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_interior of part of a human bgdy—van'arm:

.sarm on a viewing screen.
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a THE PROBLEM”

PR
)
Suppose we want to map ‘out the inter%or-of an opague
object. .To be specific suppose we want to de€termine the
say. _An Xx-ray
photograph reveals the two- dimensional'projection‘of the
“This prOJectlon indicates p01nts.
of high and low mass den51ty However, given a point of
hlgh density, we still do not know where'in the interior
of the arm the point is located—jit could be anywhere on
the line perpendicular to the screen and hence parallel to
the x-ray beam. The problem is an important ome. A
lesion in‘#he braln will reglster ‘on the ‘viewing screen,
and it ‘is important to know just where along the line
parallel to the x-ray beam the lesion is Yocated. So the
problém is in ‘constructing a ;@ree-dimensional mép from

two-dimensional picturés. (Actually, the phrase mass

+density -Is used in a suggestive sense there; it is only .one

ERIC
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Figure 1. Arrows indicate direction of x-ray beam on a
circular object. The dark area inside the object\%prresponds
to a rggion of high mass density. All ‘three have the same
projection on the viewing screen, but the locations of the
high mass density are quite dlfferent « It might even be uni-
forrfly spread along the 1Hné parallel: to the x-ray ‘beam as in
(c). Al
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+ As we shall see, if x-ray photographs are taken at
many Yifferent angles, then the 1nformat10n from all of
them can be syntheslzed into the ‘desired three- dimensiontal

map. The Rurpose of this unit i$ to show how this is *.
! ,

done.’ K . o

Figure 2. Two x-ray projections indicate_the point of
high mass dénsity.

.

Although the gbal is to construct.a three-dimensional
If x,
. Y,z-axes are situated so that the x-ray beams are perpen-

map, the problem is actually a two-dimensional one.

dicular to the z-axis, it is enough to construct a map of
each cross sectlon paraltel to.the xy plane., Thus we w111
. be concerned solely with a two-dimensional object in the

xy ‘plané with incjident x-rays® in this plane.

~

NOTATION

~
»

Let'ftx,y) be the mass density of the object and let
L
¢+% be the angle between the x-axis andlthe incident beam

of x-rays. Draw u,v-axes as in Figure 3;‘that-is, the

\\\,\' L /‘

Figure 3.

Arrows in upper left™indicate the direction
of x-rays. .
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v-axis p01nts in the direction of the x- fay source while

. *‘the u-axis is perpendlcular to the v- ax1s with the u,v-axes
- in the 'same orientation as the x3y- axes Flnally we
Qeflne the ray-sum R(u,¢) ‘ds the total mass xeglstered u

" upits from the v- axis when ¢+f is the angle of the x-ray

s peam. That 1s, R(u0,¢0) is- the total mass op line % in

Hgmed&). . & - - .

’ Figure &{a)x, Graph of R{u,$).for fixed ¢. (b) Line £

is ug from origin. ~

Now we asshme that all ray-sums R(u,¢) (f6r all u -
and all ¢) are known. ,(In actuality we would know the
- functlon R(u, ¢) for a finite number of angles ¢ as we
direct beams from different directigns at the object; and
R(u, ) would be approximated by 1nterp01at10n for all
other values of ¢.) Notice’ that R(u ¢+m) = R(-u,$) (Why?);
so 1t is only necessary to find R(u,;¢) for 0x¢ <.

The definition for f1xed ug and ¢0 of R(u0,¢ )-is

related “to the Jmass den51ty f(x,y) by -
R(u0,¢ ) = total mass along ¢ in F1gure 4(b)"-
g f(x,y)ds
f3 )

. ¢
where s is arc-length along 2. -The equation of & is, of

course, just u =’u0 = copstant. -~ But trigondmetry yields

1) -u '

.

X cOsS ¢0 + y sin ¢0 X

.u cos ¢0 - v sin ¢0

-x‘%iq o * Y cos % y = u sin ¢a + vV cos ¢,.

Q . R 9: v - . ' 3

[AFo e rovded o v , 2
,

<
n

{7 integfal actually has finite limi

{ .-

Exercise 1., Derive these equations: th P be a point with coordi-

nates (x,y) in the x,y coordinate system and (u,v) in the u,v system.

Show that {x,y) and (u,v) are related as above.-

vy y
h
- -==1
t - |\
v ¢ A
. I \ }
N | \ u
’ J 0 X - “
So ‘ : . )
’ (1'2) R(u0)¢0) = J f(X,)’)dS ' °. = “ .
. 2
- ) ; = J f(uo coSs ¢0'V8i1'1 ¢0.,U0 sin ¢0+V cos ¢0)dv-

(Note ‘that if the object has - te extent [so that

f(x,y) = 0 for (x,y) not in the obpject]l, theén the above
s.) The problem is to
solve this integral equation for f(x;y) given the ray-sums
R(u,¢)." In other words, in a real situation the ray-sums

would be known, but the actual mass density’woyld'be of

.

interest. g . é

3. BACK PROJECTION: AN APPROXIMATION

¥ ! .

d Leg‘s‘first obtain-an approximate soluti9h~to the )
problem ¢f reconstructing the unknown mass density f(k,y)
from the known ray-sums R(u,¢). This is the technique of .
back projection. , Suppose in addition to the ray-sums we
also know that the object is contained in the disk of
radius L about the origin. Now R(u,¢) is the integral of “
f along %£; and the Jength of & (or rather the length of
the intersection of £ with the disk of radius L) is
Z/Lz:uz (see Eigure 5). Suppose that (xO,yO) is a point

= S 4
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/ Figure 5. & has length ZJ{Z-uZ. ) .
. ' . L 4

Under the assumption that all the mass on £ is

\ on %. »
. untformly d’15tr1buted “along the line segment £, then the
mass den51ty along.% would be .,. .
(3) , 6(x0’y0)-'= ‘R(u,¢) . " . . N
o "3 > ZVLZ'U A . . ’
‘, where u =Xy c8s ¢‘ * Yy sin¢ as in Exercise 2. Finally
. we approxjimate f(xo,yo) as the average of a11 6(x0,y0) as
¢ varies from 0 to 2. . . . A /
\ ) - A .
¢ . Exercise 2. Show gat the equation of line £ through (x \;yo) at, \
angle ¢ as in Figur® 5 is ! Q .
‘ - , N 3
e .y =-{tan ¢)" x + [y, + (tan ¢)ﬁ‘ xl. - S
’ . ’ - : N . 1 ~ ' !
. Show that the distarxse from this line to the origin is
. ! Su=x cos ¢ + Yo sin ¢.
PRI ) - . t
. /
Using Exercise 2 we see that the batk,projectian esgi- -
.- “mate of f is . - i ,
. o | . .
* . ?“ . R(x cos ¢ + y,®in ¢,¢) .
(4) . F'(X ,)’0) .n éz K i d¢ . (
. [ - (x0 cos ¢ * Yo sin ¢) ]
1 > ¥ B .
Exin& Suppose the object is actually the disk of radius

L of uniform den51ty f(x,y) =« constant c Then we would

" obserye the ray-sums (from Equation' (2))
- * . \ -

: . ) N\ . 5

e~ 10 \ -

C

R(u,¢) N
- B . N .
»
o ) )
ﬂ
' ' T »
& \
Thus for :evéry u,¢ :
¢ K
1 - . . - . /
- . M = C. for lul i L .
S . ZVL -u : . M Y
and back projection yields{approximat‘idn . .
. . - R
- . 2m o ) .
o ‘Fix y)=—1— cdd = ¢ '\-
. 0’707 . 2w . : .
- 0 . i ‘ . - o
€ ’ @
for (\1(0,)'0) 1n51cke the disk of radius L And ‘this agrees
with the «exiact value of f(x ,yoz ’ -7 ’ \
¢ ' e -
.+ . 2 s \ . ' .
Exercise 3. Suppose the object is contalned m the disk of radius L 1. (
. ahout the origin with density f(x,y)!= c(x +y ) -€ a positive® con-
stant. .Find the ray-sums R(u,¢) and the back projection F(x,y). " *How
does F compare with® f? - . . ¢ - . . , -
Exercise 4. Suppose the. objéct 'is.known to be contained: in the disk )
of radius L about the origin, but is actually the disk of rad¥us *
Ly < L of constant density c. o .') - .
M C“ . ) G . '- . .
-—* - A
4 ) ' ’
e g \ '
. ; . ' Y
\ b v . / ! .
v Lo = he
i <.
- N -
Abscissa repr}esents ro= /x2+y2 = distance from origin: i
. . o [
What are the ray-sums.,é R(u,$) and the back projection Gpproximation
F(x,y)? * (Leave your _answer as am integral.) Draw a rough sketch of ’
F as a function of the dlstance r fromvtﬁe origini- s
'} . L4 o, .
|_ - - ,l 6
. AR }

