z
-y,

3 ‘ T T4
g ) DOCUMENT RESUME ) A
, o « . -0 o~ . .
'ED.218 111 .. AT SE 038 112 .- S
. o . .
AUTHOR Motter, .Wendell L. - yo - .
TITLE & Elementary Techniques of Numerical Integration and
Their Computer Implementation. Applications of
“ : éElementary Calculus to Computer Science. Modules and ,
.. . - Monographs in Undergraduate Mathematics and Its .
‘ Applications Project. UMAP Unit 379. .
INSTITUTION Education Development Center, Inc., Newton, -Mass. .
. SPONS AGENCY £  Nationdl Science Foundatien, Washington, D.C.
PUB DATE ' 80 : ’ :
GRANT SED-76-19615-A02 : !
NOTE " 38p. \ : o o
EDRS PRICE MFO01 Plys Postage. PC Not Available from EDRS.
DESCRIPTORS *Calculus; *College Mathematics; Computer Science;
D *Computer Science Education; Higher Education;
Instructional Materials; *Learning Modules; ) ®
*Mathematical Applications; Mathematical Concepts;
*Problem Solving; Programing; Supplementary Reading
. Matertals .o
IDENTIFIERS. _ *Integration (Mathematics)
ABSTRACT g

. 7
It is noted that there are some integrals which \

cannot be evaluated“by determining an antiderivative, and these
integrals must be subjected to ofher techniques. Numerical
integgation is one such method; it provides a sum- that is an
approkimate value for some integral types. This. module's purpose is
to introduce methods of numerical integratjon,and to describe related
computer programing tecbnigues for electronically carrying out the , )
calculations. The matggpial is seen to réquire very little background .
or knowledgge about coﬁguters and their use. Exertiges are provided at :
various points It is expected -that users work each, of these

problems, as they are viewed as essential to a genuine understanding
‘of tge,idgasydéveloped.'(MP) ) :

- L4 -

»

o

-

*********t********j*t*******;*******************t**********************

*

Reproductions supplied by EDRS are the best that can be made X

from the*original document. *

khkkhkkhhhkkhhhhkhkhhhkhkhhkhkhhhhhhhkhkhhkhkhhhhhhhhhhhkhhhhhkhhkkhhhkhkkhhkhhkkkhkhkkkkk

‘.

I4 B *
.




. ”~ . 1
. N 2" ) g * f . i .
. - I - ~ ' g , 3 ,
- v - ] ELEMENTARY TECHNIQUES OF NUMERICAL INTEGRARION
‘o~ . . ’ . 3
. - . 3
. uma, Lo ' . g AND THEIR,COMPUTER IMPLEMENTATION oo 3
. ° - . 9 U'S. DEPARTMENT OF EDUCATION . . T
* a . UNIT 37 NATIONAL INSTITUTE OF EDUCATION
EDUCATION_AL RESOURCES INFORMATION . b .
— . - o oy ® . CENTER (ERIC} Y “
‘ v T o MOCRE L N mki_vsﬂvuml.r AT docient has been reproduced a5 ©
— R A;{L T ~ N ERN { received from !he erson of ofganization Wendell : % Motter
. . . . onginatng 1t : ‘Department of Mathematics
- - L Mmorchangeshave been made to improye - FlOTldd A§ M Un1v0r51tv R
o) . " reproducton auty - Tallahassee, FL 32307 .
. . B T T R _
- ® Points of wewor opmnonssra(ed n this docu .
H °. - ment do not necessanly represenl oMcxa! NIE -- -2
N . position orpohcy > .
= ) ELEMENTARY TECHNIQUES OF NUMERICAL INTEGRATION R }
(N : TABLE OF CONTENTS .
AND THEIR COMPUTER IMPLEMENTATION ‘ ; ) L
h * . . . . > EY
’ ’ - “PERMISSION TO REPRODUCE THIS : \
: * by Wendell L. Motter M/ETERFES IN MICROFICHE ONLY 1. INTRODUCTION AND OVERVIEW~ . . . . . ' . . . . .
. . HAS BEEN GRANTED BY . ,
/ e S ce 2. APPROXIMATING INTEGRALS USING RIEMANN SUMS . . , 2 . . .. 2 :
— . e cnmeCn .7 2.1 The Left-Rectangle Method . . . . . . ,'.‘,. N I
. . . - ' ? A . T
TO THE EDUCATIONAL RESOURCES - = 5 5 pp.0 Right-Rectangle Method . ., . . . : , . . . > . 8
y INFORMATION CENTER (ERIC)' . . , . R T ,
R ’ . . . . v el ! : v el .
3. THE TRAPLZOID RVEE . . .%e . . . .. ., + . % Sl
- ) . . . . . l. * wom ‘. F T -? .ot
. . . ) < - %‘ e, 0 [ T, ' » PN
B ~ N 0 .« o o ’k o ' . L4 , L . w' L0 “’" LINP SR - .
4. SIMPSON'S/RULE _. .".¢. . .-, . " -, Q.. T N ! SRS
N R ~ * . . N LR - o
E ; b ) - -
o S.. DOUBEING.THE NUMBER OF SUBINTERVALS IN PAR’TIT\ONS . :
o OF UNIFORM WIDTH ™. .. . . . . . . 0", . .. . -2 -t
o T R BIBLIOGRAPHY , . 27 -
' APPENDIX A , . . .. . 29
- N r ¢ - -
i ] . ‘ ' .
APPLICATIONS OF ELEMENTARY CALCULUS APPENDIX B R . . 30 ) ’
L ~% -~ » .
v - TO COMPUTER SCIENCE ) N
A ~ : IS
% . v ’ . ~ . A
M ede umap 567 e newton mass 02160 J . ,
N - : . = 1 "
b - = - Y . )‘ -~
' . Ce o~ N
L 2 ’ 3
EMC ' . e . B
.




