo =

xo = -1, xo = 10.

r

4. 'CONVERSION TO DECIMAL REPRESENTATION

As an application of the Horner scheme, consider

the question of finding the decimal repiesentation of

some integer N = (anal;_i...ao)b given An base b notation.

Dar example, let b = 2 and N the binary number

(11) N = 110011.

Generally, the notation N = (anan_i...adb means that

N,= anbn + a
n-1

b
n-1

+ alb + ao

;n other, words, if we. intrbduce the polynomial (1), then

we, have N'= kb). 'Thus, in the.case of, (11); we need to

evaluate the polynomial

p(x) = x5 + x" + z + 1 ,

/ at xo = 2. The'Horner scheme for this has the form

xo = 2

1' 1 0 0 1 1

0 2 6 12 24 50

1 3 6 12 25 51 5

alb
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4,

and hence our binary number 110011,has the decimal repre-

sentation 51.

Exercises

7. Convert, the binary integers 10101; 1111, 10000 to decimal

, representations.' As.

Convert the integers (74013)8,(11210)3, (440)5 ro

'decimal representations.

8.

`
5. HORNEPS SCHEME ANDPOLYNOMIAL" . 1

We tetuin to our algorithm (1D) , bdt this 'time we

retain the successive values of the variable p in steps

2 and 3.1, that is, the entr4s in rdw 3 of Table (6).

Wcrewrife the algorithm as follows:

1: Input {a
No

an,xo}
2. p := an

3. 'For k = n-1, n-221 Oldo
(12)

-3.1 qk p

3,2 p := pxo + ak

4. Output {xo; p, go': Iqn-1}'

: 1.

kence betweethe coefficients go, ..., an,q0,
apd p we have the relations:

(13)

qn-1 an

qn-2 gn-140+ an-1

'qn-3 qn-2 xo an-2

gi 12 xo

q.

P go xo
A

Ja'
2

+ a

+ ao.



4

Evidently in Table (6) q2, q,, qo, p are the.,numbers in
row 3.

. .We now introduce the new,po.lynomial

4-1
(14) ,q(x) qn-1X,`

cilx (10..0 0. ".-+

It is related to p(x)iivia a simple formula. n'fact,
using the formulas (1) we ffnd,rhat s

.

q(x)(x-xo)+p
qn-lxn qn-2x

n-1
'''(111(2*(lox+13

qn-lx T :::(1.2x0x2-qix0X.,-qoxo

. n-1
qn-lx

n

+(qn-2-qn:lx0)x.

+(q1-q2x0x!±({10-q1x0)x + (p-qox0)

. ,

\
lanx

n
+an_ix

n
.
1+

+ a2x2+aa+a
. -

and hence because o p' p(xo) that

(15) pjx) ..,q(ic)(/i-x0) +,p(xd.

Thus, q(x) is the result of the division of the
I f

,pol§nomir p(gp the lineaf factor x2x0 and p(x0)
is the remainder: Hdrner's scheme' is indeed only a

slightly con4ensegform.of the standard di lsAn of a

polynomial Jay a linear factor! To illu &trate this we

write this process in its familiar fOrm for the cubic
polynomial (5) (recall q2= a3):

N.

lb

,

q2x2+q.lx+qo

x-x0 /3x3 +a2x2 + alx-ao

q2x 3t q2x0x2

-

+ aix

qix` q
11

x x

qox-fao

c lox=ciol

p
7



which means that

\..a3x3+a2x2+i1x+ao = (x-x0)(q2x2+q,x+q0)+p

. "
in agreement with (15).

_More general-1T, this long division may be applied

i to divide any polynomial by a.nonzerb polynomial of

lower degree. For instance, the divisionof (8)-by

u(x) =x2-x+2 proceeds as follows:

X
2 .7

x2-x+2 /1:0-2x3+0-x2+x11,

xt- x3+ 2x2' .

--x3 2x2+x

which means that'

-x3+ X2-2x

- 3x2 +3x -1

- 3x2+3ac -6

5
S 4

x"-2x3+x-1 = (x2-x+2)..(x.21"t-x-3) + 5'.

For;th8'general polynftial and any

/* (la) 11,(x) umxm+um_lxm-1 + +u
1

x+u ,

.
min,. um106

. .

' -this" division, algorithm:may be; written following,

form:

4

. 1. Input {a0, ..., a , d ,
n 9

'2. ,For j = 0, n do rj, := aj

d.3. For k n-m-1, ...; 0. do
ti

,(19) 3,1, qk := rm+k/um

3.2 For, j ='m+k-1, m+k-2, le up

3.2:1 r. := r.-q u
k

.

k
T ,4.. 'Output(qo , .., qn_m, r6, rm 11 ., ,

. ,.
For tilt, resulting polynomiaJ,s

,--- .

'(20) q(x) = qn2mx
n-m
: ;...+q,x+q , r(x) 7.4.e x144.07...-trix+ro ,J 0 ,.. M-1

t

N.

1.



8,

4

we then have

(21) p(x) = q(x)u(x)

In the special case of u(c) = x-xo, that is, m=1, u1 =1,

u0=-x0, the algor.ithm reduces essentially to (12). The

only difference is that the remainde? is now a polynomial

which we initialize' in step 2 as r(x) = p(x). Formerly

we knew that the rem;inder is a .constant which may be

initialized as p an. 4

The algorithm (19) is 'probably easiest to understand

by going in detail through the folloWingoften-hand divi-

sion process:
,42x2+clix+go

r.,.=q2u2,

u2x2+ulx+uo /r,x4+r3x3+1;2x2+r1x+ro

q24x4+q2ulx3+q,u0x2

r3=r3-q2u1,

r 3 =c1 1 u
1

r2=r2-q2u0 r.
3
x3+r2x2+r

glu2x3+girrix2+ciluox

x

r2=r2-q1u1,

r2=q0u2

ri=ri-gluo r
2
X

2 +r x+r
0}

qou2x2tqoulx+qouo

ri=r1-qau3,,r0=r0-qouo rix+ro remainder

Exercises,

9. Perform the division (16) for the polynomial (2) and xo = 2.

,,,:Comparp your resultS- with,those of (7).

AP. As in (17), divide p(9 = x4+Xs-x4+2x3-x+2 by u(x) = 2x34-2x2-x-i-3.

Then, follow the same steps in Algorithm (19).

11. If a programmable calculator or computerjs,available, implement

(19) for reasonable values of n9M50. Test your program with.the
A 4

- polynomials of,(17) and Exercise 2 above.

"et
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12r (Optional) Show that there is only one pair of polynomials q(x),

r(x) with degree r(x) < degree u(x) that satisfies (21).

6. HORNER'S SCHEME AND THE DERIVATIVES _

We return to the basic formula (15). Since q(x)

tufns out to be the difference quotient

,' p(x)-p(x
o
)

_ ....11

q(x)
x -x

4
we expect that q(x0) is the val of the derivative of
p at x0. In fact,:,,by applying the.product rule to (15),

we obeain

(22)

whence indeed

(23)

p'(x) = q:(5)(x-x0) + q(x),

p1(x0) = q(x0) .