-«




he In general the back projection approx:'matfiﬁn over- * ]
estimates regions of loy mass density and underestimates « - . a..(x +2) : |
i . . = . |
. regions of high mass density. This is due fo the fact Exercise 5. Let f(x;y) "here afisa p°5't"’e"5ta"t |
» H H A
that projection for each fixed ¢ of R(u,'¢) um,‘rormZy back Use*contaur integration to Sh°"2that ‘ o
through the object will overestimate regions of low y  Flw,0) 2 T exp .[_ LA 02)] . . |
. ’ . |
-~ density and_underestimate regions of high density. ) ) -2, a . - |
‘ - - ’ ¢ ¢ Show that the Fourier lInvefsion.Theorem holds for this f. (Note: ’ - |
4. FOURIER TRANSFORM NOTATION, the second part of this problem requires.no new'integrations.) ';‘::."g -
. <, v——" ﬁr\'&?o, \ X ‘ \w
~ Let f(x) be a function of the real variag:fe x,*’a i .
rlen< x.< @, We use this convention for the Fourier-Trans- * 5. THE‘E‘XACT SOLUTION . PO
form £ of f: ; - R -
’w ; We now show' how the ray-sums R(u, ¢) completely deter-
E(m) - f()'()e'ZT!indx" . . m1ne f(w 0), the Fourier Transform of the'mass den51ty
- . . The trick is to change the variables of integration in the
. integral defining f above. Switch to the u,v coordinates
- Under suitable conditions the Fourier Inversion The'orem defined in Equations (1). Orient w,o axes—the domain
" holds variables for{f-—so that ¢ = arctan [% . Then
. ' /s f(x) = I f(w)eznwxdw cos ¢ = sec”! ¢ = (1 + tan? ¢)°% kX
- L)
s . PN © = (1 + ozlw )'!5 = [
(Su1tab1e condltlons are, for example, that J |£f] < =, ' N (4o
ol f ©, £ is, inuous and is piecewise differenti- -« N ' . v
P LI 12 < $ o 6 29
) able.) These results can easi';y be extended to functions | /wz+o’2 . ‘
. ‘ /
f(x, of two varlables Thus we set . ) .
() | . v * wx+oy = w(ucos ¢ - vsin¢) + o(usin¢ + v cos ¢)
- 1 m ‘-m o v, J R ‘
: £(w,0) €.’I I a(x,y)e 2O gegy . - = i = (,/u,zmz)u .
-0 -0 L ) c ‘ 3
WL L - - .. - Also dudv = dxdy since (u v) and (x,y) are each Cartesian
And under suitable conditions the Fourier Inversion Theorem o coordinate systems., So . - .
) A "' 3 . o - o e -
i holds ) . - . J1 ..4.“@3.‘ ‘ o g E
et s 2 ( o) (5) f(w,0) = CE(x,y)e RO ) gegy
f(x,y)f - 0)6 i (wx+oy dwdo. X . Jwl P
. i d .
- (-] (-] *", .
J “ r r [ % N
“e ‘ 1D . = f(x,y)dv exp [-Zni(/wzwz)u]du.
f - -
* - Jowo Jeco .
CERIC 7 T | :
s C el ; o




“where X = u cos ¢ - v sin ¢ . '
i ° v Example: Suppose the ray-sums are found to be

- €

. N y = u sin ¢ + v cos . ¢.

. . . . _ 2 .
But the inner integral is R(u,¢) by Equationsg{2). Thus . , R(u,¢) = e au N *
. -}

. . - for positive constant a. (Noting that R(u,¢) is indepen-

E(m,c) = L}L’R(u,¢) exp [-2n£(/w2+oz)u du

dent of ¢, we expect f(x,y) to be a function of the

dlstance x2+y2 from the origin only.) ‘Now

. 8 - . . . -
. However, p%%b inteérs& is by definition the\EoPrier Trans- : . .0 =6ane-d;26-2ﬂ1Tudu ’ .
form of R(u,@) with respec; to .the u variable &t /w,+02 ] 1% o T © ’
and with ¢ fixed at arctan (o/w). Id other words, f(w,o) ' y '
’ is obtained by fixing * dt arctan (o/w), taking the- . =!/ﬁiexp‘ - 13 TZ} ’
Fourier Transform of R(u,¢) with respect to the single ! ™~ a a
"variabl? U %nd evaluating this Fourier Transform at ° “either using tables or by ‘a c;ntour iqtegration as in
sz+o1 For a function g(x,y) of two variables we denote Exercise 5. So ’
the Fourler Transform with respect to the first variable ~ . A /r7~—7 -
by gl(w’y) e . ’ flw,0) = Rl(_w +g”,arctan (0/w)
A ) . ) e . o 'nz 2,2
gy (w,y) = J g(x,y)ehzﬂlwxdx. . = /é;exp [- Qr,(w'to ) X
b e . < - . . '
o . . Thus ¢
' Summarizing yields " . : . i o
. o o y
. ,- 6. THE BASIC THEOREM - ' £(x,y) = I .[ E(,0)e’ ™ Maudo ! -

. »oA LS ~ . * P -
(6) 7 £(w,0) = R, |/ol+0?, atctan [2}]. . , 2
E 1 w , - - [ 1 2 -
R . L= -~ - )— w"” + 2niwx|dw
L . . a . a : .
The Theorem shows us how, in'theory, to reconstruct the - - o ]
mass density f(x,y) from the ray-sums R(u,¢). Namqu,‘from
R(u,¢) calculate the Fourier-Transform with respect to u,
R (t, ¢) ?hen f(w 0) can be calculated by the Theorem from
(;;;J whlch f(X,y) can be found by Fourier Inversion. Of course *
in practice R{u,¢) is much too compllcated to f1nd its =

a
@ —
®
\ Y]
aje o
s La—
[
[}
) 2
. . %7
(3]
Q
- +
I o
2
® ol
' Q
[ ~
< —_—
~ (2%
Q
.

Fourier Transform w1thout a computer approx1mat10n of the . , ) :
1ntegra1 defining R (1,9) and similarly for the step from ) = % exp [-é(x +y,)]
f to £f. Still, the Theoremglndlcabes the general technique.
{ L
12 s 9 ' ° 1"— -10

Q ' : ) ' . | , '
ERIC 14 . :
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where -the second .to the last equallty fbllows by a c?ntour

‘dntegration as in Exercise S, “f‘ ! / ' B
. > L NI ' i

N . >}.

+ < '

N
¥

Exercise‘6 Suppose Ru,9)-is found to be e =lu] i'ndependently ot o.

2mirt cos (B'e)tdBdt

. @ 27
= I I ”Rl(t,B)e
: 0’0

.

where the second equality follows from the Basic Thcorem

Find R (t,9),

f(m,c), set qp the integral for f(x,y).

v A o T

.

|
i

7 = - T

A
A / .
4 .

7.

CIRCULAR SYMMETRY"

o 7
.

Many corollaries follow fﬁbh jzé basic theorem of

Equation (6).
6 and the Example before it. .

We indicate ong whic

1

. H o
generalizes Exercise
. * -

Suppose R(u.$)‘exhibits some/sort of petriodic’

L}
1
P
{
1]

|

|
[

and the last by using Polar Coordinates:

wx+gy =.
s

It cos B cos B

I\,PCOS (B-6) ..

the fact-that

+ rt sin B sin ®

, \

.Note that tdBdt

is the area element-in polar coordlnates

And by Exerc1se 7’be10w we conclude that

(8) £(r,6)

~

2m ;
- I I Ry (t,8+8) e TiTECOS Braggy,
0 )

.behavior‘in ¢.

That is, suppose the X-ray photograpﬂs

begin ‘to repeat themselves as we move the angle of the

Exercise 7.

Let g be a real valued function of a real variable which

incident ? ray beam.

(Of cours,

such a repetition wlways

is periodic of period 2 :

.. Ooccurs by moving the beam-by Zn/

We have smaller pérlods

of repetition 1n mind here.) Yhen it is natural to yse
Polarsrather th?n Carte51an Cifrdlnates Thus let

°

un

X r¥cos 6 : o
,

!
| y =1 sin 8 o -
)

as always for Polar Coordinates.
let : i

‘.
3

And in the (g,c)- plané

for all R.
show that

g(B+2m) = g(B)
Let ¢ be a fixed number. By considering the graph of g

% ~»

*
/

27+c . oq2m . ‘
I 9(6)d6=[ -g(R)dB. = J
C . p : -

'
il

t cos B

\ 1

t sin B8

, denote the Polar Eepresentatlon

~

g =- arctan (o/w). Now
roo roo . 2} . .
(M £(x,y) = £ (w,0) 2™ (0x °”d®~\
~ J_m J_m
. A
S Rl . N
= Rl{/w2+oz,arctan (o/wﬂe2"1INX+OY)dwdo
J-uo J-uo R *
n
.10 11

e
YERIC :
ot

i

. That is, t = Yo +o:h

Noting that both cos B and Rl(t,6+e) are periodic of period 27

(so that their product is as well) derive\Equation (8) from the last
expression in Equation (7). -

~
4

So far we have_been .completely general.