L]

Intermodular Dq;ciiption Sheet: 'UMAP Unit 379

Title: ELEMENTARY %ECHNIQUES OF NUMERICAL INTEGRATION
T . AND THEIR COMPUTER ‘IMPLEMENTATION '
Author: Wendell L. Motter
Department of Mathematics
Florida A § M University
Tatlahassee, FL 32307

Review Stage/Date: 111 3/20/80

Clagsification: APPL'ELEM CALC/COMP SCI .

Suggested Support Material:. Either a mini-computer or time-
* sharing terminals which allow programming in BASIC will
be needed. .
Prerequisite Skills: . -
1." Calculys through the definite integial and Riemann Sums.
2. The analytic definition of the integral. -

Qutput Skills: i . e e T T
1. Write programs in #RSIC Lo calculate Riémann Sums for variqus
© functions., > . ' ! ’ -

2. Approximate integralsfhsing the Trapezoidal ftule and Simpson*s

Rulé and write programs in BASIC to -do this, - .

3. Explain why the Trapezoidal Rule and Simpson's Ruje. give better
approximatjons of most' ihtegrals than rectangle apprpximations.

4. * Know the method of "doubling the number”$f subinterfals™ to
improve approximations to definite integrals’ -

» - . ’

-

© 1980 EDC/Project UMAP
All rights reserved.

MODULES AND MQNOGR&PHS IN UNDERGRADUATE . . ﬂj\\\
MATHEMATICS AND iTS APPLICATIONS PROJECT (UMAP) -

. £y
The goal of UMAP is to develop, through a commdhity of users
‘and developers, a system of instructional modules in undergraduate
mathematics and 1ts applications which may be used to supplement
-eX1sting courses and frog%wh}ch complete courses may. eventually be
built. :

The Project 1s guided by a National Steering Committee of
mathematicians, scientists, and educators. UMAP is funded by a
grant from the National Science Foundation to Bducation Development
Center, Inc., a publicly supported, nonprofit corporation engaged
iﬂ/educational.research in the U.S. and ‘abroad. R

PROJECT STAFF_, e

<

Ross L.ﬂﬁnney , Director.,
" . Sglomon Garfunkel (onsorti# Director
Felicia DeMay Associate Director B}
. Barbara Kedczewski. CoordinatqQr for ‘Materials Production
Paula M. Santillo, Assistant to the Directors
Donna Difuca.. Project Secretary
Janet Webb * Word Piocessor
Zachary Z§§§?as Staff Assistant

hd .

NATIONAL STEERING CONHITTEE oo

W.T. Martin (Chair) . M.ILT.
. Steven J. Brams ° New York University
Llayron Clarkson , Texas Southern University
“Ernest J. Henley University of Houston
William Hogan Harvard University
Donald A. Larson SUNY at Buffalo
William F. Lucas Cornell University
R. Duncan Luce Harvard University
George M. Miller Nassau Community College
" Frederick Mosteller Harvard University )
Walter E. Sears University of Michigan Press
George Springer Indiana University
, Arnold A. Strassenbugg SUNY at Stony Brook .
Alfred B. Willcox Mathematical Association of Americ

The Project would like to thank.John H, Martin of the U.S.
Milifary Academy Prep School, Carol Stokes of Danville Junior
College, Paul Nugent of Franklin College for their reviews, and
all others who assisted in the production of this unit.

This materid] was prepared with the partial support of , .
National Science Foundation Grant No. SED76-19615-A02. Recommenda-
tions expressed are those of the author and do not necessarily
reflect the views of the NSF or the copyright holder.~




2

- -~ -

: . ELEMENTARY TEGHNIQUES OF NUMERICAL IVTEGRAFION

. ) AND THEIR LOMPUTER IMPLEMEVTATION

Wendell L. Motter
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- . 1. ® INTRODUCTION AND OVERVIEW

. ’ ‘ o

e

.

