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ELEMENTARY TECHNIQUES OF NUMERICAL INTEGRATIO.N

AN0 D THEIR COMPUTER IMPLEMENTATION

Wendell L. .dotter
Department of Mathematics
Florida A & M University
allahas-see, FL 32307

1. INTRODUCTION AND OVERVIEW

Throughout most of your studies incalculus, you

will be concerned with the evaluation of.integrals.

Various techniques such as integration by parts are

_developed so that the antideriliative can be dieteimined,

and used to calculate the precise value of an integral

according to the fundamental theorem of calculus.

However, there are some integrals which can not

be evaluated by deterMining an antiderivative'. The
integrttl

f e

-x2
cl4

which arise' in probability theory is one of many
examples. For sAh dntegrals, we must use-`other tech-

.
niqties, such as "numerical integration" to find approx-

imate nuMetical values 'for such integrals.

The very definition of the integral as the limit
of",ae/Riemann provides one numerical method for

',-
ctiting a sum .which apptoximates

. .

J4
fbfW dx
a

where f(x) is a bounded function in the interval Ea,b).

Othermethods,are the trapezoidal rule and Simpson's

I..

.rule. A.

-.. i''

i-The..pl pose of this unit is to introduce these

methods ofnumetical integration and des-eqiibe-ele

',
..

,
.

... 1

r

related programming techniques requited for hdving

a computer carry out the, calculations. This unit

requires very
1

little previous background or knowledge.

about computers and their use.

Throughout the module, various references are

cited and a complete bibliography follows the main, a^ '

text.'' Students are encouraged to'pursue further

readings that are suggested if they desire a deeper'
1

munderstaViRg of-this atenial. Most importantly,

students 'are expected to'work each of the several exer-

Uses; for.these arCFnential.to.a geniune under-
standing of the ideas developed.

, 2. APPROXIMATING INTEGRALS, USING RbEMANNSUMS

2.1 The LeA-RectangleNethod-

Our first attempt to solve the problem of evaluating

definite integrals involves using Rjemann sums as

approximations., We consider a function f defined on a'`
closed finite interval a ,4 x 4 bland a partition

a = x0<- xl e x2 < < xN.1 < xN = xN' = b of that

interval. For each j = 1, 2, ..., N, let c be any
thpoint in the j subinterval of the partition,

i.e., x < c <.x
iT1 %

The Riemann sum

N N, ,

jX f(c.).(x
3

-x
3

.,) f(c1)(x1-):0)
.L

+ f(c.2).(x2x1)

t f(c0,-(xN-xN..1)

is an approximation of the integrai ff(x) dx. Thea
jth term of this sum, f(c ):(x

j
-x. ')4, is described

2



r

geometrically in Figure '1 as the are a of the shaded

recxXngle. The aPproXimation of the integral that' is

so we have N subintervals
f

[a, a + Ax], [a + Ax, a + 20x],

..., [a + (N-1)Ax, b]

ea ch of which has length Ax.

Now if we choose c as the left 'endpoint of. each

of' these subintervals so that

cl = a, c; = a + Ax, cN = (N1)Ax

then we can form a Riemann sum approximating the inte-

gral called the left-rectangl,p approximation. It is

given by, the following expression:

f(a)Ax + f(a + Ax)Ax .

+ f(a + 2Ax)Ax + ....+ f(a + (N-1)AZ)Ax.

This can be simplified to

(1) (f(s) + f(a 4 Ax) + + f(a + (N-1)Ax))Ax.

This approximation is shown'in Figure 2.

determined by' the partition is the sumoof the areas. of A
N rectangles of heights f(c )--this area actually is

f(a

negative when r(c ) is negative - -and widths (x :x. ).,
j J 1

In this general formula, the value of cj the

(xj17 x
j

) can be chosen-arbitrarily and in

fact so can the x
j

's in the partition. To implement

this method on a computer, we need a systematic way of

making these-choiCes. One methOd is to choose a parid-

, tit:A in which each -subinterval has the same width as

each:otter subinterval,. This is easily accomplished

by subdividing the interval (d,b] whose width is (b-a)

into N equal' subintervals each with width (b-a)/N. A

convenient and standard notation for the quanqty

(b-a)/N i,s Ax: Thepartition is then

a = xot x1. = a + Ax, ')(2 f.a + 2Ax,

xN..1 = a + (N-1)Ax, x b
N

=

3

-1

f(a)+41)
f(a+2Ax)

.c1

iq
.a+Ax a+2Ax

II ,

,x,

a+(N-1)Ax

f(a+(N-1) .Ax

- 1 Area of rectangle I is f(a) x

Area of rectanglelI is f(a+Ax)Ax
Area pf rectangleIIIisf(a+2.Ax).Ax

Area of rectangle N is f(a+(N-1)Ax)Ax
Sumof above is Formula (1)

Figure 2. 4



Cet us use the left2rectangle method to approxi-

mate the integral

(1

J x'b

which in fact ye know to be

t

AIMEN111

program is probably what ytiu Would have designed. In

this example program, we use the function f(x) = 1/(x2+1)

Which we define in the first line of code.

Example Program 1

arctan (1) arctan (0) = = -.78539.

Here f(x) = 1/(1 + x2).