To understand

the above equation more let s take the case R(u,¢) =

indépendently of
of ¢ (Why?). So

(9) f(r,8)

¢. Then R (t,9)

L]

0

[y

1]

ezt

R(u)

= R (1) is independent

.
B

2
= I I ﬁl(t)eanrtcos Btdsdt. .
A .

oy
1 . 12

.
+

.

L
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Noting that the integral is independeiy of 8, we have just
proved the obvious fact: If the ray- sums R(u,¢) are
independént of the angle of the incident x-rays, then f

‘must be circularly symmetric, i.e., 1ndependent of 8.

(See the Answer to Exercise .8.)

+

This formula exhibits

} = f(r) as what is called the Hankel Transform of order

zero of R ()~
two-dimensional Fourler Analysis

v

Hankel Transforms occur qulpé,naturaliy in

problems. = ° “

- v, N

° Exercisg 8. L;t A be a real constant. The value of Bxercise 3. Suppose the ray-sums Bre found to be-independent of ¢
2m ) with. o < ‘e .
iA cos s
' 2 ¢
[ ) * R(u,0) = R(u) = . v
OQ a .o . 1 + (Z‘HU) . B
1 N ~ .
is denoted ZHJO()\). (J0 is ca'lrled the Bessel Function of order zero.) By a contour integration show that R'(t)' =e ,t’ Show that
Bvaluate this integral as an infinite sum using contour integration.
(Hint: Convert to a contour integral ove;sthe counterclockwise unit et ¢2j+|dt = (2 + 1)
circle centered at the origin using z =_e'>. Show that the integral o . .
. is 2 _3/2 : S
« y ' and that f(r,8) = 20(1 + (wr)“) . (Note: You will need the fact -
LA 1 \]dz - that - ' “ "
[ exp[l 5 (z + z )]-E ¥ P
X ' ' ] - [-'j/z] (-1) T
. which is (2mi) Residue of |I_z exp[i % (z + -l—)] at z = 0. Now evalu- . ) ’
. ' and the Binomial Theorem in the special case
ate this residue as an infinite&eries.) § ’ ’ . . o \
e . 1+ x)-”2 = 7 [-]./z]xJ N
- T j: J
- . . . . .
Using Exercise 8 and its solution we see that if where by definition . .
R(u ¢) is independent of ¢, then (from Equation (9)f e
-1/2) _ (<1/2) (-1/2-1) (cl/2-j+1)
(10)  £(r,6) = £(r) j 7 : .
* oo 2w . : . )
= | Ry(t)|| efTITECOS Bagliar : - I
. o o Although this formula exhibiting f(r) as the Hankel Trans-

”

orm of R (t) solves the case when R(u,¢) = R(u) is
ndependent;bf %, the actual 1ntegrat10n would normally

3

where JO(A)‘is

~

ERIC
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-

, A s - d
= J Rl(t)-ln OGZHr;)tdt ¢ . .

.
«Q . !

. ,
«
. ..

the Bessel Fugction of order zero -

4

£

ve(-1))
0 G

)
XK .
v 1 ‘
7. 1

.t~ 8

)\ZJ
3 R :

require a computer approximation.

Transform of some common functio
tables. - ¢

s d

However., the Hankel

ns are{listed in mathematical

o
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. . 8. THE CIRCULARLY, ASYMMETRIC CASE T " v ¢, Now fix v and cons:der f(r,e) as a function ®f. 9 Conglude from
; . . 10a and 10b above, that the nth Fourier Coefflctent of f(r, 0)
A similar apalysis can be carried out when R(u,¢) - ) when expanded in a Fourier Series, as a function of e is
. Lad ° * .
doe§ depend on ¢.° The solutionl exhibi‘ts ‘f(r,e) as combi- R
nations.o i ¢ i ’ . ~
, 0 tions. of higher order Hankel Transforms. The solution 27" £ (0)9 (2nrt) tdt . .
is elegant, but we relegate it to - ! 4
£ « v .
— . i . . . ) -n- . \ f -~
Exercise 10. NOW'R‘(t,'i’)—the Fourier Transform of R(u,$) with . which is i"-times the nth Hankel Transform of c .
respect. to jthe u variable—is for each fixzed t a periodic function of d
+ ¢ of périod 2n. This is so since"the ray-sums R(u,$) repeat as ¢ O . -7 .
hanges by 2m. Thus R ‘ .as a, i i - S
changes by us ](t,¢) can be'expanded .as a Fo‘urner Series for . 9. ' HISTORICAL AND RABLIOGRAPHICAL NOTE
each fixed t: . s . T
al(t,'i’) - E 2 (t)ei"¢ . P Analytic techniques in tomography were first used in
n=- ‘ - radioastronomy. Antennae were unable to focus on the
where hy the Fourier's;,ries formula . K ' individual pomts of the solar surface, but were able to
_ ) ' - . focus on th1n striplike segments crossing the sun. Thus,
N N . 2",. -ind W’ - - . in maklng a map of the microwave radiation density of the
c,(t) =57 Rl(t’¢)e v do. * sun, astronom'ers had to reconstruct it from "strip sums."
. T 1 =0 : . . ’ In med1cal radlology X-ray- CAT (Computer asuated tomog-
a. Show that <, (t) Is the Fourier Transform of the nth Fourier 4 raphy). scanners were 1ntroduced in 1972. These machines
Coeff:cient of R(u,9) . - 3 . take X-ray pictures at about ‘one. degree 1nterval,s between
om ‘ ) - . 0° and 180°. While CAT scanners are expensiwe (of the
Cn(u - Zl_n R(u,¢)e_'"¢d¢. . - - B order of half a million dolla"r'& per machine), they afford
. : 5 ' . a revolutlonary 1mprovement in med1ca1 d1agn051s )

o a | R ‘.

b. Plug the new express:on for R (t,¢) into Equatlon (8) to show ®r an interesting nontechn1ca1 source of information

that ‘ . . 7. see "Computerlzed Tomography' by W. Swindell and H. Barrett-
. ' oo ' ’ . .. in Physws Tolay (December- 1977). For a deeper mathe-
oot . 2 i 1~ - ’ ' o E matical treatment see "Principles of Computer Assisted
flr,8) = 2] e .- |c (t)d (rt)edt . | e .
. naco n n . . . Tomography" by R: Brooks and 6. DiChiro in Physics ‘Ln.
- -t T . R o ' ‘Mediéine and Biology, Voiume 21 (1976, pp. 689- 732).% For
where - ' S ~ ’ ) * .an applied, very readable account of Fourier Series,
‘- - . >
st R ) ! ) co . Fpurler Transforms and Hankel T‘ransforms see The Fourier
. 4 (rt5'= exp [i‘ns\:f 2mirt.cos s] ds. * i: - Transform and its A’ppchatzons by R.M. Bracewell (McGraw-
n -~ . s . H‘ih’l 1965). An informative, nonmathematical article on
\\ N R . oo \ . ( -
. . 5%y a similar. me,thod of image recﬂonstruction s "Ultrasound
By definition dn Q) = (2"' ) \‘(A/-.Z_ﬂ) 's called the ieasel N in Med'lcal Diagnasis" by .G, ﬁeyey and P. Wells found in
1 szctwn of rn. , . - L . . &«
. LEer ot e T , . ) 16
ERIC L : oo - 5
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Seientifie American {May 1978, pp.-98-112). In this X
technique, sound rather than X-rays are used to avoid

organ damag’é. ’-

.

’ .

N ‘ 10. 'ANSWERS AND SUGGESTIONS TO EXERCISES

>

~

V]
3. R{u,0) = 2—;— »’Lz-uz(L2+2u2) from Equation (2).

_cp 2,2 2 .
- Flxgvg) = ?(L +x0+y0) from Equatlo:w ().

As functions of r = /x2+y2 the graphs of f and F are

-
<> .
D L P M :
y b, R(u,¢) = . T e
0, Ly < lul < L. v

So by Equation (2)

L - .
’ “ F(x,,yz) =L c
. . 0270 2m
. - "
. where u = Xy €os b+ Yo sin ¢ and the range of integration is
over all 0 < ¢ < 2m so that |u| < Ly. Note that .
. L .
. c
s 0 .
‘i’& , - ‘F(0,0) = T oo
. - Flxgrvg) =0 | . :

»

-
for v/x2+y(2) = L. A rough sketch of F as a function of the dis-

0
. tance from the origin is ‘
ke . 4
! - : . .
. \(..'? i N . 17
Q z o -
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-
[}]

P : .02, 2 “
Je ami (wx+OY).e a(x“+y )dxdy )

I .02 e .02
- Je mexe ax dx,'Je-*Zmoye ay dy.

