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1. INTRODUCTION *

A -
Our basi¢ problem is the computational evaluation
of a polynomial . ) v
) n n-1 n-2

(1) p(x) = apx ‘+ a X toap X +

@

+ azx2 +a,x ¥ a,

and its derivatives p'(x),p"(x), ..., p(n)(») for a
~*" prescribed-value x = x,. Here the coefficients ans

a,.1» ---» &, are given real numbers.

e . . .

, .~ Let us consider. first a simple cupic polynomial,
(2) P&x) = 3x® - 4x? + 2x - 3.

For any given number x, the evaluation of p(x,) does
not present any principal 7ifﬂicu1ties We may compute

xﬁ and x3 and thep combine{them together approprlately

®  sIp an 1nforma1 programmlng language this may be written
as the' fOllleng algorlthmn ~_ "

‘e

1 Input {xo} S~
2 'u XX,
(3) 3. v o= ux ,
4. p := 3v - 4u +.2xy - 3
5. Output ‘{x,,p}.
- . (:= is used to represent 3551gnment of a value to a

.

variable.) .

Altogether there are five multiplications and three
additions (or subtractions). For the general polynomial
(1) "this approach would require the computations:

U, = X,, u, = Uy Xpey W = U X0y wvey U = u 1%y
(4) e o -
au + a u + ... +tau +a..,
P nn n-17"n-1 N2 0 -

N 4

Thus altogether we need 2n-1 multiplications and n
- additions. Suppose that a particular computer uses a
sec and u sec for any addition (or, subtraction) and

. “
. e . .
. .
- - . , N L -
l: MC 3 : . AR i v
- oo ‘
. "
. .

s
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. i

. multiplication, respectively. Théq our method (4) takes
at least (2n-Du + na secends. Without question a prac;
tical computer program would run longer than that, since

' it-fakes'time to fetch and store the data, to control

thé loop involved in (4), and to-perform the input and

- outpu%. But the overall time*should be  proportional to

((2n-1)u + na). The next section shows tﬂag we can'do\
better than thak. . ) o

. - ‘ 0

. ~

2. HORNER'S SCHEME °

4

- How can we reduce 'the number of arithmetic operations
- *

. o

in the evaluation of a polynomial®? The clue is a suitable
. . ¢ - T N
*factoring of p(x). In fact, (2) can be written as follows: \

p(x) = ((3x-4)x+2)x-5. .« .

\
-

Now therg_are only three multiplications and three addi-

&

tiong. That does not appear to be much of a savings in

()

this case but it does represent a big savings when the
“degree of p(x) goes up. . '

We shall discuss this aﬁproach of evaluapin%.a poly-
nomial-in the form of a scheme fox hand computation.‘ Let

: a general cubic polynomial be given: . . o0 ,
5 x) =ax®+ax?+ax+a. T
(5) P(X) = ax’ +a x+a
We may rewrite it as - £
!.‘ . - .
& 7, - :

p(x) =:((aak+a2)x+a;)x*a°.

To evaluate this for x = x, we use a table with three
rows and four columns. Into.the first row we write the
a (in that order), and

-
four coefficients a. a, i
Al .
into column 3, row 2 we place a zero. The rest of the

, 4

R boxes arge initially blank. N ~ -
S ' A ‘ " 2
0“ . b \ \
L . _ pd : s
O n '

FRIC . - 9 . I

T - .
’ . - L




e

- N . e s -
T [ ! - A
,Col 3 Col 2- Col 1 Col 0
. Bwl 4 " a, a, R - a,
. (6)” Row 2 * 0 3% | flax,#a,)x, f((’asxoj»az)x°+ax)xo. .
Row ¥ a, ”/(é X 4(a3x0+az)x +a v/((a %,%a,)x,+a )x +aoL
e ! \ \.. . LIS

The computation proceeds from® %he left -most corumn to the
A rlght and coﬁ51sts of looping through the following two_#
steps for k = o 2,1,0: . . .

a

. (a) Add’ the numbers 1n- Tows. liand 2 of column k
. and wrlte the result 1nto row 3 of the same
-~ column. - :
(b) For k > 1 multiply the number in row 3 of
column‘k by X, and place the resplt jnto

row 2 of column k-1. ¢ .
) This process is indicated( by arrows in .thé -Tablé (6) ;
and the results are indicated in each field. The flnal
.
result in row 3 of.the last column is the valie of p, .

af~the point X, " This method of computing the value
of a polynomlal is called Horner'’s Scheme,-

We give Horner's scheme for our spetlal polynOmlal
(4) and two dlfferent values of X, ’

Xy =2 . e e -
. - o 5 .t
3 -4 2 ., -3 '
0 4 12 -
5 .2, 6 9 p(2y=o9 .
\ -
(?) , -1 . .
( : . .
3 -4 2 -3
0 -3 7 -9t
3 -7 9 -12 4 p(-1) = -12 .
As another example, consider the quattic‘polyndmiél
. \
(8) p(x) = x* < 2x% + x . 1.

Note<here that the céefficieﬁt of x? is zero; it should
be included. in the Computation with shat value,

- v
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- . . , - ' ‘." .
- v -
¥ . N - . -
. .-
“ X. & -1 ‘
t [}
1 -2 0o - 1 » -1

. (9) /S 300 0-3 2 o
. : )

A . 1 -3 3 -2 1~ p(-1) .
.".' : . _ .
N “Exercises . . *. e T o

. R \ g .

1o Evaluate (2) at x, =1, x, = -1, %, = 10. Check your answers. )

_ - . N . .
v 2. Eva;uatea(8) at x, = 0, x, =1, x, = 2. What can you say T
. about the behavior ef p(x) in the intervals -1 <x<0and -
s .
Ry 1 <x< 27 .
. * L
3. Differentiate the polynomial (8) and evaluate the resulting-
cubic polynomial at Xq = =1 and X, = 2. - )

By . .

.2; IMPLEMENTATIbN OF HORNER'S SCHEME
i How can we program (6) for a general polynomlal (1)?
Assume that, the coeff1c1ents a4, @y, -.. a are stored in
an array of length'n#l. ~If we are in column k of Table
. (6) and the number in row 3 of that column is stored in
p, then.the numbergﬁjxrows 2 and 3 of column k-1 will °
be px; and px,+ ai 1 respectively (In the left-most
column the correspond1ng numbers are, of~course, 0 and
"a .) Thus we can write the overall process in the form

on
of a simple loop:

". o 1,..\Input’§ao, s cees 83 x,} i‘ .
2. p = a/ . . .
. (10) 3« For k = n-1, n-2, ..., 0 do *

3.1 p := PX,.tay
’ 4. . Output {x,,p}.
v v
7 Each executlon of step 3 1nvclves one multiplication
and one addition, that 1s, altogether there are n multi-
pllcatlons and additions each requlr;ng n(ut+a) seconds.

ERIC L

s . s < ~ “ .

<




-
~ f" ~
: This represents a considerable sav1ng over the (2n- 1)u+na
.seconds needed for (4). . P
M v, B g 7

. Exercises
- L)

h, %yaw a flow chart for ‘the algorithm (10).

’

5. If a programmable éalculagpr or computer‘is availabbe,

implement (10) for cubic‘and quartic polynomials. Test
your, program *with the polynomials (3),and (8) and the

values of x Used in ExerC|ses 1 and 2 of Sectlon 2
)
6. Do a hand calculation or run your program on another

* polynomial such as p(x) = x* + x2 + x + | at x, =L,

xo=-1,xo=|0. <, \%
. 4 N - - -

4. - CONVERSION TO DECIMAL REPRESENTATION ’

’

As an application of the prnef scheme; consider
the question of finding the decimal repfésentation of
some integer N = ta an'1 0)b given «in base b notatlon
For example, let b = 2 and N the binary number

:

(11) . N = 110011,
Generally, the notation N = (a an 1---8 )b means that
: T n-1_, . .
3 N = anb +a b +'... +ab + a, °

‘ In other words, if we. intrdduce the polynomihl 1y, fhen
we have N'= p(b). * Thus, in the.casg of (11); we need to
evaluate the polynomial . )

