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The project consisted of three related series of

studies, designed to (a) determine some of the underlying
competencics that contribute to experts' successful problem solving

performance in college level mathematics,

(b) to determine what

productive behaviors students lack, or what counterproductive
behaviors they have, that keep them from being effective problem
solvers, and (c) to determine if a course in mathematical problem
solving that explicitly t:aches problem solving strategies could
significantly improve sﬁudents' problem solving performance. A
variety of new methodologies and measurement techniques were
developed for examining cognitive processes in broad domains such as
"general mathematical problem solving." Experts were shown to
perceive the "deep structure" of problems where novices were misled
by the "surface structure." Experts have much better "executive" or
metacognitive strategies than novices, which prevent them from
squandering their problem solving resources in the way that students

do.

Moreover, it was shown that students'

"belief systems" about

mathematics and the way it is done often make it difficult for them
to learn mathematics or to use it effectively. The problem solving
course provided clear evidence that, with direct instruction,
students' problem solving performance could be substantially
improved. These results have obvious implications both for research
and teaching in mathematical thinking.
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" Expert and Novice
Mathematical Problem Solving
Overview,

This project consisted of three interrelated series of studies exam{ning
the nature of expert and novice problem solving processés in college level
mathématics. ‘The studies fell into these three categories:

a. A detailed characterization of "expert" mathematical problem solving,
and an elaboration of the mechanisms by which experienced'problem solvers
(college faculty) succeed in solving difficult and sometimes unfamiliar
problems.

b. A characterization of "novice" (co]]ege freshman) mathematical problem
solving behavior, and a comparison of the procedures used by the students with
those employed by the faculty. What productive behaviors do the students lack,
and what counterproductive behaviors do they exhibit, that keep them from being
effective problem solvers?

C. An examination of the effects of a month-long intensive course in
mathematical problem solving, based on the research described in (a) and (b)
above, on students' problem solving performance. Can explicit instruction
in mathematical problem solving processes result in improved performance,
even on problems unrelated to those used in the instruction?

Common to all three categories, and an essential notion underlying
all of the research, is a focus on tHe process of mathematical problem solving.
This involves the detailed examination of the kinds of reasoning used by
individuals as they are involved in the solution of mathematical problems,

not simply the measurement of “before" and "after" results. At the time

this research was undertaken there was little available in terms of extant
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theory, or of methodologies for rigorously examining such complex cognitive
processes in broad domains such as “general mathematical problem solving;"
there were VirtuaT]y no measures available for capturing and evaluating such
processes. Thus a major component of the research was the development of
research methodologies and measurement tools that would serve to characterize
such processes, and that would servé as a means of elaborating a more complete
theory of intellectual performance in broad, complex domains.

[ am pleased to report that all aspects of the prpject have been completed
on time and well under budget; all have more than met the goals outlined in
the proposal. The major results are described in the following section, with

specific references to documents produced by the project.
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Major Results

As T indicated in the annual report, December 198G, the first of the
studies scheduled for completion, and the first completed, was study 3.
The evaluation of students' problem solving performance befo;e and after‘the
intensive problem solving course called for the development of a series of new
measurzs of problem solving, and it was originally planned that two years would
" be devoted to the development and refinement of the tests. The development
and pilot tusting of the measures went very smoothly, and a second year was
not needed. The results of study 3 were written up and published in "Measures
of problem solving performance and of problem solving instrhction," (Appendix‘A)

which was published in the Journal for Research in Mathematics Education. The

article served a two-fold purpose. First it gave, in full, the measures devised
for examining problem solving processes. These serve as prototypes for straight-
forward paper-and-pencil measures of the processes involved in problem éo]vingﬁ
Such tools are of use both for teachers (to test the efficacy of their instruction)
and researchers (as an inexpensive alternative to protocol analysis for some
research purposes). Second, the paper doc umented the results of the problem
solving course, in a variety of ways. To put it briefly, the evidence indicates
that students given direct instruction in problem selving skills (construed
broadly, as characterized below and i1 the appendiEes) will show marked improve-
ment in their problem solving performance -- even when working on mathematical
problems that are unlike those that they studied in the course.

Some additional experimentation that cut across all three studies provided
further evidence of the impact of the course. Research in a variety of domains

~3-
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(e.g. chess, algebra) indicates that people with substantial practice in a

domain have "vocabularies" of familiar objects (words, oroblems, situations,
etc.) to which they have nearly automatic responses; a chess master "sees"

a familiar position, for example, and does not have to analyze the full complexity
of that position in order to determine his next move. The posession of sucﬁ
“problem schemata" is an important part of routine "expert" problem solving,

and the absence of such well developed patterns is, hypothetically, éne cause

of students' difficulties. Notice that the absence of such patterns for students
need not be in new domains; it may simply be that, éven with fully accessible
problems, students have‘not yet perceived underlying regularities in so]ﬁtion
paths. Of course what one "sees" in a problem statement often determines

now one will approach it.

Our research used pfbb]ems ostensibly ;ccessible to high school students:
problems from geometry, eleméntary combinatorics, algebra, etc. Thus our "novices"
(college freshmen) had an adequate mathematical background to deal with these
questions. The results of our study indicate substantial differences in what the
experts (college faculty) and the novices “"see" in the problem statements. Asked
to classify "which problems are related in that they would be solved the same way,"
students classify together problems ihat share the same "surface structure" --
problems that deal with the same mathematical objects (e.g. circles, functions,
ar whole numbers). In contrast, experts will often disregard the objects in
problem statements to classify together problems that are, on the surface, quite
dissimilar: for example, a problem with whcle numbers and a problem with functions
will be classified together, because both “hiave implicit negatives in them, so

-4-
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they're most likely contradiction problems.” The elaboration of such structures

is a part of both studies 1 and 2. Most dramatically in terms of study 3, our
research provided clear evidence that students' perceptions change with experiencé.
As a result of the problem solving course, the students' perceptions came to resem-
ble tnose of experts (though not perfectly, of course). In contrast, a control
group's perceptions of problems remained essentially unchanged. These resuits,

written up as "Problem perception and knowledge structure in expert and novice

mathematical problem solvers," (Appendix B) will appear in the Journal of

Experimental Psycnology. Our early results were also reported elsewhere. A
summary report of the underlying theory and the first year's work was delivered
at the IV International Congress on Mathematical Education in Berkeley in
August, 1980, and will appear (“Toward & testable theory of problem solving,"
Appendix C) in the Proceedings of the Congress. The research was also discussed
in "Recent advances in mathematics education: ' ideas and implications,”

(Appendix D), to appear in the Mathematics Ecducation Mongsrapn published by the

Mathematics Council of the Alberta Teachers' Association.

The perception studies represented one aspect of the differences between
expert and novice performance in problem solving. In this case the differences
were the result of familiarity with a domain where the problems were "routine®
for the experts. There are other differences, however, that emerge when
experts deal with unfamiliar problems. Their success is often a result of wkat
has been called "executive" or "strategic" ability. Roughly, the idea is as
follows. In a non-routine problem solving circumstance, there may be any of a

large number of plausible paths to a solution. Not onily must one have a ready
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arsenal bf prob]eﬁ solving techniques, but one must be efficient as well. One
or two bad “"executive" decisions -- pursuing a "wild goose chase" or failing

to follow up on a good lead -- can doom a solution to failure, while one or

two wise decisions can allow a person who actually "knows less" to solve a
problem. A key result of our analyses of videotapes was the development of a
framework for the macroscoﬁic analysis of problem solving protocols, focusing
on the executive decisions that "make or break" a problem solution. The frame-
work, and the results, presented in "Episodes and executive decisions in math-

ematical problem solving," (Appendix E, to appear in Acquisition of Mathematics

Concepts and Processes, R. Lesh and M. Landau, Eds.) indicate that experts have

a well developed set of metaceanitive behaviors that keep them "on track," and
that the absence of such behaviors may well be a major cause of students' poor
problem solving performance.

Issues regarding the study of metacognition, and in general, the inter-
pretation of "verbal data" from protocols such as those gathered in this project
are extremely thorny, and not well understood. Part of the project was devoted
to clarifying them. A methodological paper,"0On the analysis of two-person

protocols," (Appendix F, Journal of Mathematical Behavior, in press) elaborated

some of the underlying issues as well as presenting the rationale for the frame-
work. This was one of two methodological papers, the second of which was the
final study of expert—novice.differences in probiem solving.

This last paper, "Beyond the purely cognitive: metacognition and social
cognition as drjving forces in intellectual performance"(Appendix G, Cognitive
Science, in press) lays out a broad framework for the analysis of verbal data.

-6-
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As the title suggests, i% indicates that many of the determinants of students'
intellectual behaviors lie outside the realm of the “pure’ly cognitive;" that

an individual's beliefs about (for example) the way that mathematics is done,
what is "legitimate" mathematics, and how mathematics relates to the "real
world" may well determine both his choice of approaches to problems and how well
he succeeds at them. Our research indicates that even well-trained college
students approach mathematics in a surprisingly naive, “purely empirical™ way
that (1) is antithetical to the approach taken by experienced mathematicians,
and (2) serves as a barrier to the development of their mathematical skills.
Moreover, it indicates that mathematical instruction that is not compatible
with students' belief systems may be doomed to failure, because it "falls upon
deaf ears." The paper provides a model of students' beliefs about Euclidean
geometry, and derives some consequences of those beliefs. More broadly, it
tries to characterize the spectrum of cognitive issues that one must examine
(from access to domain-specific facts and procedures to schemata and heuristics,
<7 metacognition, to belief systems) in order to "make sense" of verbal data.
These are sericus implications for both teaching and research.

In sum, the project has met all of the goals set out for it. At the
methodological level, a number of new tcols and perspectives have been developed.
The measures given in Appendix A provide a straightforward way of capturing a
range of problem solving processes on a paper-and-pencil test. The card sort
technique developed for measuring problem perception (Appendix B) offered a way
of examining changes in students' perceptions as they developed expertise.

Appendix E offered a new methodology for parsing protocols and focusing on
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"executive" decisions that may "make or break" a solution. Appendix G demun-
strated how belief systems impinge upcn "purely cognitive" behavior, and that
students' behavior can be modeled "from the top down" with an emphasis on such
behaviors. Appendices F and G covered a broad spectrum of methodological issues
related to the interpretation of verbal data gathered during problem solving ‘
sessions. As indicated above, each of these methodologies served to further the
goals of the project. They provided evidence of the dimensions along which expert
and novice problem solving performance differ, that carry with them implications
both for classroom instruction and future research. As study 3 demonstrated,

the practical implementation of these ideas can have a strong positive effect

on students' problem solving skills.

Dissemination

At this point the major results from the project have all been written up,
as indicated in the publication citations and appendices. All the reports
have been accepted for publication. As indicated in the proposal, preprints
were distributed to a large mailing list including the ONR distribution list.
Prior to submission for publication the results in all of the papers were
presented at national and international meetings of various scholarly societies
(Mathematical Association of America, American Educational,Research Association,
Internatinnal Congress on Mathematical Edication, International Group for
Psychology and Mathematics Education, National Council of Teachers of Mathematics,
the Psychonomic Society). During the arant period the PI gave more than two
dozen talks and workshops derived directly from the research. Finally, the PI

has written about half of a projected book dealing with the research issues

covered by the project. The book will, of course, acknowledge NSF support.
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Abstract

Evidence regarding the relationships between problem perception and
‘expertise has customarily been obtained indirectly, through contrasting group
studies-such as expert-novice comparisons. Differences in perception have

been attributed to differences in expertise,—qupite the fact that the groups
compared generally differ on a number of other major attributes such as aptitude.
This study explored the relationship between perception and proficiency directly.

Students' perceptions of the structure of mathematical problems were
studied as the students gained expertise in mathematical problem solving in a
month-lorg intensive problem solving course. Perceptions were measured using
a card sorting task, employing cluster analysis and comparing the students'
sorting with a sorting done by experts. The data obtained prior to instruction
provides direct evidence replicating and extending results from related fields.
Experts appear to base their perceptions of problem relatedness upen principles
or methods relevant for problem solution, while novices tend to classify prob-
Tems with the same "surface structure" (i.e. words or objects described in the
problem statement) as being highly related.

The data after instruction indicated a strong shift in the students'
perceptions, with their post-instruction sorting much more closely approximating
those of the experts. These data permit the direct conclusion that criteria
for problem perception shift as students' knowledge bases become more richly

structured.
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Problem Perception and Knowledge Structure in

Expert and Novice Mathematical Problem Solvers

Theories of problem solving commonly hold that the mental representation
of problems influences how people perceive problems. Moreover, as experience
leads to better problem solving, the quality of problem representuLionvis
expected to improve with corresponding improvement in problem perception
(Chi, Feltovich, and Glaser, in press; Heller and Greeno, 1979; Hayes and
Simon, 1976; Newell and Simon, 1972). At one end of the spectrum, the correct
perception of a problem may cue access to a "problem schema" which suggests a
straight-forward method of solution or a more or less automatic response
(Hinsley, Hayes, and Simon, 1978; Chase and Simon, 1973). At‘the other end,
an incorrect perception may send one off on a "wild goose chase." Since
Jroblem perception is conceived to be & crucial component of problem solving
performance, research on the change in problem perception with the acquisition
of expertise has increasingly received more attention (Simon and Simon, 1980;
Eylon and Reif, Note 1; Reif, 1979; Larkin, McDermott, Simon, and Simon, 198C).

Early evidence consistent with the hypothesized relationship between
expertise and percgption was provided in & series of studies by Shavelson (1972,
1974; Shavelson anJ\Stanton, 1975) that indicated that as students learn a
discipline, their kngwledge of the structural relationships among parts of the
discipline become mor \1ike that of experts. However, Shavelson's procedures
did not directly assesé\how his subjects perceived problems, and therefore
his results do not direckly address the perception/expertise hypothesis,

\
More direct evidencé\about problem perception and expertise has been
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provided by a series of studies in various domains that contrast the problem
perceptions of a group of experts in each domain with the perceptions of a
group of novices. For example, expert chess players perceive\board positions
in terms of patterns or broad arrangements, whereas novices do not (de Groot,
1965; Chase and Simon, 1973). Experts in physics perceive problems to be
simitar if ;he‘principles used to solve them, called the “"deep structure,"
coincide. In contrast, novices perceive them as similar if the objects referred
to in the problem, or the terms of physics used in the statement,.called the
"surface structure," coincide (Chi, Feltovich, and Glaser, in press). Two
studies on problem perception %n mathematics used algebra as their subject
domain (Chartoff, 1977; Silver, 1979). There is a consensus regarding the
structural  isomorphism of_?]gebra word problems, so in both studies problem
structures were assigned a ériggl by the experimenters and no experimental

data was collected from experts. In both cases, students who were proficient

at solving algebra word problems exhibited a greater degree of agreement with

the experimenters' perceptions of the problems than did less proficient students.

The evidence regarding the relationship between expertise and perception,
while strong, is indirect. Although expert-novice studies do show that experts
and novices differ in problem perceptior, the design of these studies precludes
unequivocal conclusions about the origins of these differences. For example,
relative to novices, experts are usually older, more trained, more experienced,
and most Tikely possessed of better aptitude for the subject domain.

Presumably, expert-novice differences in perception are rooted in

differences in expertise (training and experience), but they may also be influenced

by other psychological properties, for example aptitude. Note that contrasting
group designs involving people of the same age may still confound expertise

with aptitude. The ambiguous outcome of cont}asting group design is, of course,

t R
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not unique to studies of expertise and problem perception; the difficulties of
the design are well known, and in some areas of psychology these difficulties
are regarded as presenting insurmountable obstacles to inference (Schaie, 1977).
The present study sought to investigate the effects of expertise on perception
ina design that avoids these difficulties: a design that examines problem
perceptions in a group of individuals that, wifh training and experience,
improved in problem soiving proficiency.

. The re]atioﬁship of perception and expertise was studied in a repeated
measures design involving the discipline of college mathematics. Problem
perception was assessed before and after training by having students sort a
set of math problems. One group of students (hereafter calied the experimental
group) took a month-1long problem-solving course between the sortings. Another
group (called the control group) took a month-long course in computer programming
between the sortings. In addition, a group of mathematics experts also
completed the sort once. This study permits clear assessment of the relationship
of problem perception and expertise in the following way. The influence of
mathematical training on problem perception may be assessed by comparing the
sorting of eXperimental‘and control subjects before and after training. If
the experimental subjects show sorting after training different than control
subjects, inferences about the mathematical improvements in the experimental
subjects may be drawn relative to the sorting of the experts. Evidence showing

" that training affects problem perception and that training fosters problem
perception like experts cannot be attributed in this study to differences in
individuals (age, maturity, ability and attentional levels). While it is not
suggested here that the findings of coﬁtrasting groups' studies were not due

to differences in expertise, the present procedure provides a clearer assessment

of the relationship of problem perception and expertise.

r
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Method

Subjects

Nineteen freshmen and sophomores at Hamilton College, hereafter called
novices, participated in the experiment. All of the students had from 1 0 3
semesters of college mathematics prior to the experiment. Eleven of the students
(the experimenta1 group) served without pay as a condition of enrollment in
a problem solving course, which was the experimental treatment. Eight of the
students {the contiol group) were paid a total of $20 each for participating.

In addition, nine mathematics professors from Hamilton College and

Colgate University participated without pay.

Materials

Thirty-two problems were chosen for the study. Each is accessible to
students with a high school background in mathematics, dealing with objects
familiar from the high school curriculum; none requires calculus for its solution.
Each problem was assigned an a priori mathematical "deep structure" and a
mathematical “"surface structure" characterization. The problems used in the
study are listed in Appendix A. The characterizations of the problems may
be seen in the cluéter diagrams (figures 1,2,3).

“Deep structure" refers to the mathematical principles necessary for
solution, as identified by the first author who is a mathematician. For example,
problems 15 and 17 are both "uniqueness" arguments to be solved by contradiction,
although problem 15 deals with geometric objects and problem 17 with functions.
These characterizations were independently corroborated by ancther mathematician.
Of the 32 problems, the "deep structure" assessments were literally or essentially
agreed upon by this other mathematician for all but three problems (which were

perceived in a different but not contradictory fashion). This level of
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agreement on deep structure assignments is comparable to that recently reported
}for physics problems (Chi, et al., in press). "Surface structure" represents a
naive characterization of a problem, based on the most prominent mathematical
objects that appear in it (polynomials, functions, whole numbers) or the general
subject area it comes from (plane or solid geometry, limits). Thus problems

15 and 17 discussed above would be considered a "plane geometry" and a "function"
problem respectively.

In addition, two forms of a mathematical problem solving test were used

in the study. The tests each had five problems worth 20 points, and were matched
for mathematical content. These exaﬁinations and a predetermined scheme for
awarding partial credit had been pilot tested, with the grading scheme achieving

interjudge reliability of greater than .90. Form 1 of the test is given

in Appendix B.

Procedures

Both thecexperimental and control groups performed the card sort and
took form 1 of the mathematics test immediately preceding the intensive "winter
term" at Hamilton College. Both groups repeated the card sort and took form 2
of the mathematics test a month later, immediately following the conclusion
of the winter term., The experts performed the sort once, at their convenience.
The sorting procedures were as follows.

Each of the 32 problems was typed on a "3x5" card. Fach subject read
through the problems in a éandom order and decided which problems, if any,
were "similar mathematically in that they would be solved the same way." A
problem that was deemed dissimilar to others was to be placed in a "group"

containing one card. Subjects were told that they might return from 1 to 32

"groups" to the experimenter. All subjects finished the task in approximately
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20 minutes.

Between the first and second sortings, the experimental treatment
consisted of enrollment in a course, "Techniques of Problem Solving,” taught
by the first author. The ci¢ss met for two and a half hours per day for
18 days, with daily homework assignments that averaged four to five hours in
length, Thé course focused on generai mathematica] problem-solving strategies
called "heuristics" (Polya, 1945) and stressed a systematic, organized approach
to solving problems (Schoenfeld, 1979; 1980). Problems studied in the course
were similar to, but not identical to, those used in the sort; Appendix B
gives five problems similar to those studied in the course. No mention of
problem perception was made during the course. However, students were encouraged
to make certain that they had a full understanding of the problem statement
before prodeeding with a solution. They were told to examine ine conditions
of the problem carefully, to look at examp®es to get a "feel" for the problem,
to check for consistency of given data and plausibility of the results, etc.
These instructions may.well foster the development of improved problem perception.
The -contrcl treatment consisted of enrollment in a course, "Structured
Programming.” The course taught a structured, hierarchical, and orderly way
to solve nonmathematical problems using the computer. The students in the course
had backgrounds comparable to those of the studants in the mathematical
problem-solving course, and the course made similar demands in terms of time
and effort from the students, Thus this course served as a control for the
subject-specific knowledge and skills that might be acquired by the experimenfé]

group.

)
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Results

. For purposes of comparison with vhe resu ts of the student sortings,
we first present the results for the experts. Figure 1 presents a clustering
analysis, using Johnson's (1967) method, of the axjerts' card sort. Coilections
of problems exhibiting strong agreement (proximity ievel excesding .5, a
minimum of 16 out of 32 possible clusters) are bracketed. A brief inspection

of figure 1 indicates that the strong clusters are consistently homogeneous

insert figuire 1 about here

with regard to deep structure characterizations: in eight of the eleven strong
clusters, all of the elements share a common deep structure characterization.

In contrast, only four of the eleven strong clusters are homogeneous with regard

to surface structure -- and three of these with regard to deep structure as well.

Two measures of the degree of structural homogeneity of figure 1 are
given in Table 1. Measure 1 provides, for surface and deep structure respec-
tively, the proportion of strongly clustered pairs that have the same structural
representation.] Of the twenty-two pairs strongly clustered in figure 1,
thirteen (.59) share the same surface structure and eighteen (.82) the same
deep structure. We should observe, however, that the surface and deep
structures coincided in ten of the twenty-two pairs used in the computation of
measure 1. To indicate perceptual preference when the two types of structures
conflict, these ten pairs were deleted from tha sample for measure 2. With
non-coinciding pai}s, the proportion of surface-homogeneous pairings for the
experts is .25 (3 of 12), and the proportion of deep-homogeneous pairs is

.67 (8 of 12).

insert Table 1 about here

o
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Figure 2 presents the cluster diagram of the sorting performed by the
combined group of novices (n=19) prior to instruction. In the interest of
saving space, the cluster diagrams for the separate experimental and control
groups are not given.2 . Inspection of figure 2 indicates a reversal from figure 1,
with emphasis on surface structure as the criterion for sorting problems
together: eight of ten strong clusters are homogeneous with regard to surface
structure, six of ten with regard to deep structure. Of these six, five are ,
alsc homogeneous with regard to surface structure. Tie data in table 1 confirm
these impressions. _Table T also provides the data for the separate experimental
and control groups prior to instruction. These data, like those for the combined
group, indicate that the deep structural relationships between problems were
rarely perceived wheﬁ—they ran in contradiction to perceptions of surface structure.

After training, the students who took the problem so]vfng course
demonstrated a marked improvement in problem solving performance, while those
enrolted in the computer course did not. The mean scores on the mathematics
test for the experimenfal subjects were 21 prior to the course and 73 afterwards.
Foé the control subjects, the mean scores were 14 before gnd 24 after the course.
Aralysis of variance on these means showed that s;oreé increased across the
term (F(1,17) = 47.5, p<.001), were greater for experimental rather than for
control subjects (F(1,17) = 130.6, p<.001), and that the increase across the
term was not equivalent for egperimental and control subjects (F(1,17) = 48.2,
p<.001). Simple effects fests indicated that the term effect was significant
for the experimental subjects (p<.01) but not for the control subjects. A
detailed description of scoring procedures for this measure and of collateral
measures may be found in Schoenfeld (1982).

The effect of instruction on problem perceptinn was measured in the ways

described above, and also by correlation with the experts' sorting matrix,
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Figure 3 presents the cluster analysis of the experimental group's sorting

after instruction.

insert figure 3 about here

An examination of %igure 3 indicates the shift in the students' percep-
tions . After training, six of eight strong clusters were homogeneous with regard
to deep structure, and only four with regard to surface structure; moreover,
surface and deep structuires coincided in all four of those clusters.

In contrast, the control group's post-instruction sorting shows little
change from pre-instruction perceptions. [Again to conserve space, the cluster
diagram derived from that sorting, which closely resembles figure 2, is not
given. Of ten strong clusters in it, seven are homogeneous with regard to
surface structure and only four with regard to deep structure; moreover
those four share common deep structures as well.] These results, which indicate
a strong change towards ﬂdeep structure" perceptions on the part of the experimental
group and little or no change on the part of the control group, are given in
table 1. Differences between deep and surface proportions wére compared across
the various conditions with the t épproximation to the binomial.- Each of the
following comparisons (with one exception noted) was significant to at least
the (p<.05) level, both in direction and size of the differences. Scores
within parentheses are reported first for measure 1 (all pairs), then for
meaSu}e 2 (non-coinciding pairs). The difference for the experts differed,
in direction and magnitude, with the difference in the pre-instruction proportions
from the experimental group (t(18) = 2.33; t(18) = 4.09), the control group
(£t(15) = 2.61; t(15) = 4.98), and the combined novice group (t(26) = 1.88,
p<.1; t(26) = 4.81); also with the post-instruction difference from the

control group (t(15) = 2.31; t(15) = 3.99). Similarly, the differences from
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‘the experimenta] group after instruction differed (p<.05) from the pre-instruction
differences from the experimental group (t(11) = 2.38; t(11) = 4.51), control
group (t(17) = 2.65; t(17) = 5.48), and combined novice group (t(28) = 2.39:
t(28)

5.41); also from the control group's post-instruction scores (t(17) = 2.34

t(17) = 4.37).

The comparison of surface and deep struétu:! proportions given abo.e
provides an indirect indication that the experimental group's perceptions
became more "expert-like" with instruction, while the control group's did not.
This relationship was examined more directly by correlating the sorting matrices
for each of the treatment groups, before and after instruction, with the sorting
matrix obtained from the experts. The EOrrelations are given in table 2.
With df = 496, all correlations are significant. The pretest correlations

and the control post-test correlations are significantly less (p<.01) than

the experimental group's post-test correlation.

insert table 2 about here

Discussion

The design of this study allows for the direct attribution of the students'
changes in problem perception to changes in their problem solving ﬁroficiency.
This attribution cannot be made unequivocally from any of the contrasting
group studies conducted to date, for example the standard expert-novice
studies. Note that professors or advanced graduate students in a discipline
differ from lower division undergraduates in maturity, cohort group, comfort
in testing situations, and most notably, aptitude. A clear unders tanding of
how novices' performance improves in a discipline cannot be cbtained by comparing

them to a group of experts whose aptitude for the discipline is, in all

LY Bog
~Q

b




Mathematical Problem Perception.
Page 11

likelihood, far beyond that of the novices. Similarly, an understanding of
expert perception cannot be obtained by taking as the starting point of that
development people whose performance alone makes it unlikely that they will
ever be expert in that domain. One might obtain experimental confirmation of
the relationship between perception and expertise in contrasting group designs
in which the groups had been matched on 211 variables except expertise (a
difficult proposition, and a condition not present in any expert-novice studies
with which we are famiiiar). However, the most direct way to as-~ertdin that
relationship is with a repeated measures (1ongitudinal) design like the one
used here.

wo other points should be considered before the specifics of the data
are elaborated. First, the nature of deep structure in mathematics is different
from that of bther domains. For example, elementary physics is strongly
principle-driven, and the subject matter is organized and taugnt according to
those principles. Mathematics is not organized and taught that way, however.
One talks about methods of solution, rather than principles; and the curriculum
is organized around topics rather than around those methods, which are <imply
the tools used to solve them. Thus, there does not exist an a priori consensus
about the structure of the problems used in this study that would lead one to
predict with confidence the particular pattern of results repeated in figure 1.'
The absence of such a consensus makes the consistency of the present results
more impressive. The word “"novice" in this study does not mean rank beginner;
the students in thi; study had extensive mathematical backgrounds and were,
in the sort, reading problems accessioie to them. The surface labels reflect
this, for example in the labels for problems 2 and 11. Surely, one would be
surprised if college students could not see that integer combinations of weights

and integer combinations of costs called for the same mathematics! (This would

26 ]
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not necessarily be the case with fifth graders, for'example)_
The data in table 1 provide a strong indication that the expérimental
group's perceptions of prob]em'structure shifted from a basis in surface

-

structure to a basis in deep structure. 'An eXam1nat1pn of the exper1menta1

"group's post-instruction cluster {9, 17 10} illustrates” the change in problem

perception. Problem 9 deals with whole numbers and pr1or to instruction,
§ .
Was sorted with two other "whole number" prob]ems in a homogeneous surface

structure cluster. Problem 17 deals with abstract functions, and, prior to

'instruction, was (barely) clustered with a problem that presented @ very complex

polynomial function for analysis. Problem 10 deals with poiynomials, and was
placed -in a strong cluster all three of whose terfms had the surface label
“polynomials, roots." Each of these problems is solved by the mathematical
technique known as proof by contradiction and, despite their differing surface
characterizations, they are all placed in the same cluster after instruction.

The broad shift towards expert percepticns is confirmea in figure 2, which shows

the correlation between experts' and the experimental group's sorting matrices

jumping from .540 (before instruction) to .723 (after instruction), theﬂenly

significant (p<.01)change in correlation. This rather dramatic shift, after

a short period of time, tndicates that instructional treatments that focus

on nnderstanding and performance can have a strong impact on perceptions.
Despite the strong shift in the students' sort, the experimental group's

performance after instruction cannot be truly called "expert-like." The experts'

extended knowledge and experience allow them perceptions inaccessible to the

novices. Consider, for example, the three bracketed clusters including problem

1: novice {1, 32, 9}; experimental {1, 3, 21}; expert {1, 3}. The experimental

group drops problems 3é and 9, which are similar to problem 1 only in that

they deal with whole numbers. Problem 3, which shares the same deep structure

27
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as problem 11 is added. The mimicry of expert perceptions is not exact, however:
problem 21 is added as well. The addition of problem 21 provides an indication
of the "intermediate" status of the experimental group. Problems 12 and 21

were included in the card sort to see if the experts would cluster them

together. Underlying the experts' perception of problem 21 is the observation
that multiples of 9 and multiples of 4 both inc]ude‘multiples of 36 (their
intersection), and that one must compensate for subtracting the first two sets

by adding the third. This is structurally similar to the rule N(AUB) = N(A)+N(B)
~N(ANB) upon which problem 12 is based. This is a ratﬁer subtle observation.

While experts' experience with combinatorics problems might make such an

see such subtleties. "In the absence of such knowledge, it'is'plausible to
think that "looking for patterns" will help to solve problem 21 -- and thus to
sort it with two other "patterns" problems .

The research described here supports and extends previous research on
problem perceptior. The novices' card sort indicated that, in the broad domain
of general mathematical problem solving, students with similar backgrounds will
perceive problems in similar ways. This is consistent with previous research in
mathematics, which had considered only word problems in algebra (Hinsley, et al.,
19775 Chartoff, 1977; Silver, 1979). Like research in physics (Chi, et al.,
in press), it suggests that surface structure is a primary criterion used by
novices in determining problem relatedness. Moreover, it verifie§ directly
that students' problem perceptions change as the students acquire problem-solving
expertise. Not only their performance, but their perceptions, become more
1ike experts'.

In general, questions regarding the deep structures in individual

disciplines and the nature of experts' perceptions in those disciplines are

‘ N
28
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more complex than those regarding surface structures and novices' perceptions in
them, The differences between the structures of mathematics and physics were
discussed above. In another discipline, research on chess perception (de Groot,
1965; Chase and Simon, 1973) indicates that experts' perceptions of routine
problems (similar in a way to the routine physics and mathematics problems
discussed above) may be based on the acquisition of a "vocabulary" of known
situations which is not necessarily principle-based. Further research might
profitably be directed towards the elucidation of how deep structurés differ
across disciplines and how problem perceptions evolve with the acquisition

of expertise in different domains.
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Footnotes

The authors thank Chris Hempel, Mike Stankiewicz, Rob Kantrowitz,
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-H. Schoenfeld, Graduate School of Education and Department of Mathematics,
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1 We wish to thank Jim Greeno and Alice Healy for suggesting the
measure and stengthening the discussion.
Z A1l three diagrams are quite similar., The matrix from which Figure 2
was derived was strongly correlated with both the experimental pretest

matrix (r = ,918, df - 465; p<.001) and the control pretest matrix (r = .889,

df = 496, p<.001).
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Table 1

.The proportion of strongly clustered pairs in which both
rroblems share the same representation

(Number of pairs given in parentheses)

Measure 1 Measure 2
(A11 pairs) (Non-coinciding pairs):
Surface Deep Surface Deep

" Structure Structure  Structure Structure

Experts | 59(22) 82(22)  .25(12)  .67(12)
Experimental,Pretest .81(26) .58(26) .58(12) 08(12)
Control, Pretest .91(23) 57(23) .82(11) .09(11)
Combined, Pretest .76(21) .62(21) .67(9) 11(9)

Experimental,Posttest .58(24) .79(24) .09(11) .55(11)
Control, Posttest .83(24) 58(24) .64(11) .09(11)
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Table 2
Correlations Between Sorting Matrices

of Novices {Given at Left) with Expert Sort

Control, Pretest .551

\ Experimental, Pretest .540
Combined, Pretest .602
Control, Post Test ' ] .423
Experimental, Post Test .723

9
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APPENDIX A ™.

-

PROBLEMS USED IN CARD SORT ="~

Show that the sum of consecutive odd numbers, starting wf%h\l, is
always a square. For example, N

1434547 = 16 = 42. AN

~
<

You have an unlimited supply of 7 pound weights, 11 pound weights, ghd\
a potato which weighs 5 pounds. Can you weigh the potato on a balance R
scale? A 9 pound potato? ~

Find and verify the sum

1 + 2 + 3 + ...+ n RN -
1.2 1.2.3 1.2.3.4 1.2.3...(n+1) N

Show that if x, y, and z are greater than 0,

(&) (A5 > .
xyz
Find the smallest positive number m such that the intersection of the
set of all points {(x,mx)} in the plane, with the set of all points
at distance 3 from (0,6), is non-empty.

The lengths of the sides of a triangle form an arithmetic progression
with difference d. (That is, the sides are a, a+d, a+2d.) The area
of the triangle is t. Find the sides and angles of this triangle.

In particular, solve this problem for the case d = 1 and t = 6.

Given positive numbers a and b, what is
Lim (a" + b”)]/n?
n-<

In a game of "simplified football," a team can score 3 points for a
field goal and 7 points for a touchdown. Notice a team can score 7
but not 8 points. What is the largest score a team cannot have?

Let n be a given whole number. Prove that if the number (2M-1) is
a prime, then n is also a prime number.

Prove that there are no real solutions to the equation
10+ 38 + %%+ % 132 41 =g

If Czech. currency consists of coins valued 13 cents and 17 cents,
can you buy a 20-cent newspaper and receive exact change?
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If N(A) means "The number of elements in A," then N(AuB) = N(A) +
N{B) - N(AnB). Find a formula for N{AuBuC).

Construct, using straightedge and compass, a line tangent to two
given circles.

Take any odd number; square it; divide by 8. Can the \emainder be

3?2 or7? .
You are given the following assumptions: \
i) Parallel 1ines do not intersect; non-parallel 11nes intersect.
ii) Any two points P and Q in the plane determ1ne an unique
line which passes ‘between them.
Prove: Any two distinct non-parallel lines Ly and L must intersect
in an unigque point P.

Two squares "s" on a side overlap, with the corner of one on the
center of the other. What is the maximum area of possible overlap?

Show that if a function has an inverse, it has only one. 4

Let P be the center of the square constructed on the
hypotenuse AC of the right triangle ABC. Prove that
BP bisects angle ABC. [see figure at right.] B

How many straight 1ines can be drawn through 37 points I
in the plane, if no 3 of them lie on any one straight
line?

you add any 5 consecutive whole numbers, must the result have a

factor of 57

What i3 the sum of all numbers from 1 to 200, which are not multiples
of 4 ana\9? You may use the fact that

(142+...4+n) = 1/2 (n)(n+1)

Your goal is convert figure 1 to figure 2. You may
move only one digk at & time from one spike to another,

and you may never put a larger disk on top of a smaller fig.l fig.2
one. how to? \\

N\

Determine the area of a\tr1angle whose sides are given as 25, 50, and 75.

If P(x) and Q(x) have "re&érsed" coefficients, for examp]e
P(x) = x2+3x% +Qx3+11x2+6x+2,

Q(x) = 2x5+6x341T%3+9x2+3x+1,
What can you say about the roots 5{\P(x) and Q(x)?




25.

26.

27.

28.

29.

30.

31.

32.
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You have 2 unmarked jugs, one whose capacity you know to be 5 quarts,
the other 7 quarts. You walk down to the river and hope to come back
with precisely 1 quart of water. Can you do it?

what is the last digit of (...((77)7)7...)7, where the 7th power

is taken 1,000 times?

Consider the magical configuration shown at right. A
In how many ways can you read the word "ABRACADABRA?" B B
RRR

A circular table rests in a corner, touching both AAAA

walls of a room. A point on the rim of the table ccccec

is eight inches from one wall, nine from the other. AAAAAA

Find the diameter of the table. DDDDD
AAAA

Let a and b be given real numbers. Suppose that B BB

for all positive values of ¢, the roots of the R R

equation A

ax2+bx+c = 0
are both real, positive numbers. Present an argument to show that
a must equal zero.