Thus pl(xo) may be evaluated by applying Horner's scheme
to q. For our example (2) and vilit = 2 this looks as
follows:

Mk. x 2

3 -4 -3

0 6 '12

(24) 3 2 6 9 = p(2)

0 6 16 ,

3 8 22 =

To implement this, note that each column of (24) can be

computed from the column on its left-. Thus, we don't

have to complete the evaluation of p(2)i.e., fill in
all of row 3, before finding the valueof p'(2). How-
ever, observe alSo that in the last column. -only p itself
is evaluated. Thus we may extend (10).as follows:,

a

10

1,

`s.



1. Input {ao, ..., an, x0}

2. p := an

3. p' := p

4. For k = 1 db
(2S)

4.1 p := px9 + ak

4.2 p' := p'xo + p.

S. p := pX0 + ao

0

.4

6. Output {x0, p,
= tr.

Thd process may be extended to higher derivatives.

For this note that the repeated application of the Horner

scheme results in.a sequence of division;:

( 26a)

p(x) ='qi(x)(x:xo) + p(x0)

q1(x) = q2(x)(x-x0.) + (11(x0)

q
2
(x) =,,c1

3
(X)(X-X

o
) q (x

0
)

qk(x) q k+1 (x) (x-x 0) + clk(xo)

where q1(x) .denotes our original q(x). At each step

the degree t£ the q's decreases exactly by one; that is,

the degree of q (x) is n-1; for q2(x) it is nii0i4ndit.

generally qk(x) has degree n-k,. Thus. qn(x) is a constant

and we have qn+1(x) E 0, and our sequence of equations (46)
ends with

(26b) qn_i(x) =.,,911(x)(x-x0)
qn-1(0)

qn(x)

We'multiply the kth equation by (x-xo)
k

, k = 0, n,

and add all of them together. Then for k = n, the
4 term qk(x)(x-x0) k arising on the left of the kth equation

cancels against the same term on the right in the (k-1) st

eqUation. Hence we obtain



0

(27) p(x)!CP(x0)+q,(x0)(x-Z0)±q2(x0)(x-x0)Cf-

qn (x
0

) (x-x-0)
n

By differentiating this k < k"< n, the first

(k-Ust terms disappdar, thp kth term becomes k!qk(x0),.

and all subsequen't terms still have a nonzero poWei. of

(x-x0) as afactor. Thus for x = x0 these-terms beQome

zeroand we find that

(28) qk(x0).=
1

p
(k)

( x ) , k = 0 , 1, n.

O

Moreover, (27) becomes

(29) p(x) = p(x0)+W(x0)(x-x0) + -2k p"(x0)(x-x0)2+. +

1 (n)
p (x0)(x--x0) .

This is the Taylor expansion of p(x) at x = xo.

The sequence of divisions (26a/b) is, of coUrse,

computed by meads of repeated application of the Horner

scheme. For example, in the case of the quartic poly-,

nomial (8) we obtain for xo = 4 the following results:,

x0 = -1

1 -2

-1

0

3

4

1 -1

1_3 2

p(x)

ql(x) lA -3 3 -2 1 =.p(-1)

0 -1 4 -.17

(30) q2(x) 1 -4 7 :9 = p'(-1)
0 -1 'S

q3(x) 1 -s 12 mr p"(-1)

0 . -1

(14(x) 1 -6
' = 7- p:"(.:14

1_

and thus

1 (A)
- 4-r.p (-1)

7
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'(31) p(x) = 1 - 9(x+1) + 12(x+1)2 - 6(x+1)3 + (x+1)'.

Besides 15roviding us with a, simple method for the

e:eNaluation of the derivatives of p(x) at a'4given point

x = xm, we-have obtained here also an algorithm for

rewriting p(x) in terms of the powers of (x-x0) instead

of those of x.,

In extension of'the °algorithm (23)

process cal:0e written as follows:

the entire

1. Input "{a0, ...; an, x0}

2. For k =t9, 1, n do pk := an

3. For k = n-1, n -2, 0 do .

(32) .,3.1 pc, := pox,a + ak

3.2 For j = k do

3.2.f pi := piX0 pi-1

'J.
4: Output {x0, p0,

;

The resulting values are

1 -

yr.P
(k)

(X 0) k = 0, 1, n,

and hence are exactly the coefficients of the "shifted"

polyriomial (31).
,

.

As (23) the algorithm (32) computes the data column- .

wise from left to,right. The computational process is

easily followed in the next table.,

s. 2
al1/4 a.

a
3
4. a

$
x

'0
+a

2
- a x2+a x +a + a x3+a x2+a i x 0 + a030 20 1 3 0 2 0

a
3
4. 2a

3 .

+a
2

4- 3a
3
x2+2a

2
X

0
+a

1

x
0

,

a3+ 3a
3
X
0
+a

2

ft
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Exercises

13. Verify by direct differentiation
and...evaluation of the

resulting polynomials, the results given in (24), (30),
and (31).

.1

i 1 °
14. Follow in detail,the algorithm (32) on the example (30).

15. If a progrlmmable calculator or computer is available,

implement (32) for reasonable values of n. Test your

program with the:data in the example 124) and-(30).

16. Write out in detail bhe proof of (27) and (28).

17. Compute the coefficients of p(x-) for

p(x) = x6 -6xs + 15x" - 10x3 - 15x2 + 4x - 9

7. OUTLOOK

The basic method ,gamed in the'title 9f this unit
was given by W. G. Horner in the early nineteenth century
in connection with an. efficient method for finding the

coefficients of px-x0), [Ph . losophical Transactions,
Royal Society of London l9 4819, 308-335]. But. the

' factorization

p(x) (...((a
n
x +a

n-1
)x

0
+a
n-1

+.)x ..)

on which it is based was already Aelty Isaac Newton
some hundred years earlier [Analysis per Quantitatem
Series, London, 1711].

We saw earlier that Hornw's Method use)s fewer
operations than,. fox 'instance, dhe approach indicatyd
in (4): It'can be shown that whe the inputs to our
algorithm (10) are arbitrary constants, that is, when
we are not using 41y furtheY information about them,
then there is no other algorithm which computes p with
less than n multiplications a,nd n additions. t

14
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4

- In practice the computations in all our-algorithms

are performed in floating point arithmetic on some

computer. 'Then round-off errors are introduced and the

question arises how they affect the results. For in-
.

stance, it turns out that with.increasing 1x01, (absolute

value of x0), the result of the Horner algorithm (10)

m;y be increasingly inaccurate. The situation is more

complex when it comes to the other algorithms given here.°,

0

1. x
o

= 1

8. ANSWERS TO EXERCISES

14
3 -4 2 -3

t

o j -1 1

3 -1 1 -2 p(1) = -2

A
x

0
=, 1 3 -4 2 -3

0 -3 7 -9

3 -7 9 -12 P(-1) = -12

x
o

= 10

-4 2 s":3

leijo 0 30 260 2620

3 _ 26 262 2617 p(10) = 2617

2. x
0

1 -2 ..0
0 1 rl

0 0 0 0 0

1 -2 0 1 -1 t,..."p(0) = -1

Y
xo = 1

?

li 2 0 1

0 1 -1 1
. sII

1 -1 -1 0 -1 ' p(1) = -1

15
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c

'a

A

x- = 2o. ed

1 -2 0 1 -1

0 2' 0 0 2

1 0 0 1 1 p(2) = 1

.

a efP

1 < x < 0 Since p(-1) > 0, p(0)< 0
p(x) must cross thex-axis,

1

i.e. have a zero, between
-1 and 0.