Suppose we use N -4.4.. Since b = 1 an4 a = '0 we

haveAx=1/4.Thus the pal-titionds

a = 0, xl = 1/42

s x2 = 1/2, x3 = .3/4, = 1

100 DEF "NA (x) =.1/(x42 + 1)
110 INfUT A, B,

126 LET D = (B-A
.

1)30 LET S = 0

140 FOR x = A to (A + (N-1) *D) STEP D.
150 'LET S = S + FNA (X)
160 NEXT X'

170 PRINT S*D; "IS THE LEFT-RECTANGLE APPRdX."

180 END

.1

h

t

and the approximation (1) is

(f(0) + 1.(1/,4) f(172) + f(3/4)1 ( 1/4

= (1 + 16/17 + 4/5 + 16/25] 1/4

= (1 + .941 + .800 + :640] ,. 1,/4

= .845. .-

C: .11

Although we intend to usethe computer iso find better

approiimations by increasint.the value of N, it is

'important that yqw understand hc4.; td Use these formulas
111,with hankcalculations

Now we are ready to devise a simple program (which

can easily be translated.into a languag like BASIC)

that will compute an approximation to an integral by

the left-rectangle method. As Forettila (1) indicates,

we nee'd.to have x range tihrough the values,of a, a + Ax,

a +..21x, ..., a t (N-1)A i.e., x ranges from a to

a + (N-liAx in steps rf Ax. We fieed to Calculate f(x)

for each such x, and add up these terms to form a sum

S which we then multiply by Ax to Compute theleft-

rectangle app?oximatibn. ,Suppose we use the computer

variable !'(for "delta") to represent Ax; the f011owing

5

-1 0

.*

Note that when the 'NWT A, B, N, instruction Is .

exectued, the computer will request 3 numerical values %

forpA, B, and N respectiely. "(In an interactive BASIC

session, these mustbe separated,by commas when typed in.)

Line 170 compttes SD and 'prints this value out along

AP

with the descriptive phras,enclosed in quotes: 4

If we increast the, number of subintervars.by using
largef values of N, we expect to obtain a better approxi-

mation to,the integral since the Ax will be smaller and
the rectangle more closely matched to'the.function. This

. .

is so because the left-rectangle approximat4n, being,a
RieMand sum, tends to the value oT the integral as Ax
mad; smaller.

N6w, in Example Program 1, we used f(x) -2+1)

which4has antiderivative arctan (x). Thus, in.this case

we can determine theeact value of the integral

arctan (B) - arcan.,(A) ,.
.

. . . .
and compare it with our numerical approximation.

./

We clan make such a comparison alvtime we work ,wit

.
an f(x) fdt- alcallwe4 know the antiderivative. For

-Nt

`6
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inStance,.we could do this with ftx)= 4x3 3x + 2x 7

Whose ahtiderivative-is x4 - x3 + x2 - 7x.* We-can easily

modify the code of- our Example Program 1 to handle this

newfunction,by changing rine 100 to

100 DEF FNA (x) = 4 *xf3 - 3 *xf2 + 2*x -7

To make it easy to compare our numerical approximation

with the exact value we can add a line or two of code to

calculate the exact value
4
from the antideriVative and then

print out that value. .We could do this by adding the line

175, PRINT Bt4 - Bt3 + Bt2 - 74 - At4 +.At3 = At2 + 7*A

. (Note thiS is not the most efficient way to, evaluate a

polynomial, buf-it is straightforward and easy to write.

Horner's method would be much better; see UMAP Unit 263;

Horner's Scheme and Rel>d Algorithms, by Werner C.
4

Rheihboldt. If we are going, to perform such,an evaluation

many times, we might consider such improvements.)

Now that we have the program for the eft-rectangle

method, we can perform many experiments. For instance,

we.can change the function we want to integrate. We can
also vary the N (and thus_theAx),to_examine_the_11goodness

of our method.

Exercise 1.

...Run Example Program 1, for f(x) = 4x - 3x
2

+.2x - 7 for fixed

vaiues of A and B but make N increasingly larger. Copy me of

your results on notepaper including the valuep of A, B, N for

*everal-choices of N. Does the approximation ger closer to the

exact value of the definite" integral?

- -
40 0-1.1.Might'have noticed' that it-is only necessary to

calculate once.rhe exact value of the ittegraLfoT given

VdIties'of N. -Thus line 175 really should' not be.e/cecuted

every time you run-the prOgram fora new- N. IfPYou plan
to rUn many experiments, you should consider placing rrhe

17S ride the "loop" of yOur changes to N, for-instance,

,

1.2
7

by doing the exact evaluation before you begin any approx-
imations. This would also help you to determine if your
program is'running correctly. This is a. standard tech-

nique; namely testing aorogram with own results.

2.2 The Right- Rectangle Method

'5Upposeinsteadofchoosingc.as tbe left-endpoint
of each subinterval, we choose c as the right-endpoint

Oteachsubintervalsothatci=a + Ax, c, = a + "24x,

cN = a + NAx = b. Then our approximating Riemann

sum becomes
-

(2) if(a + Ax) + f(a + 24x) + + f(b)1. Ax.

As this formula indicates, we need to have x run through

the values a + Ax, a + 2Ax, B, calculate f(xj for
. .each such x, and add' up these terms to form a sum S

'which is then'mulitplied by Ax to compute what is called

the right-rectangle approximation.

Exercise 2.