Cop(x) = x4 xt X+ . K

/ at X, = 2. The *Horner scheme fog_this has the form

. -
R x°=2 -
1 1 0 o 1 (O
’ 0 2 6 12 24 S50
\ v - .
1 + 3 6 12 25 51 S
’ - - »
! & *.
A' :)
) -
ERIC R
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. ) £ * . ) ‘e ~ .
. and hence our binary number 110011 has the decimal repre- X |
sentation 51.
Exercises - i . '
. —_— . . . - .
7. * Convert_the binary integers 10101; 1111, 10000 to decimal
, representations.’ . R : [N
/ 8. Convert the integers (71&013)8,-(112191)'3, (kbpl)s ro
- decimal representations. . . / .
- ~ ’ ~ P
s o . N P '
. S. HORNERPS SCHEME AND.POLYNOMIAL DIVISION™~
. Y : . -_ N . - ) \ . . <
Wt We return to our &gorithm (10), but this "time we .
. retaln the successwe values of the variable p in steps . “° .
2 and 3. 1, that is, the entrhes in Tow 3 of Table (6).
Wg rewrite the algorlthm as follows: .
- ) 1. Input {a\o, ol a L,x b . ' ' ." \
. 2. p :=a_ .
. . n - ~-
3. "For k = n-1, n-2,, ..., 0 do : \ .
© (12) 31 e $oN v~ :
. h’ . qk = p . . . »
. D32 = +_ak‘ AU . ;
4. Output {xo, Ry Q seenesdy 1} U ’ ‘
Hence betwee&the coefficients ao, ...., Ay Qo - 5s Aoy )
apd p we have the relations: . . . .
\ oo, . ’
. L4 = ) * t
. qn-l an s
: _ /
. -2 = 9p-1%0 * 35 LA , ‘ .
> L *9n-3 % .2 X0 * 35 : . !
. ! . v ) -~ 7
(13) - T
) ‘
. q, = q, x, +'a, ‘ ¢ v
~ . . q‘ =‘q1 xo + al i “ 3 o«
p=q, X, +a .
v : c N 0. ° ° , 6 ) )
® ) Ld
* '
. v ,? \ . ) /
. 1. ¥ - 4 .
o o : .

ERIC' = o .
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Evidently in Table (6) q,, ql, q,, p are the Jumbers 1n
row 3. '

> . -
L We now introduce the new,palynomial

» N S
(14« q(0) = q_ lx” T g v g,

s e £ : A
It is related to p(x) #ia a 51mp1e formula. In fact,
using the formulas (15) we frnd that o .

i 1, - '
q(x) (x-x,)+p “qn_lxn}qn_zxn *..0%q,x%+q x+p

-

n-1 .
“QpopXeX - ..\:qzxoxz-q,xo%:qox

¢
= X +( 1% )xn 1,
. h-2"9, o

+(q,-q2xa)x?°_+(q°-q,x°)g< + (p-q,x,)

- AY
n n-1 7
+ + + +
an an_lx PR S a,x"+a x a,
L d

-

’

and hence because 0 p‘? p(x ) that

(15) ' p.(x) -‘q(.x)(:g X ) *P(x,),

. (/ -
Thus, q(x) is the result of the div131on of the
pol}nom al' p(x) by the linear factor x: x, and p(x )
is the rema1nder

Horner's scheme s 1ndeed only a
sllghtly condensed’form of thé standard d4V351on of E
polynomha1<by a linear factor To illustrate this we

writé this process in 1ts famllrar fOrm for the: ¢ubic
polynomlal (5) (recall q2 = a ) .’

N ¢
¢

< 4,x%+q, x+q,

- 3 2 -
X, /;ax *a,x" + a;x-a,
¢

.o,
= 2
PRI PE e

“ *&:19(‘2 + a,x
-~ b : 2 4
q,x" 5 q,x x

— 40

+
q,x*a,




._ which means tflat . 3 ) .
» \,a,x’+a,x’+a ;<+a = (x-xo)(<12x2+qxx+q°)+p ,. ‘@
“in agréemént with (15). . 3 . ‘ ¥
' n - More general—l—y, thlsrlong d1v151on may be apphed ) |

; to divide any polynomlal by a_nonzer'o pol¥ynomial of .
lower degree. For 1nstance, the d1v151onoof (8) by
u(x) ="x%-x+2 proceeds as follows:
N ?

> . ' x?-x-3 )
x2-x+2 /x*-2x%+0-x2+x71, . "‘
K x4 x3+ 2x% . ‘ L - - 9
. S e ———— . 4
- 3 _ 2 Y
—an - XA . \ ~ :
-x%+ x22x g .
:. e . 3 v " - 2’ N M . . _’ L
. 3x +-3x 1 ‘ P
¢ © - 3X+3x -6 : t v e
. - 6. 5 4. > oot .
: s a . .
which means that"” o . .ot .
b x*-2x0exel = (xPexe2) (x%x-3) ¢ sc. N UG N, L, T
; . ~ For '.the? general polynomial 41) and any ) -
- i +
. m m-1 i . s .
™~ (18) ‘(x) Tuxieu x0T e +u x+ug, m<n,. u, 70 : ’
- " - 5 ¢’
* this’ d1V151orL algonthm may be; written in’the followmg. ':

form: . e, s .

N . .
- Qf
~ . - 1. Input {a,, e B, ﬁo, "'\;{'m} . .
X " 2. ,ForJ =90, -1/,*. , r:do’ri:= aJ. ’ 3

. . . For k -g; m, n-n}-lﬁ, , 0 do . .

(19) rm+k/u[n . - o

Fo'r j =m+k-1, m+k-2, 5., Kido . -

" . S R RSB \ . v
. L A, Output 4, A qn o Th rﬁf_l),_‘~ ~ . ..
. For theg, resultmg polynomals .

n- 7 1
(%0,) q(x) Q. mx T q\x*qo, r(x) 1xm Lr...*r;x+ro . v
\J s .
~ ' had ’
. o ¢ . ._.‘ 8
) ’ ] ‘ : & R
Al ~ * s “ : ' \ t-
~ . ' . *
': . ’
1 ’\ . v . ’
/ Ly . ,
. . .
' . e N
. . - A A )
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we then have

(21) P(x) = q(x)u(x) + 'r(x).

Iﬂ.the special case of u(c) = x-xo; that is, m=1, u1=1,b
u,=-x,, the algorithm reduces essentially to (12). The
only difference is that the remainder™ is now a polynomlal
which we initialize in step 2 as r(x) = p(x). Formerly
we knew that the remainder is a Lonstant which may be
initialized ag p 5 a. ¢ <

"+ The algorithm (19) 1s probably easiest to understand
by going in detail through the followingetesg-hand divi-

S10N process: -
+ +
q,Xx°*q x+q

2 W 34 2
+ + +
u,Xx +ulx Uo /r“x T,X ' +T,X rlx+ro

~ o 3 2
= +
qu,, LU, X' +q,u x7+q,u,x

- - 3 2
= - = - + +
T,5T, qzul, r,=r, qzuo gax YZX rlx

! 2

= . T3, 2,
r,=q,u, . qu, x*+q u x*+q ux

3

= 2
r.=r,- =r. - + +
2¥T2"Q U, T,7,-q,u, T x%+r X+r,

. 2
r,=q,u, q,u,x*#q,u x+q u,

T,=T =qQU,, T,5T,-q,U, ¥ or xtr, remainder

B

Exerc:ses *
9. Perform the division (l6) for the polynomjal (2)'and X, =

,.-Compare your results with those of (7). *
o : o

10, As in ({}).dividq p(r) = XOARS x4 2x3-x42 by ulx) = 2x3+2x2-x43.‘
Then follow the same steps in Algorithm (19). o "

St

4

- ' 5
1. If a programmable calculator or computer is available, implement
(19) for reasonable values of h9m>0 Test your program %Ith the’
polynomials of (17) and Exercnse 2 above

P




12+ (Optional) Show that there is only one pair of polynomials q(x),
rix) wiﬂ‘degree r(x) < degree u(x) that satisfies (21).

HORNER'S SCHEME AND THE DERIVATIVES .

We return to the basic formula (15). Since d(x))

tufns out to be the differencé quotient 2
" p(x)-p(x )
Q(x = '__7F7F___" :

. . N
‘we expect that q(x ) 1s the valh\\?f the derivative of
p at x, In facti.b) applying the'.product rule to (15},
we obtain b ’

v
v

(22) PI(x) = q'(x)(x-x,) + q(x),

whence indeed .

i
v

(23) ©op(xy) = qlx,) . T

Thus p'(x,) may be évaluated by applying Horner's scheme
-to q. For our example (2) and Q@ 2 this looks as
follows: -

22 = p'(2)

To implement this, note that eack column of (24) can be
computed from the column on its left. Thus, we don't
have to complete the evaluation of p(2),.i.e., fill in
all of row 3, before finding the valuesof p'(2). How-
ever, observe also that in the last column~only p itself
is evaluated. Thus we may extend (10).as follows:

s

P e

~




Input {a,, ..., ap. xo}

p = a, . .

p' = .

For k n-1, n-2, ...y 1 do
4.1 p::= }xj +oay ’
4.2 p' :=p'x, +p-.