3. p'(x) = 4x3 6x2 + 1

x = 1

0 +

x = 2
0

4 -6

'2

0 -4

4 -10

4 -6

0 .8

4 2

1 < x < 2 Since p(1) < 0, p(2).>0
p(x) must cross the'x -axis
between 1 and 2.'

0

4.6).

1

154-
.. .

10 -10

10 -9 p(-1) = -9

0 1

4 8

4 9 P(2) =' 9

5. For:quartic polynomials: 10 DIM A(5) -
20 MAT INPUT A
30 INPUT X

:'40 LET P = A(5)
50 FOR K=4 TO 1 STEP -1
60 LET P = P*X +A(19
70 NEXT
80 PRINT X,P
90 END

4

16



x
o

=

I a1
1

1

0 1 2 5

2 3 4. p(t) =4

- x
o

= -1

1 1 1

0 1 0 -1

0 1 . 0 P(q 1-*

x = 10

1 1 1 '1

0 10 110 1110

tG
1 11 111 1111 p(10) = 1,111

. x =2
1 0 1 0 -

0 2 4 10 A 20

1 2 5 10 21 * 00100 = (20
2

(210
4/

x
= 2

0

1 1 1 1

0 2 6 14

. 1 3 7 15 a (1111) = (15)
Ir 2. 1

.x = 2

1. 0 0 0 '0

0 2 4 8 16

1 16 (10000)0 =
(i6)1010

8. x - 8

0 1
. S.

0 56 480 3840 30728

7 60 3841 .30731.. (74013) = DO7i1)
- 10

10
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9.

.16

= 3
o

__,---
1

- e
0 r` .--,.

v

.
..

0 . 3 12 42 129

...'
1 ° 4 14 43 19 ii- t - 44,193066,04(1188)''- zeta. we 7.,,i.:3 10

.
X = 5 \ Aitt9Ros 114; "'s `"'r -.t.:a c irt,/ --.). - , ..gs

4 , 4 ; p 1 4.. 116:',. '1S't7:-.2

Vi ' I

x 2
1

0 20 120 600

4 24 120 601 (4401) =

3Z2 + 2x + 6
3x3 4x2 + 2x 3

3x3 6x2

.2x2 + 2x

2x2 - 4x

6x

6x

4 ." ""t!

e 7' as1114:04

°;a.r.

0

3x3 - 4x2 + 2x - 3 = (x 2) (3x2 + 2x + 6) + 9

Tr .
.,

1 3

10. e
2

- vx 1 1

3-x
... 2x3.+ 2x2 - x + 3 I x6 X5 - X4 \ 2xi 0.1/* . - x + 2 lop

6 5 4 3X X X X
2 2

1 1

-r4 4ix
3

X ' '

1 4 1 3. 1 2 3r - -ix + vx - v x '
3 1 2 1X vx vx 2

0

X3 X22X .1-3
2

5 2 1- vx + vx + 1
6

+ XS x4 2x3 x 2 = (2x3 + 2x2 x +

+ (-ix2 + +

iv

1 3 . 13) {2.x tx T) St.
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11. For n .6 4, m = 2: 10

20

30
40

50

60

70

80'

90

DIM'A(5),11(3),13(3),R(2)
MAT INPUT A

REM THE ROUTJNE DESTROYS A
MAT INPUT U
FOR K = 3 TO 1 STEP -1
LET Q(K) = A(K+2)/U(3)
FOR J= K +! TO K STEP -1
LET A(J) = A(J) - Q(K)*U(J-K+1)
NEXT J

I A

100 NEXT K

110 LET $(1) = A(1)
120 LET R(2) = A(2)
130 MAT PRINT Q
140 MAT PR1Nt R
150 END

.

12. Suppose there were more than one pair.

That is suppose p(x) = q(x)u(x)- + --r(x) where either r(x) = 0

or deg r(x) < deg u(x)

P(x)= q *(x)u(x) + r*(x) where either' r*(x) = 0

or deg r*(x) < deg u(x).

' (q(x) AI*(x))u(x) = r(x) -1'*(x)

u(x) divides r(x) = r*(x) and thus deg u(x) < deg(r(x),- r*(x)i

or [r(x) r*(x)) = O.
ti

But 0 < deg Er(x) r*(.20) < deg u(x) so we must ha'Ve r(x) - f4(x)

or r(x) = ree(x).-
N.

q(x)u(x)'= q*(x)u(x)
4

And hence, q(x) = q*(x).

SI

4
4

Therefore there was really only one pair, i.e., the q(x) and r(x)

are unique.

=s

23

19



15. For n = 4: 10

20

30

40

50
60
70

80

90

DIM A(5),P(5)

MAT INPUT A
INPUT X

FOR K=1 TO 5
6E7 P(K) = A(5)
NEXT K
FOR K = 5 TO 1 STEP -1
LET P(1) = P(1)*X + A(K)
FOR J = 2 TO K

i

100 LET P(J) = P(J)*X + P(J-1)°-
110 NEXT J
120 NEXT K -.

130 PRINT X
140 MAT PRINT P
150 D

41

a

. 4 '

c

S.r0.1 1

es

NI

4-
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I

e

i
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ALGORITHMS FOR FINDING ZEROS OF FUNCTIONS

by

Werner C. Rheinboldt
Department of Mathematics and Statistics

University of Pittsburgh
Pittsburgh, PN 15260

1. SOME MODEL PROBLEMS

Let f be some real function of a real variable

x. We want to find a real solution (zero, root) x

of the equation

(1) f(x) = 0

Only in a few cases, such as for linear or quadratic

functions f, are there any explicit Wmulas for such

a solution. Hence we will have to be Isatisfied with

computing x approximately.

Nonlinear equations arise frequently in

applications. For later pse weigive here a few simple

examples.'

Van der Waal's equation of state for an imperfect

gas has the form

(2) (p + 22)(v - b) = RT.

Here p [atm] is the pressure,vpiters/mole] the molal

voluRe (volume/mass), T[°K] the absolute temperature,

R F 0-.0820-54 [liter--atm /mole- °g.the-geS--coliMht, aid

a [liter.2 atm/mole2], b [liter/mole] constants dependent

on the particular gas. For instance, for carbon dioxide

we have a b = 0.04267 and for helium

29

a.

1

a 4 0.03412, b = 0.02370.

For given values of p, T, a, b we want to'compute

the corresponding value(s) of v for which Equation (2)

holds. This is a_ problem of the form of Equation (1).

More specifically, after multiplying by v 2
, thedesired

values are the solutionitCOCubic polynomial in v

ax (3) pv
3

(pb.+ RT)v
2

+ av ab = 0.

As another example consider the motion of a

particle of mass m which is attracted to a fixed center

0 by a Newtonian force pm/r
2 with constant p > 0.

Kepler's first law then states that the particle moves

on- a conic section with eccentricity e with one focus

at '0: Thus for 0 < e < 1 the orbit is an ellipse, for

e= 1 a mrabola, and for e> 1 a branch of a hyperbola.

eS

1

Figure 1.