Describe how to construct a sphere which circumscribes a tetrahedron
(the 4 corners of the pyramid toucn the sphere.)

Let S be a sphere of radius 1, A an arc of length less that 2 whose
endpoints are on the boundary of S. (The interior of A can be in the

interior of S.) Show there is a hemisphere H which does not intersect A.

Show that a number is divisible by 9 if and only if the sum if its
digits is divisible by 9. For example, consider 12345678:
1+2+3+4+45+6+7+8 = 36 = 4x9, so 12345678 is divisible by 9.
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Appendix B

Mathematics Test Form 1

1. IfS is any set, we define 0(S) to be the number of subsets of S
which contain an odd number of elements. For exampie: the "odd"
subsets of {A, B, C} are {A}, {B}, {C}, and {A, B, C}; thus O({A,B,C})
= 4, Determine 0(S) if S is a set of 26 objects.

2. Suppose you are given the pos’itive numbers p,q,r, and s.
Prove that (p2+”(q2+])(r2+])(52+]) . 16
pqrs z T

3. Suppose T is the triangle given in figure 1. Give a mathematical
argument to demonstrate that there is a square, S, such that the
4 corners of S 1ie on the sides of T, as in figure 2.

;13.‘1

4. Consider the set of equations

CCax 4y = 2}.

X +ay =1
- For what values of "a" does this system fail to have solutions,
and for what values of "a" are there infinitely many solutions?

!
[=})

5. Let Gbe a (9 x 12) rectangular grid, as illustrated

to the right. How many different rectangles can be

drawn on G, if the sides of the rectangles must be

grid lines? (Squares are included, as are rectangles

whose sides are on the boundaries of G.)

. ‘.L
[
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Toward A Testable Theory of Problem Solving

The four main issues I address in this paper are the following.
1. What, beyond basic subject matter mastery, serves to
explain "expert" mathematical problem solving behavior?
2. What traits do students lack, or what inappropriate
traits Jdo they have, which prevent them from approaching
problems with the flexibility and resourcefulness of ex-
perts?
3. Can we teach students to "solve problems 1ike experts"--
and how?
‘4. What clear, scientific evidence can we offer to support our
opinions regarding the first three questions?
The students I refer to will be advanced high school or lower division
undergraduate students and the problems "nonroutine," of the type discussed by

Polya in Mathematical Discovery. "Experts" can be defined (for the sake of

simplicity, and not uniquely) as college mathematics faculty.

The answers from the mathematics education community to the first three
questions would, I suspect, involve ihe word revived by the Honorary President
of this Congress, George Polya: “heuristics." The fourth question is harder.
There has been 1ittle conclusive eviderce to date that heuristics "work"-~1in
the sense that students can learn to use them, and improve their problem solv-
ing performance thereby. In fact, heuristics are for the most part ignored,

dismissed or disdained outside the math-ed community. Herbert Simon, writing

to "christen" the new domain of cognitive science, spoke of "cognitive




psychologists, researchers in artificial intelligence, philosophers, lin-
' 1

guists, and others who seek to understand the workings of the human mind."

Allen Newell, coauthor with Simon of Human Problem Solving, wrote that we o

are working in the wrong direction: "If we ask what evidence we have that
Polya is right . . . the answer is that there is none of a scientific kind.

We are all impressgd and pleased, that's a11."2

For its own part the math-ed
community ignores with equal impugnity the advances made in cognitive science:

the 1980 NCTM Yearbook, Problem Solving in School Mathematics, would essen-

tially be unchanged {f all the fields 1isted above by Simon did not exist.
The result is a loss to both schools. The interplay between them can, and
should be fruitful. I shall discuss here some adaptations of ideas and tech-
niques from cognitive science to examine problem solving via heuristics--
and to provide some of the evidence Newell asks for.

We shall outline the framework of a theory. In brief, we argue that
there are (at least) three components which are essential for competent prob-
Tem solving performanrce in any nontrivial domain:

[. An adequate knowledge base, including access to basic

facts, relations, and procedures.

[I. The mastery of relevant problem solving techniques--in
the case c¢f nonroutine problem solving like that dis-
cussed here, the mastery of certain heuristics; and

III. An efficient means of selecting appropriate techniques
for application, and 1in general for using efficiently
those resources which the problem solver has at his or
her disposal, We shall call this "efficiency expert" a

managerial strategy.




I. The Knowledge Base

The first observation we make is that an adequate characterization
.of the knowledge base for problem solving is more important than it might at
first appear. Of course, the problem solver must have the "basic facts" at
his disposal. But recent work in cognitive science stresses the difference
between factual knowledge and procedural knowledge. The latter includes a
knowledge of the conditions under which a particular procedure . .y or may
not be "legal," to what arguments it applies, and so on. Note that the or-
éanization of the knowledge base is important: in addition to "knowing"
something (that is, being able to discuss it when asked about it) one must
know when it {s relevant to a particular problem. Otherwise one's knowledge
is wasted. An expariment ih the psycholoay of physics learning shows that
the organization of one's knowledge base has a strong é%fect on one's success
in solving prob]ems.3 A result I obtained recently indicates that experts
and novices actually "see" different things in problem structures: the cri-
teria which experts use for judging whether two mathematical problems are re-
lated are quite different from those used by novices.4
The experiment was concducted as follows. Each person was given a
ccllection of 32 problems, and asked to sort the problems into anywhere from
1 to 32 piles, each pile containing problems which were "mathematically re-
lated, or would be solved the same way." A computer analysis of the cumula-
tive sorting (the HICLUS program), revealed that the (apparent) criteria for
sorting were quite different. Novices clustered problems by what we call
their "surface structure:" that is, by the objects which the problems deal
with. For example, three problems dealing with the roots of polynumials

would be called "related" by the novices, even if one was most appropriately

15




solved by graphing, another by examining special cases, and the third by con-
tradiction. In contrast, the "expert" clusters were sorted by what we call
"deep structure." Problems amenable to an approach by mathematical induction
were clustered together, even {if one dealt with points and 1ines, a second
with the last digit of a complicated numerical expression, and a third with
the coefficients of a polynomial. These perceptions, of course, affect prob-
lem solving performance. We are just beginning to deal with the complexity

of knowledge structures, and there is much to discover.

II. The Heuristics

. Thq second major éomponent for nonroutine problem solving, as we dis-
cussed it above, is the ability to use certain heuristics. Most attempts to
document the role of heuristics in problem solving have yielded very equivocal
results. This is not surprising if one considers (1) the quite complex and
usually underestimated web of skills needed to correctly employ individual
heuristics, and (2) our hypothesis that the heuristics alone are not sufficient
to guarantee improved problem solving performance. Qur treatment will be brief
here: we will mention only two studies designed to "tease out" the role of

heuristics. See the 1980 NCTM Yearbook and the NCTM's Research in Mathematics

Education for extensive discussions of the literature. The first study5 was
designed to see whether students will intuit problem solving heuristics simply
by working problems, Under controlled laboratory conditions, two groups of
students were trained for identical periods of time on identical problems,
with only one group given the explicit heuristics underlying the solutions
they were shown. There was a significant difference in performance; the
"control" students were not able to use their preblem solving experience to

solve related problems, while the experimental group was explicitly using

% . 49




the heuristics. However, the journey from the laboratory to the classroom is
a long one.

The second study took place in the classroom. It had two goals: (1)
to define some useful and replicable measures, so that other teachers and re-
searchers could replicate the results; (2) to use those measures to verify a
substantial improvement in students' problem solving performance. In that
study,4 students were both taught heuristics and a managerial strategy (of

sorts); thus the effects of heuristics (or the managerial strategy) alone are

1hard to sort out. But there was much greater heuristic fluency, correlating

with dramatically improved problem solving.

III. Managerial Strategies

Finally, we come to the presence of an efficient "manager" itself.
This is also difficult to sort out, for all problem solvers obviously have
some managerial abilities. Our first aréument.is by analogy. In ar early
study,6 students who had learned the techniqhes of integration were divided
into two groups. One group studied the "usual" way, each working problems
For an average of nine hours. The other group was given a strategy which
helped them to select the appropriate techniques. The experimental group
averaged seven hours study time, and significantly outperformed “he control
group. Now, the argument to be made here is that, even in a simple domain,
students who lack an efficient manager squander some of their resources. in
general, where there are many more choices and many more opportunities to go
wrong, the absence of an efficient manager can be debilitating--even if one
has the appropriate heuristic abi1jties.7

We are currently developing a scheme for analyzing transcripts of

problem solving sessions which focuses on managerial actions. Although we

ul)
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have only preliminary results, we believe that this scheme may allow us to (1)

characterize some "expert" managerial actions which account for efficient prob-

- lem solving, (2) demonstrate the consequences of poor managerial actions in

students' problem solving, and (3) correlate improved performance in problem
solving with both heuristic and managerial improvement. If all goes well, the
synthesis of ideas from the heuristic school with the techniques from cognitive

science will help us to better understand, and teach, problem solving.

<t
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Recent Advances in Mathematics Education:

Ideas and Implications

There have been major changes in mathematics education research over
the past decade. Research in education is now highly interdisciplinary, with
contributions from cognitive psycho]ogisté, workers in artificial intelligence,
etc. There are new people, new perspectives, new methodologies -- and most
important, new results. Taken as a whole, these results promise to re-shape our
understanding of the learning and teaching processes. In this paper I will
discuss one aspect of recent work, and its implications.

The three examples I'm going to discuss in this paper seem on the
surface to have little to do with each other. John Seely Brown and Richard
R. Burton have done a detailed analysis of the way elementary school children
perform certain simple arithmetic operations. John Clement, Jack Lochhead,
and E1liot Soloway have studied the way that people translate sentences like
"There are six times as many students as professors at this college" into
mathematical symbolism. My work consists of an attempt to model "expert"
mathematical problem solving, and to teach college freshmen to "solve prob-
lems like experts." Yet all three of these studies share a common premise,

and their results tend to substantiate it. That premise is the following:

There is a remarkable degree of consistency in both
correct and incorrect mathematical behavior on the part
of both experts and novices. This consistency is so strong
s

that it may often be possible to model or simuiate that

behavior, at a very substantive level of detail.
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The imp]icatfgqs of this assumption for both the teaching and learn-
ing processes are enorm3h§. First, consider the notion @hat much of our
student's incorrect behaviéh\can be simulated--and hence predicted. This
means that many of their misf;kgs are not random, as we often assume, but
the result of a censistently appiig? and incorrectly understood procedure.
In consequence, the student does no%\need to be “told thé right procedure";
he needs to be "debugged." This idea\}ﬁgf at the heart of the Brown and
Burton work. It is also central to Lochhéhg and Clement's work, where we
will see that the simple process of trans]afé g a sentence into algebraic
symbols is far more complex than it at first app grs. The other sidé of the
coin has to do with the co' , stency of expert behaVipr. That, of course, is
the assumption made in artificial inte]]igence--wheré\tpe attempt is made to
model expert behavior in enough detail so that it can ngsimu1atéd on a com-
puter. If that seems plausible, then another step should éégm equally plaus-
ible: model expert behavior so that humans, rather than macﬁ}nes, can simulate
it. That is, teach students to "solve problems 1ike experts" by training them

to follow a detailed model of expert problem solving. That is the\¥dea behind

N
my own work.

Needless to say, a discussion of these three projects barely scrétches
tﬁe surface of what is happening in mathematics education today. I could ﬁbg
hope to be comprehensive in a brief paper like this, and I think it would be .
a waste of time to simply provide a 1ist of people’'s names with one or two

sentence descriptions of what they are doing. Instead, I have chosen to look

: PRI P ~A b Al amiias 2 i dadalT e, bivvan A4 EE
at just one idea and TO GiSCUSS in some getail how three different research
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projects explore aspects of it. In doing so I hope to at least convey the
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4
flavor of some modern work--and leave you with a taste for more.‘\ghe bib1iog-

raphy suggests further readings. \
\

2. A Close Look at Arithmetic.

N\

In this section I offer a distillation of Brown and Burton's paﬁér
“Diagnostic Models for Procedural Bugs in Basic Mathematical Skills." There
is much more in that paper than I can émnnarize here, and it is well worth
reading in its entirety; so are the other papers by them listed in the bibliog-
raphy. They are now at Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, Ca.,
94304. Address reprint requests there.

The key word in the title of their paper is "bug." It is, of course,
borrowed from programming terminology--and is fully intended to have all of
the connations that it usually does. While a seriously flawed program may
fail to run, a program with only one or two minor bugs may run all the time.

It may even produce correct answers most of the time. Only under certain cir-
cumstances will it produce the wrong answer--and then it will produce that
wrong answer consistently.

Often one discovers a bug in a computer program when it produces the
wrong answer on a test computation. Now, one might hope to find the bug by
reading over the 1isting of the program and catching a typographical error or
something similar. It is usually easier, however, to trace through the program
and see when it makes a computational error. At that point, one knows where
the source of difficulty is and can hope to remedy it. If the basic algorithm
were simple enough, it might be possible to guess the source of error by notic-
ing a pattern in the series of mistakes it produced. Thus one might be abie to

find the bugs in a program--without even having a listing of it. For example,
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see if you can discover the bug in the following addition program from the

five sample problems.

41 328 989 66 216
9 +917 +52 +887 +13
50 1345 1141 1053 229

Of course, if you don't have a 11sting of the program, you can never be certain
that you have the right bug. However, you can substantiate your guess by pre-
dicting in advance the mistakes that the program would make on other problems.
For example, if you have identified the bug which resulted in the answers in the
previous five problems, you might want to predict the answers to the following
two:

446 201
+815 +399

This particular bug is rather straightforward. We can get the same answers as
the program for each of the five sample problems by "forgetting" to reset the
"carry register" to zero: after doing an addition which creates a carry in a
column, simply add the carry to each column to the left of it. For example, in
the second problem, 8 + 7 = 15, so we get a carry of 1 into the second column.
That gives us a sum of 4. If the 1 is still carried to the third column, that
gives us 1 + 3 + 9 = 13, The same difficulties arise all the way across the
board. Using this bug, one would predict answers of 1361 and 700 to the two
extra problems.

Now the point is that a student might have this "bug" in his own arith-
metic procedure, just as the computer program might. In fact, a child might
well use his fingers to remember the carry, and simply forget to bend the fing-

ers back after each carry is added. This would produce exactly the bug above.
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The above is far more than an exercise in cleverness: it has tremen-
dous implications for the way we teach. The naive view of teaching is that
the teacher's obligation is to present the correct procedure coherently and
well, and that if anything goes wrong, it is simply because the students have
not yet succeeded in learning that procedure. The above example (and many
more in the text) suggest that something very different is happening. Suppose
a student is making consistent mistakes. The teacher who can diagnose such a
bug in that student stands a decent chance of being able to remedy it. The
teacher who looks at the student's mistakes and concludes from them simply
that the student has not yet learned the correct procedure, is condemned simply
to repeat the correct procedure--with much less likelihood that the student
will perceive his own mistake and begin to use the correct procedure as he is
supposed to.

If one makes the assumption that student's behavior is consistent when
it is wrong, then the issue appears to be theoretically simple. You begin with
the correct procedure, and then at each step generate what might be considered
plausible bugs. Then you create a series of test problems so that the student's
answers to those problems indicate which bugs he has. Having identified the
bugs, you intervene directly to remedy them.

While the theory has just been made to sound remarkably simple, the
implementation is actually quite complex. First, it is a surprisingly compli-
cated task to write down all the operations that one has to do to add or sub-
tract two three digit numbers. Primitive operations involved in subtraction,
for example, include knowing the difference between any two single digits,
being able to compare two digits, knowing when it is appropriate to borrow,

being able to borrow, knowing to perform operations on the columns in sequence

<n
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from right to left, and many, many more. Any flaw in any one of these pro-
cedures causes a bug which needs to be diagnosed; flaws in more than one pro-
cedure cause compound bugs which may be even more difficult to diagnose. For
example, the following table 1ists nine common proﬁedura] mistakes in the simple
subtraction algorithm. When one considers possible combinations of these, things

start to get out of hand very rapidly.

143 The student subtracts the smaller digit in each column
/-28 from the larger digit regardless of which is on top.
125

143 When the student needs to borrow, he adds 10 to the top

% =28 digit of the current column without subtracting 1 from

125 the next column to the left.

1300 When borrowing from a coumn whose top digit is 0, the
-522 student writes 9 but does not continue borrowing from

878 the column to the left of the 0.
140 Whenever the top digit in a column is O, the student

=21 writes the bottom digit in the answer; i.e., 0-N = N.
121
140 Whenever the top digit in a column is 0, the student
=21 writes 0 in the answer; i.e., 0-N = 0.
120
1300 When borrowing from a column where the top digit is 0,
-522 the student borrows from the next column to the left
788 correctly but writes 10 instead of 9 in this column.
\ 321 When borrowing into a column whose top digit is 1, the
\ -89 student gets 10 instead of 11.
231
662 Once the student needs to borrow from a column, s/he
-357 continues to borrow from every column whether s/he
205 needs to or not.

662 The student always subtracts all borrows from the left-
-357 most digit in the top number.
115

FIG. 1. Manifestations of some subtraction bugs.

—

R

The preceding discussion was based on the premise that students do

indeed follow certain consistent procedures. Brown and Burton were able to

~
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test this theory empirically when they were given the scores of 1325 students
on a 15-item subtraction test. (By this time, they had completely automated
the process for analyzing bugs, and it was done on a computer.) Their data
indicates that moré than 40 percent of the errors made on the test were clearly
attributable to “buggy" behavior. In particular, more than 20 percent of the
solution sheets they had were entirely consistent with one of the bugs they

had identified. (That is, all of the answers were exactly what that particular
faulty algorithm would produce.) Another 20 percent of the solution sheets in-
dicated behavior which was strongly consistent but not identical with such a
bug. This is incredibly strong evideace in favor of their thesis.

Further, the analysis of the student's performance on this test provided
an interesting commentary on the test itself (which Burton and Brown had not
designed). It turned out that 107 of the 1325 students tested had a bug in
their "borrow from zero" procedure. In consequence, they had missed all 6
of the 15 problems on the test which called for borrowing from zero. In the
original interpretation of the data, those 107 students were simply identified
as sfudents who scored 60 percent. In this analysis, they are identified as
students who have not yet mastered the technique of borrowing from zero. There
is quite a difference.

While the authors have computerized the analysis technique, their intent
is not to have a "computer-analyst" in every classroom. Debugging is a very
subtle process, and the child who is having arithmetic difficulties is very
unlikely to be able to understand the explanations given him by a computer!
Rather, the authors want to sensitize teachers to the idea that such consistent
mistakes do occur in their students, so that the teachers themselves can do the

debugging in the classroom. To this end they have written a program called

Gy
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"BUGGY" which simulates a student who makes consistent arithmetic errors.
Teachers can "converse" with BUGGY, and try to figure out what BUGGY is
doing wrong. The following is a transcript of a dialogue between BUGGY and
a team of teachers. The dialogue includes some commentary about important

issues. Lines which were typed by the team of teachers are marked with a

vertical line in the left margin.

Transcript of a Team Using BUGGY
WELCOME TO BUGGY.

[ HAVE CHOSEN A BUG. HERE IS AN EXAMPLE OF THE BUG.

The system bresents an example in which the student does
not get the right answer.

NOW YOU CAN GIVE ME PROBLEMS TO DETERMINE THE BUG.

I 18 43
bl *79
15 723

The team generates problems that are answered by the "student."
Notice that the team's test problems are similar to the initial
example gererated by BUGGY. This is usually a poor diagnostic
strategy as it may leave other symptoms of a bug undiscovered.

|
Pot the bug!

The team forms an initial hypothesis and tells the system they
have discovered the bug. The system now asks the team to de-
scribe the bug and then tests them on their understanding. Ask-
ing for a description forces the team to verbalize their some-
times fuzzy idea of what the bug is and often makes them realize
how ill-defined or vague their jidea actually is. In the present
system, the descriptions are saved but no attempt is made by the
system to understand them.

PLEASE DESCRIBE THE BUG.
i Student adds the number to be carried into the last column worked in.

This cryptic description is typical of those we have observed.

€1
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Describing bugs in English is surprisingly ¢ fficult.
What the team is trying to say is that if a column adds
to more than 9, the units digit and the carry cigit ave
added together and the result is written as the answer.
For example, in the first column of the example problem,
when 7 and 5 are added, 1 (the carry) and 2 (the units
digit) are added to get 3. The same with 8 + 6, 2 + 9,
3+ 9. (This bug could easily arise if the student were

using Method 2 from Fig. 1 and mistakenly wrote the carry
under the same column.)

The hypothesis does account for the observed behavior. Un-
fortunately, it is not the student's bug. Notice the pos-
sibly humorous, probably disastrous results that would have
transpired if the team had stopped at this point and tried
to tutor the student on the basis of their initial belief!

HERE ARE SOME PROBLEMS TO TEST YOUR THEORY ABOUT THE BUG.
WHAT IS:

21
+39
,‘ET
To ensure that the team has found the correct bug, the sys-
tem produces several problems for the team to solve.

The team's hypothesis is revealed as incorrect by the first
of the five test problems. BUGGY presents its answer and
then allows the team to enter more problems.

THAT'S NOT THE BUG I HAVE.
USING MY BUG:

21

+39

15
TRY GIVING ME SOME MORE EXAMPLES.

51 99 68
+1707 499 49
L =7 36 73

After failing the test, the team gives a greater range of
problems, specifically those using bigger numbers. How is
it that 51 + 1707 can add up to 21? By broadening the

scope of example problems they are able to reevaluate their
initial hypothesis, dismiss it, and develop another one that
is complete and consistent with respect to the new errors.

ERIC b2




Got the Bug!

PLEASE DESCRIBE THE BUG YOU THINK I HAVE.
The student is adding all the digits together.
At this point the computer generates five more problems which the team answers
correctly. The machine then congratulates the team, gives its description of
the bug, and goes on to another.
There is more to BUGGY, but I suggest you go to Brown and Burtor. for
additional details.

3. A Look at "Simple" Word Problems.

For a number of years, a group at the University of Massachusetts at
Amherst has been studying a variety of students' misconceptions in college-
level physics and mathematics. This discussion is based primarily on two of
their working papers, "Translating Between Symbol Systems: Isolating a Common
Difficulty in Solving Algebra Word Problems" by John Clement, Jack Lochhead and
E11iot Soloway, and "Solving Algebra Word Problems: Analysis of a Clinical Inter-
view" by John Clement. These papers deal with college-level students, and (at
least at.first) with subject matter "appropriate" for students at this level.
Yet, there are two very strong similarities between this work and the work de-
scribed in section 1. First, we will see again that a process which is "simple"
to do correctly may yet be a rich source o% potential errors., Second, there
will once again be an almost remarkably perverse consistency in the way that
students make mistakes--to the point where remediation is rather difficult,
even if one understands what the student is doing. Finally, there will be an
interesting contrast between the "static" nature of mathematical language and

the "dynamic" nature of a programming language.
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Since they were dealing with college-level students, the authors began
with problems of some complexity. One problem, for example, asked the student
to determine what price, P, to charge adults who ride a ferry boat, in order to
have an income on a trip of D dollars. The s;udents were given the following in-
formation: There were a total of L people (adults and children) on the ferry,
with 1 child for each 2 adults; children's tickets are half price. The students
were asked to write their equation for P in terms of the variables D and L. When
fewer than 5 percent of the students given the problem solved it correctly, the
authors began to use simpler and simpler problems. After a sequence of increasing-

ly easier problems, they wound up using problems 1like the ones given in Table 1.

£ 4

s d




13

Table 1.

1. Write an equation using the variables S and P to represent the
following statement: "There are six times as many students as professors at
this University." Use S for the number of students and P for the number of
professors.

2. Write an equation using the variables C and S to represent the
following statement: "At Mindy's restaurant, for every four peoplie who
ordered cheesecake, there are five people who ordered strudel." Let C
represent the number of cheesecakes and S represent the number of strudels
ordered.

3. Write a sentence in English that gives the same information as
the following equation: A = 7S. A is the number of assemblers in a factory.
S is the number of solderers in a factor..

4, Spies fly over the Norun Airplane Manufacturers and return with

an aerial photograph of the new planes in the yard.

rR| Ir R Rj

R R R R\

They are fatrly certain that they have photographed a fair sample of one
week's production. Write an equation using the letters R and B that describes
the relationship between the number of red airplanes and the number of blue
planes produced. The equation should allow you to calculate the number of
blue planes produced in a month if you know the number of red planes produced

in a month.

[ Shad
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The correct answers for these four problems are, of course, the foi-
Towing: (1) S = 6P, (2) 5C = 4S, (3) "There are 7 assemblers for every solder-
er," (4) 5R = 88. The success rates for these four problems were respectively
63, 27, 29, and 32 percent.
It might seem at first that the researchers had simply found a bunch
of students who were extremely defective in their algebraic skills. However,

the students had been given the six questions given below in Table 2.

Table 2.
1. Solve for x: 5x = 50
2. Solve for x: 6=30
4 X
3. Solve for x in terms of a: 9a = 10x

4. There are 8 times as many men as women at a partfcular school.
50 women go to the school. How many men go to the school?

5. Jones sometimes goes to visit his friend Lubhoft driving 60
miles and using 3 gallons of gas. When he visits his friend
Schwartz, he drives 90 miles and used _? gallons of gas.
(nssume the same driving conditions in both cases.)

6. At a Red Sox game there are 3 hotdog sellers for every 2

Coke sellers. There are 40 Coke sellers in all. How many

hotdog sellers are there at this game?

On average, more than 95 percent of these problems were solved correctly. There-
fore, their difficulties were not in simple algebraic manipulations. They were,

v
i

ating a statement from a sentence into a suitable algebraic form.
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Actually, the situation is even worse than this, for the students were mare
than competent {n algebra. Clement's papér provides a detailed analysis of the
transcript of a problem-solving session with one student who consistently gets
probiems of this nature wrong. The student was doing B+ work in a standard
calculus course at the time of the interview, and had been able to differentiate
the function f(x) = A2+ 1 rapidly, using the chain rule, Qithout difficulty.

We shall examine “students and professors" problem from Table 1 in
some ‘detail. As in thg Brown and Burton work, the key to the analysis is the
fact that the students' errors were remarkably consistent for all of the prob;
lems in Table 1. More fhan four-fifths of the incorrect solutions to problem 1
were of the form 65 = P; of problem 2, of the form 4C = 5C; of problem 3, of the
form "Seven solderers for every assembler"; and of problem 4, 8R = 5B, In other ‘
words, there was a very consistent reversal of the symbols and their role in the
equations.

The authors identified two major causes for the reversal. The first is
what we might call a “syntactic"” translation of a sentence into algebraic form.
The student reads a]oﬁg the seﬁfence, replacing words where appropriate by al-
gebraic symbols. Thus:“"six times as many students” becomes 6S; "as" becomes
equals, and "professors" becomes P. The resulting equation jis 6S = P. C]inicsl
interviews substantiated the fact that many students solved the probiem this way.

The second group of students recognized that an equation does stand for
a relationship between two quantities. However, the way that they represented
that relationship to themselves resulted in a reversal. Many of the students,
for example, drew pictures such as the one given in Figure 2 below. On one

side of the desk is the professor; on the other side are the 6 students. This

0
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is the equality: 6S = P,

0101010100110

FIG. 2. Student's sketch.

To the mathematician, an equation for the "students and professors"

.problem is a device which allows him to calculate the number of students given

the numbgr of professors, or vice-versa. Since there are 6 times as many stu-
dents as é}ofessbrs, ane must multiply the number of professors by 6 to get the
number of students (for example, 10 professors yield 60 students). Thus, S =

6P. Obviously, students do not have this perspective.

| In one last experiment, the authors provide some dramatic evidence of

the difference between the static and dynamic interpretations of an equation.
Their "sybjecté" were 17 professional engineers who had between 10 and 30 years

of éiﬁériencé each. The engineers had come to take a course in the éASIC program-

ming language. On the first day of the course, the engineers were asked to write

an equation for the following statement:

<\ ) "At the last football game, for every four people who
bought sandwiches, there were five who bought hamburgers."

. Only 9 out of 17 of the engineers solved the problem correctly. The following
day, without there having been any discussion of the previous problem and the
so]ution_to it, the engineers were asked to write a computer program as foliows:

- "At the last company cocktail party, for every 6 people
who drank hard Tiquor, there were 11 people who drank beer.

Write a program in BASIC which will output the number of beer

drinkers when supplied with the number of hard liquor drinkers."

Q P
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A11 17 of the engineers solved the problem correctly.

The authors further substantiated these results(with less impressive,
though still "significant" statistics) with a study of some college students
in a programming course. Agdain, these results are quite surprising: it would
appear a harder task to write a program (involving syntax statements, etc.)
than it would be simply to write an equation. The notion of programming aiso
suggests a possible means of remediation: if we train students to think of an
equation as a "program” with inputs and outputs, we may increase the likelihood
of their getting the correct answers. "

4., A Look at Problem Solving.

In the preceding three sections, we saw that apparently random problem-
solving behavior can actually be quite consistent. In the work with BUGGY and
with elementary word problems, the focus was on consistent patterns of mistakes,
for purposes of diagnosis and remediation. In this section we look at the flip
side of the coin. Just as a look beneath the surface discloses consistency in
novices' incorrect behavior, a look beneath the surface will also disclose great
consistency in the problem-solving behavior of experts. This idea is not new,
of course. It is the keystone of two major (and often irreconcilable) approaches
to problem solving in this century. First, we have Polya's work on heuristics.
Polya describes many strategies which, in spite of idiosyncratic differences in
personal behavior, are common to expert mathematicians when they work on problems.
Or the opposite side of the fence, we have work in artificial intelligence. Here,
toc the assumption is that problem-solving behavior can be so consistent that
it can actually be modeled in enough detail for computer implementation.

0f course there are gross differences between the two approaches. Polya's

work is sometimes vague, generaliy descriptive, and covers the entire breadth of
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matheﬁa$ica1 problem solving. Workers in artificial intelligence reject the
vaguenes§\gf Polya's work, and talk about thé precision in their own work:
after all, }st write programs which actually solve problems, and "the proof
is in the puddﬁﬂg." However, the price they pay is that (until now at least),
to obtain the pr;hQsion they need, they must work in extremely narrow subject

\
area domains. N

My work is an\étpempt to reconcile these two approaches, with what
might be called a type o%‘“human artificial intelligence." As in artificial
intelligence, we might try ;okpodel expert behavior. However, the goal is not
to model it for machine imélementation. The idea instead is to pick out those
aspects of expert behavior Which students can Tearn. The discussion which fol-
lTows is a distilled version of my papén "Teaching Problem So]v{ng Skills," which
will appear later this year in the Monthlx.\ Other papers which deal with the
same ideas in more detail are given in the ﬁiniography.

To make the point that experts and nov;bgf approach problems in dramat-

ically different ways, consider the following threé problems--all of which are

ostensibly accessible to high school students. \\\\

N

, } . . ] N
Problem 1: Let a, b, e, and d be given mumbers begween 0 and 1.

Prove that (1-a)(1-b)(1~c)(1~d) > 1-a-b-dwd.

. . . 1 2 n
0. - * == ———
Problem 2: Determine the swm ST 3Tt e T

Problem 3: Prove that if ' - 14isa prime, them n is a priﬁai
On problem 1 most students will laboriously multiply the four fab{prs
. AN
on the left, subtract the terms on the right, and then try to prove that N
AN

(ab+ac+ad+bc+bd+cd-abc-abd-acd-bcd+abed) > 0--usually without success. Vir-

tually all the mathematicians ['ve watched solving it begin by proving the

-
()

AN

N\

\\
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inequality (1-a}(1-b) > 1-a-b. Then they multiply this inequality in turn by

(1-c) and (1-d} to prove the three- and four-variable versions of it.

Likewise in problem 2, most students begin by doing the addition and
placing all the terms over a common denominator. A typical expert on the other
hand, begins with the observation "That looks messy. Let me calculate a few
cases." The inductive pattern is clear and easy to prove.

The colleague who read problem 3 and said "That's got to be done by con-
tradiction” was typical; given the structure of the problem, one really has no
alternative. Yet this almost automatic expert observation is alien to students:
a large number of those to whom I have given the problems either respond with
comments like "I have no idea where to begin" or try a few calculations to see
whether the result is plausible, then reach a dead end.

Of course these are special problems, for which expert and novice per-
formance is remarkably consistent. While the experts did not consciously fol-
Tow any strategies, their behavior was at least consistent with these "heuristic"
suggestions:

a. For complex problems with many variables, consider solving an

analogous problem with fewer variables. Then try to exploit
either the method or the result of that solution.
Given a problem with an integer parameter n, calculate special
cases for small n and look for a pattern.
Consider argument by contradiction, especially when extra "artil-
Tery" for solving the problem is gained by negating the desired
conclusion.

Many of the novices were unaware of the strategies, and many others "knew of

them" (that is, upon seeing the solution they acknowledged having seen similar
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solutions] but hadn't thought to use them. Expert and noyice problem solving

are clearly different. The critical question is: Can we train novices to solve
the problems as experts do?

There are a number of obstacles. First, we have to factor out simple
subject matter knowledge: there is no way that one can hope to give the stu-
dents experience before they have it, or to compensate for it. Rather, we
would iike to provide the students with strategies for approaching problems
with flexibility, resourcefulness, and efficiency.

Second, we must realize that the heuristic strategies described by
Polya are far more complex than their descriptions would at first have us be-
lieve. Consider the following strategy and a few problems.

“To solve a complicated problem, it often helps to examine and solve
a simpler analogous problem. Then exploit your solution."

Problem 4: Two points on the surface of the unit sphere (in 3-

spacel] are comnected by an arc A which passes through
the intertor of che sphere. Prove that if the length
of A is less than 2, then there is a hemisphere H which
does not intersect A.

t a, b, and ¢ be positive real rnumbers. Show that not
all three of the terms a(l-b), b(l-c), and c(l-a) can ex-
ceed 1/4.

Problem 6: PFind the volume of the unit sphere in 4-space.

2 2 2

. . L . 2 . s . . L .
Problem 7: Prove that if a” + b” + ¢ + d = ab+be+ed+da, then a=b=c=d.

These four problems, like problem 1, can be solved by the "analogous

problem" strategy. Yet, it is unlikely that a student untrained in using the
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strategy would be able to apply it successfully to many of these. Part of the
reason is that the strategdy needs to be used differently in the solution of
each problem.

In solving probiem 1, we built up an inductive solution from the two-
variable case, using the result of the analogous problem as a stepping stone
in the solution of the original.

In contrast, analogy is used in problem 4 to furnish the idea for an
argument. The problem is hard to visualize in 3-space but easy to see in the
plane: we want to construct a diameter of a unit circle which does not inter-
sect an arc of length 2 whose endpoints are on the circle. O0Observing that the
diameter parallel to the straight line between the endpoints has this property
enables us to return to 3-space and to construct the analogous plane.

Problem 5 is curious. It looks as though the two-variable analogy should
be useful, but I haven't found an easy way to solve it. At first the one-var-
jable version looks irrelevant, but it's not. If you solve it, and think to
take the product of the three given terms, you can solve the given problem. So
again we exploit a result, but this time'a different result in a different way.

Problem 6 exploits both the methods and results of the lower-dimensional
problems. We integrate cross-sections, using the same method; the measures of
the cross-sections are the results we exploit.

In problem 7 it would seem apparent that the two-variable problem is
the appropriate one to consider. However, which two-variable problem is not
at all clear to students. A large number of those I have watched tried to
solve

Proplem 7': Prove that a° + [ = ab ‘mplies that a=b, instead of

Precblem 7": Prove that a° + 7 = ab + ba itmplies a = D.
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We conclude that the description "exploiting simpler analogous prob-
lems" 1s really a convenient label for a collection of similar, but not identi-
cal, strategies. To solve a problem using this strategy, one must (a) think to
use the strategy (this is non-triviall), (b) be able to génerate analogous prob-
lems which are appropriate to look at, (c) select among the analogies for the
appropriate one, (d) solve the analogous problem, and (e) be able to exploit
either the method or result of the analogous problem appropriately.

If we assume now that we can actually describe the strategies in enough
detail so that people can use them, we run right into another problem. That is:
a 1ist of all the strategies in detail would be so long that the students could
never use it! Knowing how to use the strategy isn't enough: the student must
think to use it when it is appropriate.

Consider techniques of integration in elementary calculus. There are
fewer than a dozen important techniques, all of them algorithmic and relatively
easy to learn. Most students can learn integration by parts, or substitution,
or partial fractions, as individual techniques and use them reasonably well, as
long as they know which techniques they are supposed to use. (Imagine a test
on which the appropriate technique is suggested for each problem. The students
would probably do very well.) When they have to select their own techniques,

however, things often go awry. For example, 5§9§, a "gift" first problem on

a test, caused numerous students trouble when tﬁe;gtried to solve it by partial
fractions or, even worse, by a trigonometric substitution!

In "Presenting a Strategy for Indefinite Integration" (The Monthly,
Oct. 1978) I discuss an experiment in which half the students in a calculus

class (not mine) were given a strategy for selecting techniques of integra-

tion, based on a model of "expert" performance. The other students were told

D—’,,
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to study as usual--using the miscellaneous exercises in the text to develop
their own approaches to problem solving. Average study time for members of
the "strategy" group was 7.1 hours, while for the others it was 8.8 hours;
yet the "strategy" group significantly outperformed the rest on a test of
integration skills--in spite of the fact that they were not given training
in integration, just in selecting the techniques of integration.