P,i% PX, * 3, |

Output {x,, p, p'}.

LS.
The process may- be extehided to higher derlvatlves.
For this note that the repeated application of the Horner

scheme results In‘*a sequence of divisions:
PIX) =4, (x)(x°x,) * p(x,)
q,(x) = a,(x) (x-x,) + q,(x,)
a,(x) =, () + q,(x,)

.

A (x) = qp ) () (x-x ) + qp(x,)

where q,(x) denotes eur original q(x). At each step

the degree f the q's decreases exactly by one; that is,
the degree of‘ql,(x) is n-1; for q,(x) it is n&g @nd‘&
generally qk(x) has degree n- k. Thus- a, (x) is a constant
and we have qn+1(x) 2 0, and our sequence of equations (26)
ends witb

o -

7 ~

<

(26b) 9.1 (x) i,gn(x)(x-xo) * (%) 2%;

2, (x) =g (x,). BT

-

We multiply the kth eqdation by (x-xo)k, k = 0, 4, ..., n,
-and add all of them together. Then for k =., ..., n, the

Aruitoxt provided by Eic:

term qk(x)(x-xo)k arising on the left of the kth equation
cancels against the same ternm on the right in the (k-l)St

-

equation. Hence we obtain

v -
.

+




+

p(x) =”<p(x°)+q,(xo)(x-xo)fqz(xoi(x-xo)g\ -

a, (x,) (x-x)"

" 27

»
B} )

By differentiating this k tlme"ﬂo < ki< the first
(k- 1)St terms d1sappdar the kt h term becomes k'qk(x ),

.
n,

and all subsequen' terms still have a nonzero power of

(x-x,) as a.factor. Thus for x = x
" 0

L 4

thes#& terms become
zero-and we find that -

»

‘

1

(28) " ap(x) = gy p(k)(x.o)', k=0, 1, ...,

Moreover, (27) becon:es . - !

(29) plx) = ptx°)+p'(xog(x-x°) + o P (xg) (x-x,) 24 . .. .
[ N CO PRSI

This is the Taylor expansion of p(x) at x = X, -

The sequence of divisions (26a/b) is, of course,
computéa by means of repeated appljcation of the Horner
scheme. For example, in the case of the quartic poly-,

nomial (8) we obtain for X, = ]g tﬁe f6llowing results:

-
v

E

Aruitoxt provided by Eic:

v X = -1 : . B
0 . £ A
[
* p(x) 1 -2 0. .1 -1
0 -1 30 1 2 i
L
ql(x) 17 -3 -2 1 p(-1)
0 -1 ~7
- (30)  q,(x) 1 -4 7.1 -9 =p'(-1)
. ‘ 0. -1 ‘5 :
. . .
% L, q,(x) 1 -5 12 = -Z!-p"(-l) N
0o . -1
. — K
: q,(x) 1 -6 = 37 pM(-1g )
'\,_, '
AW Y
and thus -
’ - 12
- L4 -~
. \ A
e, i -
[N A 3 ‘
Q - . .
RIC Y- ~
7
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Y

. y 4 . - \‘-g ~ ~

‘, T = T - K] : .

-7 (31) p(x) =1 - 9(x+1) + 12(x+1)2% - 6(x+1)° + (x+1)*.
v Besides providing us with a, simple methgd for the

&;valuation of the aefivatives of p(x) at a given point

X = Xg» we‘have obtained here also an algorithm for
:>> rewriting p(x) in terms of the powers of (x-x,) instead
of those of x.. > *

~

. In extension of the algorithm (25) the entire
process can\be wrltten as follows

>

- 7

»

. \
. 1. Input {a,, -..5 a, x,} .
2. For k =¢0, 1, ..., n do P T 3,
3. For k = n-1, n-2, ~.., 0 do . - *
(32) 31 P, T pexg + ay ’
3.2 For j = 1:, ‘.‘..,_k dQ .
‘. . u ' 3.2.1 Py := pjx° t'pj-l-
. a 4: . Output {x , p,, ..., pnlf.\ ‘
L3 ; - 3
The Tssulting values are .
s Lo .
) Pu‘:k‘r'i’()("o)’ k=01, ..., n,

2 - . . . . ’
and hence are exactly the caefficients of the "shifted"
polynomial (31J. A

As (25) the algorithm (32) computes the data coluﬁn- .

.t wise from left to, right. The computational process ;s
e3511y followed in ?he next table.
a, ~\a2 .ol a'h . a,
- 1
. 2 3 2
P, a,» A, Xg*3, > @.X +3,X,*+a, +  3d,X7+3,XJ+a X + A
3 R +
2
P, a;> Za,x,+a, - 333x°+2‘a2x°+al v
o+ .
P, a- 333x +a, ' .
Py [~3; - l
R , -
. 13
'ﬁu

ERIC - - '
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< Exerc'ises - ‘ i
* 13, Verify by direct differentiation aTd_,evaluatlon of the
resulting polynomials, the results| given in (24), (30),
and (31). .. ?
. ' [
i1k, Follow in detail the algorithm (32) on the example (30).
»
15, If a progr!mmable calculator or computer is available,

implement {32) for reasonable values of n. Test your

‘ program with the-data in the example {24) and (30).
" 16. Write out in detail she proof of (27) and (28). %

17. . Compute the coefficients of p(x-l\) for
f P() = x®=6x® + 15x* - 10x> = 15x% + bx - 9
|

‘
. -

>

. A
7. OUTLOOK \
X\‘ The basic method named in the title of this unit

h was given by W. G. Horner in the early nineteenth century-
hn connection with an. efficient method for finding the
coefficients of pix-x,), [Ph losophlcal Transactions,
Rayal Society of London 159_‘}819, 308-335]. But the
factorization

I3

- p(x) =.(...((a x,*a. )X, +a, 1)x +.:.) .

on which it is based was already u§ed$by Isaac New%on
some hundred years earlier [Ana1y51s per Quantitatem

2 Series, London, 1711]. e T .

, We saw’ earller that Horng% s method uség fewer
operations than, fox 1nstance, qggfapproach 1nd1ca5§d
in (4). It'can be shown that wh
algorlthm (10) are arbitrary constants, that is, when
we are not using é;y furtheY information about them,

the inputs to our

then there is no other algorithm which computes p with
less than n multiplications and n additions. !

.
N

. 14
- 2

O

ERIC - - S
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- In practice the computations in all our algorithms
are performed in floating peint arithmetic on séme
computer. ' Then round-off errors are introduced and the
question arises how they'affect the results. For in- o
stance, it turns out that w'ithvincreasing [x;l, (absolute
value of x ), the result of the Horner algorithm (10)
mﬁy be increas\ingly inaccurate. The situation is more ‘
complex when it comes to the other algorithms given here.-*,

.

8. ANSWERS TO EXERCISES

{

30 260 2620

26 262 2617

~ER[

Aruitoxt provided by Eic:
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2 i .
e . ) . @ .
R : 1 -2 0 1 -1
’ ; o 22 o o 2
1 0 0 1 1 p(2) =11
" M
R ' ' 5
, . @
e . .. ,
. 2 T . .
Q N . 1 <x <0 Since p(-1)>0, p(0)<0
* ’ p{x) must cross thex-axis,
> o 1 . -

. q
. i.e. have a zero, between
-1 and 0.

1 <x<2 Since p(1) <0, p(2).>0

-1 ¢ L p(x) must cross the ‘x-axis
' . between 1 and 2.
- -2'—:—- . ) '
.
‘ ¢ P
3. p'(x) = 4x? - 6x2 +1 N
. o .
xo = -1 \ .
4 -6 ] 1 b
S [T - -
. 4 -0 10 -9 p(-1) = -9 .
fa
x =2 *
o '
4 -6 0 1 J
' o 8 4 8 )
—’\
. 4 A p(2) =9
" 5. For quartic polynomials: 10 DIM A(5) . B y .
. 20 MAT INPUT A
© - .30 INPUT X
o <40 LET P = A(5)
- TR 50 FOR K=b TO 1 STEP -1 *
. T, 60 LET P = pxX 4A(K)
. * 70 NEXT K
, 80 PRINT X,P
.90 END )

o N .