1.1

1

More specifiially, let P be the pericenter, that is the

point on the orbit closest to 0, and introduce the polar

coordinates (r,0) with center at 0 and the direction of

OP-as the x-axis. Then for *e > 0, d # 1 the orbit is

given by 30
2



(4) all - e21
r

1 + e cos 0

Now let T be the time when the particle is at the

pericenter, then it Tosition at time t is determined

by the Kepler equations

(a) n(t T) = u - e sin u, if 0 < e < 1

(S)
(b)' n(t T) =- e sinhu - u, if e > 1.

The variable u is called the eccentric anomaly; it

relates to r by the equations

r = a(1 - e cos u), if 0 < e < 1

"(6)
r = a(ecoshu - 1), if e > 1.

The parameter n is the mean motion, that is, in the

case of an ellipse n = Zn /p where p is the period. For

given a, e, n, T the problem of determining the position

of the particle at time t now requires the solution u of

the corresponding Equation (5). Then r can be found from

Equttions (6) and 0 from Equation (4).

Some values of the parameters for the case of the

earth's orbit around the sun are a = 1.000, e = .017,

n = .01720, and T = Jan.1, 1900. In this elliptic case

,Equation (S)(a) is unchanged if we add or subtract a

multiple of 2n from R = n(t - T) and u. Hence we may

always reduce the left side such that -n < t < n.

Exercises

1. Let the °function g be continuous on the closed interval

lks < x < b and differentiable on a < x< b. Then the Mean

Value Theorem ensures the existence of at least one value

x* such that

g(b)- g(a) =--(1?1W,,g'(;--*), a <-R* gib:

Thus to find x* we need to solve some nonlinear equation of

the form of Equation (1). .Write down this equation in the

- following cases:

.
(a) -9(x) = (x + 1)e-x, a ='-1, b = 0.

(b) 9(x) = x20, a = 0, b = 201/19.1. 1.1706.

t) .

o:

v

2. For a continuous function g on the interval a < x < b there

exists at least one value x such that

g(x)dx (b - a) g(x ),.a, < x < b.

a

This is the integral men value theorem. Write down the

s
resultIng equation for xTt in the cases

(a) dx

x log x '

2 (
( b )

(x + ex) dx,
10

2.w EXISTENCE QUESTIONS

.,Before we look at methods for solving a given

Equation -(1),4it is important to realize that there' may

be no solution at all or there may elast any number of

them. The examples in Table 1 illustrate some of the

possibilities.

TABLE 1

(x) ,No. of zeros Zeros

e
x

- none

1
7x - 1 one

*
x = 2

x
2

- 1 two
* *

.x
1,

= 1, x
2

= -1

*

tan x countably many xk = kn, k=0, +1, +2,...

_ (x±1)_2 for .x _< -1 _ __ _ __ _ _

0 f -1 <4 x < 1 a continuum any x
*
with -1 < x* < +1

x-1)
2 for x > 1

.

This indidatei that it is advisable to begin an
3 investigation of a particular equation bylocalizing a

4
rig"
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suitable interval a < x < b in which the desired solution The drawing indicates that a zeto of f should be contained

`exists.. A simple approach for the construction of such an in the interval 1 < x < 1.5.

interval is to plot the graph of f(x). For instance in the
The theoretical foundation for this conclusion is the

case of the simple Kepler equation following basic theorem:
, 1

(7) f(x) = .x 1 7 sin x = 0
.

Intermediate Value Theorem:. Let f be a continuous
this may provide the results shown' in Table 2 andFigure 2. /-

function on the interval a < x < b, a < b. If

TABLE 2,

x f(r)

0 -1.0000

0.5 -0.7397

1.0 - -0.4207

1.5 . 0.1252.10
-2

2.0 0.5454-:,

2.5 - 1.2008

3.0 1.9294

Figure 2.

(8) sign '1(a) sign f(b) t

then f(x) = 0 has a solution in the interval 4.

a < x.< b.

The proof of this theorem is not entirely simple

and uses some fundamental properties of the real number

system. But intuitively the result is clear. A continuous

function might be charact.erized as a function with a graph

that can be drawn without lifting the pen fro the paper.

The condition (8) implies that at two endpoin of the

interval the function values are on opposite sides of the

x-axis; hence when drawing the graph of f we need to cross

the x-axis somewhere ih that interval.

06.

Figure 3.

O
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-4-)teecises-:

1. -.- iret-erniiite the of ,ttie- -func t LOW --'

,
4 : 0 --.the -i;al.ife'S-:--f (II) _ -=-7--:-.=-Zi" i.iill-..-C2)--..-_-,.-1-1-.)tiii.'-..the'rs-.1.,-5-:.-00-z; -, ,, -- ; rl

the- in-termpl. SF- < 5e--< 2.- .:-.4SiFitu,1e..-1:4''
-

5. :_ - -- ..., .s ili
--. ..-

flote a s _ .

ern the;:in te' r \%al 0 < .,x -.< 1 . -
about the eII-umber ed. sol4ioris-' ---th--...iiffei:oa:r . . -- --_ ;--_--- : ---_,,:.-::::.; .,--

i ,. - ...._
. . _

-......- --
. _ . - ,, . .

-2 ":,-719,r any 0 .,<, e <,1 and .-,er -, Z < n det4rmlne_ ana < x -< -b-. -1.n fact, tille.1- -pa y..--ifeia):* 1.-irmEt:e-,."="9.1.. Ifs t i_n-t, --
....., .., . --, . -

. contains a coot of the Kepler equation k =emu -. -. , .roots..t s . For _I iti-3-t.Otge-f_ in the- i_ifte:rva-1. -.4; "s.;:-x.-. -2---:tire .r.

ntx = 0

< x < 1

has for a t=
*

tke tgo

roots, x = 0 '-and:x 11.

exactly three roots.-

-0

..-3;-'--Shp07-Ctrat for ttie-Sti called critical values

- *
The ease a = exceptief14.: Generally_, x

of tie Equation (1.) is. called a root -ormliltip-lit-i-tym
for x near x, the function f can be written in the

-.0 (10)

1

f(x).=(x x

with some function g that is continuous near x,
*

and
*

satisfies g(x) 0 0. In our case, EquatiOn (9) has for

a = 0 the 'form f(x) = x
2
(x -'1/2) which shOws that x = '0

*
is a root of multiplicity two while x = k has multiplicity

one. Thus counting multiplicities we really have three

roots. Generally, the following result holds:

'Theorem: Under the conditions of the intermediate

value theorem, the interval a < x <.b contains either

infinitely many solutions or finitely many solptions

for which theOum of their multiplicities is an odd

- number _

ty

7

°N,

a '
c

dn-r Waal' Equation

th..;eA. Show that the constants a, b,
the critigr values as

8a

27Rb

e van (3) has only

interval which -
e sin u.

one root vc = 3b of multiplicity
R can be expressed in terms of.

8 Pc c
= 3pc cv2 , b

1
, R = 3

Use this to show that wilh the dimension-less variables p = pipe
v = v/v

c
, T = T/Tc the -equation assumes the form

(P 4--) (3; '1') = 8T.
v .