[} . A o
4 _ . .2 ."s 1
But the one-dimensional Fourier Transform of e °X !
- .2 ’ : .
T
/—; P [— lra—wz:l from tables or by contour integration. - .
) . 2 '
Now witg f(w,0) = %:_ exp[— lra—- (w2+O2)] , o
‘ ” ~ - i *
T T~ LTINS
f(x,y) = e 4——2 exp|- > (x"+y°) .
. 1¢/a [TT /a *
. ¢ 2 2 \] '
. B e-a(x +7) . )
1:2
tA)y the above integratiomr with e replacing a. So
f(-x,-yy = f(x,y) = f(x,y)—=which is the content of the Fourier
Inversion Theorem, - .
- < . . .
-6, R (1,0) = 2(144%c?) ) - ! . .
. . 7,
4 Thus . e
flw,0f = 2 [I+lwr2'(in2+02)] 1
8. on the unit cirofe .
o V1, dz .,
z-e,coss—z(z+z,iz—d~_, ,
. Now . o .
~ '] v H do ’
: . ea(zd-%) . ¥ (az)? | ) (az -‘)k . 0
=i T .
j=0 J° k=0 : 1;3
_ ol 18
“~ . ’ ’
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The coeff.icié;nt of z0 in the product series i6

A}

. - ® o
ELin 2%l .
— .
j=o J1 It 2o (12,
Thus the coefficient of z—‘ in ~— exp[i %(z +:l_!-
M Y
. R LS (-1 A)2
i L E ] j
Ij=0 2 (J,)Z |j2-0( ,)2 2

2ni times this is the answer by the Residue Theorem'

problem imply

f(r,0) = 21| e © - 020 ﬂ._):;_ (m)zjth#-ldt'
j=0 (j1* -
j=0 (jit)

»
d

\

an § ff (-1 (2j+1) (5r) 2

"

gyt (et

= z:r d‘(%?)'"" 3 ["J/.z][(m—)z]j

PR R
dinrs 5 :
/14 (nr)

-t

R ]

’

. 9.' With R(t) = e-ItI the formulas above the statement of this

19
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“not make its appearance until the middTe adult years.

1. GENETIC DISEASE

-

1.1 Introduction ’

Genetics, the science of heredity, is’barely one
hundred years old. Although people have long been aware
that parents pass many of their own traits on to their
children, it 1s only recently that scientists have under-
stood exactly how and why th1s happens. In the process
of learning the mechanisms of heredity, they have dis-
like
other physical characteristics, a#® passed down from

| ] .

covered a large number of gefetic. diseases which,

one generation to the next.

The gene is the unit of herédity. A complex protein
molecule called deoxyribonucleic acid, or DNA, determines
the color of the eyes, the texture of the hair, and ﬁést
of the other traits that dlstlngu1sh one person from an-
other. In addition, génes control a mu1t1tude of bip- -
When

they fail to do this correctly, the result can be a serious

chemical reactions that take place 1n51de cells.

disruption of normal metabolism.

1.2 Cystic Fibrosis and Huntington/s .Disease

Cystic fibrosis, the most common inherited killer
of childréh; is caused by just such an inborn error of
metabolism. This error causes cells to produce a thick
chous secretion that clogs the passageways of many vital
organs. Although treatment for cystic fibrosis has im-
proved in recent years, few of its victims live to be
adults. If a‘bouple has one child with cystic fibrosis,
the chances that é€ach of thefir other children will be

born with the disease are one out of £our
.10
Another genetic dfsorder, Huntington's disease, does
‘At that time, its victims exhibit odd postures, involuntary
motions, and bizarre mental changes. Eventually they

succumb to the disease.. Many victims of Huntington's dis- -
LY

1

e -~

-abnormal-allele.

"If either parent passes down this abnormal allele, ‘the

~'1e1es; ~one from each‘parent

. the parents’ genotypes must therefore be Aa.

ease have children before they discover that they are ill.
When this happens, the children have one chance in two of
developing the disease themsélves.

2. MECHANISMS OF INHERITANCE

”

2.1 Recessive and Dominant Diseases *

To understand why the probability associated with,
Huntington's disease is higher than the-one associated
with cystic fibrosis, it is hecessary to understand the
different ways in which these two diseases are inheritedm'
Geneg come in pairs of two. In reproduction these pairs =«
split, and {he'child receives one member of each pa:r,

chosen at random, from each of his parents.

3

Each gene has a variety of-different forﬁg,called -
alleles. Certain genetic diseases are caused by a single
Some of these disease’ occur only in -
people who haves two copies of Ehis abnormal allele, one
from eaEB parent. These are called reée551Ve diseases.
Cystlc fibrosis is a disease of- this type. Others occur
in people who have only one copy of the abnormal allele.
child will be afflicted. Diseases like this are said to
be ddminant. Huntington's disease is an example of a
dominant disorder. Once it i§ known that a hereditary
disea;e is either receSsivp or dominant, éimple laws of
probability can be used- to determine the chances that
parents with particular c0mb1nat10ns of genes, called

genotypes, will transmit the disease to their child¥en.

2.2 Genotypes and Their Probabilities

-

A child with cystic fibrosis has two abnormal al- .
~Thus, if two healthy paremts— ~.-
have a child with a recessive disease.like gystic f1brosx§, '
both®of them must carry the abnormal allele. If a symboli-
ze5 this abnormal allele and A symbolizes the normal one,

People\who

- P

¢ 9"
XY,

. (ﬁ)
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- * < . ¢ . . /
H : i ‘ : . o ’ ' )
have one normal allele and one abnormal one for ‘a reces- mdrriéd ;to people with two normai alleles. As shown 1n = e
sive d?.sease are called carriers; they usually show no . «Figure 2, the ghildren of such a marrlage'w1ll be 0{ tuo: __‘~
signs of the disease, but they can pass the abnormal L genotybes, Aa.and AA.* (In this case the mother is the -~ ‘Tfiffj;
allele on to their children. A ch11d with a recessive normal parent and the father is the carrier.) - : M
. . % b o < \.
disease has genotype aa. The dlagram in Figure 1 shows . . Allele from Mother. - : s
how’ parents with genotype Aa can have a child with geno- 4 ) w ©
type.aa. . A A - =
Allele &rom Mother o Allele
. . from A AA AA
= A a ) Father ~
Allele — . . a aA aA .« -
, from A AA Aa . . . T-
Father : . . ) Genotype of * .
- . . Child )
a aA aa. . >
. : i . ° . Figure 2. krhe p0551b1e genotypes of a child with one
- . carrier parent. a
Genotype of . , ,
. 3 . . S
- Child Since Aa individuals will develop the disease and AA indit -
Figure 1. The possible genotypes of a child with two viduals will not, the chances are two out of four, or one
carrier parents. . y .- -
. out of two, that the child of a victim of Huntington's
Because the parents transmit each of their genes’ disease will eventually develop it himself.
with equal probability, the four possible ‘outcomes are .
eqially likely. There is therefore one chance lin Four 3. GENETIC‘COUNSELING
that & child of these parents will get two normal alleles, :
two chances in four, ot one in two, that he will be a , 3.1 JPredicting the Occurrence of Genetic Disease
carrier, and one chanip in féur that he will be -born wigh’ * ' ] . .
the disease. These probab%lities are of little use in . .AIIhOUgh o hereditary dlSeases\can bettreated ef-
predicting the outcome of any one particalar birth. How- fectively at present, tests have been ?eveloped to detect .
ever, of 1000 children born to parents who are both car- carrl:rs of many genetlc dlsorders andito ldentify a num-
riers of cystic_fibrosis, approximatelys 250 can be expected ber of defects in unborn ch11dren .y this kind of ) * .
' to be victims of the disease. Of the remaining 750, about screening, and by assessing the liklihood that genetic ‘//
500 will be carriers. The.'chances that the healthy child : disease will arise in parsicular families, hany hereditary .

of two carrjer parents is himself a carrier are therefore

500 out of 750 or two out of three. o
o e e e e e Tt et e e e e late the‘rlsk that-particular pznren'cs witl- tran,sn}i\r\a

Because it is a dominant disorder, Huntlngton s, dis- Kereditary disease. To do this,“she relies on two funda-

mental principles of probability.

the genetic counselor, one of whose JObS it is to calcu-

ease will manlfest itself in people with only one abnormal

allele, that is, in people of genotype Aa. Since Hunting- L . ..
v ton's disease is very rare, its-victims are almost always 1. Prebab1L1ty has no memory. ?he genotype of each

' . . . e . 4 -
.!‘ ) [. 33 - 3 . J’; . .

- . - . . 4
s . R PR <. .

N . O -
Loy B - . *s
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diseases can how be prevented Central to this effort is
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; - R less of the outcomes of previous births. -
T T TS 2.0 Hf wio or more events'are independent, their .
f/ “ .. 7 pfFobabilities are mu1t1p11ed to get the proba-
JE "‘b111ty that they will occur in sequence.
7/ 732 Some Typical Problems . .
Here are some ﬁroblems of the'sort that' a genetic -
. counselor might be called upon to solve! &

1 -
. PR . [N
* . . Ed

oo ch11d of a part1cular marriage is ‘independent

- SO “of -the genotypes -of any previous children.