\‘\ . e N L"\J ‘ s 7 v
ERIC B DY
géi:ﬁﬁn . : ) T ?
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q . 1 1 . L
1 2 3° .
2 -3 be * p(L) =4
" 1 1 . ’
-1 0o - . -
o 1 .0 p(-1) T

| IS R R

10 110 1110 N

1M 111 11 p(10) = 1,111

2 b 10 . 20

4 8 16

»

o

-2 5 10 21 < (10i01) = (21)
. 2 10
1 1 1  ; )
2 6 b . S
* 5,
3 7 15 « (1111) = (15) -
[ 2. 190 P
\
0 0 0 0 -
A :

L~
@

16 (10000}, = (16) .:* ¢
g2 1o ",

¥ . g
. ‘| B : o Ja-
b 0 1 3 N
56 480 3840 30728 n

60

-

\

T 480 3841 30731 (74013) = (307d))
‘-\. " - . § 7 -ne

- A
% %
» A
. .
- -
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s

10 DiM=A(5),U(3),8(3),R(2)
20 MAT INPUT A ..

30 REM THE ROUTINE DESTROYS A

4o MAT INPUT U

50 FOR K = 3 TO 1 STEP -1

60 LET Q(K) = A(K+2)/u(3)

70 FOR Js= K+! TO K STEP -1 :
80" LET A(J) = A(J) - Q(K)*U(J-K+1)
90 NEXT J '

100 NEXT K

110 LET R(1) = A(1)

120 LET R(2) = A(2)

130 MAT PRINT @

140 MAT PraNt R

150 END ..

&

LS -

12.  Suppose there were more than one pair.

That is suppose p(x) = q(x)u(x)~~r(x) where either rix) =0

or deg r(x} < deg u(x)

i p(x) q—*(x)u(x)'br.;(x) where either r*(x) = 0

-

* ) or deg r*(x) < deg u(3<).
. - . N
= (q(x) - g%(x))u(x) = r(x) - rE(x)

= u(x) divides r(x) = r*(x) and thus deg u(x) < deglr(x) ~ r*(x)]

<

&

-

or [r(x) - rx(x)]

But 0 < deg [r(x) - r*(x)] < deg u(x) so we must have r(x) - rk*(x) = i.

or r(x) = rx(x) .
-

‘\

D
'A

= q(x)u(x)-= q*(x)u(x)

—
And hence, q(x) = q*{x). ) o

B

Therefore there was really only one pair, i.e., the q(x) and r(x)

‘are unique. °
°
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15.

For n = 4:

.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

-

DIM A(5),P(5) :
MAT INPUT A

INPUT X

FOR K=1 T0 5 kS
LET P(K) = A(5) .
NEXT K . .
FOR K = 5 T0 1 STEP -1

LET P(1) = P(1)*x + A(K)
FOR J = 2 T0 K

LET P(J) = P(J)*X + P(J 1)°-
NEXT J

NEXT K = ,

PRINT X

MAT PRINT P

o

. »

o «., s
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ALGORITHMS FOR FINDING ZEROS OF FUNCTIONS
» * by (
N Werner C. Rheinboldt
Department of Mathematics and Statistics

University of Pittsburgh
Pittsburgh, PN 15260

1. SOME MODEL PROBLEMS

| - ’
. Let f be some real function of a real variable
x
x. We want to find a real solution (zero, root) x

of the equatfon

()

Only in a few cases, such as for linear or quadratic

f(x) = 0.

functions f, are there any explicit firmulas for such
Hence we will have to be'satisfied with

approximately. , .

x
computing x
-
- s
Nonlinear equations arise frequently in
° <

applications. For later use we’give here a few simple

-

examples. ' ' . . .

-

Van der Waal's equation of state for an imﬁerfect
gas has the form

(2) (p+2,)(v - b) = R,
A\

. o
Here p [atm] is the pressure, v[liters/mole] the molal
volume (volume/mass), T[?K] the absolute temperature,

R 7 0082054 [Iiter atm/mole K] .the gas cofistant, aiid

a [}1te{? atm/molez], b [liter/mole] constants dependent
on the particular gas. For instance, for carbon dioxide
we have a = 39592, b = 0.04267 and for helium

. “

29 . T oa ,

Qe

~x

:%‘

¢

at 0.

EY

a 20.03412, b = 0.02370.

[
fo]

For given values of p, T, a, b we want to’éompute
the correspénding value(s) of v for which Equation (2)
holds. This is a problem of the form of Equation (1).
More specifically, after multiplying by vz, the,degired

values are the solutions~o$+xhe cubic polynomial in v
(3)

pv3 - (pb + RT)v? + av - ab = 0.

As another example consider the motion of a
partlcle of mass m which is attracted to a fixed center
0 by a Newtonian force um/r p > 0.
Kepler's first law then states that the particle moves
orr a conic section with eccentricity e with one focus
. Thus for 0 <1 the orbit is an ellipse, for

with constant

< e

e =

1 a parabola, and for e > 1 a branch of a hyperbola.

-

Figure 1.

. o ‘ -

More specifigally, let P be the pericenter, that is the
point on the orbit closest to O, and introduce the polar
coérdlnates (r,¢) with center at O and the direction of’

¢ #1 the orbit is

uO, )

oP as the x-axis. Then for e > 0

glxgn by




. W
. A . v <
. - »
) 2 '
(4) ° r =2 i ; iosQ, . ' . 2. For a continuous function g*on the interval a < x < b there
. " ' - exists at least one value x such that
Now let T be the'time when the particle is at the
. pericenter, then itg:position at time t is determined J al{x)dx = (b - a)g(xﬂ,.a,<x* < b.
by the l(’eple}' equations ' a '
v () (a). n(t - T) =u ". e Sif;U, ii-f 0 <e <1 +* This is7 the integral mean value theorem. Write down the
! (b n(t - T) = esinhu- u,if e > 1. reSulting equation for X in the cases
The variable u is called the eccemtric anomaly; it ‘ \ 3 -~ 1
relates to'r'by the equations ’ (a) I —;%%E—;, (b) ° \(x+ &) dx.
b .- r=a(l -ecosu), if 0 <e <1 * ’. 2 ) 0 ‘
"(6) r = alecoshu - 1), if e > 1. . e

2. . EXISTENCE QUESTIONS

The parameter n is the mean motion, that is, in t'l}e
case of an ellipse n = Zn/p where p is the period. For

given_a, e, n, T the problem of determining the position

.-Before we look at methods for solving a given

of the particle at time t now requires the solution u. of Equation ’(1),41'5 is important to realize that there’ may

the corresponding Equation (5). Then r can be found from ) be no solution at all or there may exist any number of
Equations (6) and ¢ from Equation (4). « them. The examples in Table 1 illustrate some of the
) possibilities. -
Some values of the parameters for the case of the .

> ;

earth's orbit around the sun are a = 1.000, e = .017, - TABLE 1
n = .01720, and T = Jan 1, 1900. In thas elliptic case - )
uation (5)(a) i i T
Eq . (5)(a) is unchanged if we add or subtract a £(x) No. of zeros . 76105
multiple of 2# from £ = n(t - T) and u. Hence we may
“always reduce the left side such that -m <2 < m=. . e X . none
Exercises - . T -
- —_— s 1 ' = 2
1. _Let the Tunction g be continuous on the closed interval 7x -1 one X
a < x < b and differentiable on a < x X b, Then the Mean ) 2 * *
IR ’ : . X" -1 two xy =1, x5 = -1
Value Theorem ensures the existence of at least one value - . ; "

x* such that’ countably many Xy = kn, k=0, +1, +2,...0

S g(h) - g(a) = (bigal ot (), @ < Tl T o - = -

Thus to find x* we need to solve some nonlinear equation of

]
a continuum any x with -1 < x* < +1

the form of Equation (1). 'Mrite down this equation in the

- foFlowing cases: -
(a) g(x) = (x +1)e™™, a="-1,b=0.

Q ) g(x) = x20, a=o0, b=20""92 1.1708. This indicate# that it is advisable to begin an

-ERIC Y : , 5° investigation of a particular equation by localizing a

Fad - v
. -

A .

o

T . A - - ..
o . o . '

e
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* interval is to plot the graph of f(x).

.
suitable interval a < x < b in which the desired solution
"exists. . A simple approach for the construction of such an

For instance in the

case of the simple Kepler equation

L) () =x -1 - 3sinx=0

this may provide the results shown in Table 2 ahd-Figure 2.

. The drawing indipates that a zero df f should be contained

in the interval 1 < x < 1.5.

The theoretjcal foundation for this conclusion is the
following basic theorem:

A -
.

Intermediate Value Theorem:.

Let f be a continuous °

r
function on the interval 2 < x < b, a <b. If

(8)

sign‘f(é) # sign f(b)

t

:

Figure 2.

<

N N

- , ..
" TABLE 2 Y
o X ffx)
0 . +1.0000
. 0.5 -0.7397
1.0 - -0.4207 3
1.5 » 0.1252.107°2 \
2.0 0.5454-ws
2.5 1.2008
3.0 1.9294 .

then f(X) = 0 has a solution in the interval

a < x.< b.