Modify Example' Program 1 so that the sum S is calculated as the

right-rectangle approximation. Type in this modified program on a

computer-terminal-with instruction-1-75 which prints out the exact

value of the fb f(x) dx for f(x) 4x3 - 3x2 + 2x - 7: Run thisa

for fixed values of A, B but use several increasingly larger values

of N. Compare your results with those of Exercise 4. Make a bard-,

copy-listing of ybur program. This should be turned in to your .

instructor.

3. THE TRAPEZOID RULE

One way to see why the left-rectangle method is some-
What,crtide is that tli.:approximAtion. on the jth subinterval

makeS use of only -the, l.ialue of f(x) at the left endpoint
x
i

. Although this is not too bad if the graph of f(x)

'loos likethe one shown in Figure 1,-it is not all that
gp d if the.. Yaph f f(x) looks like the function in
Fl ti. e 3.

6

'13
8
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Figure 3. Figure 4...

One way in which the error might be reduced is

illusirated in Figure 4. Here,We approximate

' 41x

x;-1

by the integral of the function whose graph is the
'at&

straight line connecting the points (x
j-1'

f(x )) and
j-1

(x
j'

f(x
i
)). As Figure 4 shows, this would mean approxi-

mating th,e area under the graph-of f(x) over the subinter-
val (x

j-1; x
j

1 by the area of the shaded trapezoid, This
is the basis for the methqd known as the trapezoid rule.

Actually, this and other methods of numerical integration
that-we shall discuss follow the same approach as the'

left'and'right rectangle approximations by trying to
approximate the area under the curve of f(x) for each

14,1'

subinterval. The idea behint the trapezoid .rule is to

sum areas of trapezoids ii L td of areas of rectangles.

In general, a,trapezoid an be formed by the 4 points

(xj_i, 0),,(x)_i, f(xj_1)), (xj, 0), (xj','

tfi

f(x;)) as
J.illdstrated by the following diagram for the j subinter-,

val (Figure 5). (In Figure S'we are really using a linear
2 function, 'namely the one represented by the line through

fexj_i) and f( .) to approximate the curve of f(x) in thexj

9

J

j
th

subinterval.) From elementary geomrtry, we know

the area of the trapezoid is giyen by'

A = 1/2 ((x
j 1

), + f(x ))Axt

Figure 5.

Now suppose we have partitioned the interval

a < x < b into N equal subintervals of length Ax = (b-a)/N
as before. Then we will have N trapezoids similar to the
one described in Figure 5. The total area of theSe''N

lukt
trapezoids` over

= x0, (a + Ax)

may be expressed as

Ax{1/2(f(a) + f(a,+ Ax)) + 1/24f(a + Ax) + f(a + 24x)1

+',..

(3) + 1/2(f(a + (N-1)AZ + f(b))I

o

1" , b xN

= Ax(f(a + Ax) + f(a + 2A) f(a ± (N- X)}

+ 1/2(f(a) + f(b))Ax.

Let us find an approximation for fl/(1 + byby

means of the trapezoid rule (3). Again we use N = 4 so
Ax = 1/'4 and the partition is'a ='0, x1 = 1/4, x2 = 1/2,
x
3 = 3/4, b = 1 av'vheln we used, the left-rectangle method
for this example. The approximation (3) gives

3

10
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v.
1/4df(1/4 + f(1/2) + f(3/4)] + 1/4 ,1/2[f(0) + f(1)]

. ,

= 1/4[16/17 +.4/5.+ 16/25] + 1/8[1 + 1/2]

:7- 4/17 +1/$ 4/25 +, 3416,

= -4-- .2.000.+ .1600 + .1875

= .7828.

Compare this resulyt for this same problem with the left

rectangle method and its result as shown on page S.

Exercise 3. .. ..
Compute /1

2
1/x (dx) by hand calculations using the trapezoid

rule" (3) where N = 6. Note the exact value is In (2).

Instead of writing a program to compute the approxi-

matipn by Formula (3), we shall try to write this in an-

other form. You should recognize that (3) is just the
1
ight-4rectangle approximation

(2) - f(b)Ax + 1/,2[f(a) f(b)]Ax.

Now the quantity

f(b)Ax + 1/2[f(a) + f(b)]Ax)

can be sinipfified

1/2[f(a) - f(b)]X.

means that if the approximating sum (2) computed by 9.

the right-rectangle rule is adjusted by addition of the

term.1/2[f(a) - f(b)]Ax then we have the trapezoid rule.

Thus the trapezoid rule is about as easy toprogram

as the rectangle rules. In fact we cantake the program

for computing the approximating sum by the right- rectangle

rule and insert additional instructions that compute

1/21f(4) - f(b)]Ax and then add this term to the right-

rectangle approximating sum. A ci:91elete program for

doing this is now given. Does your solution. to Exercise

2 resemble thii?

A.
16.

100

110

120

130

140

150

160

170

DEF FNA(X) = 4*xt3

INPUT A, B, N

LET D = _O-A)/N

LET S = 0

FOR X = (A + D TO)

, Example Program 2

3*XT3 + 2*X - 7

TO B STEP D

LET S = S + FNA (X)

NEXT X.

LET S1 = S*D'

175 LET S2 = S1 + D*(FNA(A) - FNA(B))/2

180 PRINT S2;-"IS TRADE ID APPROX."

185, PRINT Si; "IS RIGHT ECTANGLE APPROX."