- Thus, ,the- chancgs that the child of two carriers.
.- ,.of ¢ystie fibrosts will be afflicted with:the
‘dis€ase are one in four “for every ¢hild regard-

Both Mr
cystic fibrosis.
have a child with the d1sease?

and Mrs: B. had-sisters aff}1cted with
"What is the probability that they'will

]

Solution: Because they produced aff11cted children,
both Mr. B's parents and Mrs. B's parents were carriers

of cystic fibrosis. Of the normal children of carriers,
two out of three are carriers themselves.
.the probability that Mr.

probability that Mrs'

?heréfore,
B is a carrier is 2/3 and the _
B 1s a carrier is alsq 2/3. Since .
the probablllty that two carriers of c¢ystic f1bros1s will
produce an afflicted child is 1/4, the probablllty,that
"Mr. B is a carrier, Mrs. B is a carrier, and their child
will be born with the disease is 2/3 x 2/3+x 1/4 or 1/9,
/It is worth noting that -the probability of Epe complemén-

tary event, that their child will not be boxrn with the

y g

: disease, is 1 - 1/9 or 8/9. ; . .
- The mother of Mr' L's father died of Huntington's
disease. What are the chances that Mr. L will get it?

9

Exercise 1. ,Both Mr. L and Mrs. L had brothers afflicted,with .cystic
fibrosis. If they have two children, what 1s the probability that

» both will be afflicted with the disease?

P are tested and both are found to be
What is
the probability that thelr first child will be born with the.disease?

Exercise 2. Mr. and Mrs.

carriers of Tay-Sachs disease, a rare recessive disorder.

That their.first two children will be healthy? That their first

three children will be carriers?

Exercise 3. Albinism is a recessive disorder characterlgd by, a

A woman who
What
If their

marked reduct1onﬂ1n pigmentation throughout the body.
is an albino marries a nbrmal han whose brother is an albino.
are the chances that their first child will be an albino?
first child is an albino, what are the chances that their second
child will be too?

Exereise 4. Two ‘1rst cousins marry. If the sister of their grand-

father had cyst1c flbrosis what are the chances that they will have.

a child with the xdisease?

-

»

3.5 Conditional Probability

nd Mrs. A had sisters who died

A's have two ch11dren, what

- Example -1. Both Mr.

If th
are the chances that ne1ther will be afflicted with the

disease? v

‘of cystic fibrosis.

- There are two possibiMities to be considered here.

ahd Mrs.'
run no risk of getting cystic fibrosis.
hand, both Mr. A and Mrs.
M each of their children will be healthy are three out of

Unlless Mr. A are both ¢arriers, their children
T If,

A are carr1ers, the chances that

on the-other

p) four. Because both of these conditions must be considered,

this problem is said to involve conditional probability,

\

Solution: Ihe probablllty that Mr L's, grandmother In the diégrqm in Figure 3, C fepresents the event

" 777 "passed the abnormal alleie on to her son is 1/2 The’ that Mr. and.Mrs. ,A are both carriers, and C is its com-
probability that he in turn ‘passed it on to Mr. L is . . 'plementi' Since both of their parents were carriers, Mr. .
.. ~-also 1/2, So the probability that Mr. L will deveiop . A'and Mrs. A each have a 2/3 chance of being carriers’ them-
« < . .
Hunt1ngton s disease_is 1/2 x 1/2 or /4. - _ Lo . . .
s « . T X - . 6
. . I L4 - S ’ ( Br;
’ RS Red ; * - ~ T ) \ . ‘
) (/'T' - . gJ v . 5t . . ’ .
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A, of His 1

\" P {
selves (see SectioniﬁZ). The probability of event C is
hence 2/3 x 2/3 or 4/S, and the,probability of C is 1 - 1/9
or 5/9. ° - 3 <

H stands for the event th;t Mr. and Mrs. A have two
healthy children, H for its complement. If C 1s true, the
probability'of H is 3/4 x 3/4 or 9/16, and the probability
- 9/16 or 7/16. 1I1f C is true,’the probability
of H is 1 and the probability of H is, 0. The ﬁrobabilities
of the four compound events;‘found by multiplication, are

given at the bottom of the diagram.

-

\ i 4/9
. n
\ C
"9/16 N\
7 H . H
* 1/4 7/36  5/9 ;. 0
". b\‘,’i&?" ' .'; N
Figure 3. Diagram for Example 1.
- The probability of event H, that Mr. and Mrs. A's two .
children are healthy, is 1/4 + $/9¢<or 29/36. . .

In more conventional,notation,
2

\

.

P(H)

P(C)+P(H|C) + P(C)~P(H|T)~
4/9+9/16 + 5/9+1 = 29/36.

)

because there are two conditions under which the son of
a woman wh¥ died of Huntington's diseade can be healthy
‘Either he did not inherit the ab

or he did inherit the abnormal allele but has not yet dev-

at forty. rmal allele,

eloped the disease. Both of these possibilities must be

considered.

» In Figure 4,'C represents the event thatMr. P 1s
a carrier, C that he_ 1s not.
these 1s 1/2. H is the event that Mr. P is healthy (that
15, .free of Huntington's disease) at forty, H that he is

The probability for each of

not. Since three-fourths of all carriers develop the
disease by age forty, the probabilities of these in the
event of C are 1/4 and 3/4 respectively. Tn the event of

C, the respective probabilities are 1 and 0.
N ¥

L 1/2 \\\\ifz
) c T .
1/4 /// \\\§/4 1.7 0
TNy a ' .
H H H ~H
! 1/8 3/8 1/2 0 .
- Figure 4. Diagram for Example 2.

Since 1/8 + 1/2 or 5/8 of the children of a woman

. Who died of Huntington's disease can be expected to .be

healthy at forty, and 1/8 to be healthy at foriy and car-
riers, the probability that, Mr. P is a carrier given that
he is healthy at forty is %é% or 1/5. 1In 'conventional no-

Example 2. Although Mr. P's mother died of Hunting-
ton's disease, Mr. P is now’forty years of age and healthy.
If three-quagters of all carriers of Huﬁtington's disease
develop sym_vbﬁs by the time they are forty, what is the

tation,
. . P(H,C) _1/8 _ )
P(C H) = ‘?TﬁT' ~ 578 1/5.

¥

disease?

Aruitoxt provided by Eic:

-

-

K

probability that Mr.

P will eventually develop- Huntinton's

PR

! This isiénother problem in conditional prebability,

.J' 7
" 37
Q i
. ERIC »,

Exercise 5. .Bill's father ' mother had Huntingfon's disease.
—_— -~
half the carriers of Huntington's disease show symptoms by age thirty-
five, Bill's father just celebrated his thirty-fifth birthday and is

still healthy. If Bill has a child ‘someday, what is the probability

8
- 28 3

.

Although

A X
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*. that this child will get Huntington's disease?

~

2

Exercise 6. Nilly's maternal grandmother has Huntinéton's disease.

His mother is thirty-six and in good health. If 60% of the carriers

of Huntington's disease develop symptoms )y the time €Ley are thirty-
- sig, what are the chances that Willy will“be free of Ehe disease?

®

Exercise 7. Although both Mr. and Mrs. D -have siblings who are ‘al-

_— ' .

binos, all three of thelr cHildren are normal. What are the chances
Q

that.tgeir fourth child will be .an albino? .

. >

4. THE INCIDENCE OF HEREDITARY DISEASE

4.1'wbat;ern§'of Inheritance .

. Fhere are now 2000 recognized genetic diseases.

If they are to be investigated and conttolled, it is essen-
»tial~that doctors and-counselors understand the mechanisms

by’ which they are inherited. In some cases these mechanisms

are very co?ek,—involving the interactions of large
f

numbers of ferent genes. Dominant and recessive dis-

o

orders, ﬁbwever, exhlblt simple patterns of inheritance
that make them easy to identify. )

In the case of a dominant disorder ‘every affected
indiv ual will have an affected parent, Further, as*we
‘have seen, the chances that the child of an affected, parent
will inherit the disease are one in two, assufiing that the
other paren;éégrnormal.d In a large group of children of
such marriages, therefore, close to 50% will get the dis-
ease,. ' )

4.2 Predicting the Incidence of Hemed1tary Disease w1th
Binomial Probability -

- - H -

What can be said about a single family? Supﬁose‘
that a normal individual marries a carrier of Huntlngton s
disease and they have three childrer. What are the pos-’
sible qutcomes? , The diagram in Figure 5 can answer .this
question. * Here N(%) indicates the birth of a normal child

EY 0 B 3

with a\probability‘of 1/2 and A(%) indicates the bairth of
an affected child with this same probability. To get the
probabilities in the rlght hand column, the ifdividual

probab111t1es have been mu1t1p11ed together.

