
DOCUMENT RESUME

ED 218 124 SE 038 234

AUTHOR Schoenfeld, Alan H.
TITLE Expert and Novice Mathematical Problem Solving. Final

Project Report and Appendices B-H.
INSTITUTION Hamilton Coll., Clinton, N.Y.
SPONS AGENCY National Science Foundation, Washington, D.C.
PUB DATE 82
GRANT SED-79-19049
NOTE 258p.; Appendix A removed because of copyright

restrictions. It appears in "Journal for Research in
Mathematics Education," Volume 13, number 1, p 31-49,
Jan 82.

EDRS PRICE MF01/PC11 Plus Postage.
DESCRIPTORS *Cognitive Processes; *College Mathematics;

Educational Research; Higher Education; Learning
Theories; *Mathematics Education; *Mathematics
Instruction; *Problem Solving; Teaching Methods

IDENTIFIERS *Mathematics Education Research

ABSTRACT
The project consisted of three related series of

studies, designed to Ja) determine some of the underlying
competencies that contribute to experts' successful problem solving
performance in college level mathematics, (b) to determine what
productive behaviors students lack, or what counterproductive
behaviors they have, that keep them from being effective problem
solvers, and (c) to determine if a course in mathematical problem
solving that explicitly tLlches problem solving strategies could
significantly improve students' problem solving performance. A
variety of new methodologies and measurement techniques were
developed for examining cognitive processes in broad domains such as
"seneral mathematical problem solving." Experts were shown to
perceive the "deep structure" of problems where novices were misled
by the "surface structure." Experts have much better "executive" or
metacognitive strategies than novices, which prevent them from
squandering their problem' solving resources in the way that students
do. Moreover, it was shown that students' "belief systems" about
mathematics and the way it is done often make it difficult for them
to learn mathematics or to use it effectively. The problem solving
course provided clear evidence that, with direct instruction,
students' problem solving performance could be Eubstantially
improved. These results have obvious implications both for research
and teaching in mathematical thinking.

***********************************************************************
Reproductions supplied by EDRS are the best that can be made

from the original document.
***********************************************************************



U S DEPARTMENT OF EDUCATION

NATIONAL INSTITUTE OF EDUCATION
E UCATiONAL RESOURCES INFORMATION

eNJ CENTER ERIC.
Trps 10,ohent has been felefx1oted asr 'e ervM prom the perSOn or org)n,laton
or,o.ndtmg

1.Shof chaogeS have beef, made I. wroro,e
repro4uct,Oo qual.herq
Po,t, of new or opm

71tohs staled . irssdocoN ,hent do notTent represent of41c4,1, ME

C:) VOS.t.0e Or Po',Cv

Expert and Novice Mathematical

Problem Solving

National Science Foundation Research in Science Education

Grant SED 79 - 19049

FINAL REPORT, MAY 1982

Alan H. Schoenfeld, Principal Investigator*
Hamilton College
Clinton, NY 13323

*Current address:
The'University of Rochester
Rochester, NY 14627

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEE RANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC).-



Final Project Report
NSF SED 79-19049

Contents

Final Project Report form 98A

Cover

Contents.

Overview
1

Major Results 3

Publication CitaZions 9

Scientific Collaborators 10

Appendices

Measures of Problem Solving Performance and of Problem
Solving Instruction

Problem Perception and Knowledge Structure in Expert
and Novice Mathematical Problem Solvers

Toward a Testable Theory of Problem Solving

Recent Advances in Mathematics Education: Ideas and
Implications

Episodes and Executive Decisions in Mathematical Problem
Solving

On the Analysis of Two-Person Problem Solving Protocols

Beyond the Purely Cognitive: Metacognition and Social
Cognition as Driving Forces in Intellectual Performance

Some Thoughts on Problem Solving ReseFr.ch and Mathematics
Education

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Appendix E:

Appendix F:

Appendix G:

Appendix H:

3



Final Project Report
NSF RISE SED 79-19049
Expert and Novice
Mathematical Problem Solving

Overview.

This project consisted of three interrelated series of studies examining

the nature of expert and novice problem solving processes in college level

mathematics. The studies fell into these three categories:

a. A detailed characterization of "expert" mathematical problem solving,

and an elaboration of the mechanisms by which experienced problem solvers

(college faculty) succeed in solving difficult and sometimes unfamiliar

problems.

b. A characterization of "novice" (college freshman) mathematical problem

solving behavior, and a comparison of the procedures used by the students with

those employed by the faculty. What productive behaviors do the students lack,

and what counterproductive behaviors do they exhibit, that keep them from being

effective problem solvers?

c. An examination of the effects of a month-long intensive course in

mathematical problem solving, based on the research described in (a) and (b)

above, on students' problem solving performance. Can explicit instruction

in mathematical problem solving processes result in improved performance,

even on problems unrelated to those used in the instruction?

Common to all three categories, and an essential notion underlying

all of the research, is a focus on the process of mathematical probleo solving.

This involves the detailed examination of the kinds of reasoning used by

individuals as they are involved in the solution of mathematical problems,

not simply the measurement of "before" and "after" results. At the time

this research was undertaken there was little available in terms of extant
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theory, or of methodologies for rigorously examining such complex cognitive

processes in broad domains such as "general mathematical problem solving;"

there were virtually no measures available for capturing and evaluating such

processes. Thus a major component of the research was the development of

research methodologies and measurement tools that would serve to characterize

such processes, and that would serve as a means of elaborating a more complete

theory of intellectual performance in broad, complex domains.

I am pleased to report that all aspects of the project have been completed

on time and well under budget; all have more than met the goals outlined in

the proposal. The major results are described in the following section, with

specific references to documents produced by the project.

-2-
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Major Results

As I indicated in the annual report, December 1980, the first of the

studies scheduled for completion, and the first completed, was study 3.

The evaluation of students' problem solving performance before and after the

intensive problem solving course called for the development of a series of new

measur:s of pf-oblem solving, and it was originally planned that two years would

be devoted to the development and refinement of the tests. The development

and pilot tt.sting of the measures went very smoothly, and a second year was

not needed. The results of study 3 were written up and published in "Measures

of problem solving performance and of problem solving instruction," (Appendix A)

which was published in the Journal for Research in Mathematics Education. The.

article served a two-fold purpose. First it gave, in full, the measures devised

for examining problem solving processes. These'serve as prototypes for straight-

forward paper- and- pencil measures of the processes involved in problem solving:

Such tools are of use both for teachers (to test the efficacy of their instruction)

and researchers (as an inexpensive alternative to protocol analysis for some

research purposes). Second, the paper documented the results of the problem

solving course, in a variety of ways. To put it briefly, the evidence indicates

that students given direct instruction in problem solving skills (construed

broadly, as characterized below and i 1 the appendices) will show marked improve-

ment in their problem solving performance -- even when working on mathematical

problems that are unlike those that they studied in the course.

Some additional experimentation that cut across all three studies provided

further evidence of the impact of the course. Research in a variety of domains
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(e.g. chess, algebra) indicates that people with substantial practice in a

domain have "vocabularies" of familiar objects (words, problems, situations,

etc.) to which they have nearly automatic responses; a chess master "sees"

a familiar position, for example, and does not have to analyze the full complexity

of that position in order to determine his next move. The posession of such

"problem schemata" is an important Dart of routine "expert" problem solving,

and the absence of such well developed patterns is, hypothetically, one cause

of students' difficulties. Notice that the absence of such patterns for students

need not be in new domains; it may simply be that, even with fully accessible

problems, students have not yet perceived underlying regularities in solution

paths. Of course what one "sees" in a problem statement often determines

now one will approach it.

Our research used problems ostensibly accessible to high school students:

problems from geometry, elementary combinatorics, algebra, etc. Thus our "novices"

(college freshmen) had an adequate mathematical background to deal with these

questions. The results of our study indicate substantial differences in what the

experts (college faculty) and the novices "see" in the problem statements. Asked

to classify "which problems are related in that they would be solved the same way,"

students classify together problems that share the same "surface structure",- -

problems that deal with the same mathematical objects (e.g. circles, functions,

or whole numbers). In contrast, experts will often disregard the objects in

problem statements to classify together problems that are, on the surface,'quite

dissimilar: for example, a problem with whole numbers and a problem with functions

will be classified together, because both ''have implicit negatives in them, so

-4-
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they're most likely contradiction problems." The elaboration of such structures

is a part of both studies 1 and 2. Most dramatically in terms of study 3, our

research provided clear evidence that students' perceptions change with experience.

As a result of the problem solving course, the students' perceptions came to resem-

ble tnose of experts (thougn not perfectly, of course).. In contrast, d control

group's perceptions of problems remained essentially unchanged. These results,

written up as "Problem perception and knowledge structure in expert and novice

mathematical problem solvers," (Appendix B) will appear in the Journal of

Experimental Psychology. Our early results were also reported elsewhere. A

summary report of the underlying theory and the first year's work was delivered

at the IV International Congress on Mathematical Education in Berkeley in

August, 1980, and will appear ("Toward a testable theory of problem solving,"

Appendix C) in the Proceedings of the Congress. The research was also discussed

in "Recent advances in mathematics education:' ideas and implications,"

(Appendi-x D), to appear in the Mathematics Education Mon,:!yrapn published by the

Mathematics Council of the Alberta Teachers' Association.

The perception studies represented one aspect of the differences between

expert and novice performance in problem solving. In this case the differences

were the result of familiarity with a domain where the problems were "routine"

for the experts. There are other differences, however, that emerge when

experts deal with unfamiliar problems. Their success is often a result of what

has been called "executive" or "strategic" ability. Roughly, the idea is as

follows. In a non-routine problem solving circumstance, there may be any of a

large number of plausible paths to a solution. Not only must one have a ready

-5-
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arsenal of problem solving techniques, but one must be efficient as well. One

or two bad "executive" decisions -- pursuing a "wild goose chase" or failing

to follow up on a good lead -- can doom a solution to failure, while one or

two wise decisions can allow a person who actually "knows less" to solve a

problem. A key result of our analyses of videotapes was the development of a

-.

framework for the macroscopic analysis of problem solving protocols, focusing

on the executive decisions that "make or break" a problem solution. The frame-

work, and the results, presented in "Episodes and executive decisions in math-

ematical problem solving," (Appendix E, to appear in Acquisition of Mathematics

Concepts and Processes, R. Lesh and M. Landau, Eds.) indicate that experts have

a well developed set of metacognitive behaviors that keep them on track," and

that the absence of such behaviors may well be a major cause of students' poor

problem solving performance.

Issues regarding the study of metacognition, and in general, the inter-

pretation of "verbal data" from protocols such as those gathered in this project

are extremely thorny, and not well understood. Part of the project was devoted

to clarifying them. A methodological p'aper,"On the analysis of two - person

protocols," (Appendix F, Journal of Mathematical Behavior, in press) elaborated

some of the underlying issues as well as presenting the rationale for the frame-

work. This was one of two methodological papers, the second of which was the

final study of expert-novice differences in probim solving.

This last paper, "Beyond the purely cognitive: metacognition and social

cognition as driving forces in intellectual performance"(Appendix G, Cognitive

Science, in press) lays out a broad framework for the analysis of verbal data.

-6-
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As the title suggests, it indicates that many of the determinants of students'

intellectual behaviors lie outside the realm of the " purely cognitive;" that

an individual's beliefs about (for example) the -hay that mathematics is done,

what is "legitimate" mathematics, and how mathematics relates to the "real

world" may well determine both his choice of approaches to problems and how well

he succeeds at them. Our research indicates that even well-trained college

students approach mathematics in a surprisingly naive, "purely empirical" way

that (1) is antithetical to the approach taken by experienced mathematicians,

and (2) serves as a barrier to the development of their mathematical skills.

Moreover, it indicates that mathematical instruction that is not compatible

with students' belief systems may be doomed to failure, because it "falls upon

deaf ears." The paper provides,a model of students' beliefs about Euclidean

geometry, and derives some consequences of those beliefs. More broadly, it

tries to characterize the spectrum of cognitive issues that one must examine

(from access to domain-specific facts and procedures to schemata and heuristics,

Z1 metacognition, to belief systems) in order to "make sense" of verbal data.

These are serious implications for both teaching and research.

In sum, the project has met all of the goals set out for it. At the

methodological level, a number of new tcols and perspectives have been developed.

The measures given in Appendix A provide a straightforward way of capturing a

range of problem solving processes on a paper-and-pencil test. The card sort

technique developed for measuring problem perception (Appendix B) offered a way

of examining changes in students' perceptions as they developed expertise.

Appendix E offered a new methodology for parsing protocols and focusing on

-7-
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"executive" decisions that may "make or break" a solution. Appendix G demon-

strated how belief systems impinge upon "purely cognitive" behavior, and that

students' behavior can be modeled "from the top down" with an emphasis on such

behaviors. Appendices F and G covered a broad spectrum of methodological issues

related to the interpretation, of verbal data gathered during problem solving

sessions. As indicated above, each of these methodologies served to further the

goals of the project. They provided evidence of the dimensions along which expert

and novice problem solving performance differ, that carry with them implications

both for classroom instruction and future research. As study 3 demonstrated,

the practical implementation of these ideas can have a strong positive effect

on students' problem solving skills.

Dissemination

At this point the major results from the project have all been written up,

as indicated in the publication citations and appendices. All the reports

have been accepted for publication. As indicated in the proposal, preprints

were distributed to a large mailing list including the ONR distribution list.

Prior to submission for publication the results in all of the papers were

presented at national and international meetings of various scholarly societies

(Mathematical Association of America, American Educational,Research Association,

International Congress on Mathematical Education, International Group for

Psychology and Mathematics Education, National Council of Teachers of Mathematics,

the Psychonomic Society). During the orant period the PI gave more than two

dozen talks and workshops derived directly from the research. Finally, the PI

has written about half of a projected book dealing with the research issues

covered by the project. The book will, of course, acknowledge NSF support.

-8-
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Abstract

Evidence regarding the relationships between problem perception and

'expertise has customarily been obtained indirectly, through contrasting group

studies such as expert-novice comparisons. Differences in perception have

been attributed to differences in expertise, despite the fact that the groups

compared generally differ on a number of other major attributes such as aptitude.

This study explored the relationship between perception and proficiency directly.

Students' perceptions of the structure of mathematical problems were

studied as the students gained expertise in mathematical problem solving in a

month -long intensive problem solving course. Perceptions were measured using

a card sorting task, employing cluster analysis and comparing the students'

sorting with a sorting done by experts. The data obtained prior to instruction

provides direct evidence replicating and extending results from related fields.

Experts appear to base their perceptions of problem relatedness upon principles

or methods relevant for problem solution, while novices tend to classify prob-

lems with the same "surface structure" (i.e. words or objects described in the

problem statement) as being highly related.

The data after instruction indicated a strong shift in the students'

perceptions, with their post-instruction sorting much more closely approximating

those of the experts. These data permit the direct conclusion that criteria

for problem perception shift as students' knowledge bases become more richly

structured.
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Problem Perception and Knowledge Structure in

Expert and Novice Mathematical Problem Solvers

Theories of problem solving commonly hold that the mental representation

of problems influences how people perceive problems. Moreover, as experience

leads to better problem solving, the quality of problem representation is

expected to improve with corresponding improvement in problem perception

(Chi, Feltovich, and Glaser, in press; Heller and Greeno, 1979; Hayes and

Simon, 1976; Newell and Simon, 1972). At one end of the spectrum, the correct

perception of a problem may cue access to a "problem schema" which suggests a

straight-forward method of solution or a more or less automatic response

(Hinsley, Hayes, and Simon, 1978; Chase and Simon, 1973). At the other end,

an incorrect perception may send one off on a "wild goose chase." Since

)roblem perception is conceived to be a crucial component of problem solving

performance, research on the change in problem perception with the acquisition

of expertise has increasingly received more attention (Simon and Simon, 1980;

Eylon and Reif, Note 1; Reif, 1979; Larkin, McDermott, Simon, and Simon, 1980).

Early evidence consistent with the hypothesized relationship between

expertise and perception was provided in a. series of studies by Shavelson (1972,

1974; Shavelson and Stanton, 1975) that indicated that as students learn a

discipline, their knowledge of the structural relationships among parts of the

discipline become mor& like that of experts. However, Shavelson's procedures

did not directly asses\how his subjects perceived problems, and therefore

his results do not direc ly address the perception/expertise hypothesis.

More direct evidence, about problem perception and expertise has been

( I
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provided by a series of studies in various domains that contrast the problem

perceptions of a group of experts in each domain with the perceptions of a

group of novices. For example, expert chess players perceive board positions

in terms of patterns or broad arrangements, whereas novices do not (de Groot,

1965; Chase and Simon, 1973). Experts in physics perceive problems to be

similar if the principles used to solve them, called the "deep structure,"

coincide. In contrast, novices perceive them as similar if the objects referred

to in the problem, or the terms rof physics used in the statement,. called the

"surface structure," coincide (Chi, Feltovich, and Glazer, in press). Two

studies on problem perception in mathematics used algebra as their subject

domain (Chartoff, 1977; Silver, 1979). There is a consensus regarding the

structural isomorphism of algebra word problems, so in both studies problem

structures were assigned a priori by the experimenters and no experimental

data was collected from experts. In both cases, students who were proficient

at solving algebra word problems exhibited a greater degree of agreement with

the experimenters' perceptions of the problems than did less proficient students

The evidence regarding the relationship between expertise and perception,

while strong, is indirect. Although expert-novice studies do show that experts

and novices differ in problem perception, the design of these studies precludes

unequivocal conclusions about the origins of these differences. For example,

relative to novices, experts are usually older, more trained, more experienced,

and most likely possessed of better aptitude for the subject domain.

Presumably, expert-novice differences in perception are rooted in

differences in expertise (training and experience), but they may also be influenced

by other psychological properties, for example aptitude. Note that contrasting

group designs involving people of the same age may still confound expertise

with aptitude. The ambiguous outcome of contrasting group design is, of course,
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not unique to studies of expertise and problem perception; the difficulties of

the design are well known, and in some areas of psychology these difficulties

are regarded as presenting insurmountable obstacles to inference (Schaie, 1977).

The present study sought to investigate the effects of expertise on perception

in a design that avoids these difficulties: a design that examines problem

perceptions in a group of individuals that, with training and experience,

improved in problem solving proficiency.

The relationship of perception and expertise was studied in a repeated

measures design involving the discipline of college mathematics. Problem

perception was assessed before and after training by having students sort a

set of math problems. One group of students (hereafter called the experimental

group) took a month-long problem-solving course between the sortings. Another

group (called the control group) took a month-long course in computer programming

between the sortings. In addition, a group of mathematics experts also

completed the sort once. This study permits clear assessment of the relationship

of problem perception and expertise in the following way. The influence of

mathematical training on problem perception may be assessed by comparing the

sorting of experimental and control subjects before and after training. If

the experimental subjects show sorting after training different'than control

subjects, inferences about the mathematical improvements in the experimental

subjects may be drawn relative to the sorting of the experts. Evidence showing

that training affects problem perception and that training fosters problem

perception like experts cannot be attributed in this study to differences in

individuals (age, maturity, ability and attentional levels). While it is not

suggested here that the findings of contrasting groups' studies were not due

to differences in expertise, the present procedure provides a clearer assessment

of the relationship of problem perception and expertise.

r
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Method

Subjects

Nineteen freshmen and sophomores at Hamilton College, hereafter called

novices, participated in the experiment. All of the students had from 1 to 3

semesters of college mathematics prior to the experiment. Eleven of the students

(the experimental group) served without pay as a condition of enrollment in

a problem solving course, which was the experimental treatment. Eight of the

students (the control group) were paid a total of $20 each for participating.

In addition, nine mathematics professors from Hamilton College and

Colgate University participated without pay.

Materials

Thirty-two problems were chosen for the study. Each is accessible to

students with a high school background in mathematics, dealing with objects

familiar from the high school curriculum; none requires calculus for its solution.

Each problem was assigned an a priori mathematical "deep structure" and a

mathematical "surface structure" characterization. The problems used in the

study are listed in Appendix A. The characterizations of the problems may

be seen in the cluster diagrams (figures 1,2,3).

"Deep structure" refers to the mathematical principles necessary for

solution, as identified by the first author who is a mathematician. For example,

problems 15 and 17 are both "uniqueness" arguments to be solved by contradiction,

although problem 15 deals with geometric objects and problem 17 with functions.

These characterizations were independently corroborated by another mathematician.

Of the 32 problems, the "deep structure" assessments were literally or essentially

agreed upon by this other mathematician for all but three problems (which were

perceived in a different bui; not contradictory fashion). This level of
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agreement on deep structure assignments is comparable to that recently reported

for physics problems (Chi:, et al., in press). "Surface structure" represents a

naive characterization of a problem, based on the most prominent mathematical

objects that appear in it (polynomials, functions, whole numbers) or the general

subject area it comes from (plane or solid geometry, limits). Thus problems

15 and 17 discussed above would be considered a "plane geometry" and a "function"

problem respectively.

In addition, two forms of a mathematical problem solving test were used

in the study. The tests each had five problems worth 20 points, and were matched

for mathematical content. These examinations and a predetermined scheme for

awarding partial credit had been pilot tested, with the grading scheme achieving

interjudge reliability of greater than .90. Form 1 of the test is given

in Appendix B.

Procedures

Both the experimental and control groups performed the card sort and

took form 1 of the mathematics test immediately preceding the intensive "winter

term" at Hamilton College. Both groups repeated the card sort and took form 2

of the mathematics test a month ,later, immediately following the conclusion

of the winter term. The experts performed the sort once, at their convenience.

The sorting procedures were as follows.

Each of the 32 problems was typed on a "3x5" card. Each subject read

through the problems in a random order and decided which problems, if any,

were "similar mathematically in that they would be solved the same way." A

problem that was deemed dissimilar to others was to be placed in a "group"

containing one card. Subjects were told that they might return from 1 to 32

"groups" to the experimenter. All subjects finished the task in approximately
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20 minutes.

Between the first and second sortings, the experimental treatment

consisted of enrollment in a course, "Techniques of Problem Solving," taught

by the first author. The ctess met for two and a half hours per day for

18 days, with daily homework assignments that averaged four to five hours in

length. The course focused on general mathematical problem-solving strategies

called "heuristics" (Polya, 1945) and stressed a systematic, organized approach

to solving problems (Schoenfeld, 1979; 1980). Problems studied in the course

were similar to, but not identical to, those usedin the sort; Appendix B

aives five problems similar to those studied in the course. No mention of

problem perception was made during the course. However, students were encouraged

to make certain that they had a full understanding of the problem statement

before prodeeding with a solution. They were told to examine tne conditions

of the problem carefully, to look at examries to get a "feel" for the problem,

to check for consistency of given data and plausibility of the results, etc.

These instructions may. well foster the development of improved problem perception.

The control treatment consisted of enrollment in a course, "Structured

Programming." The course taught a structured, hierarchical, and orderly way

to solve nonmathematical problems using the computer. The students in the course

had backgrounds comparable to those of the students in the mathematical

problem-solving course, and the course made similar demands in terms of time

and effort from the students, Thus this course served as a control for the

subject-specific knowledge and skills that might be acquired by the experimental

group.
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Results

For purposes- of comparison with he rest, is of the student sortings,

we first present the results for the experts. riTAre 1 presents a clustering

analysis, using Johnson's (1967) method, of the experts' card sort. Collections

of problems exhibiting strong agreement (proximity level exceeding .5, a

minimum of 16 out of 32 possible clusters) ar° bracketed. A brief inspection

of figure 1 indicates that the strong clusters are consistently homogeneous

insert figure 1 about here

with regard to deep structure characterizations: in eight of the eleven strong

clusters, all of the elements share a common deep structure characterization.

In contrast, only four of the eleven strong clusters are homogeneous with regard

to surface structure -- and three of these with regard to deep structure as well.

Two measures of the degree of structural homogeneity of figure 1 are

given in Table 1. Measure 1 provides, for surface and deep structure respec-

tively, the proportion of strongly clustered pairs that have the same structural

representation.' of the twenty -two pairs strongly clustered in figure 1,

thirteen (.59) share the same surface structure and eighteen (.82) the same

deep structure. We should observe, however, that the surface and deep

structures coincided in ten of the twenty-two pairs used in the computation of

measure 1. To indicate perceptual preference when the two types of structures

conflict, these ten pairs were deleted from the sample for measure 2. With

non-coinciding pairs, the proportion of surface-homogeneous pairings for the

experts is .25 (3 of 12), and the proportion of deep-homogeneous pairs is

.67 (8 of 12).

insert Table 1 about here

1'
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Figure 2 presents the cluster diagram of the sorting performed by the

combined group of novices (n=19) prior to instruction. In the interest of

saving space, the cluster diagrams for the separate experimental and control

groups are not given.2 Inspection of figure 2 indicates a reversal from figure 1,

with emphasis on surface structure as the criterion for sorting problems

together: eight of ten strong clusters are homogeneous with regard to surface

structure, six of ten with regard to deep structure. Of these six, five are

also homogeneous with regard to surface structure. The data in table 1 confirm

these impressions. Table 1 also provides the data for the separate experimental

and control groups prior to instruction. These data, like those for the combined

group, indicate that the deep structural relationships between problems were

rarely perceived when they ran in contradiction to perception's of surface structure.

After training, the students who took the problem solving course

demonstrated a marked improvement in problem solving performance, while those

enrolled in the computer course did not. The.mean scores on the mathematics

test for the experimental subjects were 21 prior to the course and 73 afterwards.

For the control subjects, the mean scores were 14 before and 24 after the course.

AnalySis of variance on these means showed that scores increased across the

term (F(1,17) = 47.5, p<.001), were greater for experimental rather than for

control subjects (F(1,17) = 130.6, p<.001), and that the increase across the

term was not equivalent for experimental and control subjects (F(1,17) = 48.2,

p<.001). Simple effects tests indicated that the term effect was significant

for the experimental subjects (p<.01) but not for the control subjects. A

detailed description of scoring procedures for this measure and of collateral

measures may be found in Schoenfeld (1982).

The effect of instruction on problem perception was measured in the ways

described above, and also by correlation with the experts' sorting matrix.
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Figure 3 presents the cluster analysis of the experimental group's sorting

after instruction.

insert figure 3 about here

An examination of figure 3 indicates the shift in the students' percep-

tions. After training, six of eight strong clusters were homogeneous with regard

to deep structure, and only four with regard to surface structure; moreover,

surface and deep structwoes coincided in all four of those clusters.

In contrast, the control group's post-instruction sorting shows little

change from pre-instruction perceptions. [Again to conserve space, the cluster

diagram derived from that sorting, which closely resembles figure 2, is not

given. Of ten strong clusters in it, seven are homogeneous with regard to

surface structure and only four with regard to deep structure; moreover

those four share common deep structures as well.] These results, which indicate

a strong change towards "deep structure" perceptions on the part of the experimental

group and little or no change on the part of the control group, are given in

table 1. Differences between deep and surface proportions were compared across

the various conditions with the t approximation to the binomial.. Each of the

following comparisons (with one exception noted) was significant to at least

the (p<.05) level, both in direction and.size of the differences. Scores

within parentheses are reported first for measure 1 (all pairs), then for

measure 2 (non-coinciding pairs). The difference for the experts differed,

in direction and magnitude, with the difference in the pre-instruction proportions

from the experimental group (t(18) = 2.33; t(18) = 4.09), the control group

(t(15) = 2.61; t(15) = 4.98), and the combined novice group (t(26) = 1.88,

p<.1; t(26) = 4.81); also with the post-instruction difference from the

control group (t(15) = 2.31; t(15) = 3.99). Similarly, the differences from
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'the experimental group after instruction differed (p<.05) from the pre-instruction

differences from the experimental group (t(11) . 2.38; t(11) = 4.51), control

group (t(17) = 2.65; t(17) = 5.48), and combined novice group (t(28) = 2.39;

t(28) = 5.41); also from the control group's post-instruction'scores (t(17) = 2.34;

t(17) = 4.37).

The comparison of surface and deep structure proportions given abofe

provides an indirect indication that the experimental group's perceptions

became more "expert-like" with instruction, while the control group's did not.

This relationship was examined more directly by correlating the sorting matrices

for each of the treatment groups, before and after instruction, with the sorting

matrix obtained from the experts. The correlations are given in table 2.

With df = 496, all correlations are significant. The pretest correlations

and the control post-test correlations are significantly less (p<.01) than

the experimental group's post-test correlation.

insert table 2 about here

Discussion

The design of this study allows for the direct attribution of the students'

changes in problem perception to changes in their problem solving proficiency.

This attribution cannot be made unequivocally from any of the contrasting

group studies conducted to date, for example the standard expert-novice

studies. Note that professors or advanced graduate students in a discipline

differ from lower division undergraduates in maturity, cohort group, comfort

in testing situations, and most notably, aptitude. A clear understanding of

how novices' performance improves in a discipline cannot be obtained by comparing

them to a group of experts whose aptitude for the discipline is, in all

gl':-,
1400
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likelihood, far beyond that of the novices. Similarly, an understanding of

expert perception cannot be obtained by taking as the starting point of that .

development people whose performance alone makes it unlikely that they will

ever be expert in that domain. One might obtain experimental confirmation of

the relationship between perception and expertise in contrasting group designs

in which the groups had been matched on all variables except expertise (a

difficult proposition', and a condition not present in any expert-novice studies

with which we are familiar). However, the most direct way to as-ertgin that

relationship is with a repeated measures (longitudinal) design like the one

used here.

Two other points should be considered before the specifics of the data

are elaborated. First, the nature of deep structure in mathematics is different

from that of other domains. For example, elementary physics is strongly

principle-driven, and the subject matter is organized and taught according to

those principles. Mathematics is not organized and taught that way, however.

One talks about methods of solution, rather than principles; and the curriculum

is organized around topics rather than around those methods, which are F.imply

the tools used to solve them. Thus, there does not exist an a priori consensus

about the structure of the problems used in this study that would lead one to

predict with confidence the particular pattern of results repeated in figure 1.

The absence of such a consensus makes the consistency of the present results

more impressive. The word "novice" in this study does not mean rank beginner;

the students in this study had extensive mathematical backgrounds and were,

in the sort, reading problems accessioie to them. The surface labels reflect

this, for example in the labels for problems 2 and 11. Surely, one would be

surprised if college students could not see that integer combinations of weights

and integer combinations of costs called for the same mathematics! (This would

r)(3
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not necessarily be the case with fifth graders, for example),

The data in table 1 provide a strong indication that the experimental

group's perceptions of problem structure shifted from a basis in surface

structure to a basis in deep structure. 'An examinatijon of th'e experimental

group's post-instruction cluster (9, 17, 10T illustrates' the change in problem

perception. Problem 9 deals with whole numbers and, prior to instruction,

ftias sorted with two other "whole number" problems in a homogeneous surface

structure cluster. Problem 17 deals with abstract functions, and, prior to

instruction, was (barely) clustered with a problem that presented a very complex

polynomial function for analysis. Problem 10 deals with polynomials, and was

placed ln a strong cluster all three of whose terms had the surface label

"polynomials, roots." Each of these problems is solved by the mathematical

technique known as proof by contradiction and, despite their differing surface

characterizations, they are all placed in the same cluster after instruction.

The broad shift towards expert perceptions is confirmea in figure 2, which shows

the correlation between experts' and the experimental group's sorting matrices

jumping from .540 (before instruction) to .723 (after instruction), the only

4, significant (p<.01)change in correlation. This rather dramatic shift, after

a short period of time, indicates that instructional treatments that focus

on understanding and performance can have a strong impact on perceptions.

Despite the strong shift in the students' sort, the experimental group's

performance after instruction cannot be truly called "expert-like." The experts'

extended knowledge and experience allow them perceptions inaccessible to the

novices. Consider, for example, the three bracketed clusters including problem

1: novice (1, 32, 9); experimental (1, 3, 21); expert (1, 3). The experimental

group drops problems 32 and 9, which are similar to problem 1 only in that

they deal with whole numbers. Problem 3, which shares the same deep structure

9.,
ti
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as problem 1, is added. The mimicry of expert perceptions is not exact, however:

problem 21 is added as well. The addition of problem 21 provides an indication

of the "intermediate" status of the experimental group. Problems 12 and 21

were included in the card sort to see if the experts would cluster them

together. Underlying the experts' perception of problem 21 is the observation

that multiples of 9 and multiples of 4 both include multiples of 36 (their

intersection), and that one must compensate for subtracting the first two sets

by adding the third. This is structurally similar to the rule N(AuB) = N(A)+N(B)

-N(Af1B) upon which problem 12 is based. This is a rather subtle observation.

While experts' experience with combinatorics problems might make such an

observation readily accessible, novices even with training cannot be expected to

see such subtleties. In the absence of such knowledge, it is plausible to

think that "looking for patterns" will help to solve problem 21 -- and thus to

sort it with two other "patterns" problems.

The research described here supports and extends previous research on

problem perception. The novices' card sort indicated that, in the broad domain

of general mathematical problem solving, students with similar backgrounds will

perceive problems in similar ways. This is consistent with previous research in

mathematics, which had considered only word problems in algebra (Hinsley, et al.,

1977; Chartoff, 1977; Silver, 1979). Like research in physics (Chi, et al.,

in press), it suggests that surface structure is a primary criterion used by

novices in determining problem relatedness. Moreover, it verifies directly

that students' problem perceptions change as the students acquire problem-solving

expertise. Not only their performance, but their perceptions, become more

like experts'.

In general, questions regarding the deep structures in individual

disciplines and the nature of experts' perceptions in those disciplines are

Or)
6.0..)
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more complex than those regarding surface structures and novices' perceptions in

them. The differences between the structures of mathematics and physics were

discussed above. In another discipline, research on chess perception (de Groot,

1965; Chase and Simon, 1973) indicates that experts' perceptions of routine

problems (similar in a way to the routine physics and mathematics problems

discussed above) may be based on the acquisition of a "vocabulary" of known

situations which is not necessarily principle-based. Further research might

profitably be directed towards the elucidation of how deep structures differ

across disciplines and how problem perceptions evolve with the acquisition

of expertise in different domains.

I
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1

We wish to thank Jim Greeno and Alice Healy for suggesting the

measure and stengthening the discussion.

2 All three diagrams are quite similar. The matrix from which Figure 2

was derived was strongly correlated with both the experimental pretest

matrix (r = .918, df - 498, p<.001) and the control pretest matrix (r = .889,

df = 496, p<.001).
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Table 1

The proportion of strongly clustered pairs in which both

F.roblems share the same representation

(Number of pairs given in parentheses)

Measure 1
(All pairs)

- Surface Deep
Structure Structure

Measure 2

(Non-coinciding pairs)

Surface Deep
Structure Structure

Experts .59(22) .82(22) .25(12) .67(12)

Experimental,Pretest .81(26) .58(26) .58(12) .08(12)

Control, Pretest .91(23) .57(23) .82(11) .09(11)

Combined, Pretest .76(21) .62(21) .67(9) .11(9)

Experimental,Posttest .58(24) .79(24) .09(11) .55(11)

Control, Posttest .83(24) .58(24) .64(11) .09(11)

31
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Table 2

Correlations Between Sorting Matrices

of Novices (Given at Left) with Expert Sort

Control, Pretest .551

Experimental, Pretest .540

Combined, Pretest .602

Control, Post Test .423

Experimental, Post Test .723

0 :-
... ki
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APPENDIX A

PROBLEMS USED IN CARD SORT

1. Show that the sum of consecutive odd numbers, starting wi.th,1
, is

always a square. For example,

1+3+5+7 = 16 = 42.

2. You have an unlimited supply of 7 pound weights, 11 pound weights, and,
a potato which weighs 5 pounds. Can you weigh the potato on a balance s.,
scale? A 9 pound potato?

3. Find and verify the sum

1 + 2 + 3 + .

1.2 1.2.3 1.2.3.4 1.2.3...(n+1)

4. Show that if x, y, and z are greater than 0,

(x2 +1)(y2+1)(z2+1) > 8.
xyz

5. Find the smallest positive number m such that the intersection of the
set of all points {(x,mx)} in the plane, with the set of all points
at distance 3 from (0,6), is non-empty.

6. The lengths of the sides of a triangle form an arithmetic progression
with difference d. (That is, the sides are a, a+d, a+2d.) The area
of the triangle is t. Find the sides and angles of this triangle.
In particular, solve this problem for the case d = 1 and t = 6.

7. Given positive numbers a and b, what is

Lim (an + bn)lin,
n4.3

8. In a game of "simplified football," a team can score 3 points for a
field goal and 7 points for a touchdown. Notice a team can score 7
but not 8 points. What is the largest score a team cannot have?