3. THE BISECTION METHOD

Suppose that an-interval a < x < b has been

found where the conditions of the intermediate value

fheoiem are satisfied. Then we know that there is at

least one solution x of Equation (1) between wand b.

, For'the midpoint m =_a + (b - a)/ 2 we test now the

condition sign f(m) # sign, f(a). If it holds then the

intermediate vane theorem guarantees that there is- a

root in the interval, a < x < m, otherwise, we have!"
f(m) = sign e(a) # sign f(b) and hence there

8



be a root in m < x < b. In either case, e length

of the interval has been halved.-tY^repeating e

.procet0 we can decrease the-interval-length below a

prescribed tolerance and hence approximate a root.of f

arbitrarily closely.

In an infor al programming language this algorithm

may be written the following form.

1. Input fa, b, kmax, tol);

2. ki=0;:

3. If (sign f(a) = sign 1(b)) then error return 1:
"Wrong interval";

4 Print fk,

5. If ib-al < tol then normal return;

6. k := k+1;

7. m := a + (b-a)/2;

8. l.f (sign f(a) # sign f(m)) then b=m else a=m;

9. if k < kmax then go to 4 else error return 2
"kmax exceeded";

Step 2 has been included to verify that at all times the

basic condition (8) is satisfied. If it holds for the

input interval then theoretically it will remain valid

for all subsequent intervals. But in practice this may

well not be the case due to round-off errors. All

iterative methods should include a count k of the number

of steps taken and use,it to stop the process when a

given maximum count kmax has been exceeded. This is

done here in step 9.

Table 3 shows the results of the first five steps

when the algorithm is applied to the Kepler Equation

(7) on the interval 1 < x < 2.

(-1,7

C.

9

1.

Table 3

k a b b-a f(a) f(b)

'0 1 2 1 -0.4207 0.5454

1 1 1.5 0.5 -0.4207 1.121,2.10
-2

2 1.25 1.5 0.25 -0:2245 0.1252.10
-2

3 1.375 1.5 0.125 -0.1154 0.1252.10

4 1.4375 1.5 0.0625 -0.05806 0.1252.10-2

5 1.46875 1.5 0.08125 -0.0.2865 0.125210-2

We shall see later that, with eight, digit 'accuracy', the

exact root is x = 1.4987011. Obviously, our algorithm

is not particularly fast.

The interval decreases at each step by a factor Of

two. Hence the kth interval has the length (b a)/2 k
.

,

If the tolerance is, say, 10-t then we require that

Or

that is
(11)

(b-a)2
-k

10
-t

2k > (b-a) 10t,

> log2r(b - a)10t.l.

In the example of Table 3 this means that we need

k = 23 to obtain seven digit'accuracy.

Exercises

1. Draw a flow chart for the biseCtion algorithm.

2. If a programmable calculator or computer is available,

implement the algorithm for4the general Kepler Equations

(5) with given -y <t = n(t - T) < w and e > 0.

3. For the cubic polynomial f(x) = x3 - 2x + 2 determine an

interval containing (only) root and apply the bisection

algorithm to approximate the root to four digit accuracy.

0.
io



4. SOME LINEARIZATION METHODS -If fl(xk) # 0 then the zero of Equation (14) is

.In order to overcome the relatively slow convergence

of the'brsection method, we turn now to a different

principle for computing solutions of Equation (1). It is

based on the idea of replacing the function f(x)o by a

succession of linear functions gk(x) = akx + bk,

such that their zeros.-bk
/a

k'
k = 1,2,..., approximate the

desired solution x of Equation (1).

A linear function is determined by its.values at two

distinct points. .Suppose that wear' at the kth step of

our process pnd that the approximations xo, xi, xk of

x* have been computed already. If, k > 1 and xk # xk

then we may construct the I,inear function gk(x) which

agrees with (x) 4f xk and xk.1,:namely

f(xk) - f(xk_i)
-

(12) gk(x) f(xk) --+ -xk xk
-1

(x

For f(xk) #I(ck.1) the zero of this function,Ithat is

. xk x
k-1

(13)
x1(44 xk f(xk) f(xk.iT

f(xk)'

is taken. 4s the next approximation of x and in this way

. the process is continued. This is called the secant method
.

Clearly the process will fail when two equal function values

-are encountered:- But if this does not happen then we

shall see that the method is considera'bl'y faster than the

bisection method.

A.linear.function is also defined by its functi2n.
. ,

- value and its slope at a given point. Hence, suppose -that

at xk, k > 0, we are able to compute not only f(xk) but

also the value.of thq,deffistive r(xk), .Then we can replaci

the secant line. (12) by the tangent tine

(14) gk(x)
f(xk) r(xk) (x-xk).

33 11

(15)
f(xk)xk+1 = xk

which becomes our next approximation of x . The resulting

process is called Newton's method. It will fail whenever

a zero derivative value is encountered, but otherAse it

turns out to be even faster than the secant method.

As an example, we consider the computation of the

positive square root of some positive number a > O. In

other words, we wish to find the positive root of f(x) =

x
2

- a. In that case, "we have

2 2
f(xk) - f(xk.1) xk xk

-1
X + xk-1

xk -xk
-1 xk - 'xk -1

and hence the secant method assumes the, form

(16) x = x
1

k+1 k x.+
(x2 - a) _ - x-k x k-1 +a

k xk-1 ' x1(44(k-1

. On the other hand, Newton's method becomes

2 .

x
k
-a

1(17) x
"

k+1 xk 77-- Tk x )'

Fora = 10 we start (16) with xo = 11, xl = 10 and

(17) with x
1

= 10. The resulting first few steps are

'given in Table 4.

a
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A

IF or
OP

Table 4

.1

k

Secant Method - Newton's Method

x° fc f(xk) Gxk f(x
k

)

*0

1

2

3

4'

5

6

7-

8

,

11

10 .

5.71429

4.27273
. .

3.4403
,

3.'20310

3.16402

3.16229

36228.

111

90
r...

-22.6531.

8.25620

1:87515

.

0.259849

0.110211i10 -1

-

0.7064.10

, 0.2.10 -7

i

10

5.5 -

3.65909

3.19601

3.16246
.

'3.162.28

o

.90

20.25

3.38895

0.214448

.112557.10

0.2.10 -7

-2

EX6reises.

1, Apply the secant method to the KeplerEquation (7)

starting with xo = 2, x1 1.5.

'

2. Use Newton's meths tl starting from x
0
= -1 to solve the

equation specified by problem 1(a) of Section 1.

'3. If a programmable calculator or computer is available

implement Newton's method for the computation of the -

square root of any positive number a. Use xo = a as

starting point.

4. For polynomial equations the value of the function and

its derivative at any given point may be computed By die definition (15) of Newton's method the term in the
simultaneously by means of Horner's Scheme.* Draw a flow square bracket is zero whence

"chart of the resulting process. If a-programmabi.e %
.

* ; - '*
? 0,= f'(xk)(x

x k+1) +
1

'24"(C1c)(x xk)2calculator or computer is available implement the method

for cubic artd quartic polynomials and test it ort several or, because of condition 09), .

iequations, such as the polynomial (3).