Of the elght possible outcomes, one 1s for three
.normak children w1th a probability of 1/8, three‘are for
two normal ch11dren and one affected child with a combined
probability of 3 x 1/8 or 3/8, three are for one normal
child and .two affected ch11dren, also with a combgned pro-
* bahility of 3/8 ‘and one is for three affected chiidren
with a probab111ty of 1/8. Note that these same results
could more easily have been obtained by .multiplication
since

323,03 + ¢ ey +

. 3,2 0N () %+ ¢(3,3) N )3 =
' 1/8N° + 3/8N%A + 3/8NAZ + 1/8A5.

f(3N+ LA)

-~

flere the coefficients of the product give the probabilities
of the correspondifng combinations pof N's and A's. Because

* the binomial theorem is used to.optain these results, the

problem 1s said to involve binomi3l probability.
"

first child second child hird child
20 ~==::,,___-——N(%) . NNN(1/8)

\ N(#) °  NAN(1/8)
A(’i)'<-—_—’-

- A(%) -NAA(1/8)

o -N(%) . ANN(1/8)
o —N(k)&._*, e A(Y) ANA(1/8)
A(%)- ) e —-N(%) AAN(l/BQ

’ o ACOT=—— a0y AAA(1/8)

Figure 5. Possible outcomes for a three child family in
— which one parent carries a dominant diseaSe.

For recessive diseases the probabilities differ. A

child will be afflicted with a recessive disorder only if
. - ’ ) .
) ’ . "‘ 10
I
, ‘ - $7) '

l - ) "
o ) -

4 ’
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E

both of his parents are carriers. When this is the case,
he has one chance in four of inheriting: the disease and
three chances in four of being normal. The possible .
outcomes for the three child family of two carriers qf

a recessive disorder are shown in Figure 6.

first child second child third child

N(3/4) NNN(27/64)

(3/ )_,,,f/«”"N(3/4)~==:::::::jA(1/4) NNA (9/64)

N(3/4 .

, N(3/4) NAN(9/64)
,\t\\\\\\\\‘AF1/4)"=:::::::::A(1/4) NAA(3/64)

‘ . N(3/4)  ANN(9/64)
N(3/4}‘=:::::::;A(1/4) ANA(3/64)
A(1/43‘=::::::::-A(1/4) AAA(1/64)

Possible outcomes for a three child family in

Figure 6.
- which both parents carry a recessive disease.

Of 'the eight possible outcomes, one is for three nor-

mal children with a probability of 27/64,

two normal children and one affected child with a combined

probability of 3 x 9/64 an 27/64,
mal child and two affected children with a.combined pro-

" bability of 3 x 3/64 or 9/64, and one is for three affec-

" ted children with a ﬁrobability of 1/64.

three are for

- [
three are for one nor- .

nomial expan51on would have produced these same results,
in this case the expansqon of (3/4N + 1/4A)

By using the binomial expansion in this way, a ;ariety
of questions can be answered about the incidence of heredi-
tary disorders. Consider a largQVﬁumber of families of
‘four children in which beth parents’are carrier; of cystic
fibrosis. In what percent of these families will two or+'

more .childrgn be affected? .

Solution: The expansion of (3/4N + 1/4A)4 yields

c(4,0) (3/4M) 4 (17480 + c(d,1)(3/aN) 3 (1/44)
v C(4,2)(3/4N) 2 (1/a8)%

11

o . ' 41 - -

RIC

Aruitoxt provided by Eic:

As before, a bi- | Exercise 10,

'
i
P

+ C(4, 3)(3/4N)(1/4A)3
e * C(4,4) (3/4N) V2TV

~

°
v

These last three terms correspond to two, three and four
affected children respeodlvely Summing their coefficients,
the probabfrlity of two or more children being affected 1s

found toabe

ca,2) 30 %arn? + crsyro a/a?®

- _54 412 + 1 _ 67 N
"o 256 756 26

s ca,0) /8!

X .
SO two OrT ﬁore children will be affected in about 26% of
the families.

Exercise 8. A man with Huntihgton's disease has four:childﬂen.
a) What is the probability that all four will develop Huntington's
disease? b) What is the probability that two children will be af-

fected and two normal? c) That no more than one will be affected?

Exercise 9. | Two parents are carriers of the same recessive gene for
deafmutism.
be deaf? b) That all five of their children will be normal? c¢) That

two of their five children will be affected? d) That at least two will®

be affected?

a) What is the probability that their first child will

A statistical study is done on families of five childrég
in which both parents are carriers of the same recessive disorder.
In what percent of these families should no more than two children
be affected? ,

Exercise A ¢ouple's first child/has cystic fibrosis. a) What
is the probabllity that their next child w111 have it too? b) What
is the probability that of their next three children only one will

be affected? l

Pt
& '
o "~ . —
L 2 .
b} o .
,
. 0 s

2%
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Aruitoxt provided by Eic:

5. SAMPLE EXAM

1. The parents of both Mr. ;/Eﬁd Mrs. L were carriers of cystic
fibrosis. What is the brobability that neither Mr. L nor Mrs.
L is a carrier:t/;hht both of them are carriers? That both of

them are carriexrs but they will have two normal children?

2. 90% of~tlge Carriers of -Huntington's disease have symptoms by

age fort}—five. If a man whose father died of Huntington's dis-

&

ease is healthy at forty-five, what is the probability that

he is not a carrier? i

3. A study is made of three groups of families in which both parent;
are carriers of a recessive disorder. The families in the first
group have two children, those in the second group have three,
and those in the third have four. If the three groups are of
equaﬁ sfze, in what percent of the total number of families

should tio or more children be\fffected?

A
»

~ R Y

N 6. ANSWERS TO EXERCISES

- N B %}2 :

P(each parent is a carrier) = 2/3.
P(the child of two carriers is affected) = 1/4.
2/3 x 2/3 x1/4 = 1/9. -

P(first child will be born with the disease) = 1/4.
P(first two-children will be healthy) = 3/4 x 3/4 = 9/16.
P(first three children will be carriers) = 1/2 x 1/72 x 1/2

1/8.

f

P(father is a carrier) = 2/3 so P(first child is an albino)
2/3 % 1/2 = 1/3. If first child is an albino, father is a carrier

and P(each .subsequent child is an albino) = 1/2.
A ]

P(grandfather is a carrier) = 2/3. Assuming his spouse is of
1/2 and

P(two carriers

genotype AA, P(each of his”children is a carrier) =
P(each of his grandchildren is a carrier)v= 1/4.
produce a defective’child) = 1/4. °

2/3% 1/4 %X 1/4 x 1/4 = 1/96.

1/4
1/2 + 1/4

1/3 % 1/2 = 1/6. -
P(Bill's child will be a carrier) = 1/6 x 1/2 =

e
AT

3/10 yz 0 ‘ -

P(Bill's father is a carrier) = =1/3.

P(Bill is & carrier) =

1/12.

Q >

%ff 1/5
s

sz S YT -
2/7 x 1/2 = 1/7. ' s
11/7 = 6/7°. -

P(Willy's mother is a carrier) =

P(Willy is a carrier) =
P(Willy is not a carrier) =




10.

»

£}

~ %

o,
Ta/9 5/9
o [
3,3,3.27 7, o v -
4 4 4 64 64
H H H - H
3 3 s 0
16 144 9
P(Mr. and Mrs. D are carriers given that they have three normal
children) = 3/16 a2t .
prorel) T 3716 + 579 £ 107 S .
P(fourth, child will be an albino) = 27/107 x 1/4 = 27/428 or
approximately .06. :
a) C(4, 4)(%) = 1/16 . .
b) C(4, 2)(15) = 6/16 = 3/8 -
c) P(one will be affected) = C(4, 1*31) = 4/16 °
" P(now€ will be affected) = C(4,0) dn? = 1/16
Pffio more than one will be affected) = 1/16 + 4/16 = 5/16
a) 1/4 ' T .
b) C(5,0) (3/4) = 243/1024 9
c) C(5, 2)(3/4) (1/4) = 270/1024
d) P(none will be affected) = C(S 1)(3/4) (1/4) = 405/1024
P(none will be affected) = C(5,0) (3/4) = 243/1024
P(at least two will be affected) = 1 - (405/1024 + 243/1024)
' T = 376/1024
P(two will be affected) = C(5, 2)(3/4)3(1/4)2 = 270/1024 ’ '
P(one will be affected) = C(5, 1)(3/4) (1/4) 405/1024
P(none w111(§: affected) = C(5, 0)(3/4) = 243/1024
270 + 405 +CN3 918 _ ’
1024 *Tozg =90 = 0%
a) 1/4 - . -
b) C(3,1) (3/)2/dH = 27/64 L,
" g e ’
1 &
. ; ¥ ¥
P . : ) 15
N - .
. X s . -
3 3 > 2

-

" ‘P(both are carriers) =

7. ANSWERS TO SAMPLE EXAM

- S~

P(neither Mr. L nor Mrs. L is a carrier) =
2/3 % 2/3 = 4/9.
P(both are carriers and they have two‘n6rma1 childrén)

= 4/9 x 3/4 x 3/4 = 1/4.

1/3x 1/3 = 1/9.