9. Let n be a given whole number. Prove that if the number (2n-1) is
a prime, then n is also a prime number.

10. Prove that there are no real solutions to the equation

x10 4. x8 x6 x4 x2 1

11. If Czech. currency consists of coins valued 13 cents and 17 cents,
can you buy a 20-cent newspaper and receive exact change?

N
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12. If N(A) means "The number of elements in A," the N(AuB) = N(A) +
N(B) - N(AnB). Find a formula for N(AuBuC).

13. Construct, using straightedge and compass, a line tangent to two
given circles.

14. Take any odd number; square it; divide by 8. Can the \emainder be
3? or 7?

15. You are given the following assumptions:

i) Parallel lines do not intersect; non-parallel lines intersect.
ii) Any two points P and Q in the plane determine an,unique

line which passes'between them.
Prove: Any two distinct non-parallel lines L1 and L2 must intersect

in an unique point P.

16. Two squares "s" on a side overlap, with the corner of one on the
center of the other. What is the maximum area of possible overlap?

17. Show that if a function has an inverse, it has only one.

18. Let P be the center of the square constructed on the
hypotenuse AC of the right triangle ABC. Prove that
BP bisects angle ABC. [see figure at right.]

19. How many straight lines can be drawn through 37 points
in the plane, if no 3 of them lie on any one straight
line?

20. you add any 5 consecutive whole numbers, must the result have a
fa or of 5?

21. What the sum of all numbers from 1 to 200, which are not multiples
of 4 an '? You may use the fact that

(1+2+...+n) = 1/2 (n)(n +l)

22. Your goal is
move only one di
and you may neve
one. how to?

convert figure 1 to figure 2. You may
k at a time from one spike to another,

r .ut a larger disk on top of a smaller fig.1
r I I

fig 2

23. Determine the area of d,triangle whose sides are given as 25, 50, and 75.

24. If P(x) and Q(x) have "rersed" coefficients, for example

P(x) = x5+3x4 x3+11x2+6x+2,

Q(x) = 2x5+6x4+11'+9x2+3x+1,
What can you say about the roots of P(x) and Q(x)?
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25. You have 2 unmarked jugs, one whose capacity you know to be 5 quarts,
the other 7 quarts. You walk down to the river and hope to come back
with precisely 1 quart of water. Can you do it?

26. What is the last digit of (...((77)7)7...)7, where the 7th power
is taken 1,000 times?

27. Consider the magical configuration shown at right. A
In how many ways can you read the word "ABRACADABRA?" B B

R R R
28 A circular table rests in a corner, touching both A A A A

walls of a room. A point on the rim of the table C C C C C
is eight inches from one wall, nine from the other. A A A A A A
Find the diameter of the table. D D D D D

AAAA
29 Let a and b be given real numbers. Suppose that B B B

for all positive values of c, the roots of the R R
equation A

ax2+bx+c = 0
are both real, positive numbers. Present an argument to show that
a must equal zero.

30. Describe how to construct a sphere which circumscribe's a tetrahedron
(the 4 corners of the pyramid toucn the sphere.)

31. Let S be a sphere of radius 1, A an arc of length less that 2 whose
endpoints are on the boundary of S. (The interior of A can be in the
interior of S.) Show there is a hemisphere H which does not intersect A.

32. Show that a number is divisible by 9 if and only if the sum if its
digits is divisible by 9. For example, consider 12345678:
1+2+3+4+5+6+7+8 = 36 = 4x9, so 12345678 is divisible by 9.

43

1
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Appendix B

Mathematics Test Form 1

1. If S is any set, we define 0(S) to be the number of subsets of S
which contain an odd number of elements. For example: the "odd"

subsets of {A, B, Cl are {A}, {B}, {C}, and {A, B, C}; thus 0({A,B,C})

= 4. Determine 0(S) if S is a set of 26 objects.

2. Suppose you are given the positive numbers p,q,r, and s.
Prove that

(p
2
+1)(g

2
+1)(r

2
+1)(s

2
+1)

3 16.
pqrs

3. Suppose T is the triangle given in figure 1. Give a mathematical

argument to demonstrate that there is a square, S, such that the
4 corners of S lie on the sides of T, as in figure 2.

ce .3 . 1

4. Consider the set of equations

f ax 4 y = a

x + ay = 1

For what values of "a" does this system fail to have solutions,
and for what values of "a" are there infinitely many solutions?

5. Let G be a (9 x 12) rectangular grid, as illustrated
to the right. How many different rectangles can be
drawn on G, if the sides of the rectangles must be
grid lines? (Squares are included, as are rectangles

whose sides are on the boundaries of G.)

ti I
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Toward A Testable Theory of Problem Solving

The four main issues I address in this paper are the following.

1. What, beyond basic subject matter mastery, serves to

explain "expert" mathematical problem solving behavior?

2. What traits do students lack, or what inappropriate

traits Jo they have, which prevent them from approaching

problems with the flexibility and resourcefulness of ex-

perts?

3. Can we teach students to "solve problems like experts"- -

and how?

'4. What clear, scientific evidence can we offer to support our

opinions regarding the first three questions?

The students I refer to will be advanced high school or lower division

undergraduate students and the problems "nonroutine," of the type discussed by

Polya in Mathematical Discovery. "Experts" can be defined (for the sake of

simplicity, and not uniquely) as college mathematics faculty.

The answers from the mathematics education community to the first three

questions would, I suspect, involve Lhe word revived by the Honorary President

of this Congress, George Polya: "heuristics." The fourth question is harder.

There has been little conclusive evidence to date that heuristics "work"--in

the sense that students can learn to use them, and improve their problem solv-

ing performance thereby. In fact, heuristics are for the most part ignored,

dismissed or disdained outside the math-ed community. Herbert Simon, writing

to "christen" the new domain of cognitive science, spoke of "cognitive

1
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psychologists, researchers in artificial intelligence, philosophers, lin-

guists, and others who seek to understand the workings of the human mind."1.

Allen Newell, coauthor with Simon of Human Problem Solving, wrote that we

are working in the wrong direction: "Tf we ask what evidence we have that

Polya is right . . . the answer is that there is none of a scientific kind.

We are all impressed and pleased, that's all.
.2

For its own part the math-ed

community ignores with equal impugnity the advances made in cognitive science:

the 1980 NCTM Yearbook, Problem Solving in School Mathematics, would essen-

tially be unchanged if all the fields listed above by Simon did not exist.

The result is a loss to both schools. The interplay between them can, and

should be fruitful. I shall discuss here some adaptations of ideas and tech-

niques from cognitive science to examine problem solving via heuristics--

and to provide some of the evidence Newell asks for.

We shall outline the framework of a theory. In brief, we argue that

there are Cat least) three components which are essential for competent prob-

lem solving performance in any nontrivial domain:

I. An adequate knowledge base, including access to basic

facts, relations, and procedures.

The mastery of relevant problem solving techniques--in

the case of nonroutine problem solving like that dis-

cussed here, the mastery of certain heuristics; and

III. An efficient means of selecting appropriate techniques

for application, and in general for using efficiently

those resources which the problem solver has at his or

her disposal. We shall call this "efficiency expert" a

managerial strategy.



3

I. The Knowledge Base

The first observation we make is that an adequate characterization

of the knowledge base for problem solving is more important than it might at

first appear. Of course, the problem solver must have the "basic facts" at

his disposal. But recent work in cognitive science stresses the difference

between factual knowledge and procedural knowledge. The latter includes a

knowledge of the conditions under which a particular procedure . or may

not be "legal," to what arguments it applies, and so on. Note that the or-

ganization of the knowledge base is important: in addition to "knowing"

something (that is, being able to discuss it when asked about it) one must

know when it is relevant to a particular problem. Otherwise one's knowledge

is wasted. An experiment in the psychology of physics learning shows that

the organization of one's knowledge base has a strong effect on one's success

in solving problems.
3

A result I obtained recently indicates that experts

and novices actually "see" different things in problem structures: the cri-

teria which experts use for judging whether two mathematical problems are re-

lated are quite different from those used by novices.4

The experiment was conducted as follows. Each person was given a

ccllection of 32 problems, and asked to sort the problems into anywhere from

1 to 32 piles, each pile containing problems which were "mathematically re-

lated, or would be solved the same way." A computer analysis of the cumula-

tive sorting (the HICLUS program), revealed that the (apparent) criteria for

sorting were quite different. Novices clustered problems by what we call

their "surface structure:" that is, by the objects which the problems deal

with. For example, three problems dealing with the roots of polynomials

would be called "related" by the novices, even if one was most appropriately

IS
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solved by graphing, another by examining special cases, and the third by con-

tradiction. In contrast, the "expert" clusters were sorted by what we call

"deep structure." Problems amenable to an approach by mathematical induction

were clustered together, even if one dealt with points and lines, a second

with the last digit of a complicated numerical expression, and a third with

the coefficients of a polynomial. These perceptions, of course, affect prob-

lem solving performance. We are just beginning to deal with the complexity

of knowledge structures, and there is much to discover.

II. The Heuristics

The second major component for nonroutine problem solving, as we dis-

cussed It above, is the ability to use certain heuristics. Most attempts to

document the role of heuristics in problem solving have yielded very equivocal

results. This is hot surprising if one considers (1) the quite complex and

usually underestimated web of skills needed to correctly employ individual

heuristics, and C2) our hypothesis that the heuristics alone are not sufficient

to guarantee improved problem solving performance. Our treatment will be brief

here: we will mention only two studies designed to "tease out the role of

heuristics. See the 1980 NCTM Yearbook and the NCTM's Research in Mathematics

Education for extensive discussions of the literature. The first study
5

was

designed to see whether students will intuit problem solving heuristics simply

by working problems. Under controlled laboratory conditions, two groups of

students were trained for identical periods of time on identical problems,

with only one group given the explicit heuristics underlying the solutions

they were shown. There was a significant difference in performance; the

"control" students were not able to use their problem solving experience to

solve related problems, while the experimental group was explicitly using
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the heuristics. However, the journey from the laboratory to the classroom is

a long one.

The second study took place in the classroom. It had two goals: (1)

to define some useful and replicable measures, so that other teachers and re-

searchers could replicate the results; (2) to use those measures to verify a

substantial improvement in students' problem solving performance. In that

study,
4

students were both taught heuristics and a managerial strategy (of

Jorts); thus the effects of heuristics (.or the managerial strategy) alone are

,hard to sort out. But there was much greater heuristic fluency, correlating

with dramatically improved problem solving.'

III. Managerial Strategies

Finally, we come to the presence of an efficient "manager" itself.

This is also difficult to sort out, for all problem solvers obviously have

some managerial abilities. Our first argument.is by analogy. In an early

6
study, students who had learned the techniques of integration were divided

into two groups. One group studied the "usual" way, each working problems

for an average of nine hours. The other group was given a strategy which

helped them to select the appropriate techniques. The experimental group

averaged seven hours study time, and significantly outperformed '.,he control

group. Now, the argument to be made here is that, even in a simple domain,

students who lack an efficient manager squander some of their resources.

general, where there are many more choices and many more opportunities to go

wrong, the absence of an efficient manager can be debilitating--even if one

has the appropriate heuristic abilities.7

We are currently developing a scheme for analyzing transcripts of

problem solving sessions which focuses on managerial actions. Although we
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have only preliminary results, we believe that this scheme may allow us to (1)

characterize some "expert" managerial actions which account for efficient prob-

lem solving, (2) demonstrate the consequences of poor managerial actions in

students' problem solving, and (3) correlate improved performance in problem

solving with both heuristic and managerial improvement. If all goes well, the

synthesis of ideas from the heuristic school with the techniques from cognitive

science will help us to better understand, and teach, problem solving.

--,
...1 .t.
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Recent Advances in Mathematics Education:

Ideas and Implications

There have been major changes in mathematids education research over

the past decade. Research in education is now highly interdisciplinary, with

contributions from cognitive psychologists, workers in artificial intelligence,

etc. There are new people, new perspectives, new methodologies -- and most

important, new results. Taken as a whole, these results promise to re-shape our

understanding of the learning and teaching processes. In this paper I will

discuss one aspect of recent work, and its implications.

The three examples I'm going to discuss in this paper seem on the

surface to have little to do with each other. John Seely Brown and Richard

R. Burton have done a detailed analysis of the way elementary school children

perform certain simple arithmetic operations. John Clement, Jack Lochhead,

and Elliot Soloway have studied the way that people translate sentences like

"There are six times as many students as professors at this college" into

mathematical symbolism.' My work consists of an attempt to model "expert"

mathematical problem solving, and to teach college freshmen to "solve prob-

lems like experts." Yet all three of these studies share a common premise,

and their results tend to substantiate it. That premise is the following:

There is a remarkable degree of consistency in both

correct and incorrect mathematical behavior on the part

of both experts and novices. This consistency is so strong

that it may often be possible to model or simulate that

behavior, at a very substantive level of detail.
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The implicati s of this assumption for both the teaching and learn-

ing processes are enormo4. First, consider the notion that much of our

student's incorrect behavio can be simulated--and hence predicted. This

means that many of their mistakes are not random, as we often assume, but

the result of a consistently applsed and incorrectly understood procedure.

In consequence, the student does not\need to be "told the right procedure";

he needs to be "debugged." This idea lies at the heart of the Brown and

Burton work. It is also central to Lochhead and Clement's work, where we

will see that the simple process of translati g a sentence into algebraic

symbols is far more complex than it at first app ars. The other side of the

coin has to do with the co, ,-stency of expert behaVor. That, of course, is

the assumption made in artificial intelligence--where\the attempt is made to

model expert behavior in enough detail so that it can be ,simulated on a com-

\
puter. If that seems plausible, then another step should seem equally plaus-

ible: model expert behavior so that humans, rather than mach'nes, can simulate

it. That is, teach students to "solve problems like experts" by \training them

to follow a detailed model of expert problem solving. That is the ea behind

my own work.

Needless to say, a discussion of these three projects barely scratches

the surface of what is happening in mathematics education today. I could not

hope to be comprehensive in a brief paper like this, and I think it would be

a waste of time to simply provide a list of people's names with one or two

sentence descriptions of what they are doing. Instead, I have chosen to look

at just one idea and to discuss in same detail how three different research

projects explore aspects of it. In doing so I hope to at least convey the
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flavor of some modern work--and leave you with a taste for bibliog-

raphy suggests further readings.
\

2. A Close Look at Arithmetic.

In this section I offer a distillation of Brown and Burton's paper

"Diagnostic Models for Procedural Bugs in Basic Mathematical Skills." There

is much more in that paper than I can summarize here, and it is well worth

reading in its entirety; so are the other papers by them listed in the bibliog-

raphy. They are now at Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, Ca.,

94304. Address reprint requests there.

The key word in the title of their paper is "bug." It is, of course,

borrowed from programming terminology--and is fully intended to have all of

the connations that it usually does. While a seriously flawed program may

fail to run, a program with only one or two minor bugs may run all the time.

It may even produce correct answers most of the time. Only under certain cir-

cumstances will it produce the wrong answer--and then it will produce that

wrong answer consistently.

Often one discovers a bug in a computer program when it produced the

wrong answer on a test computation. Now, one might hope to find the bug by

reading over the listing of the program and catching a typographical error or

something similar. It is usually easier, however, to trace through the program

and see when it makes a computational error. At that point, one knows where

the source of difficulty is and can hope to remedy it. If the basic algorithm

were simple enough, it might be possible to guess the source of error by notic-

ing a pattern in the series of mistakes it produced. Thus one might be able to

find the bugs in a program -- without even having a listing of it. For example,
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see if you can discover the bug in the following addition program from the

five sample problems.

41 328 989 66 216
+9 +917 +52 +887 +13

50 1345 1141 1053 229

Of course, if you don't have a listing of the program, you can never be certain

that you have the right bug. However, you can substantiate your guess by pre

dicting in advance the mistakes that the program would make on other problems.

For example, if you have identified the bug which resulted in the answers in the

previous five problems, you might want to predict the answers to the following

two:

446 201

+815 +399

This particular bug is rather straightforward. We can get the same answers as

the program for each of the five sample problems by "forgetting" to reset the

"carry register" to zero: after doing an addition which creates a cc,rry in a

column, simply add the carry to each column to the left of it. For example, in

the second problem, 8 + 7 = 15, so we get a carry of 1 into the second column.

That gives us a sum of 4. If the 1 is still carried to the third column, that

gives us 1 + 3 + 9 = 13. The same difficulties arise all the way across the

board. Using this bug, one would predict answers of 1361 and 700 to the two

extra problems.

Now the point is that a student might have this "bug" in his own arith-

metic procedure, just as the computer program might. In fact, a child might

well use his fingers to remember the carry, and simply forget to bend the fing-

ers back after each carry is added. This would produce exactly the bug above.

t o 4
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The above is far more than an exercise in cleverness: it has tremen-

dous implications for the way we teach. The naive view of teaching is that

the teacher's obligation is to present the correct procedure coherently and

well, and that if anything goes wrong, it is simply'because the students have

not yet succeeded in learning that procedure. The above example (and many

more in the text) suggest that something very different is happening. Suppose

a student is making consistent mistakes. The teacher who can diagnose such a

bug in that student stands a decent chance of being able to remedy it. The

teacher who looks at the student's mistakes and concludes from them simply

that the student has not yet learned the correct procedure, is condemned simply

to repeat the correct procedure--with much less likelihood that the student

will perceive his own mistake and begin to use the correct procedure as he is

supposed to.

If one makes the assumption that student's behavior is consistent when

it is wrong, then the issue appears to be theoretically simple. You begin with

the correct procedure, and then at each step generate what might be considered

plausible bugs. Then you create a series of test problems so that the student's

answers to those problems indicate which bugs he has. Having identified the

bugs, you intervene directly to remedy them.

While the theory has just been made to sound remarkably simple, the

implementation is actually quite complex. First, it is a surprisingly compli-

cated task to write down all the operations that one has to do to add or sub-

tract two three digit numbers. Primitive operations involved in subtraction,

for example, include knowing the difference between any two single digits,

being able to compare two digits, knowing when it is appropriate to borrow,

being able to borrow, knowing to perform operations on the columns in sequence

5;3
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from right to left, and many, many more. Any flaw in any one of these pro-

cedures causes a bug which needs to be diagnosed; flaws in more than one pro-

cedure cause compound bugs which may be even more difficult to diagnose. For

example, the following table lists nine common procedural mistakes in the simple

subtraction algorithm. When one considers possible combinations of these, things

start to get out of hand very rapidly.

143 The student subtracts the smaller digit in each column
/-28 from the larger digit regardless of which is on top.
125

143 When the student needs to borrow, he adds 10 to the top
-28 digit of the current column without subtracting 1 from
125 the next column to the left.

1300 When borrowing from a column whose top digit is 0, the
-522 student writes 9 but does not continue borrowing from
878 the column to the left of the O.

140 Whenever the top digit in a column is 0, the student
-21 writes the bottom digit in the answer; i.e., 0 -N . N.
121

140 Whenever the top digit in a column is 0, the student
- 21 writes 0 in the answer; i.e., 0 -N . O.
120

1300 When borrowing from a column where the top digit is 0,
-522 the student borrows from the next column to the left
788 correctly but writes 10 instead of 9 in this column.

321 When borrowing into a column whose top digit is 1, the
- 89 student gets 10 instead of 11.
231

662 Once the student needs to borrow from a column, s/he
-357 continues to borrow from every column whether s/he
205 needs to or not.

662 The student always subtracts all borrows from the left-
-357 most digit in the top number.
115

FIG. 1. Manifestations of some subtraction bugs.

The preceding discussion was based on the premise that students do

indeed follow certain consistent procedures. Brown and Burton were able to

5 ')
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test this theory empirically when they were given the scores of 1325 students

on a 15-item subtraction test. (By this time, they had completely automated

the process for analyzing bugs, and it was done on a computer.) Their data

indicates that more than 40 percent of the errors made on the test were clearly

attributable to "buggy" behavior. In particular, more than 20 percent of the

solution sheets they had were entirely consistent with one of the bugs they

had identified. (That is, all of the answers were exactly what that particular

faulty algorithm would produce.) Another 20 percent of the solution sheets in-

dicated behavior which was strongly consistent but not identical with such a

bug. This is incredibly strong evidence in favor of their thesis.

Further, the analysis of the student's performance on this test provided

an interesting commentary on the test itself (which Burton and Brown had not

designed). It turned out that 107 of the 1325 students tested had a bug in

their "borrow from zero" procedure. In consequence, they had missed all 6

of the 15 problems on the test which called for borrowing from zero. In the

original interpretation of the data, those 107 students were simply identified

as students who scored 60 percent. In this analysis, they are identified as

students who have not yet mastered the technique of borrowing from zero. There

is quite a difference.

While the authors have computerized the analysis technique, their intent

is not to have a "computer-analyst" in every classroom. Debugging is a very

subtle process, and the child who is having arithmetic difficulties is very

unlikely to be able to ucderstand the explanations given him by a computer!

Rather, the authors want to sensitize teachers to the idea that such consistent

mistakes do occur in their students, so that the teachers themselves can do the

debugging in the classroom. To this end they have written a program called

G o
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"BUGGY" which simulates a student who makes consistent arithmetic errors.

Teachers can "converse" with BUGGY, and try to figure out what BUGGY is

doing wrong. The following is a transcript of a dialogue between BUGGY and

a team of teachers. The dialogue includes some commentary about important

issues. Lines which were typed by the team of teachers are marked with a

vertical line in the left margin.

Transcript of a Team Using BUGGY

WELCOME TO BUGGY.

I HAVE CHOSEN A BUG. HERE IS AN EXAMPLE OF THE BUG.

17
+5

13

The system presents an example in which the student does
not get the right answer.

NOW rou CAN GIVE ME PROBLEMS TO DETERMINE THE BUG.

1 18 43

+6 +79

15 23

The team generates problems that are answered by the "student."
Notice that the team's test problems are similar to the initial
example generated by BUGGY. This is usually a poor diagnostic
strategy as it may leave other symptoms of a bug undiscovered.

the bug!

The team forms an initial hypothesis and tells the system they
have discovered the bug. The system now asks the team to de-
scribe the bug and then tests them on their understanding. Ask-

ing for a description forces the team to verbalize their some-
times fuzzy idea of what the bug is and often makes them realize
how ill-defined or vague their idea actually is. In the present
system, the descriptions are saved but no attempt is made by the
system to understand them.

PLEASE DESCRIBE THE BUG.

Student adds the number to be carried into the last column worked in.

This cryptic description is typical of those we have observed.
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Describing bugs in English is surprisingly (::fficult.
What the team is trying to say is that if a column adds
to more than 9, the units digit and the carry (Agit are
added together and the result is written as the answer.
For example, in the first column of the example problem,
when 7 and 5 are added, 1 (the carry) and 2 (the units
digit) are added to get 3. The same with 8 + 6, 2 + 9,
3 + 9. (This bug could easily arise if the student were
using Method 2 from Fig. 1 and mistakenly wrote the carry
under the same column.)

The hypothesis does account for the observed behavior. Un-
fortunately, it is not the student's bug. Notice the pos-
sibly humorous, probably disastrous results that would have
transpired if the team had stopped at this point and tried
to tutor the student on the basis of their initial belief!

HERE ARE SOME PROBLEMS TO TEST YOUR THEORY ABOUT THE BUG.

WHAT IS:

21

+39

51

To ensure that the team has found the correct bug, the sys-
tem produces several problems For the team to solve.

The team's hypothesis is revealed as incorrect by the first
of the five test problems. BUGGY presents its answer and
then allows the team to enter more problems.

THAT'S NOT THE BUG I HAVE.
USING MY BUG:

21

+39

15

TRY GIVING ME SOME MORE EXAMPLES.

51 99 68
1 +1707 +99 +9

21 36 23

After failing the test, the team gives a greater range of
problems, specifically those using bigger numbers. How is
it that 51 + 1707 can add up to 21? By broadening the
scope of example problems they are able to reevaluate their
initial hypothesis, dismiss it, and develop another one that
is complete and consistent with respect to the new errors.

Cr)
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Got the Bug!

PLEASE DESCRIBE THE BUG YOU THINK I HAVE.

The student is adding all the digits together.

At this point the computer generates five more problems which the team answers

correctly. The machine then congratulates the team, gives its description of

the bug, and goes on to another.

There is more to BUGGY, but I suggest you go to Brown and Burton for

additional details.

3. A Look at "Simple" Word Problems.

For a number of years, a group at the University of Massachusetts at

Amherst has been studying a variety of students' misconceptions in college-

level physics and mathematics. This discussion is based primarily on two of

their working papers, "Ti.anslating Between Symbol Systems: Isolating a Common

Difficulty in Solving Algebra Word Problems" by John Clement, Jack Lochhead and

Elliot Soloway, and "Solving Algebra Word Problems: Analysis of a Clinical Inter-

view" by John Clement. These papers deal with college-level students, and (at

least at first) with subject matter "appropriate" for students at this level.

Yet, there are two very strong similarities between this work and the work de-

scribed in section 1. First, we will see again that a process which is "simple"

to do correctly may yet be a rich source of potential errors. Second, there

will once again be an almost remarkably perverse consistency in the way that

students make mistakes--to the point where remediation is rather difficult,

even if one understands what the student is doing. Finally, there will be an

interesting contrast between the "static" nature of mathematical language and

the "dynamic" nature of a programming language.
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Since they were dealing with college-level students, the authors began

with problems of some complexity. One problem, for example, asked the student

to determine what price, P, to charge adults who ride a ferry boat, in order to

have an income on a trip of 0 dollars. The students were given the following in-

formation: There were a total of L people (adults and children) on the ferry,

with 1 child for each 2 adults; children's tickets are half price. The students

were asked to write their equation for P in terms of the variables 0 and L. When

fewer than 5 percent of the students given the problem solved it correctly, the

authors began to use simpler and simpler problems. After a sequence of increasing-

ly easier problems, they wound up using problems like the ones given in Table 1.

i' 4
%. 4
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Table 1.

1. Write an equation using the variables S and P to represent the

following statement: "There are six times as many students as professors at

this University." Use S for the number of students and P for the number of

professors.

2. Write an equation using the variables C and S to represent the

following statement: At Mindy's restaurant, for every four people who

ordered cheesecake, there are five people who ordered strudel." Let C

represent the number of cheesecakes and S represent the number of strudels

ordered.

3. Write a sentence in English that gives the same information as

the following equation: A = 7S. A is the number of assemblers in a factory.

S is the number of solderers in a factor!.

4. Spies fly over the Norun Airplane Manufacturers and return with

an aerial photograph of the new planes in the yard.

11
R

H
171

R-1

.1.10111100

R

R

{-7\
B B

B

B

They are fairly certain that they have photographed a fair sample of one

week's production. Write an equation using the letters R and B that describes

the relationship between the number of red airplanes and the number of blue

planes produced. The equation should allow you to calculate the number of

blue planes produced in a month if you know the number of red planes produced

in a month.
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The correct answers for these four problems are, of course, the fol-

lowing: (1) S = 6P, (2) 5C = 4S, (3) "There are 7 assemblers for every solder-

er," (4) 5R = 8B. The success rates for these four problems were respectively

63, 27, 29, and 32 percent.

It might seem at first that the researchers had simply found a bunch

of students who were extremely defective in their algebraic skills. However,

the students had been given the six questions given below in Table 2.

1. Solve for x: 5x = 50

2. Solve for x: 6 = 30

4 x

Table 2.

3. Solve for x in terms of a: 9a = 10x

4. There are 8 times as many men as women at a particular school.

50 women go to the school. How many men go to the school?

5. Jones sometimes goes to visit his friend Lubhoft driving 60

miles and using 3 gallons of gas. When he visits his friend

Schwartz, he drives 90 miles and used ? gallons of gas.

(Assume the same driving conditions in both cases.)

6. At a Red Sox game there are 3 hotdog sellers for every 2

Coke sellers. There are 40 Coke sellers in all. How many

hotdog sellers are there at this game?

Qn average, more than 95 percent of these problems were solved correctly. There-

fore, their difficulties were not in simple algebraic manipulations. They were,

rather, in translating a statement from a sentence into a suitable algebraic form.

r
t
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Actually, the situation is even worse than this, for the students were more

than competent in algebra. Clement's paper provides a detailed analysis of the

transcript of a problem-solving session with one student who consistently gets

problems of this nature wrong. The student was doing B+ work in a standard

calculus course at the time of the interview, and had been able to differentiate

the function f(x) = /7i-1 rapidly, using the chain rule, without difficulty.

We shall examine "students and professors" problem from Table 1 in

some detail. As in the Brown and Burton work, the key to the analysis is the

fact that the students' errors were remarkably consistent for all of the prob-

lems in Table 1. More than four-fifths of the incorrect solutions to problem 1

were of the form 6S = P; of problem 2, of the form 4C = 5C; of problem 3, of the

form "Seven solderers for every assembler"; and of problem 4, 8R = 5B. In other

words, there was a very consistent reversal of the symbols and their role in the

equations.

The authors identified two major causes for the reversal. The first is

what we might call a quntactietranslation of a sentence into algebraic form.

The student reads along the sentence, replacing words where appropriate by al-

gebraic symbols. Thus, "six times as many students" becomes 6S; "as" becomes

equals, and "professors" becomes P. The resulting equation is 6S = P. Clinical

interviews substantiated the fact that many students solved the problem this way.

The second group of students recognized that an equation does stand for

a relationship between two quantities. However, the way that they represented

that relationship to themselves resulted in a reversal. Many of the students,

for example, drew pictures such as the one given in Figure 2 below. On one

side of the desk is the professor; on the other side are the 6 students. This

I' -4



is the equality: 6S = P.
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FIG. 2. Student's sketch.

To the mathematician, an equation for the "students and professors"

problem is a device which allows him to calculate the number of students given

the number of professors, or vice-versa. Since there are 6 times as many stu-
.

dents as profess'ors, one must multiply the number of professors by 6 to get the

number of students (for example, 10 professors yield 60 students). Thus, S =

6P. Obviously, students do not have this perspective.

In one last experiment, the authors provide some dramatic evidence of

the difference between the static and dynamic interpretations of an equation.

Their "subjects" were 17 professional engineers who had between 10 and 30 years

of experience each. The engineers had come to take a course in the BASIC program-

ming language. On the first day of the course, the engineers were asked to write

an equation'for the following statement:

(, At the last football game, for every four people who

bought sandwiches, there were five who bought hamburgers."

Only 9 out of 17 of the engineers solved the problem correctly. The following

day, without there having been any discussion of the previous problem and the

solution to it, the engineers were asked to write a computer program as follows:

"At the last company cocktail party, for every 6 people

who drank hard liquor, there were 11 people who drank beer.

Write a program in BASIC which will output the number of beer

drinkers when supplied with the number of hard liquor drinkers."
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All 17 of the engineers solved the problem correctly.

The authors further substantiated these results(with less impressive,

though still "significant" statistics) with a study of some college students

in a programming course. Again, these results are quite surprising: it would

appear a harder task to write a program (involving syntax statements, etc.)

than it would be simply to write an equation. The notion of programming also

suggests a possible means of remediation: if we train students to think of an

equation as a "program" with inputs and outputs, we may increase the likelihood

of their getting the correct answers.

4. A Look at Problem Solving.

In the preceding three sections, we saw that apparently random problem-

solving behaviorscan actually be quite consistent. In the work with BUGGY and

with elementary word problems, the focus was on consistent patterns of mistakes,

for purposes of diagnosis and remediation. In this section we look at the flip

side of the coin. Just as a look beneath the surface discloses consistency in

novices' incorrect behavior, a look beneath the surface will also disclose great

consistency in the problem-solving behavior of experts. This idea is not new,

of course. It is the keystone of two major (and often irreconcilable) approaches

to problem solving in this century. First, we have Polya's work on heuristics.

Polya describes many strategies which, in spite of idiosyncratic differences in

personal behavior, are common to expert mathematicians when they work on problems.

Or the opposite side of the fence, we have work in artificial intelligence. Here,

toc the assumption is that problem-solving behavior can be so consistent that

it can actually be modeled in enough detail for computer implementation.

Of course there are gross differences between the two approaches. Polya's

work is sometimes vague, generally descriptive, and covers the entire breadth of
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matheMAtical problem solving. Workers in artificial intelligence reject the

vaguenesf Polya's work, and talk about the precision in their own work:

after all, ,hey write programs which actually solve problems, and the proof

is in the pudding." However, the price they pay is that (until now at least),

to obtain the presion they need, they must work in extremely narrow subject

area domains.

My work is an a \tempt to reconcile these two approaches, with what

might be called a type of ` "human artificial intelligence." As in artificial

intelligence, we might try to\model expert behavior. However, the goal is not

I \
to model it for machine implementation. The idea instead is to pick out those

aspects of expert behavior 'which students can learn. The discussion which fol-

lows is a distilled version of my paper "Teaching Problem Solving Skills," which

will appear later this year in the Monthly Other papers which deal with the

same ideas in more detail are given in the Kbliography.

To make the point that experts and novThes approach problems in dramat-
\

ically different ways, consider the following threesproblemsall of which are

ostensibly accessible to high school students.

.\
Problem 1: Let a, b, c, and d be given numbers De ween 0 and 1.

Prove that (1 -a) (1 -b) (1 -c) (1 -d) >

Problem 2: Determine the sum
1 2

2! .3! (n41)!'

Problem 3: Prove that if 2n - 1 is a prime, then n is a prirria.

On problem 1 most students will laboriously multiply the four fasotprs

on the left, subtract the terms on the right, and then try to prove that

(ab+ac+ad+bc+bd+cd-abc-abd-acd-bcd+abcd) > 0-- usually without success. Vir-

tually all the mathematicians I've watched solving it begin by proving the

ri
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inequality (1-a)(1-b) > 1-a-b. Then they multiply this inequality in turn by

(1-c) and (1-d) to prove the three- and four-variable versions of it.

Likewise in problem 2, most students begin by doing the addition and

placing all the terms over a common denominator. A typical expert on the other

hand, begins with the observation "That looks messy. Let me calculate a few

cases." The inductive pattern is clear and easy to prove.

The colleague who read problem 3 and said "That's got to be done by con-

tradiction" was typical; given the structure of the problem, one really has no

alternative. Yet this almost automatic expert observation is alien to students:

a large number of those to whom I have given the problems either respond with

comments like "I have no idea where to begin" or try a few calculations to see

whether the result is plausible, then reach a dead end.

Of course these are special problems, for which expert and novice per-

formance is remarkably consistent. While the experts did not consciously fol-

low any strategies, their behavior was at least consistent with these "heuristic"

suggestions:

a. For complex problems with many variables, consider solving an

analogous problem with fewer variables. Then try to exploit

either the method or the result of that solution.

b. Given a problem with an integer parameter n, calculate special

cases for small n and look for a pattern.

c. Consider argument by contradiction, especially when extra "artil-

lery" for solving the problem is gained by negating the desired

conclusion.

Many of the novices were unaware of the strategies, and many others "knew of

them" (that is, upon seeing the solution they acknowledged having seen similar
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solutions) but hadn't thought to use them. Expert and novice problem solving

are clearly different. The critical question is: Can we train novices to solve

the problems as experts do?

There are a number of obstacles. First, we have to factor out simple

subject matter knowledge: there is no way that one can hope to give the stu-

dents experience before they have it, or to compensate for it. Rather, we

would like to provide the students with strategies for approaching problems

with flexibility, resourcefulness, and efficiency.

Second, we must realize that the heuristic strategies described by

Polya are far more complex than their descriptions would at first have us be-

lieve. Consider the following strategy and a few problems.

"To solve a complicated problem, it often helps to examine and solve

a simpler analogous problem. Then exploit your solution."

Problem 4: Two points on the surface of the unit sphere (in 3-

space) are connected by an arc A which passes through

the interior of the sphere. Prove that if the length

of A is less than 2, then there is a hemisphere H which

does not intersect A.

Problem 5: Let a, b, and c be positive real numbers. Show that not

all three of the terms a(1-b), b(1-c), and c(1-a) can ex-

ceed 1/4.

Problem 6: Find the volume of the unit sphere in 4-space.

Problem is Prove that if a2 b2 c2 d2 = ab+iv+cd+da, then a="o=c=d.

These four problems, like problem 1, can be solved by the "analogous

problem" strategy. Yet, it is unlikely that a student untrained in using the
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strategy would be able to apply it successfully to many of these. Part of the

reason is that the strategy needs to be used differently in the solution of

each problem.

In solving problem 1, we built up an inductive solution from the two-

variable case, using the result of the analogous problem as a stepping stone

in the solution of the original.