0

,S. 'RATES OF CONVERGENCE

The bisection method generates a se0ence of intervals

ak < x L bk, k = 0, 1, which contain the desired

root x . Any point in the kth 'interval may be considered
o

as the kth approximation of x ; for the moment let us

consider the midpoint mk = ak + (bk - ak)/2 for that

purpose, Since at each step the interval is halvedwe

then have the obvious relation

(18) Irnk4.1
1
171mk -x I, k = 0, 1, ....

In other words, the errors converge to zero at least as
*

fast as the geometric sequence Imo -x 1/2
k

, k = 0, 1, .

Now s.uppose that Newton's method is used and produces

a sequence of points x0, x2, ... which converge to the

solution x of E41gtion (1). Moreover, assume that

the xk.are all contained in som interval a <-x < b

where

(19) (i) 1.1"(x)1 >° a > 0; '1(ii) If"(x)I < B,

' for a < x < b.

Then, it folloWstY TaylOr's'formula'that -- with certain

CI( in our interval --

' 1
0 = f(x

*
) = f(xk) + f1(xk)(x

*
)x,K +

4 A

[f(xk) fl(x0"10.1

ft(xld"
*

xk+11)

100.

7f"(k)(x xk)2,

* 1 kfi,'k)1 *
13 (20) Ix - xv411 = -2-. Ix* - .xfc 12. < 12.4 Ix, xkl2

At.for explanation of Horner's Scheme, see UMAP #263.
If'()(01 .

1 'Ili
0 A, .

; I!
A



In other words, in this case, the error is squared at

each step (up to some factor). Thus if, say, the k
th

error is proportional to 10`t then the .(k + 1)st error

is proportional to 10 -2t
. fhis is clearly seen in the

third column of Table 4 where'for k 3 the number of

correctdigits doubles with each step,

For the secant method a similar estimate can be

derived.' It turns out that if again Condition (19)

holds and all xk remain'in a < x* < b then. we have --

with some constant y > 0 A

(21) jx
*
-x

k+1
1<ydx *

- ,l

t k= 0, 1, ...9

1
t = 1(1 + ) ='1.6180.

pThus the errors tend to zero somewhat more slowly than

in the case of Newton's method but certainly. faster than

with the bisection method.

These results are somewhat deceptive. First of mall,,

the condition (19)(i) is fairly strong since it implies
4'

that there only one root in the interval a < x < b

and this root must have multiplic44 one. In fact, by

the mean-value theorem we have

If(x)I-= If(x) - f(x*)I = If"(0(x-x**)1 > « x*I

a < x < b,

Hence f(x) = 0 for any a < x < b implies that x = x .

Moreover, if f can be written in the form of Equation
*

(10) with g(x ) # 0 then the left wide of

Ix - x
*
Im

-1
-Ig(x)I > a > 0

*

tends to zero, as x goes to x unlesS m = 1.

For zeros of multiplicity greater than one, Newton's

method,indeed converges much more slowly, For exampLe,
4

in the simple case

(2'2)" f(x) (x -, 1)m = 0, x = 1

Neigton's method has. the form

4 3

xk+1 = xk

whence

a

(xk -1)m
m 1

(x
k

+ 1)

m(xk -1)m-1

xk+I
, m

m
- 1

(x
k

, 1).

In other words, fof.m = 2 the convergence is here as

slow as that of the bisection method, and for m > 2 it

is even slower. The secant method shows a similar

behavior; in fact, not only the rate of convergence

deteriorates but arbitrarily close to the root we may

encounter f(x k) = f(x
k-1

) in which case the method

fats completely.

...
There are further problems with the function -(22).

In fact, we see that If(x)I < c implies that

1 - el/m < x < 1 +
1/m

-Hence, say; for m = 10 we have If(x)I -10 -6 for

.75 < x 1.25. In other words, with six digit

accuracy any point in this interval can be called a

zero of f. Unless higher accuracy is used any iterative-

process entering this uncertainty interval will, by

necessity, show erratic behavior. A root of this kind

is called ill-conditioned. It turns out that also roots

of multiplicity one may be ill-conditioned.'

Even if the conditions (19) hold the estimate (20)

for Newton's method may be very misleading. Consider for

example the equation

x19
of

(23)

we encountered iri Exercisp 1(b) of Section 1. Hire-

clearly f"(x) > 0 for x > 0 and for any interval
*

0 <a<x<bcontainingx=' 1 the estimate (20)

holds. But the factor 6/2a will be very large unless

a'and b are very close to one. This reflects difficulties

15 with Newton's method, and in fact for x0 = 1/2 we have

411
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x
1
= 13,797.53 which is certainly a much worse approximation

of x than x0. The subsequent iterates decrease

monotonically, but very slowly, to one. Only very close

to one the expected rapid conver ce sets in.

Exercises

and

1. Show that when Newton's method is used for solvirig

x2 - a = 0,, a > 0, starting from any x0 > 0,

x
0

, the iterates satisfy

x > x > ... > xk > xis+i> ra. , k> 1

and

xk+1 - tri'= (xk -
2x

k

2. Apply the secant method to the equation

f(x) = x2- a = 0, a > 0, starting from x0 > x 1 >

Show that /

x-
k+1 xk + xk-1

(x
k

-
k-1

x0> xk-1 > xk > xk4.1 > k > 1.

I

3- Apply Newton's method to Equation (23) 'starting from

x
0
= 1/2. Show that

a

18 . 1 18

xk+1
1

xk 4. --"--"4-10 xk .

9 1919x
k

I

. How many Iteration steps are needed to reach Ixk - li < 1.17

17

6. A PRACTICAL ALGORITHM

The results of the previous sections show that none

of the methods discussed here is entirely satisfactory.

The bisection method is 'fairly reliable but slow, the

Newton and secant method are both much more rapid in

certain cases but show unreliable behavior in many others.

We discuss now an algorithm which combines the

bisection and secant methods to bring out their best

?atures. .Again we work with a sequencc of intervals

Of decreasing length for which the intermediate value
o

theorem holds. 'If, say, a < x < b is the kth interval,

then we set

xk = a, yk b if If(a)I. < If(01

x
k

= b, y
k

= a if If(a)I > If(b)I,

Thus x
k
may be considered the current best approximation

of the root in the kth interval.,

A step of the algorithm now consists in determining

.a new point between xk and yk, called w the'moment,

which will become either x
k+1

or For this we

.intro ce the point

iconsider first the secant step

(24) '

xk-1 if k > 1 and _

Yk Yk-1

z,,k

yic otherwise

(xk - zk)f(xk)
s = xk

f(xk) - f(zk)

provided it gives a better result than the bisection step

m = xk + (yk - xk)/2.

In other words, since xk is the current best approximation,

s has to be between x
k

and 111. -At the same time, since x
k

\18
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is not yet within a given tolerance of the root, s should

differ from x
k
at least by that tolerance.

Before we discuss the choice of s or m, a few words

about the definition of z k
may be useful. The normally

expected choice would be zk = Herej represents a

secant step based on the two current endpoints of the

interval where the function values have different signs.

This is called a regula-falsi step. Unless'round-off

interferes; such steps do not lead out-of the interval

and, since they have-no subtractive-Cancellation problem

in the denominator of (24), they are generally rather

stable. But in situations, such as that shown in Figure

4, regular falsi steps may .give very poor improvements

of the
tV

interval. For this reason, we use in the case of

Yk
k > 12 a secant step based on and xk.