190 END

r

-1

Here we use line 185 to print out Sl, the right-rectangle

approximation so we can compare this with the result from

the trapezoid method.

Exercise 4.

Type in Example Program 2 at a computer terminal. RUN this

program for fixed values of A, B and ncreasingly larger values of

N. Copy down on noiebook paper e results from these runs including

your input vaides of A, B, N What is the smallest ,value of N that
./

gives the exact value of the integral for A = 0, B = 1? How does

the trapezoid rule compare with the previous methods? Turn in your

*solution for this exercise-to your instructor.

Let's reviewwhat_we have done so far in ,computing

approximations to definite integrals. Our.first method

-was derived directly from the definition of the definite
_ *

inteval..i.The left and right rectangle approximations

consist in approximating our given function for each

small subinterval by alconstant (either the value of the

function at the left endpoint or its value at the right

endpoint). The approximation to f(x) obt'ained by.pieeing

together all of these constantfunctions for a gimen

L2

17



t,

subdivision of the interval.ja,b) is called a step

function, and the corresponding approximating sum (left

or right) is actually the integral of this Step function..

This is illustrated by the following diagram with a.sub-

division of S points (Fi.gure 6).

A

xx0
1

x2
k---1-1110
X37 X4

FigiNkfi.

%The trapezoidal rule used a linear approximation to

f(x) on each- subinterval. The approximating function

obtained by piecing together all of the linear pie6es for

a given subdivision of [a,b] is caliedo)iecewise linear,

.and the approximating trapezoliclal sum is actually the

integral from a to b of such a piecewise linear function. '

The previous exercises should have demonstrated to You

that the trapezoid method gives a better approximation for

each N than the rectangle methods.

This illustrates how complicated functions are

approximated .on suitably small portions of their. domains

by simpler functions, and the desired analySis is done

with these simplei functions. Polynomial functioils are

the best examples, of simple functions becausectheir values

are easily computed and,there are simpler forAulas for

integrating and differentiating these. Actually, a.

constant function is a polynomi-al function/of degree 0

and linear function is a polynomial function of degree one;
thus, we might expect greater accuracy (or better fit) by

using second-degree polynomial functions, such as parabo'las,

13

to approximate f(x) on suitably small subintervals and

piece these togetherto approximate the integral of f(x)-

over [a,b].

4. SIMPSON'SRULE.

This approach leads to our ne,i4:, method of numerical

integration which is called Simpson%s Rule ani approxi-

mates the area under the curves of f(x)' over t o adjacent

subintervals by means of a parabola. The apprOximlation

for the integral

.f j+1 f(x) dx
j-1

is derived bypassing a parabola gj(x) through the three
points ( xj_1, f(x

j-1
))' , (x

j'
f(x

j
)), and'(x

3+1' -
+1))))

of the adjacent Subintervals [x
i' 1'

,
,xj ] and [x

i
, x

i+1
].

The approximation to the area under the curve, of f(x) over

the adjacent subintervals
1' 3

[xj ' x.) and [x
3

, x
j+1

") is

given by calculating the area under the parabola gj(x)

over these subinterv51s. This is shown in Figure 7.

14

xj_,
xj.

Figure 7.

`Pe

x. =x.+Ax
3+1
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Of course the overall approximation f f(x) dxfa f(x)

of the sum of the areas for these' approximations,

by parabolas gj where.j tuns through the ,indices 1, 3, 5,
N-1. A pair of adjacent subintervals' must be used

as 3 points are required to" uniquely determine each approxi-
'

t mating parabola g.(x)'and there must be an even number of

,sub.intervals'altogether so these can be paired off. This

means choices for the values "of N which represents the

total number of subintervals must .be even. To deriV.e a

formula for bimpson's Rule to approximate,Pa)f(X) dx, we
w\11 assume there are an even'number of subintervals- in

the partition or [a,b] and that each of these subintervals

has the same length which we denotetty.Ax as in previous
disclissions. Observe as Figure 7 indicates that x' =

j-1

J

- Ax and x
j+1

= x
j

+ Ax.

First, let us derive a formula for the approximation.
.to

.

ixj+Ax - .

f(x)dx
)x --Lc A.

))

using these ideas. Let us assure the parahola.g.(x) has
2'

the f'orm.gj(x) = ax + bx + c. The area under the paya-
.bola is "

ri+Ax(ax2 + bx + c)dx
x
1
-Ax

x.+Ax
* = 1/3'ax'-+ bx2/2 + cx 3

Sy substitution and algebraic simplification, this equals

(4 -a) - 1/3-Ax(6a xj 2 + 6bx. + 2aAx2 t 6c).

A computationa formula should involve the values.,

_ of the original fulibtiOn 1(x) at the points:
X'and x + Ax; this will occur through the determination of

phe coefficients a, and c. Finding the solutioitok the

three equa,tiOns f(xj_i) = f(x5) .=g(xjind
(xj.1.1)

(xj+1
f g ) is one technique for calculating. a., b,

. 15

And c. Appendii R)contains a more detailed discussion of
' this4nd thegeneral-methoeof determining coeffici'ents

-- 'of the polynomial p(x) = anx + an_lx
n 1

+ alx+ av ,

which approximhtes f(x) and passes through n+1 points
(xl, f(x1)), (xn+1, f(x.114.0) of the curve for f(x).