The "moral" to the experiment is that students who cannot choose the
“right" approach to a problem--even in an area where there are only a few use-
ful straightforward techniques--do not perform nearly as well as they "should."
If we Teap from techniques of integration to general mathematical problem
solving, the number of potentially useful techniques increases substantially,
as does the difficulty and subtlety in applving the techniques. An efficient
means for selecting approaches to probiems, for avoiding "blind alleys," and
for allocating problem-solving resources in general thus becomes much more
critical. Without it, the benefits of training in individual heuristics may
be Tost.

In consequence of the above, an attempt to teach general mathematical
problem solving would need these two components: first, a detailed description
of individual strategies, and second, a global framework for selecting these
strategies and using them efficiently. One way of presenting such a framework
is with a "model" of expert problem solving. That model takes a semester to
unfold, so there is no sense in my attempting to summarize it here. What I
have done is simply to give the outline of the model (see Figure 3), and a
description of tne most important heuristic strategies which fall within each

of the major blocks of that strategy (see Figure 4).
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Given Problem

ANALYSIS |2 < <
Understanding the Statsment More Accessible
Simplifying The Problem Related Problem
Reformulating the Problem or

New Information
Useful Formulation;
Access to Principles
and Mechanisms
Minor
Difficulties

DESIGN . et EXPLORATION
Structuring the Argument Major Essentially Equivalent
Hierarchical Decomposition: Bifficulties Problems

global to specific STightly Mod{fied
Probiems
Broadly Modified
* Problems
Schematic Solution

IMPLEMENTATION
Step-by-Step Execution
Local Verification

Tentative Solution

VERIFICATION - _
Specific Tests
General Tests

Verified Solution
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SOME IMPORTANT HEURISTICS IN PROBLEM SOLVING

For Analyzing and Iimderstanding A Problem:

1. Draw a Diagram if at all possible.

2. Examine Special Cases, (a) to exemplify the problem, (b) to explore
the range of possibilities through limiting cases,(c) to find inductive
patterns by setting integer parameters equal to 1,2,3,... in sequence.

3. Try to simplify it, by using symmetry or "without loss of generality."

For the Design and Plaming of a Solution:

1. Plan solutions hierarchically.
2. Be able to explain, at any point in a solution, what you are doing
and why; what you will do with the result of this operation.

For Exploring Solutions to Difficult Problems:

1. Consider a variety of equivalent problems,
(a) replacing conditions by equivalent ones,
(b) recombining elements of the problem in different ways,
(c). Introducing auxiliary elements,
(d) Re-formulating the problem by (i) a change of perspective or
notation, (i) arguing by contradiction or contrapositive, or
(i11) assuming a solution and determining properties it must have.

2. Consider Slight modifications of the original problem:
(a) Choose subgoals and try to attain them.
(b) Relax a condition and try to re-impcse it.
(c) Decompose the problem and work on it case by case.

3. Consider Broad modifications of the original Problem:
(a) Examine analogons problems with less complexity (fewer variables).
(b) Expi e the role of just one variable or condition, the rest fixed.
(¢) Exp? any problem with a similar form, "givens," or conclusions;
try to exploit both the result and the method.

For Verifying a Solutiom:

1. Use these specific tests: does it use all the data, conform to reasona-
ble estimates, stand up to tests of symmetry, dimension analysis,scaling?

2. Use these general tests: Can it be obtained differently, substantiated
by special cases, reduced to known results, generate something you know?

o FIG. 4
" oy oy
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Of course, documenting improved problem-solving ability is rather diffi-

cult. I am slowly amassing evidence, in a variety of different ways. that in-
struction in problem solving actually can have an impact on students' problem-
solving performance. The material on integration provided some evidence of
this. A "laboratory study” demonstrated that "problem-solving experience”
in and of itself is not enough: in the experiment, two groups of students
worked on the same problems for the same amount of time and saw the same solu-
tions, but one saw in addition heuristic explanations of the solutions. The
differences in thefr performances were dramatic. (See "Explicit Heuristic
Training as a Vaviable in Problem Solving Performance.") Third, there is a
large amount of "before and after" data on the students in the problem-solving

course. These data indtcate both an improved problem-solving performance on

the part of the students and an improved ability to generate plausible approaches
to problems, as opposed to a control group. (These data are shaky, and I do not
want to base any claims on them for fear of being lumped with the people I con-
demned for the inappropriate use of statistics at the beginning of this paper.
Next year, I will be in a better position: I plan to teach a course virtually
identical in subject matter to my problem-solving course, save for the fact that
[ do not discuss the problem-solving strategy in particular. That will be as
close a controlled group as I can hope to get; at that point, I will have more
faith in the statements I can make.) In the meantime, there is much data to

be analyzed by a variety of different means--means which were unavailable just

a few years ago, and which come from a variety of disparate sources. As one

sucn example, let me discuss briefly the notion of “hierarchical cluster analysis."

Consider the following three problems.
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Prcblem 8: Given that lines intersect i1f and only if they are
not parallel, and that oy wo points in the plan de-
termine a unique line between them, prove that ay
two distinet nomparallel lines must intersect in a
untque point.

Problem 9: Given 22 points on the plane, no three of which lie
on the same straight line, how marny straight lines
can be drawn, each of which passes through two of
those points?

Problem 10: If a funetion has an inverse, prove that it has only
one tnverse.

Let us take an extreme case. The student who understands virtually
nothing of these problems may think that problems?8 and 9 are related because
they both deal with 1ines in the plane. On the other hand, the mathematician
sees that both probiems 8 and 10 deal with the uniqueness, and are likely to
be proved by contradiction. Therefore he may perceive of those problems as
being similar.

Suppose 100 students were given these 3 problems, and asked to group
together those problems which they thought were related. (They might decide
that none of the problems was related or that two of them were, or that three
of them were.) One could then create a 3 by 3 matrix, where the i,j-th entry
represented the number of students who considered the i-th and j-th problems
to be related. A comparison of these matrices before and after instruction,
for both experimental and controlled groups, could indicate changes in the

students' perceptions of the way these problems were structured mathematically.

ERIC -
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In fact, my cluster analysis used 32 problems, with a 32 x 32 matrix
for analysis. There were clear differences between experimental pre- and post-
test scores, and contro]]ed pre- and post-test scores. Further comparison with
"expert" sorting of the problems is also planned. The full tally is yet to come,
but the preliminary results are encouraging. There will be more about techniques
such as this in the next section.

S. Summary and Conclusion.

The three pieces of work I described above give barely a taste of re-
search in mathematics education today. It is interesting to note that none of
the people involved comes from the "classical" mathematics education community.
Brown and Burton come from what might be loosely described as the "artificial
intelligence" community. Clement, Lochhead and Soloway are housed in the Physics
Department at Amherst. I came from pure mathematics, and the techniques I use
are derived from both Al and modern cognitive psychology. My work has profited
greatly from criticism by classical math educators and members of all the com-
munities mentioned above. This is indicative, I think, of the general state of
education today: research now is highly interdisciplinary, and profits greatly
from being so.

The one problem with such breadth and scope is that results are scat-
tered and hard to find. I found out about all the work above, for example,
from the research "grapevine" in mathematics education. Few mathematicians

read Cognitive Science, for example, or the International Journal for Man-

Machine Studies. Publications of the AMS for the most part do not deal with

mathematics education; space in the Monthly is severely limited, and is reserved

for articles directly appropriate to college-level math education; the Journal

S
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for Research in Mathematics Education is not read by mathematicians for the

mosf part, but by math educators; therefbre it is difficult for the mathemat-
jcal community to have a good idea of the new and exciting things in mathe- N
matics education. I hope the preceding has whetted your appetite. If so, you
will find many more interesting things to read in the bibliography. I have not
at all tried to be comprehensive; in fact, I have omitted those sources with
which the mathematician is 1ikely to be familiar. If you like what you see in
the bibliography, the bib]ibgraph%es in those articles will lead you to more.

In any case, I hope you have been convinced of one thing: there is hope.

L)
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Zpisodes and Zxecutive Zecisions

Abstract

The research described here seeks to characterize the "managerial"
aspects of expert and novice problem-solving behavicr, and to describe the
impact of managerial or "executive" actions on succass or failure in proo-
lem solving. We present a framework for analyzing protocols of problem-
solving sessions based on "episodes" of problem-solving behavior and fo-
.asing on ranagerial decisions between episcdes. xperis are show: to
have rather "vigilant" managers, which strive for efficiency and accuracy.
In contrast, novices squander their problem-solving resources because they

lack such managers.
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Enisodes ana Executive Decisions

Episodes and txecutive Cecisions in

Mathematical Probiem Solving

Introduction and Qverview

This is a rather speculative paper dealing with "managerial" deci-

sions in human prohlem solving. It presents a (still evolving) framework
for the analysis at the macroscopic level of problem-solbing protocols, fo-
cusing on "executive" behaviars. The paper is based on the ‘cilow.ng premise.

There are two qualitatively different kinds of decisions, which we
shall call "tactical" and "strategic," which are necessary in broad, seman-
tically rich domains (for example, mathematical problem solving at the col-
lege freshman level). The first, tactical decision making, has received the
lion's share of attention. By tactics I mean "things to implement.” Tactics
include all algorithms and most heuristics, both of the Pdﬁya type (e.g., draw
a diagram whenever possible; consider special cases. and of the kinds used in
Artificial Intelligence (means-eids analysis, hill-climbing). Given that one
has decided to calculate the area of a particular region, the choice of whether
to approach that calculation via trigonometry or analytic geometry is a tacti-
cal choice.

In contrast, "strategic" or managerial decisions are those which have
a major impact on the direction a solution will take,and on the allocation of
one's resources during the problem-solving process. For example: If one is
given twenty minutes to work on a problem and calculating the area of a re-
gion is-likely to take ten minutes, the decision to calculate the area of

that region is a strategic one--regardless of the method ultimately chosen
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for performing the calculation. Like a decision during wartime to open a front,
this one choice may determine the success or failure of the entire enterprise.

This separation or managerial decisions from implementation decisions
nas imolications for both human and machine problem solving. Mathematics preb-

fas~]

lem-sclving instruction to date nhas focused largely, and with somewnhat quesction-
atle success, on heuristics or "tactics." I propose that much of the reason for
this lack of success lies in the fact that attention to managerial behaviors has
mostly been neglected. The protocols discussed below will indicate that heuris-
tic fluency is of little value if the heuristics are not "managed" properly. I
believe that much greater attention will have to be paid tc "metaheuristics" or
managerial actions in classroom instruction, if we are to be successful in teach-
ing oroblem-solving skills.

There appear to be parallels in artificial intelligence. Regardless of
their sophistication, producticn systems are essentially tactical decision makers.
They are not strategists. The managerial decisions made in such programs, by "con-
flict resolution strategies" when the conditions for rore than one production are
met simultaneously, seem to be more or less ad hoc and idiosyncratic, rather than
theory-based. For the most part, programming in narrow domains finesses the ques-
tion of managerial strategies. However, such concerns cannot be ignored as the
domains of investigation are broadened. Further, some attempt at dealing with
executive strategies must be made for the creation of "glass box" experts in
computer-based tutorial systems for non-trivial domains. Since such decisions
are an important component of humaﬁ problem solving, any system in a broad arena
wnich ignores them wiil lack psychological validity.

This paper discusses a framework for examining, at tne macroscopic

level. a broad spectrum of problem-solvifig protocols. Protocols are parsed into

ERIC

Aruitoxt provided by Eic:




Episodes and Executive Decisions
4

major "episodes." These are periods of time during wnich the problem solver(s)
is engaged on a single set of like actions, such as "planning" or "exploration."
It is precisely between such episodes that the managerial decisions wnich can
'make or break" a solution are often made, or not made. We focus on decision
making at these points, and on the impact of such decisions--or their absence--
on problem-solving performance. The quality and success of problem-s0lving
endeavors will be seen to correspond closely (in human problem solving) to the

presence, and vigilance, of such 'managers.’

ERIC
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A Discussion of An%ecedents

8y definition, protocol coding scnemes are cencerned with producing
objective records or "traces" of a sequence cf overt actions taken by in-
gividuals in the process of solving proclems. In mathematics education, the
coced orotocol is generally subjectdd to a qualitative analysis; often ccr-
relations will be sought between certain types ov behavior (e.g., the pre-
sence of goal-oriented heuristics) and problem-solving success. In arti-
ficial intelligence, the goal is often to write a program that will simulate
a2 given orotocol, or the idealized behavior culled from a variety of proto-
cols. 1In both cases the level of analysis is microscopic. My goal here is
to indicate that in many cases the mirroscopic level analysis may te entirely
inapgropriate. In analyzing human problem solving, attention to that level
of detail may cause one to 'miss the forest for the trees"; if the wrong
strategic decisions are made, tactical ones are virtually irrelevant. In
arti“icial intelligence, great progress has been made at tne tactical level
throiagh the use of production systems. [t is not at all clear, however, that
they wili serve well for making managerial decisions. [ ocelieve that we may
wish to think of these executive decisions as being at a nigher level than
tac=-cal ones, and may want to deal with these "stratagists” separately.
(Mote: what follows is an opinionated discussion of the recent

literature, which depends heavily on the distinction between "tactical" or
"strategic" or "managerial" decisions. These distinctions may be much clearer
1fter the reacer has considered the examples disrussed 1n the next section.
~hus the reader may wish to skip ahead to that section, and later consider

she comments made here in tne light cf those examples.)

(o
o
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The following description, taken from Lucas et al., (1979, p. 354) is

typical of the efforts of mathematics educators to deal with problem-solving

orotocols.

(T]ne authors came to agreement on the definitions for a

set of constructs which were to represent observable, dis-

joint problem solving behaviors and related phenomena .

Fach event was assigned a symbol, and the collection of events
which comprised a problem-solving sequence of processes was
recorded in a horizontal string of symbols corresponding to

the chronological order of appearance during the actual prob-
lem solution. In this manner a researcher could listen to a
tape of a problem solution (in conjunction with observing
written wort interviewer notes, and/or a verbatim transcript)
and produce a string of symbols which represented the composite
perception of the solution process. Conversely, an examination
of the given string of symbols could be used to provice a reason-
ably clear picture of what had happened during a problem-solving
episode.

That particular coding scheme included a two-page "dictiorary” of pro-

cesses which were assigned coding symbols. All behavior was "required to be

explicit; otherwise it is not coded." (p. 359) As an example of the coding,

the sequence (p. 361)

The problem solver reads the problem, hesitates, rereads part

of the problem, says the problem resembles another problem

and he will try to use the same method, then deduces correctly
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a piecz of information frcm one of the given data

was coded as (R,R,L.P.D_.
5 1 ad

In part because of the cumbersome nature of such systems and the weaizh of
symbois that mus:t be dealt with,once coded, other researchers have optad to
focus cn more restricted supsets of behaviors. Xuim's recent NI--supoorted
aork, "Analysis and Synthesis of Mathematical Problem Solving Processes,’ uses a
revised and more condensed process code dictionary (private communication, 1979).5
<antoaski's recent work (MNote 3} incluces a "coding scneme for heuristic pre-
cesses of interest" wnich focuses on five neuristic processes related to planning,
four related to memory for similar probiems, and seven related to lccking back.
The frequency of such processes is related to problem-solving performance.

So far as I know, there are no systems for protocol analysis that focus
1n any substantive way on strategic decisions. There are no frameworks for
dealing with things which ought to have Geen corsidered, but were nct. For the
most part, <¢iscussions in the literature of axecutive decision making during
prob emr solving are weak. Polya, for example {1365, p. 96) offers 'Rules of
Prefer:nce" for choosing among options in a droblem-sclving task. These include
injunctions such as "the less difficult precedes the more difficult" and "For-
verlvy soived problems naving the same r1nd of unknown as the present prcdlem
precede otner formerly solved problems. My own attempts (Schoenfeld, 1973,
198Q) at capturing a managerial strategy in flow chart form for students' im-
plementation were somewhat impoverisned, the flow chart in effect presenting a
default strategy. All other factors being scquai--meaning that the arobiem
solver had exhausted the lires of attack whicn had appeared frui*ful (nis
vroducsions?") and had no strong leads to follow up--1t was considered rzason-

-

abie o try the neuristic suggestions in this "managerial strategy,

roughiy n

59
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the manner suggested by the flow chart. This bypassed the tough questions,
however. Issues like: how does one decide what to pursue; for how long;
how does one evaluate progress towards a solution; when should the "manager’
interfere, etc.,whiie discussad in class, were not formally a par’. of the
strategy. Moreover, there was no systematic and rigorous framework for ex-
amining these questions.
As a result of (1) the narrowness of the problem domains in which
artificial intelligence has successfully operated, and (2) the tac.
utility of production sy§tens in thosa domains, the Al community has given
even less attention to executive strategies than has the math-ed community.
The questions are not new: the "considerations at a position in problem
space” listed by Allen Newell (1966, figure 5) are quite similar to those we
will pose below. But
"Select new operator:
Has it been used before?
[s it desirable: will it lead to progress?
Is it feasible: will it work in the present situation if
applied?"
takes on very different shades of meaning at the strategic rather than the
tactical level. So far as I can tell, (and my knowledge of such is limited)
recent advances .in production systems allow for rather clever tactical de-
cision making. There are computationally efficient means of keeping track of
and sorting through productions for relevancy . and there are conflict resolu-
tions systems (McDermott & Forgy, 1978) for selecting among productions wnen

the conditions for more than one of them have been satisfied. Sucn structures
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orocnibit productions from executing more cthan once on the same data. This

prevents the Xind of endless reptitions all too common in students and

forcas, if necessary, the examination of all available information. Since
areference is given to productions whose conditions are satisfied by elements
most rzcantly placed in working memory, *nere is a "natural" continuity to

the sequence of operaticns. Other means of selection (e.g., specificity ore-
cades generality) provide plausible means of selecting tactics in relatively
narrow domains. Yet I am not sure that the level of analysis is right for
general problem solving, or that such strategies would have much to say about
the strategic decisions in the examples given in the next section. Similar
comments apcoly to the "adaptive" or "self-modifying” production systems de-
scribed by Anzai and Simen (1979), MNeves (1978), and Neches (1379). While the
learning principles they exemplify may be general, the embodiments of those
principles in those papers are at the tactical level. Simon (1980) argues

that "effective professional edication calls for attention to both subject
matter knowledge and general sk-1ls (p. 86)"-an0 then goes on to say (p. 91)
tHat "general skills (e.g., means-ends analysis) will be particularly important
in the learning stages but will also snow up implicitly in the form of the pro-
ducéions that are used in the skilled performance." 3ut even this i3 one ste
removed from the heart of the matter: what underlies the form of the productions
is in the mind of the programmer, not in the productions. We need a methodology

for focusing on those general skills directly.

(1)

Q
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An Informal Analysis of Two Protocols

The Al literature is filled with beautiful protocols. I nave never
been that lucky: those generated by my students (and to some extent by my
colleaques) in the procaess of grappling with relatively untamiliar problems
nave been, on the wnole, rather unaesthetic. This section considers two such
protocols, each generated by & pair of students. (Following a suggestion frcm
Jonn Seely Brown, [ have students work on problems in pairs. While the ques-
tion "why did you do that?" coming from me may be terribly intimidating 3nd
is likely to alter the solution path, tne questicn "why should we do that?"
from a fellow student working on a problem is not. This type of dialogue be-
tween students often serves to make managerial decisions overt, whereas such
decisions are rarely overt in single-student protocols.) An informal analysis,
focusing on the importance of managerial decisions, follows.The formal analytic
structure is given in the next section.

Protocols 1 and 2 are given in Appendices 1 and 2, respectively. The
students were asked to work on the problem together, out loud, d4s a coilaborative
effort. They were not to go out of their way to exolain things for the tape,
if that interfered with their problem solving; their interactions, if truly
collaborative, ~ould provide me with the information I needed. (See Ericsson
and Simon (1978; 1979) for a discussion of instructions for speak-aloud experi-
ments.) All of the students were undergraduates at a liberal arts college.
Students A and X (protocol 1) had 3 and 1 semesters of college mathematics
(calculus) respectively. Students D and 8 {protocol 2) each had 3 semesters
97 college mathematics. It should be recalled that such students, by most
standards, are successful problem solvers: the unsuccesstul ones had long
since stopped taking mathematics courses. B8oth protocols are o7 the same

(1)

AV AR
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oroblem:

Three points are chosen in the circumference of a circie of

radius R, and the triangle containing them is drawn. W“hat

choice of points results in the triangle with the largest

possible area? Justify your answer as dest you can.

If orotocol 1 makes for confused reading, the tape it was taken irom
makes for even more pained viewing. [ would summarize the problem-solving ses-
sion as follows:

The students read and understood the problem, and then quickiy con-
jectured that the answer was the equilateral triangle. They impetuously de-
cided to calculate the area of the triangle: and spent the next 20 minutes
doing so. Trnese calculations of the area were occasionally punctuated by
suggestions which might have salvaged the solution, but in each case the
suggestions were tickly dropped and the students returned to their relentless
pursuit of tne wo thless calculation. (Neither student could tell me, after
the cassette ran out of tape, what good it would do them to know the area of
the equilateral triangle.) Observe the following.

1. The single most important event in the twenty-minute problem-solving ses-
sion, upon which the success or failure of the entire endeavor rested,
was one which did not take -lace--the students did not assess the oc
tential utility of their planned actions, calculating the area of the
equilateral triangle. In consequence, the entire session was spent on -
a wilid goosg chase.

2. Inadequate consideration was given to the utility of'potential alternatives
which arose (and then submerged) during .he problem-sclving process. Any

af these: the relatea problem of maximizing a rectangle in a circle {item

01
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28), the potential application of the calculus (item 59 for what can in-
deed be considered a max-min 5rob1em; the qualitative varying of friang]e
shape (item 68 might have, if pursued, led to progress. Instead, the
alternatives simpiy faded out of the picture. (See, for example items 27
to 31.} |

3. Progress4is never monitored or (re)assessed, so that there is no reliable
means o% terminating wild goose chases once they have begun. (This is to.
be stroqg]y contrasted with an expert protocoi, where the probiem sciver 1n- -
terrupted the implementation of an outlined solution with "this is too com-
plicated. I know the problem shouldn't be this hard.")

Now, how doeé one code such a’protocol? First, we should observe that
matters of detail (sqqﬁ as whether or not the spudentg will accurately re-
member the formula for\the area of an equi]aferal triangle, items 73 %o 75)
are virtually irrelevaqt. To return to the military analogy in the opening
section: if it was a major strategic mistake to open a second front in a war,
"the details of how a hill was taken in a minor skirmish on that front are of ~
marginal- interest.

A second and more crucial point is that the overt actions taken by the

problem solvers in that protocol are, in a sense, of minor import. The prob-
lem-solving effort was a failure because of the absence of assessments and
strategic decisions. Any framework that will make sense of that protocol must
go beyond simply recording what did happen; it should suggest when.strategic
decisions ought to have been made, and allow one to interpret success or fail-

ure in the light of whether, and how well, such decisions were mace.
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[T protocol 1 stands as evigence of the damage that can be caused by
a manager "in absentia,” protocol 2 provides evidence of the catastrophiq
effects of bad management. The proéesges in this tape were not muddled, as
in protocol 1; the decisions were overt and clear. The next paragraph sum-
marizes the essential occurrences in the tape. The superscripts refer to
the commentary that follows.

b and B quickly conjecture that the solution is the equilateral
triangle, and look for ways to show it. 0, apparently wishing to exploit
symmetry in some way, suggests that thev examine triangles in a semiéirc]e
with one side as diameter. Théy find the optimum under these constréints,
and reject it "by gye" as inferior to the equi]atera].] Still focusing on

2 to maximize the area of a right triangle in a semi-

symmetry, they decide
circle, where the right angle lies on the diameter. This (serendipitously
correct) decision reduces the original problem to a l-variabie calculus prob-

Iem3 which B proceeds to work on. Tweive minutes later the attempt is aban-

4 . : - . . ) . :
_ doned,  and the solution process degenerates into an aimless series of explora-

tions, most of which serve to rehash the previous,work.5

1. Rejecting the alternative is quite reasonable, as are> their actions
in ana]yiing the problem up to this poipt. Howeyer, this blanket
rejection may have cost them a great deal. The variational argument
they used to find the isosceles right triangle (holding the base
fixed and cbserving that the area is iargest when the triangle is
iéosce]es) is perfectly general and can be used to solve thé original
problem as stated. B8ut the students simply turn away 7rom their un-
successful attempt, without asking if they could iTearn from it. 1In

doing so, they may have “thrown out the baby with the bath water.”

QO
v
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2. This decision, which affects the direction of the solution fér Tore than
60% of the allotted time,is made in a remarkably casual way (items 24 to
27 ):

D: (affer one attempt at symmetry has failed) ...you want td
- make it perfectly symmetrical, but we can, if we maximize
this area, just flip it over, if we assume that it is gning
to te symmetrical.
B: Yea, it is symmetrical. .
This assumptior is not at all justified (they are assuming part of what
they are to prove). The students have changed the probtem and proceed,
without apparent concern,-to work on the altered version.

3. B's tactical work here is quite decent, as is much of both students; tactical
work throughout the salution process. The decision to “scale down" the prob-
Tem to the unit circle (item 37) is just one example of their proficiency.
There is awareness of, and access to, a variety of heuristics and algorithmic
techniques during the solution. Unfortuﬁate]y, 8 lost a minus sign during
this particular ca.culation, which gave him a physically fmpossib]e ansvar.
He was aware of it; local assassment worked wé]k. However, global assess-
ment (see 4 and §) did not. »

R 4. This decision to abandon the ana]}tic aporoach is just as asﬁonishing, in
the way it takes niace (items 74 and 75) as the decision to undertake it:
D: Well, let's leave the numbers for a while and see
if we can do it geometrically.
B: Yea, you're probably right.
Given that more than 60% of the soiution has been devoted to that approach
(and that correcting a minor mistake would salvage the entire operation),

Q 9:’




Episodes and txecutive fecisions

-

15
this casual dismissal of their .previous efforts has rather serious
consequances. ) ‘

5. There were a number of clever ideas in the earlier attempts made by

. D and 8. Had there been an attemﬁt qt a careful review of those at-
tempts, something might have been sa]véged. instead, there was simply
2 "once over lightly" of the previous work that-added nothing to what
they had already done. ‘

A framework for focusing on the managerial decisions in such protocols is dis-

cussed in the next section.

~

2
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A (ooorly defined and still evolving) Framework for the Macroscon1u Analysis
of Certdin Kinds of Proflem-Solving Protacols

The two prqtocols discussed in the preceding section raise the majér
quéstions I wish to address here. I believe that decisions at the managerial
1eve]'may "méke or brgak“ a probiem-soivihg attempt, and that (at least in the
case of poor managerial decisionSJvéhese may rendér irrelevant any subsequent
tactical (i.e., implementation) decisions. Thus we focus on behavior at the
macroscepic_level. .

Protocol 1, which is rather typieé] of stu@ents'_p}ob1em soiviné, f]a.
lustrates one of the major difficulties in dea]inq with managerial decisions:
- the absence of intelligent management-may doom’ problem-solving attempts to
failure. Yet all extant szhemeé focus on what is overf]y present, ignbring
the crucial decisions that might (and should:) have taken,p]éce. Protocol 2
is; in a sense, easier to deal with. The decisions were overt, though poor. |
Th1s protoco] servés to 1nd1catemthat decision making means more tnan s1mp1j
choos1ng solution paths: it 1ncorporates local and global assessments of pro-
gress, as we]] as trying to salvage the valuable elements of ultimately flawed
approaches. This section offers a scheme for parsing protocols that tries to

address these issues.

There are Both objective and subjective components to the framework

for anglyzing protocoT;. The objective part consists of identifying, in the

€

protocol, the loci of potential managerial decisions. The subjective part
consists of characterizing the pature of the decision-making process at
thece "managerial decision points" and describing the impact of those de-

!

cisions (or their absence:) on the overall problem-solving process.
i .

IS
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8y definition, managerial or strategic action is appropriate whenever
a large ahount of tactica] resources are about to be expended. This provides
the basic idea for parsing the protocols. Partition a protocol into macro-
scopic chunks of consistent behavior {“"episodes"). Then the points between

episodes~--where the direction or nature of the problem solution changes sig-

nificantly--are the managerial decision poinfs'where, at minimusl, managerial
action ought to have been considered:

-In addition to these junctures between ep1sodes, there are two other
loci for managerial act1oq/ at the arrival of new information or the.sugges-
tion of new tactics, ang/;t the péint where a series of tactical failures in-

dicates that strategic review might be appropriate. The loci that deal with new
- 7/

information are well defined and pose little difficulty in identification. Qbserve

that this kind p? decision point can occur in the middle of an episode: new
information way be 1gnored or d1sm1ssed (at least temporar11/), and the prob-
Tem so]ver may cont1nue work1ng a]ono prev1ous}y established lines. The lat-
ter k1nd is more difficult, and calls for subjective Judgment; I have no easy
way ofldealing with these aflpresent. At some point when implementation bogs
doﬁp, or when.the problem-solving process degenerates.fntd more ‘or less un- .
structured explorations, it is time for an "executive review." It is clear
from the orotocols I have taken that experts have "monitors" that call for
such review, and that novices often lack them. We will return to this point
1ater, in the subjective gna]ysis.

F{gures 1 and 2 represent a parsing of protocols 1 and 2, respectivé]y,

into episodes. "New information" points within episodes are indicated.

Insert Fiqures 1 and 2 about here
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£,¢ Reading

1
_Items 1=4

(35 setonds)

] Tl Items 3,6

|

£,¢ Exploration
Items 7-88
(20 minutes)

New Information: Item 28
New Information: Itam 51

New Information: Item 58

Figure 1

A Parsing of Protocol 1

*Note: From the written protocol it
might appear that Item 68 begins a
new episode. In fact, the students had
lost virtually all their energy by
that point, and were merely doodling;
they returned (after the tape clickad
off) to musings about the eguilateral
triangle. Thus items 6-88 are conside~
ered to be one episode.

10:
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El: Reading
tem 1

(Bb:seconds)

N

623 Analysis

Itams 2=32

(4 minutes)
’ ]

2

633 Planning

Items 32=37
(1 minute)

P Y

T3

Ei Implementation

Items 37=73

(12 minutes)

TA: Items 74,75

Eé Exploration

Items 76«92

(4 minutss)

Figure 2

A Pzrsing of Protocol 2

102
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Detailed analyses of Figures 1 and 2 will not be given, since protocols
1 and 2 have been discussed at some length. (Observe, however, how Figures 1
and 2 reflect the issues singled out for discussion above.) A third protocol

will be analyzed in detail.

Both parsing into episoﬁes and delineating "new information" points,
turn out to be (more or less) objective decisions. In fact, the parsing of
all three protocols that I use in this paper was derived, in consensus, by
three undergraduates who followed my instructions but arrived at their char-
acterizatiors of the protocols in my absence. Reliability in parsing proto-
cols is quite high. (This dves not, however, obviate the need for an appro-
priate formalism: see tne final commentary.)

Subjectivity lurks around the corner, however. It is, in fact, already
present in the labeling of the eoisodes given in Figures 1 and g. This label-

*
ing was essential: see the note below. Any episode is characterized as one

*

The potential for "compinatorial explosion” in characterizing managerial
behaviors is enormous. Managerial behaviors include selecting perspectives and
frameworks for a problem; deciding at branch points which direction a sclution
should take; deciding whether, in the light of new information, a path already
embarked upon should ve abandoned; deciding what (if anything) should be salvaged
frcm attempts that are abandoned or paths that are not taken; mon:toring tactical
implementation against a template of expectations for signs that intervention
might be appropriaté; and much, much more. My early attempts at analyses of
managerial behavior called for éxamining protocols at all managerial decision
points and evaluating at each one a series of questions encompassing the issues
just mentioned. This approach, while comprehensive, was completely unwieldy.

For example, questions about the assassment of state when (a) one has Jjust read
the problem, (b) one-is "stnck," and (c) a solution has been obtained, are almost
mutually exclusive. Thus at any decision point 90% of the questions that might
be askz2d were irrelevant. The framework dgscribed above provides a workable com-
promise.
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of the following: Reading,. Analysis, Planning, Implementation (or Planning/
Implementation if the two are linked), Exploration, Verification, or Transi-
tion. %hat follows is the heart of the analytic framework. Tnere is a brief
description of the nature of each type of episode, followed by a series of
questions to be asked about each episode once it has been labeted. The pars-
ing, plus the answers to the.questions, provide the characterization o7 the
protocol.

Admittedly, these questions are i mixed bag. Some can be answered
objectively at the point in the protocol at which they are asked, some in the
1ight of later evidence; some call for inferences or judgments about problem-
solving behavior. Further, some ask about the "reasonableness" of certain be-
havior. Asking questions in this way, of course, begs the significant ques-
tion: what is a-model of "reasonable" behavior? The creation of such models
is the crucial long-term question, and there is no attampt to finesse it E;re.
At present, however, we wili deal with the notion subjectively, to better under-
stand managerial behaviors so that we can create those models. Though High]y
subjective, these assessments can be made reliably: agreement between my rat-

ings and the consensus scorings of my students was quite high. To quote Mr.

" Justice Stewart (1964), "I shall not today attempt to further define the kind

of materials I understand to be embraced within that shorthand definition;...

But I know it when I see it."

Episodes and the Associated Ques:itions

- 1. READING.

The reading episode begins when a subject starts to read the problem

statement aloud. It includes the ingestion of the problem conditions, and
\

10:
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continues through any silence that may foliow the reading--silence that may
indicate contemplation of the prublem statement, the (non-vocal) rereading
of the problem, or blank thoughts. It continues as well through vocal re-
readings and verbalizations of parts cf the problem statement {observe that
in protocol 1, reading iacluded items 1-4).

READING Questions:

a. Have all of the conditicns of the problem been noted? (Explicitly

or implicitiy?)

b. Has the goal state been correctly notad? (Again, explicitly or
implicitiy?)

c. Is there an assessmentxof the current state of the problem solver's
knowledge relative to the probiem-solving task (see TRANSITIOW)?
2. ANALYSIS. |

If there is no apparent way to proceed after the problem has been read
(i.e., a solution is not "schema driven"), the next (ideal) phase of a problem
solution is analysis. In analysis, an attempt is made to fully understand a
problem, to select an appropriate perspective and to reformulate the problem |
in those terms, and to introduce for consideratjon whatever principles or
mechanisms might be appropriate. The probiem may be simplified or reformulated.
(Qften analysis leads directly into plan development, in which case it serves as
a transition. Of course, this episode may be bypassed completely.)

ANALYSIS questions:

a. UWhat choice of perspective is made? Is the choice made explicitly,
or by default?

b. Are the actions driven by the conditions of the problem? (working

forwards)
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c. Are the actions driven by the goals of the problem? (working
backwards ) .
d. Is a relationship between conditions and goals souéht?
e. [Is the episode, as a whole, coherent? In sum {considering a-d),

are the actions reasonabl2? (comments?)

3. EXPLORATION.

Roth its structure and content serve to distinguish exploration from
analysis. Ana]ysiﬁ is generaily well structured, sticking rather closely to
the conditions or goals of the problem. Exploration, on the other hand, is
less well structured and further removed from the original problem. It is a
broad tour through the problem space, a search for relevant information that
caq be incerporated into the analysis/plan/implementation sequence. (Ong may

\

well. return to analysis with new informatian gleaned during exploration.)
‘\\In the exploration phase of problem solving one may find a variety of

proE]emLSOIVIng heuristics, the examination of related problems, the use of
analogies, etc. Though amorphuusly structured, exploration is not, ideally,
without, structure: there is a loose metric on the prodlem space, the perceived
distance of objects under considé}ation from the original problam, that should
serve to'select items for consideration. Precisely because exploration is
weakly structured, both local and global assessments are critical here (sec
trans%tion as well). A wild goose chaséf.unchecked, can lead to disasfer;
but so can the dismissal of a promising alternative. '

[f new information arises during exploration but is not used, or the -

.examination of it is tentative, "fading in and fading out," the coding scheme

calls for delineating "new information" within the episode. If, however, the

10r
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problem solver decides to abandon one approabh ‘and start another, the coding
scheme calls for closing the first episode, denoting (and examining) the

A YS

transition, and opening another exﬁ]oration episode.

<

EXPLORATION questions: -
a. Is the episode condition driven? Goal driven? “
b. Is the action directed or focused? Is it purpogeful? -
c. Is there any monitoring of progress? What are the consequences
for the sg1ution of the presence or ap§ence of such monitoring?
d. At NEW INFORMATION points’zincluding the introduction of heuristics)
and LOCAL ASSESSHENT goints: "

1. Does the problem solver assess the current state of his

A

knowledge? (Was it appropriate??)

_ 2. Dées the problem solver assess the relevancy or utility
> of ‘the new information? (Was it appropriate?) A

3. What are the consequences for the solution of the actions

(or inactions) described in 1 and 2 above?