Such a step may lead'entirely out Of the interval and

hence has'tO be carefully controlled, but it certainly '

guarantees that there will be no long sequence of small

.steps of the type shown in the figUre.

Figure 4.

In order to test convergence we use the tolerance

.function

tol(x) = 4)(1 +

where c > 0, d > 0 are given constants with

. e 4 d > 0. For.i = 0 the condition Ix x*I < tol, (x)
e

requires the absolute error Ix x
*

1 to be below (5

while for d = 0 it forces the relative error

Ix" - x*f/lx1 to be less than e.

O

aR /17
19

With this we set now w = s if s is between

t = xk + sign (yk xk) tol ('xk) and m, and w = t if s

is between x
k

and t. In all other cases, w = m is

chosen, that is, we take a bisection step.

Thus in either case we have settled on a value of

w. If sign f(44) # sign f(yk) then the interval between

w and yk is our new interval, otherwise the interval

between x
k

and w chosen. This completes one step ,of

the process.

We terminate the algorithm if the length of the

interval between xk and m is less than tol (xk), that,is,

if Iyk --xkl < 2 tol (xk) This fits with-our choice of

the minimum step. w = t wl e. s is between x k and t. In

fact; if we have not yet onverged then

o
.

1m - xkt > tol( k) = - xkf

to

and thus also in t'ffi case w is always between x k and m.

**NI- the implementation of the process we have to

.' take eare:,that the division in the secant step (24) does

n t produce overflow or.rderflow. For this we compute

the nu merator and denominator ,

f 0 (xk - yk)f(xk), q = f(Yk) --f(xk)

.

e. 0 s.

1
71 Yk xk Icil °I. [pl.? Iqi tol( xk)

. a .
to determine whdther s will be between t and m.

;.

separately and then test

The overall algorithm can no* be formulated as

follows.
A

1, Input {x,y,c05,kmax}i

2*. zv=g;

3. k:=0;*

y If (If(x)1>lf(y)1) then z:=x1 x:=y; y:=z;

.5.. Print tk,.x,y);

6.' to1:=c1x1 + 6; A°, 2
'20L.,



7. If (Ix-ayl < 2 tol) then normal return;

8. If (k > kmax) then error return "k max exceeded";

9. k:=k+1

10. ,p:=(x-z)f(x .,

11. q:=f(z) fix);

12. If (p < 0) then p:=-p;

13. z:=x;

14. If (p < ICtol) then x:=x + signl,y -x)tol

else if (p <1/2(y-x)q) then x:=x + p/q

else x:=x + (y-x) /2;

15. If (sign f(x) = sign f(y)) then v:=z;'

16. Go to 4;

As an example we give in Table S the solution,. of

Equation (23) with c = 0, d = 0.5 x 10-6, and, the starting

interval x= 0.5, y = 2.0. the straight bisection method

uses in this case about 21 steps. 1

A

Table 5

Interval_
.

F(x)

7
0.500000 2.00000 -0.999998

m0000p 1.250000 -0.999998 6

0.610811 1.250000 -0.999997

0.880106 1.250000 -0.911084

0.880406 . 1.06520 -0.911084

0.932504 1.06520 -0.734927

0.998854 1.06520 -0.215500.10 -1

0.998854 11.00086 -0.215500.10-1w
0.999991 1.00086 -0.168309.10 -3

1.00000 . 1.00087 -0.127405.10-5

1.0.0000 1.00000 -0.127405.10 -5*

,

41'

The process does not always perform that well.

In fact, for instAnce, for,Equation (22).with m = 19

and.x = 0, y = 10, r = 0, 6 = 0.5 10-6 it requires

several thousand steps. (Even for 6 = 0.5.1(1 3 a total

of 121 steps are taken). The reason is that for a long

time the algorithm uses only the minimal steps of

length tol xkl.

Various remedies have been proposed for this

problem. The easiest approach is to force periodically

some bisection steps. For instance, we may simply add

a test between steps 12. and '13. which forces a bisection

step if k is a multiple of some fixed period M and then

bypa*ies step 13.' More sophisticated is a test every

M seeps which determines whether the interval at the

beginning of the period has been reduced at least by

the factor 2M corresponding to M bisection steps. We,

leave the details as an exercise.

Exercise

1. If 1 comput / is bvailable implement the process describe

this sectqln. Test it with the example of Table 5, then

use it to solve the equation.s of Section 1.
c. 1

2.. Introduce your program a forced bisection step when the

iteration index k is a.multiple of some integer M >1.

Apply the resulting process to Equ ion (22) pnd experiment

with different values of M.

3. insteAd of the approach of Exefcise 2 introduce alrE1Nodic

check co mparing the actual reduction of the interval with

the expected reduCtion by means of the bisection method.

Compare the performance with that of the process developed

0 in Exercise 2'above.

40`
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8. ANSWERS TO EXERCISES

Section 1

%.1. (a) 1 + xe-x = 0.

(b) x19 = 1.

2 (a) x Ogx log 1%32 ' 10.63289.
i

(b) x + ex = 4 A 2.21828.

The method described in Section 6 was originally . ,

deyloped by T. J. Dekker [5]. Various improvements and Section 2

modification, including those mentioned at the end of the
1. x* =I k = 1, 2r--.., and x* = 0

section are discussed, for example, in [6]-[8].

Flj A. S. Householdel.,, The numerical treatment of a

single nonlinear equation, McGrawhill, New York 1970.

[2] J. Ortega, W, Rheinboldt: Iterative methods for

nonlinear equations in several variable , Academic

Press, Inc. 1970.

[3] .-A. Ostrowski, Solution of Equations in Euclidean and

Banach Spaces, Academic Press, Inc. 1973.'4'

[4] J. Traub, Iterative methods for the solution of

equations, Prentice Hall, Inc. 1964.

[5] T. J. Dekker', Finding a zero by means of successive
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Fividamental Theorem of Algebra" ed by B. Dejon, P.

Henrici, Wiley-Interscience, London 1969:

[N R. P. Brent, An algorithm with guaranteed convergence

for finding a zero of a function, Computer Journal 14,

4 1971, 422-425.

[7] J. C. P. Bus, T. J. Dekker, Two efficient algorithms

with guar'anteed convergence for finding a'zero of a .

function, ACM Trans. on Math. Software 1, 4, 1975,

330-345.

18) G. H. Gonnet, On the structure of zero finders,

BIT 17, 1977, 170-183.
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2. For f(u) =2.-ustesinuwe have f(0) =2.and

f(-Tr) 4= 2 + n > 0, f(n) = 2. : n< 0,

Thus for 0 < 2..<.n we may use the interval O.< u < n-

and for -n < 1, < p the interval -n < u < 0.

3. For'the'critical calues pc and Tc fhe van der Waal

polynomial (3) reduces to
4P°

0 = v3 9bv2 + 27b2v - 27b3 = (v-3b)3

and thus has only one triple.root vc = 3b.

From _vc = 3b it follows that b = vc/3 and hence from

the formula for pc we obtain a = 27pc(vc/3)
2

= 3pcvc2 .