The
and uses
system. But intuitively the result is clear.
function might be characterized as a function with

that can be drawn without lifting the pen froy the

The condition (8) implies that at two endpoinff of

interval the function values are on oppositq'sides

x-axis; hence when drawing the graph of f we need
» * 'h

the x-axis somewhere in that interval. *

~
.
— - —— o e wa] o - — e e — s ———

o ) !’,

. “Figure 3. 2 :
, gure 3 Llﬁ; ,

%

A

proof of this theorem is not entirely simple .
some fundamental properties of the real number

A continuous

a graph
paper. =
the

of the
to cross




“

a i
‘TOQts
equat

(9

has for a,
roots
exactly three roots

oY Eﬁe Equat1on (1) is called a root of; mu1t1§11C1ty m
for x near x the function f .can be written in the

(10)

with
. satis

X ‘<’
* [}
ion

N ——.g,

-1/2 a sing{e rth

-.

*
¢ = 0"and_ x
The case a = 0 is exééﬁéidﬁél Generally, ‘a- root x

S o

A\

f(x)-= ( - ) -g(x) "
some. functlon g that is cont1nuous JDear x “and
fies g(x-) # Q. In our case, Equatlon (9) has for

a = 0 the form f(x) = x (x <*3) which shows that x =0

is a

one.

rOoOtS.

&®
root of multiplicity two while x < % has mu1t1p11c1ty
Thus counting multiplicities we really have three
Generally, the following result holds:

‘Theorem: Under the cond1t10ns of the 1ntermed1ate

-~

e

[mc

Aruiext providea by enc

value theorem, the interval a < x <.b contains elther
infinitely many solutions or finitely many solutions
for which theySum of their myltiplicities is an odd -

.

nquer¢7m-~T-f e Sl s e o e

o
1

rn‘the»IntervaT 0 < ,x < !

Fg; .any 0 < e "<, 1 and -7 ES L determjne an interval whlch -

- Wi o -t

’ contalns a root f the Kepler equaqnon 2 =u-esinu. -

_/—3 %hew Tthat fqr the So Calied critical values
) :“-:‘p =T L ' ’
IR 27b-'/-’-~, < 2R .

1 eivan def Waar Equatlon (3) has only one root vC = 3b of multiplicity

:h;ge

" the crltxcar values as ) .

Show that the constants a, b, R can be expressed in terms of
o4

-~

Use thns to show that with the dimension-less variables p p/pc, '

v o=/, T T/TC the -equation assumes the form '

(p + )(3v 1) = .

’ : 3. THE BISECTION METHOD
9 ~

,
€

Suppose that an-interval & < x < b has been

found Mhere the conditions of the 1ntermedlate value

fheorem are satisfied. Then we know that there is at

least one solution x* of Equation (1) between a‘'and b.
ngr‘the midpoint m=a + (b a)/2 we test now the

condition sign f(m) # sign:-f(a). If 4t holds then the

intermediate vailtie theorem guarantees that there is-a

_root in the interval,a < x < m, otherwise, we have?”

glgn f(m) = sign f(a) # sign f(b) and hence there must4/’,.

: 8

o

: 2L
: J
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- be a root inm < x < b. In either case, dg;ighgth ) . Table 3
. of the interval has been halved. B?‘Tepeatlng :
) prqca’ we can decrease the “interval-length below a k . a - b " bea f(a) £(b)
prescyzbed tolerance and henge %pprox1mate a root of f ‘0 1 > 1 -0.4207 0.5454
arbitrarily clgQsely. . ) 2 _
. . ' S 1 1 1.5 0.5 -0.4207 §.1232-10
In an info;f%l programming language this algorithm } . -2
may be written the following form. ‘ 2 1.25 1.5 0.25 -0.2245 0.1252-10 N
- X -7
1. Input {a, b, kmax, tol}; ' - ) 3 1.375 | 1.5 0.125 | -0.1154 | 0.1252:10°° .
\ 2. kg=0; - ‘ 4 |'1.4375 | 1.5 | 0.0625 | -0.05806 | 0.1252-10 %
3. Lf (si = sign F(b . ) (
Lf (sign £(a) = sign f(b)) then e;;g;grfgggﬂvgl s | 1.4687s| 1.5 | 0.08125 | -0.02865 | 0.1252,107¢ _
4. Print {k, a, b}; . . . ‘ .
5. vajb-al < tol then normal returh; We shall see 1a§er that, with e1ghF d1g1t‘accuracy,.the
6. k := k+l; . exact root is x = 1.4987011. Obviously, oudr algorithm
7. m :=a + (b- a)/2 . is not _particularly fast. .
8. If (sign f(a) # sign £(m)) then b=m else a=m; - The interval decreases at each step by a factor of
9. If k < kmax then go to 4 else errdr return 2 two. Hence the kth interval has the length (b - a)/2
~ "kmax exceeded"; . -t
. If the tolerance is, say, 10 then we require that

Step 2 has been included to yerify that at all times the

- basic condition (8) is satisfied. If it holds for the (b-a)Z'k :( 107t
~ input interval then theoretically it will remain valid or A 2k > (b-a) 10t
for all subsequent intervals. But in practice this may that is K > loé [ - a)lOtJ. .
. well not be the case due to round-off errors. All (11 T 2 e i
iterative methods should include a count k of the numper - In the example of Table 3 this means that we need \
. of steps taken and use.it to stop the pfocess when a kK = 23 to obtain seven digit’accuracy.

given maximum count kmax has been exceeded. This is +
done here in step 9. -

. . Exercises /
Table 3 shows the ‘results of the first five steps B 1. Draw a flow chart for the bisettion algorithm.
when the algorlthm is applled to the Kepler Equat1on ‘ R :
o . f . R
(7) on the interval 1 < x < 2. . 2 ’I a programmable calculator or computer is available,

<
‘ _‘ - . .

. : (5) with given';n <2 =n(t-T) < wande > 0.

' implement the algorithm foréghe general Kepler Equations

3. For the cubic polynomial f(x) = x3 - 2x + 2 determine an

- . ’ N : . interval containing (only) root and apply the bisection
N *J”Q' - ‘ . algorithm to approximate the root to four digit accuracy.
. oy \ . .
. v ; . X . ' ) + - = '
. ) Lo ' , . 10
d \‘ - -

"ERIC - o - ‘ | | a8
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4. SOME LINEARIZATION METHODS x

—

.In order to overcome the relatively slow convergence
of the ‘brsection method, we turn’now to a different
principle for computing solutions of Equation (1). It is

+  based on the idea of replacing the function f(x) by a
succession ¢f linear functions gk(x) = apx + bk, kgﬁ
, approximate the

)

b2,y

such that their zeros.-b,/a,, k = 1,2,...
20% Okl %k

desired solution x of Equation (1). .

A linear function is determineg by ltsevalues at two
distinct points. .Suppose that we'ar® at the kth step of
ogr process and that the aﬁproximatiéns Xgs Xp» -ors, Xy of
X haye been computed already. 1If k > 1 and x, D S
then we may consgruct the linear function gk(x) which
agrees with f(x) at x, and X, _;,:namely -’

) . - f(xk) } f(xk'l.) ' . °\.
s (12) gk(X) = f(xp)-"+ T (x = xp). -
For f(x,) # f{x;_;) the zero of this function, Jthat is  ° .
» " . X t- X ‘\' . N
(13) ey = X - Kkl e, SRERE

f(xk) - f(xk_12 '
. . ! t
H is taken- as the next approximation of x and in this way .

the p%ocess is continued. This is called' the secant method
. —_—

Clearly the process will fa®l when two equal function values .

.are encountered.  But if this does not héppen then we
shall see that the method is considerably faster than the

L ' .

bisection method. ™ - .

. . [3

‘h
,

c A.linear,fuﬁctioﬁ is also defined by its function
value and i;s'slobe at a given point. Hence', suppose'éhat
at Xy, k >0, we are ab%e to compu;e,no; only f(xk) buf .

- als? the value.of thegdéTivative £'(x). «Then we can ;eplacj_ ]
the secant line. (12) by the fangent Fine .

(14)

. ‘ . .

Q "‘:3 ' . .
B ‘ Y . , 11 \
N }‘ . ' . .

g (x) = ftxk? +OE(x) (xex).
. . - ‘

) -~

Af f’(xk) # 0 then the zero of Equation (14) 1s

<

f(xy) R

. Xy - _T__E__ s .
. )

(15)

*
which becomes our next approximation of x . The resulting

procéss 1s called Newton's method. It will fail whenever

a zero derivative value is encountered, but otherwise it

turns out to be even faster than the secant method.