In contrast, analogy is used in problem 4 to furnish the idea for an

argument. The problem is hard to visualize in 3-space but easy to see in the

plane: we want to construct a diameter of a unit circle which does not inter-

sect an arc of length 2 whose endpoints are on the circle. Observing that the

diameter parallel to the straight line between the endpoints has this property

enables us to return to 3-space and to construct the analogous plane.

Problem 5 is curious. It looks as though the two-variable analogy should

be useful, but I haven't found an easy way to solve it. At first the one-var-

iable version looks irrelevant, but it's not. If you solve it, and think to

take the product of the three given terms, you can solve the given problem. So

again we exploit a result, but this time a different result in a different way.

Problem 6 exploits both the methods and results of the lower-dimensional

problems. We integrate cross-sections, using the same method; the measures of

the cross-sections are the results we exploit.

In problem 7 it would seem apparent that the two-variable problem is

the appropriate one to consider. However, which two-variable problem is not

at all clear to students. A large number of those I have watched tried to

solve

7': Prove that a
2 b' = ab implies that a=b, instead of

a2
.2

Problem 7": Prove that a o = ab ba implies a = b.

73
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We conclude that the description "exploiting simpler analogous prob-

lems" is really a convenient label for a collection of similar, but not identi-

cal, strategies. To solve a problem using this strategy, one must (a) think to

use the strategy (this is non-trivial!), (b) be able to generate analogous prob-

lems which are appropriate to look at, (c) select among the analogies for the

appropriate one, (d) solve the analogous problem, and (e) be able to exploit

either the method or result of the analogous problem appropriately.

rf we assume now that we can actually describe the strategies in enough

detail so that people can use them, we run right into another problem. That is:

a list of all the strategies in detail would be so long that the students could

never use it! Knowing how to use the strategy isn't enough: the student must

think to use it when it is appropriate.

Consider techniques of integration in elementary calculus. There are

fewer than a dozen important techniques, all of them algorithmic and relatively

easy to learn. Most students can learn integration by parts, or substitution,

or partial fractions, as individual techniques and use them reasonably well, as

long as they know which techniques they are supposed to use. (Imagine a test

on which the appropriate technique is suggested for each problem. The students

would probably do very well.) When they have to select their own techniques,

however, things often go awry. For example, a "gift" first problem on

x"dx-9

a test, caused numerous-students trouble when they tried to solve it by partial

fractions or, even worse, by a trigonometric substitution!

In "Presenting a Strategy for Indefinite Integration" (The Monthly,

Oct. 1978) I discuss an experiment in which half the students in a calculus

class (not mine) were given a strategy for selecting techniques of integra-

tion, based on a model of "expert" performance. The other students were told
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to study as usual--using the miscellaneous exercises in the text to develop

their own approaches to problem solving. Average study time for members of

the "strategy" group was 7.1 hours, while for the others it was 8.8 hours;

yet the "strategy" group significantly outperformed the rest on a test of

integration skills--in spite of the fact that they were not given training

in integration, just in selecting the techniques of integration.

The "moral" to the experiment is that students who cannot choose the

"right" approach to a problem--even in an area where there are only a few use-

ful straightforward techniques--do not perform nearly as well as they "should."

If we leap from techniques of integration to general mathematical problem

solving, the number of potentially useful techniques increases substantially,

as does the difficulty and subtlety in applying the techniques. An efficient

means for selecting approaches to problems, for avoiding "blind alleys," and

for allocating problem- solving, resources in general thus becomes much more

critical. Without it, the benefits of training in individual heuristics may

be lost.

In consequence of the above, an attempt to teach general mathematical

problem solving would need these two components: first, a detailed description

of individual strategies, and second, a global framework for selecting these

strategies and using them efficiently. One way of presenting such a framework

is with a "model" of expert problem solving. That model takes a semester to

unfold, so there is no sense in my attempting to summarize it here. What I

have done is simply to give the outline of the model (see Figure 3), and a

description of tne most important heuristic strategies which fall within each

of the major blocks of that strategy (see Figure 4).
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SOME IMPORTANT HEURISTICS IN PROBLEM SOLVING

or Analyzing and Understanding A Problem:

1. Draw a Diagram if at all possible.

2. Examine Special Cases, (a) to exemplify the problem, (b) to explore

the range of possibilities through limiting cases,(c) to find inductive

patterns by setting integer parameters equal to 1,2,3,... in sequence.

3. Try to simplify it, by using symmetry or "without loss of generality."

For the Design and Planning of a Solution:

1. Plan solutions hierarchically.

2. Be able to explain, at any point in a solution, what you are doing

and why; what you will do with the result of this operation.

For Exploring Solutions to Difficult Problems:

1. Consider a variety of equivalent problems,

(a) replacing conditions by equivalent ones, .

(b) recombining elements of the problem in different ways,

(c),Introducing auxiliary elements,

(d) Re-formulating the problem by (i) a change of perspective or

notation, (ii) arguing by contradiction or contrapositive, or

(iii) assuming a solution and determining properties it must have.

2. Consider Slight modifications of the original problem:

(a) Choose subgoals and try to attain them.

(b) Relax a condition and try to re-impose it.

(c) Decompose the problem and work on it case by case.

3. Consider Broad modifications of the original Problem:

(a) Examine analogous problems with less complexity (fewer variables).

(b) Expi e the role of just one variable or condition, the rest fixed.

(c) Exp' any problem with a similar form, "givens," or conclusions;

try to exploit both the result and the method.

For Verifying a Solution:

1. Use these specific tests: does it use all the data, conform to reasona-

ble estimates, stand up to tests of symmetry,dimension analysis,scaling?

2. Use these general tests: Can it be obtained differently, substantiated

by special cases, reduced to known results, generate something you know?

FIG. 4

I
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Of course, documenting improved problem-solving ability is rather diffi-

cult. I am slowly amassing evidence, in a variety of different ways, that in-

struction in problem solving actually can have an impact on students' problem-

solving performance. The material on integration provided some evidence of

this. A "laboratory study" demonstrated that "problem-solving experience"

in and of itself is not enough: in the experiment, two groups of students

worked on the same problems for the same amount of time and saw the same solu-

tions, but one saw in addition heuristic explanations of the solutions. The

differences in their performances were dramatic. (See "Explicit Heuristic

Training as a Va''kble in Problem Solving Performance.") Third, there is a

large amount of "before and after" data on the students in the problem-solving

course. These data indicate both an improved problem-solving performance on

the part of the students and an improved ability to generate plausible approaches

to problems, as opposed to a control group. (These data are shaky, and I do not

want to base any claims on them for fear of being lumped with the people I con-

demned for the inappropriate use of statistics at the beginning of this paper.

Next year, I will be in a better position: I plan to teach a course virtually

identical in subject matter to my problem-solving course, save for the fact that

I do not discuss the problem-solving strategy in particular. That will be as

close a controlled group as I can hope to get; at that point, I will have more

faith in the statements I can make.) In the meantime, there is much data to

be analyzed by a variety of different means--means which were unavailable just

a few years ago, and which come from a variety of disparate sources. As one

sucn example, let me discuss briefly the notion of "hierarchical cluster analysis."

Consider the following three problems.
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Problem 8: Given that lines intersect if and only if they are

not parallel, and that any vwo points in the plan de-

termine a unique Zine between them, prove that any

two distinct nonparallel lines must intersect in a

unique point.

Problem 9: Given 22 points on the plane, no three of which Zie

on the sane straight line, how many straight lines

can be drawn, each of which passes through two of

those points?

Problem 10: If a function has an inverse, prove that it has only

one inverse.

Let us take an extreme case. The student who understands virtually

nothing of these problems may think that problems 8 and 9 are related because

they both deal with lines in the plane. On the other hand, the mathematician

sees that both problems 8 and 10 deal with the uniqueness, and are likely to

be proved by contradiction. Therefore he may perceive of those problems as

being similar.

Suppose 100 students were given these 3 problems, and asked to group

together those problems which they thought were related. (They might decide

that none of the problems was related or that two of them were, or that three

of them were.) One could then create a 3 by 3 matrix, where the i,j-th entry

represented the number of students who considered the i-th and j-th problems

to be related. A comparison of these matrices before and after instruction,

for both experimental and controlled groups, could indicate changes in the

students' perceptions of the way these problems were structured mathematically.
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In fact, my cluster analysis used 32 problems, with a 32 x 32 matrix

for analysis. There were clear differences between experimental pre- and post-

test scores, and controlled pre- and post-test scores. Further comparison with

"expert" sorting of the. problems is also planned. The full tally is yet to come,

but the preliminary results are encouraging. There will be more about techniques

such as this in the next section.

5. Summary and Conclusion.

The three pieces of work I described above give barely a taste of re-

search in mathematics education today. It is interesting to note that none of

the people involved comes from the "classical" mathematics education community.

Brown and Burton come from what might be loosely described as the "artificial

intelligence" community. Clement, Lochhead and Soloway are housed in the Physics

Department at Amherst. I came from pure mathematics, and the techniques I use

are derived from both AI and modern cognitive psychology. My work has profited

greatly from criticism by classical math educators and members of all the com-

munities mentioned above. This is indicative, I think, of the general state of

education today: research now is highly interdisciplinary, and profits greatly

from being so.

The one problem with such breadth and scope is that results are scat-

tered and hard to find. I found out about all the work above, for example,

from the research "grapevine" in mathematics education. Few mathematicians

read Cognitive Science, for example, or the International Journal for Man-

Machine Studies. Publications of the AMS for the most part do not deal with

mathematics education; space in the Monthly is severely limited, and is reserved

for articles directly appropriate to college-level math education; the Journal

L)
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for Research in Mathematics Education is not read by mathematicians for the

most part, but by math educators; therefore it is difficult for the mathemat-

ical community to have a good idea of the new and exciting things in mathe-

matics education. I hope the preceding has whetted your appetite. If so, you

will find many more interesting things to read in the bibliography. I have not

at all tried to be comprehensive; in fact, I have omitted those sources with

which the mathematician is likely to be familiar. If you like what you see in

' the bibliography, the bibliographies in those articles will lead you to more.

Ih any case, I hope you have been convinced of one thing: there is hope.

I
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Episodes and Executive recisions

Abstract

The research described here seeks to characterize the "managerial"

aspects of expert and novice problem-solving behavior, and to describe the

impact of managerial or "executive" actions on success or failure in prop-

lem solving. We present a framework for analyzing protocols of problem-

solving sessions based on "episodes" of problem- solving behavior and fo-

L.asing on managerial decisions between episodes. Experts arE Aow to

have rather "vigilant" managers, which strive for efficiency and accuracy.

In contrast, novices squander their problem-solving resources because they

lack such managers.
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Episodes and Executive Decisions in

Mathematical Problem Solving

Introduction and Overview

This is a rather speculative paper dealing with "managerial" deci-

sions in human problem solving. It presents a (still evolving) framework

for the analysis at the macroscopic level of problem-solving protocols, fo-

cusing on "executive" behaviors. The paper is based on the ,:oilow-.ng premise.

There are two qualitatively different kinds of decisions, which we

shall call "tactical" and "strategic," which are necessary in broad, seman-

tically rich domains (for example, mathematical problem solving at the col-

lege freshman level). The first, tactical decision making, has received the

lion's share of attention. By tactics I mean "things to implement." Tactics

include all algorithms and most heuristics, both of the Poilya type (e.g., draw

a diagram whenever possible; consider special cases: and of the kinds used in

Artificial Intelligence (means-eids analysis, hill-climbing). Given that one

has decided to calculate the area of a particular region, the choice of whether

to approach that calculation via trigonometry or analytic geometry is a tacti-

cal choice.

In contrast, "strategic" or managerial decisions are those which have

a major impact on the direction a solution will take, and on the allocation of

one's resources during the problem-solving process. For example: If one is

given twenty minutes to work on a problem and calculating the area of a re-

gion is. likely to take ten minutes, the decision to calculate the area of

that region is a strategic one--regardless of the method ultimately chosen
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for performing the calculation. Like a decision during wartime to open a front,

this one choice may determine the success or failure of the entire enterprise.

This separation of managerlal decisions from implementation decisions

has implications for 5oth human and machine problem solving. Mathematics prob-

lem- solving instruction to date has focused largely, and with somewhat question-

able success, on heuristics or "tactics." r propose that much of the reason for

this lack of success lies in the fact that attention to managerial behaviors has

mostly been neglected. The protocols discussed below will indicate that heuris-

tic fluency is of little value if the heuristics are not "managed" properly. I

believe that much greater attention will have to be paid to "metaheuristics" or

managerial actions in classroom instruction, if we are to be successful in teach-

ing problem-solving skills.

There appear to be parallels in artificial intelligence. Regardless of

their sophistication, production systems are essentially tactical decision makers.

They are not strategists. The managerial decisions made in such programs, by "con-

flict resolution strategies" when the conditions for more than one production are

met simultaneously, seem to be more or less ad hoc and idiosyncratic, rather than

theory-based. For the most part, programming in narrow domains finesses the ques-

tion of managerial strategies. However, such concerns cannot be ignored as the

domains of investigation are broadened. Further, some attempt at dealing with

executive strategies must be made for the creation of "glass box" experts in

computer-based tutorial systems for non-trivial domains. Since such decisions

are an important component of human problem solving, any system in a broad arena

which ignores them will lack psychological validity.

This paper discusses a framework for Examining, at tne macroscopic

level, a broad spectrum of problem-solvi6,Corotocols. Protocols are parsed into
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major "episodes." These are periods of time during which the problem solver(s)

is engaged on a single set of like actions, such as "Planning" or "exploration."

It is precisely between such episodes that the managerial decisions which can

"make or break" a solution are often made, or not made. We focus on decision

making at these points, and on the impact of such decisions--or their absence- -

on problem-solving performance. The quality and success of problem-solving

endeavors will be seen to correspond closely (in human problem solving) to the

presence, and vigilance, of such 'managers.'

C --I
,._/ ,
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A Discussion of Antecedents

By definition, protocol coding scnemes are concerned with producing

objective records or "traces" of a sequence of overt actions taken by in-

dividuals in the process of solving problems. In mathematics education, the

cooed Protocol is generally subject4d to a qualitative analysis; often cor-

relations will be sought between certain types of behavior (e.g., the pre-

sence of goal-oriented heuristics) and problem-solving success. In arti-

ficial intelligence, the goal is often to write a program that will simulate

a given protocol, or the idealized behavior culled from a variety of proto-

cols. In both cases the level of analysis is microscopic. My goal here is

to indicate that in many cases the microscopic level analysis may be entirely

inappropriate. In analyzing human problem solving, attention to that level

of detail may cause one to "miss the forest for the trees"; if the wrong

strategic decisions are made, tactical ones are virtually irrelevant. In

arti4icial intelligence, great progress has been made at tne tactical level

through the use of production systems. It is not at all clear, however, that

they will serve well for making managerial decisions. i pelieve that we may

wish to think of these executive decisions as being at a higher level than

tacz7cal ones, and may want to deal with these "strategists" separately.

(Note: what follows is an opinionated discussion of the recent

literature, which depends heavily on the distinction between "tactical" or

"strategic" or 'managerial" decisions. These distinctions may be much clearer

after the reacer has considered the examples discussed in the next section.

Thus the reader may wish to skip ahead to that section, and later consider

the comments made here in tne light of those examples.)

C
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The following description, taken from Lucas et al., (1979, p. 354) is

typical of the efforts of mathematics educators to deal with problem-solving

protocols.

[T]he authors came to agreement on the definitions for a

set of constructs which were to represent observable, dis-

joint problem solving behaviors and related phenomena . .

Each event was assigned a symbol, and the collection of events

which comprised a problem-solving sequence of processes was

recorded in a horizontal string of symbols corresponding to

the chronological order of appearance during the actual prob-

lem solution. In this manner a researcher could listen to a

tape of a problem solution (in conjunction with observing

written work 'nterviewer notes, and/or a verbatihi transcript)

and produce a string of symbols which represented the composite

perception of the solution process. Conversely, an examination

of the given string of symbols could be used to proviGe a reason-

ably clear picture of what had happened during a problem-solving

episode.

That particular coding scheme included a two-page "dictionary" of pro-

cesses which were assigned coding symbols. All behavior was "required to be

explicit; otherwise it is not coded." (p. 359) As an example of the coding,

the sequence (p. 361)

The problem solver reads the problem, hesitates, rereads part

of the problem, says the problem resembles another problem

and he will try to use the same method, then deduces correctly
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a piece of information from one of the given data

was coded as (R,R,L,P.D
i ap

In part because of the cumbersome nature of such systems and the wealth of

symbols that must be dealt with,once coded, other researchers have opted to

focus on more restricted subsets of behaviors. Kulm's recent NC%supoorted

work, dAnalisis and Synthesis of Mathematical Problem Solving Processes," uses a

revised and more condensed process code dictionary (private communication, 1979).

Kanto ski's recent work (Note 3) includes a "coding scneme for heuristic pro-

cesses of interest" which focuses on five heuristic processes related to planning,

four related to memory for similar problems, and seven related to looking back.

The frequency of such processes is related to problem-solving performance.

So far as : know, there are no systems for protocol analysis that focus

in any supstantive way on strategic decisions. There are no frameworks for

dealing with things which ought to have been considered, but were not. For the

most part, discussions in the literature of executive decision making during

prot'em solving are weak. Polya, for example (1965, p. 96) offers 'Rules of

Prefer:nce" for choosing among options in a problem - solving task. these

injunctions such as "the less difficult p'ecedes the more difficult" and "For-

merly solved problems having the same Hnd of unknown as tne present problem

precede otner formerly solved problems.' My own attempts (Schoenfeld, 1979;

198Q) at capturing a managerial strategy in flow chart form for students' im-

plementation were somewhat impoverished, the flow chart in effect presenting a

default strategy. All other factors being eaual--meaning that the broolem

solver had exhausted the lines of attack whicn had appeared frui4.ful (his

productions?") and had no strong leads to follow up--it was considered reason-

able to try the heuristic suggestions in this "managerial strategy,'' roughly in
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the manner suggested by the flow chart. This bypassed the tough questions,

however. Issues like: how does one decide what to pursue; for how long;

how does one evaluate progress towards a solution; when should the "manager"

interfere, etc.,whiie discussed in class, were not formally a par, of the

strategy. Moreover, there was no systematic and rigorous framework for ex-

amining these questions.

As a result of (1) the narrowness of the problem domains in which

artificial intelligence has successfully operated, and (2) the tac,

utility of production systems in those domains, the Al community has given

even less attention to executive strategies than has the math-ed community

The questions are not new: the "considerations at a position in problem

space" listed by Allen Newell (1966, figure 5) are quite similar to those we

will pose below. But

"Select new operator:

Has it been used before?

Is it desirable: will it lead to progress?

Is it feasible: will it work in the present situation if

applied?"

takes on very different shades of meaning at the strategic rather than the

tactical level. So far as I can tell, (and my knowledge of such is limited)

recent advances An production systems allow for rather clever tactical de-

cision making. There are computationally efficient means of keeping track of

and sorting through productions for relevanq, and there are conflict resolu-

tions systems (McDermott & Forgy, 1978) for selecting among productions wnen

the conditions for more than one of them have been satisfied. Such structures

C,
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prohibit productions from executing more than once on the same data. This

prevents the kind of endless reptitions all too common in students and

forces, if necessary, the examination of all available information. Since

preference is given to productions whose conditions are satisfied by elements

most recently placed in working memory, there is a "natural" continuity to

the sequence of operations. Other means of selection (e.g., specificity Pre-

cedes generality) provide plausible means of selecting tactics in relatively

narrow domains. Yet I am not sure that the level of analysis is right for

general problem solving, or that such strategies would have much to say about

the strategic decisions in the examples given in the next section. Similar

comments apply to the "adaptive" or "self-modifying" production systems de-

scribed by Anzai and Simon (1979), Neves (1978), and Neches (1979). While the

learning principles they exemplify may be general, the embodiments of those

principles in those papers are at the tactical level. Simon (1980) argues

that "effective professional edication calls for attention to both subject

matter knowledge and general skills (p. 86)" and then goes on to say (p. 91)

that "general skills (e.g., means-ends analysis) will be particularly important

in the learning stages but will also show uo implicitly in the form of the pro-

ductions that are used in the skilled performance." But even this is one step

removed from the heart of the matter: what underlies the form of the productions

is in the mind of the programmer, not in the productions. We need a methodology

for focusing on those general skills directly.
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An Informal Analysis of Two Protocols

The AI literature is filled with beautiful protocols. I have never

been that lucky: those generated by my students (and to some extent by my

colleagues) in the process of grappling with relatively unfamiliar problems

have been, on the wnole, rather unaesthetic. This section considers two such

protocols, each generated by a pair of students. (Following a suggestion from

John Seely Brown, I have students work on problems in pairs. While the ques-

tion "why did you do that?" coming from me may be terribly int.imidating and

is likely to alter the solution path, tne question "why should we do that?"

from a fellow student working on a problem is not. This type of dialogue be-

tween students often serves to make managerial decisions overt, whereas such

decisions are rarely overt in single-student protocols.) An informal analysis,

focusing on the importance of managerial decisions, follows.The formal analytic

structure is given in the next section.

Protocols 1 and 2 are given in Appendices 1 and 2, respectively. The

students were asked to work on the problem together, out loud, as a collaborative

effort. They were not to go out of their way to explain things for the tape,

if that interfered with their problem solving; their interactions, if truly

collaborative, ,.ould provide me with the information I needed. (See Ericsson

and Simon (1978; 1979) for a discussion of instructions for speak-aloud experi-

ments.) All of the students were undergraduates at a liberal arts college.

Students A and K (protocol 1) had 3 and 1 semesters of college mathematics

(calculus) respectively. Students 0 and B (protocol 2) each had 3 semesters

of college mathematics-. It should be recalled that such students, by most

standards, are successful problem solvers: the unsuccessful ones had long

since stooped taking mathematics courses. Both protocols are of the same

()
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Problem:

Three points are chosen in the circumference of a circle of

radius R, and the triangle containing them is drawn. What

choice of points results in the triangle with the largest

possible area? Justify your answer as best you can.

If protocol 1 makes for confused reading, the tape it was taken from

makes for even more pained viewing. I would summarize the problem-solving ses-

sion as follbws:

The students read and understood the problem, and then quickly con-

jectured that the answer was the equilateral triangle. They impetuously de-

cided to calculate the area of the triangle, and spent the next 20 minutes

doing so. These calculations of the area were occasionally punctuated by

suggestions which might have salvaged the solution, but in each case the

suggestions were sickly dropped and the students returned to their relentless

pursuit of tne wo thless calculation. (Neither student could tell me, after

the cassette ran out of tape, what good it would do them to know the area of

the equilateral triangle.) Observe the following.

1. The single most important event in the twenty-minute problem-solving ses-

sion, upon which the success or failure of the entire endeavor rested,

was one which did not take place--the students did not assess the pc

tential utility of their planned actions, calculating the area of the

equilateral triangle. In consequence, the entire session was spent on

a wild goose chase.

2. Inadequate consideration was given to the utility of'potential alternatives

which arose (and then submerged) during ..he problem - sclving process. Any

of these: the relatea problem of maximizing a rectangle in a circle (item

"I
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28), the potential application of the calculus (item 52) for what can in-

deed be considered a max-min problem; the qualitative varying of triangle

shape (item 581might have, if pursued, led to progress. Instead, the

alternatives simply faded out of the picture. (See, for example items 27

to 31.1

3. Progress is never monitored or (re)assessed, so that there is no reliable

means of terminating wild goose chases once they ha've begun. (This is to

be strongly contrasted with an expert protocol, where the problem solver in-

terrupted the implementation of an outlined solution with "this is too com-

plicated. I know the problem shouldn't be this hard. ").

Now, how doeS one code such a'protocol? First, we should observe that

matters of detail (such as whether or not the students will accurately re-

member the formula for\.the area of an equilateral triangle, items 73 o 75)

are virtually irrelevant. To return to the military analogy in the opening

section: if it was a major strategic mistake to open a second front in a war,

the details of how a hill was taken in a minor skirmish on that front are of

marginal. interest.

A second and more crucial point is that theovert actions taken by the

problem solvers in that protocol are, in a sense, of minor import. The prob-

lem-solving effort was a failure because of the absence of assessments and

strategic decisions. Any framework that will make sense of that protocol must

go beyond simply recording what did happen; it should suggest whenstrategic

decisions ought to have been made, and allow one to interpret success or fail-

ure in the light of whether, and how well, such decisions were made.

a
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If protocol 1 stands as eviaence of the damage that can be caused by

a manager "in absentia," protocol 2 provides evidence of the catastrophic

effects of bad management. The processes in this tape were not muddled, as

in protocol 1; the decisions were overt and clear. The next paragraph sum-

marizes the essential occurrences in the tape. The superscripts refer to

the commentary that follows.

0 and B quickly conjecture that the solution is the equilateral

triangle, and look for ways to show it. D, apparently wishing to exploit

symmetry in some way, suggests that they examine triangles in a semicircle

with one side as diameter. They find the optimum under these constraints,

and reject it "by eye" as inferior to the equilateral.
1

Still focusing on

symmetry, they decide
2

to maximize the area of a right triangle in a semi-

circle, where the right angle lies on the diameter. This (serendipitously

correct) decision reduces the original problem to a 1-variable calculus prob-

lem
3
which B proceeds to work on. Twelve minutes later the attempt is aban-

doned,
4

and the solution process degenerates into an aimless series of explora-

tions,, most of which serve to rehash the previous work.
5

1. Rejecting the alternative is quite reasonable, as are. their actions

in analyzing the problem up to this point. However, this blanket

rejection may have cost them a great deal. The variational argument

they used to find the isosceles right triangle (holding the base

fixed and observing that the area is largest when the triangle is

isosceles) is perfectly general and can be used to solve the original

problem as stated. But the students simply turn away from their un-

successful attempt, without asking if they could learn from it. In

doing so, they may have "thrown out the baby with the bath water."
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2. This decision which affects the direction of tde solution for more than

60% of the allotted time,is made in a remarkably casual way (items 24 to

27):

0: (after one attempt at symmetry has failed) ...you want to

make it perfectly symmetrical, but we can, if we maximize

this area, just flip it over, if we assume that it is going

to be symmetrical.

B: Yea, it is symmetrical.

This assumption is not at all justified (they are assuming part of what

they are to prove). The students have changed the problem and proceed,

without apparent concern,.to work on the altered version.

3. B's tactical work here is quite decent, as is much of both students' tactical

work throughout the solution process. The decision to "scale down" the prob..'

lem to the unit circle (item 37) is just one example of their proficiency.

There is awareness of, and access to, a variety of heuristics and algorithmic

techniques during the solution. Unfortunately, B lost a minus sign during

this particular ca.culation, which gave him a physically impossible answer.

He was aware of it; local assessment worked well. However, global assess-

ment (see 4 and 5) did not.

4. This decision to abandon the analytic approach is just as astonishing, in

the way it takes place (items 74 and 75) as the decision to undertake it:

0: Well, let's leave the numbers for a while and see

if we can do it geometrically.

B: Yea, you're probably right.

Given that more than 60% of the solution has been devoted to that approach

(and that correcting a minor mistake would salvage the entire operation),

o
*
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tits casual dismissal of their .previous efforts has rather serious

consequences.

5. There were a number of clever ideas in the earlier attempts made by

D and B. Had there been an attempt at a careful review of those at-

tempts, something might have been salvaged. Instead, there was simply

a "once over lightly" of the previous work that-added nothing to what

they had already done.

A framework for focusing on the managerial decisions in such prqtocols is dis-

cussed in the next section.
e,
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A (poorly defined and still evolving) Framework for the Macroscopic Analysis

of Certain Kinds of Problem-Solvin Protocols

Thetwo protocols discussed in the preceding section raise the major

questions I wish to address here. I believe that decisions. at the managerial

level may "make or break" a problem-solving attempt, and that (at least in the

case of poor managerial decisions)- these may render irrelevant any subsequent

tactical (i.e., implementation) decisions. Thus we focus on behavior at the

maci-oscopicievel.

Protocol 1, which is rather typical of students' problem solving, il-

lustrates one of the major difficulties in dealing with managerial decisions:

the absence of intelligent management-may doom'Oroblem-solving attempts to

failure. Yet all extant schemes focus on what is overtly present, ignoring

the crucial decisions thit might (and should!) have taken,place. Protocol 2

is, in a sense, easier to deal with. The decisions were Overt, though' Poor.

This protocol serves to indicate that decision making means more than simply

choosing solution paths: it incorporates local and global assessments of pro-

gress, as well as trying to salvage the valuable elements of ultimately flawed

approaches. This section offers a scheme for parsing protocols that tries to

address these issues.

There aq both objective and subjective components to the framework

for analyzing protocols. The objective part consists of identifying, in the

protocol, the loci of potential managerial decisions. The subjeCtive part

consists of characterizing the nature of the decision-making procesS at

the "managerial decision points" and describing the impact of those de-

cisions ,(or their absence!) on the overall problem-solving process.

!JJ
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By definition, managerial or strategic action is appropriate whenever

a large adiount of tactical resources are about to be expended. This provides

the basic idea for parsing the protocols. Partition a protocol into macro-

scopic chunks of consistent behavior k"episodes"),. Then the points between

episodes--where the direction or nature of the problem solution changes sig-

nificantly--are the managerial decision points where, at minimum, managerial

action ought to have been considered:

In addition to these junctures between episodes,' there are two other

loci for managerial action;" at the arrival of new information or the sugges-

tion oP new tactics, and at the point where a series of tactical failures in-

dicates that strategic review might be appropriate. The loci that deal with new

information are We,1/1 defined. and pose little difficulty in identification. Observe/
that this kind of decision point can occur in the middle of an episode: new

information may be ignored or dismissed (at least temporarily), and the prob-

lem solver may continue working along previously established lines. The lat-

ter kind is more difficult, and calls for subjective judgment; I have no easy

way of dealing with these at 'present. At some point when implementation bogs

down, or when.the problem-solving process degenerates intd more 'or less un-

structured explorations, it is time for -an ''executive review." It is clear

from the protocols I have taken that experts have "monitors" that call for

such review, and that novices often lack them. We will return to this point

later, in the subjective analysis.

. Figures 1 and 2 represent a parsing of protocols 1 and 2, respectively,

into episodes. "New information" points within episodes are indicated.

Insert Figures 1 and 2 about here
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Episodes and Executive Decisions

Items 5,6

E2: Exploration

Items 7-88

(20 minutes)

Now Information: Item 28

New Information: Item 51

New Information: Item 68

Figure 1

A Parsing of Protocol 1

*Note: From the written protocol it
might appear that Item 68 begins a
new episode. In fact, the students had
lost virtually all their energy by
that point, and were merely doodling;
they returned (after the tape clicked
off) to musings about the equilateral
triangle. Thus items 6-88 are consid
ered to be one episode.

10:
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1
: Reading

Item 1

(80 seconds

E
2
: Analysis

Items 2-32

(4 minutes)

T-2

E
3
: Planning

Items 32-37

(1 minute)

E4 Implementation

Items 37-73

(12 minutes)

: Items 74,75

ES Exploration

Items 76-92

(4 minutes)

Figure 2

A Parsing of Protocol 2

102
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Detailed analyses of Figures 1 and 2 will not be given, since protocols

1 and 2 have been discussed at some length. (Observe, however, now Figures 1

and 2 reflect the issues singled out for discussion above.) A third protocol

will be analyzed in detail.

Both parsing into episodes and delineating "new information" points,

turn out to be (more or less) objective decisions. In fact, the parsing of

all three protocols that I use in'this paper was derived, in consensus, by

three undergraduates who followed my instructions but arrived at their char -

acterizatior.s of the protocols in my absence. Reliability in parsing proto-

cols is quite high. (This does not, however, obviate the need for an appro-

priate formalism: see the final commentary.)

Subjectivity lurks around the corner, however. it is, in fact, already

present in the labelingof the eoisodes given in Figures 1 and 2. This label-

*
ing was essential: see the !tote below. Any episode is characterized as one

*
The potential for "comoinatorial explosion" in characterizing managerial

behaviors is enormous. Managerial behaviors include selecting perspectives and

frameworks for a problem; deciding at branch points which direction a solution

should take; deciding whether, in the light of new information, a path already

embarked upon should oe abandoned; deciding what (if anything) should be salvaged

from attempts that are abandoned or paths that are not taken; mon;toring tactical

implementation against a template of expectations for signs that intervention

might be appropriate; and much, much more. My early attempts at analyses of

mahagerial behavior called for examining protocols at all managerial decision

,points and evaluating at each one a series of questions encompassing the issues

just mentioned. This approach, while comprehensive, was completely unwieldy.

For example, questions about the assessment of state when (a) one has just read

the problem, (b) one is "stuck," and (c) a solution has been obtained, are almost

mutually exclusive. Thus at any decision point 90% of the questions that might

be ask2d were irrelevant. The framework described above provides a workable com-

promise.

103
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of the following: Reading,. Analysis, Planning; Implementation (or Planning/

Implementation if the two are linked), Exploration, Verification, or Transi-

tion. What follows is the heart of the analytic framework. There is a brief

description of the nature of each type of episode, followed by a series of

questions to be asked about each episode once it has been labeled. The pars-

ing, plus the answers to the questions, provide the characterization oT the

protocol.

Admittedly, these questions are a mixed bag. Some can be answered

objectively at the point in the protocol at which they are asked, some in the

light of later evidence; some call for inferences or judgments about problem-

solving behavior. Further, some ask about the "reasonableness" of certain be-

havior. Asking questions in this way, of course, begs the significant ques-

tion: what is amodel of "reasonable" behavior? The creation of such models

is the crucial long-term question, and there is no attempt to finesse it here.

At present, however, we will deal with the notion subjectively, to better under-

stand managerial behaviors so that we can create those models. Though highly

subjective, these assessments can be made reliably: agreement between my rat-

ings and the consensus scorings of my students was quite high. To quote Mr.

Justice Stewart (1964), "I shall not today attempt to further define the kind

of materials I understand to be embraced within that shorthand definition;...

But I know it when I see it."

Episodes and the Associated Questions

1. READING.

The reading episode begins when a subject starts to read the problem

statement aloud. It includes the ingestion of the problem conditions, and

1 4
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continues through any silence that may follow the reading -- silence that may

indicate contemplation of the problem statement, the (non - vocal) rereading

of the problem, or blank thoughts. It continues as well through vocal re-

readings and verbalizations of parts of the problem statement (observe that

in protocol 1, reading iicluded items 1-4).

READING Questions:

a. Have all of the conditions of the problem been noted? (Explicitly

or implicitly?)

b. Has the goal state been correctly noted? (Again, explicitly or

implicitly?)

c. Is there an assessment of the current state of the problem solver's

knowledge relative to the problem-solving task (see TRANSITION)?

2. ANALYSIS.

If there is no apparent way to proceed after the problem has been read

(i.e., a solution is not "schema driven"), the next (ideal) phase of a problem

solution is analysis. In analysis, an attempt is made to fully understand a

problem, to select an appropriate perspective and to reformulate the problem

in those terms, and to introduce for consideration whatever principles or

mechanisms might be appropriate. The problem may be simplified or reformulated.

(Often analysis leads directly into plan development, in which case it serves as

a transition. Of course, this episode may be bypassed completely.)

ANALYSIS questions:

a. What choice of perspective is made? Is the choice made explicitly,

or by default?

b. Are the actions driven by the conditions of the problem? (working

foraards)
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c. Are the actions driven by the goals of the problem? (working

backwards)

d. Is a relationship between conditions and goals sought?

e. Is the episode, as a whole, coherent? In sum (considering a-d),

are the actions reasonable? (comments?)

3. EXPLORATION.

Both its structure and content serve to distinguish exploration from

analysis. Analysis is generally well structured, sticking rather closely to

the conditions or goals of the problem. 'Exploration, on the other hand, is

less well structured and further removed from the original problem. It is a

broad tour through the problem space, a search for relevant information that

CO be incorporated into the analysis/plan/implementation sequence. (One may

well, return to analysis with new information gleaned during exploration.)

In the exploration phase of problem solving one may find a variety of

problem-solving heuristics, the examination of related problems, the use of

analogies, etc. Though amorph &usly structured, exploration is not, ideally,

without,structure: there is a loose metric on the problem space, the perceived

4

distance of objects under consideration from the original problem, that should

serve to select items for consideration. Precisely because exploration is

weakly structured, both'local and global assessments are critical here (v.,

transition as well). A wild goose chase, unchecked, can lead to disaster;

but so can the dismissal of a promising alternative.