An easier approach is to observe that

g
J

(..x.

)
Ax) 0= a(x. Ax)

2
+ b(x

)
Ax),+ c,

= a(x)2 - 2Ax x. + Ax-9 ) + b(x
)

Ax) + c
)._,and likewise

g. (x)
J

+ Ax) = a(x, + 2Axx, + Ax 2
) + b(X, + Ax) + c.

ThdreYore,

g.3 (X. - AR) + g.(x. + Ax)

= a (2x
3

2
+ 2Ax 2

) + b( 2x . ) + 2c
)

so that if we add

'
4g-(x.)=-4ax.) 2+ 4bx-

)

+ 4c
) )

to this, we obtain the expression' enclosed, by parentheses
in Formula.(4-a)) i.e.,

g (x - Ax) + 4g
j
(x

i
) + g (x +'Ax)

= 6ax,
2
+ 6bx- +2aAx 2

+ 6c.

This Means

Finally,

rxj+Ax
igj(x) dx

= 1/36x (g.) (x. - Ax) + 4g.(x.)

+ g(x. + Ax).
) J.

(Xj+AXg.p,
JX)dx

xj Ax
0

= 1/3Ax (f(x. Ax) + 4f(x.)

f(x. tx)).

s.

21 -16
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Sincegj(xj - Ax) = f(xj gj(xj) = f(xj), and
g.Gx + Ax) =Nf(xj + Ax.) by 'construction.

If we,add up the areas under these approximating
parabolas for all rionoverlapping pairs of ,adjacent sub-

.
.intervals,: i.e., [x0, xl] with [xl, x2] , [x2, x3] with

3'
x
4
), [x

4'
x
5
] with [xs, x6), ..., [xn_2, xn_i) with

Ix
n-1'

x
n), then we obtain the sum of these approximating

...areas from (4-b) as

'AZ/3(f(x
0

) + 4f(x
1
) + f(x1))

(5)

+ Ax/3'[f(x2) + 4f(x3) + f(x4))

+ Ax/3[f(xn_2) + 4f(xn.1) * f(xn))

An alternitive way to write Formula (5) is

f(x) dx =-Ax/3(f(x0)

+ + 2f(xn_2) + 4f(xn_i) + f(xn)]..

Let us apply Fdrmula.(5for SimpsOn's Rule to
approximate g1 /(1 + x2) dx. For comparison with the left -'
rectangle and trapezoid methods, we will again use N = 4
so Ax = 1/4 and the partition is a =,0, xl = 1/4, x2 = 1/2,
x3 = 3/4, b = 1 as before. Now Formdla.(5) gives

r/4 1/3[f(0) + 4f(1/4) + f(1 /2)]

..,t 1/4 1/3th1/2) +.4.f(3/4) + f(1))

= 1/4 1/3[1 + 4' 16/17 + 4/5]

+.1/4 1/3(4/5 + 4 16/25 + 1/2]

= 1/3[1/4 + 16/17 + 1/5 + 1,/S + 16/25 + 1/8]

= 1/3(.2500 + .9412 + :2000 + .2000 + .6400 + .1250)

= 1/3 W13562]

.l8.

This is illusti'ated by Figure 8.

4
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Figure 8:

t

Figure 8 indicates how closely the parabolds'gi(x)
and g2(x) approximate the curve y = 1/(1+x 2

) over the
two pairs of subinterval g and the compltations illustrate
that for about the same amount'of,effort as the trapezoid
formula, Simpson's Ruly gives much better accuracy.
Another example which compares Simpson's Rule and the- a

trapezoid .rule is given in Shenk, p, 375.
,

Consider now a function whoSe graph over the pair of
. -

adjacent subintervals [xj_1, y and[xj, xj..4.1] behaves
as .ndicated by Figure 9(a). Here :the graph of the
'qua ratic function p(x) through,the points corresponding
'to-x

j-1' 3
x.

' xj+1
and is a poor lapproximation to the

graphof f(x),. This ,is an excel/lent illustration of how,
Simpson's Method can be made increasingly 'accurate by, .

successive doubling of the number of points'in tfm.,,
. _____--------

23
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Figure 9.

subdivision of the interval (a,b) of integration,(this

procedure will be discussed in more detail in the next

section). As Figure 9(b) illustrates, when the original

pair of Subintervals is,subdivided into 2 pairs of sub-

intervals, then4a pair pl(x), p2(x) of quadrarl.c,functions

is used to approximate f(x) and gives a closer fit to the

gilaph. Note that in this example, the trapezoid method

would still not give as good an approximation. This can

be seen bydrawing four line segments to connect pairs

of adjacent' points on the graph of f(x) since as you

should recall
.
the trafezoia method would use such

piecewise linear approximation

Now to implement Formula (5) On a computer, we eed

'a computational routine whereby x ranges through the

Middle point of, each pair of nonoverlapping adjacent sub-

intervals so that the quantities f(x - Ax) + 4f(x) +

f(x + Ax) can he computed and summed. To be precise, x

must range through the values xl, x3, x5, xN of

our partition since the pairs of subintervals are [x0, xl]

with-(xl, x2) , (x2, x3) with, [x3, x4), ..., xN,I)

with. [x
N-1'

x
N
]. Now using the uniform width Ax for such

a partition means xl = a + Ax, x3'1 a + 3Ax, xs = a + 5Ax,

xN-1 a (N-1)Ax, i.e., x varies from a + Ax to

a + (N-1)Ax in steps of 2.Ax. Then we can use a summing

19
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'I

op'

0

vairable S to add the quantities C(x Ax) 4-'4f(x) +.

fkx + Ax) for ach x. Finally, according to Formula (5),
S is multi icd by Ax/3 to complete'th computation of

. .

the sum of the areas under the parabolass.