As an example, we consider the computation of the
positive square root of some positive number a > 0, In

other woyds, we wish to find the bositive root of f(x) =

x2 - a. In that case, 'we have
2 2 -
f(xk) - f(xk-l) Xp " Xpog e -
o~ _ - I k-1
T 55 S Xk T *k-1

Te

dand hence the secant method assumes the, form

XX +a
(16) Xp.1 = Xy - —a (x2 - a) = _KKk-17
'k+1 k X tXy g k X xk$xk-}

On the other hand, Newton's method becomes

.. - * lxi.‘a' 1

A7 Xy s X T T 70t x)
For’'a = 10 we start (16) with Xg = 11, X, = 10 and
. . \
(17) witp Xy = }0. The resulting first few steps are
cgiven in Table 4. - , ’

d) r

1
40 _ -
¢ 12
@
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Aruntoxt provided by Eric o | . i
. * , .

. st . J
) PR . h
‘v : “ - = h
. "
, - Secant Method New?on's Method
k ; -
N . 6
X . £(x,) ' Xg fix)
. K ‘
°0 11 111 C ‘
. LS . L -
i 10 . 90 c 10 ° ¢ 90
N 2 5.71429 -.22.6531. 5.5 20.125
3 4.27273 8.25620 3.65909 3.38895
i °_3.34@93 1.87515 3.19601 0.214448
5| . 3.20510 0.259849 | j 3.16246 11255719 2
6 3.16402 0.110211:10" % "3.16228 0.2-10°
v ts ) > - ’ s - [ .
y 7. 3.16229 0.7064-10"4
8 |- gﬂszzs, , 0.2-1077
- ) A Exércises, . ]
‘ 1. Apply the secant method to the Kepler Equation (7)
starting with Xg = 2, X, = 1.5.
. : !
] 2. Use Newton's metho% starting from %= -1 to solve the
equation specified by problem 1(a) of Section l./

M ‘3. If a programmable calculator or computer is available
implement Newton's method for the computation of the~ '
square root of any posltive number a. Use Xy = @ as

- starting point. N
* 4, <For polynomial equations the' value of the function and
’«\‘ - " its derivative at any given point may be computed
, ‘srmultaneously by means of Horner's Scheme.* Draw a flow
, " chart oi the resulting process. If a progrannable
calculator or computer is available implement the method
+ for cubic and quartic polynomials and test it on several
. . - sequations, such as the polynomial (3). .
. {f_for explanation of Horner's Scheme, see UMAP #263. ’ 13
Q . .
ERIC “* - . L |
iy .

«5. ’ﬁATéS OF CONVERGENCE .

e

The bisection method generates a seqhence of intervals

ap < X s bk’ V=0, 1, .., which contain the d051red
roo¢ x . Any point in the kth “nterval mnay be con51dered
as the kth apprdximation of x ; for the moment  let us

- ak)/Z for thag

’

consider the m1dp01nt my = a, + (b

purpose. Since ‘at each step the interval 1s hal\ed we

sthen have the obvious relatlon
. 1 *
Imk+1 fi}f < ?_—Imk -x |, k=0,1,

In other words, the errors converge to zero at least as

(18)

fast as the geometric sequence |m0 -X }/2 k=0, 1,

+ Now suppose that Newton's method is used and produces

a sequence of points X3, X, Xj, . which converge to the

*
solution x of Eggftion (1). assume that '

Moreover,

the X, «are all contained in som interval a <~x < b
where ‘ ‘
(19) (1) £'0)) e > 05 JELY [0 < 8,

. for a < x < g. ¥
Then it folloWs{ﬁrTaylér's'formulaLthat -« with certain

Ck in our interval --

- o , * 1 * 2
0= £(x) = £(x) + £10x) (x - x) *+ FEEI (K = X))
= [Y(xk) + £ (X)) (X, -.xk)] ) g .
- . I * . - *
PR (X - X)) *FEE) (- )

By t@e definition (15) of Newton's method the ferm in the

square bracket is zero whence

0= £ () (x" = x ) v pEEI (- xp)?
or, because of condition (19), } .
* M (&) | * ' *
(200 [x" + x| = gt X B 3 BT x )
lf (xk)l v A
. - ° > -‘B
.8 . by .
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In other words, in this case, the error 1s squared at » (xk - m -1

each step (up to some factor). Thus if, say, the kth Xge1 T Xk T o-1 = m (xk + 1) )
error is proportional to 10°% then the «(k + 1)st error mixp -1)

is proportional to 10'2t. fhis is clearly seen in the whence

third column of Table 4 where'for k > 3 the nuTber of a .

correct, digits doubles with each step. ‘ ' Xpe1p = 1 = U - 1(xk - 1).

For the secant method a similar estimate can be In other words, for.m = 2 the convergence is here as

derived.® It turns out that if again Condition (19)
holds and all x

M @
slow as that of the bisection method, and for m > 2 it

remain’in a < x < b themr we have --
]

k is even slower. The secant method shows a similar

with some constant y > 0 -- = ' behavior; in fact, not only the rate of convergence
. . . . .
(21) fx" - x L o< yox - xklt L k=0, 1, . deteilorates but arb1trar1?y close to the:root we may
k+1 R 1 . encounter f(xk) = f(xk-l) in which case the method
"ot =31 +/5) =71.6180. faifs completely. : .t
. @# Thus the errors tend ta zero somewhat more slowly than . There are further problems with the function -(22).
. . . . . )
in the case of Newton's method but cerp{1nlyffaster than In fact, we see that |f(x)] < ¢ implies that
with the bisection method., ) | @ .
) ' . . e VL R RN g
These results are somewhat deceptive. First of,all, = - : .
the condition (19)(i) is fairly strong since 1t implies -Hence, séyg for m = 10 we have lf(x)|“§¢_10'6 for
that there is only one root in the interval a < x < b .75 < x < 1.25. In other words, with six digit .
~, . &
and this root must have multiplicgﬁy one. In fact, by accuragy any point in this interval can be called a

th? mean-value theorem we have . . zero of f. Unless higher accuracy is used any iterative
! .

* F 3 ° * N . . s . .
LEG) | = 16(x) - £(xD)] = [£°(8)(x-x] > a 1x - x |, process enterlng‘th1s uncertainty interval will, by
) - . . - necessity, show erratic behavior. A root of this kind
. is called ill-conditioned. It turns out that also roots

of multipIicity one may be ill-conditioned.’ .

‘ “a < x*< by -

b4
¥ o~ . *
Hence f(x) = 0 for any a < x < b implies that x = x

Moreover, if f can be written in the form of Equation Even if the conditions (19j hold the estimate (20)

x
(10) with g(x) # 0 thepn the left gide of ’ R for Newton's method may be very misleadiné. Consider for
Ix - X*Im-l_lg(x)l > a5 0 ’ “ ) example the equation | .
tends to zero as x goes to x unless m = 1. - ;; (23) 12 2= of - '
For zeros of multiplicity greater than one, Néhfbn's . we encountered in Exercisge 1(b) of Section 1. Héré‘
method‘indeeé converges much more slowly. For examgle, : ' clearly'f'(x) > q for x > 0 2nd for any interval R
.in the simple case . ' 0 <a < x < b containing x = 1 the estimate (20)
. ‘ o * ,. ‘ holds. But the factor 8/2¢ will be very large unless
22y f(x) = (x - 1)7 =0, x = 1 a‘and b are véry close to one. This reflegks difficulties
swton's method has. the form ' 15 « - " with Néwtpn's method, and in fact for x, = 1/2 we have

16
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x
1 * .
of x than Xge The subsequent iterates decrease
monotonically, but very slowly, to one. Only very close
to one the expected rapid converéﬁpce sets in.

Exercises .

1. Show that when Newton's method is used for solving
x2 -a=0,a >0, starting from any xg > 0, -

Xo #/a , the iterdtes satisfy

Xp > Xy T e 2 X >x‘s+1>/?,k_>_l

-

and

-v/a) k..

K
+1 Ya - 2xk (xk

Xk

Apply the secant method to thé equation
f(x) = xz_- a=0, a>0, starting from Xg > Xy > Ya.

Show that /

(xk - /sf(xk_l -/3a)

+ x

oo .

X T Xk-1

Xo '> xk“]

5

?
> X 2 Xy >Va, k> 1.«

Apply Newt%n'; method to Equation (23)'starting from

Xq = 1/2. Show that

L e

18 . .1 18
X = x + - B o— X
, kT g Tk 19x|15 19 k-

{ . . ¢

. How many iteration steps are needed to reach ka -1} < 1117

- 13,797.53 which is certainly a much worse approximation

A PRACTICAL ALGORITHM |

The results of the pgevious sections show that none
of the methods discussed here is entirely satisfactory.
The bisection method is fairly reliable but slow, the
Newton and secant method are both much more rapid in
certain cases but show unreliable behavior in many others.