1/2 “ 1/2
c - -C -
\ 1/1/,\/10 /\
H AoH ) o
1/20 9/20}11/2 0

o .
P(he is not a carrier given that he is healthy at forty-five)

/2  _ ) . ‘

=177 1720 - 10 ) ‘ RS

ca, 2)(1/4) - 1/16 : )

G, 22(3/4)(1/4) v C(3,3)01/8)° = 9/64 + 1764 = 10/64

c(4, 2f(3/4) (1/4) + C(4, 3)(3/4)'(14) + C(4, 4)(1/4) -5
. " 547256 + 12/256 + 1{}56 - .

1/3% 1/16 + 173 % 10/64 + 1/3 x 6]/256 = 123/256 = .48

.50 two 05 more children should bz affected in about, 48% of-the

families. ¢
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Not enough detail to understand-the unit 7
Unit would have been clearer with more detail :
Appropriate amount of detail

Unit was occasionallg ‘too detailed,’ but this was not ddstracting
Too much detail; I was often distracted . -

How helpful were the problem answers?

Sample solutions were too brief; I could not do the interfiediate steps
Sufficient information was given to solve the problems’
Sample solutions were too detailed; I didn't need theg - -
Except for fulfilling the prerequisites, how much did you  use other sources (for
example, instructor, friends, or other books) in order to understand the unit?

A Lot Somewhat .7 .~ A Little Not at all
How long was this unit in comparison to the amount ofsfime you generally spend on
a lesson (lecture and homework assignment) in & typical math or science course?

. Much . ¢ About - Somewhat ' Much
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Statement of skills and concepts (object%@es)
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Examples' ?

Special Assistance Supplement (if present)

Other, please explain

L
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Table of Contents
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,1.  BACKGROUND INFORMATION™

!
The bee's honeycomb 1s one of the mogt beautlful

geometric configurations in nzégg.. Its 1n;zacate
geome'tric form and structural *conomy have been objects
of scientific 1nvest1gat10n for ,centuries.

. The architecture of the 'fdeal" ‘horieycomb has the

following basic features: \ '*\

a) It consists of two ‘stacks of cbngruent tubes.
b) Each tube 45 open at one end and closed at

the ather.’ .
c) The .two stackﬁsof tubes are joined gpgelher at

o their closed ends. -

d) Each tubg has an hexagonal cross=§ection.

‘e) " The closed end of each tube consists of three
end faces that are congruent equilateral
sParalellograms joined as in Figure 1.

. 'l.—— Tube Center Line

/

Figure 1. The plane surfaces and surface angles of an ideal
: honeycomb tube- “

v AN

wa.

3 o

“

o~ .

{ﬁrffmﬁﬁ measures of the interior,angles of the
pavallelogfam faces are approximately 110° . ’
% nd 70°. These same angles occur on the

trapezoidal faces of ‘the tubes. Finally, the
acute éngle between the center line of the tube
. and the ene/faces is approx1mate1y 54°.

I3

0f course, the honeycombs actually constructed
wax by the bees dev1ate from the design describe ﬁabqye
in a varietyesof ways: The tubes are not exactly‘%h‘“'
same size and the edges and faces are often curved a
bit. However, these deV1at10ns from the basic plan
are remarkably small so that the design features listed
above conform quite closely to reality.

Why and how do bees follow this exacting design
- pattern for the construction of their honeycombs? As
you might expeﬁ}, these are’difficubt‘questions to ans&er.
Some observers have attributed the remarkable uniformity
of honeycombs to D1V1ne Guidance, others to gerfetic
natural selectlon and st111 others to the action of
physical forces.

“ .

There is’ strong eV1dence to support the c¢onclusion
., that the archltecture of a honeycomb is not merely a
random selection from & list of possible multiple tube
» structures of this sort. This evidence is based
largely on a number ‘of theoretical properties of the
honeycomb structures described above that -suggest that
it is the "best possible" choice *from several points of®
view: In this paper, we wi [discuss one of these
theoretical properties in detail and mention some
others briefly. . ~ - r

N
£ . 4

*

As we pointed out above, the acute angle between
the center line of tﬁe‘tube in a honeycomb and each of
its end faces i¥ approx1mate1y 54°.. Why 54°? To provide
at least one plaus1b1e reason .for;this choice of angle,
suppose that we assume that the bees construct the‘!ubes

zi‘é“

N

«




. achieve this m1n1mua. ke
the foilowing the 1cal problem:

so that as little wax as possible is used o store a
given amount of honey.. We could then seek the angle
between the tube center h;pe//hd end faces tLat would
More precisely, we could pose
Suppose tnat a
hexagonal tube 18 capped at one end with three equilat-
eral parallelogram faces and that the other end ig open.
FPind the angle between the tube center line and end
faces that will minimize the surface area of the tube

for a given volume. We w#ll solve this proBlem below

.and we will see that the correct theorigical value

for the angle is approximately 54.7°. This remarkable

K

~agreement with the approximate measured angle of 54°

"tro%gly suggests that the bees are "doing the right

thing' by some mechan¥sm or other!

Scientific observation and stud) of the geometric

“structure of the honeycomb can be traced back at least

O
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to Pappus of Alexandria near tﬁe end of -the third century
A.D, 1In the seventeenth century A.D. 1. Johannes Kepler
was able to explaln the hexagonal cross-section and end
fate stfucture of the'ﬁoneycomb tubes on the basis of
‘packing tubes subject. to internal pressures.
explanation w111 be outlined in the remarks in Section

this paper ) In 1712, Miraldi made some ac#urate
meZShrements df the angles on the caps of the honeycomb
tubes and con;ectured that the measured¢ang1e of approx-
imately 54 ° was the Kolution to the m1n1mum problem
stated in the lpst paragraph. This conjecture was
verified shortiy later by Koenig. .

Z. THE MATHEMATICAL ANALYSIS OF THE BEE'é CELL CAP

For the purposes of our analy51s, we shall regard,
‘the 1nd1V1dual tubes in a honeycomb to be hexagonal
cylinders open at one end and capped at ghe other end
with three parallelograms with equal sides as in Flgure 2.

® ) i %ﬁ ‘ 3
. _ ;;.’/'f' \'b‘{'j “ .
| - 95

(This _

i
!
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i
|
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The tube is a regular Hexagonal cylinder, open at
one end, capped at the other end by congruent
{ parallelagrams.

! : .

This solid figure can be constrycted in the following

Figure 2.

'
.

!

way: »~ %X -} ‘

1. Begin with a solid hexagonaf cylinder with end
faces perpendicular to the center line of the

. cylinder. (See Figuréﬁif
- Mgy
- ! . !
A l | .
D | !
. B[ i
¢ ol !
i !
| t
. | -t |
. .
!
Figure 3. A solid, regular, hexaéonal right cylinder.
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2) Let A and-B.denote the upper left-hand and upper
right-hand corners of two adjacent lateral faces

faces.-

3) Pass a plane tproughét%e points A, B, C to cut

off a tetrahedral "corner" ABCD of hexagonal

cylinder. '
4) U51ng the line segment joining A and B as a
h1nge swing the tetrahedron upward thfough

w an-angle of 180%. (See Figure 4.)

W

| ¢

“ .

‘Figure 4. Tetrahedron ABCD Telocated as tetrahedron ABC'D'.

The‘péint C will move to the new position .C'

The'po1nts A,C,B,C’
wiTl be successive vert1ces of a parallelogram
and C',
(These statements can be verified by checking .

and D to a new position D',
¢
D' will 11e on the axis of the cylinder.

the aﬁgles involved. in the tetrahedral corner.
You should carry out the details!)

5) | Repeat the above procedure with the remaining

two pairs of adjacent faces to obtain the solid ]
in Figure 1. .

3

Suppose that 8 is/ the acute angle at C' between the
center line of the hexagonal cylinder and the face ACBC'.

(By construction, 8 is also the acute angle at C between
the verticalﬁsdge of the hqxagonal cylinder and the face

[

] . 5
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and let C be-a point down the edge joining these

Lad

ACBC'.)
(before the three tetrahedral corners were cut) and let

Let h denote the height of the™ orig1nal cylinder

s bge the.width of each face.

%

L
: h )
A~
0—...—5—"/ '
2 .
Figure 5. The dimensions of the cylinder as it was before the S e

tetrahedral corners were tut off and moved.

Then, by virtue of the construction descr1bed above,
the volume ¥V of the hexago éﬁ£§y11nder capped with the
three equilateral paralleldgram;faces is equal to the
Since th¢
gentral angle subtended by, each face is /3, it follows

that . . <
(1 y=6- tds+ Gen = 35

volume cylinder of height h and side width §.

'2'5]}1 =

-

Next, we ghall derive an expression for the total
surface area of the capped hexagonal cylinder. The
diagonals AB and TC" of the parallelogram face ACBC' 4/
bisect each other at a point E and, since ACBC' has

e?ual sides, dt fgllows that ACBC' is divided into four
congruent right triangles with side lengtKs equal to
the lengths of ‘AE and CE.




e N

l One end face

o ) .o
Figure 6. The quadrilate§é§=ACBC‘ 15 a parallelogram whose
diagonals meet at right angles.