4. PLANNING/{MPLEMENTATION.

’

Since the emphasis here is on managerial questions, detailed issues
regarding plan formation will not be addressed: the primary questions of

concern.here deal with whether or not the plan is well-structured, whether

the implementation of the plan is orderly, and whether there is monitoriné pr‘
assessment of the process on the part of the problem solver(s), with feedback
I to planning and assessment at local and/or globai levels. Many of these judg-
ments are subjective. For example, the absence of any overt planning -behavior

3 - -~
does not necessarily indicate the absence of a plan; in tact, protocols of
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";chema~driven" soldtibns_often proceed directly from the readiny episode
into the conharent and we]i structured implementation of(g non-verbalized
nplan. Thus fhe latitude of the questions below: the'scﬁeme should apply
to a range of circumstances, from schema-driven solutions to those where
the subject happens upon an appropriate plan by design or accident.’
PLANNING/IMPLEMENTATION questions:

a. Is there evidence of planning at al1? Is the planning overt

.or must the presence of a plan be inferred from the purposefulness of the

©

subject's behavior?

~

b. Is the plan relevant to the problem solution? Is it appropriate?
Is it well structured?

c. Does the subjeét assess the qué]ify of the plan as to relevance,
appropriateness, or structure? (If so, QOW do those assessments compare wifh
the judgments in (b)?)

d. Does implementation follow the plan in a structured way?

e. Is there assessment of implementation (especially if things
go wrong), at the local or global level? _

f. What are the consequences for the solution of assessments if

they occur, or if they do not? T,

5. VERIFICATION.

The nature of the episode itsel% is obvious. “
a. Does the problem solver review the solution?

b. Is the solution tested in any way? (If so, how?)
c. Is there any assessment of the solution, either an evaluation

of the process or assessment of confidence in the result?
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6. TRANSITION.

The juncture between episodes is,'in most cases, where managerial
degisicns (or their absence) will make or break a solution. Observe, how-
.ever, that the présence or absence of assessment or other overt managerial
behaviqr cannot necescarily be taken as either good or bad for a solution.
In anléxpert's solution of a routine problem, for example, the 6h1y actions
one sees may be reading and implementation. Tais explains, in part, the
-contortéd and SUéjective‘nature of what follows.

TRANSITION questions:

a. Is there‘an assessment of the current solution state, and
any attempt to salvage‘pr store things that might be valuable in it?

_ b. What are the Tocal and global effects on the solution of the
_Presence or absence of assessment in part a? Was ﬁhe_action there appropri-
ate or. necessary? ‘

c. Is there an assessment of the short and/or long term effects
on the solution of the new direction, oé does the subject Simply "jump into"

the new approach?

d. What are the local and globa® effects on the solution of the

presence or absence of assessment in part c? Was the action there’ appropri-

_ate or necessary?

.
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*®

The Full Analysis of a Protocol

Appendix 3 presents the fui] protocol of two students working on the

following prob]em:.
. Consider the set of all triangles whose perimeter is a fixed

number, P. Of these, which has the largest érea? Justigy

your answer as best you éan.

Student K is the same student that appeared in’protocol 1. Student
D (not the same as student D in protocol 2) was a frespmen with one gemester
of calculus benind him. _Th%s.protocol was taken at the end of my problem- ‘
solving course, while protocols 1 and 2 were taken at the beginning.

Tae parsing of protocol 3 is given in Figure 3. The.analysis given

. below follows that parsing.

[
1

Insert Figure 3 about here

Episode 1 (Reading, items 1, 2)

a. The conditiuns were noted, explicitly.

b. The goal state was noted, but somewhat carelessly (items 10, 11).

\

c. \Jhere were no assessments, simply a jump into exploration.
1

(Nu11)

Iransition
a, b,\¢c, d. There were no‘serious assessments of either current
knowledge or of directions to come. These might have been costly, but were
- not--assessments did come in EZ’
Episode 2 (Exploration, items 3-17)
| a. The ex {Srations seemed vaguely goal-driven.

b. “The actichs seemed unfocused.

1i()
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' reading -

[ad}
'

items 1,2

{15 ssconds)

T

L

Exploration
Items 3=~17
o (2% minutes)

" Local Assessment: Item 14

TZ: Items 17=-19 (30 seconds)

Plan
Item 20
(30 seconds)

(&)
.

T3

Implementation
Items 21=72
(8% minutes)

Local Assessment: Items 31=33

&
o

. ' Local Assessment,
New Information: Item 40

/ Local Assessment: Item 72

T,: Items 72-81 (12 minutes)

Blan/Implementation
Items 82-100
(2 minutes) _J

™
(3]
.

Tc: Items 100-1CS (15 seconds) -

Varification
Itams 105=143 -

4 minutes

(o2}
.

Figurs 3

A Parsing of Protocol 3
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c, d. There was monitoring, at items 14-17. Thjs grounded
the explorations, and led into Transition 2. ‘
Transition 2 (Items 17:19)
: a, b, c, d. Assessments were made both of what the students knew,

and of the utility of the conjecture they made. The result was the establish-
ment of a major direction: try to prove that the equilateral triangle has the

desired broperty, and of a plan (episode 3). NOTE: If this seems inconsequen-

tial, contrast this behavior with the transition T] in prétoco] 1. The lack of
assessment there, in viffual]y identical circumstances, sent the students on a
P 20 minute wild goose chase! \ . -
Episode 3 (Plan, item 20)

a. The plan is overt.

b. It is relevant and well structured. As to appropriateness and
assessment, see the discussion of T3.

Transition 3 (Null)

a, b. There was little of value preceding the plan in item 20; the
questions are moot.

c. There was no assessment of the plany there was immediate imple-
mentation.

d. The plan was relevant but only déa]t with half of the problem:
showing the largest isosceles was tHe equilateral. The "other half" is to
show that the largest triangle must be.isosceles, without which this part of
the solution is worthless. . .a point realized somewhat in item 72; 8 minutes
later. The result was a good deal of wasted effort. The entire solution was

not sabotaged, however, because monitoring and feedback mechanisms caused the

termination of the implementation episode (see the sequel).

ERIC 112
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Episode 4 (Implementation, items 21-72)
a. {mp]ementation followed the lines set out in episode 3,
albeit in somewhat ca%e]ess_fonn. The conditions were somewhat mudé]ed
as the first.differentiation was set up. The next two local assessments
corracted for that (better late than never).

Local Assessment (Items 31-33)

1, 2, 3. The 5hysica11y unrealistic answer caused a closer look at
the conditions--but not yet a giobal reassessment (possibly not called for yet).

Local Assessment, New Information (Item 40)

1, 2, 3. The "new information" here was the realization that one of
the problem cond:tions had been omitted $rom their implementation ("we don't
set any conditions--we're leaving P out of that"). This sent them back to the
o}igina1 plan, without global assessment. The cost: squandered energy until
item 72.

Local/Global Assessment (Item 72)

This closes E4. See T4.

Transition 4 (Items 72-81)

a, b. The previous episode was abandoned, reasonably. The goal
‘of that episode, "show it's the equilateral," remained. This, too, was
reasonabie.
¢, d. They ease into Episode 5 in item 82. (It's difficult to say
now reasonable this is. Had they chgsen something that didn't.work, it
might have been considered meandering. But what they chose did work. )
Episode 5 (P]an/Imp]ementat{on, items 82-100)

a, b. "Set our base egqual to sométhing" is an obviously relevant

heuristic.
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c. They olunge ahead as usual.

d. The variational argument evolved in a semmingly natural way.

e. There was }dcal assessment (item 95). That led to a rehearsal
of the sub-argument (item 96), from which D apparently "saw" the rest of the
solution. Further (jtem 100), D assesses, the quality of the solution and his
confidence in the result.

Transition 5 (Items 100-105)

a, b, ¢, d. The sequel is mos£ 1ikely the result of a two-person
dialectic. It appears that D was content with his solution (perhaps pre-
maturely), although his clarity in explaining his argument in E6 suggests
he may have been justified. -

Episode § (Verification, items 105-143) 4

This is not a verification episode in the usual sense. K's unwilling-
ness to rest‘until he understands forced D into a full rehearsal of the argu-
ment and a detailed explanation, the re;ult being that they are both content

with the (correct) solution.
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Sbme Empirical Results
. Protocols 1 and 2 are relatively typical of the dozen protocols taken

‘from pairs of students /six pairs, two problems for each pair) before a month-
long intensive problem-solving coursé that focused on both tactics (heuristics)
and strategies. The fir%t problem was the one discussed 1in protocols 1 and 2,to
find the largest triangle that can be inscribed in a circle. The second problem
was a geometric construction:

You are given two intersecting straight lines, and a

point marked on one of them, as on the figure below.

Show how to construct, using a straightedge and compass,

a circle which is tangent to both lines and has the point

P as its point of tangency to one of the lines.

Brief "snapshots" of a few representative pretest protocols are given
below. These are too condensed to be useful for model byilding, but serve to
demonstrate again the critical importance of managerial or strategic decision
making. They also stand in (partial) contrast to the students' posttest be-
havior and (stark) contrast to some expert behavior. The diagrams that re-
present our episode analyses are here condensed into a sequential 1ist ot
episode titles, with transiticns deleted if there were none. Thus Figure |

is rendered as (Reading/T]/Exploration), ete.
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E.T. & D.R., Problem 1. (Reading/z,,_xpijra;1an)

After a brief mention of “max-min" pbdlems. snd a brief caveat ("But
will it appiy for all cases? I don't know if we cax che*x it afterwards") in
transition, thgyset off to calculate the area of the equ iateral triangle. So
much for the next fifteen minutes; in spite of some local assessments ("this
isn't getting us anywhere") they continued those explorations. Result: all
wasted effort. ‘

E.T. & D.R., Problem 2 (Reading/Exploration)

In the initial explorations a series of sketches contains all the
vital information they need to solve the problem, but they (without any at-
tempt at review or assessment) overlook it. The solution attempt is undirected
and rambling. Possibly because they feel the need to do something, they try
their hand at an actual construction--already shown to be incorrect by their
sketches--and are stymied when it doesn't work. Overall: lost opportunities,
unfocused work, wasted effort.

Note: E.T. and D.R. are both bright; both had just completed the first
semester calculus course with A's.

D.K. & B.M., Problem 2 (Read/Ana]yze/T]/Exp1ore/Ana]yze(So]ve)/Verify)

Analysis is extended and coherent, >ut followed by a poor transition in-
toan inappropriate construction that deflects the students off track for three
and a half minutes. When this doesn't work they return to analysis and solve
the prob]em.“ A detailed verification seals things up. Managerial decisions
worked reasonably well here.

B.W. & S.H., Problem 2 (Read1ng/Exp1orat1on/T /Exp]oratlon)

A series of intuition-based conjectures led to a series of attempted
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constructions, the last of which happened to be correct--though neither student
had any idea why, and they were content that it "looked right." This was a
classic trial-and-error tape, and only because the trial space was small was
there a chance that the right solution would be hit upon. There was one weak
assessment (after a construction) that constituted T], but the result was simply

a cuntinuation of trial-and-error search.

Impetuous jumps into a particular direction were pretty much the norm
in the pretests, and these first approaches were rarely curtailed. (This be- '
havior was so frequent that it earned-the name “proof by assumption,@acoined by
my assistants.) 'Si@ce there was.1itt1e assessment and curtailment, little was '
ever salvaged from an incorrect firs;,atteﬁﬁi, and a solution was often doomed

to failure in the first few minutes of exploration.

'grqtoc01 3, which has been discussed above, was taken after the problem-
;01VTH§/§oqrse. It is a representative, perhaps slightly better than average,’
samp]e_of post-instruction performance. What makes this tape “"better" than pre-
teét tapes is not that the students solved the problem, for their discovery of -

the variational argument-that solves it may have been serendipitohs. However,
that they had the tiﬁe to consider the approach was no accident: they had
evaluated and curtailed other poésib]e épproa;hes as they worked on the problem.
In general there was more evaluation and curtailment on the posttests than on
the preéests, and 1éss pursuit of "wild goose chases." In some cases this
allowed for a so]ution,-in some not; but at least their actions did not preclude

the possibility. The fol]owind statisfic summarizes ‘the difference:

Seven of the twelve pretest protocols were of the type

(Reading/Exp]orétion);
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Only two of the twelve posttest protocois were of that type.
Not at all coincidentally, their performance improved on a variety of other
measures as well (Schoenfeld; Note 7). However, the overall quality of the
students' managerial monitoring, assessing, and decision making on the post-

tests was still quite poor. Tc indicate the contrast in managerial bekaviors

‘between experts and novices, we turn to the protocol of an expert working on

a yeometry problem. T[he expert, a number theorist, had a broad mathematical

background but had not dealt with geometric problems for a number of years.

It shows. B8y some standards, his solution is clumsy and inelegant. (In a

department meeting it was held up for ridicu1é by the colleague who produced

Protocol 5.) Precisely because the expert does run into problems, however, we

have the opportunity to see the impact of his metacognitive, managerial skills.
The episode qnalysis of Protocol 4 is given in Figure 4. For (obvious)

reasons of space, the full analysis will be condensed.

Insert Figure 4 about here

The critical point to observe in this protocol is thata monitor/assessor/
manager is always close at hand during the solution. Rarely does more than a
minute pass without some clear indication that the entire solution process is
being watched and controlled, both at the lecal and global levels. The initial
actions are an attempt to fully understand the given problem. By item 3 there
is the awareness that some other information, or observation, will be necessary
in order for a soiution to be obtained. The actions in items 4 and 5 are goal-

driven and, in item 6, yield the necessary-information. This is utilized im-

mediately in items 7-8. There is a (reta) comment that the first part of the
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El: Reading
S Part
Item 1 2econa rart
(1 minute)
Tl (Item 2)
EZ: Analysis ES: Analysis
Items 3=3 Itams 22-39
2 ninut
(2 winutes) (4 minutaes)
Local Assessment: Item 3 i‘etacomments: Items 24,25
Local Assessment: Items 7,8 (Meta)Assessment: Item 33
T Local Asssessment: Item 39
2
E3: Planning/Implementation TS (Item 39)
Items 9=19 Eg® Analysis
(4 minutes) Items 4Q0=48
Local Assessment: Items 15,15 (3 minutes)
Local Assessmabt: Item 18 Local Agsessmant: Item 43
Local Assassment: Item 48
T3
T6 (Item 49)
EA: Varification
E,% Exploration
Items 20,21 7
d -
(30 seconds) Ttems 49-53
(3 minutses)
Ty (Item 22) Metacomments: Items 49,50
T7(Itém 54)

Fiqurs 4

E,% Analysis/Implementation
Item 55

(35 saconds)

T

ygrification

Item S8
(1 minute)

A Parging of Protocol 4
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probIem.wiII be soIvéd with one construction, which can be made. Thé nlan is
made in item 9. Imp]eméntatibn is interrupted twice Qith refinements (1items IS
& 16; item 18) that again indicate that the subject is on guard for_cIarifi%ations

and simplifications at almost all times. The'first part of the problem concludes

I
I
I
I
I
with a quick but adequate rehearsal of the argumeﬁt. . : ' L l
Line part.I, the second part of the solution begins.with a-qualitative .
analysis of the problem. In item 24, there is . comment that "this is going fo. l
be interasting" (i.e., difficult). Such a preliminary assessment of difficulty
is, I believe, an indication of an important element of experts' metacognitive I
behavinr. ExperE§ seem to judge thei;;ﬁbrk\ggainst a "templaté of expéctatﬁoﬁs"
when soIvjng a problem. These expectations may\gé major factors in the experts' l
decisions to pursue or curtail various lines of exploration during the problem- I
solving process.
The solution of the second part continues, well structured, with a co- l
herent attempt to narrow down the number of cases that must be considered. This
is an implementation of “that kind of induction thought" from item 29. It ap-

pears to be a "forward" or "positive" derivation, verifying that all of the

cases can be done. VYet the phrase "no contradiction" in item 33 reveals that

I
I
the problem solver retains an open mind about whether the constructions could I
actually be implemented, and is still probing for trouble spots. The potential

for a reversaI, using argument hy contradiction if he should come to believe one l
of the constructions impossible, is very close to the surface. This distanced I
overview, and the maintenance of a somewhat inpartial perspective, are confirmed

in item 49.

|
Assessment is, likewise, always in the immediate vicinity. The comment i
"if ¢¢ this can be done in one shot," in item 40 indicates not only that solutions i
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are planned aheéd, but that the plans are assessed. Eyén the rather unusual -
excursion into quadratic extensions (item 53) is preceded by a comment about
"knocking this off with a sledgehammer," and quickly curtaiied.

In sum: this father";1umsy solution (see Protocol 5 in contrast), with
its apparent meandering through the solution space, is in reality rather closely ’
controlled. There is constant monitofing of the solution process, both at the
tactical and strategic 1eve1s; Plans and their implementation are continually
assessed, and acted upon in accordance with the assessments. Tactical, subject-
matter knowledge plays a minor role here: metacognitive, “manaééria]" skills
provide the key to success. o
Discussion

‘ This paper raises many more questions than it can answer. It wa; in-
tended to. The extendéd discussions of protocols were designed to make one

point absolutely clear: ‘“metacognitive" or "managerial" skills are of para-

mount importance in human problem solving. As Brown observed (1978, p. 82), these

types of decisions "are perhaps the crux of intelligent problem solving because
the use of anuaﬁbropriaée piece ,of knowledge...at the right time and in the right
place is the essence of intelligence." The inverse of th%s proposition should

be given comparable stress: avoiding inappropriate strategies or tactics, at

the wrong fjme or in the wrong -place, is an equally strong component of intelli-
gent problem solving.

To deal cbherent]y with such executive decision making, one needs a
framework for examining, modef{ng, and judging it. This kind of framework must,
perforce, be substantially different from extant schemes like those used in math-
ematics education (Lﬁcas, et al., 1975; Kanfowski; Note 3), that focus on errt
behaviors at a detailed level. As we saw in Protocol 1, the absence of an

-
~ L

.-{;
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assessment may docm an entire solution to failure. Schemes that only seek overt
behéviorg cannot hope to adequately explain that protocol.

This kind of framework must also differ substantially from those used in
Artificial Intelligence to simulate expert behavior in areas such as physics.
Larkin, et al., (1980) characterize such work as depending on productjon systems
to simulate the pattern recognition that "quide[s] the experf in a fraction of a
second to relevant parts of the knowledge stére...[and]<gyjde[s] a problem's in-
terpretation and solution-(p. 1336)." While aspects of Protocol 4 such as the
recognition of similar triangles (item 6) are compatible with this perspective,
the whole of\Protoco1 4 stands in sharp opposition to it. At least half of the
action in that protocol is-metacognitive; it almost seems as if "manager” and
"impiementer" work in partnership to solve the problem. And it is precisely
when the expért's.problem~solving.schemata (or "productions") do not work well
that the managerial skills serve to constitute expertise.

The framework presented in this papcr provides é mechanism for focusing ‘
directly on certain kinds of managerial decisions. Sinhe a manager ought to be
présent at major turning points-in a\pfob1em solution~(if only to watch, in 7
case action is necessary), the transitiéﬁ\ﬁafnts between "episodes” are the
Togical p]aqé\go look for the presence, or absence, of such decision making.
Here we come t6~the first ;erious question: what, precisely, constitutes an
"episode”? While there is reliability among coders in parsing\these protocols
at the macroscopic level, that begs the question: we need a rigorous formalism
for characterizing such episodes. Unfortunately, I have not been able to adapt

schemata for story understanding or for episodes in memory (see Bobrow and

Collins, 1975) to deal with these kinds of macroscopic problem-solving episodes.
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A formalism needs to be developed.

Questions regarding the characterization and evaluation of the moni-
toring, assessing, and decision making processes during problem solving are
faf more thorny. The role of the monitor was quite clear in Protocol 4; it
assured that thé solution stayed "on track.” B8ut how are these decisions
made? It is c]e;r from a variety of expert protocols that a priori expecta-
tions of problem or subtask difficulty serve as a basis for the decision:to
intervene. But the nature of the monitoring, the criteria for éssessments,
what the tolerances are, and how intervention is triggered ail remain to be
elaborated.

Similarly, assessment is not always desirable or appropriate: in a
schema-driven solution, for example, one should simply implement the solution
unless or until something untoward pops up. A simple-minded mode] that Tooked
for assessment at each transition point between episodes (and other places)

would miss the pﬁint entirely: assessment is only valuable some of the time,
and we need to know when (and how). I -

In the long run, we need a detailed model of managerial monitoring,
\aﬁ; ;gsé;;mént, and éf the criteria used for assessment and decision making.
This mode] will enable us to answer questions like those for the transition
phase, "was the action or inaction appropriate or necessary?" In the meantime,
these questions are not an eQasion: they are an attemﬁt to gather daéa so that
the model can be constructed. A further refinement of these questions, and a
much more detailed characterization of metacognitive acts in general, will be

necessary. I hope that this paper provides a step in that direction.

ad
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Protocol 1

(Reads roblem) Three points are chosen on the circum-
ference of a circle of radius R, and the triangle con-
taining them is drawn. What choice of points results

in the triangle with 'the largest possible area? Justify
your answer as best as you can.

You can't have an area larger than the circle. So, you
can start by saying that the area is less than 1/2nRe.

0.k. So we have sort of circle--3 points in front and
R here and we have let's see--points--

We want the largest one--
We want the largest one--

Right, I think the largest triangle should probably be
quilateral. 0.k., and the area couldn't be larger than
MRe,

So we have to divide the circumference of the three equal .
arcs to get this lenath here. That's true. Right. So,
60-120 arc degrees--o0.k.--so, let's see, say that it equals
R over S--this radius doesn't help.

Do we have to justify your answer as best as you can? Jus-
tify why this triangle~---- justify why you---~-- o.k. Right.

0.k. Let's somehow take a right triangle and see what -
we get. We'll get a right angle.

Center of circle of right triangle. Let's just see
what a right triangle--is this point in the center?
Yep, 0.k. Yeah. '

This must be the radius and we'll figure out that'll

be like that, right? A
So the area of this-- ‘ -

ijs R, is R--1/2 base times' height, that's S and 2R,
height is R so it is 1/2R%, It's off by a factor of
2.

0.k. But what we'll need is to .say things like--0.k.
Let's go back to the angle--probably we can do some-
thing with the angle.

A\
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14, 'K: Oh, I got it! Here, this is going to be 120--the
angle of 120 up here-- .
15. A: Right! Yes, this is 120 and this is 120. I
16, K: Right! I
17. A: Sc--
8. K: We have to figure out-- I
19. A: Wny do we choose 120--because it is ‘the biggest area--
we just give the between the biggest area--120. I
20. K: Ummm. Well--the base and height will b: equal at all
times. - l
2T. A: Base and height--right-- g |
22. K: In other words--every right tr1ang1e will be the same. ; l
. }
23. A: An, ah--we have to try to use R, too. b
24. K: Right. '. I
25. A: 0.k. (seems to reread problem)--justify your answer
as best as you can. 0.k. (pause) - I
26. A: So--there is the picture again, right? This is--both '
sides are equal--at this point--equal arc, equal angles-- I
equal sides-~this must be the center and this is the
radius R--this is tne radius R-= : .
27. K: So we have divided a triangle with three equal parts } g I
- and-- E
28. A: There used to be a problem--I don't know about some- ‘ I
thing being square--the square being the biggest part
of the area--do you remember anything about it?
29. K: No..l agree with you--the largest area...of something I
in a circle, maype a rectangle, something like that...
30. A: Oh, well...so... I

31. K: Since this is R--and-this is going to be 120, wouldn't \\//
) these two be R also? )

32. A: Right.
l) \
33. K: This is 120. 124
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¢ It is an equ11atera1 triangle--that's--
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Ah, ah.

Like a similar triangie~-12Q and IZQ are the same angle--
so these two should be R,

0.k. Maybe they are.

Why can't they he?

Mumble§-=====w=eaus

See, look--this is the angle of 128--rignt?
Right. o

And this is an angle of 120. Right? This is like
similar triangles--

Wait a second<-I think if you--th1s is true 120
but I don t think this one is-==---- (

No-~it should be a 60.

That's right--it should be a 60.

Mumbles-----= that*s 1/2 of it---that's right--
2R. '

What are you trying to read from?

What if we could get one of these sides, we could
figure out the whole area. .

Ah,‘ah.

Right?

Presume this to be 1/2 that sidé, we've got 1/2
‘base times height. We'll get the area--all we
have to show is the biggest one.

When we take the formula nRz, minus 1/2 base
times ‘height and then maximize that--then

take the derivative and set it equal to zero.
We can get tha function--then we' can get

this in the form of R. :

0.k.

Then we can try this as the largest area.
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Do you want to get this function, this as a function
of R?

’Yeah.

: We can, I th{nk So you want th1s--r1ght7

Well, it is kind of obvious that with B & H you
are still going to have an R in it. Sc you can
subtract it.

You have H in it. Well we have this one here.
Mumbles--- (repeats the problem). Try this to
be 2R. ’
No--it can't be. It has to be between R and 2R.
Yeah.

Helps us a lot! Set R equal to 1.

R=1?

Right.

0.k.

That's one, that's one, that's one;-it'11 equal S
over R. - The area of the triangle is equal with
R=1, it's 2.

Well...nheight equals...

That's for the sides of the triangle--that's
obvious -R = 1.

0.k.--divided into equal parts---(lots of mumbling)--~

This from---well--you know--o.k. If you see we
probably try to fix one point and choose the othar
two~--0.k.-~we are going to go from someth1ng that

looks like this all the way down---

Right.

Right. 0.k. and here the he1ght is increasing where
the base is decreas1ng

Right. (Mumbles)

When we reach----o.k.

-

Nha@ is the area, side squared over ﬂlradical 2 for

Lso
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an equilateral triangle? 1Is it like that?

You want the area for an equilateral triangle.

:" The area? I don't know. Something like side

squared over radical 2, or something--

If you can probably show...at a certain point

where we have the equilateral triangle.the base

and the...well...you know the product of the base
since the base is decreasing and the height is in-
creasing every time we move the line. If you can
show a certain point, this product is the maximum--
so we have the area is a maximum at that point. So
this one is decreasing----- And at this point we
have-R, R, and &.

Ah, ah.
0.k. This is the base--is 2R--a right angle.
It wouldn't be 2R2.

Mumbles----One more--I mean--

: - 0.k.

It shculd be R2 " But base times he1gﬁt--mumbles--
and this one, say this is R + X .

The height equals R + X, so the base equals
R-X.

Mumb]es--those two things are equal to this--
Right. |
A1l right.”

I don't know. -

: We .want this product of h as a maximum--as a

maximum--and this one...I don't know.

f)‘
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Protocol 2

1. D: Reads the question.

2. B: Do we need calculus for this? So we can minimize,
. or rather maximize it.

3. D: My guess would be more 11ke-—mumb11ng——my basic
hunch would be that it would be--

49

4, B: An equilateral--

5. D: 60, 60, 60.

5. B: Yeah,

7. D: So what choice of points has to be where on the

triangle--these points are gonna be.

-8, B: Try doing it with caiculus--see if you can--just

draw the circle--see what we'll do is figure out
che right triangle--

9. 'D: Yeah,or why don't we find--or why don' t we know
the-~some way to break this problem down into--
1ike what would a triangle be for half the circle?

10. B: 60 degrees here?

11. D: Why don't we, why don't we say that--o.k.--why don't
we find the largest triangle with base--one of the
diameters, 0.K.

12. B: Base as one of the diameters?

13. D: Yeah,

14, B: 0.k.

That would be just a family of right triangles--

that go 1ike this.

15. D: And they're all the same area?

16. B: No, no they're not all the same area--the biggest
area would be in one like that. See if we could
figure out--make it inte sort of like a--if we
could do it with calculus and I know there is a

way.

I just don't remember how to do it.
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I have a feeling we wouldn't need the calculus. 30
this area tnen this is r and this would be--r"--that
would be the area of this--so then the distance here
has got to be--45 degrees--

Right--that's got to be 45 degrees because they are -
the same. That's A--A over square root of 2--right?

Umma.

If that's radius--A--and this is A, too, so that would
be A2, that would be ré, wouldn't it?

Right.
But I think this would be bigger.

Oh, of course it would be bigger--I was Jjust wondering
ifo.. (Pause)

Wwell we can't build a diamond--so we can't build a
diamond that would go like that, obviously you want
to make it perfectly symmetrical, but we can, if we
maximize this area, and just flip it over, if we can
assume- that it is going to be symmetrical.

+ Yeagh,it is symmetrical.

And if we can find the best area--.
You mean the best--cut it in half in a semicircle.
Right. And if we can find the best area of--

Any triangle that fits in a semicircle--well it
wouldn't be a semi-

No it's & semicircle.
Largest triangle that fits in there?

Yeah,but it would have to be--if it is going to
be symmetrical thotigh, then you «now this line
has to be flat--it is gaing to have to form a
right angle. So all we really have to do is

form a right angle. So all we really have to

do is find the largest area of a right triangle--
inscribed in a semicircle.
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(o]
.o

33. Largest area of a right triangle. Yea, but obviously

it is this one which is wrong.
34. D: No--No--
35. ., B: One like this.
'36. D: Yeahwith that angle, right.

37. B: 0.k.--how we go about doing that? Hey, like wa
can--use the unit circle, right?

38. D: Umma.

3 - - - - - - ’-

39. B: So that means--thi§ is (1-x2)--this point right
here--will be (1-x"), o.k. this squared--mumbling--
I'T1 just put some points down to see if...pick an
arbitrary--

40. D: Yeah,yeah,just to find this point--

~
A8
T\
¢
- e

41. 8: All right this is 1. Now I've got to find that
point-~0.k. What is the area of this--this is
the distance right here times that distance, right?
Product of those distances--area equals from this

distance would be this, would be x value which - -~

would be x-1 or x+1? Q.k., it's x+1, this dis- (,] o) X

tance right here times this distance right there > '

which would be the y coordinate which is x“.

Want to take the derivative of that--to the x--

mumbling. '

. <) Lo

42. D 0.k. AL G-« I

43. B: Times (2-x). Did I have, oh, the two iﬁ_gn%ssed out
so I just have an -x--or, that was over)1-x<, plus
all this stuff. And set that equal to zero and you C‘A K+
get that--oh, this is just one, isn't jt--this is c{){r

S &
just one--so one of that, plus that equals zero,
t N\

)
right? L/I—""

44. D: I think we're getting a little lost here--1 am
not sure. Well, you go ahead with that--

45. B: Well, I'11 just think sbout it, as it is just | l//—l.
mechanical. There is a minus in here, isn't — -X
there? Mumbling--o0.k. X equals)2 anu what was
this distance, we said? That was X--so that
means it would be)2--plus 1--that's impossible.

46, D: Times R.

124

<
x|
|




47.

48.
49.
50.

51.

52.

53.

54.

55.

56.

57.
58.

60.

61.

‘e O, W
. L X4 X}

(]

this has to be right but--
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If x equals plus or minus the Y2--

Umma-- . ) ) T}( = -l

This y thing would be 1 minus x2, right?

This is’ just the distance--therefore, this right X =:'f: 0'1,,
here has to be Y2. Guess your calculations are
all right.

Yeah,if I got x equals square root of 2--we've
not a semicircle here, right? 0.k.--and I
.ave the points--right, it's a_unit circle and
I said that x4y = 1, so y = V1-x2, 0.k.?
And--(pause)--the-x can't equal the square of -
the two because it would be out there. [ know

But all kinds of--let's see--well we know already,
0.k. that the triangle is not 45, 45, because that
would make it too small. 0.k.?-

Um--

So we know this angle is greater than-zero and less

*than 90 degrees--

I just want to make sure I didn't--so this is x*I,
x+1n...anqrgzpss multiply to set 1-x2 = 1 which
=12, .

means X =

No, it has to be a 60; 60, 60--right triangle--no ’ \
I am sorry not-a right triangle--has’ to be a 60, J—“ '
60, 60 triangle--because no matter where you move ()(,) [—)?/ /
these vertices, it has to be a 60, 60, 60 triangle-- ]

because no matter where you move these vertices--

0.x.

--you are going to add area to this--1iKe the-- {

mumbling--you are going to add area to this. g i
- e e (1Y)

A1l right, o.k. I understand, but I don't under-- " /

stand why it didn't work for this. I mean that... 24|

is there no solution for this equation? ' f

I don't know--are you sure what you are looking

. for in' that one?

Yeah,l marked off these and-I just wanted to mark
off these dimensions,
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0.k. What were you looking for? The length of this? '
I was Jjust_l ing for the maximum area of this--I said

A= (x+1) WN-x4, That's this height which is the square
root of (1-x)2. This is the unit circle. That's this

- distance right here--this minus the x value that I used--

x value that is just x. 0.k.--cause it is all in terms
of x--x minus the x value here, which is x-1, which
x+1-=50 area--ah shoot--I should have put 1/2 that

is well,--mumbling--I'11 get it. That should be 1/2
there, but I don't think that makes any difference--

so that's all in terms of 1.

So==if-~ Y \\\\\\

Oh, wait a minute there's a differencég-so one for
two is 1/2 the first part--

So i.f you find the maximum area equal to=--

It doesn't.make any difference--it is just a
factor of 1/2 here--because the area equals
1/2 that.

No--what'? the next move?

See I get x--see I get a value of x with a plus
or minus 12, right?

Ummé./
If I plug x back into this I get V2+1, right?

Then I _plug x back _into there and I get
(1:72)2 which is -1 which doesn't work.

.. Umma.

Which.doesn't seem right. Plus rz--mumbling--
Let me just check my derivative over again.
Now I know my mistake--hold it. I added this
x--it's supposed to be times so we've still
got a chance. So let me go from there. It '
is just a deriv%tive mistake. Let me see

it will be (1-x8)--no it will be--(-x+1).

This might work--if it does--we solve that

and chss out this mings 1. That means
x+1+x4-1, that makes x"+x---cross this out--
mumbling-- all right? It still doesn't work.

Well, let's leave the numbers for a while and
see if we can do this geometrically.
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Yeah, you're probably right. N

Well, we know that these two are some kind of .
symmetry. e

Yeah.
I still say we should try--yaan--what we were

doing before--just try to fix two of the
points and let the third one wander around.

Yedh, we were going to fix them--yeah,I know
what happens *if you fix them on the diameter--
then you have a family of right triangles.
Those the maximums.

Well, I don t see how--where are you going
to fix the two points?

Well, you just fix them on any diameter. You
find the largest triangle.

That would--obviously that would be the 45, 45 -_—
triangle if you fix them on the diameter. If
you fix them on any chord. .

Yeah,why though. Well, we know that if we put
two of the points too ciose together--o.k.--o0.k.
--no matter where we put the third point--

Yeah.

--it's going to be too smail. O.k. If we put
them too far apart--o0.k.--no matter where we
put the third point, we are only using half

a triangle.

0.k.

So it's got to be--0.k. So--two of the points,
at least, well, matter of fact if you've got
three points, each two of the points have to
be between zero and 1/2 of the circle distance
away from each other.

0.k.
See how [ got that? 0.k. so therefore each

two of the points has to be like that--so
how ¢an we construct a circle that's like
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that? 0.k. so we stick one point here--anbi-
trarily--so now the second point has to be
somewhere o0.k.--within--0.k. in other words,
it can't be right here--it can't be right he
it can be anywhere else. We've got to place i
so that the third point is going to be within
half--

Half of what--I don't get you there. \

0.k. Now wait a minute-~let's see. You know

when I said that--(pause). 0.k. in other words -
the relationship between every pair of the three

points....

At this point the interviewer (I) terminated the

session and asked the students to sum up what

they had done. B focused on the algebraic com-

putat] e had done in trying to differentiate -
(1+x))1-x¢. The following dialogue ensued:

So what do you wind up doing, when you do that? )
You wind up finding the area of the largest right
triangle that can be inscribed in a semicircle.

We determined that%& .

My question is: how does that relate to the
original problem?

Well,...




14,
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~ Appendix 3
Protocol 3
1. K: (Reads problem.) Consider the set of all triangies
whose perimeter is a fixed numher, P, Of these,
. which has the largest area? Justify your asser-
tion as best you can. A1l right Pow what do we
do? b
2. D: We got a triangle--well we know we label sides A,.
8 and C. <;
3. K: Right, I'11 make it a right triangle--all right-- ,*
A,B, C and the re]at1onsg1p such as that 1/2AB =
Area and A+8+C = P and A = €2 and somehow
you've got an area of one of these in the perimeter. '
.4, D: Yeah,except for somehow--I mean I don't really know-- "Es
but I doubt that's the triangle of minimum area--
well, o.k. we'll try it. ' =
5.0 K: L t Well, it is the onl {A‘BA
oK argest area. Well, it is the only way we can -
figure out the area. A‘\’B* C‘P
. . O
6. D: All right. . A-RR¥=C
7. K: But for an isosceles we can do almost the same thing.
Th1s~§s?JJZLAl. So that we know that the area is
(A72)\c (A/Z)L._lh&.n%nmeter =A+B+C and the h
height equals )C2-(A/2) .
8. D: All right.
) VA
9. K: Now what do we do. We've got to figure out the Q. 1
: largest area. o i B:
10, D: Isn't it the minimum? ,
. ’ { L
11. X: The largest area. - 64: {(a.\ C"'(La—)
12. D: So actually if we can get A--we have to get
everything in terms of one variable and take G é%—C"P
the derivative, right? Basically?
13. K: Yeah,well--’ (&:()F:(%y’
O: Well, I still don't know if we ghould do--1

mean we can find an area for this and can
find an area for that, granted, but if we
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ever come to a problem like this--I mean'we
don't know--we have no idea as of yet with
a given perimeter what's going to be that.

»~Right.

So, there--I mean--you can do. that again
«but then what do ydu do?

Then we're stuck, right? Usually, you
know, -you could probably take a guess as
to what kind of triangle it would be--1ike
you could say it is a right triangle or an
jsosceles--I think it is an equilateral,
but I don't know how to prove it.