If new information arises during exploration but is not used, or the -

.examination of it is tentative, "fading in and fading out," the coding scheme

calls for,delineating "new information" within the episode. If, however, the

1 ri 1.6
11
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problem solver decides to abandon one approach and start another,, the coding

scheme calls for closing the first episode, denoting (and examintng) the

transition, and opening another exploration episode.

EXPLORATION questions:

a. Is the episode condition driven? Goal driven?

b. Is the action directed or focused? Is it purposeful?

c. Is there any monitoring of progress? What are the consequences

for the solution of the presence or absence of such monitoring?

d. At NEW INFORMATION points (including the introduction of heuristics)

and LOCAL ASSESSMENT points:

Does the problem solver assess the current state of his

knowledge? (Was it appropriate??)

2. Does the problem solver assess the relevancy or utility

of the new information? (Was it appropriate?)

3. What are the consequences for the solution of the actions

(or inactions) described in 1 and 2 above?

4. PLANNING/IMPLEMENTATION.

Since the emphasis here is on managerial questions, detailed issues

regarding plan formation will not be addressed: the primary questions of

concern here deal with whether or not the plan is well-structured, whether

the implementation of the plan is orderly, and whether there is monitoring or

assessment of the process on the part of the problem solver(s), with feedback

to planning and assessment at local and/or global levels. Many of these judg-

ments are subjective. For example, the absence of any overt planning-behavior

does not necessarily indicate the absence of a plan; in fact, protocols of

-
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"schema-driven" solutions often proceed directly from the readin5 episode

into the coherent and well structured implementation of ,a non-verbalized

plan. Thus the latitude of the questions below: the scheme should apply

to a range of circumstances, from schema-driven solutions to those where

the subject happen% upon an appropriate plan by design or accident.'

PLANNING/IMPLEMENTATION questions:

a. Is there evidence of planning at all? Is the planning overt

or must the presence of a plan be inferred from the purposefulness of the

subject's behavior?

b. Is the plan relevant to the problem solution? Is it appropriate?

Is it well structured?

c. Does the subject assess the quality of the plan as to relevance,

appropriateness, or structure? (If so, flow do those assessments compare with

the judgments in (b)?)

d. Does implementation follow the plan in a structured way?

e. Is there assessment of implementation (especially if things

go wrong), at the local or global level?

f. What are the consequences for the solution of assessments if

they occur, or if they do not?

5. VERIFICATION.

The nature of the episode itself is obvious.
y.

a. Does the problem solver review the solution?

b. Is the solution tested in any way? (If so, how?)

c. Is there any assessment of the solution, either an evaluation

of the process or assessment of confidence in the result?

es
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6. TRANSITION.

The juncture between episodes is, in most cases, where managerial

decisicrns (or their absence) will make or break a solution. Observe, how-

.ever, that the presence or absence of assessment or other overt managerial

behavior cannot necessarily be taken as either good or bad for a solution.

In an expert's solution of a routine problem, for example, the only actions

one sees may be reading and implementation. This explains, in part, the

contorted and subjective nature of what follows.

TRANSITION questions:

a. Is there an assessment of the current solution state, and

any attempt to salvage or store things that might be valuable in it?

b. What are the local and global effects on the solution pf the

presence or absence of assessment in part a? Was the action there appropri-

ate or necessary?

c. Is there an assessment of the short and/or long term effects

on the solution of the new direction, or does the subject 'simply "jump into"

the new approach?

d. What are the local and globe' effects on the solution of the

presence or absence of assessment in part c? Was the action there'appropri-

ate or necessary?

.10
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The Full Analysis of a Protocol

Appepdix 3 presents the full protocol of two students working on the

following problem:

Consider the set of all triangles whose perimeter is a fixed

number, P. Of these, which has the largest area? Justify

your answer as best you can.

Student K is the same student that appeared in protocol 1. Student

(not the same as student 0 in protocol 2) was a freshmen with one semester

of calculus behind him. This protocol was taken at the end of my problem-

solving course, while protocols 1 and 2 were taken at thebeginning.

The parsing of protocol 3 is given in Figure 3. The analysis given

below follows that parsing.

Insert Figure 3 about here

Episode 1 (Reading,tems 1, 2)

a. The Oonditi.ns were noted, explicitly.

b. The goal state was noted, but somewhat carelessly (items 10, 11)

Transition 1 (Null)

c. There were no assessments, simply a jump into exploration.

a, b, ; d. There were no serious assessments of either current

knowledge or o directions to come. These might have been costly, but were

not--assessmen did come in E2.

Episode 2 (Explo tion, items 3-17)

a. The EX .orations seemed vaguely goal-driven.

b. The actidns seemed unfocused.
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Reading

items 1,2

(15 seconds)
. ,

.....

..

. Exploration

Items 3-17

(2i minutes)

Local-Assessment: item 14

: Items 17-19 (30 si

: Plan

Item 20

(30 seconds)

T3

C
4'

Implementation

Items 21-72

(8+ minutes)

Local Assessment: Items 31-33

Local Assessment,
New Information: Item 40

Local Assessment: Item 72

T4: Items 72-81 (1i mi

il: Plan Implementation

Items 82-100 -I

(2 minutes) I
: Items 100-1E5 (15 :

.

E5: Verification

Items 105-143

4 minutes

Figurs 3

A Parsing of Protocol 3

conds)

nutes)

econds)
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c, d. There was monitoring, at items 14-17. This grounded

the explorations, and led into Transition 2.

Transition 2 (Items 17719)

a, b, c, d. Assessments were made both of what the students knew,

and of the utility of the conjecture they made. The result was the establish-

ment of a major direction: try to prove that the equilateral triangle has the

desired property, and of a plan (episode 3). NOTE: If this seems inconsequen-

tial, contrast this behavior with the transition T
1

in protocol 1. The lack of

assessment there, in virtually identical circumstances, sent the students on a

20 minute wild goose chase:

Episode 3 (Plan, item 201

a. The plan is overt.

b. It is relevant and well structured. As to appropriateness and

assessment, see the discussion of T3.

Transition 3 (Null)

a, b. There was little of value preceding the plan in item 20; the

questions are moot.

c. There was no assessment of the plan; there was immediate imple-

mentation.

d. The plan was relevant but only dealt with half of the problem:

showing the largest isosceles was the equilateral. The "other half" is to

show that the largest triangle must be isosceles, without which this part of

the solution is worthless. . .a point realized somewhat in item 72, 8 minutes

later. The result was a good deal of wasted effort. The entire solution was

not sabotaged, however, because monitoring and feedback mechanisms caused the

termination of the implementation episode (see the sequel).

112
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Episode 4 (Implementation, items 21-72)

a. Implementation followed the lines set out in episode 3,

albeit in somewhat careless form. The conditions were somewhat muddled

as the first.d'ifferentiation was set up. The'next two local assessments

corrected for that (better late than never).

Local Assessment (Items 31-33)

1, 2, 3. The physically unrealistic answer caused a closer look at

the conditions - -but not yet a global reassessment (possibly not called for yet).

Local Assessment, New Information (IteM 40)

1, 2, 3. The "new informatiOn" here was the realization that one of

the problem conditions had been omitted I:rom their implementation ("we don't

set any conditions--we're leaving P out of that"). This sent them back to the

original plan, without global assessment. The cost: squandered energy until

item 72.

Local/Global Assessment (Item 72)

This closes E4. See T4.

Transition 4 (Items 72-81)

a, b. The previous episode was abandoned, reasonably. The goal

of that episode, "show it's the equilateral," remained. This, too, was

reasonable.

c, d. They ease into Episode 5 in item 82. (It's difficult to say

how reasonable this is. Had they chosen something that didn't work, it

might have been considered meandering. But what they chose did work.)

Episode 5 (Plan/Implementation, items 82-100)

a, b. "Set our base equal to something" is an obviously relevant

heuristic.
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c. They plunge ahead as usual.

d. The variational argument evolved in a semmingly natural way.

e. There was local assessment (item 95). That led to a rehearsal

of the suk-argument (item 96), from which D apparently "saw" the rest of the

solution. Further (item 100), D assesses, the quality of the solution and his

confidence in the result.

Transition 5 (Items 100-105)

a, b, c, d. The sequel'is most likely the result of a two-person

dialectic. It appears that 0 was content with his solution (perhaps'pre-

maturely), although his clarity in explaining his argument in E
6

suggests

he may have been justified.

Episode 6 (Verification, items 105-143)

This js not a verification episode in the usual sense. K's unwilling-

ness to rest until he understands forced 0 into a full rehearsal of the argu-

ment and a detailed explanation, the result being that they are both content

with the (correct) solution.

I 1 4
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Some Empirical Results

Protocols 1 and 2 are relatively typical of the dozen protocols taken

from pairs of students ',six pairs, two problems fcr each pair) before a month-

long intensive problem-solving course that focused on both tactics (heuristics)

and strategies. The first problem was the one discussed in protocols 1 and 2,to

find the largest triangle that can be inscribed in a circle. The second problem

was a geometric construction:

You are given two intersecting straight lines, and a

point marked on one of them, as on the figure below.

Show how to construct, using a straightedge and compass,

a circle which is tangent to both lines and has the point

P as its point of tangency to one of the lines.

Brief "snapshots" of a few representative pretest protocols are given

below. These are too condensed to be useful for model building, but serve to

demonstrate again the critical importance of managerial or strategic decision

making. They also stand in (partial) contrast to the students' posttest be-

havior and (stark) contrast to some expert behavior. The diagrams that re-

present our episode analyses are here condensed into a sequential list of

episode titles, with transitions deleted if there were none. Thus Figure 1

is rendered as (Reading /T1 /Exploration), etc.
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E.T. & D.R., Problem 1. (Reading/T,/Exploration)

After a brief mention of "max-min" p,..oblems. and a brief caveat ("But

will it apply for all cases? I don't know if we ca.'. cht-K it afterwards") in

transition, they set off to calculate the area of the equ lateral triangle. So

much for the next fifteen minutes; in spite of some local assessluents ("this

isn't getting us anywhere") they continuedthose ex0orations. Result: all

wasted effort.

E.T. & D.R., Problem (Reading/Exploration)

In the initial explorations a series of sketches contains all the

vital information they need to solve the problem, but they (without any at-

tempt at review or assessment) overlook it. The solution attempt is undirected

and rambling. Possibly' because they feel the need to do something, they try

their hand at an actual construction--already shown to be incorrect by their

sketdhes--and are si:ymied when it doesn't work. Overall: lost opportunities,

unfocused work, wasted effort.

Note: E.T. and D.R. are both bright; both had just completed the first

semester calculus course with A's.

D.K. & B.M., Problem 2 (Read/Analyze/Ti/Explore/Analyze(Solve)/Verify)

Analysis is extended and coherent, .mt followed by,a poor transition in-

toan inappropriate construction that deflects the students off track for three

and a half minutes. When this doesn't work they return to analysis and solve

the problem. A detailed verification seals things up. Managerial decisions

worked reasonably well here.

B.W. & S.H., Problem 2 ( Reading /Exploration /T1 /Exploration)

A series of intuition-based conjectures led to a series of attempted

111,1
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constructions, the last of which happened to be correct--though neither student

had any idea why, and they were content that it "looked right." This was a

classic trial-and-error tape, and only because the trial'space was small was

there a chance that the right solution would be hit upon. There was one weak

assessment (after a construction) that constituted T
l '

but the result was simply

a continuation of trial-and-error search.

Impetuous jumps into a particular direction were pretty much the norm

in the pretests, and these first approaches were rarely curtailed. (This be-

havior was so frequent that it earnedthe name "proof by assumptioncoined by

my assistants.) *Si/ice there was little assessment and curtailment, little was'

ever salvaged from an incorrect first atteMpt, and a solution was often doomed

to failure in the first few minutes of exploration.

---

solvfng course. It is a representative, perhaps slightly better than average,
-

sample of post-instruction performance. What makes this tape "better" than pre-

,

test tapes is not that the students solved the problem, for their discovery of

the variational argumentthat solves it may have been serendipitous. However,

that they had the time to consider the approach was no accident: they had

evaluated and curtailed other possible approaches as they worked on the problem.

In general there was more evaluation and curtailment on the posttests than on

the pretests, and less pursuit of "wild goose chases." In some cases this

allowed for a solution, in some not; but at least their actions did not preclude

the possibility.. The following statistic Summarizes the difference:

Seven of the twelve pretest protocols'were of the type

(Reading/Exploration);

Protocol 3, which has been discussed above, was taken after the problem-
-

11;
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Only two of the twelve posttest protocols were of that type.

Not at all coincidentally, their performance improved on a variety of other

measures as well (Schoenfeld; Note 7). However, the overall quality of the

students' managerial monitoring, assessing, and decision making on the post-

tests was still quite poor. Tc indicate the contrast in managerial behaviors

between experts and novices, we turn to the protocol of an expert working on

a geometry problem. the expert, a number theorist, had a broad mathematical

background but had not dealt with geometric problems for a number of years.

It shows. By some standards, his solution is clumsy and inelegant. (In a

department meeting it was held up for ridicule by the colleague who produced

Protocol 5.) Precisely because the expert does run into problems, however, we

have the opportunity to see the impact of his metacognitive, managerial skills.

The episode analysis of Protocol 4 is given in Figure 4. For (obvious)

reasons of space, the full analysis will be condensed.

Insert Figure 4 about here

The critical point to observe in this protocol is that a monitor/assessor/

manager is always close at hand during the solution. Rarely does more than a

minute pass without some clear indication that the entire solution process is

being watched and controlled, both at the local and global levels. The initial

actions are an attempt to fully understand the given problem. By item 3 there

is the awareness that some other information, or observatiOn, will be necessary

in order for a soiution to be obtained. The actions in items 4 and 5 are goal-

driven and, in item 6, yield the necessary information. This is utilized im-

mediately in items 7-8. There is a (meta) comment that the first part of the

1 Is
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First Part

E : Reading
1

Item 1

(1 minute)

1--T
1

(Item 2)

E2: Analysis

Items 3-a
(2 ainutes)

Local Assessment: Item 3

Local Assessment: Items 7.8

: Plaoning/Implementation

Items 9-19
(4 minutes)

Local Assessment: Items 15,16

Local Assessment: Item 18
-....

4
: Verification

Items 20,21

(30 seconds)

(Item 22)
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E_o : Analysis

Items 22-39

(4 minutes)

Metacomments: Items 24,25

(Meta)Assessment: Item 33

Local Ahoessment: Item 39

(Item 39)

: Analysis

Items 40-48

(3 minutes)

Local Assessment: Item 43

Local Assessment: Item 48

(Item 49)

: Exploration

Items 49-53

(3 minutes)

Metacomments: Items 49,50

7
(Item 54)

: Analysis/Implementation

Item 55

(35 seconds)

: Verification

Item 56
(1 minute)

Figure 4

A Parsing of Protocol 4
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problem will be solved with one construction, which can be made. The plan is

made in item 9. Implementation is interrupted twice with refinements (items 15

& 16; item 18) that again indicate that the subject is on guard forclarifiCations

and simplifications at almost all times. The first part of the prOblem concludes

with a quick but adequate rehearsal of the argument.

Like part 1, the second part of the solution begins, with a-qualitative

analysis of the problem. In item 24, there is . comment that "this is going to

be interesting" (i.e., difficult). Such a preliminary assessment of difficulty

is, I believe, an indication of an important element of experts' metacognitive

behavirr. Experts seem to judge their work against a "template of expectations"

when solving a problem. These expectations may be major factors in the experts'

decisions to pursue or curtail various lines of exploration during the problem-

solving process.

The solution of the second part continues, well structured, with a co-

herent attempt to narrow down the number of cases that must be considered. This

is an implementation of "that kind of induction thought" from item 29. It ap-

pears to be a "forward" or "positive" derivation, verifying that all of the

cases can be done. Yet the phrase "no contradiction" in item 33 reveals that

the problem solver retains an open mind about whether the constructions could

actually be implemented, and is still probing for trouble spots. The potential

for a reversal, using argument by contradiction if he should come to believe one

of the constructions impossible, is very close to the surface. This distanced

overview, and the maintenance of a somewhat i -ipartial perspective, are confirmed

in item 49.

Assessment is, likewise, always in the immediate vicinity. The comment

"if sc this can be done in one shot," in item 40 indicates not only that solutions

.1Z°

1
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are planned ahead, but that the plans are assessed. Even the rather unusual

excursion into quadratic extensions (item 53) is preceded by a comment about

"knocking this off with a sledgehammer," and quickly curtailed.

In sum: this rather clumsy solution (see Protocol 5 in contrast), with

its apparent meandering through the solution space, is in reality rather closely

.controlled. There is constant monitoring of the solution process, both at the

tactical and strategic levels. Plans and their implementation are continually

assessed, and acted upon in accordance with the assessments. Tactical, subject-

matter knowledge plays a minor role here: metacognitive, "managerial" skills

provide the.key to success. 0

Discussion

This paper raises many more questions than it c.anSwer. It was in-

tended to. The extended discussions of protocols were designed to make one

point absolutely clear: "metacognitive" or "managerial" skills are of para-

mount importance in human problem solving. As Brown observed (1978, p. 82), these

types of decisions "are perhaps the crux of intelligent problem solving because

the use of an appropriate piece,of knowledge...at the right time and in the right

place is the essence of intelligence." The inverse of this proposition should

be given comparable stress: avoiding inappropriate strategies or tactics, at

the wrong time or in the wrong place, is an equally strong component of intelli-

gent problem solving.

To deal coherently with such executive decision making, one needs a

framework for examining, modeling, and judging it. This kind of framework must,

perforce, be substantially different from extant schemes like those used in math-

ematics education (Lucas, et al., 1979; Kantowski, Note 3), that focus on overt

behaviors at a detailed level. As we saw in Protocol 1, the absence of an
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assessment may doom an entire solution to failure. Schemes that only seek overt

behaviori cannot hope to adequately explain that protocol.

This kind of framework must also differ substantially from those used in

Artificial Intelligence to simulate expert behavior in areas such as physics.

Larkin, et al., (1980) characterize such work as depending on production systems

to simulate the pattern recognition that "guide[s] the expert in a fraction of a

second to relevant parts of the knowledge store...[and] guide[s] a problem's in-

terpretation and solution(p. 1336)." While aspects of Protocol 4 such as the

recognition of similar triangles (item 61 are compatible with this perspective,

the whble of\Protocol 4 stands in sharp opposition to it. At least half of the

action in that protocol is-metacognitive; it almost seems as if,"manager" and

"implementer" work in partnership to solve the problem. And it is precisely

when the expert's problem-solving schemata (or "productions") do not work well

that the managerial skills serve to constitute expertise.

The framework presented in this paper provides a mechanism for focusing

directly on certain kinds of managerial decisions. Since a manager ought to be

present at-major turning-points-in &problem solution-(if only to watch, in

case action is necessary), the transition Wilts between "episodes" are the

logical place.to look for the presence, or absence:of such decision making.

Here we come to the first serious question: what, precisely, constitutes an

"episode"? While there is reliability among coders in parsing these protocols

at the macroscopic level, that begs the question: we need a rigorous formalism

for characterizing such episodes. Unfortunately, I have not been able to adapt

schemata for story understanding or for episodes in memory (see Bobrow and

Collins, 1975) to deal with these kinds of macroscopic problem-solving episodes.

')r)4.. 4.,
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A formalism needs to be developed.

Questions regarding the characterization and evaluation of the moni-

toring, assessing, and decision making processes during problem solving are

far more thorny. The role of the monitor was quite clear in Protocol 4; it

assured that the solution stayed "on track." But how are these decisions

made? It is clear from a variety of expert protocols that a prioriexpecta-

tions of problem or subtask difficulty serve as -A basis for the decision'to

intervene. But the nature of the monitoring, the criteria for assessments,

what the tolerances are, and how intervention is triggered all remain to be

elaborated.

Similarly, assessment is not always desirable or appropriate: in a

schema-driven solution, for example, one should simply implement the solution

unless or until something untoward pops up. A simple-minded model that looked

for assessment at each transition point between episodes (and other places)

would miss the point entirely: assessment is only valuable some of the time,

and we need to know when (and how).

In the long run, we need a detailed model of managerial monitoring,

and assessment, and of the criteria used for assessment and decision making.

This model will enable ur. to answer questions like those for the transition

phase, "was the action or inaction appropriate or necessary?" In the meantime,

these questions are not an evasion: they are an attempt to gather data so that

the model can be constructed. A further refinement of these questions, and a

much more detailed characterization of metacognitive acts in general, will be

necessary. I hope that this paper provides a step in that direction.

.1"-0ke
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Appendix 1

Episodes and Executive Decisions

Protocol 1

1. K: (,Reads roblem) Three points are chosen on the circum-
feence of a circle of radius R, and the triangle con-
taining them is drawn. What choice of points results
in the triangle with the largest possible area? Justify

your answer as best as you can.

You can't have an area larger than the circle. So, you

can start by saying that the area is less than 1/2nR4.

2. A: O.k. So we have sort of circle--3 points in front and
R here and we have let's see--points--

3. K: We want the largest one--

4. K: We want the largest one--

5. A: Right, I think the largett triangle should probably be

equilateral. O.k., and the area couldn't be larger than
ITR2

6. K: So we have to divide the circumference of.the three equal .

arcs to get this length here. That's true. Right. So,

60-120 arc degrees--o.k.--so, let's see, say that it equals
R over S--this radius doesn't help.

7. A: Do we have to justify your answer, as best as you can? Jus-

tify why this triangle justify why you o.k. Right.

-8.- K: O.k. Let's somehow take a right triangle and see what

we get. We'll get a right angle.

9. A: Center of circle of right triangle. Let's just see

what a right triangle--is this point in the center?

vep, o.k. Yeah.

10. K: This,must be the radius and we'll figure out that'll

be like that, right?

11. A: So the area of this--

12. K: is R, is R--1/2 base times height, that's S and 2R,

height is R so it is 1/2R2. It's off by a factor of

2.

13. A: O.k. But what we'll need is to .say things like--o.k.
Let's go back to the angle--probably we can do some-

thing with the angle.

_lc)"46...
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14. K: Oh, I got it Here, this is going to be 120--the
angle of 120 up here- -

15. A: Right! Yes, this is 120 and this is 120.

16, K: Right!

17. A: So --

1'8. K: We have to figure out- -

19. A: Why do we choose 120--because it isthe biggest area- -
we just give the between the biggest area--120.

20. K: Ummm. well- -the base and height will be equal at all

times.

21. A: Base and height-- right --

22. K: In other words--every right triangle will be the same.

23. A: Ah, ah--we have to try to use R, too.

24. K: Right.

25. A: O.k. (seems to reread problem)--justify your answer
as best as you can. O.k. (pause)

45

26. A: So--there is the picture again, right? This is--both
sides are equal--at this point--equal arc, equal angles- -
equal sidesthis. must be the center and this is the.
radius R--this is tne radius R--

27. K: So we have divided a triangle with three equal parts i I

and--

28. A: There used to be a problem--I don't know about some-
thing being square--the square being the biggest part
of the area--do you remember anything about it?

29. K: No..I agree with you--the largest area...of something
in a circle, maybe a rectangle, something like that...

30. A: Oh, well...so...

31. K: Since this is R--andthis is going to be 120, wouldn't
these two be R also?

32. A: Right.

33. K: This is 120.
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34. A: Ah, ah.

35. K: Like a similar triangle-120 and 120 are the same angle- -

so these two should be R.

36. A: O.k. Maybe they are.

37. K: Why can't they be?

38. A: Mumbles

39. K: See, look--this is the angle of 120--right?

40. A: Right.

41. K: And this is an angle of 120. Right? This is like

similar triangles

42. A: Wait a second-%.I think ifyou--this is true 120
but I don't think this one is

43. K: It is an equilateral triangle--that!s--

44. A: No--it shoUld be a 60.

45. . K: That's right--it should be a 6Q.

Mumbles that's 1/2 of it - -- that's 'right--

2R.

46. A: What are you trying to read from?

47. K: What if. we could get one of these sides, we could

figure out the whole area.

48. A: Ah,'ah.

49.' K: Right?

50. A: Presume this to be 1/2 that side, we've got 1/2

,base times height. We'll get the area-;-all we

have to-show is the biggest one.

51. K: When eve take the formula nR
2

, minus 1/2 base
times height and then maximize that--then
take the derivative and set it equal to zero.

We can get tha function--then we can get

this in the form of R.

52. A: O.k.

53. K: Then we can try this as the largest area.
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54. A: Do you want to get this function, this as a function

of R?

55. Ka 'Yeah.

56. A: We can, I think. So you want this--right?

57. K: Well, is kind of obvious that with B & H you
are still going to have an R in it. So you can

subtract it.

58. A: You have H in it. Well we have this one here.
Mumbles--- (repeats the problem). Try this to

be 2R.

K: No--it can't be. It has to be between R and 2R.

60. A: Yeah.

61. K: Helps us a lot! Set R equal to 1.

'62.' A: R = 1?

63. K: .Right.

64. A: O.k.

65. K: That's one, that's one, that's one--it'll equal S

over R. me area of the triangle is equal with
R = 1, it's 2.

66. A: Well...height equals...

67. K: That's for the sides of the triangle--that's
obvious -R = 1.

47

68. A: 0.k.--divided into equal parts---(lots of mumbling)--

This from---well--you know--o.k. If you see we

probably try to fix one point and choose the other
two--o.k.--We are going to go from something that
looks like this all the way down---

69. K: Right.

70. A: Right. O.k. and here the height is increasing where'

the base is decreasing.

71. 'K: Right. (Mumbles)

-72. A: When we reach----o.k.

73. r(: What .is the area, side squared over 4 radical 2 for

130
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an equilateral triangle? Is it like that?

74. A: You want the area for an equilateral triangle.

75. K: The area? I don't know. Something like side
squared over radical 2, or something--

. 76. A: If you can probably show...at a'certain point
where we have the equilateral triangle-the ease
and the...well...you know the product of the base
since the base is decreasing and the height is in-
creasing every time we move the line. If you can

show a certain point, this product is the maximum--
so we have the area is a maximum at that point. So

this one is decreasing And at this point we

have-R, R, and A.

77. K: Ah, ah.

78. A: 0.k. This is the base--is 2R--a right angle.

79. K: It wouldn't be 2R
2

.

80. A: Mumbles----One more--I mean--

81. K: .0.k.

82. A: It should be R2: but base times height-- mumbles --

and this one, say this is R + X.

83. K: The height equals R + X, so the base equals
R-X.

84. A: Mumbles--those two things are equal to this--

85. K: Right.

86. A: A11 right.'

87. K: I don't know.

88. A:. 'We .want this product of h as a maximum--as a

.
maximum - -and this one...I don't know.
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Appendix 2

1. 0:

2. B:

3. 0:

4. B:

5. 0:

6. B:

7. D:

Protocol 2

Reads the question.

Do weneed calculus for this? So we can minimize,

or rather maximize it.

My guess would be more like--mumbling--my basic
hunch would be that it would be--

An equilateral- -

60, 60, 60.

Yeah.

So what choice of points has to be
triangle--these points are gonna b

8. B: Try doing it with calculus--see if
draw the circle--see what we'll do
she right triangle--

where on the
e.

you can--just
is figure out

49

9. 0: Yeah,or why don't we find--or why don't we know
the--some way to break this problem doWn into- -
like what would a triangle be for half the circle?

10. B:

11. D:

60 degrees here?

Why don't we, why don't we say that--o.k.--why don't
we find the largest triangle with base--one of the

diameters, o.k.

12. B: Base as one of the diameters?

13. 0: Yeah..

14. B: 0.k. That would be just a family of right triangles- -

that go like this.

15. 0: And they're all the same area?

16. B: No, no they're not all the same area--the biggest
area would be in one like that. See if we could
figure out--make it into sort of like a--if we
could do it with calculus and I know there is a

way. I just don't remember how to do it.

I



17. D:

18. B:

19. 0:

20. B:

21. 0:

22. 8:

23. 0:

24. D:

25. 3:

26. 0:

27. 8:

28. 0:

29. 8:

30. 0:

31. B:

32. 0:
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I have a feeling we wouldn't need the calculu3. So

this area then this is r and this would be--r---that

would be the area of this--so then the distance here

has got to be--45 degrees--

Right--that's got to be 45 degrees because they are

the same. That's A--A over square root of 2--right?

Umma.

If that's radius--A--and this is A, too, so that would

be A2, that would be r2, wouldn't it?

Right.

But I think this would be bigger.

Oh, of course it would be bigger--I was just wondering

if... (Pause)

Well we can't build a diamond--so we can't build a

diamond that would go like that, obviously you want

to make it perfectly symmetrical, but we can, if we

maximize thissarea, and just flip it over, if we can

assume, that it is going to 'be symmetrical.

Yeah.,it is syinmetrical.

And if we can find the best area- -

You mean the best-,cut it in half in a semicircle.

Right. And if we can find the best area of --

Any triangle that fits in a semicircle--well it

wouldn't be a semi-

No it's a semicircle.

Largest' triangle that fits in there?

Yeah.,but it would have to be--if it is going to

be symmetrical though, then you know this line

has to be flat--it is going to have to form a

right angle. So all we really have to do is

form a right angle. So all we really have to

do is find the largest area of a right triangle- -

inscribed in a semicircle.

'3
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33. B: Largest area of a right triangle. Yea, but obviously
it is this one which is wrong.

34. 0: No - -NO --

35. B: One like this.

'36. 0: Yeakwith that angle, right.

37. 8: 0.k.--how we go about doing that? Hey, like we
can--use the unit circle, right?

38. D: Umma.

39. B: So tha,t means--thi2 is (1-x
2
)--this point right

here--will be (1-x ), o.k. this squared-- mumbling--
I'll just put some points down to see if...pick an
arbitrary --

40. D: Yeah,yeah,just to find this point-

41. 8: All right this is 1. Now I've got to find that
point--o.k. What is the area of this- -this is
the distance right here times that distance, right?
Product of those, distances- -area equals from this
distance would be this, would be x value which
would be x-1 or x+1? O.k., it's x+1, this dis- ()
tance right here times this distance right tere
which would be the y coordinate which is x
Want to take the derivative of that--to the x--
mumbling.

51

42. D: O.k. 4=1(x+) tI
43. 8: Times (2-x). Did I have, oh, the two il cr9sed out

so I just have an -x--or, that was overil-xe, plus

get that--oh, this is just one, isn't it--this is --1;11 (x+ A4-)t2)(

all this stuff. And set that equal to zero and you 0

just one--so one of that, plus that equals zero, dx-
right?

VI-7XT II
44. D: I think we're getting a little lost here - -I am

not sure. Well, you go ahead with that--

45.' 8: Well, I'll just think ;bout it, as it is just
mechanical. There is a minus in here, isn't
there? Mumbling--o.k. x equals7anu what was
this distance, we said? That was x--so that
means it would beITplus 1--that's impossible.

46. D: Times R.

I
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47. a: If x equals plus or minus the )2--

48. Ds: Umma--

49. 8: This y thing would be 1 minus x2, right?

50. 0: This is' just the distance--therefore, this right 171::

here has to be 2. Guess your calculations are

all right.

52

L.

51. B: Yeah,if I got x equals square root of 2--we've
'ot a semicircle here, right? 0.k.--and I

..Ave the points -- right, it's a,uni/ circle and

I said that x2 +y2 = 1, so y = O.k.?
And--(pause)--the-x can't equal the square of
the two because it would be out there. I know

this has to be right but- -

52. 0: But all kinds of--let's see--well we know already,
o.k. that the triangle is not 45, 45, because that
would make it too small. 0.k.?-

53. B: Um --

54. D: So we know this angle is greater than zero and less

than 90 degrees--

55. 8: I just want to make sure I didn't--so this is x+1,
x+ln...and,aross multiply to set 1-x2 = 1 which

means x = )2.

56. D: No, it has to be a 60, 60, 60--right triangle--no
I am sorry not, a right-triangle - -has' to be a 60,

,where60, 60 triangle--because no matter whe you move

these vertices, it has to be a 60, 60, 60 triangle--
because no matter where you move these vertices- -

57. 3: O.k.

58. 0: --you are going to add area to thisligi-the
mumblingyou are going to add area to this.

)
59. B: All right, o.k. I understand, but I don't under &V) (by-

stand why it didn't .work for this. I mean that...

is there no solution for this equation?

60. 0: I don't know--are you sure what you are looking

for inithat one?

61. B: Yeah,I marked off these andI just wanted to mark

off these dimensions.

.0
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62. 0: 0.k. What were you looking for? The length of this?

63. 8: I was just 1oQking for the maximum area of this--I said

A = (x+1) 1-x . That's this height which is the square

root of (1-42. This is the unit circle. That's this

distance right here - -this minus the x value that I used- -

x value that is just x. 0.k.--cause t is all in terms

of x - -x minus the x value herd, which is x-1, which .

x+1--so area--ah shoot--I should have put 1/2 that

is well,--mumbling--I'll get it. That should be 1/2

there, but I don't think that makes any difference- -

so that's all in terms of 1.

0: So--if--

65. B: Oh, wait a minute there's a difference -so one for

two is 1/2 the first part--

66. D: So if you find the maximum area equal to--

.

57. B: It doesn't_make any difference--it is just a
factor of 1/2 here--because the area equals

1/2 that.

68. D: No--what's the next move?

69. B: See I get x--see I get a value of x with a plus

or minus Tr,, right?

70. 0: Umma./

71. 8: If I plug x back into this I get 7171, right?

Then r,plug x'back into there and I get

(1=17)4 which isIT:rwhich doesn't work.

72. D: . UmMa.

73. 8: 'Which doesn't seem right. Plus r2-- mumbling--

Let me just check my derivative over again.
Now I know my mistake--hold it. I added this

x--it's supposed to be times so we've still

got a chance. So let me go from there. It

is just a derivotive mistake. Let me see

it will be (1-x4)--no it will be--(-x+1).

This might work--if it does--we solve that

and cross out this mint's 1. That means

x+1+x4-1, that makes xf.x---cross this out--
mumbling-- all right? It still doesn't work.

74. 0: Well, let's leave the numbers for a while and

see if we can do this geometrically.
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I75. B: Yeah,you're probably right.

76. 0: Well, we know that these two are some kind of
symmetry.

80. : Those the maximums.

81. B: Well, I don't see how--where are you going
to fix the two points?

82. 0: Well, you just fix them on any diameter. You

find the largest triangle.

83. B: That would--obviously that would be the 45, 45
triangle if you fix them on the diameter. If

you fix them on any chord.

84. DI Yeah,why though. Well, we know that if we put
two of the points too close together--o.k.--o.k.
--no matter where we put the third point--

Epis6des and Executive Decisions

,77. B: Yeah.

.78. 0: I still say we should try--yeah--what we were
doing before--just try to fix two of the
points and let the third one wander around.

79. B: Yeah-, we were going to fix them--yeah., I know

what happens if you fix them on the diameter- -
then you have a family of right triangles.

85. B: Yeah.

86. 0: --it's going to be too small. O.k. If we put

them too far apart--o.k.--no matter where we
put the third point, we are only using half
a triangle.

87. B: O.k.

88. 0: So it's got to be--o.k. So--two of the points,
at least, well, matter of fact if you've got
three points, each two of the points have to
be between zero and 1/2 of the circle distance
away from each other.

89. B: O.k.

90. 0: See how I got that? O.k. so therefore each
two of the points has to be like that--so
how can we construct a circle that's like
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. that? O.k. so we stick one point here--a bi-
trarily--so now the second point has to be
somewhere o.k.--within--o.k. in other words,
it can't be right here--it can't be right he
it can be anywhere else. We've got to place

so that the third point is going to be within

half--

B: Half of what--I. don't get you there.

92. D: O.k. Now wait a minute--let's see. You know

when I said that--(pause). O.k. in other words
the relationship between every pair of the three

points....

At this point the interviewer (I) terminated the
session and asked th'e students to sum up what

they had done. B focused on the algebraic com-
putatjonsjie had done in trying to differentiate

(li.x))1-x'. The following dialogue ensued:

I: So what do you wind up doing, when you do that?
You wind up finding the area of the largest right
triangle that can be inscribed in a semicircle.

0: We determined that

I. My question is: how does that relate to the

original problem?

Well;...

ti

55



- Appendix 3

Episodes and Executive Decisions

Protocol 3

1. K: (Reads problem.) Consider the set of all triangles
whose perimeter is a fixed number, P. Of these,

which has the largest area? Justify your asser-

tion as best you can. All right ,now what do we

do?

2. D: We got a triangle-.-well we know we label sides A,.

B and C.