. Obv'iously, to have a computer routine for this

calculation process ue would use a 1.0R-NXT loop. Again

using D for Ax, wehave the following Example Program 3
,Bto calculate the approximation to theintegral jAFNA (x)da

using Formula (5) for Simpson's Rule. Liere again INA(x)
4x

3
3x + 2x 7,.bUt any function FNA(x) can be defined

for any function by a suitable program instruction at line
100.

EXAMPLE PROGRAM-3

90 SET DIGITS 10'

' Apo DEF FNA(x) = 4*xt3 - 3*xt2 + 2*x - 7

110 INPUT A, B, N

120 LET D = (B-A)/N.,

1'SO LET S = 0

140- FOR X = (A + D) TO 0 + (N-1)*D) STEP 2*D

150 LETS !, S + FNA(X D) + 4*FNA(X) + FNA(X +

160 NEXT X
c

170 PRINT S*D/3, "IS.SIMPSON'S APPROXIMATION"

180 END

4

sl

Note the 4nitruCtxon in line 90 SET DIGITS 10 spe-cified

fhat when the computer prints numerical output thigh will

consist of/10 digit numbers.'

Exercise 7.

Type in Example Program 3 at a computer terminal; Run _this

. program for fixed values of A, B and values of R like 2, 4, 8, 16.
--

Remember N must be even for Simpson's Rule to work. ReCall that the

additional instruction given as 175 :PRINT -Bt4-=1-0;+ 'Bt2, - 7*B -.
"4

- At4 + At3 - A+2 +-7*A will print the exacteyalUerof thelintegral--
B _ .

-
f
A
(4x

3 1 -(1
7- 3x + 2x - )dx. __ _ - .

_-
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Copy down on notebook paper the results froni your computer

run including your input values of A, B, N. What is the smallest

value of N that gives the exact value of this integral for A x 0,
B = 1? How does this compare with the trapezoid rule?... Turn, in your

results fOr this exercise to your instructor.

An Application

We now give an application of these approximation

techniques to a practical problem. Recall that if an

object is moving at velocity v(t) as a function of time

t, then the distance traveled between times t.= a:and

t = b is .given by

fb

v(t) dt
a .\

%.

provided v(t)7>

For example, suppose a motorist on a two hour trip,

noted his speed at 10 minute intervals as 0, 57, 51, 55,

0, 62, 60, 5$, 35, 60 33, 35, andI miles/hour. We'can

estimate the distance traveled by using either,the

Trapezoid method or Simpson's method (since there are an

Odd number 9f equally spaced speed values) to approxi-

mate 0

2-
,,

0
v(t) dt ;

her'et is time measured in hours and 10 minutes = At

= 1/6 hour.

Pf we use SiMpson's method, then by Formula 5 we

have

(0 4 4.57

+ 37.6 (0 + 4:62

+ 51) +
1

(51 + 4.55 + 0)

+ 60) + T76 (60 + 4.58 + .:35)

21
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TT (3'

. (1674)

i

= 93 miles.

+ 4.60 + 33) * 31
u

.4 (33 + 4.35 +

5. QOUBI,ING THE NUMBER OF SUBINTERVALS

IN PARTITIONS OF UNIFORM WIDTH

So far we have discussed' three techniques of

numerical integration and applied each of these, to

F(;() = 4x3 - 3x2 + 2x -7 over the interval (0,1) to obtain

computer calculated apprdximations. Because we'could find

the'alitiderivative for this,example, we could compute the
1exact value of the integral and compare how close the

approximate values were when we used different numerical,

techniques and larger value's of N. Actually when an anti:

derviative can be determined, there is.seally no point in
using'techniques of numerical integration. On,the other
hand, suppose we want Ix) evaluate

f2 e_x2/2

J,2

for which an antiderivative can,nt be calculated. Here

we can not find the exact value of this integral by using

antideriVgtives,

We )lave seen that 1prger values usually give

better approximations by the numerical,, Methods and we
4 expect this to be. true theoretically since we arc) using

Riemann Sums where x approaches 0 as N approaches infinity_._

(see Shenk, p. -207). In actuality though, a machine

created error called "round-off" error will build up as N
increases and more arithmetic computations are pliformed
by the computer since each number is representedby a-
finite number of digits in the_computer and arithmetic

computations are'l:ouhded off during' machine calculations'

27 22



If we neglect the effect of round-off error which

will. be insignificant on most computers when accuracy

to only 5 or 6 declimal places is' desired, then we .can a..

simply double the value of N each time. Thus, we would

compute sums S2, S4, S8, 516, ..., and when the

difference between the value, SN, of the approximating

sum for some N and the value, S2N, of the approximating

sum for 2N becomes less than a specified toleranCe, then

the computational procegs woujd be terminated.

Suppose for example we want an approximation accurate -

to 0.00,005 for the. integral of

-x
2
/2

e

over f-2,2). Here we use Example Programs 2 and 3 with

DEF FNA() instruction changeduto DEF FNA(X) = EXP(X+2 /2)

and make use of the built-in function EXP() for e().