/ M N

Notice that the length of AE is s + (¥3/2) and that the

length of CE is (512) + cscd . Consequently, the area of
each face of the chp is’ - .
1[ /3) s csco 2 (V3 ‘
e e e R C
and so the total surface area of the cap is

é%z(szcsce ) A :

@,

(2)

. B ety

CI TYE A ] ' -
The capped hexggonal cylinder has six congruent trape-

’a
3

zoidal facés. The width of these faces 1s s, one vertical

edge has height h and the other has height
/
h - length CD = h - %cot 6
» |

Therefore, the area of each lateral facé is

- 3(h + [h - Scoto]) =

3 hs'- 2.coto -

3

and so the, total surface area of the lateral faces is

e L, . .
(3) fhs - é%—cot 6 ) ' .
» )_'*g

. We now add (2) and (SL to obtain the toﬁgl surface area

S of the capped hexagonal cylinder (open at the other end):

@ » .
. . - 7
\.1 . o+ =14 + N &
E MC . a \9 . 1
o . @ . - — e

(4 S = Bhs'+ %S?(-cote + VY3 csco).

S
.

Thus, the surface area S depewyl
5, s, 6. If,
minimize S as a function of ¢, we differentiate (4) with

on three variables:

4 . °
for a fixed cloice-of and s, we seek to ,

respect to 6 .and equate the result to G'téjfind the

critical points: N -
(5) %s (csc«ﬁj YIcscedots) = 0 . =
(6) csc® - /Icotf =0 .
b t e 1' * ’

{ { = E).__._ = =
{7) oS¢ = Scw T3

[N - * x]lv-\_\
The acute angle satisfying the last equation is i“ ~§

. 1 . * ‘
(8 = 1 . 2 ° L

) 8y = cos [/3; 54.7°. )

The First Derivative Test can be used to check that thisg
critical point 1s actually a minimum. ~§* '

It is very importany to notice at this poing that
the value of o that ylelds thie minimum surface area S
does not depend on the variables h and s. ¥n other .
Ords

S with regp%ct to § the value of 0 of approximately

although wé fixed s and h before we minimized

o~

54.7° that minimized the surface area S is the same for
mny ahgzce of the dimensions 8 and h. This is actually
a stronger conclusion than tlie one we set out to

establish:

the vaZue of & that

~inimized the surface area S of the hexagonal cylinder

For a givem volume,

zapped at one end with three equilateral parallelograms

18 approximately 54.7°. -

.

-

3. SOME ADDITIONAL COMMENTS

Some of the other features of the ggometric
structure of honeycombs can be explained on thegbdgis
We shall now

.

~ 2
of internal forces within the tubes.
outline these ideas briefly. DL

- 60



Suppose we are given a system of circular cylinders
that is closely packed so that each cylinder is in con-
tact with six others along lines parallel to the center
line of the cylinders. A cross:sectional view of a
central cylinder and jts immediate neighbors is given -

in Figure 7.

. : y
LY

Cross section of seven congruent circular cylrnders
packed together.

Figure 7.

I

Suppose that the system is subjected to a uniform
This
pressure will push th? cylindrical walls out Into the

outward pressure from within each cylinder.

It can be shown
fthat.qhenlall this empty space has been fitled, the
Thus, it
is quite conceivable that the hexagonal cross-sectional

empty spaces between the cylinders.
system will congist of hexagonal cylinders!

structure of the honeycomb is due to the efforts of the
bees to pack as much honey aslpossible in each tube.

A similar explanation can be givenefor the geometric
L3 '
gucture of the caps of the tubes in a honeycomb.
each

Consider
a system of two stacks of circular cylinders,
cylinder open on one end and capped on the other with a

hemispherical cap like a_test tube. Placéithe stacks so

3 . ;
A . % . -

L 5
o ' r
1=

o

™

-hexagonal cross-sections.

Ry

that the capped ends\of the cylinders in, one stack are
in close contact with the capped ends_of the other stack.
In the closest possible arrangement of the two stacks,
each hemispherical end of a cylinder in one stack is

in contact with three hemisphérical ends of cylinders

in the other stack.

If
pressu

his system is subjected to uniform outward <
from within each cylinder, the walls of the
cylinders push out to fill the empty space between the
cylinders. We have already pointed out that the final

lateral surfaces of the cylinders will have equal .
It can also be shown that
the end surfaces will vonsist of three equtlaﬁeral .
paralléwogram faces when the empty spaces at “the ends
Thus,

configuration of the honeycomb could result from the

are completely filled. the ,basic geometry

action of a uniform internal pressure.
/

Po the bees construct the st possible caps for
We have shown that they do 'if

the caps are required to consist of three equilateral

their honeycomb tubes?
parallelog?am faces. But are there‘better choices of

polyhedral surfaces for the cap? The answer is: Yes!
for example, it has been shown that a cap consisting
of two hexagonal and two equilateral parallelogram

surfaces joined as indicated in Flgurggﬁ

& \

A
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- b . F
’Q Figure 8. Honeycombs shaped iike this would be slightly‘more
R - efficient. . o rA .
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would be more efficient than a cap with three equilateral

It is a very readable presentation of some minimum surface A

parallelogram' faces. However, the reduction ¥n surface ) )
area problems related to honeycombs. 1In particular, a

area per unit volume for< this more complicated cap is

full discussion of thc comparative economy of the tube
" very small. The bees probably decided that these fancy P y u

. caps 1n Figures'1l and 8 is given. 7oA
caps are not cost effective when both labor and mater:als
- ¥
. 3 1 . .
are ’(1??51dered. ‘ 6. SOLUTIONS TO PROBLEMS
& t
.o 3. PROBLEMS 1. (a) Since the point D 1s rotated through an angle of 180° to ~
, the new position D', the points A, B, C and C' lie in a plane. i

The triangles ABC' and ABC are congruent by construction, so

2

» 1. Verify the@toflibmng details of the construction described in'

figure 4: ) \
a) T}{e points A, C, B, C' are successive vertices of a plane \

paralellogram.

A, C, B, C' are-successive vertices of a plane parallelogram.

1. (b) Sinceg angle JADB = 120°,~‘,it follows that angle JAD'B = 120°
b) C', D' lie on the axis of the hexagonal_icylinder. so D! is on the axis of the hexagonal cylinder: . Since the line
segment DC 1s parallel to this axis and since the segment DC is

. details First De t Test to verif i’ N
2 Carry out the details of the Firs rivative Tes 4 ot rotated through 180° to the now position D*C', 1t follows that
o

ﬂ‘mﬁt 90 Z 54.7° is actually a minimum of.the surface arca

, finction. (See Equations (5), (6), (7).) this axis, so i1s the point C'.

D'C' 1s parallel to this axis also. Since the point D' is on

~

T N -~
A 3. Among all regular polygons, only the square, the equilateral ‘ 5. Note that @
triangle and the hexagon can be used to "tile" the planc i \ -
' 42 - 3 s%(esc’B % VEesc B cot 8
(that 1s, to cover the plane with congruent non-overlapping .. ’ de =35 (csc 6- csc 6 _cot 8) @ -
i . the h has™ . —
pieces) Show that of these three polygons, e hexagon has - %sz 59 (csc 8 - V3 cot ).

the least perjmeter for a éiven enclosed area. ) 3 .
] . - @ Since 5 s2>0 and csc6>0 for 0<6<-g, it is only necéssary to
how that - - 73 .negative to positi
5. SOME REFERENCES FOR FURTHER READING s c:w at “csc 6 3 cot(i changes from rlwgatlve to positive
| - values as 0 increases thrdugh 60 = cos™ (1/¥/3). This sign

1. Thompson, D'Arcy‘w. , On Growth and Form Cambridge change can be verified by inspecting the graphs of csc@ and

University .Press, 1917. <{Available in the Mathematics) 73 cot6..
* L.ibrar)" under the call number 577.3 T 370.) This book 3. Suppose that the area enclosed by the polygon 1s A, that the ,
-4 [ +
is a very readable and fascinating treatise on geome- ' side length is s, and that the perimeter is P. - Then for the:
tric forms in nature. (a) square, A = s2, P = 4s A\
- . - - _V/3s
2. T6éth, L. Fejes. What the bees know and wha{ they .do (b) equilateral triangle, A '2 e :’ =.3s
not know'., Bulletin of the American Mathematica} ) (¢) regular hexagon, A = 3/3-5 , P =6s
Society, Vol 70 (1964) pp 468-481. (Mat‘:hematlca]‘. £ If we express P in.terms of A, we obtain for the
* Library call number: '510,'6 Am B2.) This paper is c o, Squére, P = a/k .

the text of an invited address presented at a national - . .

¥ meeting of the=American Mathema®ical Society in 196'4’.- ~ , “
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(b) equilateral triangle, P = Zﬁl /A
. iz ) ‘ .
{c) regular hexagon, P = 6v2 /K .
, ) 11353 . ) .. i

From these calculations,-ome can conclude that for a given
’
area A, ‘the perimeter of the equilateral triangle is greater

than Ehat of the square which in turn 1s greater than that of,

the regular hexagon. . ’ o e * -
L
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