3. K: Right. I'll make it a right triangle--all right--
A,B, C and the relationship such as that 1/2AB =
Area and A +B +C = P and A2 +82 = C2 and somehow
you've got an area of one of these in the perimeter.

.4. D: Yeah,except for somehow--I mean I don't really know- -
but I doubt that's the triangle of minimum area:
well, o.k. we'll try it.

5.\ K: Largest area. Well, it is the only way we can

figure out the area.

All right.6. D:

7. K:

8. D:

9. K:

10. D:

11. K:

12. D:

13. K:

But for an isosceles we can do almost the same thing.

This So that we know that the area is

(A/2) C -(A/2 2 imeter = A + B + C and the

height, equals C2-(A/2)

All right.

Now what do we do. We've got to figure out the

largest area.

Isn't it the minimum?

The largest area.

So actually if we can get A--we have to get
everything in terms of one variable and take
the derivative, right? Basically?

Yeah,well--*

14. 0: Well, I still don't know if we should do--I
mean we can find an area for this and can
find an area for that, granted, but if we

13J
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ever come to a problem like this--I mean'we
'don't know--we have no idea as of yet with
a given perimeter what's going to be that.

15. K:.,-Right.

16. 0: iSo, there--I mean--you can do that again

.but then what do ydu do?

17. K: Then we're stuck, right? Usually, you
know,-ydu could probably take a guess as
to what kind of triangle it would be--like
you could say it is a right triangle or an
isosceles--I think it is an equilateral,
but I don't, know how to prove it.

18. 0: Umma.

19. K: So we have to figure out some way to try to
prove that.

20. 0: All right, a good guess is that it is an
equilateral, then why don't we try an
isosceles and if we can find that these
two sides have to be equal to form the
maximum area, then we can find that--then
we should be able to prove that side also
has to be equal.

21. K: 0.k. so B will be equal to C, so the peri-
meter P = A + 2B, or A + 2C = P.

22. 0: All right.

23. K: Ummmm.

"24. 0: See what we've got.

25. K: Fix A as a constant then we can do this,
solve that for C.

26. 0: All right.

27. K: For a maxi e've got -TTZTre-t-'-s-----

say A = 1, C -1/41,gight? Maximum
area: 1/2(C2-1/4)" = 0.

28. D: C
2
minus what?

29. K: (1/2)
2

, yeah,(1/2)
2

. A/2, where A = 1. 0.k.?
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30. 0: Ah, ah.

31. K: Mumbling- -this is 1/4(C
2
-1/4)

-1/2
. 2C, so we

know that 2C has to = 0 and C = 0 and we are
stuck:

32. 0: We should have taken a derivative in it and every-
thing, you think?

33. K: Yeah,that's the derivative of that. So does it
help us? My calculus doesn't seem to work any-
more.

,34. 0: The thing is--pause--you are letting C be the
variable, holding A constant. So what was your
formula--1/2 base times square root.

35. .K: The base A times the square root times the height
which is a rlght triangle to an isosceles which is
--so it is C -(A /2) which would give you this
height.

36. 0: A
2/4

, no, A
2/2

, no, (A/2)
2

.

37, K: Now about P = , ,.. no, C = P -A/2? Should we
try that--

38. 0: No, see part of the thing is, I think that for
here we're just saying we have a triangle, an
isosceles triangle, what is going to be the
largest area? Largest area.

39. K: Largest area--set its derivative equal to 0.

4C. 0: All right. Well the largest area or the smallest
area--I mean--if we are going to take a derivative- -
I mean--what's going to happen is you have a base
and it's going-to go down like that - -I mean--we
don't set any conditions- -we're leaving P out of
that.

41. K: Ah, ah.

42. 0: That's absolutely what we have to stick in.

43. K: We've got C and a P-A over 2.

44. D: P -A over 2.

45. K: Formulaisosceles.
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46. 0: A + 213 = P--all right?

D ';)
47. K: Shall we try that--mumbling. -A over 2--we've got /( r---(4) --

Oe

to have a minus 1/4 PA-- ( y

48. 0: Well, then you can put A back in--then you can have
everything in terms of A, right? Using this formula,
we have the area and we have a--

49. K: All right--P--so that's A/2 P
2
-2A+A

2
-A

2 1/2
and that's

ti

4 4

A/2(P2-2Ay/2...(mumbling and figuring)
4

50. 0: Wait a minute--you just took the derivative of this
right here?

51. !<:) This times the derivative of this plus this times
the derivative of this.

52. D: Oh.

, ; 2
53. K: Mumbling and figuring...A/4/P2-4

4.,p
2A)-//2 (2P -2) /P

2

4

-2A
`1/2

1/2 = 0...so 2AP-2A + P2 -2A = O. ar

4 8 S'

54. 0: So can we get A in terms of.P?

55. K: P
2
--

56. D: 8P
2

- 8P
2
bring the P

2
on this s;ie and multiply it by

8 and we'll have a qudratic in terms--no we won't- -
then we can just have A we can factor out in the
equation--you see.

57. K: 0.k. P2 =

58. 0: -8P
2
--oh,are we going to bring everything else to

the-other side?

59. K: Yeah, 2A- +4A - 4AP x 8--No--

60. 0: That's not right. Well, the 8 we can just multiply- -

61. K: P
2

all this.

62. 0: Right.



Episodes and'Executive Decisions
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63. K: P
2

- 4AP = --this isn't getting us anywhere.

64. 0: P
2
= factor out the A--then we can'get A in terms of P.

65. K: P
2
= 2A--so you've got A.= P

2
--

6+4P

66. 0: So if we have an isosceles triangle and A has = to --

67. K: be equal to that- -

68. D: And if A has to be equal to that and B and C are equal-- //

-74.+1-14.hk-P

f'-z2 34-1-f)

69. K: So, B = --(whistles)

70. D: 8 = P- that.

71. K: 2B = P-A over 2.

72. D: No we aren't getting anything here--we're just
getting--thing is that we assumed B to be equal
to C so of course, I mean- -that doesn't--we want
to find out if B is going to be equal to C and
we have a certain base--let's start all over, and

forget about this. All right, another triangle.

Certain altitude,

-73. K: Well, let's trY.to assume that it is an equilateral.

74. D: All right.

75. K: Sides--mumbling--perimeter equals 3S, right?

76. .D: Yeah, but wait a minute--that's still nat going
to really help us--what are we going to do --
simply assume that it is an equilateral. We're

just going to get that it is an equilateral, of
course it is going to be an equilateral if we

assume that.

77. K: True.

78. D: We want to prove that it is an equilateral if we

think it is. If we want to do anything we can--

79. K: Yeah, how do-you prove it?

80. D: Well, we can make up a perimeter--we don't need
a perimeter P, do we? So,--

81. K: Where are you going to get area formula in the

;6rm of P?
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82. D: We want to maximize the.area so that we can prove--
o.k. we have the given base--we'll set our base
equal to something.

83. K: Yeah, mumbling, P, or something--I don't know.

84. D: Then the other two sides have to add up to P.

85. K: We--how about we say--let's start with an equi-
lateral, just, for the .hell of it--see what hap-
pens. You get 1/31317 1/3P and 1/3P. And this
is 1/9 - 1/36 which is the height--

86. D: Now the thing we want to do is say--o.k. if we
shorten this side at all and then what's going
to happen to the height--if we leave this the
same:

87. K: We can't shorten it.

88W. D: And we shorten this side--sure we can- -

89. K: Well--

90. D: We can have a--this equal to 1/3 and then a --
this equal to--well you're going to have - -t mean- -

91. K: Aha.

92.* D: This is going to get longer like that. Now we
can see from this that all that is going to
happen is that the base is going to get shorter
so we know from that as far as leaving'the base
constant goes if we move--if we shorten this side
then it is going to--somehow the point's going to
go down in either direction.

93. K: Semicircle.

94. D: Right. That proves that we have to have an
equilateral.

95. K: No, it proves an isosceles.

96. D: No, isosceles, I mean. All right from that if we
set--we know that those two have to be equal so
if we set this base equal to anything--it doesn't
have to be 1/3P--we can also show that if this
goes down--the area is going to get smaller, so
the constant base then the height is going to get
shorter and shorter and is getting smaller and

smaller actually. 1 4 j
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97. K:

98. 0:

99. K:

100. 0:

101. K:

102. 0:

103. K:

104. 0:

105. K:

106. 0:

107. K:

108. 0:

109. K:

110. 0:

111. K:

112. 0:

113. K:

114. 0:

Episodes and Executive Decisions

0.k., o.k.

In this case if it goes down to this side, we're

going to have again a smaller angle here, shorter

base here--and [noise].

So we get--so we know it is an equilateral--well

prove it.

I don't know that's not a rigorous proof, but it

is a proof--good enough for me.

Proves that an equilateral has the largest area.

Oh, we're talking about the largest area.

Yeah.

Oh, we just did.

We have to prove it has fixed number P--perimeter.

Well we already--we assumed that we have a fixed

P, all right? I mean this is a proof as far as t.

Well, we've shown that an equilateral has the

largest area. We haven't shown that if you have

a certain -set perimeter, let's say a right tri-

angle, with a perimeter which is the same--we
will not have a larger area.

No, but we have because we have shown with the

set perimeter--o.k. we know that--

Well what if we have 3, 4, 5 with an equilateral

being 4, 4, 4--

3, 4, 5 is what? Mumbling.

12. So this area will be 6 and this area will

be side squared 16. --o.k. that will have the

largest area.

What's that X1.7?

Yeah, 8 is still greater than 6 and that's greater

than 1.

Oh, yeah, that's right. Yeah, but the thing is

if we have a fixed dimension, we already showed

that, o.k. what is going to happen is as this

145
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side gets longer--say we use 4 as a base here,
so then what's going to happen--well say we use
3 as a Base, just so we won't have an equilateral

when we are done--what's going to happen. as 4 gets
longer and 5 gets shorter--it's going to go upwards.
The optimum area--the maximum area is going to be
right there. Because you've got--

115. K: Right.

116. D: This angle and that height. If you make this angle
any less--maybe let me draw a picture- -

117. K: I can understand that--this will give us largest
area, but how can we prove this bottom is one-
quarter--1/3 the area of the perimeter?

118. D: Well, remember all the'problems we've done where
we say--o.k. let me just start from here once more- -
so that we have 3, 4, 5--is that what you have--be-
cause that's going to be 5. Wasn't a very good 3,
4, 5 anyway. So you start out with 3, 4, 5--all
right, we pick the 3 has the base, right?

119. K: Aha.

120. D: All right, it's 5--mumbling--if we have 3 as the
base--and this is a little bit off an isosceles,
but if we draw an isosceles as 3 as the base--o.k.

we've got a right angle--that's got to be the maxi-
mum--mumbling--(height?) because if it goes any--

121: K: Right.

122. D: Over this way, it is going to go down.

123. K: 0.k.

124. D: All right, so remember the argument we've used- -

well if we--

125. K: Yeah, I can show that, but what you're not showing
is-:-what you're not proving is that--

126. D: That it has to be an equilateral?

127. K: Right. But you're not showing that this side is
1/3 the perimeter.

:1V;
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128. 0: Right. I'm showing--first of all it has to be an

isosceles. Right.

129. K: Right.

130. 0: It has to be an isosceles--that means that we've got
these three sides and those two are equal--right?

131. K: Umma.

132. 0: Right--so now I pick this side as my base--r
already picked--if that side is my base then the
maximum area would have to have an isosceles- -
so I turn around--this side is my--

133. K: That,I understand as proof, but you're not show-
ing me that this is 1/3 the perimeter--mumbling.

134. 0: If we have an isosceles triangle--if we have an
equilateral triangle--then each side has to be
1/3 the perimeter--that's the whole thing about
an equilateral triangle.

135. K: I know--o.k.

136. 0: First we know it must be an isosceles, right?

137. K: Umma.

138. 0: O.k.

139. K: I understand this.

140. 0: If it is an isosceles, it must be an equilateral,
right?

141. K: All right.

142. 0: And if it must be an equilateral--all three
sides must be equal and if the perimeter is P,
all three sides must be 1/3P.

143. K: O.k. I've .got it.



Appendix 4

Episodes and Executive Decisions

Protocol 4

1. (Reads probleml You are given a fixed triangle T with base

B: Show that it-is always possible to construct, with ruler -r
and compass, a straight line parallel to B such that that
line divides T into two parts of equal area. Can you sim-

ilarly divide T into five parts of equal area?

2. Hmmm. I don't know exactly where to start.

3. Well I know that the...there's a line in there somewhere.

Let me see how I'm going to do it. It's just a fixed

triangle. Got to be some information missing here. I

with base B. Got to do a parallel line. Hmmm.
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4. It said the line divides T into two parts of equal area.

Hmmm. Well, I guess I have to get a handle on area measure-

ment here. So, what I want to do...is to construct a line...
such that I know the relationship of the base...of the little

triangle to the big one.

S. Now let's see. Let's assume I just draw a parallel line

that looks about right, and it will have base little b.

6. Now, those triangles are similar.

7. Yeah, all right then I have an altitude for the big
triangle and an altitude for the little triangle so I
have little a is to big A as little b is to big B. So

what I 'want to have happen is 1/2 ba=1/2AB-1/2ba. Isn't

that what I want?

8. Right: In other words I want ab=1/2AB. Which is 1/4 of

A times...mumbles(confused)...One over the square root of

two times A times one over root two times B..

9. So if I can construct the square root of two, which I

earl: Then I should be able to draw this line...through

a point which intersects an altitude dropped from the

vertex. That's little a=A/i2, or A=a1/2, either way.

10. And I think I can do things like that because if I re-

member I take these 450 angle things and I go 1,10/27

11. And if I want to have a times root 2...then I do that...

mmm...wait a minute...I can try and figure out how to

a. 4

Ft:Z

air= in'erikik13)
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construct 1/(2-.

12. O.k. So I just got to remember how to'make this construc-

tion. So r want to draw this line through this point and
I want this animal to,be...1/Vf-times A. I know what A is,

that's liven. So all I got to do is figure out how to multi-

ply 1/2 times it.

13: Let me think of it. Ah' huh: Ah huh! Ah huh! 1/2...let
me see here...ummm...that's 1/2 plus 1/2 is one...

14. So of course if I have a hypotenuse of one...

15. Wait a minute: 1/-2 12/VZ = 2 /2...that's dumb:

16. Yeah, so I construct / from a 45', 45, 90. O.k. so that's

an easier way. Right?

17. I bisect it. That gives me root 2 over 2. I multiply it

by A...now how did I used to do that?

18. Oh heavens: How did we used to multiplY,times A. That...

the best way to do that is to construct A...A...then we get
root 2 times A, and then we just bisect that and we get
A/f/2. O.k.

19. That will be...whatl...mmm...that will be the length...now
I drop a perpendicular from here to here. 0.k....and that

will be...ta, ta...little a.,

20. So that I will mark off little a as being A //2. O.k. and

automatically when I draw a line through that pOint...I'd

better get2/2 times big B. O.k.

21. And when I multiply those guys together I get 2 over 4 times
A times B. So I get half the area...what?...yeah...times
1/2...so I get exactly 1/2 the area in the top triangle so
I' better have half the area left in the bottom one. O.k.

22. O.k., now can IA° it with 5 parts?

23. Assuming 4 lines.

24. Now this is going to be interesting since these lines are
going to have to be graduated...that...

25. I think, I think, that rather then get a whole lot of

triangles here, I think the idea, the essential question
is can I slice off...1/5 of the area...mmm..,
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26. Now wait a minute! This is interesting. Let's get a...how about

four lines instead of...

27. I want these to be...all equal areas...right? A1,A2,A3,A4,A5 right?

28. Sneak! I can...I can do it for a power of 2...that's easy
because I can just do what I did at the beginning and keep

slicing it in half all the time.

Now can I use that kind of induction thought.

30. I want that to be 2/5. And that to be 3/5.

31. So let's make a little simpler one here.

32. If you could do that then you can construct the square

root of five. But I can construct the square root of
5 to one...square root of 5, right?

33. So I can construct...o.k. So that certainly isn't going

to do it. No contradiction...

34. Now, I do want to see, therefore, what I have here.

35. I'm essentially saying is it possible for me to construct
it in such.a way that that is 1, 2, 3, 4, 5, 1/5 the

area...o.k.

36. So little a times little b has got to equal 1/5 times A

times B. So I can certainly chop the top piece off and

have -it be 1/5 of the area. Right? .Right?

37. Now, from the first part of the problem...I know the ratio
of the next base to draw...because it is going to be root .2.

times this base. So I can certainly chop off the top two

fifths.

38. Now, from the first part of the problem I know the ratio
of the top...uh, o.k. now this is 2/5 here, so top 4/5...

o.k....all right...so all I got to be able to do is chop

off the top 3/5 and I'm done...

39. It would seem now that it seems more possible...let's see...

40. We!want to make a base here such tat little a times little

b is equal to...the area of this thing is going to be 3/5...

3/5AB...in areas j. right!...and that means little a times

little b is /3//A times IS/V3B. 0.k. then can I construct

the square root of /77;. If so then this can be done in one

shot.
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3 d/c-

41. Well let's see. Can I co .uct 3/5. That's the question.
/7/T/ =

42. Root 15, root 15. Wait a minun! Root 15 over 5. Is the
square root of 15 constructable. Root 15 is...

43. It is the square root of 16-1.
doesn't seem the way to go.

44. 16
2

- 1
2

equals... (expletive deleted)

I don't like that. rt

45. Somehow it rests on that.

46. (expletive) If I can do the square root of Can I divide
things and get this?

47. Yeah, there is a trick! What you do is you lay o f 5 things.
1, 2, 3, 4, 5. And then you draw these parallel li es by
dividing them into fifths. So I can divide things to
fifths so that's not a problem.

48. So it's just constructing the square root of 15 then I C'an

answer the whole problem.

49. I got to think of a better way to construct the square root
of 15 then what I'm thinking of...or I got to think of a way \,
to convince myself that I can't...umm...x -15.

50. Trying to remember my algebra to knock this off with a sledge- \
hammer.

51. It's been so many years since I taught that course. It's
5 years. I can't remember it.

52. Wait a minute! Wait a minute:

53. I seem to have in my head somewhere a memory about quadratic
extension.

54. Try it differently here. mmm...

55. Sa if I take a line of length one and a line of length...
And I erect a perpendicular and swing a 16 (transcriber's
note: for mathematical clarity he really means 4 instead
of 16) here...then I'll get the square root of 15 here,
won't I?

15
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56. I'll have to, so that I can construct the square root of .

15 times anything because I'll just multiply this by A and
this by A and this gets multiplied by A divided by 5 using `N

that trick.- Which means that I should be able to construct
this length and if I can construct this length then I'can
mark it off on here and I can draw this line and so I will
answer the question as YES1:

I

I

I

I

I

,.,....

I



Appendix 5

Episodes and Executive Decisions

Protocol 5

1. (Reads problem) Same as ProtOcol 4.

2. The first thought is that the 'two triangles for the first
question be similar.

3. And since we'll want the area to be one half. And area,
is related to the product of the altitude and the base
we want the area of the smaller triangle to be one half.

4. And corresponding parts of similar triangles are propor-
tional. We want the ratio of proportionality between L.
the altitudes and the bases both to be liT. Ljtz--Bri'r
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5. So I will draw a diagram...and I'm drawing that parallel
and checking that algebra.

6. I hope you can hear the pencil moving because that's
what's happening at this point.

7. And now I'm writing a bunch of letters on my diagram
and multiplying them together...leaving the one half
out, of course...and I want that to be one half of that.

8. So, that certainly seems like a reasonable solution. So
all I have to be able to do is construct if. And I can do
that with a 45 right triangle, and then given a certain
length, namely the altitude, to the base B, which I can
find by dropping a perpendicular. I want to construct a
length which is 1/2 times that, and I can do that with
the ordinary construction for multiplication of numbers.

9. So, I can do the problem.

I: You can do all the constructions?

1p. Yeah 1 do them in the winter term. This line, this line,
herei"s one, you want to multiply p times q, you draw these
parallels and it's pq.

(The solution of part 2 is omitted)
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1. Overview

This paper is one of a pair which, together, try to sketch out some of

the issues that should be taken into account when one uses certain "verbal

methods" (clinical methodologies or protocol analysis) for research into

human problem solving processes. This paper is primarily a case study in

one methodology, in which two students are videotaped as they work together

to solve mathematical problems. "out loud." The focus will be on the advantages, -

and disadvantages, of this particular methodology -- or more properly, on

those aspects of cognitive processes that this methodology will illuminate

and those which it will obscure. The context for this discussion is treated

at some length in the companion paper, "Beyond the purely cognitive: Meta-

cognition and social cognition as driving forces in intellectual performance."

A brief discussion of that context is given in section 3.

2. Background

In recent years there has been a resurgence of the use of verbal data

for research into the nature of human cognitive processes. Such research

takes as its data the verbal reports produced by individuals or groups of

subjects in a variety of circumstances: through retrospection or introspection,

in structured or unstructured "clinical" interviews, in "speak aloud" problem

solvhig sessions, with or without experimenter intervention. Through the

period of the Gestaltists' major influence, the analysis of verbal reports

or introspections was considered methodologically sound, if not the primary

source of information regarding complex human cognitions. However, verbal

methodologies fell out of favor with the advent of behaviorism and the rise

of "scientific" methodologies for the investigation of cognitive phenomena.

1 t...4 1-1
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The mental constructs posited by the Gestaltists were unneccessary for (or

more accurately,'antithetical to) the theoretical foundations of the behavior-

ists (see, for example, Skinner [1974]). In addition the products of intro-

spection were not replicable or verifiable. Perhaps more importantly, they

were not falsifiable. 'Thus they could not, it seemed, serve as the foundation

for a cumulative scientific effort. In consequence the methodologies that

gave rise to such unscientific results were supplanted by more "rigorous"

methodologies that promised to yield "good science." Verbal methods were

deelasse through the 1960's and the 1970's.

For a number of reasons, perspectives on verbal methods have changed in

recent years. Perhaps the major cause of the cnange is the "legitimization"

of protocol analysis as a consequence of its role as a major research tool

in artificial intelligence. Such research (see, for example, Newell and

Simon [1972]) demonstrated that one can design successful problem solving

programs for computers, based on principles abstracted from the analysis of

human problem solving protocols. These computer programs offered, for the

first time, incontrovertible empirical "proof" of the efficacy of certain

strategies*, and gave credibility to the methodologies that uncovered them.

Another major cause was the impact of Piaget's genetic epistemology in general

and, in mathematics education, the impact of Krutetskii's work (Krutetskii,

1976). Piaget's work made it clear that careful clinical investigations

could give rise to replicable results, to falsifiable hypotheses, and to

predictions that could be tested experimentally. In short, clinical inves-

tigations could indeed lay the foundations for good science. Krutetskii's

*Technically, they offered proof that the machine implementation of such
strategies is possible, not that humans actually use the strategies..



work was not "science" in the unbiased, objective sense that we take it.

However, it dealt with issues from a perspective that appeared to provide

more direct'explanations of students' "real" mathematical behavior than the

work coming from many "scientific" studies. This caused much interest in

his methodologies (and Soviet "teaching experiments" in general.)

Indeed, one cause of the resurgence of verbal methods is the increased

sophistication of the research community and its more balanced perspectives

on the methodologies that supplanted them. The limitations of the statistical

methodologies began to emerge as-it became clear, from a lack of clear-cut

results in the empirical literature, that there are often (for example)

many more variables in "treatment X vs. treatment Y" comparisons than. are

being controlled for in supposedly "tight" experimental designs. It became

clear as well that the difficulties in extrapolating results from well

designed laboratory studies to more complex cognitive phenomena, and to more

complex environments, had been seriously underestimated. Calls we...e made

(e.g. Kilpatrick, 1975) for the use of clinical investigations to determine,

in exploratory fashion, the spectrum of important "mathematical abilities."

More recently, the cognitive community has begun to recognize the importance

of "other than purely cognitive" influences on what were once taken as

"purely cognitive" actions. Thus the role of metacognitions and social

cognitions (belief systems, etc.) as driving forces in human intellectual

performance is coming to receive more attention (see, e.g., Brown, 1978;

D'Andrade, 1981; Lawson, 1980). A range of exploratory methodologies, often

verbal, has been developed to deal with such questions. Hence for many dif-

ferent reasons, verbal (clinical or protocol) methods are used with increasing

frequency as research tools. Yet,"while increasingly popular, protocol



methods have not yet received thorough methodological analysis. Little is

known concerning their fundamental natures, the rationales underlying their

use, and their reliability" (Ginsburg, Kossan, Schwartz, and Swanson, in

press). Such analyses are beginning to emerge, the Ginsburg et al paper

being one of them. Also, Psychological Review has published two recent

analyses of the effects of speaking aloud methods. Nisbett and Wilson's

[1977] title, "Telling more than we know: Verbal reports on mental processes"

suggests its conclusions. Ericsson and Simon [1980] conclude that certain

kinds of "talking aloud" instructions -- those that ask for verbalization

as one solves a problem, without calling for explanations (elaborations or

retrospections) of what one is doing -- do not seem to affect people's

performance while solving problems. This paper and its companion will suggest

that that conclusion needs to be further qualified. Some of the relevant

issues and variables are characterized next.

3. Context

Issues regarding the validity and generality of verbal methods are

singularly complex and subtle. Any particular framework for gathering and

analyzing verbal data will illuminate certain aspects of cognitive processes

and obscure others.* Perhaps more importantly, it may appear to illuminate

many behaviors that have, in actuality, been distorted in a number of subtle

ways. Each methodology is a lens (or filter, if you will) through which

intellectual performance is being viewed. Thus the selection of any particular

methodology for investigation may well determine what the experimenter does

*To be accurate, I should talk of "social-cognitive" processes, in the sense
that the "cognitions" being studied take place in a social context, which
may well determine what the experimenter sees. The discussion below will
clarify this point.



or does not see. In turn, this may affect the theoretical constructs that

are derived from these observations. Since there is =great potential for

distortion in this arena, the experimenter wishing a sense of the "whole

cdgniti've picture" should consider using a range of complementary (verbal

and other) methodologies, and must be extremely cautious in interpreting

the results obtained from a body of methodologically similar studies.

A wide range of variables affect the kinds of information that emerge

from verbal methodologies. Some of them are sketched briefly here.

a. The number of persons being taped.

Radically different types of behavior emerge in single-person, two-person,

and small. group (say three to five people) protocols. The prevailing assump-

tion is that single-person protocols give rise to the "purest" cognitions,

uncontaminated by social concerns. However, the task environment itself

imposes certain constraints upon the subject(s),** and the discomfiting

effects of a task environment may be strongest when a person is solving a

problem alone, rather than with the (intellectual and social) support of

a peer. Certain behaviors become more prominent, and easier to observe,

with more than one subject (e.g. decisionmaking). However, observing other

aspects of behavior is made more difficult. One dominant member of a group

can skew discussions to the point where they reflect only that person's

ideas; solutions may proceed in parallel, or with (positive or negative)

reinforcement from the interactions. The more people involved, the more

obvious the social dynamics. There are no value judgments attached to these

characterizations -- each serves its purpose, and one should simply choose

*These "environmental" constraints lessen with the maturity and training of
the subjects. However (see below) college seniors still feel them strongly.
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the one(s) suited to the ends that one has in mind. If one is interested in

making artificial intelligence models of competent problem solving performance,

[e.g. Newell and Simon, 1972] then the most appropriate methodology may well

be to perform the detailed analyses.,of single-person protocols. If one wishes

to elucidate certain kinds of decisionmaking behavior, [e.g. Schoenfeld,

in press] two-person protocols may be appropriate. If one wishes to make

statements about students' "real, social" cognitive behavior [e.g. lesh's

"applied problem solving project" and Noddings' analyses of group inter-

actions] Olen larger groups are appropriate.

b. The degree of intervention

Verbal methods include a continuum of experimenter obtrusiveness that

ranges from near invisibility (covert or non-interventionist observations

of people in natural settings) to positions of central importance (experi-

menters inducing "cognitive dissonance" in clinical interview settings).

Each serves certain ends in particular situations. If, for example, an

experimenter is interested in determining the "Van Hiele level" of a student

on geometry tasks (or the Piagetian level of a subject on a particular task),

.and exploring corollary behavior on other tasks, then a large degree of

intervention is almost mandatory. If, however, the experimenter wishes

to see how a student copes with difficult problems (what the student pursues,

whether the student goes off on "wild goose chases," etc.), then intervention

may be inappropriate. Indeed, asking the student "why did you do X?" may

have a dramatic effect on the student's behavior. Up to that point, the

student may not have considered the question. There is, first, the chance

that the answer to the question is "manufactured." Second and equally

.important, the student is now aware that the experimenter is interested in

IGO



how such choices are made. The student may begin to reflect on on those choices

while working on the given task, and behave from that point on in a manner

very different than he or she would otherwise have behaved.

c. The nature and degrees of freedom in instructions and intervention

The kind of instructions subjects are given has a strong effect on what

they produce. For example, asking the subject to reflect upon his or her

problem solving processes does have an effect on performance [Ericsson and

Simon, 1980]. Yet such reflection may point to behaviors that might other-

wise be unseen. In clinical interviews there are tradeoffs between stand=

ardization on the one hand and experimenter freedom on the other; one has

a certain degree of reliability in the first case, and the potential for

probing interesting behaviors in the second.

d. The nature of the environment and how comfortable the subject feels in it

To put it simply, students who feel uncomfurtable in a particular environ-

ment may uniformly exhibit pathological behavior. That the behavior is

pathological may not at all be apparant; that may only appear when the

experimental conditions are altered. Further, putting students,"at ease"

may be completely insufficient. The very fact that one is being taped may

be enough to induce atypical behavior (see below). Subjects may avoid

dealing with the task in any substantive way, in order to avoid feelings

of inadequacy when they (as they see it, inevitably) fail at it. They

may create certain kinds of behavior, to make it seem as if they know what

they are doing. They may select their behavior to tailor it to (what they

believe are) the experimenter's wishes. (In the later category, I have tapes

in which students say "We could solve it like this, but obviously he doesn't

want that.") Or, students may deal with a problem in unusual ways simply

because they are in an obviously artificial setting. (A student in one of

1C A.



Dick Lesh's videotapes, working on a "real world" problem, misread some given

information and assumed that he could earn nearly $150 for mowing one person's

lawn once. When he was questioned later, he was asked if that seemed like

a reasonable figure. It did not. In fact, the student mowed lawns for extra

money and knew the figure was unreasonable. But, "it was a hypothetical

question, wasn't it?")

e. Task variables

The range of these is traJndous. Does one provide children with

manipulatives, for example? How does this affect performance? For a general

discussion of task variables in mathematical problem solving, see Goldin and

McClintock [1979].

This brief discussion serves to indicate some oaf the variables that

affect the collection and interpretation of verbal data. It is a bare

introduction to an area that needs much greater investigation, but it may

serve to set the stage for the following discussions.

4. Executive decisions in problem solving: the issue and methodology

As section 3 indicates, one's choice of methodology should be guided

by the goals one has for research. The "problem" I set out to investigate,

initially, was to explore some of the reasons for students' lack of success

in solving "non-routine" problems at the college level. In addition, I

wished to examine students' performance before and after a course in math-

ematical problem tolving, in order to determine some of the effects of

instruction. Previous work had provided some tools for the investigation,

and some ideas as to what mechanisms might contribute to success (or more

accurately, to failure). The general arena was an investigation of POlya-

type heuristics and their contributions to problem solving performance.
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Earlier studies had indicated that students could learn to use individual

heuristics with some degree of competency [Schoenfeld, 1979] and a battery

of tests had been used to examine fluency and competency in the implementation

of those heuristics. Thus the intention here wa5'not to investigate such

competencies. (If it were, some form of detailed clinical probing would

undoubtedly have been an appropriate methodology.). Rather, the intention

was -to investigate--a consistent. "di-fficulty" with regard to heuristics.

The literature indicated that, while students did seem able to master in-

dividual problem solving strategies, "the overall effects on their problem

solving performance was not nearly as large as was expected or hoped: the

problem solving whole was, somehow, less than the sum of its heuristic

parts [Wilson, 1967; Smith, 1$73; Lucas and Loomer (in Harvey and Romberg),

1980; Goldberg, 1975]. The/questions chosen for investigation were:

What will "students choose to examine in a problem solving situation (and

why)?' How will they "follow up" on those choices (pursue them, abandon

them etc.)? and What is the effect of such "strategic" or "executive"

behavior on their problem solving performance? 0:-.3erve that these questions

can be asked about problems that may or may not be amenable to particular

heuristic strategies for solution, solved by students who may or may not haw:

the heuristics at their disposal. This was an exploratory study, in that

the data (videotapes) were to serve as a source of hypotheses rather than

as a test of them. Some of the choices among the variables given above,

and the rationales for them, were as follows.

a. The number of persons being taped

For a variety of reasons, two- person protocols provide the richest data

for the purpose described above. First, I have found that single-person

1('3
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protocols (from students, not faculty) tend to generate unnatural behavior

in subtle ways. Protocol 1 (appendix 1) was generated by a single student,

a senior mathematics major. It is typical of single-person protocols for

this problem ("How many cells are there in an average adult human body?")

in that much time and effort is spent approximating parts of the body by

geometric solids and computing the volume of those solids. In roughly two

dozen two-person protocols, not one pair of students has done the same.*

This behayior was induced by the setting: the students felt the need to

"produce something mathematical" for the researcher. Many-person protocols

ease the pressure on the subjects, for the burden of uncomfortableness is

shared among the students.

A second reason for not using single-person protocols in these circum-

stances is the wish to elucidate the nature of the students' strategic

decision-making as they work on the problems. For reasons given below,

the sessions had little or no experimenter intervention and the subjects

were not instructed to explain what they did as they solved problems. In

single person "speak aloud" protocols, what appears is often the "trace"

of a solution: one sees the results of decisions but gets little insight

into how the decisions were made, what options were considered and rejected,

etc. When students work together as a team, discussions between them regarding

what they should do next often bring those decisions and the reasons for them

"out in the open." (A typical dialogue is "Let's do X." "Why? I don't see

what good it'll do." "Look...")

1

*I collected the single-person protocols first, and had begun to construct
various (cognitive) explanations for this poor strategic behavior. Only
later, when there were two-person protocols for comparison, did it become
apparent that the extensive body-volume computations were caused by the
social environment.

IC1
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These reasons suggested the use of many-oerson (n2) protocols. There

are trade-offs with regard to group. size. Larger groups provide more "ideas"

to manage, and decision making can be more interesting in these circumstances.

Also, social dynamics of groups of 4 or 5 may better ameliorate the uncom-

fortableness of the experimental environment. Two reasons suggested n = 2

as the most suitable choice. First the decisions one faces when "managing"

the ideas generated by a group of people may be very different from the decisiOns

one faces when considering the ideas one or two people have generated.

For example, one or two people working alone might go off on a "wild goose

chase" and squander their problem solving resources that way. In a larger

group, the likelihood of someone saying "why?" to the proposed direction is

greater, and the resultant behavior different. Also, one or two.students

may only generate one or two plausible alternatives; a "committee" may generate

more. The "perceived solution space" is different, and the resulting

behaviors may not reflect those of individuals working alone or in pairs.

Second, the focus of this investigation was largely cognitive. With larger

groups the degree of social interactions increases, making it more difficult

to tease out the "purely cognitive" aspects of students' behavior. These

social factors are still (all too) present in 1- and 2-person protocols,

however. We have seen how one person "engages in mathematical behavior"

to dissipate the pressure of the task environment. In similar circumstances

a pair of students may "defuse" the environment by engaging in small talk

around the problem. By refusing to take it seriously, they can justify

(what is froni heir perspective) the inevitable failureby telling themselves

that they "never really tried." And of course, two-person social' dynamics

a

can be quite strong. In all cases, one must take care that the behavior
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labeled a "cognitive" is indeed so.

b. The aeesree of intervention

It is imptant to keep interventions to an absolute minimum in this

kind of study. T idea was to determine the presence (or absence) of certain

kinds of "monitoring and decision making in students' problem solving, and

to trace the effects o \their presence (or absence). These effects can

only be been if a solution,is allowed to run its course. For example, a

student may have a "hunch"ior*me "intuition" about a plausible solution,

\
and begin to work in that irection. From the experimenter's point of view,

it may be clear that this is a "wifd\goose chase," and it may be tempting

to find out what prompted the student o pursue it. However, such an inter-

vention precludes the opportunity to obsve the effects of such a wild

.goose chase. After threa minutes the studen might come to see that it is

fruitless, and go or to do something else. Or, e student might never

reconsider, and spend the allotted time involved in 'rrelevancies. In fact,

the latter type of behavior occurs all too frequently. In a large number
\

of tapes, students engaged in an essentially irrelevant corputation for nearly

twenty minutes (the length of the taping sessions). After the
\
ran out of

time they were asked what they would do with the result of the computation
. \

if it were given to them...and they were unable to say [Schoenfeld, press].