Umma.

So we have to figure out some way to try to
prove that.

A1l right, a good guess is that it is an
aquilateral, then why don't we try an
tsosceles and if we can find that these
two sides have to be equal to form the
maximum area, then we can find that--then
we should be able to prove that side also
has to be equal.

0.k. so 8 will be equal to C, so the peri-
meter P = A+ 2B, or A+ 2C =P,

A1l right.

Ummmm.

See what we've got. .'/I,UEF::‘ga:

Fix A as a constant then we can do this, Vi
1ve that for C. A
solve that for U&;(k:Lb }4;) =
\ { =
Ve (51 A’(’*‘ -

L =0
.= O

" A1l right.
For a maxi we've got 1/Z;, Tetis—
say A = 1y ; Z -1/4T 51ght7 Maximum
area: 1/2(C ~1/4) /
C2 minus what?

(1/2)2, yeah,(1/2)2. A/Z, where A = 1. 0.k.?

14




30,
31.

32.

33.
34,

5.

36.
37.

38.

39.
a0,

-Ah, ah.

Mumbling--this is 1/4(c21/8)" V2. 2¢, so we
know that 2C has to = 0 and C = 0 and we are
stuck:

We should have taken a derivative in it and every-
thing, you think?

Yeah, that's the derivative of that. So does it
help us? My calculus doesn't seem to work any-
more.

The thing is--pause--you are letting C be the
variable, holding A constant. So what was your
formula--1/2 base times square root.

The base A times the square root times the height
which is a réght tr}ang]e to an isosceles which is
--s0 it is C™-(A/2)° which would give you this
height.

2/4

2/2

A*"7, no, A~'7, no, (A/Z)Z.

How about P =, ... no, C = P -A/2? Should we
try that--

No, see part of the thing is, I think that for
here we're just saying we have a triangle, an
isosceles triangle, what is going to be the
largest area? Largest area.

Largest area--set its derivative equal to 0.

A11 right. Well the largest area or the smallest
area--I mean--if we are going to take a derivative--
I mean--what's going to happen is you have a base
and it's going to go down like that--I mean--we
don't set any conditions--we're leaving P out of
that.

Ah, ah.

That's absolutely what we have to stick in.

We've got € and a P-A over 2.

P -A over 2.

formula--isoscales.
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)
A + 28 = P--all right? >/4/

L L
Shall we try that--mumbling. -A over 2--we've got ﬁ((P‘@ ,_iL
to have a minus 1/4 PA-- 7 - g

Nell, then you can put A back in--then you can nave \-)
everything in terms of A, right? Using this formula,
we have the area and we have a-- ‘ (ﬂ -t a

A1l right--P--so that's A/2 P 2A+A -A >]/2 and that's ‘7’ 'l
4

A/Z( -2A>]/2 .(mumbling and ﬁgur':ng) ;

p- _—

Lo N - . i( — JQp-Y
Wait a minute--you just took the derivative of this &

right here? ‘(,

: +

This times the derivative of this plus this times (P ‘L‘"’) ! (/’{,‘

the derivative of this. 73 ﬁ

: " Oh.

Mumbling and figuring...A/4/P?- 2A) =172 (2p-2) + P Poan’ 1172 J

\

a4
1/2 = 0...50 2AP-2A + P2-2A 0. /

T Y g -

So can we get A in terms of P?

p2... %
: +

g2 - 8P% Bring the PZ on this =ide and multiply it by P

8 and we'll have a qudratic in teyms--no we won't--

then we can just have A we can factor out in the

equation--you see. !

0.k. p° =

-8P-2--oh,*are we going to bring everything else to
the other side?

Yeah, 2A- +4A - 4AP x 8--No--
That's not right. Well, the 8 we can just multiply--

p2 = 311 this.

Right.
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4AP = --this isn't gétting us anywhere. v A
2 _ . L Prurdate
factor out the A--then we can'get A in terms of P.
2 2A--s0 you've got A = P2 --

g¥ap . - . , @5V:fZCL(-3:él’dy)

So if we have an isosceles triangie and A has = to--

O ) O
i " ]

be equal to that-- , v
! & ¢LG'C/
And if A has to be equal to that apd B and C are equal-- lﬂb
So, B = --(whistles) ' ’ ‘
. L
8 = P- that. a.>
23 = P-A over 2. ‘ ) t1F

No we aren't getting anything here--we're just

" getting--thing is that we assumed B to be equal

to C so of course, I mean--that doesn't--we want

to find out if 8 is going to be equal to C and

we have a certain base--let's start all over, and
forget about this. A1l right, another triangle.

Certain altitude. .

Well, let's try to assume that it is an equilateral.
A1l right..

Sides~-mumbling--perimeter equals 3S, right?

Yeah, but wait a minute--that's still not going

to really help us--what are we going to do--

simply assume that it is an equilateral. We're
just going to get that it is an equilateral, of
course it is going to be an equilateral if we

assume that.

True.

We want to prove that it is an equilateral if we
think it is. If we want to do anything we can--

Yeah, how do you prove it?

Well, we can make up a perimeter--we don't need
a perimeter P, do we? So,--

Where are you going to get area formula in the
;orm of P?
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We want to maximize the .area so that we can prove--
0.X. we nave the given base--we'll set our base
aqual to something.

Yeah, mumbling, P, or something--I don't know.

Then the. other two sides have to add up to P.

We--how about we say--let's start with an equi-
lateral, just. for the.hell of jt--see what hap-

* pens. You get 1/3P, 1/3P and 1/3P. And this

is 1/9 - 1/36 which is the height--

Now the thing we want to do is say--o.k. if we
shorten this side at all and then what's going
to happen to the height--if we leave this the
same’, -

We can't shorten it.
And we shorten this side--sure we can--
Well-- )

We can have a--this equal to 1/3 and then a--
this equai to--well you're going to have--I mean-~-

Aha.

This is going to get Tonger like that. Now we
can see from this that all that is going to
happen is that the base is going tc get shorter
so we know from that as far as leaving the base
constant goes if we move--if we shorten this side
then it is going to--somehow the point's going to
go down in either direction.

Semicircle.

Right. That proves that we have to have an
equilateral.

No, it proves an isosceles.

No, isosceles, I mean. A1l right from that if we
set--we know that those two have to be equal so
if we set this base equal to anything--it doesn't
have to be 1/3P--we can also show that if this
goes down--the area is going to get smaller, so
the constant base then the height is going to get
shorter and shorter and is getting smaller and

smaller actually. 11 1

61
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97. K: 0.k., o0.k.
98. D: In this case if it goes down to this side, we're
~ going to have again a smaller angle here, shorter
base here--and [noise].
99. K: So we get--so we know it is an equilateral--well
prove it. g
100. 0: I don't know that's not a rigorous proof, but it
js a proof--good enough for me.
101. K: Proves that an equilateral has the largest area.
102. ©O: Oh, we're talking about the largest area.
103. K: Yeah.
104. D: Oh, we just did.
105." K: We have to prove it has fixed number P--perimeter.
106. D: Well we a1reédy--we assumed that we have a fixed
P, all right? [ mean this is a proof as far as I.
107. K: MWell, we've shown that an equilateral has the
: largest area. We haven't shown that if you have
l a certain-set -perimeter, let's say a right tri-
angle, with a perimeter which is the same--we
will -not have a larger area.
108. 0: No, but we have because we have shown with the 4 Y

set perimeter--o.k. we know that--

109. K: Well what if we have 3, 4, 5 with an equilateral
being 4, 4, 4--

110. 0: 3, 4, 5 is what? Mumbling.
111. K: 12. So this area will be 6 and this area will
| be side squared 16. --0.k. that will have the
largest area.

112. D: What's thatil.7?

113. K: Yeah, 8 is still greater than 6 and that's greater
- than 1.

114. D: Oh, yeah, that's right. VYeah, but the thing is
if we have a fixed dimension, we already showed
that, 0.k. what is going to happen is as this
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side gets longer--say we use 4 as a base here,

so then what's going to happen--well say we use

3 as a base, just so we won't have an equilateral
when we are done--what's going to happen as 4 gets
longer and 5 gets shorter--it's going to go upwards.
The optimum area--the maximum area is going to be
right there. =Because you've got--

Right.

This angle and that ﬁeight. If you make this angle
any less--maybe let me draw a picture--

[ can understand that--this will give us largest
area, but how can we prove this bottom is one-
quarter--1/3 the area of the perimeter?

Well, remember all the problems we've done where

we say--o.k. let me just start from here once more--
so that we have 3, 4, 5-~is that what you have--be-
cause that's going to be 5. Wasn't a very good 3,
4, 5 anyway. So you start out with 3, 4, 5--all
right, we pick the 3 has the base, right?

Aha.

A1l right, it's S--mumbling-~if we have 3 as the
base-~and this is a little bit off an isosceles,
but if we draw an isosceles as 3 as the base~-0.k.
we've got a right angle--that's got to be the maxi-
mum--mumb1ing--(height?) because if it goes any--

: Right.

Over this way, it is going to go down.
0.k.

A11 right, so remember the argument we've used--
well if we--

Yeah, I can show that, but what you're not showing
is--what you're not proving is that--

That it has to be an equilateral?

Right. But you're not showing that this side is
1/3 the perimeter.
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Right. I'm showing--first of all it has to be an
jsosceles. Right.

Right.

It has to be an isosceles--that means that we've got
these three sides and those two are equal--right?

Umma .

Right--so now I pick this side as my base--T
already picked--if that side is my base then the
maximum area would have to have an isosceles--
so I turn around--this side is my--

That I understand as proof, but you're not show-
ing me that this is 1/3 the perimeter--mumbling.

If we have an isosceles triangle--if we have an
equilateral triangle--then each side has to be
1/3 the perimeter--that's the whole thing about
an equilateral triangle.

I know--0.k.

First we know 1t must be an isosceles, right?
Umma.

0.k.

I understand this.

If it is an isosceles, it must be an equilateral,
right?

All right.
And if it must be an equilateral--all three

sides must be equal and if the perimeter is ?,
all three sides must be 1/3P.

0.k. I've got it.

-
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Appendix 4
Protocol 4
(Reads problem) You are given a fixed triangle T with base
B-- Show that it is always pcssible to construct, with ruler
and compass, a straight line parallel to B such that that
line divides T into two parts of equal area. Can you sim-
ilarly divide T into five parts of equal area?
Hmmm. I don't know exactly where to start. B

Wwell I know that the...there's a line in there somewhere.
Let me see how I'm going to do it. It's just a fixed
triangle. Got to be some information missing here. T
with base B. Got to do a parallel line. Hmmm. -
It said the line divides T into two parts of equal area.

Hmmm. Well, I guess I have to get a handle on area measure- &
ment here. So, what I want to do...is to construct a line... 5
such that I know the relationship of the base...of the little
triangle to the big one.

Now let's see. Let's assume I just draw a parallel line
uthat looks about right, and it will have base little b.

Now, those triangles are similar. &
b

Yeah, all right then I have an altitude for the big /44ﬂ_
triangle and an altitude for the little triangle so I

have little a is to big A as little b is to big B. So B
what I want to have happen is 1/2 ba=1/2AB-1/2ba. 1Isn't
that what I want?

™~

=b
8

»IB

Right! In other words I want ab=1/2AB. Which is 1/4 of

I Lo - \‘QE
R 46-Q7 > ﬁ' kA
A times...mumbles{confused)...Qne over the square root of 2 2

two times A times one over root two times B.. i '>
abs %FB’(G.“}(‘&:'B
So if I can construct the square root of two, which I
can! Then I should be able to draw this line...through J—
a point which intersects an _altitude dropped from the T
vertex. That's little a=A/v2 , or A=a/2 , either way. -
And 1 think I can do things like that because if [ re- '
member I take these 450 angle things and I go 1,1,/2. |
' " = 0-—
.  And if I want to have a times root 2...then I do that... Ve
- mmm...wait a minute...I can try and figure out how to /L: fZ'tL/

o,
~a
(G
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construct 1/vZ.

0.k. So I just got to remember how to ‘make this construc-
tion. So I want to draw this line through this point and '
I want this animal to.be...1/¥2 times A. I know what A is, /31
that's given. So all I got to do is figure out how to multi- :
ply 1/¥2 times it. AT ' Vi

Let me think of it. Ah huh! Ah huh! Ah huh! 1//2...let Vod =1 L
me see here...ummm...that's 1/2 plus 1/2 is one...

So of course if I have a hypotenuse of one... 03/

Wait a minute: 1/v/2 - v2/¥2 = /2/2...that's dumb'

\Yeah, so [ construct v2 from a 45, 45, 90. 0.k. so that's

an easier way. Right? Y

I bisect it. That gives me root 2 over 2. I multiply it

by A...now now did I used to do that? ﬁrq

Oh heavens! How did we used to multipl§ftimes A. That... ' 1292\ o
the best way to do that is to construct A...A...then we get f% 1’§§
root 2 times A, and then we just bisect that and we get

AV2/2. 0.k. ‘ » A .

That will be...what!...mmm...that will be the length...now
I drop a perpendicular from here to here. 0.k....and that
will be...ta, ta...little a.

So that I will mark off little a as being AY¥2/2. 0.k. and
automatically when I draw a line through that point...I'd
better getv2/2 times big B. 0.k. '

And when I multiply those guys together I get 2 over 4 times
A times B. So I get half the area...what?...yeah...times
1/2...s0 I get exactly 1/2 the area in the top triangle so
I' better have half the area ieft in the bottom one. O0.k.

0.k., now can I.do it with 5 parts?

Assuming 4 lines. . N
4
Now this is going to be interesting since these lines are
going to have to be graduated...that... // N
N\

[ think, I think, that rather then get a whole lot of -Ziﬁ____~___§__;>§;\
triangles here, I think the idea, the essential question i

is can I slice off...1/5 of the area...mmm... // \5&
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26. Now wait a minute! This is interesting. Let's get a...how about

four lines instead of... .
27. I want these to be...all equal areas...right? A]sAz A3 A4 A. right?

28. Sneak! I can...I can do it for a power of 2...that's easy /b
because I can just do what I did at the beginning and keep 7z1___-
slicing it in half all the time. A
. A A,
29. Now can I use that kind of induction thought.
30. I want that to be 2/5. And that to be 3/5.
31. So let's make a little simpler one here.
32. If you could do that thep you can construct the square
root of five. But I can construct the square root of
5 to one...square root of 5, right?
- 33. So I can construct...o.k. So that certainly isn t going -4 l J
to do it. Mo contradiction.. s" qf éf

34. Now,‘k do want to see, therefore, what I have here.

35. I'm essentially saying is it possible for me to construct J?
it in such'a way that that is 1, 2, 3, 4, 5, 1/5 the [
area...o.k. /

3. So little a times little b has got to equal 1/5 times A L /
times B. So I can certainly chop the top piece off and S
have it be 1/5 of the area. Right? .Right?

37. Now, from the first part of the problem .I know the ratio
of the next base to draw...because it is going to be root &
times this base. So I can certainly chop off the top two
fifths.

38. MNow, from the first part of the problem I know the ratio
, of the top...uh, o.k. now this is 2/5 here, so top 4/5. .
- 0.k....all right...so all I got to be able to do is chop
off the top 3/5 and I'm done...

39. It would seem now that it seems more possible...let's see...

40. We ‘want to make a base here such thdt little a times little
b is equal to...the area of this thing is going to be 3/5...
3/5AB...in areas, right!...and that means little a times
little b is /3//)'A times f/fB 0.k. then can I construct £9=24.B=
the square root of /3/5. If so then this can be done in one s

shot. V3 A)(JSB\)

Q ‘ 1'.;(}




41.

42.

43.

45.
46 .

47.

48.

49.

A Episodes and txecutive lecisions

Well let's see. Can I cohstruct v375. That's the quest{on.
v¥3/¥5-/5//5 = VT3/5.

Root 15, root 15. Wait a minutg! Root 15 over 5. [Is the
square root of 15 constructableX R

oot 15 is
t is the square root of 16-1. ;:h\I don't like that. It

doesn't seem the way to go. \\\\
}62 -1 equals... (expletive deletad) N

\

Somehow it rests on that.
(expletive} If I can do the square root ;:\¥5C Can I divide

things and get this?

Yeah there is a trick! What you do is you 1ay\\ff 5 things.

, 2,3, 4, 5. And then you draw these parallel lipes by
d1V1d1ng them into fifths. So [ can divide things tato
fifths so that's not a problem.

So it's just constructing the square root of 15 then I éhg
answer the whole problem. \

\
[ got to think of a better way to construct the square root '
of 15 then what ['m thinking of...or [ go‘ to think of a way \\
to convince myself that I can't...umm,..x"-15.

Trying to remember my algebra to knock this off with a sledge-
hammer,

It's been so many years since I taught that course. It's
5 years. [ can't remember it.

Wait a minute! Wait a minute!

I seem to have in my head somewhere a memory about quadratic
extension.

Try it differently here. mmm...

So if I take a line of length one and a line of length... !
And I erect a perpendicular and swing a i6 (transcriber's
note: for mathematical clarity he really means 4 instead

of 16) here...then ['11 get the square root of 15 nere,

won't I?




r

['11 have to, so that I can construct the square root of N
15 times anything becausé I'l11 just multiply this by A and N
this by A and this gets multiplied by A divided by 5 using A
that trick.- Which means that I should be able to construct

this length and if I can construct this length then I can

mark it off on here and I can draw this line and so I will

answer the question as YES:.:.
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10.

out, of course...and I want that to be one half of that.

70

Protocol 5
(Reads probiem) Same as Protocol 4.
The first thought is that the two triangles for the first
question w111 be similar.
And since we'll want the area to be one half. And area - A |
is related to the product of the altitude and the base /
we want the area of the smaller triangle to be one half.
And corresponding parts of similar triangles are propor- B
tional. We want the ratio of proportionality between pa J_B — L
the altitudes and the bases both to be 1/2 +3 >

So I will draw a diagram..:and I'm drawing that parallel
and checking that algebra.

I hope you can nhear the pencil moving because that's
what's happening at this point.

And now I'm writing a bunch of letters on my diagram
and multiplying them together...leaving the one half

So, that certainly seems like a reasonable solution. So
all I have to be able to do is construct v2. And I can do
that with a 45 right tridngle, and then given a certain
length, namely the altitude, to the base B, which I can
find by dropp1ng a perpendicular. I want to construct a
length which is 1//2 times that, and I can do that with
the ordinary construction for multiplication of numbers.

So, I can do the problem.
I: You can do a]]lthe constructions?
Yeah{\l do them in the winter term. This line, this line,

here's one, you want to multiply p times q, you draw these
parallels and it's pq.

(The solution of part 2 is omitted)
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1. Overview

This paper is one of a pair which, together, try to sketch out some of
the issues that should be taken into account when one uses certain "verbal
methods" (c]inical.methodologies or protocol analysis) for research into
human problem solving processes. This paper is primarily a casé~§tudy in
one methodology, in which two students are video*aped as they work together
to solve mathematical problems "out loud." The focus will be on the advantages,-
and disadvant;ges. of this particular methodology -- or more properly, on
those aspects of cognitive processes that this methodology will illuminate
and those wnich it will obscure. The context for this discussion is treated
at some length in the companion paper, "Beyond the purely cognitive: Meta-

cognition and social cogriition as driving forces in intellectuai performance."

A brief discussion of that context is given in section 3.

2. Background

In recent years there has been a resurgence of the use of verbal data
for research into the nature of human cognitive processes. Such research
takes as its data the verbal reports produced by individuals or groups of
subjects in a variety of circumstances: through retrospection or introspection,
in structured or unstructured "clinical” interviews, in "speak aloud" problem

solving sessions, with or without experimenter intervention. Through the

period of the Gestaltists' major influence, the analysis of verbal reports
or introspections was considered methodologically sound, if not the primary
source of information regarding complex human cognitions. However, verbal
methodologies fell out of favor with the advent of behaviorism and the rise

of "scientific" methodologies for the investigation of cognitive phenomena.
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The mental con§¢ructs posited by éhe Gestaltists were unneccessary for (or
more accurately:‘qntithetical to) the theoretical foundations of the behavior-
ists (see, for example, Skinner [1974]). In addition the products of intro-
spection were not replicable or verifiable. Perhaps more impdrtant]y, they
were not fa]sifiab]e.\‘Thus they could not, it seemed, serve as the found~tion
for a cumulative scientific effort. In consequence the methodologies that
gave rise to such unscientific results were supplanted by more “rigorous"
methodologies that promised to yield "good science." Verbal methods were
déclassé through the 1960's and the 1970'5.‘

For a number of reasons, perspectives on verbal methods have changed in
recent years. Perhaps the major cause of the cnange is the “legitimization"
of protocol analysis as a consequence of its role as a major research tool
in artificial intelligence. Such research (see, for example, Newell and
Simon [1972]) demonstrated that one can design success ful problem solving
programs for computers, based on principles abstracted from the analysis of
human problem solving protocols. These computer programs offered, for the
first time, incontrovertible empirical "proof" of the efficacy of certain
strategies*, and gave credibility to the methodologies that uncovered them.
Another major cause was the impact of Piaéet's genetic epistemology in general
and, in mathematics education, the impact of Krutetskii's work (Krutetskii,
1976). Piaget's work made it clear that careful clinical investigations
could give rise to replicable results, to falsifiable hyootheses, and to
predictions that could be tested experimentally. In short, clinical inves-

tigations could indeed lay the foundations for good science. Krutetskii's

*Technically, they offered proof that the machine implementation of such
strategies is possible, not that humans actually use the strategies,

—
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work was not "science" in the unbiased, objective sense that we take fit.
However, it dealt with issues from a perspective that appeared to provide
more direct explanations of students' "real" mathematical behavior than tre
work coming from many "scientific" studies. This caused much interest in
his‘methodo]ogies (and Soviet “teaching experimenté“ in general.)

Indeed, one cause of the resurgence of verbal methods is the increased
sophistication of the research community and its more balanced perspegtives;
on the methodologies that supplanted them. The limitations of the statistical
methodologies began to emerge as "it became clear, from a lack of clear-cut
results in the empirical literature, that there are often (for example)
many more variabTes in "treatment X vs. treatment Y comparisons than.are
being controlled for in supposedly "tight" experimental designs. It became
clear as well that the difficulties in extrapolating results from well
designed laboratory studies to more complex cognitiveé phenomena, and to more
complex environments, had been seriously underestimated. Calls we:e made
(e.g. Kilpatrick, 1975) for the use of clinical investigations to determine, |
in exploratory fashion, the spectrum of important "mathematical abilities."

More recently, the cognitive community has begun to recognize the importance
of "other than purely cognitive" influences on what were once taken as

“purely cognitive" actions. Thus the role of metacognitions and social
cognitions (belief systems, etc.) as driving forces in human intellectual
performance is coming to receive more attention (see, e.g., Brown, 1978;
D'Andrade, 1981; Lawson, 1980). A range of exploratory methodologies, cften
verbal, has been developed to deal with such questions. Hence for many dif-
ferent reasons, verbal (clinical or protocol) methods are used with increasing

frequency as research tools. Yet,"while increasingly popular, protocol
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methods have not yet received thorough methodological analysis. Little is
known concerning their fundamental natures, che rationales underlying their
use, and their reliability" (Ginsburg, Kossan, Schwartz, and Swanson, in
press). Such analyses are beginning to emerge, the Ginsburg et al paper

el

being one of them. Also, Psychological Review has bub]ished two recent

analyses of the effects of speaking aloud methods. Nisbett and Wilson's
[1977] title, "Telling more than we know: Verbal reports on mental processes”
suggests its conclusions. Ericsson and Simon [1980] conclude that certain
kinds of "talking aloud" instructions -- those that ask for verbalization

as one solves a problem, without calling for explanations (elaborations or
retrospections) of what one is doing -- do not seem to affect people's
performance while solving problems. This paper and its companion will suggest
that that conclusion needs to be further qualified. Some of the relevant

issues and variables are characterized next.

3. Context

Issues regarding the validity and generality of verbal methods are
singularly complex and subtie. Any particular framework for gathering and
anaiyzing verbal data will illuminate certain aspects of cognitive processes
and obscure others.* Perhaps more importantly, it may appear to illuminate
many behaviors that have, in actuality, been distorted in a number of subtle
ways. Each methodology is a lens (or fiiter, if you will) through which
intellectual performance is being viewed. Thus the selection of any particular

methodology for investigation may well determine what the experimenter does

*To be accurate, I should talk of “social-cognitive" processes, in the sense
that the "cognitions" being studied take place in a social context, which
may well determine what the experimenter sees. The discussion below will
clarify this point.
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or does not see. In turn, this may affect the theoretical constructs that

are derived from these observations. Since there isjgreat potential for
di§tortion in this arena, the experimenter wishing a éense of the "whole
cdgnitfve picture" should consider using a range of complementary (verbal
and other) methodologies, and must be extremely cautious in interpreting
the results obtained from a body of metho&o]ogica]]y simi]ar studies.

A wide range of variables affect the kinds of information that emerge
frem verbal methodologies. Some of them are sketched briefly here.

a. The number of persons being taped.

Radically different types of behavior emerge in single-person, two-person,
and small group (say three to five people) protocols. The prevailing assump-
tion is that single-person protocols give rise to the "purest" cognitions,
uncontaminated by social concerns. However, the task environment itse] f
imposes certain constraints upon the subject(s),** and the discomfiting
effects of a task environment may be strongest when a person is solving a
problem alone, rather than with the (intellectual and social) support of
a peer. Certain behaviors become more prominent, and easier to observe,
with more ihan one subject (e.g. decisionmaking). However, observing other
aspects of behavior is made more difficult. One dominant member of a group
can skew discussions to the point where they reflect only that person's
ideas; solutions may proceed in parai]e], or with (positive or negative)
reinforcement from the interactions. The more people involved, the more
obvious the social dynamics. There are no value judgments attached to these

characterizations -- each serves its purpose, and one should simply choose

*These "environmental™ constraints lessen with the maturity and training of
the subjects. However (see below) college seniors still feel them strongly.
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the one(s) suited to the ends that one has in mind. If one is interested in
making artificial intelligence models of competent problem solving performance,
[e.g. Newell and Simon, 1972] then the most appropriate methodology may well

be to perform the detailed analyses~of single-person protocols. If one wishes
to elucidate certain kinds of decisionmaking behavior, [e.g. Schoenfeld,

in press] two-person protocols may be appropriate. If one wishes to make
statements about students' "real, social" cognifive behavior [e.g. Lesh's
"applied problem solving project" and Noddings' analyses of group inter-

actions] chen larger groups are appropriate.

b. The degree of intervention

Verbal methods include a continuum of experimenter obtrusiveness that
ranges from near invisibility (covert or non-interventionist observations
of people in natural settings) to positions of central importance (experi-
menters inducing "cognitive dissonance" in clinical interview settings).
Each serves certain ends in particular situations. [f, for example, an
experimenter is interested in determining the "Van Hiele level" of a student
on geometry tasks (or the Piagetian level of a subject on a particular task),
.and exploring corollary behavior on other tasks, then a large degree of
intervention is almost mandatory. If, however, the experimenter wishes
to see how a student copes with difficult problems (what the student pursues,
whether the student goes off on "wild goose chases," etc.), then intervention
may be inappropriate. Indeed, asking the student "why did you do X?" may
héve a dramatic effect on the student's behavior. Up to that point, the
student may not have considered the question. There is, first, the chance
that the answer to the question is "manufactured." Second and equally

_important, the student is now aware that the experimenter is interested in
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how such choices are made. The student may begin to reflect on on those choices
while working on the given task, and behave from that point on in a mannér
very different than he or she would otherwise have behaved.

c. The nature and degrees of freedom in instructions and intervention

The kind of instructions subjects are given has a strong effect on what
they produce. For example, asking the subject to reflect upon his or her
problem solving processes does have an effect on performance [Ericsson and
Simon, 1980]. Yet such reflection may point to behaviors that might other-
wise be yn§een. In clinical interviews there are tradeoffs between stand-"
ardization on the one hand and experimenter freedom on the other; one has
a certain degree of reliability in the first case, and the potential for
probing interesting behaviors ‘in the second.

? \ :
d. The nature of the environment and how comfortable the subject feels in it

To put it simply, students who feel uncomfurtible in a particular environ-
ment may uniformly exhibit pathological behavior. That the behavior is
pathological may not at all be apparant; that may only appear when the
experimental conditions are altered. Further, putting students."at ease"
may be completely insufficient. The very fact that one is being taped may
be enough to induce atypical behavior (see below). Subjecté may avoid
dealing with the task in any substantive way, in order to avoid feelings
of inadequacy when they (és they see it, inevitably) fail at it. They

/ may create certain kinds of behavior, to make it seem as if they know what
they are doing. They may select their behavior to tajlor it to (what they
believe are) the experimenter's wishes. (In the later category, I have tapes
in which students say "We could solve it like this, but obviously he déesn't °§
want that.") Or, students may deal with a problem in unusual ways simply

because they are in an obviously artificial setting. (A student in one of
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Dick Lesh's videotapes, working on a "real world" problem, misread some given
information and assumed that he could earn nearly $150 for mowing one person's
lawn once. When he was questioned later, he was asked if that seemed like

a reasonable figure. It did not. 1In fact, the student mowed lawns for extra
money and knew the figure was unreasonable. But,-“it was a hypothetical
question, wasn't it?")

e. Task varjables ¢

The range of these js tren .ndous. Does one provide children with
manipulatives, for example? How does this affect pervormance? For a general
discussion of task variables in mathematicai problem solving, see Goldin and

McClintock [1979].

This brief discussion serves to indicate some of the variables that

affect the collection and interpretation of verbal data. It is a bare

-introduction to an area that needs much greater investigation, but it may

serve to set the stage for the following discussions.

4. Executive decisions %n problem solving: the issue and methodology

As section 3 indicates, one's choice of methodology should be guided

by the goals one has for research. The "problem" I set out to investigate,
initially, was to explore some of the reasons for students' lack of success
in solving "non-routine" problems at the college level. 1In addition, I
wished to examine students' performance before and after a course in math-
ematical problem >olving, in order to determine some of the effects of
instruction. Previous work had provided some tools for the investigation,
and some ideas as to what mechanisms mignt contribute to success (or more
accurately, to failure). The general arena was an investigation of Polya-

type heuristics and their contributions to problem solving performance.

I8y
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Earlier studies had indicated that students could learn to usé individual
heuristics with some degree of competency [Schoenfeld, 1979] and a battery
of Egsts had been used to examine fluency and competency in the impiementation
of thé;e heuristics. Thus the intention here was noi to investigate such
competencies. (If it were, some form of detailed clinical probing would
undoubtedly have been an appropriate methodo]ogy.). Rather, the intention
was "to investigate-a--consistent "difficulty" with regard to heuristics.

The literature indicated that, whingstudents did seem able to master in-
dividual problem solving étrategies,‘%ﬁe overall effects on their problem
solving performance was not nearly as large as was expected or hoped:! the
problem solving whole was, someth, less than the sum of its heuristic

parts [Wilson, 1967; Smith, 1973; Lucas and Loomer (in Harvey and Romberg),
1980; Goldberg, 1975]. Th;/huestions chosen for investigation were:

onat will students cnoose/to examine in a problem solving situation (and
why)?" How will they "follow up" on those choices (pursue them, aBandon

them etc.)? and What is the effect of such "strategic" or "executive"
behavior on their problem solving performance? ~s3erve that these questions
can be asked about prdb]ems that may or may not be amenabie to particular
heuristic strategies for solution, solved by students who may or may not havc
the heurist%cs at their disposal. This was an exploratory study, in that
the data (videotapes) were to serve as a source of hypotheses rather than

as a test of them. Some of the choices among the variables given above,

and the rationales for them, were as follows.

a. The number of persons being taped

For a variety of reasons, two-person protocols provide the richest data

for the purpose described above. First, [ have found that single-person




protocols (from students, not faculty) tend to generate unnatural behavior

in subtle ways. Protocol 1 (appendix 1) was generated by a single student,
a senior mathematics major. It is typical of single-person protocols for
this problem ("How many cells are there in an average adult human body?")
in that much time and effort is spent approximating parts of the body by
geometric solids and computing the volume of those solids. 1In roughly two

dozen two-person protoco]s; not one pair of students has done the same.*

This behavior was induced by the setting: the students felt the need to
"produce something mathematical" for the researcher. Many-person protoccls
ease the pressure on the subjects, for the burden of uncomfortableness is
shared among the students.

A serond reason for ;ot using single-person protocols in these circum-
stances is the wish to elucidate the nature of the students' strategic
decision-making as they work on the problems. For reasons given below,
the sessions had little or no experimenter intervention and the subjects
were not instrucﬁed to explain what they did as they solved problems. In
single person "speak aloud" protocols, what appears is often the "trace"
of a solution: one sees the results of decisions but gets little insight
into how the decisions were made, what options were considered and rejected,
etc. When students work together as a team, discussions between them regarding
what they should do next often bring those decisions and the reasons for them
"out in the open.” (A/typical dialogue is "Let's do X." "Why? I don't see

what good it'1l do." "Look...")
/

*1 collected the single-person protocols first, and had begun to construct
various (cognitive) explanations for this poor strategic behavior. Only
later, when there were two-person protocols for comparison, did it become
apparent that the extensive body-volume computations were caused by the
social environment.

<1
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These reasons suggested the use of many-nerson (n32) protocols. There
are trade-offs with regard to group.size. Larger groups provide more "ideas"
to manage, andodecision making can be more interesting in these circumstances.
Also, social dynamics of groups of 4 or 5 may better ameliorate the uncom-
fortableness of the experimental environment. Two reasons suggested n = 2
as the most suitable choice. First the decisions one faces when “managing"
the ideas generated by a group of people may be very different from the decisions
one faces when considering the ideas one or two people have generated.

s

For example, one or two people working alone might go off on a "wild goose
chaseh and squander their problem solving resources that way. In a larger
group, the likelihood of someone saying "why?" to the proposed direction is
greater, and the resultant behavior different. Also, one or two ‘students .

may only generate one or two plausible alternatives; a “committee" may generate
more. The "perceived soiut}on space" is different, and the resultiﬁg

behaviors may not reflect those of individuals working alone or in‘pairs.
Second, the focus of this investigation was 1argé]y cognjFive. With larger
groups the degree of social iﬁteractions increases, making it more difficult

to tease out the "purely cognitive" aspgcts'of students' behavior. These
social factors are still (all téo) present in 1- and 2-perscn protocols,
however, We have seen how one person "engages in mathematical behavior"

to dissipate the pressure of the task environment. In simiiar circumstances

a pair of students may "defuse" the environment by engaging in small talk -~
around the pfoblém. By refusing to take it seriously, they can justify

~ (what is from “heir perspective) the inevitable failure-by telling themselves
that they "never really tried." And of course, two-person social” dynamics

»
can be quite strong. In all cases, Jne must take care that the behavior
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labeled as "cognitive" is indeed so.

b. The degree of intervention

It is important to keep interventions to an absolute minimum in this
kind of study. TRe idea was to determine the presence (or absence) of certain
kinds of "monitoringX\ and decision making in students' problem solving, and
to trace the effects of\their presence (or absence). These effects can
only be seen if a solution“is allowed to run its course. For example, a
student may have a "hunch"/o;\éome “intuition” about a p]aﬁsib]e solution,
‘ and begin to work in that virection. From the expe;imenter's point of view,
\ it may be clear that this is a "wifﬂ\goose chase," and it may be tempting
to find out what prompted the student\hq pursue it. However, such an inter-
vention prec]ddes the opportunity to obs;>ve the effects of such a wild
goose chase. After three minutes the student\might come to see that it is
fruitless, and go on to do something else. Or:\th student might never
reconsider, and sﬁend the aﬁ]otted time involved in\{rrelevancies. I&‘fact,
the Tatter type of behavior occurs alj too frequently. \In a 1érge number
\ of tapes: studen%s‘engaéed in an essentially irrelevant gémputation for nearly
twenty minutes (the .length of the taping sessions). After ;;éy\ran out of
time they we}e asked what they would do wiéh the result of the computation

if it were given to them...and they were unable to say [Schoenfeld, in_press].

I now believe that this lack of monitoring is quite typical (though not

always this extreme, obviously) of student behavior, and is one of the major\
contributing factors in students' problem solwing failures. This could only \\
be seen, and verified, by letting the solutions proceed unimpeded.

_More importantly, in this particular kind of stiudy, experimenter inter-

vention may have a radical effect on'the subject's performance and on the

18y
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data that is produced. Recall that one purpose of these experiments was
to determine the degree to which students reflect on, and oversee, the way
that a solution evo]vgs. Suppose, for example, that a student in the midst
of a solution is asked to justify a "wild goose chase" or any other strategic
decision. Up to that point the student may not have thought about such
issues, or dealt with them casually. After the intervention, he or she
knows that the experimenter is interested in such questions. In consequence,
the student may begin to manufacture such justifications (to be ready for
the next intervention). In doing so, that person's behavior may be completely
distorted. There is now a training effect, and all data must be interpreted
accordingly.

Again, the preceding comments should be interpreted in the context of
the goals for the study, which was exploratory. One of its purposes was to
explore students' monitoring and executive behaviors, and document the role
that they p]axrin students' problem solving performance. Once that information
has been gathered satisfactorily, a shift in methodology may be appropriate.

i The fianl section will mention a revised methodology I am now pursuing.