We discuss now an algorithm which combines the
bisection and secant methods to bring out their best
&fatures. . Again we work with a sequence of intervals )
o decreasing length for which the intermediate value
theorem holds. If, say, a < x < b is the kth interval,
then we set

X = a, y =b if [f(a)l- < [£(®)]

?

= b‘,.yk = a if |f(a)| >

Xy 3 HOIR

Thus X may be considered the current best approximation
of the root in the kth interval., z

A step of the algorithm now consists in determining

. a new point between Xy ahdfyk, called w fo& the’moment,

which will become either X1 OF Yge1- For this ‘we
-introguce the point

X if k >1andy, =y, ,

Zx ©

Y otherwise

and consider first the secant Step

(xy - zk)f(xk)
i TTlx ) - £z

(24) s = Xy

provided it gives a better result than the bisection step

» ) = + - e
. m Xy (yk xk)/Z.

In other words, since Xy is the current best qpproximation,

s has to be between Xy and m.* --At the same tfme, since Xy

AR ' o ‘18

¢




is not yet within a given tolerance of the root, s should

differ from X, at least by that tolerance.

Before we discuss the choice of s or m, a few words

about the definition of 2, may be useful. The normally
Here}; represents a

y

expected choice would be Zp T Yy
secant step based on the two current endpoints of the
interval where the function values have;different signs.
This is €alled a regula-falsi step. Unless round-off
interferes, such steps do not lead out-of the interval
and, sinee they have'no subtractjve-cancéllation problem
“in the denominator of (24), they are generally rather
stable. But in situations, sich as that shown in Figure
4, regular falsi steps may give very poor improvements

Lot . R o
of the interval. For this reason, we use 1n the case qf

Yk = Yk-10 K2 1.
Such a step may lead entirely out of the interval and
hence has t6 be carefully controlled, but it certainly_
guarantees that there will be no long sequence of small
steps of the type shown in the f1gure

a secant step based on xg p and X

Figure 4.

In order to test convergence we use the tolerance
.funetion

tol(x) elx| + ¢

where ¢ > 0, & > 0 are given constants w1th <

§ > 0. < tOl_‘ (X)
L *

requires the absolute error |x -"x | to be below &

ce A For.-¢ = 0 the condition |x - x I

' L while for § = 0 it forces the relative error

k []{j}:x - X !/1X| to be less than €. . .

P v | A
=

. 19

With this we set now v s if s is between
to=x + sign (yk - xk) tol ¢ xk) and m, and w = t if s
is between Xy and t. In all other'cases, w = m is

’ \
- chosen, that is, we take a bisection step.

Thus in either case we have settled on a value of

w, If sign flw) £ sign f(yk) then the interval between

-w and Yk is our new interval, otherwise the interval

between Xy and w is chdsen. This completes one step of

the process

We terminate the algorlthm if the length of the

interval between Xy and m is less than tol (xk), that.is,
[}

if ka --xkl < 2tol (xk) This fits with-our choice of
the minimum step. w =t wief s is between Xy and t. In
* fact’, if we have not yet donverged then
T |m - kl > tol(k,) = Jt - k} —
¢ . .

and thus also in €H1s case w is always between Xy and m.
*Por the implementation of the process we have to
take care; that the division 1n¢$he secant step (24) does
ﬂ%% produce overflow or paderflow. For this we compute

» 3 . .
the numerator and denominator ,

T8y - i), a = £0y) g o
& b, 0t .0
_ separately and then test T .
-~y 1 w ¢ ’
T Flyg s xgllal z Tpl- 2 lal tol(xy) .

.
£ .

., . <) .
to detegmine whether s will be between t and m.

The overall algprithm can now be formulated as
A .
k)

@ . - .

follows.

A

*

Input {x,y,e,8,kmax};

1.
2. 2=y
3. “k:i=0; . - T ’
- . Y4l »If (|f(x)|>|f(y)|) then z:=Xx3 X:=y; Y:i=23
. 5. Print (k x,y}; ¢ <. -
. 6. tol: —chI + 8 o £ ;3. 20
. . - @

.
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As an example we give in Table § the solution of
0.5 x 10'6, and. the starting

Equation (23) with ¢ = 0, § =
interval x = 0.5, y = 2.0. The straight bisection method ‘
. + uses in this case about 21 steps. 2
-4 ‘
Table 5 . ‘
° ’ Interval _ . F(x) L
~” = - o
0.500000 2.00000 -0.999998
. 0%50000¢ 1.250000 -0.999998 9
0.510811 1.250000 -0.999997
0.880406 1.250000 -0.911084
) 0.880406 . 1.06520 -0.911084 .
s 0.932504 | 1.06520 |+ -0.734927 °
’ 0.998854 1.06520 -0.215500-10" 1
. - | 0.998854 %.00086 -0.215500-10" 1
-
> 10.999991 1.00086 -0.168309-1073
. 1.00000 1.00089" | -0.127405-10°%
1.00000 1.00000 | -0.127405-10" 57"
.' \‘l N

S

L] - -
e 7. If (Ix:}l < 2 tol) then normal return;
* 8. If (k > kmax) then error return "k max excecded”;
-, 9. k:=k+1 °
S 10. p:=(x-2)f(x}; .
11. q:=fiz) - ffx),
12, If (p < 0} then p:=-p; q:=-q;
13. z:=x; — :
14. If (p < jqitol) then x:=x + sign{y-x)tol
¥ . else if (p < L(y x)q) then x:=x + p/q
. . . ) else x:=x + (¥-x)/2;
o ' 1s. If (sign f(x) = sign f(y)) then y:=2z;
: " 16, Go to 4y

21

N

- >

The process does not always perform that well. <
Equat}on (22) with m = 19

and*x = 0, y = W0, e =0, 6§ =0.5- 10°°
(Even for 6 =

In fact, fov instance, for.
1t rvequires
0.51077

for a tong

several thousand steps. a total

of 121 steps are taken).
time the algorithm uses only the m1n1mal steps of

The reason is that

length tol (A

Various remedies have been proposed for this
problem. The easig%t approach is to force periodically
some blsection stéps. For instance, we may simply add
a test between steps 12. and '13.
step if k is a multiple of some fixed period M and then
bypagges step 13.* More sophisticated is a test every

M s®eps which determines whether the interval at the

&

which forces a bisection

beginning of the period has been reduced at lea<t by
the factor 2 corresponding to M bisectjon steps Wq

leave the details as an exercise.

Exercise

1. tf 3 comput is available implement the process describeq

in this sectfbn Test it with the example, of Table 5, then

_use it to solve the equatlons of Section 1. N N
2., lntro@uce tn your program a forced bisection step when the
iteration index k is a. multiple of some integer M > 1. y
v Apply the resu)ting'process to Equ ion (22) and experiment
S

) B
with different values of M.

3. lInstead of the approach of ExeFcise 2 introduce a¥sRiodic
check comparlng the actual reduction of therlnterval with
the expected reduction by means of the bisection method.

N Compare the performance with that of the process develhped

~ in Exercise 2-above.

0
'
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8. ANSWERS TO EXERCISES ,
Section 1 N
1. (a) 1+ xe X =0.
NORE SR < .
1 - log3 .

2. (a) "x—m = log Eg—z- + 10.63289.

(b) x +eX=e-1%2.21828 ¢ -
Section 2 ’

1. x* =E%-, k=1, 25~., and x* = 0.

2. For f(u) = 2 - u g esinu we have £(0) = £ and
f(-n) # £+ >0, f(n) = & ¢ T <0, "

Thus for 0 < % < 7 we may use the interval 0.< u < ™

and for -m < £ < 0 the interval -m <u < 0. .
3. For®the critical calues p. and T_ the van der Waal

@ &

0= v3 - 9bv2 + é7b2v - 2'7b3 = (v-3b)3

polynomial (3) reduces to

and thus has only one triple-root v_ = 3b.
3b it follows that b =
the formula for ﬁ: we obtain a

From v_ = vc/3 and hence from

27p (v /3)? 2

= 3pcvc.

Now the expression for TC gives R =.24pcv§/(9chc) =

m(8/3)pcvc/TC:' By subsfituting these quantities into
(2) we find that ’

- § .

e fo 2
e o PVl Vel i8I
. _VZ Q_ 3 Pc Ve TC

whicb‘leads to the stated dimensionless equation after

mulﬁﬁplication by 3/(pCvC). &5
Section 3 P ’
3. %(-2) = -2, £(-1) = 3, x* & -1.7693,
- -
ot
24
. "_ &

15,
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Section 4
1. The iterates are in sequence

2.0,.1.5, 1.4988490, 1.4987012, 1.4987011

and the last number is correct to eight digi{§.