I now believe that this lack Of monitoring is quite typical (though not

always this extreme, obviously) of student behavior, and is one of the major\

contributing factors in students' problem solving failures. This could only \
be seen, and verified, by letting the solutions proceed unimpeded. \

More importantly, in this particular kind of study, experimenter inter-

vention may have a radical effect on the subject's performance and on the

I 0/1
4.1_,/
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data that is produced. Recall that one purpose of these experiments was

to determine the degree to which students reflect on, and oversee, the way

that a solution evolves. Suppose, for example, that a student in the midst

of a solution is asked to justify a "wild goose chase" or any other strategic

decision. Up to that point the student may not have thought about such

issues, or dealt with them casually. After the intervention, he or she

knows that the experimenter is interested in such questions. In consequence,

the student may begin to manufacture such justifications (to be ready for

the next intervention). In doing so, that person's behavior may be completely

distorted. There is now a training effect, and all data must be interpreted

accordingly.

Again, the preceding comments should be interpreted in the context of

the goals for the study, which was exploratory. One of its purposes was to

explore students' monitoring and executive behaviors, and document the role

that they play in students' problem solving_performance. Once that information

has been gathered satisfactorily, a shift in methodology may be appropriate.

The fianl section will mention a revised methodology I am now pursuing.

c. The nature of instructions and interventions

As the reports in Psychological Review [Nisbett and Wilson, 1977;

Ericsson and Simon, 1980] indicate, asking students to talk about their

problem solving processes during the process of a solution does have an

effect on those processes. For that reason students were instructed not to

"explain" for the microphone. Rather, they were to work together as a team;

what I wanted to hear would emerge from their discussions. Interventions

were limited to comments like "I haven't heard you say much in the past

three minutes.. Are you still working on the problem?" and to specific

1'"
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responses to questions the students asked.

d. The environment

The setting was obviously artificial (solving non-routine problems for

a mathematics professor can hardly be considered natural behavior) and,

despite all efforts to the contrary, somewhat stressful. This point should

be emphasized. Protocol 1 (appendix 1) was produced by :1 senior mathematics

major who was on a first-name basis with the experimenter. The student was

familiar with the entire process (he had done some taping himself as part of

a senior thesis). Yet the unfamiliar problem induced great stress, with a

resultant effect on the protocol. Similarly, great efforts were taken in

all the two-person protocols to put the students at their ease. They were

assured that the research was non-judgmenta,l, shown that the videotape machine

focused on the pages they were writing and not on their faces, etc. Even

so, it is not at all safe to assume that the students would deal with the

same problems in anythi_n_g_like_the_same manner_ i_f they_worked on them, for

example, in their own rooms without a recording device present. The more

awkward the situation -- the more obtrusive the recording equipment, the

more "unusual" the problem, etc. -- the more likely the "verbal data" is to

be affected.

e. Task variables

The subjects were college students, and treated as such. Problems were

worked with paper and pencil only, save for "straightedge and compass"

geometry constructions, where they were given the tools for the constructions.

5. A framework for examining the protocols

An extensive description of the framework described below, and of the

results obtained with it, is given in my article "Episodes and Executive

1CS
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Decisions in Mathematical Problem Solving" [in press]. In brief, the idea

was to create a macroscopic framework that captured the essential elements

in the problem solution.* There is one significant difficulty in implementing

this idea, a difficulty that has been the downfall of most extant protocol

coding schemes: the most important event in a problem solving session may

be one that is conspicuous by its absence! For example, appendix 1 of the

"Episodes" paper gives the protocol of a tape that had a 20-minute long

"wild goose chase" in which the students tried to calculate the area of a

geometric figure. At the end-of the tape they were asked how they would

use the result if they had it, and they could not say. Had they asked them-,

selves, at the moment they set out to do the calculation, what value it would

have, they might have avoided wasting their time. But they did not, and the

'solution was doomed from that point on. Now observe that, as one might

expect, conventional coding schemes record overt behaviors in a problem

protocol. While this seems to be_perfectly_natural, the_result_is _that

such frameworks bypass the critical element in the protocol described above:

the absence of evaluation at a "make or break" point in a solution. Such

systems will not point to the reason that the attempt failed. The general

idea is to discuss the impact of the (presence or absence of) assessments

and consequent decision making of the solution as a whole.

The idea behind the generation of the system is straightforward. Potential

"make or break" points in a solution occur whenever the direction of a solution

changes radically (when one approach is abandoned for another), or when new

*A qualitative "test" for capturing the essential elements in a protocol is
the following. After being given the analysis (coding) of the protocol, are
there "surprises" when one sees the tape for the first time? This particular
framework seems to pass the test. The other systems with which I am familiar
fail it miserably: it is nearly impossible to get a "feel" for what happened

from the string of coding symbols.
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information arises that might call for such a radical change. The system

is designed to identify those points, to characterize the behavior of the

students at those points, and to describe the effect of that behavior on

the solution.

A protocol is parsed into major "episodes." An episode represents a

body of consistent behavior on the part of the problem solver(s). Episodes

have one of six labels attached to them: reading, analysis, exploration,

planning/implementation, verification, and transition. Once a protocol

has been parsed into episodes, one category of "make or break" points

becomes obvious: any transition point between episodes is a potential

assessment/decision point. Other "executive" decions should be made at

"new information" points.

Appendix 2 provides the full analysis of a protocol, which is given in

appendix 3. This analysis promides an example of how the system works.

Most of the commentary ls self-explanatory.*

6. Discussion

The framework discussed above has proven itself reliable and, I believe,

reasonable informative. It seems to capture much of the "essence" of a problem

solving session, without getting lost in details. The macroscopic approach

allows one to get a sense of apparent causes of success or failure in a

*Letters preceding comments refer to specific parts of the framework. For
example, one asks three questions about any reading episode:

a. Have all of the conditions of the problem been noted? Explicitly or
implicitly?

b., Has the goal state been correctly noted? (Again, explicitly or implicitly?)
c. Is there an assessment of the current state of the problem solver's

knowledge relative to the problem solving task?
In virtually all cases, the questions that lie behind the comments in appendix
2 are clear. They are omitted to save space.
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problem solution, and points out the importance both of monitoring solutions

and of "executive" decisions in them. The framework is straightforward to

implement (three students, in concert, do most of the coding for me) and

reliable (their codings and mine have an intercoder reliability exceeding

85%). The framework is also generalizable: it is not domain-specific, and

can be adapted easily to study problem solving behavior in other disciplines.

However, some caveats are in order.

First of all, this particular methodology offers only one perspective on

the problem solving process. It should be coupled with a variety of others

(paper-and-pencil tests, clinical interviews to determine mathematical

abilities, different protocol methods and different levels of analysis, etc.)

in order to provide a reasonably comprehensive picture of problem solving

behavior.

Second, there are any number of dangers inherent in the gathering of

protocols. A few of these (for example, pathological behavior induced by

uncomfortableness, or bad social dynamics) were mentioned above. It is

nearly impossible to control for these, or even to be aware of them in any

particular protocol. Thus one must exercise extreme caution in providing

"purely cognitive" explanations for behavior.

Third, this was an exploratory methodology and has certain limitations.

It was non-interventionist, for example, in order to make the case that

assessments and managerial decisions play a critical role in determining the

success of problem solving attempts. Once that point has been granted,

one may well wish to explore "executive" behavior in more detail. I am now

trying a variant of the preceding methodology, as follows. A student is

first videotaped in the fashion described above. Then the student watches
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the videotape and critiques it, explaining the reasons for his or her behavior.

These explanations are probed in clinical fashion. This "mixed" methodology

will, I hope, allow for a more subtle elucidation of problem solving processes.

Summary

This paper has discussed some of the subtleties involved in the use of

verbal methodologies. It has examined in some detail the aims and rationales

of a particular methodology, two-person speak-aloud protocols without exper-

imenter intervention, and discussed a framework for analyzing such protocols.

Verbal methodologies, if used with care, can help to shed much light on

cognitive processes. It is hoped that this is a step in that direction.
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Appendix 1: A single-person protocol

(Reads problem): Estimate, as accurately as you can, how many cells might be in an
average-sized adult human body. What is a.reasonable upper estimate? A reasonable
lower estimate? How much faith do you have in your figures?

I'll think of some approaches I might take to it.

The first one might be just to go by parts of the body that are fairly
distinct and try to figure out...

My first possible approach to the problem might be to look at them as approximations
to geometric shapes and try to figure out the volume of each part of the body. And
then make a rough estimation of what I thought the volume cf a cell was and then try
to figure out how many cells fit in there.

I would say take the arm from the wrist up to shoulder and it's approximately a
cylinder and it's, I don't know, about 3 or 4 inches in diameter. So you would
have, its about 2 or 11/2 inches in radius, squared, times it and the volume of my
arm in square inches. So I've got two arms, so I've got two of those.

And now a leg. A leg...think this might be better...there's a little more variance,
so I would say a cone might be more appropriate. And the base of my leg is approx-
imately 6 or 7 inches in diameter so you would have 31/22 x it and the height would be...
what is my inseam size,about 32 or34. So you've got to have a 34, and it's a
cone so you've got to multiply it by 1/3.

And now the head is very, very roughly a sphere. And so you've got a sphere of...
I don't know how many. I don't know, maybe on the average 6" in diameter. That
may be a little small, maybe 7" in diameter. And so quick recognition of the
formula was 4/3 Trr3. So I've got 4/3 of whatever my head is cubed, I've got
3123, and what am I missing now?

Oh, torso...very important. Well a torso is...you could say is approximately
like a cylinder except with an oval base. So I could figure out what the area
may be around is, and I won't calculate this explicitly. Say my waist is about
34" and I could approximate it across here. And if I worked on it I could figure
out what the geometry of it of the volume of that ellipse.

S: Well, ',lake a ballpark estimate. I would like to have a nUmber just out of
curiosity.

So I've got an ellipse. This may take a while though because my geometry is
bad. I've got an ellipse with a perimeter of about 34, and major axis is some-
thing along the lines of 18" and the minor axis is maybe...I don't know...8"...
And...0h, geez...

Yea, it's going to be very messy. So I will dispense with that, and instead
make another rough estimate, and rather assume myself to be...well, I'm not going
to bother to do this, since it's not very exact, anyway. But I could draw a circle,
a little bit smaller than that maybe. Well that circle has got...how much...
something between 8 and 18, and looking at this I guess you have to stretch and
elongate it in the width more than the height...closer to 18...and say 14 in
diameter. So that would mean 7" in radius. So, I've got Tr x 49. And that would
be my guess for that and the height would be...I don't know...about 15.

Now, I've covered the torso, the two legs, and the ti& arms.
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Ok, for the hands. I'm going to have to make another -Jugh estimate. If I put
my hand into a fist I get a little cylinder of maybe an inch and a half and a
height of about 4. So I've got two hands with a height of 4, 7 and the radius of 3/2.

And I have no idea what I'm going to do with my feet. Well, you could make these
into little rectangular prisms. 4 x 2 x 10. No actually that looks about right.

Wp11, maybe the neck, if we're going to be precise about it is going to be 4"
in diameter, so we've got a 2" radius neck. So that would be 47r in area, in
volume of it. Yea, 411'2. And now I would add all these up. Do I have to add
them up too?

S: We'll just'call that number capital N, and then I'll get Mr. Knop's calculator
and we'll actually do it out of curiosity.

---0k, the number is N. Ok, now that I've got the volume of a body, now I've got
to figure out what the volume of a cell might be.

And it seems to me something along the lines (unclear). The diameter of a
hydrogen atom is like an angstrom unit, and that's something like ten to the minus
ten cm. And that's not going to be anything close to the size of a cell. So,
if I had to go with the size of a cell...this is a very rough estimate, it might
not even be in the right magnitude...it should be 10,000 to the inch or 10,J00
cells to the cm. Maybe I'll make a compromise and say 100,000 cells to the inch
is right. So that would give me 105. So each one is 105 in diameter, so we
snould call them spheres since that would make it simpler. I would have 105/22
times 7. Is that right? 105/2...you've got 105 to the inch so it would be
ten to the negative fifth inches over two for the radius...so square that and
multiply by 7. So you take that and divide it by Tr.

And I'm going to say that that should give you the volume, but somehow I'm
not convinced that that's the case. .Well, maybe it would be right because you're
going to nave a ten to the minus ten in the denominator there, and you multiply
these things are going to come out to a good 1000 or so. So hopefully a couple
thousand square inches or so when you multiply it...

The student was told that he had computed the area of a circle rather than the
volume of a sphere. He made the correction, and then computed all the volumes
with the help of a calculator (to 4 place accuracy before rounding off).
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Appendix 2*

The Full Analysis of a Protocol

Appendix 3 presents the full protocol of two students working on the

following problem:

Consider the set of all triangles whose perimeter is a fixed

-number, P. Of. these, which has the largest area? Justify

your answer as best you can.

Student K is the same Student that appeared in protocol 1. Student

0 (not the same as student 0 in protocol 2) was a freshmen with one semester

of calculus behind him. This protocol was taken at the end of my problem-

solving course., while protocols 1 and 2 were taken at the beginning.

The parsing of-protocol -3 is given in Figure 1 . The analysis given

below follows that parsing.

Insert Figure 1 abOut here

Episode 1 (Reading, items 1, 2)

a. The conditions were noted, explicitly.

b. The goal state was noted, but somewhat carelessly (items 10, 11).

c. There were no assessments, simply a jump into exploration.

Transition 1 (Null)

a, b, c, d. There were no serious assessments of either current

knowledge or of directions to come. These might have been costly, but were

nOt--assessments.did.come in E2.

Episode 2 (Exploration, items 3-17)

a. The explorations seemed vaguely goal-driven.

b. The actions seemed unfocused.

?*Tai.(en from Schoenfeld (in press).

4
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c, d. There was monitoring, at items 14-17. This grounded

the explorations, and led into Transition 2.

Transition 2 (Items 17-19)

a, b, c, d. Assessments were made both of what the students knew,

and of the utility of the conjecture they made. The result was the establish-

ment of a major direction:; try to prove that the equilateral triangle has the

desired property, and of a plan (episode 3). NOTE: If this seems inconsequen-

tial, contrast this behavior with the transition T
1

in protocol 1. The lack of

assessment there, in virtually identical circumstances, sent the students on a

20 minute wild goose chase:

Episode 3 (Plan, item 201

a. The plan is overt.

b. It is relevant and well structured. As to appropriateness and

assessment, see the discussion of T3.

Transition 3 (Null)

a, b. There was little of value preceding the p'an in item 20; the

questions are moot.

c. There was no assessment of the plan; there was immediate imple-

mentation.

d. The plan was relevant but only dealt with half of the problem:

showing the largest isosceles was the equilateral. The "other half" is to

show that the largest triangle must be isosceles, without which this part of

the solution is worthless. . .a point realized somewhat in item 72, 8 minutes

later. The result was a good deal of wasted effort. The entire solution was

not sabotaged, however, because monitoring and feedback mechanisms caused the

termination of the implementation episode (see the sequel),

17)
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Episode 4 (Implementation, items 21-72)

a. Implementation followed the lines set out in episode 3,

albeit in somewhat careless form. The conditions were somewhat muddled

as the first differentiation was set up. The next two local assessments

corrected for that (better late than never).

Local Assessment (Items 31-33)

1, 2, 3. The physically unrealistic answer caused a closer look at

the conditions--but not yet a global reassessment (possibly not called for yet.

Local Assessment, New Information (Item 40)

43;:g.

1, 2, 3. tRe-unew information" here was the realization that one of

the problem conditions had been omitted from their implementation ("we don't

set any conditions--we're leaving P out of that"). This sent them Pack to the

original plan, without global assessment. The cost: squandered energy until

item 72.

Local/Global Assessment (Item 72)

This closes E4. See T4.

Transition 4 (Items 72-81)

a, 5. The previous episode was abandoned, reasonably. The goal

of that episode, "show it's the equilateral," remained. This, too, was

reasonable.

c, d. They ease into Episode 5 in item 82. (It's difficult to say

how reasonable this is. Had they chosen something that didn't work, it

might have been considered meandering. But what they chose did work,)

Episode 5 (Plan/Implementation, items 82-100)

a, 5. "Set our base equal to something" is an obviously relevant

heuristic.
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c. They plunge ahead as usual.

d. The variational argument evolved in a semmingly natural way.

e. There was local assessment (item 95), That led to a rehearsal

of the sub-argument (item 96), from which 0 apparently "saw" the rest of the

solution. Further (item 100), 0 assesses the quality of the solution and his

confidence in the result.

Transition 5 (Items 100-105)

a, b, c, d; The sequel is most likely the result of a two-person

dialectic. It appears that D was content with his solution (perhaps pre-

maturely), although his clarity in explaining his argument in E6 suggests

he may have been justified.

Eoisode 6 (Verification, items 105-143)

This is not a verification episode in the usual sense. K's unwilling-

ness to rest until he understands forced D into a full rehearsal of the argu-

ment and a detailed explanation, the result being that they are both content

with the (correct) solution.

lsi



Appendix 3

Protocol 3

1. K: (Reads problem.) Consider the set of all triangles
whose perimeter is a fixed number, P. Of these,

which has the largest area? Justify your asser-

tion as best you can. All right now what do we

do?

2. 0: We got a triangle--well we know we label sides A,

B and C.

3. K: Right. I'll make it a right triangle--all right--
A,B, C and the relationship'sucti as that 1/2AB =

Area and A+B+C = P and A2 + 62 = C2 and somehow
you've got an area of one of these in the perimeter.

4. 0: Yeah,except for somehow--I mean I don't really know-
but I doubt that's the triangle of minimum area--
welT, o.k. we'll try it.

5. K: Largest area. Well, it is the only way we can
figure out the area.

6. 0: All right.

7. K: But for an isosceles we czn do almost the same thing.

Thic; So that we know that the area is
(A/2)C-(A/2, lrimeter = A + B + C and the
height equals C2-(A/2).

8. 0: All right.

9. K: Now what do we do. We've got to figure out the

largest area.

10. 0: Isn't it the minimum?

11. K: The largest area.

12, 0: So actually if we can get A--we have to get
everything in terms of one variable and take

the derivative, right? Basically?

13. K: Yeah,well--

14. 0: Well, I still don't know if we should do--I
mean we can find an area for this and can
find an area for that, granted, but if we

10,,
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ever come to a problem like this--I mean we
don't know--we have no idea as of yet with
a given perimeter what's going to be that.

15. K: Right.

16. D: So, there--I mean--you can do that again
but then what do you do?

17. K: Then we're stuck, right? Usually, you
know, you could probably take a guess as
to what kind of triangle it would be--like
you could say it is a right triangle or an
isosceles--I think it is an equilateral,
but I don't know how to prove it.

18. D: Umma.

19. K: So we have to figure out some way to try to
prove that.

20. D: All right, a good guess is that it is an
equilateral, then why don't we try an
isosceles and if we can find that these
two sides have to be equal to form the
maximum area, then we can find that--then
we should be able to prove that side also
has to be equal.

21. K: 0.k. so B will be equal to C, so the peri-
meter P = A + 2B, or A + 2C = P.

22. D: All right.

23. K: Ummmm.

24. D: See what we've got.

25. K: Fix A as a constant then we can do this,
solve that for C.

26. D: All right.

27. K: For a maxi e've got 1/2, let's

say A = 1, C -1/44xight? Maximum
area: 1/2(C2-1/4)'" = 0.

28. D: C
2
minus what?

29. K: (1/2)2, yeeh,(1/2)2. A/2, where A = 1, 0.k.?

1S3

29



30

30. D: Ah, ah.

31. K: Mumbling--this is 1/4(C
2
-1/4)

-1/2
. 2C, so we

know that 2C has to = 0 and C = 0 and we are

stuck!

32. 0: We should have taken a derivative in it and every-
thing, you think?

S

33. K: Yeah,that's the derivative of that. So does it

help us? My calculus doesn't seem to work any-

more.
ci

34. D. The thing is--pause--you are letting C be the
variable, holding A constant. So what was your

formula--1/2 base times square root.

35. K: The base A times the square root times the height
which is a right triangle to an isosceles which is

--so it is C -(A /2) which would give you this

height.

36. 0: A
2/4

, no, A
2/2

, no, (A/2)
2

.

37. K: Now about P = , ... no, C = P -A/2? Should we

try that--

38. 0: No, see part of the thing is, I think that for

here we're just saying we have a triangle, an
isosceles triangle, what is going to be the

largest area? Largest area.

39. K: Largest area--set its derivative equal to 0.

40. 0: All right. Well the largest area or the smallest
area--I mean--if we are going to take a derivative- -
I mean--what's going to happen is you have a base
and it's going to go down like that--I mean--we
don't set any conditions--we're leaving P out of

that.

41. K: Ah, ah.

42. 0: That's absolutely what we have to stick in.

43. K: We've got C and a P-A over 2.

44. D: P -A over 2.

45. K: Formula--isosceles.
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46, 0: A + 28 = P--all right?
)..

//V
47. K: Shall we try that--mumbling. -A over 2--we've got 14

/
10- Q )1- ,c--- ,

to have a minus 1/4 PA-- 2,-((5i TT

48. 0: Well, then you can put A back in--then you can have It./

everything in terms of A, right? Using this formula, C--PtLet.-e) a-)
we have the area and we have a--

2 2 1/2 I.( c,/

49. K: All right--P--so that's A/2(P -2A+A -A
2\

i and that's
4 4 /

A/2(P 2-2A ...(mumbling and figuring)
4.

/ P.44--)-(le
2, ( 4-47- (2,'F'2')4

50. 0: Wait a minute--you just took the derivative of this
right here?

51. K: This times the derivative of this plus this times (f;$1"-.

1.°the derivative of this. l 4

52. 0: Oh.

2
53. K: Mumbling and figuring...A/4

/
P -2A)

-1/2
(2P-2) +(13

2
-2A

\1/2
1#

4 \----T, 2.0- 2 ...4 -,2.4_
....-1-----

1/2 = 0...so 2AP-2A + P
2
-2A = O.

'`'4 8

54. 0: So can we get A in terms of P?

55. K: P2 --

56. 0: 8P
2

- 8P
2

bring the P
2
on this side and multiply it by

8 and we'll have a qudratic in terms--no we won't- -
then we can just have A we can factor out in the
equation--you see.

57. K: 0.k. P
2

58. 0: -8P
2
--oh, are we going to bring everything else to

the other side?

59. K: Yeah, 2A- +4A - 4AP x 8 - -No --

60. 0: ,That's not right. Well, the 8 we can just multiply- -

61. K: P2 = all this.

62, D: Right.

1 S)5
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63. K: P- - 4AP = --this isn't getting us anywhere.

64. 0: P
2
= factor out the A--then we can get A in terms of P.

65. K: P
2
= 2A--so you've got A = P

2
--

6 +4P
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66. D: So if we have an isosceles triangle and A has = to --

67. K: be equal to that-- L
Gtr

68. D: And if A has to be equal to that and 8 and C are equal--

69. K. So, B = --(whistles)

70. D: B = P- that.

71. K: 28 = P-A over 2.

72. D: No we aren't getting anything here--we're just
getting--thing is that we assumed B to be equal

to C so of course, I mean--that doesn't--we want
to find out if B is going to be equal to C and
we have a certain base--let's start all over, and

forget about this. All right, another triangle.

Certain altitude.

73, K: Well, let's try to assume that it is an equilateral

74. 0: All right.

75. K: Sides--mumbling--perimeter equals 3S, right?

76. 0: Yeah, but wait a minute--that's still not going
to really help us--what are we going to do --
simply assume that it is an equilateral. We're

just going to get that it is an equilateral, of
course it is going to be an equilateral if we

assume that.

77. K: True.

78. D: We want to prove that it is an equilateral if we

think it is. If we want to do anything we can- -

79. K: Yeah, how do you prove it?

80. D: Well, we can make up a perimeter--we don't need
a perimeter P, do we? So, --

81. K: Where are you going to get area formula in the

form of P?

a.
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82. D: We want to maximize the area so that we can prove--
o.k. we have the given base--we'll set our base
equal to something.

83. K: Yeah, mumbling, P, or something--I don't know.

84. D: Then the other two sides have to add up to P,

85. K: We--how about we say--let's start with an equi-
lateral, just for the hell of it--see what hap-
pens. You get 1/3P, 1/3P and 1/3P. And this
is 1/9 - 1/36 which is the height- -

86. D: Now the thing we want to do say--o.k. if we
shorten this side at all and then what's going
to happen to the height--if we leave this the
same.

87. K: We can't-shorten it.

88, D: And we shorten this side--sure we can- -

89. K: 'Well- -

90. D: We can have a--this equal to 1/3 and then a --
,this equal to--well you're going to have--I mean--

91, K: Aha.

92. D: This is going to get longer like that. Now we
can see from this that all that going to
happen is that the base is going to get shorter
so we know from that as far as leaving the base
constant goes if we move--if we shorten this side
then it is going to--somehow the point's going to
go down in either direction.

93. K: Semicircle.

94. D: Right. That proves that we have to have an
equilateral.

95. K: No, it proves an isosceles.

96. D: No, isosceles, I mean: All right from that if we,
set--we know that those two have to be equal so
if we set this base equal to anything--it doesn't
have to be 1/3P--we can also show that if thi
goes down--the area is going to get smaller, so
the constant base then the height is going to get
shorter and shorter and is getting smaller and

smaller actually.

1 °
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97. K: 0.k., o.k.

98. 0: In this case if it goes down to this side, we're
going to have again a smaller angle here, shorter

base here--and [noise].

99. K: So we get--so we know it is an equilateral--well

prove it.

100. D: I don't know that's not a rigorous proof, but it
is a proof--good enough for me.

101. K: Proves that an equilateral has the largest area.

102. D: ,Oh, we're talking about the largest area.

103. K: Yeah.

104. D: Oh, we just did.

105. K: We have to prove it has fixed number P--perimeter.

106. D: Well we already--we assdmed that we have a fixed

P, all right? I mean this is a proof as far as I.

107. K: Well, we've shown that an equilateral has the

largest area. We haven't shown that if you have
a certain set perimeter, let's say a right tri-

angle, with a perimeter which is the same--we
will not have a larger area.

108. 0: No, but we have because we have shown with the
set perimeter--o.k. we know that--

109. K: Well what if we have 3, 4, 5 with an equilateral

being 4, 4, 4--

110. D: 3, 4, 5 is what? Mumbling.
6 E

7E7
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111. K: 12. So this area will be 6 and this area will

be side squared 16. --o.k. that will have the

largest area.

112. D: What's that 1.7?

113. K: Yeah, 8 is still greater than 6 and that's greater

than 1.

114. D: Oh, yeah, that's right. Yeah, but the thing is

if wehave-a fixed dimension, we already showed
that, o.k. what is going to happen is as this

(.)
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side gets longer--say we use 4 as a base here,
so then what's going to happen--well say we use
3 as a base, just so we won't have an equilateral
when we are done--what's going to happen as 4 gets
longer and 5 gets shorter--it's going to go upwards.
The optimum area--the maximum area is going to be
right there. Because you've got--

115. K: Right.

116. 0: This angle and that height. If you make this angle
any less--maybe let me draw a picture--

117. K: I can understand that--this will give us largest
area, but how can we prove this bottom is one-
quarter--1/3 the area of the perimeter?

118. 0: Well, remember all the problems we've done where
we say--o.k. let me just start from here once more--
SQ that we have 3, 4, 5--is that what yofu have--be-
cause that's going_to be 5. Wasn't a very good 3,
4, 5 anyway. So you start out with 3, 4, 5--all
right, we pick the 3 has the base, right?

119. K: Aha.

120. D: Al' right, it's 5--mumbling--if we have 3 as the
base- -and this is a little bit off an isosceles,
but if we draw an isosceles as 3 as the base--o.k.
we've got a right angle--that's got to be the maxi-
mum--mumbling--(height?) because if it goes any--

121. K: Right.

122. 0: Over this way, it is going to go down.

123. K: 0.k.

124. 0: All right, so remember the argument we've used- -

well if we--

125. K: Yeah, I can show that, but what you're not showing

is--what you're not proving is that--

126. 0: That it has to be an equilateral?

127. K: Right. But you're not showing that this side is
1/3 the perimeter.
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128. 0: Right. I'm showing--first of all it has to be an

isosceles. Right.

129. K: Right.

130. 0: It has to be an isosceles--that means that we've got
these three sides and those two are equal -- right?

131. K:

132. 0: Right--so now I pick this side as my base--I
already picked--if that side is my base then the
maximum area would have to have an isosceles- -
so I turn around--this side is my--

133. K: That I understand as proof, but you're not show-
ing me that this is 1/3 the perimeter--mumbling.

134. 0: If we have an isosceles triangle--if we have an
equilateral triangle--then each side has to be
1/3 the perimeter--that's the whole thing about
an equilateral triangle.

135. K: I know--o.k.

136. 0: Firs: we know it must be an isosceles, right?

137. K:, Umma.

138. 0: O.k.

139. K: I urderstand this.

140. 0: If ;t is an isosceles, it must be an equilateral,
right?

141, K: All right.

142. 0: And if it must be an equilateral--all three
sides must be equal and if the perimeter is ?,
all three sides must be 1/3P.

143. K: O.k. I've got it.

j()
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1. Overview

This paper is one of two whose purpose is to delineate a series of

psychological and methodological issues related to the use of verbal methods

(clini.cal interviqws and protocol analyses) for research into human problem

solving processes. Both papers are based on the same foundation, the premise

that "purely cognitive" behavior is extremely rare, and that what is often

taken for pure cognition is actually shaped -- if not distorted -- by a

variety of factors. The companion paper (note 1) discusses a number of

variables that affect the generation and interpretation of verbal data,

for example the number of persons solving a problem, the nature of the

instructions to verbalize, and how comfortable the subject feels in the

experimental environment. This paper tries to place such methodologies in

a much broader context, in an attempt to explicate some of the "driving forces"

that generate the behaviors that we see. Briefly stated, the idea considered

here is that the cognitive behaviors we customarily study in experimental

fashion take place within, and are shaped by, a broad social-cognitive and

metacognitive matrix. That is, the tangible cognitive actions that we

,observe are often the result of consciously or unconsciously held beliefs

about (a) the task at hand, (b) the social environment within which the task

takes place, and (c) the individual problem solver's perception of self

and his or her relation to the task and the environment. It is argued that

the'behaviors we see must be interpreted in that light.

This is an exploratory discussion, an attempt to characterize some

of the dimensions of the matrix within which pure cognitions reside. The

discussion takes place in two parts. The first part outlines three quali-

tatively different levels of analysis that I think may be necessary to fully



make sense of verbal data, even when one's intentions are "purely cognitive."

These levels are described in section 2, and a brief analysis of some protocols

from that pec.spective is then given in section 3. In the second part

(sections 4 and 5) the discussion is broadened and I try to flesh out some

of the dimensions of the matrix. Much of what follows is highly speculative,

and a good deal of the "evidence" anecdotal. The idea is to point out some

of the pitfalls in current lines of inquiry, and to map out (one hopes)

some useful directions for future inquiry.

2. Background; a Framework

I wish to suggest here that three separate levels or types of analysis

may be necessary in order to obtain an accurate characterization of subjects'

problem solving performance from the analysis of "verbal data" that they

produce while solving problems * These are:

A. An analysis of "tactical" knowledge. This includes the facts,

procedures, domain-specific knowledge, and "local" heuristics

accessible to the individual.

B. An analysis of "control" knowledge and behavior, including

"strategic" or "executive" behavior and conscious metacognitive

knowledge.

C. An analysis of consciously and unconsciously held belief systems,

and the way that they "drive" problem solving behavior.

*There are, of course, many levels of analysis beyond those discussed here.n
At the microscopic level, see Monsell's [1981] review of what he c.11s the
"nuts and bolts of cognition:" representations, processes, and memory .}
mechanisms. At the very macroscopic level, there is the broad set .0 social
cooperative behaviors within which "real" problem solving actions often
take place. "Real world" problem solving, too, is beyond the scope of this
study. Here we shall focus on analyzing the protocols obtained from studentsunder relatively ideal laboratory situations.

11,4
4.-/ti



Each of these categories is described below. As background, however, it

is important to characterize some of the defining properties of the first

two categories, "tactical" and 'strategic" knowledge and decisions. Roughly,

the distinction is as follows. A strategic decision is a global choice,

one that in a substantive way affects the direction of a problem solution

and the allocation of resources (including time) to be used in a solution.
w

Such 'control" decisions include selecting goals and deciding to pursue

or abandon particular (large-scale) courses of action. In short, they are

decisions about what to do in a solution. In contrast, tactical knowledge

and procedures are used to implement the strategic decisions. They deal

with how to do what has been decided at the strategic level. Suppose, for

example, that a student working on a problem decides to calculate the area

of a particular region, or to "look at an easier related problem." If

doing so will occupy, say, five or more of the allotted twenty minutes for

solving the problem, that decision is strategic: it, alone, may "make or

break" the solution. On the other hand, the decisions regarding how to

implement that choice -- for example, whether to calculate the dimensions

of the region by trigonometry or analytic geometry, or which easier related

problem to explore -- are tactical. Note that in the latter case, the

implementation of a problem solving heuristic is considered a tactical

matter. This is non-standard. Some elaboration of the three categories

follows.

A. On Tactical Knowledge

This category is quite broad, including as subcategories the range

of facts and procedures that



are available to the individual for implementation in a problem solution.

A characterization of many of the relevant issues is given in Simon's

(1979) review article, "Information processing models of cognition."

Simon is primarily concerned with psyChological and AI simulations of expert

problem solving performance in semantically rich domains. He describes

the key issues as follows. "The central research questions are two:

(a) how much knowledge does an expert or professional in the domain have

stored in LTM [long term memory], and (b) how is that knowledge organized

and accessed so that it can be brought to bear on specific problems?"

The focus here is somewhat different since we are interested in analyzing

students' performance to determine sources of both success and failure.

But many of the issues are the same.

To begin with, one needs to know what domain-specific knowledge is

/Naccessible to the problem solver. If a student is solving a straightedge-

and-compass construction problem from plane geometry, for example, (see

protocols 1 and 2) does he or she know that the radius of a circle is per-

pendicular to the tangent line at the point of tangency? Whether the

student chooses to use that fact. is another matter, to be discussed later.

But (obviously) a solution that depends on that particular piece of

knowledge may evolve in radically different ways if the student does or

does not have it, and an evaluation of the solution depends on an adequate

characterization of the knowledge base. Similar comments apply to procedures

relevant for the solution of a problem. In the example just cited, does

the student know how to construct a perpendicular to a given line through

a given point? If the student does not recall the construction, does he

or she know that it can be done, so that deriving the construction is a



possibility? Or must that too be discovered? These factors determine the

potential evolution, and characterization, of a problem solving session.

After the question of the posession of factual and procedural knowledge

comes the question of access to it. The student may know that similar triangles

have certain properites, for example, but will the student "see" or even

look for similar triangles in a particular circumstance? Much "expert"

performance in given domains is attributed to the posession of certain

problem solving schemata; this is, indeed, the foundation of much AI research.

Questions of how to represent such "compiled" knowledge are open. Among

the approaches to representation "particularly worth describing [are]

the predicate calculus, production systems, semantic networks,and frames"

(Walker, 1981). All of these approaches take as given that there are certain
-,,

-egularities in experts' perceptions of problem situations, and oftappropriate

behavior in them. This perspective is substantiated in various ways in

the literature, for example with experimental results that experts in

physics (Chi, Feltovich, and Glaser, 1981) and mathematics (Schoenfeld

and Herrmann, in press) see through the "surface structure" of problems to

perceive "deep structure" similarities and approach the problems accordingly.

Moreover, students develop problem schemata that,may or may not be consistent

with those of experts (Hinsley, Hayes, and Simon, 1977; Silver, 1979), and

these schemata change with experience (Schoenfeld and Herrmann, in press).

For a characterization of the role of schemata in students' mathematical

problem solving performance, see Silver (in press).

There is yet one more level of tactical behavior, that of implementing

certain problem solving heuristics. Examples of these will be seen in

protocols 1 and 2. In a sense, these are nearly on a par with domain-
.



specific schemata. For example, "it is useful to assume that one has the

desired object and then to determine the properties it must have" is a

heuristic typically valuable in straightedge-and-compass constructions.