C. The nature of instructions and interventions

As the reports in Psycholygical Review [Nisbett and Wilson, 1977;

Ericsson and Simon, 1980] indicate, asking students to talk about their
problem solving processes during the process of a solution does have an
effect on those processes. For that reason students were instructed not to
“explain" for the microphone. Rather, they were to work together as a team;
what I wanted to hear would emerge from their discussions. Interventions
were limited to comments like "I haven't heard you say much in the past

three minutes. Are you still working on the problem?" and to specific
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responses to questions the students asked.

d. The environment

The setting was obviousty artificial (solving non-routine problems for
a mathematics professor can hardly be considered natural behavior) and,
deSpite.a]1 efforts to the contrary, somewhat stressful. This pbint should
be empha;ized. Protocol 1 (appendix 1) was produced by » senior mathematics
major who was on a first-name basis with the experimenter. The student was
familiar with the entire process (he had done some taping himself as part of
a senior thesis). Yet the unfamiliar problem induced great stress, with a
resultant effect on the protocol. Similarly, great efforts were taken in
all the two-person protocols to put the students at their ease. They were
assured that the research was non-judgmentqj;‘shown that the videotape machine
Focdsed on the pages they were writing and ﬁot on their faces, etc. Even

so, it is not at all safe to assume that the students would deal with the

____same problems in anything like the_same manner if they worked on them, for

example, in their own rooms without a recording device present. The more
awkward the situation -- the more obtrusive the recording equipment, the
more “unusual" the problem, etc. -- the more likely the "verbal data" is to
be affected.

e. Task variables

The subjects were college students, and treated as such. Problems were
worked with paper and pencil only, save for "straightedge and compass"

geometry constructions, where they were given the tools for the constructions.

5. A framework for examiningfthe protocols

An extensive description of the framework described below, and of the

results obtained with it, is given in my article "Episodes and Executive
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Decisions in Mathematical Problem Solving" [in press]. In brief, the idea

was to create a macroscopic framework that capturea the essential elements

in the problem solution.* There is one significant difficulty in implementing
this idea, a difficulty that has been the downfall of most extant protocol
coding schemes: the most important event in a problem solving session may

be one that is conspicuous by its absence! For example, appendix 1 of the
"Episodes" paper gives the protocol of a tapg,thaf had a 20-minute long

"wild goose chase" in which the students tried to calculate the area of a

-

geometric figure. At the end/of/the tape they were asked how they would
use the result if phey had it, and they could not say. Had they asked them-
selves, at the moment they set out to do the calculation, what value it would

have, they might have avoided wasting their time. But they did not, and the

'solution was doomed from that point on. Now observe that, as one might

expect, conventional coding schemes record overt behaviors in a problem
protocol. While this seems to be perfectly natural, the result is that. . .-
such frameworks bypass the critical element in the protocol described above:
the absence of evaluation at a "make or break" point in a solution. Such
systems will not point to the reason that the attempt failed. The general
idea is to discuss the impact of the (presence or abgence of) assessments
and consequent decision making of the solution as a whole.

The idea behind the generation of the system is straightforward. Potential

"make or break" points in a solution occur whenever the direction of a solution

changes radically {when one approach is abandoned for another), or when new

*A qualitative "test" for capturing the essential elements in a protocol is
the following. After being given the analysis (coding) of the protocol, are
there "surprises" when one sees the tape for the first time? This particular
framework seems to pass the test. The other systems with which I am familiar
fail it miserably: it is nearly impossible to get a “feel” for what happened

from the string of coding symbols.
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information arises that might call for such a radical change. The system
is designed to identify those points, to characterize the behavior of the
students at those points, and to describe the effect of that behavior on
the solution.

A protocol is parsed into major "episodes." An episode represents a
body of consistent behavior on the part of the problem solver(s). Episodes
have one of six labels attached to them: reading, analysis, expioration,
planning/implementation, verification, and transition. Once a protocol
has been parsed into episodes, one category of “make or break" points
becomes obvious: any transition point between episodes is a potential
assessment/decision po;nt. Other “executivef decisions shﬁu]d be made at
“new information" points. \ g E~j

Appendix 2 provides the full ana]yéis of alb}btoco], which is given in
appendix 3. This analysis prdwides an example of how the system works.

Most of the commentary -is self-explanatory.*

6. Discussion

The framework discussed above has proven itself reliable and, I believe,
reasonable informative. [t seems to capture much of the "essence" of a problem
solving session, without getting lost in details. The macroscopic approach

allows one to get a sense of apparent causes of success or failure in a

*Letters preceding comments refer to specific parts of the framework. For
example, one asks three questions about any reading episode:
a. Have all of the conditions of the problem been noted? Explicitly or
implicitly?
b. Has the goal state been cerrectly noted? (Again, explicitiy or implicitly?)
c. Is there an assessment of the current state of the problem solver's
knowledge relative to the problem solving task?
In virtually all cases, the questions that Tie behind the comments in appendix
2 are clear. They are omitted to save space.
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problem solution, and points out the importance both of monitoring solutions
and of "executive" decisions in them. The framework is straightforward to
implement (three students, in concert, do most of the coding for me) and
reliable (their codings and mine have an intercoder reliability exceeding
85%). The framework is also generalizable: it is not domain-specific, and
can be adapted easily to study problem solving behavior in other disciplines.
However, some caveats are in order.

First of all, this particular methodology offers only one perspective on
the problem solving process. It should be coupled with a variety of others
(paper-and-pencil tests, clinical interviews to determine mathematical
abilities, different protocol methods and different levels of analysis, etc.)
in order to provide a reasonably comprehensive picture of problem solving
behavior.

Second, there are any number of dangers inherent in the gathering of
protocols. A few of these (for example, pathological behavior induced by
uncoﬁ%ortab]eness, or bad social dynamics) were mentioned above. It is
nearly impossible to control for these, or even to be aware of them in any -
particular protocol. Thus one must exercise extreme caution in providing
"purely cognitive" explianations for behavior.

Third, this was an exploratory methodology and has certain limitations.
It was non-interventionist, for example, in order to make the case that
assessments and managerial decisions play a critical role in determining the
success of problem solving attempts. Once that point has been granted,
one may well wish to explore "executive" behavior in’ﬁore detail. I am now
trying a variant of the preceding methodology, as follows. A student is

first videotaped in the fashion described above. Then the student watches
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the videotape and critiques it, explaining the reasons for his or her behavior,
These explanations are probed in clinical fashion. This "mixed" methodology

will, I hope, allow for a more subtle elucidation of problem solving processes.

Summar

This paper has discussed some of the subtleties involved in the use of
verbal methodologies. It has examined in some detail the aims and rationaies
of a particular methodology, two-person speak-aloud protocols without exper-
imenter intervention, and discusséd a framework for analyzing such protocols.
Verbal methodologies, if used with care, can help to shed much light on

cognitive processes. It is hoped that this is a step in that direction.

ERIC L2
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Appendix 1: A single-person protocol

(Reads problem): Estimate, as accurately as you can, how many cells might be in an
average-sized adult human body. What is a.reasonable upper estimate? A reasonable
lower estimate? How much faith do you have in your figures?

['11 think of some approaches I might take to it.

The first one might be just to go by parts of the body that are fairly
distinct and try to figure out... '

My first possible approach to the problem might be to look at them as approximations
to geometric shapes and try to figure out the volume of each part of the body. And

then make a rough estimation of what I thought the volume ¢f a cell was and then try

to figure out how many cells fit in there.

[ would say take the arm from the wrist up to shoulder and it's approximately a

cylinder and it's, I don't know, about 3 or 4 inches in diameter. So you would

have, it's about 2 or 1% inches in radius, squared, times = and the volume of my
arm in square inches. So ['ve got two arms, so I've got two of those.

And now a leg. A Teg...think thisimight be better...there's a little more variance,
so [ would say a cone might be more appropriate. And the base of my leg is approx-

imately 6 or 7 inches in diameter so you would have 3%2 x = and the height would be...

what is my inseam size, .about 32 or.34. So you've got to have a 34, and it's a
cone so you've got to multiply it by 1/3.

And now the head is very, very roughly a sphere. And so you've got a sphere of...
I don't know how many. I don't know, maybe on the average 6" in diameter. That
may be a little small, maybe 7" in diameter. And so quick recognition of the
formula was 4/3 =r3. So I've got 4/3 of whatever my head is cubed, ['ve got

343, and what am I missing now?

Oh, torso...very important. Well a torso is...you could say is approximately
like-a cylinder except with an oval base. So I could figure out what the area
may be around is, and I won't calculate this explicitly. Say my waist is about
34" and I could approximate it across here. And if I worked on it I could figure
out what the geometry of it of the volume of that ellipse.

S: Well, wake a ballpark estimate. I would like to have a number just out of
curiosity.

S0 I've got an ellipse. This may take a while though because my geometry is
bad. I've got an ellipse with a perimeter of about 34, and major axis is some-
thing along the lines of 18" and the minor axis is maybe...I don't know...8"...
And...Oh, geez... :

Yea, it's going to be very messy. So I will dispense with that, and instead

make another rough estimate, and rather assume myself to be...well, I'm not going

to bother to do this, since it's not very exact, anyway. But I could draw a circle,
a little bit smaller than that maybe. Well that circle has got...how much...
something between 8 and 18, and looking at this I guess you have to stretch and
elongate it in the width more than the height...closer to 18...and say 14 in
diameter. So that would mean 7" in radius. So, I've got = x 49. And that would
be my guess for that and the height would be...I don't know...about 15.

fow, I've covered the torso, the two legs, and the twd arms.




Ok, for the hands. I'm going to have to make another -Jugh estimate. If I put
my hand into a fist [ get a little cylinder of maybe an inch and a half and a
height of about 4. So I've got two hands with a height of 4, = and the radius of 3/2.

And I have no idea what I'm going to do with my feet. Well, you could make these
into little rectangular prisms. 4 x 2 x 10. No actually that looks about right.

Well, maybe the neck, if we're going to be precise about it is going to be 4"
in diameter, so we've got a 2" radius neck. So that would be 4z in area, in

volume of it. VYea, 4nr2. And now I would add all these up. Do I have to add
them up too?

S: We'll just'call that number capital N, and then I'11 get Mr. Knop's calculator
and we'll actually do it out of curiosity. .

~— 0k, the number is N. Ok, now that I've got the volume of a body, now I've got
to figure out what the volume of a cell might be.

And it seems to me something along the lines (unclear). The diameter of a
hydrogen atom is like an angstrom unit, and that's something like ten to the minus
ten cm. And that's not going to be anything close to the size of a cell. So,

if I had to go with the size of a cell...this is a very rough estimate, it might
not even be in the right magnitude...it should be 10,000 to the inch or 10,300
cells to the cm. Maybe 1I'11 make a compromise and say 100,000 cells to the inch
is right. So that would give me 105. So each one is 105 in diameter, so we
snould call them spheres since that would make it simpler. I would have 103/22
times =. Is that right? 105/2...you've got 105 to the inch sc it would be

ten to the negative fifth inches over two for the radius...so square that and
multiply by =. So you take that and divide it by =.

And I'm going to say that that should give you the voiume, but somehow I'm

not convinced that that's the case. Well, maybe it would be right because you're
going to have a ten to the minus ten in the dencminator there, and you multiply
these things are going to come out to a good 1000 or so. So hopefully a couple
thousand square inches or so when you multiply it. .

The student was told that he had computed the area of a circle rather than the
volume of @ sphere. He made the cdrrection, and then computed all the volumes
with the heip of a calculator (to 4 place accuracy before rounding off).
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Appendix 2*

The Full Analysis of a Protocol

Appendix 3 pfesents the full protocol of two students working on the
following probiem: ¢
Consider the set of all triangles whose perimeter is a fixed

.number, P. Of these, which nas the largest area? Justify
your answer as best you can.
tudent K is tte same student that appeared in protocol 1. Student

D (not‘the same as student D in protocol 2} was a freshmen with one semester
of calculus behind him. This protocol was taken at the end of my p}oblem-
solving course, while protocols 1 and 2 were taken at the beginning.

The parsing of orotocol -3 is given in Figure 1. The analysis given

‘ >
below follows that parsing.

Insert Figure } abdut here

-, . .

g’Egisode 1_ (Reading, items 1, 2)

a. The conditions were notec, explicitly.

- . 'b. The goal state was noted, but somewhat carelessly {(items 10, 11).
' c. ;There were ﬁo assessments, simply a jump into exploration.
Transition 1 (Mull) .

a, b, ¢, d. There were no serious assassments of either current
vnowledge or of directions to come. These might.have been'cost1y, but were
fot--assessments did.come in EZ’ ﬂ
Egisode 2 (Exploration, items 3-17)

a. The explorations seemed vaguely goal-driven.

® b, The actions seemed unfocused.

il
’

*Taxen from Schoenfeld (in press). {
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Reaaing
items 1,2

(1S seconds)

T.
i

£,: txploration
Items 3-17
(22 minutes)

Local Assassment: I%em 14

T,: Items 17=19 (30 seconds)

2:

53: Plan.

Item 20
(30 seconds)

T3

Ea: Implementation
Items 21=72
(8% minutes)
Local Assessment: Items 31=33

Local Assessment,
New Information: Item 40

Local Assassment: Item 72

T,: Items 72-81 (1% minuces)

g£_: Plan/Implementation
items 82-100

(2 minutes)

&
TS: Items 100-135 (1S seconds)

Verification

Items 105-143

m

4 minutes

v

figure |

A Parsing of Protocol 3
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c, d. There was monitoring, at items 14-17. This grounded
the explorations, and led into Transition 2.
Transition 2 (Items 17-19)

a, b, c, d. Assessments were made both of what the students knew,
and of the utility of the conjecture they made. Tne result was the establish-
ment of a major direction: try to prove that the equilateral triangle nas the
desired property, and of a plan (episode 3). NOTE: If this seems inconsequen-
tial, contrast this behgvior with the transition T] in protocol 1. The lack of
assessment there, in virtually identical circumstancas, sent the students on a
20 minute wild goose chase! ;
Episode 3 (Plan, item 20)

a. The plan is overt.

b. It is relevant and well structured. As to appropriateness and
assessment, see the discussion of T3.
Transition 3 {(Null)

a, b. Tnere was little of value preceding the p an in item 20; the
questions are moot.

c. There\was no assessment of the plan; there was immediate imple-
mentation. | |

d. The plan was relevant but only dealt with half of the problem:

<

showing the largest isosceles was the equilateral. The "other half" is to

show that the largest triangle must be isosceles, without which'this part of
lthe solution is worthless. . .a point realizec¢ somewhat in item 72, 8 minutes

later. .The result was a good deal of wasggd effort. The entire solution was

not sabotaged, nowever, because monitoring and feedback mechanisms caused the

termination of the implementation episode (see the sequel).
'Q.




Enisode 4 (Implementation, items 21-72)

a. Implementation followed the lines set out in episode 3,
albeit in somewhat careless form. The conditions were somewhat muddled
as the first differentiation was set up. The next two local assessments
corrected for that (better late than never).

Local Assessment (Items 31-33)

1, 2, 3. The physically unrealistic answer caused a closer look at
the conditions--but not yet a global reassessment (possibly not called for ye* .

tocal Assessment, Mew Information (Itsm 40)

o
1, 2, 3. %ﬁ%'"new information” here was the realization that one of
the problem conditions had been omitted from their implementation {"we don't
¢
set any conditions--we're leaving P out of that"). This sent thew pack to the

original plan, without global assessment. The cost: squandered energy until

1

item 72.

Local/Global Assessment (Item 72)

This closes E4. See T4.

Transition 4 (Items 72-81)

a, b. The previous episode was abandoned, reasonably. The gJoal
of that episode, "show it's the equilateral,” remained. This, too, was
reasonable.

c, ¢. They ease into Episode 5 in item 82. (It's difficult to say
how reasonable this is. Had they chosen something that didn't work, it
might have been considered meandering. But what they chose did work.)
Episode 5 (Plan/Implementation, items 82-100)

a, b. "Set our base equal to something” is an obviously relevant

neuristic.

159
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c. They plunge anead as usual.

d. The variational argument evolved in a semmingly natural way.

e. There was local assessment (item $5). That led to a rehearsal
7of the sub-argument (item 96), from wnich D apparently "saw" the rest of the
solution. Further (item 100), D assesses the quaiity of the solution and his
confidence in the result. -

Transition 5 (Items 100-105)

a, b, ¢, di The sequel is most likely the result of a two-perscn
dialectic. It appears that D was content with his solution (perhaps pre-
maturely), although his clarity in explaining ais argument in E6 suggests
ne may have been justified. ,

Soisode § (Verification, items 105-143)
This is not a verification episode in the usual sense. K's unwilling-

ness to rest until ne understands forced O into a full rehearsal of the argu-

ment, and a detailed explanation, the result being that they are both content

" with the (correct) solution.
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Appendix 3

Protocol 3

(Reads problem.) Consider the set of all triangles
whose perimeter is a fixed number, P. Of these,
which nas the largest area? Justify your asser-
tion as best you can. All right now what do we

do?

We got a triangle--well we know we label sides A,
B and C.

Right. ['11 make it a right triangle--all right--
A,B, C and the relationship‘'such as that 1/2AB =
Area and A+B+C = P and A% + B2 = C2 and somehow
you've got an area of one of these in the perimeter.

Yeah,except for somehow--I mean I don't really know--
but I doubt that's the triangle of minimum area--
wel?, o.k. we'll try it.

28

Largest area. Well, it is the only way we can _
figure out the area. A+ T3+ C“P
“_ V>
ATl right. A¥RY=C
But for an isosceles we can do almost the same thing.
{his-{s?l€2LAl§ So that we know *that the area is I
A/2))Ce- A/ZL;L__lne.pgrimeter = A+ B+ C and the o) C
height equals )C2-(A/2)%.
A1l right.
. P
Now what do we do. We've got to figure out the “3
] t . -
argest area 'o-'C-
Isn't it the minimum?
L
t
The largest area. A: ;(’(o..\, - (1,62-\)
So actually if we can get A--we have t7 get
everything in terms of one variable and take . C;:».é;1LCI’G>

the derivative, right? Basically?

Yeah,well-- &~,

—

Well, I still don't know if we should do--I
mean we can find an area for this and can
find an area for that, granted, but if we

182
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15.
16.

17.

18.
19.

20.

21.

22.
23.
28.
25.

26.

27.

28.
29.

ever come to a problem like this--I mean we
don't know--we nave no idea as of yet with
a given perimeter what's going to be that.

Right.

So, there--I mean--you can do that again
but then what do you do?

Then we're stuck, right? Usually, you
know, you could probably take a guess as
to what kind of triangle it would be--like
you could say it is a right triangle or an
isosceles--I think it is an equilateral,
but I don't know how to prove it.

Umma.

So we haye to figure out some way to try to

prove that.

A1l right, a good guess is that it is an
equilateral, then why don't we try an
isosceles and if we can find that these
two sides have to be equal to form the
maximum area, then we can find that--then
we should be able to prove that side also
has to be equal.

0.X. so B will be equal to C, so the peri-
meter P = A + 2B, or A + 2C = P,

All right.
Ummnm.
See what we've got.

Fix A as a constant then we can do this,
solve that for C.

A1l right.

For a maxi e've got 1/2, let's
say A =1, ; 2 1/4T §1ght7 Maximum
area: 172(e2-174)1/

C2 minus what?

(172)2, yeah,(1/2)%. A/2, where A = 1. 0.k.?

o V= Ve
I (e y;\§&ECp
Yééchﬁh)'%ﬂi‘ "o
L =0
c.= O
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30. D: An, ah.
. . . 2 -1/2 )
31. K: Mumbling--this is 1/4(C"-1/4) . 2C, so we ‘
know that 2C has to = 0 and C = 0 and we are
stuck: \
I
I
32. D: We should have taken a derivative in it and every-
thing, you think? S e o |
% R |
33. K: Yeah,that's the derivative of that. So does it
help us? My calculus doesn't seem to work any-
more. \
< o | I
34. 0B The thing is--pause--you are letting C be the
vartable, holding A constant. So what was your
formu]a--]/z base times square root.
35. K: The base A times the square root times the height |
which is a right triang]e to an isosceles which is
--s0 it is C"-(A/2)" which would give you this
height. / |
T 36. D A2/4,.no, AZ/Z, no, (A/Z)Z.
37. K: How about P = , ... no, C =P -A/2? Should we
try that--
38. D: No, see part of the thing is, I think that for
here we're just saying we have a triangle, an

isosceles triangle, what is going to be the
largest area? Largest area.

39. K: Llargest area--set its derivative equal to 0.
| 40. D: A1l right. Well the largest area or the smallest
| area--I mean--if we are going to take a derivative--
I mean--what's going to happen is you have a base
and it's going to go down like that--I mean--we
don't set any conditions--we're leaving P out of
that.
41. K¢ Ah, ah.
42. D: That's absolutely what we have to stick in.
43. K: We've got C and a P-A o@er 2.

44, D: P -A over 2.

45, K: Formula--isosceles.
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A + 28 = P--alil right? /

L
Shall we try that--mumbling. -A over 2--we've got It <P—Q_} Q)
to have a minus 1/4 PA--

Well, then you can put A back in--then you can have \'lfu
everything in terms of A, right? Using this formula, 'p leﬂ%
we have the area and we have a-- (ﬁ
ATl right--P--so that's A/2 (P2 24 2.42N72 ind that's ‘-/
4
A/2<; 2A>9/2 .(mumbling and f1gur1ng)
4 f
2 (;v ) ot
Wait a minute--you just took the derivative of this
right here? ‘C
1% -
This times the derivative of this plus this times (/ELJ:Ef2'> /(?221‘(}
the derivative of this. Yy ~/
Oh.
’° \_ / \
Mumbling and figuring...A/4 P2-28)"/2 (2p-2) +/p?_pa /2 sy
= T kp e
172 = 0...50 2AP=2A + P2-28 = 0 - =0

7 8 ' Y %
So can we get A in werms of P? Tl
P2 5
8P2 - 892 bring the P2 on this side and multiply it by Ta
8 and we'll have a qudratic in terms--no we won't--

then we can just have A we can factor out in the
equation--you see.

0.k. p% =

-8P2-~oh, are we going to bring everything else to
the other side?

Yeah, 2A- +4A - 4AP x 8--No--

That's not right. Well, the 8 we can just multiply--

PZ = all this.

Right.
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CAAD = thic fen't “ o

P 4A! this isn't getting us anywhere. \; ‘ -‘{C,F7
2 ) B @ 7&,—?"14.

P® = factor out the A--then we can get A in terms of P.

P2 = 2A--s0 you've got A = P2 --

~/
5+ap P 22 31"7'@7)
So if we have an isosceles triangle and A has = to--
be equal to that-- v
Q/ ',La’
And if A has to be aqual to that and B and C are equal-- i

So, B = --(whistles)
L
B = P- that. i @
.o tf
28 = P-A over 2. T 1 Qo
No we aren't getting anything here--we're just
getting--thing is that we assumed B to be equal
to C so of course, I mean--that doesn't--we want
to find out if B is going to be equal to C and
we have a certain base--let's start all over, and
forget about this. All right, another triangle.
Certain altitude.

Well, let's try to assume that it is an equilateral.
A1l right.

Sides --mumbling--perimeter equals 35, right?

Yeah, but wait a minute--that's still not going

to really help us--what are we going to do--

simply assume that it is an equilateral. We're
just going to get that it is an equilateral, of
course it is going to be an equilateral if we

assume that.

True.

We want to prove that it is an equilateral if we
think it is. If we want to do anything we can--

Yeah, how do you prove it?

Well, we can make up a perimeter--we don't need
a perimeter P, do we? So,--

Where are you going to get area formula in the
form of P?
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33.
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93.
94.

95.
96.

We want to maximize the area so that we can orove--
0.k. we have the given base--we'll sat our base
equal to something.

Yeah, mumbling, P, or something--I don't know.
Then the other two sides have to add up to P.
We--now about we say--let's start with an equi-
lateral, just for the hell of it--see what hap-
pens. You get 1/3P, 1/3P and 1/3P. And this
is 1/9 - 1/36 which is the height--

Now the thing we want to do is say--o0.k. if we
shorten this side at all and then what's going
to happen to the height--if we leave this the
same.

We can't-shorten it.

And we shorten this side--sure we can--

Well-- '

We can héve a--this equal to 1/3 and then a--

this equal to--well you're going to have--I mean--

Aha.

This is going to get longer like that. Now we
can see from this that all that .is going to
happen is that the base is going to get shorter
so we know from that as far as leaving the base
constant goes if we move--if we shorten this side
then it is going to--somehow the point's going to
go down in eijther direction.

Semicircle.

Right. That proves that we have to have an
equilateral.

No, it proves an isosceles.

No, isosceles, I mean. ATl right from that if we,
set--we know that those two have to be equal so
if we set this base equal to anything--it doesn't
have to be 1/3P--we can also show that if thi

goes down--the area is going to get smaller, so
the constant base then the height is going to get
shorter and shorter and is getting smaller and
smaller actually.

Lo
Z
3!

/3 P

&
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0.k., 0.x.

In this case if it goes down to this side, we're
going to have again a smaller angie here, shorter
base here--and [noise].

So we get--so we know it is an equilateral--well
prove it.

[ don't know that's not a rigorous proof, but it
is a proof--good enough for me.

Proves that an equilateral has the largest area.

.0h, we're talking about the largest area.

Yeah.
Oh, we just did.
We have to prove it has fixed number P--perimeter.

well we already--we assumed that we have a fixed
P, all right? I mean this is a proof as far as I.

Well, we've shown that an equilateral has the
largest area. We haven't shcwn that if you have
a certain set perimeter, let's say a right tri-
angle, with a perimeter which is the same--we
will not have a larger area.

No, but we nave because we have shown with the
set perimeter--0.k. we know that--

Well what if we have 3, 4, 5 with an equilateral
being 4, 4, 4--

3, 4, 5 is what? Mumbling.

12. So this area will be 6 and this area wili
be side squared 16. --c.k. that will have the
largest area.

What's that 1.72

Yeah, 8 is still greater than 6 and that's greater
than 1.

Ch, yeah, that's right. Yeah, but the thing is
if we—have.a fixed dimension, we already showed
that, 0.k. what is going to happen is as this

CqQ

I
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35

side gets longer--say we use 4 as a base here,

so then what's going to happen--well say we use

3 as a Base, just so we won't have an equilateral
when we are done--what's going to happen as 4 gets
longer and 5 gets shorter--it's going to go upwards.
The optimum area--the maximum area is going to be
richt there. 3ecause you've got--

Right.

This angle and that height. If you make this angle
any less--maybe iet me draw a picture--

[ can understand that--this will give us largest
area, but now can we prove this bottom is one-
quarter--1/3 the area of the perimeter?

Well, ‘remember all the problems we've done where

we say--o.k. let me just start from here once more--
s¢ that we have 3, 4, 5--is that what y&h have--be-
cause that's going to be 5. Wasn't a very good 3,
4, 5 anyway. So you start out with 3, 4, 5--ail
right, we pick the 3 has the base, right?

Aha.

Al" right, it's 5--mumbling--if we have 3 as the
base--and this is a little bit off an isosceles,
but if we draw an isosceles as 3 as the base--0.k.
we've got a right angle--that's got to be the maxi-
mum--mumbling--(height?) because if it goes any--
Right.

Over this way, it is going to go down.

0.k.

A11 right, so remember the argument we've used--
well if we--

Yeah, I can show that, but what you're not showing
is--wnat you're not proving is that--

Tnat it nas to be an equilateral?

Right. But you're not showing that this side is
1/3 the perimeter.

12y
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Right. I'm showing--first of ali it has to be an
isosceles. Right.

Right.

It has to be an isosceles--that means that we've got
these three sides and those two are equal--right?

Umrma .

Right--so now I pick this side as my base--I
already picked--if that side is my dase then the
maximum area would have to have an isosceles--
so [ turn around--this side is my--

That I understand as proof, but you're not show-
ing me that this is 1/3 the perimeter--mumbiing.

If we have an isosceles triangle--if we have an
equilateral triangle--then each side has to be
1/3 the perimeter--that's the whole thing about
an equilateral triangle.

I know--0.k.

First we know it must be an isosceles, right?
Umma .

0.x.

[ urderstand this.

f it is an isosceles, it must be an equilateral,
right?

A1l right.

And if it must be an equilateral--all three
sides must be equal and if the perimeter is ?,
all thrze sides must dbe 1/3P.

0.x. I've got it.
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1. Overview

“his paper is one of two whose purpose is to delineate a series of
psychological and methodological issues related to the use of verbal methods
(clinical interviews and protocol analyses) for research into human probiem
solving processes. Both papers are based on the same foundation, the premise
that "purely cognitive" behavior is extremely rare, and that what is often
taken for pure‘cognition is actually shaped -- if not distorted -- by a
variety of factors. The companion paper (note 1) discusses a number of
variables that affect the generation and interpretation of verbal data,
for example the number of persons solving a problem, the nature of the
instructions to verbalize, and how comfortqb]e the subject feels in the
experimental environment. This paper tries to place such methodologies in

a much broader context, in an attempt to explicate some of the "driving forces"

" that generate the behaviors that we see. Briefly statad, the idea considered

here is that the cognitive behaviors we customarily study in experimental
fashion take place within, and are shaped by, a broad social-coanitive and

metacognitive matrix. That is, the tangible cognitive actions that we

.observe are often the result of consciously or unconsciously held beliefs

about (a) the task at hand, (b) the social environment within which the task
takes place, and {c) the ind%vidua] problem solver's perception of self
and his or her relation to the task and the environment. It is argued that
the'behaviors we see must be interpreted in that light.

This is an exploratory discussion, an attempt to chara;;erize some

of the dimensions of the matrix within which pure cognitions reside. The

discussion takes place in two parts. The first part outlines three quali-

tatively different levels of analysis that I think may be necessary to fully
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make sense of verbal data, even when one's intentions are "purely cognitive."
These levels are described in section 2, and a brﬂef analysis of some protocols
from that Qé?spective is then given in section 3. 1In the second part
(sections 4 and 5) the discussion is broadened and I try to flesh out some
of the dimensions of the matrix. Much of what follows is highly speculative,
and a good deal of the "evidénce" anecdotal. The idea is to noint but some
of the pitfalls in current lines of inquiry, and to map out (one hopes)

some useful directions for future inquiry.

2. Background; a Framework

I wish to cuggest here that three separate levels or types of analysis
may be necessary in order to obtain an accurate characterization of subjects'
problem solving performance from the anailysis of "verbal data" that thev
produce while solving problems * These are:

A. An analysis of "tactical" knowledge. This includes the facts,
procedures, domain-specific knawledge, and "local™ heuristics
accessible to the individual.

B. An analysis of "control" knowledge and behavior, including
“strategic” or "executive" behavior and conscious metacognitive
knowledge.

C. .An analysis of consciously and unconsciously held belief systems,

and the way that they "drive" problem selving behavior.

*There are, of course, many levels of analysis beyond those discussed here.
At the microscopic level. see Monsell's [1981] review of what he ¢.11s tﬁi/y
“nuts and bolts of cognition:" representations, processes, and memory
mechanisms. At the very macroscopic level, there is the broad set -of social
cooperative behaviors within which "real” problem solving actions often

take place. "Real world" problem solving, too, is beyond the scope of this

study. Herg we shall focus on analyzing the protocols obtained from students
under relatively ideal laboratory situations.

O
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Each of these categories is described below. As background, however, it
is important to characterize some of the defining properties of the first
two categories, "tactical" and “strategic” knowledge and decisions. Roughly,
the distinction is as follows. A strategic decision is a global choice,
one that in a substantive way «ffects the direction of a problem solution
and the allocation of resources (including time) to be used in a solution.
Such ;éoné;ol“ decisions include selecting goals and deciding to pursue

or abandon particular (large-scale) courses of action. In short, théy ére
decisions about what to do in a solution. In contrast, tactical knowledge
and procedures are used to implement the stfategic decisions. They deal
with how to do what has been decided at the st;ategic {evel. Suppose, for
exampie, that a student working on a problem decides to calculate the area
of a particular region, or to "look at an easier related probiem." If
doing so will occupy, say, five or more of the allotted twenty minutes for
solving the problem, that decision is strategic: 1it, alone, may "make or
break" the solution. On the other hand, the decisions regarding how tc
implement that choice -- for example, whether to calculate the dimensions
of the region by trigonometry or analytic geometry, or which easier related
problem to explore -- are tactical. Note that in the latter case, the
implementation of a problem solving heuristic is considered a tactical
matter. This is non-standard. Some elaboration of the three categories
follows.

A. On Tactical Knowledge

This category is quite broad, including as subcategories the range

of facts and procedures that
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are available to the individual for implementation in a problem solution.
A characterization of many of the relevant issues is given in Simon's
(1979) review article, "Information processing models of cognition."
Simon is primarily concerned with psychological and Al simulations of expert
problem solving performance in semantically rich domains. He describes
the key issues as follows. "The central research questions are two: .
(a) how much knowledge does an expert or professional in the domain have
stored in LTM [long term memory], and (b) how is that knowledge organized
and accessed so that it can be brought to begr on specific problems?"
The Focﬁs here is somewhat different since we are interested in analyzing
students' performance to determine sources of both.success and failure.
But many of the issues are the same. ¢
To begin with, one needs to know what domain-specific knowledge is
’"\\egssss{ble to the problem solver. If a student is solving a straightedge-
and-compass cbn;truction problem from plane geometry, for example, (see
protocols 1 and 2) does he or she know that the radius of a circle is per-
pendicular to the tgﬁgent line at the point of tangency? Whether the
student chooses to use that fact is another matter, to be discussed 1;ter.
But (obviously) a solution that depends on that particular piece of
knowledge may evolve in radically different ways if the student does or
does not have it, and an evaluation of the solution depends on an adequate
characterization of the knowledge base. Similar comments apnly to procedures
relevant for the solution cf a problem. In the example just cited, does
the student know how to construct a perpendicular to a given line through
a given po{nt? If the student does not recall the construction, does he

\ or she know that it can be done, so that deriving the construction is a
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possibility? Or must that too be discovered? These factors determine the
potential evolution, and characterization, of a problem solving session.

After the question of the posession of factual and procedural knowledge
comes the question of access to it. The student may know that similar triangles
have certain properites, for example, but will the student "see" or even
look for similar triangles in a narticular circumstance? Much "expert"
performance in given domains is attributed to the posession of certain
problem solving schemata; this is, indeed, the foundation of much Al research. |
Questions of how to represent such “compiled" knowledde are open. Among
the approaches to representation “"particulariy worth describing [are]
the predicate calculus, production systems, semantic networks,and frames"
(Walker, 1981). A1l of these approaches take as given that there are certain
eqularities in experts' perceptions of p:ob]em situations, and of'appropriate
behavior in them. This perspective is substantiated in various ways in
the literature, for example with experimental results that eZperts in _—
physics (Chi, Feltovich, and Glaser, 1981) and mathematics (Schoenfeld
and Herrmann, in press) see through the "surface structure" of problems to
perceive "deep structure" similarities and approach the problems accordingly.

Moreover, students develop problem schemata that-may or may not be consistent
with those of experts (Hinsley, Hayzs, and Simon, 1977; Silver, 1979), and
these schemata change with experience (3choenfeld and Herrmann, in press).
For a characterization of the role of schemata in students' mathematical
problem salving performance, see Silver (in press).

There is yet one more level of tactical behavior, that of implementing

certain problem solving heuristics. Examples of these will be seen in

protocols 1 and 2. In a sense, these are nearly on a par with domain-
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Specific schemata. For example, "it is useful to assume that one has the
desired object and then to determin2 the properties it must have" is a
heuristic tynically valuable in straightedge-and-compass constructions.

Its domain-specific imp]gmentation (draw the figure and see what properties
it has) is quite similar to the implementation of domain-specific schemata,
such as "look for congruent triangles when faced with a prob]em\of this
nature." These heuristics, 1ike the other categories of knowledge described
above, fall into the category of tools potentially accessible to the problem
solver. An invertory of these tools provides a characterization cf what

the problem solver might be able to uselin aporoaching a problem. Which

of these tools are selected or discarded, how such decisions are made, and
what the impact of such decisions on the problem solving process\is, is

’

the next level of analysis.

B. On “Control" Knowledge and Bzhavior

Two students, trying to determine the characteristics of the largest
triangle that can be inscribed in a given circle, guess that the equilateral
s the desired triangle and set out to calculate its area. They get enmeshed

in calculations and, when the 20-minute videocassette recording their

/ANy

performance runs out of tape, are still calculating. Asked what gcod the
answer will do them, they cannot say. fﬁis is an extreme (although not
atypical) example of what might be called an "executive" or "control"
malfunction: one bad decision, unmo-itored and unchecked, dcoms an entire
»so]ution to failure. What the students actually knew, and what they might
have done given the opportunity to employ that knowledge, becomes a moot

question. In contrast an expert working on an unfamiliar problem generates

a8 dozen potential "wild goose chases," but rejects all of them ifter




hrief consideration. With some clumsiness, he solves a problem the students
did not -- although he began working on the problem with much iess domain-
specific knowledge than the students "objectively" had at their disposal.
It can be argued that the expert's success and the students' fgﬁlure were
due respectively to the presence and absence of produc;ive‘"metacognitive"
behaviors (Schoenfeld, in press).