The following

runs.

N

tables give

Trapezoid Approx.

the results

N

of some computer

Simpson's Approx.

2 2.270671 2 _2.847114

4 2.348397 4 2374305

8 2.381347 8 2)392331

16 2.389759 16 2.3922331

32 2.391871 32 2,392572

64 2.392399 64 72.392575-

128 . 2.392531

256 .2.392565

512 2.392573 ,

We want IS2N.- SNP < 0.00005 so 2N = 32 works for

Simpson's Method while 2N = 256 is necessary for the

'trapezoid method. Here, we observe that 2.3925 is the

approximation for

2 2
_ . _ e-x./2

-2

that 'is accurate to 0..00005, i.e., 4 decimal places, and .

is obtained by both methods.

4 "

t
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Observe that the example programs can be used to

compute approximations for the integrals of other func-

tions by simply changing the DEF FNA() instruction. For

-x
2
/2

'F(x) = e 4

we used thillbuilt-in function EXP(); other built-in

functions are SIN4), LOG()-natural logarithm, COSO't etc.

Appendix A contains a'complete list of such built-in

functions available in most versions of the programming

language BASIC.

Exercise 8

Use thd trapezoid and Simpson techniques to compute sin (ln(x)) dx

accurate to 0.0000005 by doubling N for successive computer runs.

Here DEF FNA(x) = SIN (LOG(x)). What are the values of N required

for each technique? Remember to insert the instruction 5 SET DIGITS

10.

Exercise 9. Since h31/(1+x
2
)dx = Arctan (1),= 7/4 then

4 . J01/(1 + x2) dx F n. Use the method of doubling the number of

subintervals to find the value of n accurate to 8 decimal places.

What are the values of N required for this technique? Use only

SiMpson's'Method (Example - Program 3) and the additional instruction

175 PRINT 4*S*D/3, "IS THE APPROXIMATION' TO 7",

Note: n = 3.14159265358979323846264...
1 At

In practice, most numerical integration techniques

are carried out on a computer; and the accuracy of the

approximation is usually determined by doubling the number

of subintervals until two successive approximations differ

by less than the prescribed tolerance. This "stoppini71--4
rule", although widely used, does not always work

-efficiently. Consider the Figure 10; this shows that

unless the number of subdivision points is large enough

to,require the integrand to be evaluated at points in the

-interval fc, c+h), very-little change will-be noticed

between two successive approximations.

24
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a c:h

Figure 10.

There is another reason for doubling N until two

successive approximations differ by less than the pre-.

scribed tolerance. If an "optimal" N were on the order

of 40'0 for example, one would expect S200 and S202 to, be

very close to each other, even if neither were close
enough to the correct approximation. Actually, a more
elaborate computational algorithm can incorporate the

computations used in the.calculation of SN when S2N is
computed. This approach would give a morelefficient

program and eliminate unnecessary duplication.of compu-
tations which occurs when a straightforward program like

Example Progrim 3-ks simply repeated for N ='2, 4, 8,....
An example of such an algorithm for Simpson's Method is
described by D.A. Smith (21, T. 121-122).

It is important to note that Simpson's rule requires
an evenly spaced partition with an even number of subin-
tervals. Thus, given y = F(x) if the x-values do not
satisfy this criteria then the trapezoid method is the
only one of these two methods that can be used. -This

will only occur for.functions defined from experithental
data as in' the applications example of Section 4. When
a function is defined by a formula,then any given inter--

,val of integration can be partitioned in such a way that
Simpson's rule can be applied. .'Several)xamples have

demonstrated that for N = 8, accuracy to.4" decimal places

25

can usually be obtained by Simpson's method, This
means that hand computations could suffice if a computer
is not available. Because of the preceeding observa-

tions, it should not be surprising that Simpson's rule
is widely used in practical computations.

3
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_

The- TV0.
- - _

--ean
_

ful)ctions7,- cp.11735,-.119./wr-x.c:.--pion 15f. any-_- -,"_
. _

complexi ty an.4- may' In cb.14.; e-re.nC9 s .

55uppbse we ant to appfaximate the carve. of fF(x)
by a quadratic .functioeg(x) ax. + bx + c otter

quantitx: (ne). -0 e

e intery 1 (0,1],.. iq mus.'41sre three. pointS 6n Ore_, ,,, ..-,),gralih o (x..) say- -(0',..1:),,` (1,45), and (1,1./2), these
c-h_Oice---inake 'tIfeef-Of th-e-----paTtit ion:- 10 , 1/ 2] , [ IfZcir-of --._

. ----.the.---int-epval (0 11. :Since ik0) = -F(0) gf 1/2) = _F(1/21, ,,- ....- , -:-.-.---"--

-414 g(.1)--'= F(1) we -hay-e the s-y....i-e-nr :,?f 3 equations-with -. --. . .:- -
---'3: UirknOWri.s- a; b, C-- as follows:- .

i )

+ b 0 + 1-ft& f- 2.(
ATIsiCne) ill the (11.2) b (1/2.) + c =ue 'range ,,,.7r/ -.

COS(ne) inds -the .cdneIN--,--741e:"-ii_h_1:6116'," is Ai b (1) ç= 1-/2
It simplifies to:

EXP (ne) _e to :01.e pciw,ea; .