Its domain-specific implementation (draw the figure and see what properties

it has) is quite similar to the implementation of domain-specific schemata,

such as "look for congruent triangles when faced with a problem\Of this

nature." These heuristics, like the other categories of knowledge described

above, fall into the category of tools potentially accessible to the problem

solver. An inventory of these tools provides a characterization of what

the problem solver might be axle to use in approaching a problem. Which

of these tools are selected or discarded, how such decisions are made, and

what the impact of such decisions or the problem solving process is, is

the next level of analysis.

B. On "Control" Knowledge and Behavior

Two students, trying to determine the characteristics of the largest

triangle that can be inscribed in a given circle, guess that the equilateral

is the desired triangle and set out to calculate its area. They get enmeshed

in calculations and, when the 20-minute videocassette recording their

performance runs out of tape, are still calculating. Asked what good the

answer will do them, they cannot say. This is an extreme (although not

atypical) example of what might be called an "executive" or "control"

malfunction: one bad decision, unmcr.itored and unchecked, dooms an entire

solution to failure. What the students actually knew, and what they might

have done given the opportunity to employ that knowledge, becomes a moot

question. In contrast an expert working on an unfamiliar problem generates

a dozen potential "wild goose chases," but rejects all of them after



brief consideration. With some clumsiness, he solves a problem the students

did not -- although he began working on the problem with'imuch less domain-

specific knowledge than the students "objectively" had at their disposal.

\It can be argued that the expert's success and the students' failure were

due respectively to the presence and absence of productive "metacognitive"

behaviors (Schoenfeld, in press).

One of the early researchers to stress the importance of metacognition

as a major factor in cognitive performance, Flavell (1976, p. 232) characterized

it as follows:

I am engaging in metacognition...if I notice that I am having more
trouble learning A than B; if it strikes me that I should double-
check C before accepting it as a fact...metacognition refers,
among other things, to the active monitoring and consequent regu-
lation and organization of these processes to the cognitive objects
on which they bey.

For the most part, research in artificial intelligence has not dealt

directly with issues of metacognition as they are characterized here. This

is a subtle point, since many of the terms used in metacognition overlap

with those used in AI (see Brown's definition, below). But the usages differ.

Consider, for example, skilled problem solving in physics as modeled by

production systems (Larkin, McDermott, Simon, and Simon, 1980). The idea

is to model competent behavior in sufficient detail to be able to select

the "appropriate" behavior, a certainly enormous task. But issues of the type

that humans encounter when working on such problems -- "I've been doing

this for five minutes and it doesn't seem to be getting me anywhere; should

I perhaps take an entirely different perspective?" -- are not the focus of

such programs. They model behavior where such problematic performance is

not a "problem."

Likewise, there are difficult issues of strategy selection in any

f(4 c'
t, k..,
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resolution strategies" to determine precisely which production will "fire"

when the conditions for more than one production have been met, still

operates at a very different level than the one under consideration here.

Few programs deal with planning and monitoring at that level, although

there are many "planning" programs. One that does, and is worth singling

out for special notice, is the Hay9s-Roths'(1979) "opportunistic" model.

Typical planning procedures call --Jr leaving sequences of actions unspecified

until one is constrained to specify their order, and checking for conflicts

when one does so. A standard example is Sacerdoti's (1977) task, "paint

the ladder and the ceiling." If one tries to proceed in that order, painting

the ladaer precludes painting the ceiling. "Planning" means specifying

actions in efficient temporal order. Sacerdoti's "nets of actions hier-

archies" are designed to allow for flgshing out plans in such a way that

such impasses are avoided. This whole perspective, however, assumes that

one works in domains where plans are there to be "fleshed out" -- certainly

not a universal condition in problem solving. In contrast, the Hayes-Roths'

model is many-leveled and, if it is appropriate, shifts rapidly from con-

siderations at one level (do B before A, instead of the other way around)

to another (revising the entire plan structure because of an unforseen

major difficulty). This "opportunistic" model is highly stru:tured, but

also highly data-driven. It is open to the idea that one piece of new

information may cause one to see everything that came before in a new light,

and call for major reviqgons; that each piece of information, and the current

state(s) of affairs must be continually evaluated and acted upon. To my

knowledge, few other programs deal directly with this kind of issue.



There are, however, some programs that specifically separate what

have been called "knowledge" and "tactics" here. For example, Bundy and

Welham (1981) describe a technique called meta-level inference, in which

...inference is conducted at two levels simultaneously...The object
level encodes knowledge about the facts of the domain...while the
meta-level encodes control or strategic knowledge...What are the
advantages of this technique?

- The separation of factual and control information enhances the clarity
of the program and makes it more modular.
- All the power and flexibility of inference is available for controlling
search (p. 189).

This perspective is at least sympathetic to the separation of

"tactics" and "strategies" described above. It is ui alternative to the

production model system, where the decision-making resides in the nature'

of the productions.

There has recently been much discussion of metacognitive issues in

the psychological literature. The bulk of such research has focused on

metamemory (one's awareness of how he or she stores and retrieves information),

and much of that work has been developmental. See Brown (1978) for an

overview of the relevant literature. Research suggests that the use of

self-regulation is a :arge component of older children's successful memory

performance (Brown and DeLoache, 1978). Speaking in general, Brown (1978)

describes metacognitive behaviors as "those attributed to the executive in

many theories of human and machine intelligence: predicting, checking,

monitoring, reality testing, and coordination and control of deliberate

attempts to solve problems. I believe that these are the basic character-

istics of thinking efficiently in a wide range of learning situations."

One can hardly disagree. Moreover, the converse must be stressed. Just

as the presence of such behaviors' may promote efficient problem solving,

the absence of them may doom problem solvers to failure. Discussions of

200
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metacognition in broad problem solving domains are rare. See Schoenfeld

(in press) for one attempt in that direction, and Silver (nose 2) for an

overview of the issue. Note that metacognitive acts are generally taken to

be conscious. The sequel will argue that unconscious determinants of cognitive

performance must be taken into account as well.

C. On Belief Systems

Ulric Neisser begins the article "General, Academic, and Artificial

Intelligence" (1976) with the following dialogue. It was taken from Cole,

Gay, Glick, and Sharp's (1971) study of cognit;on in a Liberian people

called the Kpelle.

Experimenter: Flumo and Yakpalo !always drink cane juice (rum)
together. Flumo is drinking cane juice. is Yakpalo drinking
cane juice?

Subject: Flumo and Yakpalo drink cane juice together, but the time
Flumo was,drinking the first one Yakpalo was not there on that day.

Experimenter: But I told you that Flumo.and Yakpalo always drink
cane juice together. One day Flumo was drinking cane juice.
Was Yakpalo drinking cane juice that day?

Subject: The day Flumo was drinking the cane juice Yakpalo was not
there on that day.

Experimenter: What is the reason?

Subject: The reason is that Yakpalo went to his, farm on that day
and Flumo remained in town that day (Cole et. al., 1971, pp 187-188).

The point Neisser wishes to stress is that the subject's answers

are intelligent, although they are not directly responsive. "The respondents

do not accept a ground rule that is virtually automatic with us: 'base

your answer on the terms defined by the questioner,' People who go to school

(in Kpelieland or elsewhere) learn to work within the fixed limitations of

this ground rule, beciuse of the particular nature of school experience"

(p. 136). There are, Neisser argues, many dimensions to "intelligence"
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beyohd the types of (academic) intelligence measured by IQ tests, the

(artificial) intelligence modeled in computer programs,. and the "purely .

cognitive" intelligence studied in psychological laboratories. Of course

anthropologists take that as given (see, e.g. Cole, et. al., 1971, or

Lave, 1980) and some cognitive scientists have urged that the range of

cognitive investigations be substantially broadened (e.g. Norman, 1979)..

The dialogue quoted above serves to make another point as well, one

that bears directly on current methodological issues. In the dialogue we

see a clash of belief systems, where the participants see the "ground rules"

for their exchange in rather different ways. Were the experimenter to

declare the subject "unintelligent" because he did not answer the questions

as they were posed, we would argue that he missed the point: the responses

must be interpreted in the context of the social environment that generated

them, and not simply evaluated is "pure cognitions." I shall argue here

that the same poIrt holds in many of our methodologically "clean" laboratory

studies, and that much of what we take to be "pure cognition' is often

shaped by a variety of subtle but powerful factors. These factors may

include the subject's response to the pressure of being recorded (resulting

in a need to produce something for the microphone), his or her beliefs about

the nature of the experimental setting (certain methods are considered

"legitimate" for solving problems in a formal setting, others not), and the

subject's beliefs about the nature of the discipline itself' (is mathematical

proof useful, for example, or a waste of time:?). This network of beliefs

provides the context within which verbal data are produced, and an_under-

standing of that context is essential for the accurate interpretation of

those data.

It shop" Kr_ clear that these comments are not meant as a blaaat

- 0.
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a postiori challenge to the accuracy of studies that have relied upon the

interpretation of verbal data. It may well be that the issue of belief

systems is moot in a number of contexts -- for- example, in the analysis

of experts' verbal protocols for purposes of constructing artificial

intelligence programs. Experimenters tend to find their subjects among

their colleagues, who are generally familiar with and sympathetic to the

methodologies being used for protocol collection. It is unlikely, there-

fore, that an unsuspected difference in belief systems between experimenter

and subject will result in the misinterpretation of the verbal data. The

situation may be quite different, however, when students are the source of

that data and the task at hand is tc interpret (in the large) what they

have prodUced. A miscellany of examples that document this point are

offered in/section 4. Some less "impressive" but more typical protocols

are discussed, from the perspectives at all three levels, in the next section.

3. A discussion of three problem solving protocols

Appendik 1 gives a protocol obtained from two students working on

a straightedge-and-compass construction problem in plane geometry, recorded

the second day of a problem solving course. The students were friends,

and felt comfortable working with each other. They were both college freshmen,

and had both just completed a course in first-semester calculus. They had

taken the "standard" geometry courses in high school. Appendix 2 gives

a protocol recorded by the same pair of students a month later, after the

intensive problem-solving course. (See Schoenfeld [1982] for a brief

description.) Geometric constructions were one of the topics discussed in

the course. The students had read chapter 1 of POlya's Mathematical Discovery

VI 0
t.) t)
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(1962), and worked perhaps a dozen construction problems. Appendix 3

gives a protocol obtained from a professional mathematician who had not

"done" any plane geometry for a number of years. The protocols are them-

selves quite eloquent. The discussion is brief, serving to illustrate some

of the points made in section 2. Each of'the comments made here needs to

be elaborated in far greater detail. A rigorous quantitative model is in

the works.

I would like to begin with a general discussion of students' behavior

on problems like the one given in appendix 1. From my perspective, the

most telling information regarding their behavior is derived at the level

of belief systems. Students' actions are shaped by th_ir beliefs about the

way that one solves geometric construction problems and about the role of

"proof" in mathematical problem solving. In my experience, the following

collection of beliefs about geometric construction problems is nearly universal

among college freshmen who have completed at least one semester of calculus

and who had, in high school, studied the "standard" 10th grade year of geometry.*

This characterization mflects an almost pre - Socratic, purely empiricist

perspective.

a. insight comes from very accurate drawings. The more accurate
the drawing, the more likely one is to derive useful information
from it.

b. Hypothetical solutions come from dominant perceptual features of
the, drawings. Plausible hypotheses are ranked by their simplicity

*Note that the students may not be consciously aware of holding those beliefs,
in the same way that the Kpellan native quoted above may not be conscious of
the "rules" that frame his discourse. In some protocols there is clear evidence
(e.g. "How can I prove that? I know, I'll construct the circle."). Much of
the evidence is indirect, however. A more precise statement about the belief
systems is that the students' behavior is strongly consistent with the predic-
tions of a model based on those beliefs. The model is briefly outlined here.
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tIr "intuitive apprehensibility:" if you can "see your way"
more clearly to the end of one plausible construction than another,
the first will be ranked higher and tested first.

c. Plausible hypotheses are tested seriatum: hypothesis 1 is tested
until it is accepted or rejected, then hypothesis 2, and so on.

d. Verification is purely empirical. Hypotheses about constructions
are tested by performing the indicated constructions. If the
construction appears to provide the desired result, then it is
correct.

e-. Mathematical proof is irrelevant to both the discovery and (personal)
verification process. If absolutely necessary (i.e. the teacher
demands it) one can probably prove that a particular construction
works. But this is simply "playing by the rules of the game,"
verifying formally what one already knows (empirically) to,be
correct.

If one accepts (a) through (e) as the "ground rules" for constructions,

one can predict stereotypical performance. Consider the problem given in

protocol 1: Construct the circle that is tangent to the two lineci in figure

1, and that has the point P as its point of tangency to one of them.

--figure 1--

Among the features of this problem that may catch the student's attention are:

Fl: The radius of the desired circle is perwndicular to the too line
at the point P. (a recalled fact).

F2: The radius of the desired circle is perpendicular to the bottom
line at the point of tangency.
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F3: By some sort of perceived symmetry, the point of tangency P'
on the bottom line is directly opposite P.

F4: Any "reasonable looking" line segment originating at P and terminating
on the bottom line is likely to be the diameter of the desired circle.

F5: Again by perceived symmetry, the center of the desired circle seems
to be halfway between the two lines, and thus on the angle bisector.

F6: The center of the circle lies on the arc swung from the vertex that
passes through P.

Of these six features, F4 and F5 are perceptually dominant (and F6 is generally

invoked only after F5, when one tries to identify which point on the angle

bisector is the center). See figures 2a.and 2b.

.

Which ,)int on this line is

the endpoint of.the diameter?

F4 Dominates

--figure 2a--

Which point on this line is
the center of the circle?

F5 Dominates

--figure 2b--

Various combinations of the features listed above yield hypothetical

solu ions to the problem. For example, F4 combines with Fl, F2, and F3

respe tively to generate the following hypotheses:

The diameter of the desired circle is...

H : the line segment between the two lines that is perpendicular to P.

H2\ the segment from P perpendicular to the bottom line.
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H3: the segment from P to P'.

Likewise, F5 combines with Fl, F2, F3, and F6 to yield the following:

The center of the `desired circle is at the intersection of the vertex angle

bisector and...

H4: the perpendicular-to P.

H5: the perpendicular from P.

H6: the segment from P to P'.

H7: the s.rd from the vertex that passes through P.

Finally, the non=dominant features Fl, F2, and F3 combine to yield

H8: The center of the circle lies on the intersection of the per-
pendiculars to P and P'.

e,

I shall argue here that the students' belief systems, as represented in (a)

through (e) above, determine which of the hypotheses students will consider

and in what order, and how they will test them. The following observations

are major determinants of the predictions.

1. The set of candidate hypotheses is generated, of course, by the

set of features that have been observed. Thus H4 through H7 can become

candidates only when F5 has been noted, etc.

2. Empirically, F4 is a default condition if F5 is not noted. That

is, if students do not "see" the angle bisector, they will automatically be

channeled to one of H1, H2, H3, and H8.

3. H8 is less intuitively "apprehensible than any of the othe'r hypotheses,

being the combination of three non-dominant features.

There are a number of other observations necessary for a complete model

(for example, H5 is the least physically plausible of H4-H7), but the ones

listed here suffice to indicate how it works. For example, suppose that a
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stereotypical ones. This protocol is better than average (!) in a number

of ways. It is relatively free of the types of pathologies described in

section 4. The students work well together, and concentrate on the problem

for the full twenty minutes allotted for it. Most importantly, these

students demonstrate much better awareness and control of their own problem

solving processes than most (see in contrast protocols 1 and 2 in Schoenfeld,

in press). Their strategic and metacognitive behaviors work reasonably well --

but working within the context generated by the belief systems, these behaviors

can only work to limited effect. The following is a brief running commentary.

T begins by sketching in the desired circle (Item 1), and there is

a clear attempt to make sure that she and L understand the problem statement.

Tnis deliberateness in guaranteeing that they "understand" is respotable

"control" behavior, in contrast to the impulsive actions taken by many

..students in similar circumstances.

By item 4, tne sketched-in circle is erased: it was "legitimate"

as an aid to Understanding, but (according to their belief systems) does

not belong in the figure as a proper part of working the problem. In

item 5 feature F4 and the associated conjecture are introduced.

Here the dialogue is unusual ir, two ways. First, the students do

not attend to F2 or F3, and are thus deprived of the opportunity to verify their

conjecture empirically. Second, T actually raises plausible objections

to the conjecture (items 5 and 8), and a meta-level dialogue ensues.

This is certainly respectable executive behavior. But then the students

spend 21/2 minutes with straightedge and compass trying to resolve the

dilemma.

Their construction "looks right" (item 11) but they again recognize



that this one example does not guarantee validity in general. There is

an attempt to exploit a related problem in items 14-24, again indicating

some sophistication. Then five minutes (items 25-41) are spent in empirical

work, resulting (finally) in the rejection of the initial hypothesis.

The rejection, is, however, substantiated theoretically (the tangents to

the endpoints of a diameter m st be parallel).

In item 43 comes the b lated recognition of Fl, which again is

combined with F4 to generate Hl. The enthusiastic jump into implementation

(items 45-50) may be in part a result of desperation, as well as the

declaration that using a ruler to draw a right angle is "legal" (items

62-63). Yet items 56-57 and 61-63 say a great deal about students' perceptions

of the nature of "being mathematical." Contrast this with protocol 3.

Conjecture Hl is again evaluated empirically, and the control,
functions are again relegated to performing post mortemsi e.g. items

80-83. There is again a reference to the related problem (item 89),

and -- as if we need any more evidence -- an indication that their approach

to that problem was also purely empirical.* The solution degenerates

from there. I wish to stress here that (a) the students did, as determined

later, have an adequate factual knowledge to be able to solve the problem,

and (b) their meta-level behaviors, as indicated in items 1, 6-8, 12,

14, 40-41, 80-83 and 89, are generally most respectable. The major

"difficulty" is the very approach they take

In contrast let us look briefly at protocol 3, where a mathema-

*That comment is important in the following sense. It indicates that their
behavior in this experimental environment is similar to their behavior when
working on the problems in their own rooms. In view of some of the examples
in section 4, this is non-trivial.
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tician works on the problem the students alluded to in item 14. It is,
u

.essentially, the same problem. A number of factors may contribute to the

mathematician's success: better control behavior, more reliable recall

of relevant facts, and (not to be underestimated) more confidence. But

most important is the basic approa hat the mathematician takes: he

derives the information he needs tnrou n the use of proof-like procedures.

Note that he is looking for congruence ("there've got to be congruent

triangles in here.") long before there is a.conjecture to "verify."

Rather than being an afterthought or a method of verification, proof is

a means of discovery for him.* The non-empirical nature of his approach

is made emphatically clear the last line of the protocols, where performing

the construction is the operation that is relegated to the status of an

afterthought. He is certain the construction will work.

In protoco,,2 we see an indication of the "intermediate" status

of the students after a month of problem-solving instruction. The course

focused on heuristic and executive problem solving strategies. Some of

these are evident in the protocol; some were present before the course.

Proof was often discussed in the course, but in the usual way: "Yes it

seems that way, but how do you know it will always be true?"

Objectively the students' behavior in this protocol compares favorably

with their behavior in protocol 1, along all three of the dimensions

outlined in section 2. Their recall of relevant facts (e.g. that the radius

of a circle is perpendicular to any tangent at the point of tangency,

*It was Polya, I believe, who defined geometry as the art of "right reasoning
on wrong figures" -- clearly the mathematician's perspective, and antichetical,
to the students' belief systems.
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item 69) is more assured, and called into play at appropriate times.

Domain-specific procedural knowledge is also more accurate, and they are

confident about their abilities to perform the appropriate constructions.

However, these were not disabling factors in protocol 1 and only tell a

small part of the story.

There is a telling difference in their performance at the heuristic

level. A few years ago that difference would have tempted me to attribute

their success to the heuristics that they had learned. They draw a picture

of the goal state to determine what properties it has (items 14ff.),

look at extreme cases (items 34-46), consider only obtaining partial
AP

fulfillment of the conditions (item 52), and so on. The first of these

heuristics alone might have guaranteed success in problem 1. However,

there is a good deal more.

Their strategic (meta-level) behavior is quite good, as it was in

protocol 1, They monitor and assess both the state of their knowledge

and the state of the solution with some regularity (e.g. item 71), and avoid

the kinds of "wild goose chases" that often guarantee failure for less

sophisticated students. Here, in fact, control behaviors become a positive

force in the evolution of the solution. At the very beginning (item 20),

empiricism is put in its place. Time constraints are taken into account:

in item 63 the expedient of using the markings on a ruler is acknowledged

as "illegal" but used anyway -- they could bisect the line if they had

to. They know that they are supposed to prove that their constructions

"work," and predict early on that they can "do it with similar triangles

and things" (item 72). In this context proof is still regarded as a means

of verification, to be used after one is convinced he or she knows the
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answer. The convincing comes by means of grid sketch?; and "gut feeling,"

however, not by perfect constructions. 'Proof t- construction" is clearly

put to rest in item 78.

It is tempting, then, to argue that the control sOateies serve

as enabling factors, allowing the students to employ their ta,.:tical

knowledge with some success. Certainly the absence of efficient control

behaviors would have sabotaged_ their attempts (Schoenfeld, in press). However,

the discussion in the previous paragraph indicates that the control behaviors

were operating within the context of new beliefs regarding proof and empiricism.

Had those belief systems not changed, the control strategies could not have

operated the way that they did. One can conjecture that without this change

in belief systems their strategic behavior would still resemble their behavior

in protocol 1 -- even if, say, they had been given a review of basic facts

and procedures, and taken a course that stressed meta-level problem solving

skills. Moreover, belief systems may affect the selection of "tactical"

resources. For example, one will only select the heuristic "assume that one

has the desired object and determine the properties it must have" if one

believes that one can derive (prove?) useful information. The student with

a purely empirical perspective will not think to implement the strategy.

This brief discussion serves merely to raise a host of questions.

It is not meant to minimize the importance of tactical or strategic knowledge,

but to indicate that a third and often hidden level of An?.lysi.s must also

be taken into account when one analyzes problem solving behavior. As

indicated in section 2C, there may well be contexts in which one level of

behavior predominates: the tactical in AI "expert" simulations, the strategic

.in "wild goose chase" solutions, and belief systems in protocol 1. Even
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in this "purely cognitive" kind of investigation, other than pure cognitions

must betaken into a-count. But this is only the beginning, as the next

section indicates.

4. The Matrix Within Which Pure Cognition Resides

While the previous section raises some questions about the inter-

pretation of verbal data, it does not at all challenge their legitimacy.

That is, the discussion was predicated on the assumptions that (1) protocols

like those in appendices 1 through 3 provide an accurate reflection of

the cognitions and behaviors of the people who produced them, and (2) in

turn, models of behavior based on such protocols (for example, the model

outlined at the beginning of section 3) thus reflect the subjects' behavior

with some accuracy. In the case of the particular protocols discussed, I

am reasonably confident that this is the case. In general, I am much less

sanguine about the "legitimacy" of verbal data, even of some data obtained

in methodologically "clean" settings.

Of course this issue is not new. Methodological battles were waged,

for example, over the legitimacy of introspection as a means of character-

izing cognitive processes. "We have also long known, both from experiments

and everyday experience, how subjects' behaviors are affected by expectation,

context, and measurement procedures. The notion that there can be 'neutral'

methods for gathering data has been refuted decisively" (Ericsson and Simon,

1981, p. 17). That point granted, the question then becomes one of the

intrusiveness of various experimental methods. For example, it is generally

acknowledged that asking subjects to analyze their problem solving processes

while they work oh problems does have measurable effects on performance.

However, the current literatureindicates that sufficiently "bland" instruc-



24

tions may not have a measurable effect on data gatnered in the laboratory:

subjects who are instructed simply to "talk out loud" as they solve problems,

and not to interpret or explain, will yield essentially the same performance

that they would have if they were not speaking out loud (Ericsson and Simon,

1980).

There is, in that last sentence, a very subtle but powerful disclaimer

that is revealed by the following. In 1978 I made a series of recordings

of students solving the following problem out loud.

Estimate, as Sccurately as you can, how many cells might be in an
average-sized adult human body. What is a reasonable upper estimate?
A reasonable lower estimate? How much faith do you have in your
figures?

The problem is a particular favorite of mine, an excellent task

to use for examining cognitive strategies and memory searches. It tan,

actually, be solved without any special technical information. One wants

good estimates for "average human body volume" and "average cell volume,"

under the assumption that there are such things. Since there will be a

huge amount of guesswork on cell volume, body volume can be roughly approx-

imated: a box with dimensions 6' x 6" x 18" will be close enough (probably

within a factor of two) to the actual average.* With regard to cell size,

we can see the markings of a ruler down to 1/32" so perhaps 1/50" is a lower

limit to what we can see clearly without "help." Cells were discovered with

early microscopes, which must have been greater than 10 power (magnifying

glasses probably give about 5 power) and less than 100 power. So a "canonical

cell" (say a cube) must be between 1/00" and 1/5000" on a side. The rest

*A more accurate figure can be obtained by taking an estimate of average
body weight (say 150 pounds)and converting it to volume. Since the human
body (barely) floats, its density is close to 1. However, the point is that
there is no need to be so precise: this degree of specificity is an indulgence.
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is arithmetic.

My first set of subjects were junior and senior college mathematics

majors. The students knew me reasonably well and were familiar with my

work. Some had done protocol recording themselves, as parts of senior

projects. I took all of the appropriate precautions to set them at ease

for the recording sessions, and recorded them working on the problem one

at a time. See Note 1 for a representative protocol.

Typically, students would quickly choose volume as the quantity to

compute. After brief consideration they would decide to compute body volume

first, and would then begin extraordinarily detailed computations. Generally

an "average" body (most often their own) would be approximated by a series

of geometric solids whose volume was rigorously calculated. For example:

and now a leg...a cone might be more appropriate. And the base of
my leg is approximately6 or 7 inches in diameter so you would have
(31/2)2 x Tr and the height would be...what is my inseam size, about
32 or 34. So you've got to have a 34 and it's a cone so you've got
to multiply it by one third.

In sharp contrast to their meticulous calculations of body volumes,

the students' estimates of cell size were (1) crude and (2) not accompanied

by estimates of how accurate they might be. For.e>iample: "All right, I

know I can see 1/16 of an inch on a ruler, so say a.cell is 1 /100 of an inch

on a side." The students spent the great majority of their time making

estimates of body volume. These results, though puzzling, were remarkably

consistent.

Later in the year I began making recordings with-pairs of students

solving problems together. I recorded perhaps two dozen pairs of students,

who solved the same problem after receiving nearly identical instructions.

Not once did a pair of students demonstrate the kind of Lehavior I have just

1.) 1
-a. 0
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described. With hindsight, it became apparent that the behavior in the

single-student protocols was not a reflection of their "typical" cognitions.

Rather, their behavior was pathological -- and the pathology was induced

by the experimental setting itself. This problem upset the students,

because they had no idea of how to approach it. Feeling on trial to

produce something for a mathematics professor, they responded to the pressure .

by doing the only mathematics they could think of unaer the circumstances:

computing volumes of solids. This, at least, was demonstrating mathematical

behavior! (71-a students in two-person protocols manage to dissipate the

environmental pressure between themselves, and thus to avoid extreme mani-

festations of pathology.)

I have dwelled on this example at length because it indicates the

subtle difficulties inherent in protocol analysis. When I discovered the

social causes that I now belie4e explain the students' behavior, I was on

the verge of writing a paper describing (a) their surprising inability to

make "order of magnitude" calculations, and (b) their poor allocation of

strategic resources in problem solving. In hindsight this "purely cognitive"

explanation of their verbal data would make no more sense than "objectively"

assigning a low IQ score to the Kpellan native quoted in section 2C on

the basis of his responses to the experimenter's questions. We need not

travel to Liberia; clashes in belief systems between experimenter and subject

occur here in our own laboratories.

Since the length of this paper has already grown out of hand, the

rest of the discussion will be very brief. My int2'ltion is to sketch out

some of the dimensions of the matrix within which "pure cognition" resides.

A broad outline of it, given in the form of a mathematical cross product,

is given in figure 3.

4) 1 IN
"- -a.
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X DEGREE OF AWARENESS)) .
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Unaware

Aware but
non-reflective

locally aware and
reflective (monitor-
in and assessment)

Reflexive Abstraction

The column on the left of figure 3 represents an "objective"

description of the problem setting, the product of the two'columns on

the right the set of "driving forces" that operate-in and on the setting.

We take one column at a time.

The first column is familiar. In the best of circumstances, this is

all that one need be concerned with. "Task variables" can be described

objectively, and the environment as well. "Cognitive structures" are the

focus of customary laboratory investigations: facts, procedures, and

strategies. Under the assumption that laboratory investigations provide

an accurate reflection of problem solving behavior,-the investigator's

focus can be on the overt manifestations of these cognitive structures.

In this,context the issue is more delicate: one must (somehow) ascertain

the set of facts, procedures, and strategies that are potentially accessible

to the problem solver.

The second column deals with belief systems. Some ideas about belief

systems have reached the level of folk wisdom: for example, the notion

that, through perseverance, a person will turn the belief in his or her

ultimate success into self-fulfilling prophecy. A student's belief in his
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or her ultimate failure will affect the verbal data one obtains as well:

I have videotapes of students who never seriously engaged themselves with

a problem, in order to later rationalize what they saw as their inevitable

failure. (This has been admitted to me, long after taping, by more than

one student.) Beliefs about the very nature of facts and procedures will

determine students' performance. The student who believes that mathematical

knowledge must be remembered will be stymied when a particular object (say

a procedure for constructing a line parallel to a given line) is forgotten,

while another who believes that the procedure can be derived will act

rather differently. The effects of strategic and task-related beliefs

(one approaches constructions empirically, etc.) were considered in section 3.

And the effect of beliefs about the environment (one must produce mathematics

when one is solving problems for a mathematics professor!) were the causes

of the pathological examples that began this section. These examples barely

scratch the surface, of course. But the point is tnat if we wish to describe

behavior as it occurs, we must worry about such things.

The third column reflects the degree to which the individual is

aware of his or her knowledge and belief systems. This column represents an

important extension of the current literature on metacognition, which_ focuses

on individuals' conscious "control* activities. The discussion of unconcious

determinants of behavior is vital for the following reason: one can only

act upon those beliefs of which one is aware. As long as the students in

protocol 1 believed that discovery and proof in geometry are purely empirical,

they would continue to approach problems that way. Once they were made aware

of that belief (and that other possibilities exist) they could change their

behavior. Similarly, students who are aware that they can monitor and assess
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their own cognitive strategies can, then, serve as active agents in their own

growth. Making students aware of their own (and competing) beliefs may be

one of the most valuable functions we can perform as educators. In fact, it

may be necessary to do so if we expect them to hear what we say in the classroom.

5. Discussion

This paper covered a huge amount of territory, much of it at break-

-neck speed. First let me highlight some of the methodological issues.

A. As indicated in section 2, there are at least three qualitatively

different levels at which one can analyze verbal data. Depending on circum-

stances, one level or another may provide the "key" to understanding what

happens in a given protocol. Examples of primarily "tactical" protocols

are those gathered from experts working on routine tasks in familiar domains,

e.g. those in Larkin, McDermott, Simon, and Simon (1980). Examples. of

primarily "strategic" or executive protocols are those where students go

off on "wild goose ch.'ses," e.g. those in Schoenfeld (in press). An example

where belief systems provide the primary level of analysis (protocol 1) was

discussed in section 3. A comprehensive discussion of verbal data requires

the consideration of all three levels.*

B. Belief systems can be modeled. Such models exist, for example, in

decision theory. Kahneman and Tversky's (1979) prospect theory includes

computational models of decision-making that take into account subjects'

belief systems. The gain or loss of the same dollar amount (say $1000)

*This is oversimplified, of course. Belief systems may have served to
"explain" most of protocol 1, but protocol 2 provided a (perhaps more typical)
example of the dynamic interplay among the different levels. The "real"
question, as I see it, is: what accounts for the differences in problem
solving performance between the two tapes? This question is of nearly over-

- whelming complexity. This framework offers, I hope, a first step towards
unraveling it.
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are not viewed in the same subjective terms: generally, loss is more

traumatic. Similarly, winning $2000 may not have twice the emotional value

of winning $1000. Prospect theory assigns to each of the dollar amounts

above its subjective value (say, for example, -1200 for the loss of $1000,

+800 for the gain of $1000, and +1450 for the gain of $2000). These figures

are used to make computations of "subjective expected utility," which have

reasonably good predictive power.

I believe that rigorous models characterizing the effects of belief

systems on problem solving behavior can be made, and that these models

will have both ecological validity and predictive power. The discussion

of "typical" student behavior on geometry constructions that began section

3 is, in essence, a prospectus for that kind of model.

C. Great care must be taken in the interpretation of verbal data.

It may well be true that, with sufficiently bland instructions, students'

performance in the laboratory may not be measurably changed by speaking

"out loud" as they solve problems. But the behavior that they produce

may be completely abnormal -- even if it is consistent enough to model wit,

great accuracy. Under such circumstances, we may simply be modeling abnormal

pathology in the name of cognition. Again, the issue may be moot where

the belief systems of the people on both sides of the microphone coincide

(With experts generating protocols for their colleagues' simulations).
4

But the more alien the setting for the subject, the more likely it is that

th data will be "driven" by covert beliefs that skew its meaning (see

Note 1).

The second set of issues deals with applications of cognitive research
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to educational research and development. Here the potential for the

misunderstanding and misapplication of basic cognitive research is enormous.

There are dangers in adapting both the methods and results of much current

research to educational settings.

D. Resear:chers in education increasingly rely on "verbal methods"

such as protocol analysis for their research, using for their analyses

the successful analytical tools and perspectives derived from AI and

information processing research. Yet the goals and the contexts of such

studies can be substantially different. In much AI work the goal is to

model idealized, purely cognitive behavior. Both the subjects and the tasks

are selected to facilitate this kind of modeling, and a "purely cognitive"

approach appears to be sufficient. In educational work, characterizing

"idealized" intellectual behavior is only one component of a much larger

enterprise. If one wishes to affect students' behavior, one must be able

to describe it accurately and to characterize what causes it -- and it

would appear that belief systems are a major driving force in students'

behavior. Any framework that ignores them -- regardless of how accurate

,
it is in other contexts -- can result in the severe distortion and misinter-

' pretation of the data.

E. The applications of cognitive research to schooling must take

into account the context in which cognitions are embedded. The brief

discussion of figure 1 in section 4 is an attempt to sketch out the range

of issues that must be taken into account if our increasing knowledge

about cognition is to be employed usefully in the schools. There are any

number of examples regarding that context. Jean Lave (Note 3) reports

that people's use of arithmetic in everyday situations does not correlate
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well with their scores on paper-and-pencil tests of it. Dick Lesh (Note

4) reports that students' problem solving behavior when dealing with "real"

problems bears little or no relation to their "academic" problem solving

behavior. Neisser (1976) argues the point in general.

F. The characterization of "typical" student behavior given in section

3 provides both an indictment of our current mathematical instruction and a

warning about the dangers of presenting instruction that is incompatible with

students' belief systems. The students from whom I gathered data were above

average in a number of ways, had studied calculus, and were mathematically

motivated as well: they had chosen to enrorl in my problem solving course.

They had taken a year of geometry in high school, and the vast majority

of that time was spent in proof-related activities. Two yeast's later, we see

what remains from all that instruction (what they really learned?): a

thoroughly empirical perspective diametrically opposed to mathematical proof

and argumentation. When our instruction contradicts students' belief systems,

it (ultimately) rolls off them like water off a duck's back. One must take

students' belief systems into account in order to provide them meaningful

instruction.

I think that a broad attempt to deal with_ cognition in its "real

world" context can have a strong positive effect on schooling. The three_

dimensions that appear most critical to me are represented in the three columns

of figure 3. It goes without saying that knowledge of the basic facts,

procedures, and strategies (the first column) is essential. Most of this

paper has argued for the importance of the second column, and I will not

labor the point further. The third, "awareness," is worth discussing a

bit more. I would assume that the purpose of schooling is to prepare

200
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students for life after school: to help them develop the mechanisms they

will use throughout life to adapt to new situations. Ye4Ivirtually all of

the college freshmen in my problem solving courses enter the course completely

unaware of the fact that they can observe, evaluate, and change their own

behavior! It is as if their minds are autonomous, independently functioning

entities, with the students as passive (oftimes frustrated) spectators.

As long as this remains the case, the students are slaves to their own

behavior. Once this belief, or any other, is made conscious, it can be acted

upon and changed. Providing students with the potential for this kind of

adaptation may be the greatest service we can render them.