One of the early researchers te stress the importance of metacognition
as a major factor in cognitive performance, Flavell (1976, p. 232) characterized
it as follows:

I am engaging in metacognition...if I notice that I am having more
trouble learring A than B; if it strikes me that I should double-
check C before accepting it as a fact...metacognition refers,

among other things, to the active monitoring and corisequent regu-
lation and organization of these processes to the cognitive objects
on which they bear.

~

For the most part, researcnh in artificial intelligence has not dealt

directly with issues of metacognition as they are characterized here. This

is a subtle point, since many of the terms used in metacognition overlap

with those used in Al (see Brown's definition, below). But the usages differ.
Consider, for éxahp]e, skilled problem solving in physics as modeled by
production systems (Larkin, McDermott, Simon, and Simon, 1980). The idea

is to model competent behavior in sufficient detail to be able to select
the"appropriate" behavior, a certainly enormous task. But issues of the type
that humans encounter when working on such problems -- "I've been doing

this for five minutes and it doesn't seem to be getting me anywhere; should

I perhaps take an entirely different perspective?" -- are not the focus of

such programs. They model behavior where such problematic performance is

not a "problem."

Likewise, there are difficult issues of strategy selection in any

~ )
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"féa§6nadTy'§obﬁi§tf€éfed'ﬁFbéramf Sut the use, for example, of "conflict

resolution strategies" to determine precisely which production will "fire"
when the conditions for more than one production have been met, still
Operates at a very different level than the one under consideration here.

Few programs deal with planning and monitoring at that level, although

there are many "planning" programs. One that does, and is woith singling

out for special hotice, is the Hayaes-Rotns'(1979) "opportunistic" model.
Typical planning procedures call “or leaving sequences of actions unspecified
until one is constrained to specify their order, and checking for conflicts
when one does so. A standard exémple is Sacerdoti's (1977) tesk, "paint

the ladder and the ceiling." If one tries to proceed in that order, painting
the ladaer precludes painting the ceiling. "Planning" means specifving
aétions in efficient temporal order. Sacerdoti's "nets of actions hier-
archies" are designed to allow for fleshing out plans in such a way that

such impasses are avoided. This whole perspective, however, assumes that

one works in domains where plans are there to be "fleshed out" -- certainly
not a universal condition in prablem solving. In contrast, the Hayes-Roths’
model is many-leveled and, if it is appropriate, shitts repidly from con-
siderations at one levei (do B before A, instead of the other way around)

to another (reyising the entire pian structure because of an unforseen

major difficulty). This "opportunistic" model is highly stru:tured, but

also highly data»driven. It is open to the idea that one piece of new
information may cause one to see everything that came before in a new light,
and cali for major revis.ons; that each piece of information, and the current
state(s) of affairs must be continually evaluated and acted upon. To my

knowledge, few other programs deal directly with this kind of issue.
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There are, however, some programs that specifically separate what
have been called "knowledge" and "tactics" here. For example, Bundy and
Welham (1981) describe a technique called meta-level inference, in which
...inference is conducted at tWo levels simultaneously...The object
level encodes knowledge about the facts of the domain...while the
meta-level encodes control or strategic knowledge...What are the
advantages of this technique?
-The separation of factual and control information enhances the clarity
of the program and makes it more modular.
-A11 the power and flexibility of inference is available for controlling
search (p. 189).
This perspective is at least sympathetic to the separation of
“tactics" and “"strategies" described above. It is w7 alternative to the
production model system, where the decision-making resides in the natureo
of the productions.
There has recently been much discussion of metacognitive issues in
the psychological literature. The buik of such research has focused on
metamemory (one's awareness of how he or she stores and retrieves information),
and much of that work has been developmental. See Brown (1978) for an
overview of the relevant literature. Research suggests that the use of
seif-regulation is a iarge component of older children's successful memory
performance (Brown and DelLoache, 1978) . Speaking in general, Brown (]978)
describes metacognitive behaviors as "those attributed to the executive in
many theories of human and machine intelligence: predicting, checking,
monitoring, reality testing, and coordination and contro] of deliberate
attempts to solve problems. I believe that these are the basic character-
istics of thinking efficiently in a wide range of learning situations."

One can hardly disagree. Moreover, the converse must be stressed. Just

as the presence of such behaviors may promote efficient problem solving,

the absence of them may doom problem solvers to failure, Discussions of

\
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metacognition in broad problem solving domains are rare. See Schoenfeld

(in press) for one attempt in that directicn, and Silver (no:e 2) for an
overview of the issue. Note that metacognitive acts are generally taken to

be conscious. The sequel will argue that uﬁconscious determinants of cognitive
performance must be taken into account as well.

C. On Belief Systems

Ulric Neisser begins the article "General, Academic, and Artificia]
Intelligence" {1976) with the follewing dialogue. It was taken from Cole,
Gay, Glick, and Sharp's (1%71) study of cognition in a Liberian people
called the Kpelle. A,

Experimenter: Flumo and Yakpalo h]ways drink cane juice (rum)

together. Flumo is drinking cane juice. 1s Yakpalo drinking
cane juice?

Subject: Flumo and Yakpalo drink cane juice together, but the time
Flume was_drinking the first one Yakpaio was not there on that day.

Experimenter: But I told you that Flumo. and Yakpalo always drink
cane juice together. One day Flumo was drinking cane juice.
Was Yakpalo drinking cane juice that day?

Subject: The day Flumo was drinking the cane juice Yakpalo was not
there on that day.
. . N

Experimenter: What is the reason?

Subject: The reason is that Yakpalo went to his farm on that day
and Flumo remained in town that day (Cole et. al., 1971, pp 187-188).

‘The point Neisser wishes to stress is that the subject's answers
are intelligent, although they are not directly responsive. "The respondents
do not accept a ground rule that is virtually automatic with us: ‘'base
your answer on the terms defined by the questioner.' People who goe to school
(in Kpelieland or elsewhere) learn to work within the fixed limitations of
this ground rule, because of the particular nature of school experience"

(p. 136). There are, Neisser argues, many dimensions to "intelligence"
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beyond the types of (academic) intelligence measured by IQ tests, the

fartificial) intelligence modeled in computer programs,.and the "purely

cognitive" intelligence studied in psychological laboratories. Of course

»anthropolagists take that as given (see, e.g. Cole, et. al., 1971,'br

Lave, 1980) and some cognitive scientists have urged that the range of
cognitive investigations be substantially broadened (e.g. Norman, 1979).
The dialogue quoted above serves to make another po{nt as well, one
that bears directly on current methodological issues. In the dialogue we
see a clash of belief systems, where the participants see the "grourd rules"
for their axchange in rather different ways. Were the experimenter to
declare the subject "unintelligent" beciuse he did not answer the questions‘_
as they were posed, we wou{d argue that he missed the point: the responses
must be interpreted in the context of the social environment that generated
them, and not simply evaluated as "pure cognitions.” I shall argue here
that the same pojrt holds in many of our methodologically "clean" laboratory
studies, and that much of what we tzke to be_"pure cognition™ 1is cften
shaped by a variety of subtle but powerful factors. These factors may
include the subject's response to the pressure of being recorded (resulting
in a need to produce samething for the microphone), his or her beliefs about
the nature of the experimental setting (certain methods are considered
"legitimate" for solving problems in a formal setting, others not), and the
subject's beliefs about the nature of the discipline itsel® (is mathematical
proof useful, for example, or a waste of time?). This network of beliefs
provides the context within which yerbal data are produced, and an_under-

standing of that context is essential for the accurate interpretation of

those data.

It shou'+ he clear that these comments are not meant as 3 Qlantat
°
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g\postiori éha]]enge'to the accuracy of studies that have relied upon the

inrerprétation of verbal data. It may well be that the issue of belief
systems is moot in a number of contexts -- for example, in the analysis

of experts' verbal protocols for purposes of constructing artificial

’jnte11igence programs. Experimenters tend to find their subiects among

their colleagues, who are generally familiar with and sympathetic to the
methodologies being used for prdtoco] c011ect{on. It is unlikely, there-
fore, that an unsuspected difference in belief systems between experimenter
and subject will result in the misinterpretation of the verbal data. The
situation may be quite different, however, when students are the source of
that data and the task at hand is tc interpret (in the large) what they
have prodﬁced.' A miscellany of examples that document this point are
offered intsection 4. Some less "impressive" but more typical protobo]s

are discussed, from the perspectives at all three 1e9e1s, in the next section.

3. A discussion of three problem so]v%ng protocols

Appendix 1 gives a protocol obtained from two students working on
a straightedge-and-compass construction problem in plane geometry, recbrded
the second day of a problem solving course. The students were friends,
and fé]t comfortable working with each other. They were both college freshmen,
and had both just completed a course in first-semester calculus. They had
tSken the “standard" geometry courses in high school. Appendix 2 gives
a protocol recorded by the same pair of students a month later, after the
intensive problem-solving course. (See Schoenfeld [1982] for a brief
description.) Geometric constructions were one of the topics discussed in

the course. The students had read chapter 1 of P61ya's Mathematical Discovery
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(1962), and worked perhaps a dozen cénstruction problems. Appendix 3
gives a protocol obtained from a professional machematician who had not
"done" any plane geometry for a number of years. The protocols are them-
selves quite eloquent. The discussion is brief, serving to illustrate some
of the points made in section 2. _Each of the comments made here needs to
be elaborated in far greater detail. A rigorogs quantitative model is in
the works.
I would 1ike to begin with a general discussion of students' behavior
on problems 1ike the one given in appendix 1. From my perspective, the
most telling information regarding their behavior is derived at the level
of belief systems. Students' actions are shaped by th.ir beliefs about the
way that one solves geometric construction problems and about the role of
“proof" in mathematical problem solving. In my experience, the following
collection of beliefs about geometric construction problems is nearly universal
among college freshmen who have completed at least one semester of calculus
and who had, in high school, studied the "standard" 10th grade year of geometry.*
This characterization reflects an almost pre-socratic, purely empiricist .
perspective. //
a. Insighf comes from very accurate drawings. The more accurate

the drawing, the mqre likely one is to derive useful information
from it.

b. Hypothetical solutions come from deminant perceptual features of
the drawings. Plausible hypotheses are ranked by their simplicity

*Note that the students may not be consciously aware of holding those beliefs,
in the same way that thé Kpellan native quoted above may not be conscious of
the "rules" that frame his discourse. In some protocols there is clear evidence
(e.g. "How can I prove that? I know, I'11 construct the circle."). Much of

the evidence is indirect, however. A more precise statement about the belief
systems is that the students' behavior is strongly consistent with the predic-
tions of a model based on those beliefs. The model is briefly outlined here.

2




Or “intuitive apprehensibility:" if you can "see your way" .
more clearly to the end of one plausible construction than another,
the first will be ranked higher and: tested first.

c. Plausible hypotheses are tested seriatum: hypothesis 1 is tested
until it is accepted or rejected, then hypothesis 2, and so on.

d. Verification is purely empirical. Hypotheses about constructions
are tested by performing the indicated constructions. If the

construction appears to provide the desired result, then it is
correct.

e. Mathematical proof is irrelevant to both the discovery and (personal)
verification process. If absolutely necessary (i.e. the teacher
demands it) one can probably prove that a particular construction
works. But this is simply "playing by the rules of the game,"

verifying formally what one already knows (emoinica]]yl to be
. correct.
) If one accepts (a) through (e) as the “ground rules" for constructions,

A
one can predict stereotypical performance. Consider the problem given in
protocol 1: Construct the circle that is tangent to the two lines in figure

1, and that has the point P as its point of tangency to one of them.

--figure 1--

Among the features of this problem that may catch the student's attention are:

F1: The radius of the desired circle is perngndicular to the too line
at the point P. (a recalled fact).

F2: The radius of the desired circle is perpendicular to the bottom
Tine at the point of tangency.
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F3: By some sort of perceived symmetry, the point of tangency P'
on the bottom line is directly opposite P.

F4: Any "reasonable looking" line segment originating at P and terminating
on the bottom line is likely to be the diameter of the desired circle.

F5: Again by oerceived symmetry, the center of the desired circle seems
to be halfsway between the two lines, and thus on the angle bisector.

F6: The center of the circle lies on the arc swung from the vertex that
passes through P.

Of these six features, F4 and F5 are perceptually dominant (and F6 is generally
invoked only after F5,:when one tries to identify which point on the angle

bisector is the center). See figures 2a and 2b.

P
;.".“—"\ |
. \\ ‘
Which |, 2int on this line ¥ is Which point on this 1ine\ is
the endpoint of the diameter? the center of the circle?
F4 Dominates F5 Dominates

--figure 2a-- --figure 2b--

Various combinations of the features listed above yield hypothetical
solutions to the problem. For example, F4 combines with F1, F2, and F3
respegtively to generate the fo]]owiég hypotheses:

The diameter of the desired circle is...
H{: the line segment between the two lines that is pernendicular to P.

HZ}\\the segment from P perpendicuiar to the bottom line.

\ >
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H3: the segment from P to P'. -
Likewise, F5 combines with F1, F2, F3, and F6 to yield the fo]]ow}ng:
fhe center of the Wesired circle is at the intersection of the vertex angle
bisector and...
H4: the perpendicularto P.
T — H5: the perpendicular from P.
H6: the segment from P to P'.
H7: the «rc from the vertex that passes through P.
Finally, the non=dominant features F1, F2, and F3 combine to yieid

H8: The center of the circle Ties on the intersection of the per-
pendiculars to P and P'.

I shall argue here that the students' belief systems, as representec in (a)
through (e) above, determine which of the hypotheses students will consider
and in what order, and how they will test them. The following observations
are major determinants of the predictions.

1. The set of candidate hypotheses is generated, of course, by the

set of features that have been observed. Thus H4 through H7 can become

candidates only when F5 has been noted, etc.
2. Empirically, F4 is a default condition if F5 is not noted. That
is, if students do not "see" the angle bisector, they will automatically be
channeled to one of H1, H2, H3, and H8.
3. H8 is Tess intuitive]y“appreﬁensib]e than any of the other hypotheses, A
being the combination of three non-dominant features.
There are a number of other observations necessary for a complete model
(for example, H5 is the least physically plausible of H4-H7), but the ones

Tisted here suffice to indicate how it works. For example, suppose that a

(A
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stereotypical ones. This protocol is better than average (!) in a rumber

of ways. It is relatively free of the types of pathg]ogies described in

section 4. The students work well together, and concentrate on the problem

for the full twenty minutes aliotted for it. Most importantly, these

students demonstrate much better awareness and control of their own prohlem

solving processes than most (see in contrast protocols 1 and 2 in Schoenfeld,

in press). Their strategic and metacognitive behaviors work reasohab]y well --

but working within the context generated by the belief systems, these behaviors

can only work to limited effect. The following is a brief running commentary.
T begins by sketching in the desired circle (Item 1), and there is

a clear att§mpt to make sure that she and L understand the problem statement.

Tnis deliberateness in guaranteeing that they "understand" is respestable

“control" behavior, in contrast to the impulsive actions taken by many

.Students in similar circumstances.

By item 4, tne sketched-in circle is erased: it was "legitimate”
as an aid to understanding, but (according to their belief systems) does
not belong in the figure as a proper part of working the prgzleﬁ. In
item 5 feature F4 and the associated conjecture are introduced.
Here the dialogue is unusual ir. two ways. First, the students ds
not attend to F2 or F3, and are thus deprived of the opportunity to verify their
conjecture empirically. Second, T actually raises plausible objections
to the conjecture (items § and 8), and a meta-level dialogue ensues.
This is certainly respectable executive behavior. But then the students

spend 2% minutes with straightedge and compass trying to resolve the

dilemma.

Their construction "looks right" (item 11) but they again recognize
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that this one example does not guarantee validity in general. There is

an attempt to exploit a related problem in jtems 14-24, again indicating
some sophistication. Then five minutes (items 25-41) are spent in empirical
work, resulting (finally) in the rejection of the initial hypothesis .

The rejection, is, however, substantiated theoretically (the tangents to

the endpoints of a diaweter must he parallel).

In item 43 comes the J;]ated recognition of F1, which again is
combined with F4 to generate H1. The enthusiastic jump into implementation
(items 45-50) may be in part a result of desperation, as well as the
declaration that using a ruler to draw a right angle is "legal" (items
62-63). Yet items 56-57 and 61-63 say a great deal about students' perceptions
of the nature of "being mathematical." Contrast this with protocol 3.

Conjecture H1 is again evaluated empirigg]]y, and the control
functions are again relegated to performing post mortems; e.g. items
80-83. There is again a reference to the related problem (item 89),
and -- as if we need any more evidence -- an indication that their approach
to that problem was also purely empirical.* The solution degenerates
from there. I wish to stress here that (a) the students did, as determined
later, have an adequate factual knowledge to be able to solve the problem,
énJ\(b) their meta-level behaviors, as indicated in items 1, 6-8, 12,

14, 40-41, 80-83 and 89, are generally most_;espéE;éble. The majg;_—‘

“difficulty"” is the very approach they take

In contrast let us look briefly at protocol 3, where a mathema-

*That comment is important in the followinag sense. It indicates that their
behavior in this experimental environment is similar to their behavior when
working on the problems in their own rooms. In view of some of the examples
in section 4, this is non-trivial.
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tician works on the problem the students alluded to in item‘14. It is,
essentially, g%e same problem. A number of factors may contribute to the
mathematician's success: better control behavior, more reliable recall
of relevant facts, and (not to be underestimated) more confidence. But

most important is the basic approa hat the mathematician takes: he
derives the information he needs tnroudn the use of proof-1ike procedures.

Note that he is looking for congruence (“"there've got to be congruent
triangles in here.") long before there is a conjecture to "verify."
Rather than being an afterthought or a method of verification, proof is

a_means of discovery for him.* The non-empirical nature of his approach

is made emphatically clear the last line of the protocols, where performing
the construction s the operation that is relegated to the status of an
afterthought. He i; ce}tain the construction will work.

In protocol 2 we see an indication of the "intermediate" status
of the students after a month of problem-solving instruction. The course
focused on heuristic and executive problem solving strategies. Some of
these are evident in the protocol; some were present before the course. |
Proof was often discussed in the course, but in the usual way: "Yes it

seems that way, but how do you know it will always be true?"

Objectively the students' behavior in this protocol compares favorably

with their behavior in protocol 1, along all three of the dimsnsions
outlined in section 2. Their recall of relevant facts (e.g. that the radius

of a circle is perpendicular to any tangent at the poiht of tangency,

*It was Polya, I believe, who defined geometry as the art of "right reasoning
on wrong figures" -- clearly the mathematician's perspective, and antichetical
to the students' belief systems.
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item 69) 1is more assured, and called into play at appropriate times.
Domain-specific procedural knowledge is also more accurate, and they are
confident about their abilities to perform the appropriate constructions.
However, these were not disabling factors in protocol 1 and only tell a
small part of the story. |

There is a telling difference in their performance at the heuristic
level. A few years ago that difference would have tempted me to attribute
their success to the heuristics that they had learned. They draw a picture
of the goal state to determine what properties it has (items 14ff.),
look at extreme cases (items 34-46), consider only obtaining partial
fulfillment of the conditions (?tem 52), and so on. The first of these
heuristics alone might have guaranteed success in problem 1. However,
thera is a good deal more.

Their strategic (meta-level) behavior is quitemgood, as it was in
protocol 1. They monitor and assess both the state of their knowledge
and the state of the solution with some regularity (e.g. item 71), and avoid
the kinds of "wild goose chases" that often guarantee failure for less
sophisticated students. Here, in fact, control behaviors become a positive
force in the evolution of the solution. At the very beginning (item 20),
empiricism is put in its place. Time constraints are taken into account:
in item 63 the expedient of using the markings on a ruler is acknowledged
as "illegal" but used anyway -- they could bisect the line if they had
to. They know that they are suppcsed to prove that their constructions
"work," and predict early on that they can “do it with similar triangles
and things" (item 72)." In this context proof is still regarded as a means

of verification, to be used after one is convinced he or she knows the
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answer. The convincing comes by means of gnud sketcrzs and "gut feeling,"

however, pot by pertect constructions. “Proof b+ corsiruction” is clearly
put to rest in item 78.

It is tempting, then, to argue that the contrc} stratejies serve
as enabling factors, allowing the students to employ their tzotical
knowledge with some success. Certainly the absence of efficient control
behaviors would have sabotaged their gttempts (Schoenfeld, in press). However,
the discussion in the previous paragraph indicates that the contro]l behaviors
were operating within the context of new beliefs regarding proof and empiricism.
Had those belief systems not changed, the control strategies could not have
operated the way that they did. One can conjecture that without this change
in belief systems their strategic behavior would still resemble their behavior
in protocol 1 -- even if, say, they had been given a review of basic facts
and procedures, and taken a course that stressed meta—]e%e] problem solving
sgills. Moreover, belief systems may affect the selection of “tactical"
resources. For example, one will only select the heuristic "assume that one
has the desired object and determine the properties it must have" if one
believes that one can dérive (prove?) useful information. The student with
a purely empirical perspective will not think to implement the strategy.

This brief discussion serves merely to raise a host of questions.
It is not meant to minimize the importance of tactical or strateqic knowledge,
but to inAicate that a third and often hidden level of anz2lysis must also
be taken into account when one analyzes problem solving behavior. As
indicatéd in section 2C, there may well be contexts in which one level of
behavior predominates: the tactical in Al "expert" simulations, the strategic

.in "wiltd goose chase" solutions, and belief systems in protocol 1. Even




in this "purely cognitive" kind of investigation, other than pure cognitions

must be taken into a-count. But this is only the beginning, as the next

section indicates.

4. The Matrix Within Which Pure Cognition Resides

While the previous section raises some questions ebout the inter-

pretation of verbal data, it does not at all challenge their legitimacy.

That is, the discussion was predicated on the assumptions that (1) protocols

like those in appendices 1 through 3 provide an accurate reflection of

the coghitions and behaviors ot.the people who produced them, and (2) in

turn, models of behavior based on such protocois (for example, the model

outlined at the beginning of section 3) thus reflect the subjects' behavior
. witﬁ some accuracy. In the case of the particular protocols discussed, [

e am reasonably confident that this is the case. In general, I am much less
sanguine about the "legitimacy" of verbal data, even of some data obtained
in methodologically "clean" settings.

0f course this issue is not new. Methodological battles were waged,
for example, over the legitimacy gﬁ introspection as a means of character-
izing cognitive processes. "We have also long known, both from experiments
and everydgy experience, how subjects' behaviors are affected by expectation,
context, and measurement procedures. The notion that there can be 'neutral'

methods for gathering data has been refuted decisively" (Ericsson and Simon,

1981, p. 17). That point granted, the question then becomes one of the
intrusiveness of various experimental methods. For example, it is generally

acknowledged that asking subjects to analyze their problem solving processes

while they work oh problems does have measurable effects on performance.

However, the current literature- indicates that sufficiently "bland" instruc-
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tions may not have a measurable effect on data gatnered in the laboratory:
subjects who are instructed simply to "talk out loud" as they solve problems,
and not to interpret or explain, will yield essentially the same performance

that they would have if they were not speaking out loud (Ericsson and Simon,

1980) .

There is, in that last sentence, a very subtle but powerful disclaimer

that is revealed by the following. In 1978 I made a series of recordings
of students solving the following problem out Ioud.
Estimate, as étcurately as you can, hoﬁvmany ce]is might be in an
average-sized adult human body. What is a reasonable upper estimate? |
A reasonable lower estimate? How much faith do you have in your ‘
figures?
The problem is a particular favorite of mine, an excellent task
to use for examining cognitive strategies and memory searches. 1t ¢an, ‘\
actually, be solved without any special technical information. One wants
good estimates for "average human body volume" and “avqrage cell vclume,"
under the assumption that thére are such things. Since there will be a
huge amount of guesswork on cell volume, body volume can be roughly approx-
imated: a box with dimensions 6' x 6" x 18" will be close enough (probably
within a fac?pr of two) to the actual average.* With regard to cell size,
we can see the markings of a ruler down to 1/32" so perhaps 1/50" is a lower
limit to what we can see clearly without "help." Cells were discouvered with
early microscopes, which must have been greater than 10 pover (magni fying

glasses probably give about 5 power) and less than 100 power, So a "canonical

cell" (say a cube) must be between 1/§OO“ and 1/5000" on a side. The rest

*A more accurate figure can be obtained by taking an estimate of average

body weight (say 150 pounds)-and converting it to volume. Since the human

body (barely) floats, its density is close to 1. However, the point is that
there is no need to be so precise: this degree of specificity is an induigence.

oo
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is arithmetic.

My first set of subjects were junior and senior col’ege mathematics
majors. The students knew me reasonably well and were familiar with my
work. Some had done protocol reco~ding themselves, as parts of senjor
projects. I took all of the appropriate precautions to set them at ease
for the recbrd{ng sessions, and recorded them working on the problem one
at a time. See Note 1 for a representative protocol.

Typically, students would quickly choose volume as the quantity to
compute. After brief consideration they would decide to compute body volume
fjrst, and would then begin extraordinarily detailed computations. Generally
an "average" body (mcst often their own) would be approximated by a series
of geometric solids whose volume was rigorously calculated. For example:

and now & leg...a cone migHt be more appropriate. And the base of

my leg is approximately.6 or 7 inches in diameter so you would have

(3%)2 x = and the height would be...what is my inseam size, about

32 or 34. So you've got to have a 34 and it's a cone so you've got

to multiply it by one third.

In sharp contrast to their meticulous calcyiations of body volumes,
the students' estimates of cell size were (1) crude and (2) not accompanied
by estimates of how accurate they might be. For.example: "All right, I
know I can seze 1/16 of an inch on a ruler, so say a cell is 1/100 of an inch
on & side." The students spent the great majérity of their time making
estimates of body volume. These results, though puzzling, were remarkably
consistent.

Later in the year ! began making recordings with pairs of students
solving problems together. I recorded perhaps two dozen pairs 0f students,
who solved the same problem afteryreceiving nearly identical instructions.

Not once did a pair of students demonstrate the kind of tehavior I have just

1
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described. With hindsight, it became épparent that the behavior in the
single-student pretocols was not a reflection of their "typical" cognitions.
Rather, their behavior was pathological -- and the patholegy was induced

by the experimental setting itsel'f. This problem upset the students,

because they had no idea of how to approach it,. Feelind’ on trial to
produce somethiny for a mathematics professor, they resnonded to the pressure

by doing the only mathematics they could think of uncer the circumstances:

computing volumes of solids. This, at least, was demonstrating mathematical
behavior! (Tr2 students in two-person protocols manage to dissipate thé
environmental pressure between themselves, and thus to avoid extreme mani-
festations of pathology.) ¢
I have dwelled on this example at length because it indicates the

subtle difficulties inherent in protocol analysis. When I discovered the
social causes that I now helieve explain the students' behavior, I was on
the verge of writing a paper describing (a) their surprising inability to
make "order of magnitude" calculations, and (b) their poor allocation of
strategic resources in problem solving. In hindsight this “purely cognitive"
explanation of their verbal data would make no more sense than "objectively"
assigning a Tow IQ score to the Kpellan native quoted in section 2C on
the basis of his responses to the experimenter's questions. We need not
travel to Liberia; clashes in belief systems between experimenter and subject
occur here in our own laboratories.

.Since the length of this paper has already grown out of hand, the
'rest of the discussion will be very brief. My intantion is to sketch out
some of the dimensions of the matrix within which “pure cognition" resides.

A broad outline of it, given in the form of a mathematical cross product,

is given in figure 3.
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N KNOWLEDGE, BELIEF |
{SETTING} X - { AND VALUE (KBV) } X {DEGREE OF ANARENESS}}
i) g
h

SYSTENMS
| N

Individual (Self] # KBV about Self Unaware
Cognitive Structures: KBV about facts Aware but
access to facts, KBV about procedures non-reflective
_Eg gggﬁugz, and X< KBV about strategies >< Tocally aware and 5

: g KBV about task reflective (moni tor-
Task KBV about environment in and assessment)
Enyironment Reflexive Abstraction

--figure 3 -- :

The column on the left of fiqure 3 represents an "ijective"
description of the problem setting, the product of the two columns on
the right the set of "driving forces" that operate™in and on the setting.
We take one column at a time.

The first column is familiar. 1In the best of circumstances, this is
all that one need be concerned with. "Task variables" can be described
objectively, and the environment as well. “Cognitive structures" are the
focus of customary laboratory investigations: facts, procedures, and
strategies. Under the assumption ‘that laboratory investigations provide
an accurate reflection of problem solving behavior,- the investigator's
focus can be on the overt manifestations of these cognitive structures.

In this context the issue is more delicate: one must (somehow) ascertain

" the set of facts, procedures, and strétegies that are potentially accessible
to the problem solver. B \

The second column deals with belijef systems. Some ideas about belief
‘systems have reached the level of folk wisdom: for example, the notion

that, through perseverance, a person will turn the belief in his or her

ultimate success into self-fulfilling prophecy. A student's belief in his
{I
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or her ultimate failure wild éffect the verbal data one obtains as well:

[ have videctapes of studehts who never seriously engaged themselves with

a problem, in ordef‘to:}ater rationalize what they saw as their inevitable
failure. (This has been admitted to me, long after taping, by more than

one student.) Beliefs about the very nature of facts and procedures will
detefmine students‘ performance. The student who be]ie?es that mathematical
knowledge must be remembered will be stymied when a particular object (say

a procedure for constructing a line parallel to a given line) is forgotten,
while another who believes that the procedure can be derived will act

rathér differenply. The effects of strategic’énd task-related beliefs

(one approaches constructions empirically, etc.) were considered in section 3.
And the effect of beliefs about the environment (one must producé mathematics
whgﬁxone is solving problems for a mathematics professor!) were the causes

of the pathological examples that began this section. These examples barely
scratch the surface, of course. But the point is that if we wish to describe
behavior as it occurs, we must worry about such things.

The third column reflects the degree to which the individual is
aware of his or her knowledge and belief systéms. This column represents an
important extension of the current literature on metacognition, which. focuses
on individuals' conscious "conbeQ\activities. The discussion of unconcious
determinants of behavior is vital for the following reason:h one cén only
acfiupon those beliefs of which one is aware. As long as the students in
protocol 1 believed that discovery and proof in geometry are purely empirical,

they would continue to approach problems that way. Once they were made aware

of that belief (and that other possibilities exist) they could change their

behavior. Similarly, students who are aware that they can monitor and assess
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their own cognitive strategies can, then, serve as active agents in their own
growth. Making students aware of their own (and competing) beliefs may be
one of the most valuable functions we can perform as educators. In fact, it

may be necessary to do so if we expect them to hear what we say in the classroom.

5. Discussion

This paper covered a huge amount of territory, much of it at break-
-neck speed. First let me highlight some of the methodological issues.

A. As indicated in section 2, there are at least three qualitatively
different levels at which one can analyze verbal data. Depending on circum-
stances, one level or another may provide the "key" to understanding what
happens in a given protocol. Examples of primarily "tactical" protocols
are those gathered from experts working on routine tasks in familiar domains,
e.g. those in Larkin, McDermott, Simon, and Simon (1980). Examples of
primarily "strategic" or executive protocols are those where students go
off on "wild goose choses," e.g. those in Schoenfeld (in press). An example
where belief systems provide the primary level of analysis (protocol 1) was
discussed in section 3. A comprehensive discussion of verbal data requires
the consideration of ;11 three levels.*

B. Belief systems can be modeled. Such models exist, for example, in
decision theory. Kahneman and Tversky's (1979) prospect theory includes ‘
computational models of decision-making that take into account subje;ts'

belief systems. The gain or loss of the same dollar amount (say 31000)

*This is oversimplified, of course. Belief systems may have served to
“explain" most of protocol 1, but protocol 2 provided a (perhaps more typical)
example of the dynamic interplay among the different levels. The “real"
question, as I see it, is: what accounts for the differences in problem
solving performance between the two tapes? This question is of nearly over-

~ whelming complexity. This framework offers, I hope, a first step towards
unraveling it.
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are not viewed in the same subjective terms: generally, loss is more
traumatic. Similarly, winning $2000 may not havé twice the emqgiona] value
‘of winning $1000. Prospect theory assigns to each of the dollar amounts
above its subjective value (say, for example, -1200 for the loss of $1000,
+800 for the gain of $1000, and +1450 for the gain of $2000). These figures
are used to make computations of "subjective expected utility," which have
reasonably good predictive power.
I believe that rigorous models characterizing the effects of belief
systems on problem solving behavior can be made, and that these modeis
will have both ecological validity and predictive power. The discussion
of "typical" student behavior on geometry constructions that began section
3 is, in essence, a prospectus for that kind of model.
C. Great care must be taken in the interpretation of verbal data.

[t may well be true that,ﬁﬁith sufficiently bland instructions, students’

performance in the laboratory may not be measurably changed by speaking
"out loud" as they solve prob]emsl But the behavior that they produce
may be completely abnormal -- even if it is consistent enough to model wit.
great accuracy. Under such circumstances, we may simﬁiy be. modeling abnormal
pathology in the name of cognition. Again, the issue may be moot where‘

\\\ the belief systems of the people on both sides of the microphane coincide
(With experts generating protocols for their colleagues' simulations).

But the more alien the setting for the subject, the more likely it is that

the data will be "driven" by covert beliefs that skew its meaning (see

Note 1).

The second set of issues deals with applications of cognitive ?%segrch
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to educational research and development. Here the potential for the
misuhderstanding and misapplication of basic cognitive research is enormous.
There are dangers in adapting both the methods and results of much current
research to educational settings.

D. Researchers in education increasingly rely on "verbal methods"
such as protocol analysis for their research, using for their analyses
the successful analytical tools and perspectives derived from AI and
information processing research. Yet the goals and the contexts of such
studies can be substantially different. In much Al work the goal is to
model idealized, purely cognitive behavior. Both the subjects and the tasks
are selected to facilitate this kind of modeling, and a "purely cognitivé"
approach appears to be sufficient. In educationai work, characterizing
"idealized" intellectual behavior is only one component of a much larger
enterprise. If one wishes to affecf students' behavior: one must be able
to describe it accurately and to characterize what causes it -- and it
wouid appear that belief systems ave a major driving force in students'
behavior. Any framework that ignores them -- regardless of how accurate
it is in other contexts -- can result in the severe distortion and misinter-
pretation of the data. )

E. The applications of cognitive research to schooling must take
into account the context in which cognitions are embedded. The brief
discussion of figure 1 in section 4 is an attempt to sketch out the range
of issues that must be taken into acgount if our increasing knowledge
about cognition is to be employed usefully in the schools. There are any
number of examples regarding that context. Jean Lave (Note 3) reports

that people's use of arithmetic in everyday situations does not correlate

0o
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well with their scores on paper-and-pencil tests of it. Dick Lesh (Note
4) reports that students' problem solving behavior when dealing with "real"
problems bears little or no relation to their "academic" problem soiving
behavior. Neisser (1976) argues the point in general.

F. The characterization of "typical" student behavior given in section
3 provides both an indictment of our current mathematical instruction and a
warning about the dangers of presenting instruction that is incompatible with
students' belief systems. The students from whom I gathered data were above
aQerage in a number of ways, had studied calculus, and were mathematically
motivated as well: they had chosen to enroll in my problem solving course.
They had taken a yéar of geometry in high school, and the vast majority
of that time was spent in proof-related activities. Two yedrs later, we see
what remains from all that instruction (what they really learned?): a
thoroughly empirical perspecpive diametrically opposed to mathematical proof
and argumentation. When our—instruction contradicts students' beiief systems,
it (u]tjmate]y) rolls off them like water off a duck's back. One must take
sghdentST\belief systems into account in order to provide them meaningful
instruction.

I think that a broad attempt to deal with. cognition in its "real
world" context can have a strong positive effect on schooling. The three.
aimensions that appear most critical to me are represented in the three columns
of figure 3. It goes without saying that knowledge of the basic facts,
procedures, and strategies (the first column) is essential. Most of this
paper has argued for the importance of the second column, and [ will not
labor the point further. The third, "awareness," is worth discussing a
bit more. I would assume that the purpose of schooling is to nrepare

l"ql
<22




students for Tife after school: to help them develop the mechanisms they

will use throughout life to adapt to new situations. Yef(virtually all of

the college freshmen in my problem solving courses enter the course completely
unaware of the fact that they can observe, evaluate, and change their own
behavior! It is as if their minds are autonomous, independently functioning
entities,'with the students as passive (oftimes frustrated) spectators.

As long"as this remains the case, the students are slaves to their own
behavior. Once this belief, or any other, is made conscious, jt can be acted
upon and changed. Providing students with the potential for this kind of

adaptation may be the greatest service we can render them.

"P’l)
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Aopendix 1: Protocol 1

Problem worked the first week of instruction, by students L and T (college
freshmen who had completed.one semester of calculus).

You are given two intersecting straight Tines, and a point P marked on
one of them, as in the figure below. Show how to construct, using a straight-
edge and compass, a circle which is tangent to both lines and has the point
P as its point of tangency to one of the lines.

Y]

1. T: reads the problem. Oh, ok. What you want to do is —~

that (sketches in a circle by hand), hasically. \
Ok, how?
2. L: Now, ok, we have to find the center.
3. T:  Of what? (epsses
4. L: Of the circle. We are trying to find the circle, e ey

right? If we did that then we could...oh, and the
radius of course.

5. T: A1l right, well we know the point of tangency on
this line is going to be right here (points to P).
What we need to find is where the point of tangency
. 1s going to be on this other line, I think. So we
can find the diameter in which case we can find
the center.

6. L: Is that...that's not necessarily true, is it? Is
it true that if you have a circle like that (see
right), and then that (points with finger) would
be the diameter. You know what I mean? Or maybe
you couldn't have it that way...