Now the expression for T_
c

gives R = 24pcvc2/(9Tcvc) =

(8/3)pcvc/Tc:' By substituting these quantities into

(2) we find that
i

.p C31)cvC('''

1

v
8 T

''' '4. ---7 v 4- T Pc vc Tcv
which leads to the stated dimensionless equation after

multiplication by 3/(pcvd... es-',>

Section 3

3. 11(-2) = f(-1) = 3, x* L- -1.7693.

t)o.d
24



Section 4

1. The iterates are in sequence

2.0,..1.5, 1.4988490, 1.4987012, 1.4987011

and the last number is correct to eight dig.

2. The iterates are in sequence

-1., -.68393972, -.57745448, -.56722974, -.56714330

and the last number is correct to eight digits.

3. A simple informal program for this might look as

follows:

1. ,Input {x, n, a0, al, ., an, kmax, big, ton;

2. k:= 0; -

'3. Print (1(00;

4. k:= k+1;

5. p:= an;

6. pprime:= p;

Z. For i = n-1, n-2, ..., 1 do 7.1 p:= p x x + ak;

7.2 pprime:= pprime x x + p;

8. p:= p x x + a0;'

9. If (Ipl 5161pprimel x big) then error return 1:

"Excessive step";

10. If < pprime x tol) then normal return;

11. x:= x - p/prime;

12. If k < kmax then go to 3

else error return 2: "kmax exceeded";

Section 5

1. By (17) we have

xk4,1 ;2-(xk + )

and thus
1 2 1 2=' (x

k
- 2x + a) =

.

- a
/-

)xk
k

4xk
as well as

1

xk Xk+1 Y(xk
1

= 77,--(xv
2

- a) ,

Hence for all k > 0 we have the implications

xk > 0, xk xk4.1 >

x
k

> x >k xic4.1

from which the stated inequalities follow directly

by induction.

2. By (16) we have

x xkxk-1 a
k+1 x

k
+ x

k-1

and thusr, ,

xk
xk + xk_, (x k

x k-1 + xk -1)
+ a]

1 V)(xk_lxk + xk_,

as well as

2
xk

xk +l k

1

k-1
(xk a).

Hence for k > 1 we have here the implication

xk_, > xk > xk > xk
+l

> VT

and the stated result follow's directly by induction.

3. Newton's method here has the form .

19 19
xk - 1 18xk, + 1

18 1
x
k+1 xk 18 Tgxk

19x 19x
18

19x
18

k k

Even for xk = 1.1 the second term on the right

is only of the order of 1/100, and hence until then

the principal reduction comes principally from the

first term. For xl = 13,797.53 we have

(4-185) k xi < 1 . 1

for k = 175.

Section 6

3. An informal program incorporating such a periodic

check might look as follows:

25 26



1. 'Inpu't (x, y, e, 6, kmax };

2. m:=0;

.0. 3. length:=1y-xL;

4. z:=y;

5. k:=0;

6. If (1f(x)1 > 1.f(y)f) then z:=x; x:=y, y:= z;

7. Print {k, x, y };

8, tol:v=e1x1 + 6;

9. If (1x-y1 < 2,tol) then normal return;

10. If (k.> kmax) then error reiturft "kmax exceeded";

11. k:=k+1

12. p:=(z7x)f(x)

13. q: =f(z) - f(x)

14. If (p < o) then p:=:p; (1:=--q;

15. z:=x;

lkm

17. If (m > 4) then if (161y-xI > length)

then x:=x+h(y-x); go toi;(20;.

else m: =0; = ly-x1

18. If (p < 1q1;o1) then x:=x + sign(y-x)tol

else if (p < h(y-x)q)

4:' then x:=x + p/q

else,x:=x + h(y-x)

19. If (sign f(x) = sign f(y)) then y:=z;

20. Go to 6

5'j
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ci out this form and take it to your Instructor fo;'assistance. The information

you give will help the author to tevise the unit:

Your Name

Page

Q Upper

()Middle

Q Lower

OFD

Section

Paragraph

Description ofi.Difficulty: (Please be specific)

OR

Unit No.

Model Exam
Problem No.

Text

Problem No.

4

Instructor: Please indicate your resolution of the difficulty in this box.

0 Corrected errors;inomaterials. List corrections here:

pave student better explanation, example, or procedure than in unit.
Give brief outline of your addition herl:

0 ,.

Assisted student in acquiring general lileatning and problem-solving
skills (not using examples from this Unit.)

i

9

InstrUctor'S Signature

Please use reverse if necessary.:



O

Name

Institution

STUDENT FORM 2

Unit Questionnaire

Unit No.

Course No.

.Date

.

Return to':

.-EDC/UMAP

55 Chapel St.
Newton, MA 02160

Check the chcfle for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?

Not. enough detail to understand the unit
Unit would have been clearer with more detail
Appropriate amount of d tail.
Unit was occasionally-to ldetailed, but t was not distracting
Too much detail; I w ten distracted

2. How helpful were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps
Sufficient.information was given to solve the problems
Sample solutions were too detailed;.,I didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor,-friends, or other books) in order to understadd,the unit?

A Lpt , Sbmewhat A Little Not at all

4 How long was this unit in comparison to the amount of time you generally spend on
a lesson (lectIve and homework assignment) in a typical math or science course?

Much Somewhat About Somewhat Much
Longer. Longer the Same Short Shorter

1

5. Were any of the following parts o'f the unit confusing or distracting? (Check
as many as apply.) ('

Prgrequisites
Statement of skills and,concepts (objectives)
Paragraph headings
Examples
Special Assistance Supplement (if present)

Other, please explain
0.

6 Were any of the following parts of the unit particularly helpful? (Check as many
as apply.)

Prerequisites
4

Statement of skills and concepts (objectives)
Examples .II

Problems -

Paragria84140tadings

Table ontents 1

Special Assistance Supplement (if present)
Other, please explain

Please describe anything in the unit that you did not particularly like.

Please describe anything that you found particularly helpful. (Please use the back'of

this sheet if you heed more spice.)
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Corrections .-

UMAP Module 264

p. 20, line-12

p = (xk - z)f(xk), q = f(z) f(xk)

p. 21, lines 1 to 11

7: If (Ix-yr-:< 2 tol) then normal return;'

11

8. If (k > 'k max ) then error return "k max exceeded";

9. k:=k+1

10. p:=(x-z)f(x);

11. q:=f(z) - f(x);

12. If (p < 0) then p:=-p;

13.- z.,:=x;

14. If( p < lqltol) then x:=x + sign(y-x)tol

else if.(p < (y-x)q) then x:=x + p/q

else x-f= + (y-x)/2;,

15. If (sign f(x) = sign f(y)) then y:=z;

16., Go to 4;

p. 21, line 13, Equation (23) with

p. 27, line 11-23,

11. k:=k+1

12. p:=(z-x)f(x)

V

1



CORRECTIONS

13. q:=f(z) - f(x)

14., If (p << o) then p:=-p; q:=-q;

z:=x;

16. m:=m+1

17. If a> 4) then if (161y-x > length)

then x:=x+i(y-x); to 20;

else m:=0; length: = ly-xl

':18. If ( p < lqltol) then x:=x + sign(y-x)tol

else if (p < i(y-x)q).

then x:=x + p/q

too

else x:=x +
2

19. If (sign f(x) =, sign f(y)) then y:=z;

20. Go to 6

6
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