14,
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Appendix 1: Protocol 1

Problem worked the first week of instruction, by students L and T (college
freshmen who had comoleted.one semester of calculus).

You are given two intersecting straight lines, and a point P marked on
one of them, as in the figure below. Show how to construct, using a straight-
edge and compass, a circle which is tangent to both lines and has the point
P as its point of tangency to one of the lines.

1. I: reads the problem. Oh, ok. What you want to do is
that (sketches in a circle by hand), basically.
Ok, how?

2. L:

3. T:

4. L:

5. T:

6. L:

7. T:

8. L:

Now, ok, we have to find the center.

Of what?

Of the circle. We are trying to find the circle,
right? If we did that then we could...oh, and the
radius of course.

All right, well we know the point of tangency on
this line is going to be right here (points to P).
What we need to find is where the point of tangency
is going to be on this other line, I think. So we
can find the diameter in which case we can find
the center.

Is that...that's not necessarily true, is it? Is
it true that if you have a circle like that (see
right), and then that (points with finger) would
be the diameter. You know what I mean? Or maybe
you couldn't have it that way...

The circle has like...no, you don't have a diameter
running up through there. No, we have to find the
diameter from tik point of tangency on this line
to the point of t gency on this line, wherever
it lies.

No, wait: the point of tangency, the point of tangency
here, would the line connecting those two Points be
the diameter? It seems that you could maybe construct,
one where it wouldn't always work.

9. : Wait, but see, I don't know, we're not drawing it
(i.e. sketching it) the right way,

C. AL C. L t

I-



10. L: Wait, do you want to try drawing it with the
compass) and see...

(21/2 minutes elapse in empirical work. .A'reasonably
accurate drawing results.)

11. L: So, maybe it looks like it might be opposite, see?

12. T: But would that be true for any triangle? Oh, but
see...

39

13. L: I'm confused. I don't think it 'would be. Let's say
you had your radius over here and you went like that.
I don't think that could be...ok, I think there could
be, there is a possibility.

14. T: Remember on the first problem sheet we had to inscribe
a circle on a triangle? Could you do that? I

couldn't.

15. L: I couldn't either.

16. T: We're in pretty sad shape. But just say we draw a
triangle even though we don't know how to do it.
We dill draw a triangle anyway.

17.- L: So how's that going to help?

18. T: Because we don't have to inscribe it actually. We
just have to have something to help us (visualize
it). (Draws an apparently arbitrary third-line.)

19. L: Although...

20. T: Does that do anything?

21. L: Not at this point, I don't think. Maybe further along
if we need a radius we could.. .but I don't think it
does anything now.

22. T: We've gotta do something. With what we have, you
just can't do it, right? We don't have enough lines
or whatever there.

23. L: Ok, we need a center and a radius. So how do we
locate the center? It has to do with, I think it .has
something to do with, could we do this?

24. T: No, maybe you have an equilateral triangle.

25. L: Wait, let me just try this. (Begins to expand compass.)

26. T: What are you doing?

L: Don't you want to see if it's true? If you have a



center way out there, because it may not correct.
Don't you see? (sketch at right)

28. T: I'm pretty sure it won't. I don't think.it' ill.

29. L: But .if it won't make a circle, then that means'this
circle is ours (points back to earlier sketch).
The one we have to deal with. You know what I mean?

0
30. T: I see what you mean. Like try to draw a circle out

here like going through this point. See, it won't.
It won't work because in order for it to work...
(another few minutes with the compass. The dialogue
has to do with their attempts to draw a very accurate
figure, so that they can draw conclusions from it.)

31. L: Ok so that's what we're doing, right? We don't
need it that big.

32. L: Yeah, wait, you couldn't becaUte'it is going to go'
through (the point P). I think it does have to
be, right...

0

33. T: If we have these two points that's definitely our
diameter going through it. Now ewe can draw.:.

34. L: But neither is it a tangent.

35. T: That's just what I was going to say. Can we draw
these two lines so that...see you can't for in order
for this to cut through this, it's too shallow, it's
shallow...

36. T: Ok as soon as this...ok, make this a tangent.

37. L: In order for this to be...do-you think it's going to
be tangent to...

38. .1: No because, because we know this one is not going to...
I want to see if like we make this a tangent. You
see what I mean? But that doesn't look like'a
diameter either. Well, I don't think that's it.
Of course it couldn't be because a diameter is going
to be when it's parallel, isn't it?

39. L: That's the diameter.

40. T: Ok. That'snot going to help us (laughs).

41. L: You figured that out.

42. T: Right.

43. L: Can we construct one parallel to it? (Looks at
original diagram.) But then we still don't know
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the center.

(pause)

Could we just draw a perpenclicUlar?-

44. T: Yeah, that's what I was just going to say. If we
draw a perpendicular line to this-and just call that

45.

46.

47.

48.

49.

50.

51.

L:

T:

L:

T:

L:

T:

L:

the diameter it will work from there. And then it
should touch if it's perpendicular. It should be
tangent at one point, shouldn't it?

Right!

Shouldn't it?

Yes!

Won't ,,?

Yes!

Ok, draw a perpendicular, oh good.

Does one know how to do that with a compass? Do
you?.

52. T: This is a right angle, so...(uses the corner of the,
ruler).

53. L: Ok, that's perpendicular, ok. Doesn't look it but
it is.

54. T: That's our diameter.

55. L: So if we say this is the point of tangency...

56. T: So we can bisect this to find the center, right?
So call it center C. Maybe we should have done
our steps.

57. L: That's all being unmathematical, completely disorganized.

58. T: Ok, back to the drawing board.

59. L:. I don't know how.

'60. T: Me either.

61. L: Ok, if we just use the ruler with the little numbers
on it here.

62. T: Or isn't that legal?

63. L: Sure it's legal (does by hand).



Now we have the radius, now we just draw it.

64. i: Uh, oh, do we know, we have to see if this is going
to work. I know! Ugg.

65. L: My guess is, I think it's not. But we'll try.

66. T: I would think, though, it would have to, though,
wouldn't it?

67. L: No.

68. T: The radius is shorter asi..

69. L: I don't know. Well, let's see what happens when it
goes through there.

70. T: Somehow it doesn't look perpendicular, though,
doesn't it? .

71. L: See this line isn't strai ht relative to the page
which is why it dbes,p't lo k perpendicular.

72. T: Oh right, but...

73. L: It looks good. Now we can tell imething.

9

74. T: Maybe, I think this tells us the po r t df tangency
has to be way more (points to right). I think.

(Three minutes of constructions)

75. L: What circle was this one? Yup, that was a ri ht
angle. Oh; darn it.

--..,

76. T: Okso the radius has got to be smaller because i
going "outside of this line. So it's got to be a

i
little smaller and the center has got to be up and
over, like here...

42
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77. L: But how 6 we...

78. T: But I don't know how to do that, without doing it
until it comes out right.

79. L: Yeah.

(pause and evaluation of prior failure)

80. T: That was dumb. By doing that we were saying that
no matter what this line looked like, then it looked
like this, if we dropped a perpendicular we could
do it and we could get the diameter for that angle
and still expect to do it. You know what I mean?

81. L: Yeah, I don't think it will work for'any angle though.
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82. T: I know, that's,what I mean.
N

83. L: Yeah, well, we goofe4Nagain.

(pause) N,
..N

84. 4.1.: Well the only thing I can thinkof to do is what we
did in class the other...well, what we were supposed
to do, you know. The triangle thing-i,,trying to
inscribe it.

N...

85. L: Wait, we know...

86. T: I know, that's the problem. We don't know how t.6-
do it. Ns

..

87. L: I don't know what to do.

,88. T: Alright,'we are going to have to try something e)se.

89. L: Alright, what are we, what were those sort of things
we tried with triangle one? Cause maybe we could...
do the same thing with, on a smaller scale.

90. T: I got absolutely nowhere.

91. L: Yeah.

92. T: But I was trying to do things like, bisect this side.

93. L: Yeah, I did that.

94. T: It didn't work.

95. L: Yeah, let's see what we have here. We watt to
inscribe a circle in this right triangle.

96. T: Why do you want to do a right triangle?
,.......

97. L: I don't know. It just is one. Oh, I blew it now,
no. The ends don't matter because we're, you see,
we want to inscribe it. We're putting in the extra
conditions, because it doesn't have to touch this

. line. It doesn't have to...oh, I don't know.

98. T: I don't think that will get us anywhere.

99. A: Ok, guys...

100. Both: We give up.

CZ
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Appendi 2: Protocol 2

Problem worked after problem solving course.

The common internal tangent to two ircles is the line which
is tangent to both, but has one circle o each "side" of it, as
in the picture to the right.

You are given three points A, B, and C .s below. Using straightedge and
compass, you wish to construct two circles w ich have the same radius, with
centers A and B respectively, such that the common internal tangent to both
circles passes through the point C. Now do u do it? Justify.

1. T: Reads problem.

2. L: Wait, I have to read this. Ummm.

3. What we want basically is this, circles and a line
something like this that is going to pass through
here (makes sketch).

-6
0

a C

4. L: Right. Ummm.

5. T: Like that.

6. L: Except they have...where is it...have the same radius...

T: Uh huh

: ...so it isn't going to look like that.

9. Right.

10. L: t, ok. Wait, I've got to think for a second.

(era ing to draw again.)

11. L: Ok, wou n't it...no, maybe not.

12. T: What?

13. L: Nc, (hat was Let me think.

(pause)



14. L: Umm...should we try and draw it maybe, how it would
be to see what the relationship of C is to the two
circles, since that's not drawn.

15. T: Right.

16. L: You know how I am with compasses...go ahead.

17. T: Well; how big am I supposed to draw it?

(draws with a compass)

18. L: I've made this too big because they're going to overlap, \
one another with that radius.

19. T: Yeah. /

20. L: Just draw (i.e. sketch) it...you don't have to use
the compass. just draw it...just draw...no, no, no.

21. T: Ok, and I'll make my circles better. (unclear). Ok.

(unclear)

22. T: What are you going to do?

23. L: I just want to see what it would look like more
accurately (draws with compass).

24. T: Why?

25. L: Just so I could see (unclear) but you can think out
loud if you have an idea. Ok. Can you think of
anything? (finishes sketch)

26. T: Umm. These two radii are the same, right?

27. Yep. Except it doesn't look the same, does it?

28. T: That's the way you put your centers in the center.

29. L: (unclear)

30. T: (unclear) Ok. These two centers have to like...
do you know what I mean?

31. L: No. Wait, what am I looking for now?

32. T: (rereads problem) Why oon't we first just try to..!

33. L: If we can find (unclear) (pencil placed at center poi

I

( C, -e7a,

`-)

34. T: All right...if you just have the two centers and you
,go over...say the radius...the radius will have to be
half way in between the centers. Alright, and then...
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35. L: Say...wait...wha-wha-wha-what?

36. T: If we just try to draw the two circles and the tangent
line withchit worrying about point C for right now.

37. L: Right.

38. T: Ok. Since they have to be of equal radius...the
radius will be half way between the two centers?*
It's like the tangent line would be like this.

39. L: I don't get this About the radius being half way
between two centers.

40. T: Me neither.

41. L: I don't get what you mean. How's the radius half
way...I don't get what you mean.

42. T: If it was like this and the tangent line would
just be (unclear)

43. L: Ok, yealt.

44. T: Ok? These two have to be the same length.

45. L: Right.

46. T: And the thing that is going to determine how long
they are is the angle on this line. What I mean
like if they are exactly...half way in between the
two centers then the line is vertical.

47. L: Right.

48. T: If we make it somehow shorter right here and here...
the circles would be like this and the tangent would
be on a slant like this.

/7

.2 ;17')

49. L: Ok.

50. T: We have to figure out how they go through point C. So...

51. L: I don't know either.

52. T: Can we just start with C and draw a line through it
somewhere and then make the circles tangent to it?

53. L: No.

54. T: Or...

55. L: No were given the centers.

*She meant to say that the length of the radius in this extreme case
was half the distance between the centers of the two circles.

fl
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56. T: We're also given C.

57. L: Uh huh. But just drawing the line can't guarantee
you could end it with -something like this if you
just drew the line here. Ummm. Isn't there another 41:
way we can characterize the line? Find the locus.

58. T: Ummm.

59. L: This might not work for all of them, but, look here,
doesn't this look like...that's just like the center?

60. T: That's just what I was going to measure.

61. L: Ummm. Because if we did that, we were given points
A, B, and C.

62. T: Yes (looks at her sketch) that crosses it too.
That's exactly what we're going to do.

63. L: Alright...wait, we're not allowed to use a ruler, /

but...yeah, divide it in half.

64. T: Yeah, bisect.

65. L: Why don't you actually do it...

66. T: Let's try it on here since we're not sure.

(Begins new sketch)

67. L: Wait, I think it was the other line. (unclear)
Just connect point Bap We're going to have to drop
a perpendicular from 18 to the line.

68 T: What are you doing that for?

69. L: Because this is perpendicular and that's what the
radius would be, a perpendicular and from A coming
to the line also.

70. T: Right.

71. L: Ok,--I don't know why this works, I mean, I just
seem to see it, you know.

72. T: I think we can do it with similar triangles and things
so let's just make sure it works (unclear).

73. L: We can do it here too...this isn't a very nice compass.
0

74. T: We're running out of time (whispering). Draw faster,
draw faster.

75. L: I can't...this is hard.

rig



76. T: Draw faster anyway.

77. I didn't construct it right.

78. : -11 just draw it...it'll work.

79. L: Oh, w t, maybe I did actually. Ok, that's the
radius hen.

80. T: Right.

81., L: Perpendicular: Then we just have to draw...I think
that's just the right thing.

82. T: That'll do it, that'll do it...wait, we've got to
draw...ok, we did it. We've got to show why. We
have to show that these...the reason that these are
half way in between these two points is because .

angle side...we have to show that...what this side.

83. L: Like we have an angle.

84. T: But what are we trying to show...we want to show why
this is in between A and B.

85. L: Right.

86. T: So we want to show that this is equal to this...that
they...

87. Both say: ...are congruent.

88. T: Ok, we have that. We have...

89. L: ...an angle and a side. How do we know...

90. T: And we need to show that this side is compared to
that side. And...

48

91. L: (to A): Must we prove why something works or just
show you the construction?

92. A: If you can justify it I would he happy.

93. L: Ok, let's try to justify it.

94. T: Now the angle...

95. L: Well, we know, I mean, r is equal to r so it is
just like,..

96. T: We have these angles, so this angle equals this one.

After a few minutes, and with some slight confus.ion, they prove
that their construction has the desired properties.
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Appendix 3: Protocol 3

The subject is a professional mathematician.

Using a straightedge and compass, inscribe a circle in the triangle below.*

(reads problem) All right, so the picture's got to look like this
(draws figure) and the problem is obviously to find the center of
the circle...

Now what do I know about the center? We need some lines in here.
':ell, the radii are perpendicular at the points of tangency, so
the picture's like this (draws figure)...

That doesn't look right, there's something missing...What if I draw
in the lines from the vertices from the center? (draws figure)

That's better. There've got to be congruent triangles in here...
let's see, all the radii are equal, and these are all right angles...
(marks diagram) and with this, of course, this line is equal to
itself (marks "x" on the figure), so these two triangles (at lower
left vertex) are congruent. Great. Oops, it's angle-side-side,
oh no, it's a right triangle and I can use Pythagoras or hypotenuse-
leg or whatever it's called. I'm ok. So the center is on the

*The inscribed circle is a circle that lies inside the triangle and is
tangent to all three sides of it.

0011
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bisectors. (Turns to investigator) I'vesolved it. Do you want
me to do the construction?

,c
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Part I: Issues

As I tried a number of earlier versions of this paper, I came to

realize that two questions lay behind all of the issues I was grappling

with:

Why do we (in particular, why do I) teach mathematics?

Why do we (I) do research in problem solving?

Since those questions look pretentious if not downright silly, I

have some explaining to do. Here are some of the themes that vied for

center stage in earlier versions:

Theme 1: My belief that most instruction in mathematics is, in a very real

sense, deceptive and possibly, fraudulent.

These are harsh words. Here are three examples to justify them.

a. "Word problems" are one of the major focal points of mathematics

instruction in the elementary schools. Typical of such problems at the lower

grade levels is "John had eight apples. He gave three to Mary. How many

does John have left?"

Much instruction on how to solve such problems is based on the "key

word" algorithm, where the student makes his choice of the appropriate arith-

metic operation by looking for syntactic cues in the problem statement. For

example, the word "left" in the problem given above serves to tell the student

that subtraction is the appropriate operation to perform. At the research pre-

sessions to the 1980 annual NCTM meetings, the following facts were reported:

i. in a widely used elementary textbook series, 97% of

the problems "solved" by the key word metnod would



yield the (serendipitously?) correct answer;

ii. students are drilled in the key word algorithm so well

that they will use subtraction, for example, in almost

any problem that contains the word "left." Problems

were constructed in which the appropriate operations were

addition, multiplication, and division; each used the

word "left" conspicuously in its statement. A large per-

centage of the students subtracted. In fact, the situation

was so extreme that many students chose to subtract in a prob-

lem that began "Mr. Left...."

b. I don't know about nationwide enrollment figures, but I suspect

that those for Hamilton College are typical, if not low: some 60% of Hamilton's

students study the calculus, but fewer than 10% of them go on to take more

advanced mathematics. At the University of Rochester 85% of the freshman class

takes the calculus, and more go on. Roughly, about half of our students see

the calculus as their last mathematics course. Most of these students will

never apply the calculus in any meaningful way (if at all!) in their studies,

or in their lives. They complete their studies with the impression that they

know some very sophisticated and high-powered mathematics. They can find the

maxima of complicated functions, determine exponential decay, compute the volumes

of surfaces of revolution, etc.

The fact is that these students know barely anything at all. The only

reason they can perform with any degree of competency on their final exams is

that the problems on the exams are nearly carbon copies of problems they have

seen before; the students are not being asked to think, but merely applying

well-rehearsed schemata for specific kinds of tasks. Tim Keiter and I studied

students' abilities to deal with the pre-calculus versions of elementary word

problems such as the following:



An eight foot fence is located three feet from a building.
Express the length L of the ladder which may be leaned
against the building and just touch the top of the fence
as a function of the distance x between the foot of the
ladder and the base of the building.

We were not truly surprised to discover that only 19 of 120 attempts

(four each for 30 students) yielded correct answers, or that only 65 attempts

produced answers of an! kind. We were surprised, however, to discover that

much of the students' difficulty came not from* the "problem solving" part of

the process (setting up and solving systems of equations) but from the reading

part of it. 1

Fifty-eight protocols were obtained from randomly selected
calculus students who were asked to rewrite problem state-
ments more understandably." Of these, 5 simply rewrote
the problem verbatim. The 53 remaining rewrites tell a
sorry tale: 5 (9.4%) included information which directly
contradicted the input, and 11 (20.4%) contained informa-
tion that was so confused as to be unintelligible. 2

students (4%) made both kinds of errors. This information
is the more striking since two-thirds of these students
were to write simple declarative sentences, if possible,
to make their task simpler. Thus before they would nor-
mally have put pen to paper, a quarter of the 53 students
had already seriously garbled or completely misinterpreted
the problem statement. None of those students ever got an
answer to the problem. (Kej'ter, note .4)

Those students had already "covered" word problems in their calculus classes.

c. I taught a problem-solving course for junior and senior mathematics

majors at Berkeley in 1976. These students had already seen some remarkably

sophisticated mathematiCs. Linear algebra and differential equations were old

hat; topology, fourier transforms, and measure theory were familiar to some. I

game them a straightforward theorem from plane geometry (required when I was in

10th grade). Only two of eight students made any progress on it, one of them by

using arc length integrals to measure the circumference of a circle (Schoenfeld,

1979). Out of the context of normal coursework, these students could not do

elementary mathematics.

e 4
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In sum: all too often we focus on a narrow collection of well defined

tasks and train students to execute those tasks in a routinized, if not algo-

rithmic fashion. Then we test the students on tasks that are very close to the

ones they have been taught. If they succeed on those problems, we and they

congratulate each other on the fact that they have learned some powerful mathe-

matical techniques. In fact, they may be able to use such techniques mechani-

cally while they lack some rudimentary thinking skills. To allow them, and

ourselves, to believe that they "understand" the mathematics is deceptive and

fraudulent.

Theme 2: Isolationism in the Mathematics Education Community and the Relevance

of Psychological Research in Problem Solving.

Mathematics eddcation is a young and unsettled discipline. The case

can be made that the phoenix of a "process oriented approach" to math-ed prob-

lem solving research rose from the ashes of the statistical approach in the mid

and late 1960's; we are in our adolescence, and expeHencing growing pains.

Yet the community has made life much harder for itself than it had to. In a

recent book on problem solving, for example, (Harvey and Romberg, 1980) five

of the nine .dissertation studies presented dealt with students in the fourth

through seventh grades. However, the extensive literature of developmental

psychology was all but ignored: a 31 page long set of references did not in-

clude a single work by Piaget. Similarly, a variety of studies in mathematics

education use protocol analysis and agonize over the effects of verbalization

on problem solving performance. This topic has been studied extensively in

the psychological literature (Ericsson and Simon, 1978;1979). There is no need

for us to reiment that particular methodological wheel, or any of a number of

others. To put it bluntly, it may be impossible to do "state of the art" work

in math-ed problem solving research without a solid background in the'relevant



psychological research. For example the detailed process models offered by

information processing psychologists and the studies on verbalizadon, as well

as the results on verbalization, are essential for my own work. They provide

a foundation for it that is not available within mathematics education.

These comments are not meant in any way to suggest that mathematics

education should become an adjunct to cognitive psychology, or even consider

adopting :its ideas and perspectives wholesale. It seems to me that there are

significant and dangerous implications to some of the theoretical underpinnings

of modern cognitive psychology, and especially of information processing

psychology. I will list a few points of concern here, and discuss them at

greater length below.

Among points of concern are the following. There is the phenomenon

of methodologically-induced focus: one tends to examine those aspects of things

that our methodologies will illuminate, and to de-emphasize.or ignore those that

are not compa ible with them. "Models" of the problem solving process can cause

difficulty in at least two ways. They may ignore aspects of the problem solving

process that cannot (currently) be modeled or are incompatible with the current

modeling perspective. It will be interesting to watch how information processing

comes to grips with issues of metacognition, for example. Also, there is the

danger that the models can be taken too seriously, as explanations of cognitive

performance. In the sense just described, they may be reductive; in the sense

that they are only potential explanations of performance, a particular model

may be dead wrong! (See the example of the student teachers who "got the bug"

in Brown and Burton (1978). We myst remember that models of experts and novices

are just that; the extrapolation from the models back to real people must be

done with care. There is the danger that, better armed with procedures for

41*
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decomposing certain kinds of cognitive tasks, we will misuse them and become

more sophisticated at perpetuating the kinds of deceptions I mentioned in theme

1. And there is
\

rrently a fair amount of.(unrecognized) confusion about what

it means to be an "e ert" or "novice". Let me repeat a comment made to me by

John Seely Brown: they can be a significant difference between "expertise"

and the ability to perform\kiell in a domain.

Theme 3: The small and possibly incestuous world of problem solving.

A fel.; years ago I asked\number of colleagues involved in problem-

solving research if they had tolled ions of good problems to work with. Among

the people who responded was Ed Silver:,, I was familiar with virtually all of

\
the problems Ed sent. Most were from Polya and the other standard sources. A

few were problems I had created, which (I b\.1eve) had made their way to Ed via

John Lucas. The point is that the mathematics \sducation community has a very

narrow perspective on what "problem solving" meansx One need only look at the

1980 NCTM Yearbook to see that virtually all the authors discuss the same kinds
\

of "nonroutine" problems, if not the same problems themsVves! (I was asked to

change some of the examples 'nay article because they duplicated the examples

in other articles.) Ed commented then that he was concerned\about the incestu-

ous nature of the community; a small number of researchers shared interests

and problems, amd all seemed to be investigating this narrow collection, which

went by the name of "problem solving."

I fear that his comment may be accurate. Worse, r think that we may,

in teaching "heuristics," eventually become guilty of precisely the sins that

offended me in theme 1: we may simply reorganize subject matter, and teach

students to apply these new techniques in routine fashion. The student who

has learned, in algorithmic fashion, to "substitute n=1,2,3,4 for an integer

, 4 .....,
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parameter and look for a pattern" may be solving difficult problems....but is

he problem solving?

Theme 4: Differences between my choices of problems and my\notion of "expert"

from the standard choices and notions.

In a recent conversation Dick Lesh pointed out that the tasks used

in my recent problem-solving studies are not the standard "non-standard" prob-

lems, and that my "experts" display markedly different (and often remarkably

unproficient) behavior than most "experts." Some examples are the following.

I give both students and colleagues problems that are either unfamiliar

or from domains they studied long ago. A particular favorite of mine is the

following problem, although it has proved too difficult for most students:

You are given a fixed triangle T with base B, as to 1
the right. Show that it is always possible to con-
struct, straightedge and compass, a straight line
parallel to B such that the line divides T into two
parts of equal area. Can you similarly divide T
into five parts of equal area? 8

In fact, the problem has proven difficult for some of my colleagues.

The solution provided by one GP was derided by one JTA as being stupid and

clumsy. Yet I chose GP's "stupid and clumsy" solution for analysis (Schoen-

feld, 1981) as an expert protocol, and found little of interest in JTA's clean

solution. So my tests of problem solving do not examine what I have just

taught students, and my "experts" appear unexpert by standard criteria. This

is not a matter of perversity, but one of perspective. It is tied to the first

three themes and to the questions with which I opened this paper. I would like

to give my personal answers to the two questions, and then discuss issues 2 and

4 from that perspective.

4
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Part 2: Questions and Personal Answers

Why do we teach mathematics? Not because mathematics is useful, although

it is: our curricula reveal that. Now often does one need to determine how rap-

idly a person could row in the absence of a current, if it takes so long to row

with a constant current and so long to row against it? Or for that matter to

use a trigonometric identity, virtually anything from Euclidean geometry, or

to calculate the volume of a surface of revolution? Mathematics can be applied

to the real world, although we do a rather poor job of teaching our students to

do it. We do an even poorer job of selecting potentially useful and meaningful

problems for our students to master. But that is only a part of the story.

Other parts have to do with the scope and power of the discipline. It

is a massive intellectual achievement, and should be appreciated even if not

used. It is as well a marvelously aesthetic discipline, and it would be nice to

have our students appreciate it for that. But in my opinion the single most

important reason to teach mathematics is that it is an ideal discipline for

training students how to think. Later in this section I will try to char-

acterize "thinking" in more detail, but for now the usual sense of the word

will suffice. Mathematics is a discipline of clear and logical analysis that

offers us tools to describe, abstract, and deal with the world (and later,

worlds of ideas) in a coherent and intelligent fashion. Our goals as teachers

should be to have students learn to use mathematics that way.

For example, the calculus version of the pre-calculus problem given

above in theme lb (Find the shortest ladder that touches the fence and the

wall) is ludicrous. If one ever did need to solve such a problem, it could

probably be best to do so by rough empirical methods. But it is worth having



students work on such problems. To solve this problem the student must ex-

tract the relevant information from the text, create an accurate diagram with

the appropriate symbolic notation, establish goals and subgoals, and seek

(from memory) the relevant information that will allow the goals and subgoals

to be achieved. Further, all of this must be done with reasonable efficiency,

and students must learn that as well. To the degree that this problem serves

as a vehicle for developing those skills, it is worthwhile. Taken in and of

itself, or as an exemplar of a class of problems, it is of questionable value.

The same is true of much of the mathematics we teach.

Why do research in problem solving? From my perspective, it is so

the we can better understand what constituteiproductive thinking skills, so

that in turn we can be more successful in teaching students to think. It is

not easy to define Thinking. (I shall use the upper case T to distinguish

Thinking from the ordinary associations of the word.) Here are some examples

of what it is not. A mathematician is not Thinking when he uses the quadratic

formula. That should come as no surprise, since the application of the formula

is algorithmic. But most probably he has no need to Think when he solves the

pre-calculus problem given in theme lb. That problem is completely routine

for college mathematics teachers, as are virtually all problems in the calculus.

Even if he has not worked a problem isomorph of it before, the mathematician

would in all likelihood be able to crank out a solution to it with as much

ease as he could factor an expression like (6x2 +17x + 12). If you were to

observe (or attempt to model) his performance on that type of problem, you

would be a spectator to a demonstration of domain-specific proficiency--but

you would not at all be seeing whatever it is that accounts for his problem-



solving skill. The same is true for virtually all schema-driven solutions,

including "heuristic" solutions to "non-routine" problems (if the "expert"

has access to tie schema).

To examine what accounts for expertise in problem solving, you

would have to give the expert a problem for which he does not have access

to a solution schema. His behavior in such circumstances is radically dif-

ferent from what you would see when he works on routine (including familiar

"non-routine") problems. At the surface level his performance is no longer

proficient; it may even seem clumsy. Lacking access to a solution schema,

he has in all likelihood no clear indication of how to start. He may not

fully understand the problem, and may simply "explore" it for a while until

he "feels comfortable" with it. He will probably try to "match" it to familiar

problems, in the hope it can be transformed into a (nearly) schema-driven

solution, He will bring up a variety of plausible things: related facts, re-

lated problems, tentative approaches, etc. All of these will have to be juggled

and balanced. He may make an attempt at4solving it in a particular way, and then

back off; he may try two or three things for a couple of minutes and then decide

which to pursue. In the midst of pursuing one direction he may back off and say

"that's harder than it should be" and try something else; or, after the comment,

he may continue in the same direction. With luck, after some aborted attempts,

he will solve the problem.

Does that make him (at least in that domain) a bad problem solver?

I think not. In all likelihood someone proficient in that domain (i.e.,

someone who knows the right schemata) could produce a solution that puts his

to shame. But that isn't the point at all. The question is: how effectively

did the problem solver utilize the resources at his disposal?



One of the most impressive protocols I have ever seen is the "stupid

and clumsy" solution produced by expert GP to the problem given in part 1,

theme 4 (see Schoenfeld, 1981). The protocol is five single-spaced pages long

(20 minutes), and a detailed analysis takes longer. GP has no idea of what

"makes the problem tick," and remembers less of his plane geometry than my

college freshmen, who have studied the subject much more recently. He gen-

erates enough potential sources of "wild goose chases" in his protocol to mis-

lead an army of problem solvers. But unlike my students, he manages not to be

misled. His protocol is a tour de force of metacognition: rarely do more than

fifteen seconds elapse between comments on the state of his own knowledge and

the state of the solution. While he is fertile in generating potential solution

paths, he is also ruthless in pruning them. With less domain-specific knowledge
0

at his disposal than most of my students had, he managed to solve a problem that

left all of them stymied. Therein lies his "expertise." It is not simply

the possesion of schemata that allows him to solve problems with dispatch,

although that is an important component of his competence--it is the ability

to deploy the resources at his disposal so that he can make progress while

others wander aimlessly.



Part 3: Implications

-One point I wished to stress in Part,2 is that proficiency (the pos-

session of a large number of schemata for dealing with generic classes of

tasks in a domain) should not be confused with expertise. There are dangers

in confusing the two.

In the short run, proficiency models (which is what virtually all

"expert" models have been) are useful. It is worthwhile,for example, to

develop schemata for elementary word problems that are mathematically and

psychologically.valid, and accessible to school children. A system of in-

struction based on these would obviously be preferable to the "key word"

system, which uses illegitimate means to achieve what may be "rigged" per-

formance objectives. Properly interpreted and used, Information Processing

models of competent performance are val'iable. In any field, "cleaner" in-

struction resulting in improved performance can hardly be unwelcome.

The difficulties lie, at two different levels, in how one is to in-

terpret and use performance models. First, at the microscopic level: model-

ing can, at times, be an end in itself. It should instead serve as the begin-

ning for a new set of inquiries. There are now, in a number of domains, pro-

duction system models that not only simulate and predict performance but can be

modified to "improve" or "grow." In some very clever work now being done at

Carnegie-Mellon University (Briars and Larkin, note 1), a series of nested

production models have been developed for solving elementary word problems. A

running program performs at a level consistent with the performance of kinder-

gartners. Adding one production to the system (and some minor modifications)

results in performance like that of first graders, and adding one more results



in performance like that of second graders. Performance predicted by the

models agrees very well with empirical data, and the models both serve to

unify collections of empirical data and as a framework from which to make

predictions. But do the processes in the models really reflect the cognitive

-7itocessing in the children who are being modeled? The theory suffices to make

predictions, without the implementation of the program. One has the feeling

(in this case confirmed by conversation with the author) that the programs are

important because their authors believe that the processes in the program are, at

some level, the processes in the minds of the students. This is fine, if that

attitude is considered an hypothesis to be tested. If left unquestioned,

it is severely reductive and can have dangerous consequences. Moreover, it

should be recognized that the hypothesis, even if correct, now gives rise to the

eal question: just what happens during a full year of a child's development

that results in the addition of one production to his word problem "program"?

I will find it very interesting to keep an eye on this particular line

of research. In a recent conversation Diane Briars told me that the students,

when solving problems, would often encounter contradictions between their intui-

tions and the processes they had been taught to use. Students would say things

like "I Know it ought to be larger, but I'm supposed to use subtraction." Most

often they would succumb to their training. So far as I'm concerned, the meta-

cognitive aspects of this process--the generation of the students' intuitions,

and the means that the students use to resolve the conflicts--lie at the heart

of their performance. The "purely cognitive" aspects of their performance,

which have been modeled, tell a critically important part of the story. How-

ever, the models do not take the metacognitions into account; they cannot, at

present. To elaborate the models means to ignore an important part of



psychological reality; to deal with that reality means to abandon current

methodology. Where does one go next?

These comments are not to be taken as an indictment of this study. I

chose to discuss it because it is a good study, relevant to some of the themes

I raised earlier. But the questions I have just raised apply to most AI studies,

and are rarely raised (at least in print or in my company) by those who create

them. At the recent AERA meetings Lauren Resnick characterized much AI work as

"Art in the service of science." We must make certain that it does serve.

The second and much more perilous difficulty lies at the macroscopic

level. There is a very serious danger when proficiency and expertise are con-

fused, and expertise is defined to be proficiency: Thinking (with the upper

case T) is then defined out of existence, or banished to irrelevancy. The situ-

ation is exacerbated by a kind of "proof is in the pudding" argument that goes

something like this: "We have produced programs that operate successfully

without any need for construct X. Further, people have tried to construct

programs based on construct X and failed. Therefore, construct X, even if

it does exist, is at best of minor importance." This particular statement

was made to me about heuristics, but could also have been made about meta-

cognition, Thinking, or any of a number of potentially important domains of

inquiry. Most theoretical AI and IP work these days is done, de facto, along

proficiency model lines: "experts" always seem to be performing routine tasks,

and theoretical work now focuses on models of productive thinking via scripts

or schemata. If the traditional evclutionary pattern holds, applied research

will follow suit, and so will educational research and development. During

the height of behaviorism certain "mental constructs" were d6clasAand to

be shunned at all costs. Let us not make similar mistakes about Thinking in

i-,z.-
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a world dominated by proficiency models. That perspective can only deflect

us from the global goals we have in teaching and research.

In sum: the mathematics education community cannot afford to ignore

(as a large part of it seems to have) the psychological research on problem

solving; but neither can it afford to Swallow it whole. Mathematics educators

have, I think, had '..neir hearts in the right place but lacked the methodologi-

cal tools that allowed for substantive and rigorous inquiries into problem

solving. Many such tools have been developed by the psychological community,

and much of our work will be at best second rate if we do not take advantage

of them. As I mentioned above, it would be impossible for me to do my own

work without the support of research into the effects of verbalization on

problem-solving performance or the substantive ideas underlying the modeling

of cognitive processes.

There is a great deal more to problem solving than is currently being

modeled. I personally am convinced that metacognitions play a tremendous role

as "driving forces" in cognitive performance, and that much more research needs

to be done exploring them. They have cropped up in various ways in this paper.

They include the monitoring and assessment strategies that students lack, and

that allow them to go off on "wild goose chases," and that the expert has,

allowing him to be efficient (Schoenfeld, 1981); they include the intuitions

against which the progress or plausibility of a solut1on is gauged, and the

means by which such conflicts are resolved; and they include both the conscious

and unconscious belief systems that may determine the approaches people take

to certain problems. These areas have barely been touched upon, and need much

more research. They are just some of many that we will discover in an open-

ended and open-minded quest for knowledge and understanding. We are beginning

to make progress, and can hope to see more.
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