7. T: The circle has like...no, you don't have a diameter
running up through there. HNo, we have to find the
diameter from point of tangency on this line
to the point of tadmgency on this line, wherever
it lies.

8. L: No, wait: the point of tangency, the point of tangency -
here, would the line connecting those two points be
the diameter? It seems that you could maybe construct,
one where it wouldn't always work.

9. T: Wait, but see, I don't know, we're not drawing it
(i.e. sketching it) the right way,




10. L:
11. L:
12. T:
13. L:
14, T:
15. L:
16. T:
17. - L:
18. T:
19. L:
20. T:
21. L:
22. T:
23. L:
24.

25.

26.

—
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Wait, do you want to try drawing it (with the
compass) and see...

(2% minutes elapse in empirical work. 'A‘reasonably
accurate drawing results.)

S0, maybe it looks like it might be opposite, see?

But would that be true for any triangle? 0Qh, but
see... . .

I'm confused. I don't think it ‘would be. Le%'s say
you had your radius over here and you went Yike that.
I don't think that could be...ok, I think there could
be, there is a possibility. '

Remember on the first problem sheet we had to inscribe
a circle on a triangle? Could you do that? I
couldn't.

I couldn't either.

We're in pretty sad shape. But just say we draw a
triangle even though we don't know how to do it.
We #4111 draw a triangle anyway.

So how's that going to help?

Because we don't have to inscribe it actually. We
Jjust have to have something to help us (visualize
it). (Draws an apparently arbitrary third-line.)
Although... A '
Does that do anything?

Not at this point, I don't think. Maybe further along
if we need a radius we could...but I don't think it
does anything now.

We've gotta do something. With what we have, you

Just can‘t do it, right? We don't have enough lines
or whatever there.

Ok, we need a center and a radius. So how do we

locate the center? It has to do with, I think it has
something to do with, could we do this?

No, maybe you have an equilateral triangle.

Wait, let me just try this. (Begins to expand compass. )

What are you doing?

Don't you want to see if it's true? If you have a

"Ol"',
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center way out there, because it may not connect.
Don't you see? (sketch at right) ’

28. T: I'mpretty sure it won't. I don't think- it wi

29. L: But.if it won't make a circle, then that means" this
"~ circle is ours (points back to earlier sketch).
The one we have to deal with.- You know what I mean?
O ~

30. T: I see what you mean. Like try to draw & circle out
here like going through this point. See, it won't.
It won't work because in order for it to work...
(another few minutes with the compass. The dialogue
has to do with their attempts to draw a very accurate
figure, so that they can draw conclusions from it.)

31. L: Ok so that's what we're doing, r%ght? We don't
need it that big. T

32. L: Yeah, wait, you couldn't because it is going to go’
through (the point P). I think it does have to
be, right... .ot :

Q

33. T: If we have these two points that's definitely our
diameter going through it. Now we can draw... -

. .-/ . l * -
34. L: But neither is it a tangent. ) :

35. T: That's just what I was going to say. Can we draw
these two lines so that...see you can't for in order

for this to cut through this, it's too shallow, it's
shallow...

36. T: Ok as soon as this...ok, make this a tangent.

37. L: In order for this to be...do you think it's going to
be tangent to... :

38. T: No because, because we know this one is not going to...
[ want to see if like we make this a tangent. You
seé what I mean? But that doesn't look like a
diameter either. Well, I don't think that's it.
Of course it couldn't be because a diameter is going
to be when it's parallel, isn't it?

39. L: That's the diameter.

40. T: Ok. That's not going to help us (Taughs).

41. L: You figured that out. /

42. T: Right.

43. L: Can we construct one parallel to it? (Looks at
original diagram.) But then we still don't know
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49.
50.
51.

52.
53.

54.
55.
56.

57.
58.
59.
60.
61.

62.
63.
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the center.

(pause) ’ . : '

™ .

Could we just draw a perpendicular?-

Yeah, that's what I was just going to say. If we
draw a perpendicular line to this-and just call that

the diameter it will work from there. And then it

should touch if it's perpendicular. It should be .

tangent at one point, shouldn't ijt?

Right!

Shouldn't it?

Yes!

Won't ,.? N
Yes!

Ok, draw a perpendicular, oh good. ™

Does one know how to do that with a compassé Do
you?

This is a right angle, so...kuses the corner of the-
ruler). )

-

Ok, that's perpendicular, ok.  Doesn't look it but
it is. : . .
¢
That's our diameter.
So if we say this is the point of tangency... N
S0 we can bisect this to find the center, right?
So call it center C. Maybe we should have done
our steps.
That's all being unmathematical, completely disorganized.
Ok, back to the drawing board.

I don't know how.

Me either. R
Ok, if we just use the ruler with the little numbers

on it here.

Or isn't that legal? 7L

Sure it's legal (does by hand).




64.

65.
66.

67.
68.
69.

70.

71.

72.
73.
74.

75.

76.

77.
78.

79.

80.

81.

.\ angle. Ohg darn it.

- going>outside of this line. So it's got to be a

[y

'Now we have the radius, now we just draw it.

Uh, oh, do we know, we have to see if this is going
to work. I know! Ugg.

My guess 1is, I think if's not. But we'll try.

I would think, though, it would have to, though,
wouldn't it?

No.
The radius is shorter as...

[ don't know. Well, let's see what happens when it
goes through there.

Somehow it doesn't look perpendicular, though,

doesn't it? .
See this line isn't straight relative to the page \
which is why it doesp't ]ng\perpendicular.

Ny

Oh right, but...

It Jooks good. Now we can tell

Maybe, I think this tells us the point df tangency
has to be way more (points to right).\I think.

(Three minutes of constructions)

What circle was this one? Yup, that was a right

Ok~sg the radius has got to be smaller because it'

little smaller and the center has got to be up and
over, like here... —

But how do we...

But I don't know how to do that, without doing it \\\
until it comes out right. \\\\
. N\
Yeah. \\\
(pause and evaluation of prior failure) , ™
<< et
That was dumb. By doing that we were saying that ——
no matter what this 1ine looked .1ike, then it looked - \
like this, if we dropped a perpendicular we could i \
do it and we could get the diameter for that angle ‘ !
and still expect to do it. You know what I mean? \ j
. N /

Yeah, I don't think it will work for'any angle though.

) “y ‘)
Ly A9)




91.
92.
93.
94.
95.

96.
97.

98.
99.

T:
L:

T:
A:

\\xg

~

~
I know, that‘s\ghat I mean.

~
Yeah, well, we goofeq\?gain.

(pause) N

~

N
Well the only thing I can think<of to do is what we
did in class the other.. .well, what\we were supposed
to do, you know. The triangle thingy trying to

inscribe it. . §§
\\
Wait, we know... Ny
N
I know, that's the problem. We don't know how toO-

do it. \\3

I don't know what to do.

A]right,‘We are going to have to try something else.
Alright, what are we, what were those sort of things
we tried with triangle one? Cause maybe we could...
do the same thing with, on a smaller scale.

[ got absolutely nowhere.

Yeah.

But I was trying to do things like, bisect this side.

Yeah, I did that.
It didn't work.

Yeah, let's see what we have here. We want to
inscribe a circle in this right triangle.

Why do you want to do a right triangle?

I don't know. It just is one. Oh, I blew it now,
no. The ends don't matter because we're, you see,
we want to inscribe it. We're putting in the extra
conditions, because it doesn't have to touch this
Tine. It doesn't have to...oh, I don't know.

I don't think that will get us anywhere.

Jk, quys...

100. Both: We give up.

£ 3y
| K4
L’l}(}
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2: Protocoi 2

Problem worked after problem solving\course. =

The common internal tangent to two \circles is the line which
is tangent to both, but has one circle on each "side" of it, as
in the picture to the right.

You are given three points A, B, and C as below. Using straightedge and
eompass, you wish to construct two circles which have the same radius, with
centers A and B respectively, such that the common internal tangent to both
circles passes through the point C. How do you do it? Justify.

2\

1. T: Reads problem.’

2. L: Wait, I have to read this. Ummm.

“\.\/’ \

\
What we want basically is this, circles and a line x_,//’//

3 T:
something like this that is going to pass through
here (mzkes sketch).
4. L: Right. Ummm. 2

5. T: Like that.

6. L: Except they have...where is it...have the same radius...

T: Uh huh

L: ...so it isn't going to look like that.

Right.

t, ok. Wait, I've got to think ¥or a second.
(era %ng to draw again.)

1. L: Ok, wouldn't it...no, maybe not.

AN

. ] ?
’12. T: What? \\

13. L: Nc,}phat was 5bqb. Let me think.
\\'

(pause)




14,

15.
16.
17.

18.

19.
20.

21.

22.
23.

24.
25.

26.
27.
28.
29.
30.

31.
32.
33.
34,

a5 ..

Umm...éhou]d we try and draw it maybe, how it would
be to see what the relationship of C is to the two

circles, since that's not drawn. N\

<::ii> /1;\\
Right. —_ (::;j
You know how I am with compasses...go ahead. , \

Well, how big am I supposed to draw it?

(draws with a compass)

I've made this too big because they're going to overlap N ,
one another with that radius. /—‘\\\‘ 7
/ Jait =0\

Yeah. A ) . /

- \\ y\/
Just draw (i.e. sketch) it...you don't have to use S~———
the compass. Just draw it...just draw...no, no, no.

2
: Ok, and I'11 make my circles better. (unclear). Ok. s
(unclear) , "
(an('?(»'( J \

What are you going to do? R alans
I just want to see what it would Took 1ike more
accurately (draws with compass).
Why?
Just so I could see (unclear) but you can think out
toud if you have an idea. Ok. Can you think of
anything? (finishes sketch) -
Unm. These two radii are the same, right?
Yep. Except it doesn't look the same, does it?
That's the way you put your centers in the center. .
(unclear)
(unclear) Ok. These two centers have to like...
do you know what [ mean? -\\\\\

No. Wait, what am I looking for now? ///A\‘S\\\ ///’—N\\\

A \
/ v “l o\ ]
/

(rereads problem) Why aon‘t we first just try to..{

: 5~ /
: If we can find (unclear) (pencil placed at center pg}htﬁ———’ \\‘\«-_//

A1l right...if you just have the two centers and you
‘g0 over...say the radius...the radius will have to be >
half way in between the centers. Alright, and then...




35. L: Say...wait...wha-wha-wha-what? é

36. T: If we jusx try to draw the two circles and the tangent s
Tine without worrying about point C for right now. ;

= |
37. L: Right. ///,—1>‘\\{ //ﬁ—ﬁ\\\\\
+ L \ 09
38. T: Ok. Since they have to be of equal radius...the /} o ‘
radius will be half way between the two centers?* ' ‘Q§§\\___,//

It's like the tangent line would be like this.

39. L: I don't get this about the radius being half way ’ﬁ
between two centers. : | Nt
/7y OGN
40. T: Me neither. Bep
. / ,C'/vﬁ'\fi,'// /
41. L: I don't get what you mean. How's the radius half . G rlen
way...I don't get what you mean. \\\\ V/

42. T: If it was like this and the tangent line would
Just be (unclear)

43. L: Ok, yeaﬁ{

44. T: Ok? These two have to be the same length.

45. L: Right. ' ‘ /
46. T: And the thing that is going to determine how long \
they are is the angle on this line. What I mean N
like if they are exactly...half way in between the s
two centers then the line is vertical. //T———\‘J"/f”—\\\\\\

47. L: Right.

48. T: If we make it somehow shorter right here and here...\\i:::::::i 3 \\-;;:;’/

the circles would be like this and the tangent would
be on a slant like this.

49. L: Ok. Umnm.
50. T: We have to figure out how they go through point C. So...
51. L: I don't know either.

52. T: Can we just start with C and draw a line through it
somewhere and then make the circles tangent to it?

53. L: No.
54. T: Or...

55. L: No we're given the centers.

*She meant to say thet the lengtn of the radius in this extreme case
was half the distance between the centers of the two circles.

(pf",‘

Loy




56. T: We're also given C. »
57. L: Uh huh. But just drawing the line can't guarantee 5
you could end it with something like this if you . >

Just drew the line here. Ummm. Isn't there another -f‘
way we can characterize the 1ine? Find the locus.

58. T: Umnm.

53. L: This might not work for all of them, but, look hare, A
doesn't this look like...that's just like the center?

60. T: That's just what I was going to measure.

61. L: Ymmm. Because if we cid thaf, we were given points
A, B, and C.

62. T: Yes (looks at her sketch) that crosses it too.
That's exactly what we're going to do.

63. L: Alright...wait, we're not allowed to use a ruler,
but...yeah, divide it in half.

64. T: Yeah, bisect.

65. Lg Why don't you actually do it...

66. T: Let's try it on here since we're not sure.
(Begins new sketch)

67. L: Wait, I think it was the other line. (unclear)

' Just connect point B We're going to have to drop

a perpendicular from B to the line.

68 T: What are you doing that for?

69. L: Because this is perpendicular and that's what the \
radius would be, a perpendicular and from A coming
to the line also.

70. T: Right.

71. L: Ok...-T don't know why this works, I mean, I Just
seem to see it, you know.

72. T: I think we can do it with similar triangles and things
so let's just make sure it works (unclear).

73. L: We can do it here too...this isn't a very nice compass. .
o o
74. T: We're running out of time (whispering). Draw faster, , o
draw faster. vl - -
75. L: I can't...this is hard. , —
- —
=,y ~
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76.
77.

78.
79.

80.
81.

82.

83.
84.

85.
86.

87.
88.
89.
90.

91.

92.
93.
94.
95.

96.

Draw faster anyway.

I didn't construct it right.

T: 11 just draw it...it'11 work.

L: Oh, wai{t, maybe I did actually. Ok, that's the
radius then.

T: Right.

Perpendicular. Then we just have to draw...I think
that's just the right thing.

T: That'l] do it, that'11 do it...wait, we've got to
draw...ok, we did it. We've got to show why. We
have to show that these...the reason that these gre
half way in between thesé two points is because .
angle side...we have to show that...what this side.

L: Like we have an angle. B

T: But what are we trying to show...we want to show why
this is in between A and B. 7.,/,:/ g,cubg

L: Right. ._—-<q7'-/“(/

T: So we want to show that this is equal to this...that
they... ‘

Both say: ...are congruent.

T: Ok, we have that. We have...

L: ...an angle and a side. How do we know. ..

T: And we nee& to show that this side is compared to
that side. And...

L: (to A): Must we prove why scmething works or Jjust
show you the construction?

A: If you can justify it I would be happy.

L: Ok, let's try to justify it.

T: Now the angle...

L: Well, we know, I mean, r is equal to r so it is
Jjust like...

T: We have these angles, so this angle equals this one.

After a few minutes, and with some slight confusion, they prove
that their construction has the desired properties.
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Appendix 3: Protocol 3

The subject is a professional mathematician.

Using a straightedge and compass, inscribe a circle in the triangle below.*

AN

(reads prob]em A1l right, so the picture's got to look like this
(draws figure and the problem is obviously to find the center of
the circle..

} z///(iifiii:j\\\\\\\\
Now what do I know about the center? We need some lines in here.

iell, the radii are perpend1cu1ar at the po1nts of tangency, so
the p1cture s like this (draws figure).

N

That doesn't look right, there's someth1ng missing...What if I draw
in the lines from the vertices from the center? (d"aws figure)

That's better. There've got to be congruent triangles in here.

let's see, all the radii are equal, and these are all right ang]es
(marks diagram) and with this, of course, this line is equal to
itself (marks "x" on the figure), so these two triangles (at lower
left vertex) are congruent. Great. Oops, it's angle-side-side,

oh no, it's a r1ght triangle and I can use Pythagoras or hypotenuse-
leg or whatever it's called. I'm ok. So the center is on the

*The inscribed circle is a circle that lies inside the triangle and is
tangent to all three sides of it.




bisectors.- (Turns to investigator) I've.solved it. Do you want
me to do the construction?
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Part I: Issues

-

As I tried a number of earlier versions of this paper, I came to
realize that two questions lay behind all of the issues I was grappling

with:

Why do we (in particular, why do I) teach mathematics?

Why do we (I) do research in problem solving?

Since those questions look pretentious if not downright silly, I
have some explaining to do. Here are some of the themes that vied for
center stage in earlier versions:

Theme 1: My belief that most instruction in mathematics is, in a very real

sense, deceptive and possibly fraudulent.

These are harsh words. Here are three examples to justify them.

a. "Word problems" are one of the major focal points of mathematics
instruction in the elementary schools. Typical of such problems at the lower
grade levels is "John had eight apples. He gave three to Mary. How many
does John have left?"

Much instruction on how to solve such problems is based on the "key
word" algorithm, where the student makes his choice of the appropriate arith-
metic operation by looking for syntactic cues in the problem statement. For -
example, the word "left" in the problem given above serves to tell the student
that subtraction is the appropriate operation to perform. At the research pre-
sessions to the 1980 annual NCTM meetings, the following facts were reported:

a———

ij. 1in a widely used elementary textbook series, 97% of

the problems "solved" by the key word method would




yield the (serendipitously?) correct answer;

ii. students are dfilled in the key word algorithm so well
that they will use subtraction, for example, in almost
any problem that contains the word "left." Problems
.were constructed in which the appropriate operations were
addition, multiplication, and division; each used the
word "left" conspicuously in its statement. A large per-
centage of the students subtracted. In fact, the situation
was so extreme that many students chose to subtract in a prob-
.Jem that began "Mr. Left...."

b. I don't know about nationwide enrollment figures, but I suspect
that those for Hamilton College are typical, if not low: some 60% of Hamilton's
students study the calculus, but fewer than 10% of them go on to take more
advanced mathematics. At the University of Rochester 85% of the freshman class
takes the calculus, and more go on. Roughly, about half of our students see
the calculus as their last mathematics course. Most of these students will
never apply the calculus in any meaningful way (if at all!) in their studies,
or in their lives. They complete their studies with the impression that they
know some very sophisticated and high-powered mathematics. They can find the
maxima of complicated functions, determine exponential decay, compute the volumes
of surfaces of revolution, etc.

The fact is that these students know barely anything at all. The only
reason they can perform with any degree of competency on their final exams is
that the problems oﬁ the exams are nearly carbon copies of problems they have
seen before; the students are not being asked to think, but merely applying
well-rehearsed schemata for specific kinds of tasks. Tim Keiter and I studied

students' abilities to deal with the pre-calculus versions of elementary word

o problems such as the following: A

* -




An eight foot fence is located three feet from a building.
Express the length L of the ladder which may be leaned
against the building and just touch the top of the fence
as a function of the distance x between the foot of the
ladder and the base of the building.

We were not truly surprised to discover that only 19 of 120 attempts
(four each for 30 students) yie]de&_coﬁredt answers, or that only 65 attempts
produced answers of anv kind. We were surprised, however, to discover that
much of the students' difficulty came not from the "problem solving" part of
the process (setting up and solving systems of equations) but from the reading
part of it. ‘ 1

Fifty-eight protocols were obtained from randomly selected

calculus students who were asked to rewrite problem state-

ments "more understandably." Of these, 5 simply rewrote

the problem verbatim. The 53 remaining rewrites tell a

sorry tale: 5 (9.4%) included information which directly

contradicted the input, and 11 (20.4%) contained informa-

tion that was so confused as to be unintelligible. 2

students (4%) made both kinds of errors. This information

is the more striking since two-thirds of these students

were to write simple declarative sentences, if possible,

to make their task simpler. Thus before they would nor-

mally have put pen to paper, a quarter of the 53 students

had already seriously garbled or completely misinterpreted

the problem statement. None of those students ever got an
answer -to the problem. (Keiter, note 4)

Those students had already "covered" word problems in their calculus classes.

c. I taught a problem-solving course for junior and senior mathematics
majors at Berkeley in 1976. These students had already seen some remarkably
~ sophisticated mathematics. Linear algebra and differential equations were old
hat; topology, fourier transforms, and measure theory were familiar to some. I
game them a straightforward theorem from plane geometry (required when I was in
10th grade). Only two of eight students made any progress on it, one of them.by
using arc length integrals to measure the circumference of a circle (Schoenfeld,
1979). Out of the context of normal coursework, these students could not do

elementary mathematics.




In sum: all too often we focus on a narrow collection of well defined
tasks and train students to execute those tasks in a routinized, if not algo-
rithmic fashion. Then we test the students on tasks that are very close to the
ones they have been taught. If they succeed o& fhose problems, we and they

congratulate each other on the fact that they have learned some powerful mathe-

T -~

matical techniques. In fact, they may be able to use such téchniques mechani-
cally while they lack some rudimentary thinking skills. To allow them, and
ourselves, to believe that they "understand" the mathematics is deceptive and

fraudulent. ,

Theme 2: [Isolationism in the Mathematics Education Community and the Relevance

of Psychological Research in Problem Solving.

Mathematics education is a young and unsettled discipline. The c;se
can be made that the phoenix of a "process qriented approach" to math-ed prob-
lem solving research rose from the ashes of‘the statistical approach in the mid
and late 1960's; we areé in our adolescence, and experiencing growing pains.
Yet the community has made 1ife much harder for itself than it had to. In a
recent book on problem solving, for example, (Harvey and Romberg, 1980) five
of the nine .dissertation studies preseﬁ%gd dealt with students in the fourth
through_seventh grades. However, the e;tensive lTiterature of deve]opménta]
psychology was all but ignored: a 31 page long set of references did not in-
Clude a single work by Piaget. Similarly, a variety of studies in mathematics
education use protocol analysis and agonize over the effects of verbalization
on problem solving performance. This topic has been studied extensively in
the psy;ho]ogica] literature (Ericsson and Simon, 1978;1979). There is no need
for us to rein.ent that particular methodological wheel, or any of a number of

others. To put it bluntly, it may be impossible to do "state of the art" work

in math-ed problem solving research without a solid background in the  relevant

1 AT
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psychological research. For example the detailed process models offered by
infsrmation processing psychologists and the studies on verbalization, as well
as the results on verbalization, are essential for my own work. They provide
a foundation for it that is not available within mathematics education;

These comments are not meant in any way to suggest that mathematics
education should become an adjunct to cognitive psychology, or even consider
adopting ,its ideas and perspectives wholesale. It seems to me that there are
significant and dangerous implications to some of the theoretical underpinnings
of mﬁdern cognitive psychology, and especially of information processing
psychology. [ wiil list a few points of concern here, and discuss them at
greater length below.

Among points of concerﬁ“are the following. There is the phenomenon
of methodologically-induced focus: one tends to examine those aspects of things
that our methodologies will illuminate, and to de-emphasize.or ignore those that
are not compﬁf}b]e with them. "Models" of the problem solving process can cause
dif%icu]ty in at least two ways. They may ignore aspects of the problem solving
process that cannot (currently) be modeled or are incompatible with the current
modeling perspective. It will be interesting to watch how information processing
comes to grips with issues of metacognition, for example. AlsQ, there is the
danger that the models can be taken too seriously, as explanations of cognitive
performance. In the sensg—just described, they may be reductive; 1in the sense
that they are only potential explanations of performance, a particu]af mode]l
may be dead wrong! (See the example of the student teachers who "got the bug"
in Brown and Burton (1978). We mgsi remember that models of experts and novices
are just that; the extrapolation from the models back to real people must be

done with care. There is the danger that, better armed with pnocedures for

¢
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N\

N\

Y
decompos::s\certain kinds of cognitive tasks, we will misuse them and become

more sophist?%bted at perpetuating the kinds of deceptions I mentioned in theme
1. And there is currently a fair amount of. (unrécognized) confusion about what
it means to be an "expert" or "novice". Let me repeat a comment made to me by
John Seely Brown: t:§>é\can be a significant difference between "expertise"

\

and the ability to perform\well in a domain.

Theme 3: The small and poss%ﬁ{y incestuous world of problem solving.

A few years ago I asked\é\number of colleagues involved in problem-
solving research if they had collectjons of good problems to work with. Among
the people who responded was Ed Silveri I was familiar with virtually all of
the problems Ed sent. Most were from Polka and the other standard sources. ‘A
few were problems I had created, which (I gé ieve) had made their way to Ed via
John Lucas. The point is that the mathematics‘ggucation community has a very
narrow perspective on what "problem solving" meané\ One need only look at the
1980 NCTM Yearbook to see that virtually all the aufhgrs discuss the same kinds
of "nonroutine" problems, if not the same problems theﬁss]ves! (I was asked to
change some of the examples in.my article because they duBlicated the examples
in other articles.) Ed commented then that he was concerned\qpout the incestu-
ous nature of the community; a small number of researchers shéred interests
and problems, amd all seemed to be investigating this narrow collection, which

went by the name of "problem solving."

I fear that his comment may be accurate. Worse, I think that We may ,

in teaching "heuristics," eventually become guilty of precisely the sins that
offended me in theme 1: we may simply reorganize subject matter, and teach
students to apply these new techniques in routine fashion. The student who

has learned, in algorithmic fashion, to "substitute n=1,2,3,4 for an ‘integer

2
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parameter and look for a pattern" may be solving difficb{: problems....but is

he problem solving? \

Theme 4: Differences between my choices of problems and my notion of "expert"

N

from the standard choices and notions.

In a recent conversation Dick Lesh pointed out that the tasks used
in my recent problem-solving studies are not the standard "non-standard” prob-
lems, and that my "experts" display markedly different (and often_remarkably
unproficient) behavior than most "experts." Some examples are the following.

I give both students and colleagues problems that are either unfamiliar
or from domains they studied long ago. A particular favorite of mine is the
following problem, although it has proved too difficult for most students:

You are given a fixed triangle T with base B, as to T -

the right. Show that it is always possible to con-

struct, straightedge and compass, a straight line

parallel to B such that the 1ine divides T into two

parts of equal area. Can you similarly divide T
into five parts of equal area? 8

In fact, the problem has proven difficult for some of my colleagues.

The solution provided by one GP was derided by one JTA as being stupid and
clumsy. Yet I chose GP's "stupid and clumsy" solution for analysis (Schoen-
feld, 1981) as an expert protocol, and found 1ittle of interest in JTA's clean
solution. So my tests of problem solving do not examine what I have just
taught students, and my "experts" appear unexpert by standard criteria. This
is not a matter of perversity, but one of perspective. It is tied to the first
three themes and to the questions with which I opened this paper. I would like

to give my personal answers to the two questions, and then discuss issues 2 and

4 from that perspective.




Part 2: Questions and Personal Answers

Why do we teach mathematics? Not Because mathematics is useful, although
it is: our curricula reveal that. How often does one need to determine how rap-
idly a person could row in the absence of a current, if it takes so Tong to row
with a constant current and so long to row against it? Or for that matter to
use a trigonometric identity, virtually anything from Euclidean geometry, or
. to calculate the volume of a surface of revolution? Mathemétics can be applied
to the real world, although we do a rather poor job of teaching our students to
do it. We do an even poorer job of selecting potentially useful and meaningful
problems for our students to master. But that is only a part of the story.

Other parts have to do with the scope and power of the discipline. It
is a massive intellectual achievement, and should be appreciated-even if not
used. It is as well a marvelously aesthetic discipline, and it would be nice to
have our students appreciate it for that. But in my opinion the single most
important reason to teach mathematics is that it is an ideal discipline for
training students how to think. later in this section I will try to char-
acterize "thinking" in more detail, but for now the usual sense of the word
will suffice., Mathematics is a discipline of clear and logical analysis that
offers us tools to describe, abstract, and deal with the world (and 1ater¢_//
worlds of ideas) in a coherent and intelligent fashion. Our goals as ;eachers
should be to have students learn to use mathematics that way.

For example, the calculus version of the pre—ca]cuius problem given
above in theme 1b (Find the shortest ladder that touches the fence and the

wall) is ludicrous. If one ever did need to solve such a problem, it could

probably be best to do so by rough empirical methods. But it is worth having




students work on such problems. To solve this problem the student must ex-
tract the relevant information from the text, create an accurate diagram with
the appropriate symbolic notation, establish goals and.subgoals, and seek
(from memory) the relevant information th;t will allow the goals and subgoals
to be achieved. Further, all of this must be done With reasonable efficiency,
and students must learn that as well. To the degree that this problem serves
as a vehicle for developing those skills, it is worthwhile. Taken in and of
itself, or as an exemplar of a class of problems, it is of questionable value.
The same is true of much of the mathematics we teach.

Why do research in problem solving? From my perspective, it is so
tha{ we can better understand what constitute productive thinking skills, so
that in turn we can be more successful in teaching students to think. It is
not easy to define Tﬁinking. (I shall use the upper case T to distinguish
Thinking from the ordinary associations of the word.) Here are some examples
of what it is not. A mathematician is not Thinking when he uses the quadratic
formula. That should come as no surprise, since the application of the formula
is algorithmic. But most probably he has no need to Think when he solves the
pre-calculus problem given in theme 1b. That problem is completely routine
for college mathematics teachers, as are virtually all problems in the calculus.
Even if he bas not worked a problem isomorph of it before, the mathematician

would in all likelihood be able to crank out a solution to it with as much

ease as he could factor an expression like (6x2 +17x + 12). If you were to
observe (or attempt to model) his performance on that type of problem, you
would be a spectator to a demonstration of domain-specific proficiency--but

you would not at all be seeing whatever it is that accounts for his problem-
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solving skill. The same is true for virtually all schema-driven solutions,
including "heuristic" solutions to "non-routine" problems (if the "expert"
has access to tie schema).

To examine what accounts for éxpertise in problem solving, you
would have to give the expert a problem for which he does not have access
to a solution schema. His behavior in such circumstances is radically dif-
ferent from what you would see when he works on routine (including familiar
“non-routine") problems. At the surface level his performance is no longer
proficient; it may even seem clumsy. Lacking access to a solution schema,
he has in all likelihood no clear indication of how to start. He may not
fully understand the problem, and may simply "explore" it for a while until
he "feels comfortable" with it. He will probably try tu "match" it to familiar
problems., in the hope it can be transformed into a (nearly) schema-driven
solution. He will bring up a variety of p1au§ib1e things: related facts, re-
lated problems, tentative approaches, etc. A1l of these will have to be juggled
and balanced. He may make an attempt atsolving it in a particular way, and then
back off; he may try two or three things for a couple of minutes and then decide
which to pursue. 1In the midst of pursuing one direction he may back off and say
“that's harder than it should be" and try something else; or, after the comment,
he may continue in the same direction. With luck, after some aborted attempts,

he will solve the problem.

Does that make him (at least in that domain) a bad problem solver?
I think not. In all likelihood someone proficient in that domain (i.e.,
someone who knows the right schemata) could produce a solution that puts his
to shame. But that isn't the point at all. The question is: how effectively

did the prob]em solver utilize the tesources at his disposal?

*




One of the most impressive protocols I have ever seen is the "stupid

and cfumsy" solution produced by expert GP to the problem given in part 1,
theme 4 (see Schoenfeld, 1981). The protocol is five single-spaced pages long
(20 minutes), and a detailed analysis takes longer. GP has no idea of what
“makes the problem tick," and remembers less of his plane geometry than my
college freshmen, who have studied the subject much more recently. He gen-
erates enough potential sources of "wild goose chases" in his protocol to mis-
lead an army of problem solvers. But unlike my students, he manages not to be

misled. His protocol is a tour de force of metacognition: rarely do more than

fifteen seconds elapse between comments on the state of his own knowledge and
the state of the solution. whilé he is fertile in generating potential solution
paths, he is also ruthless in pruning them. With less domain-specific kgpw]edge
at his disposal than most of my students had, he managed to solve a problem that
left all of them stymiedl Therein lies his "expertise." It is not simply

the possedsion of schemata that allows him to solve brob]ems with dispatch,
although that is an important component of his competence--it is the ability

to deploy the resources at his disposal so that he can make progress while

others wander aimlessly.




Part 3: Implications

-One point I wished to stress in Part 2 is that proficiency (the pos-
session of a large number of schemata for dealing with generic ciasses of
tasks in a domain) should not be confused with expertise. There are dangers
in confusing the two.

In the short run, proficiency models (which is what virtually all
"expert" models have been) are useful. It is worthwhile,for example, to
develop schemata for elementary word problems that are mathematically and
psycho]ogica]]yiva1id, and accessible to school children. A system of in-
struction based on these would obviously be preferable to the "key word"
system, which uses illegitimate means to achieve what may be “rigged" per-
formance objectives. Properly interpreted and used, Information Processing
models of competent performance are valuable. In any field, "cleaner" in-
struction resulting in improved performance can hardly be unwelcome.

The difficulties lie, at two different levels, in how one is to in-
terpret and use performance models. First, at the microscopic level: model-
ing can, at times, be an end in itself. It should instead serve as the begin-
ning for a new set of inquiries. There are now, in a number of domains, pro-
duction system models }hat not only simulate and predict performance but can be
modi fied to "improve" or "grow." In some very clever work now being done at
Carnegie~Mellon University (Briars aqg Larkin, note 1), a series of nested
production models have begn developed for solving elementary word problems. A

running program performs’at a level consistent with the performance of kinder-

gartners. Adding one production to the system (and some minor modifications)

results in performance like that of first graders, and adding one more results
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in performance like that of second graders. Performance predicted by the

models agrees very well with empirical data, and the models both serve to

unify collections of empirical data and as a framework from which to make
predictions. But do the processes in the models really reflect the cognitive
“Processing ir the children who are being modeled? The theory suffices to make
predictions, without the implementation of the program. One has the feeling

(in this case confirmed by conversation with the author) that the programs are
important because their authors believe that the processes in the program are, at
some level, the processes in the minds of the students. This is fine, if that
attitude is considered an hypothesis to be tested. If left unquestioned,

it is severely reductive and can have dangerous consequences. Moreover, it
should be recognized that the hypothesis, even if correct, now gives rise to the
_2al question: Jjust what happens during a full year of a child's development

that results in the addition of one production to his word problem "program"?

I will find it very interesting to keep an eye on this particular line
of research. In a recent conversation Diane Briars told me that the students,
when solving problems, would often encounter contradictions between their intui-
tions and the processes they had been taught to use. Students would say things
Tike "I know it ought to be larger, but I'm supposed to use subtraction." Most
often they would succumb to their training. So far as I'm concerned, the meta-
cognitive aspects of this process--the generation of the students' intuitions,
and the means that the students use Lo resolve the conflicts--lie at the heart
of their performance. The "purely cognitive" aspects of their performance,
which have been modeled, tell a critically important part of the story. How-

ever, the models do not take the metacognitions into account; they cannot, at

present. To elaborate the models means to ignore an important part of




psychological reality; to deal with that reality means to abandon current
methodology. Wheré™does one go next?

These comments are not to be taken as an indictment of this study. I
chose to discuss it because it is a good study, relevant to some of the themes
I raised earlier. But the questions I have just raised apply to most Al studies,
and are varely raised (at least in print or in my company) by those who create
them. At the recent AERA meetings Lauren Resnick characterized much Al work as
"Art in the service of science." We must make certain that it does serve.

The second and much more perilous difficulty lies at the macroscopic
level. There is a very serious danger when proficiency and expertise are con-
fused, and expertise is defined to be proficiency: Thinking (with the upper
case T) is then defined out of existence, or banished to irrelevancy. The situ-
ation is exacerbated by a kind of "proof is in the pudding" argument that goes
something 1ike this: "We have produced programs that operate successfully
without any need for construct X. Further, people have tried to construct
programs based on'construct X and failed. Therefore, construct X, even if
it does exist, is at best of minor importance." This particular statement
was made to me about heuristics, but could also have been made about meta-
cognition, Thinking, or any of a number of potentially important domains of
inquiry. Most theoretical AI and IP work these days is done, de facto, along
proficiency model lines: ‘“experts" always seem to be performing routine tasks,
and theoretical work now focuses on models of productive thinking via scripts
or schemata. If the traditional evclutionary pattern holds, applied research
will follow suit, and so will educational research and development. During

the height of behaviorism certain "mental constructs" were déc]assé,and to

be shunned at all costs. Let us not make similar mistakes about Thinking in




a world dominated by proficiency models. That perspective can only deflect
us from the global goals we have in teaching and research.

In sum: the mathematics education community cannot afford to ignore
(as a large part of it seems to hqve) the psychological research on p;oblem
solving; but neither can it afforé to swallow it whole. Mathematics educators
have, I think, had “neir hearts in the right place but lacked the methodologi-
cal tools that allowed for substantive and rigorous inquiries into problem
solving. Many such tools have been developed by the psychological community,
and much of our work will be at best second rate if we do not take advantage
of them. As I mentioned above, it would be impossible for me to do my own
work without the sqpport of researéh into the effects of verbalization on

problem-solving performance'or the substantive ideas underlying the modeling

of cognitive processes.

There is a great deal more to problem solving than is currently being
modeled. I personally am convinced that metacognitions play a tremendous role
as "driving forces" in cognitive performance, and that much more research needs
to be done exploring them. They have cropped up in various ways in this paper.
They include the monitoring and assessment strategies that students lack, and
that allow them to go off on "wild goose chases," and that the expert has,
allowing him to be efficient (Schoenfeld, 1981); they include the intuitions
against which the progress or plausibility of a solut¥on is gauged, and the
means by which such conflicts are resolved; and they include both the conscious ‘
and unconscipus belief systems that may determine the approaches people take
to certain prob]ehs. These areas have barely been touched upon, and need much
more research. They are just some of many that we will discover in an open-
ended and open-minded quest for knowledge and understanding. We are beginning

-

to make progress, and can hope to see more.
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