2. The iterates are in sequence -

-.56722974, -.56714330

-1., -.68393972, -.57745448,

and the last number is correct to eight digits.

-

3. A simple informal program for this might look as

follows:
© 1. [Input {x, n, ag, a;, . 5;, kmax, big, toll};
2. k:= 0; . -
*3. Print {k,x};
4. k:= k+1; | - )
5. p:= ap; o ®
6. pprime:= p; .
7. For i = n-1, n-2, . 1 do 7.1 pt=p x x + ay;

7.2 pprime:= pprime X x + p;

[« ]
o]

= P X x + aof

I

(Ip] >*|pprime| x big) then error return 1:
) "Excessive step";

10. If |p| < |pprime} % tol) then normal return;
11. x:= x - p/prime; ’
12. If k < kmax then go to 3 y
else error return 2: '"kmax exceeded";
- . r
P ‘ - \"
Section § ’
1. By (17) we have T
! a
kel 270k T i)
and thus

12 P 2
el T TR T gt xR a) = (- A)

as well as_
2y = ‘

1
o Xk T Xgap T 7(xg - Xy

1 2
'z;;(xk - a). -

3.

s

”

Hence for all k > 0 we have the implications
x > 0, xk # /a = Xp4p ? va

xXg > /2 T Xk 7 Xgal

. »
from which the stated inequalities follow directly

by induction.

By (16) we have

_ Xk*k-1 @ '

x [ —————
k+1 Xp * X
and thus :
- 1 -
L Xkel T AT o Iy YRk X)) v oa)
k k-1
+ . 1
F — - - Ya
Xy * xk_l(xk* /E)(xk-l i)
as well as
a1 2
kT Xkl TR E a0k T A

”

Hence for k > 1 we have here the implication
Xpop > YA, x> /A > x> x> V2

and the §tated‘result follows directly by induction.

-

Newton's method here has the form

’ s 30 - 1 ] 18xi9 s 1
k 18
. 19xk

18 1

19xk l9xk

Even for x, = 1.1 the second term on the right

is only-of the order of 1/100, and hence until then

the principal reduction comes principally ¥rom the

first term. For Xy = 13,797.53 we have

k .
[%—g-x:lf_l.l/ .

175.

for‘k =

Section 6

An informal program incorporating such a periodic
check might look as follows: .

of .

s ° 9% ' 1%

26
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B

1.
2.
3.
4.
5.
6.
7.
8.

9.
10.
11.
12,
13.
14,
15.
16«
17.

18.

19.
20.

~
-

V-

“Input {x, y, ¢, 8, kmax};

m:=0;

length:=]y-x|;

Z:=y;
k:=0; .
If (J£(x)} > }

Print {k, x, v};

tol:=elx| + &;

If ({x<y] < 2-tol) then normal return;

.

"

>

e . .
f(¥)|) then z:=x; x:=y, v:i=z;

|

If (k™ kmax) then errér r7turn "kmax exceeded';

k:=k+1 L]
p:=(zrx)f(x)
q:=f(z) - f(x)

E (p < o) then P:=-p; q:=-q;

If (sign f(x)

Go to.6

- . P °
if (16}y-x| > lengtL)
then x:=x+4%(y-x); go 59?20;' '
else m:=0; length: = |[y-x]
then x:=x + sign(y-x)tol .
else if (p < %(y-x)q)
. . then x:i=x * p/q B
else x:=x + k(y-x) s
sign £(y)) then y:=z; .
- | ,
i .
2 , -
4
P 2;
. .
& g ’
. 27 '
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' ) Return tos
‘ ‘ » *STUDENT FORM 1 EDC/UMAP

o 55 Chapel st.
Request for Help . Newton, MA 02160

kY

. [

., Student: If you have trouble withfg ;pecific part of this unit, please fill.
<. ¢ out this form and take it to your instructor for~assistance. The information
you give will help the author to tevise the units

Yout Name : ~ Unit No.
- " t
Page ;
Model Exam
« . S
In O Upper ection - Problem No. ~
. ‘\_j’ . ¢ OR ’ . i OR o -
OMiddle Paragraph Text -.: 3o
4 O Lower. ‘ . 5 Problem No. : .
Description of Difficulty: (Please be specific) ~
,

14

— Instructor: Plegse indicate your resolution of the difficulty in this box.

-

(::) Corrected errors:insmaterials. List corrections here:

»
- - '
N
:
-

Gave student better explanation, example, or procedure than in unit.

o .
' Glve brief outline of your addition here: -

i,

~
X
el

It .
(::) Assisted student in acquiring general, leatning and problem-solving
skills (not using examples from this Gnit.) ;

VA
#

-
g

/ . . (V2

: * *  Instructor's SignhAture

o

Please use reverse if necessary’.’ -
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el

l
2
ogd

. | Return’ to
' . STUDENT FORM 2 .-EDC/UMAP
i 55 Chapel St.

#—&_,M

. . Unit Questionnaire Newton. MA 02160
Name - Unit No. .Date
Institution ) ;" .. Course No,

Check the ch6§£e for each question that¢EOmes closest to your personal opinion.
1. How useful was the amount of detail in the unit? )

____Not. enough detail to understand the unit
" Unit would have been clearer with more detail
N Appropriate amount of detail.
Unit was occasionally toti*detailed, but t}i8,was not distracting
Too much detail; I w ten distracted ¥%_ # .

. i
. 4
2. How helpful were the problem answers? ’ .

Sample solutions were too brief; I could not do the intermediate séeps
Sufficient information was given to solve the problems
Sample solutions were §oo detailed;.I didn't need them
3. Except for fulfillikgithe;prerquisites, how much did you use other sources (for
example, instructor, friends, or other books) in order to understand the unit?

- A Lot , . Somewhat ' A Little Not at &ll
4, How long was this unit in comparison to the amount of time you generally spend on
a lesson (lect&re and homework assignment) in a typical math or science course?
Much . Somewhat About Somewhat Much
X\\ Longer. Longer the Same ShorEEt\\ ‘Shorter

5: Were an& of’ﬁhe.followinggparts of the unit confusing or distracting? (Check
as many as apply.) '

Prgrequisites X
Statement of skills and:.concepts (objectives)
aragraph headings -
Examples s .
____Special Assistance Supplement (if present) |
Other, please explain

| |‘ |

L

e ¢ -~
6. Were any of the following parts of the unit particularly helpful? (Check as many
as apply.)
Prereguisiteg’ ¥ -
" Statement of skills and concepts (objectives) : ‘ ,
Examples - ’
Problems - ’ ‘
Paragraph hgadings ‘ ¥
Table ®F Contents | &5

Special Assistance Supplement (if present)
Other, please explain

Please describe anything in the unit that you did not particularly like.

+Please describe anything that you found particularly helpful (Please ese-the back” of
_this sheet if you peed more space.) .
’ ~

i { ’ !

ety » ﬁ\"'

el ' : . Ly
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“end”

Corrections --

: , ‘ UMAP Module 264

p. 20, line-12

“\«:“ .
. P = (x - 2)Ff(x )y a="f(z) - flx,)
p. 21, lines 1 to 11 .
7. If (|x-y|%%_2 tol) then normal return;;” |
8. If (k >%max) then error return "k max exceeded";
) }\9. ki=k+] i
10.  p:=(x-z)f(x);
1. q:=f(z) - f(x); oy
,Y AN ol
12, If (p < 0) then p:=-p; q:=-q¥ :
13,7 z:=x; '
14, If( p < |q|tol) then x:=x + sign(y-x)tol
else if (p < %—(y—x)q) then x:=x + p/q
 else xTEx + (y-x)/2;
15. If (sign f(x) = sign f(y)) then y:=z;
]6'\* _G_(_)__t_0_4;
p. 21, line 13, Equation (23) with e=0,...
p. 27, line 11-23, ,
1. ki=k+] ’
12. p:=(z-x)f(x) ! .
i Q {;f! SS <

A
]
b
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CORRECTIONS

& s
13, q:=f(z) - f(x) . o~
/

-

14,. If (p < o) then p:=-p; q:=-q;
Sy
157 z:i=x; ‘

16. mi=m+] - éﬁ~\§
s

17, If gme> 4) then if (16]y-x| > Tength)

\5‘ | then x:=>;+%(y-x); 99_1.:_020;1

“ else m:=0; length: = |y-x|

If (p < |q|tol) then x:=x + sign(y-x)to]

else if (p < 3(y-x)a)’
then x:=x + p/q

. . 1 ]
else x:=x + Q(y-x)

(sign f({) = sign f(y)) then y:=i; ‘