I,NT ('lle) --F-inds the-UrV:inleger, not greater than
ne. -Exampre-:- 'INT (5.95J ="-5- and tra(- 5.9S)
= -6.
Einds the base 1016arithm ne ; ne>O.
othe-rwise.4n execution error causes program
termination.
Finds the -natural:- logarithm of ne; ne > 0, ,

otherwise- an execution error causes program
termination.
Finds the sine of .ne; the angle ne is ex,:
pressed.in radians.
Finds the. square 'root of ne; ne > 0, other-
wise an execution error causes program
termination.
Finds the tangent of ne;the'angle ne is
expressed in radians.

expressed -

-LGT(ne)

LOG(ne)

SIN(ne)4-
a'

SQR(ne)

TAN(ne)

29

4/5

c = 1

5a + -10b + 20c =

2a 2b + 2c = 1

c = 1

a1/4 +.1)-14/2 + c = 4/5 ...

a1 + b1 + c 1/2

7.

The solutions are c = 1, a = -1/5, and b = -3/10 so that

-x2 3x
g (x) 7 s

Observe that

folg(x) ux =
-60
47

+ 1 .

and Formula (4-15) of Simpson's approximation gives
1

F(x) dx .1 10:(0) 4F(1/2) + F(1)) = 47
60

-a 1 so when the subdivision D-= xo., 1/2 = x1, 1 = x2 of
(0,1] is used.

The above procedure is often called the method of
undetermined coefficients; If we had 4 points of some
function, ;ay (.7,1,1/2), (6,1), (1,2), (2,4), we could

Or.'



approximate this by a third degree polynomial. p(x) =

ax
3

+ bx
2
+ cx + d: The equations pC-1) = 1/2,

p(0) = 1, p(1) = 2, and p(2) = 4 'translate into

'40! +' b a- c + d = 1/2 /
d = 1

a+ b+ c + d = 2 .

8a + 4b +- 2c + d = 4.

After some labor, one finds a = 1/12, b = 1/4, G = 2/3',

d = 1, and '.
3

x
2

2x

-in general,- to approximate a function by a
\
Poly-

nomial of degree n, i.e.,

p(x) = a xx 4. an-1x
n-1

+ + aix +

requires (n+1) points on the graph of F(x), These will

give n+1, linear equations involving the n+1 unknowns an
an_i, an_2,'..., a0. As the above examples illustrate,

the method of undetermined coefficients can become quite

tedious. A simpler method called Lagrange Interpolation

has bean devised. A good discussion of this may be found

in Flanders (5, p.377-379).
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STUDENT FORM 1

Request for Help

Return Co:
EDC/UMAP

55 Chapel St.
Newton, MA 02160

Student: If you have trouble with a specific part of this unit, please fill
out this form and take it to your instructor for assistance. The information
you give will help the author,to revise the unit.

YourName

Page 4
o Upper

°Middle

Q Lower

OR
Section

Paragraph

Descriptign of Difficulty: (Please be specific)

OR

,Unit No.

.Model Exam
. Problem No.

ToZt.

Problem No.

Instructor! Please indicate your. resolution of the difficulty in this box.

,-r
Corrected errors in materials. IrOt corrections here:

(2) Gave student better explanation, example, or procedure than in unit.
Give brief outline of your addition here:

k

(2)

.
.

Assisted student in acquiring general learning and problem-solving
skills (not using examples from this unit.)

Instructor's Signature

"'Please use reverse if necessary.



go

Name

Institution

STUDENT FORM 2.

Unit Questionnaire

Unit No.

Course No.

Date

Returh to:
EDC/UMAP
55 Chapel St.
Newton, MA 02160

Check the choice for each question that comes closest to your personal opinion.

1. How .useful was the amount of detailin the unit?

Not enough detail to understand the unit
Unit would have'been clearer with more detail
Appropriate amount of detail
Unit was occasionally too detailed, but this was not distracting
Too much detail;. I.was often distracted

2. How helpful were the problem answers?

Sample solutions were too brief; I could ojt do the intermediate steps

Sufficient informationwas giyon to solve,the-problems
Sample solutiods.were too detailed; I didn't need them

3. Except #or fulfilling the prerequisites, howmuch did you use other sources (for
example, instructor, friends, ler other books) in order to understand the unit?

A Lot Somewhat A Little Not at all

.:. .:.

4. How long was this unit in comparison to the amount of time you generally spind'on

, lesson (lecture and homework assignment) in,a typical math or science course?

Much Soiewhat About Somewhat
U

Much

Longer Longer . theSame Shorter Shorter-
C a

5. Were'any of the foLlowing.parts of the unit confusing or distracting? (Check

as many as apply.) ,-
, ,

Prerequisites .

.

0

1.-

Statement of skills and concepts (objectives)
Paragraph headings

1.----Examples .

Special Assistance Sdpplement (if present)

Other, please explain

6. Were any of the following parts of the ,unit particularly helpful? (Check as many

as apply.)
Prerequisites
Statement of skills' and concepts (objectfges)

Examples,
Problems ccp

ParagraIA headings
Table of Contents

%

Special AssiStance Supplement (if present)

Other, please explain

Please describe anything in the unit that you did not particularly like,

Please describe anything that you found particularly helpful..(Please use the back pf

this sheet-if you need more space.)