Throughout most of vour studiés in-calculus, you

LT will be concerned with the evaluaf1on of 1ntegrals

Various techniques such as iritegration by parts are

-~ developed so that the antideriVative can be determlned
and used to calculate the precxse value of an integral
according to the fundamental theorem of calculus .

-

However, there are some 1ntegrals which can not
be evaluated by determlnlng an ant1der1vat1ve The
integr#l : *

4 2 . :
fe X dx ° ‘

which ariseé in probabili'ty theory is one of many

examples" For suCh .integrals, we ,must use ‘other tech-

»
nlques, such as ''numerical 1ntegratxon” to find approx-
imate nunierical values for such 1ntegrals e

* The very defxnxtxon of the integral as the limit
of7afR1emann sum provides one numerical method for
ggmﬁ&tlng a sum whlch approxxmates . ‘

N J‘f(xadx' . * o
s

_where f(x)} is a bounded function in the interval [a,b].
Other ‘methods are 'the trape201dal rule and Simpson's
. ‘rule A, N

R
: >
The~patpose of this un1t is to introduce these

methods of\numenxcal integration and dessdibe- the
-«

- -

- _‘~A‘Q . ) ~:°\ 1

r, Y

EMC ,L \’S‘r. ‘ PN 6 .‘ -, Y

| ommmemt )y, §

. ounderstagp1ng of "th1s matenial.

-

C related programming techniques required for hdving

4 a computer carry out the calculatlons Thxs unit

requxres very little prevxou% background or knowledge

-

about oomputers and their use. T

-

cited and a complede bibBliography follows the main.~

text. "Students are encouraged to'pursue further
readings that are suggested if they desire a deeper

- SThroughoht the module, various references are
3

Most 1importantly,

<

I students ‘are expected to work eagch of the several exer-

po— il
tises; for,these aré essential_ to.a geniune under-

standing of the ideas developed.

.

~F . .
v 2. APPROXIMATING INTEGRALS ,USING RLEMANN SUMS
- . :

>

2.1 The’Leﬁp-Rectangleghethod' ,

. v 1
\

(9

Our first attempt to solve the problem of evaluatlng

"

definite 1ntegrals 1nvolves using Rlemann sums as

approx:matxons
closed finite interval a < x < b and a partition
a = Xp <X € x, < < Xyop S Xy T Xy = b of that
interval. Fpr each j = 1%, 2, .y N, let c; be any

v, .t X S
point in the j h subinterval of the partition,

‘
.

1.e., X, , £ €. <eX..
el = 7§ = 7]
The Riemann sum < N
N ~ . .
jzltkoj)-(xj—xj_l) = f(cl)'(xl-x ) )
- ! *(eg) (xpxy)
+ -~
Y . ) + f(cN)'L(XN-XN'l)
is an approximation of the lntegral f:f(x) dx. The

jth term of this sum, f(cj)~(xj-x i)g is described
© Ve

J‘-

N

L
We consider a function f defined on a

r




A
.
L)

T . o oo, :
sty \ - , *
) geometrically in Figure'l as the ar%a of th; shaded
rectangle. The approximation of the integral that' is

~ 'y, ‘ o ) :

-

Irj-l G0%

. - i
) ’ ' . &gﬂeL

.
- -

determined by'thg partition is the sum,of the areas. of

4

"N }ectanélps of heights f(cj)--this area actually is

N ‘negative when f(cj)_is negative--and widthgs (xjix ).

j-1
In this gegeral‘formu}a, the value of cj in the

/ .- 2 § .
*subinterval [xj_l,xj] can be chosen arbitrarily and in

fact so can the xj’s in the partition. To implement

this method on a computer, we need a systematic way of

- making these -choices. One method is to choose a parti-
tion in which each -subinterval has the same width as
. 'eachidther supinterval. This is eagily‘agcompli§hed

- by subdiyiding the interval [4,b] whose widtb is (b-a)

- into N equal subintervals each with width {b-a)/N. A

convenient and standard nota?ﬁon for the quant&fy "

(b-a)/N is Ax. The.-partition is then

. L. ‘ a = Xpy Xp- = @+ Ax,'x2 Fa+ 28x, ..,
Xy-1 = 2 + (N-})Ax, Xy b -
. ’
o . .
. . M - ¢ a
. 3
Q : \ 3

ERIC e

LA v 7ex: Provided by ERIC -

°

[y

' N

so we have N subintervals

[a,.a + 4x], la + ax, a + 28x], .
., la + (N-1)ax, b)

~

ecach of which has length ax.
’ \

Now 1f we choose cJ as the left '‘endpoint of, each
of* these subintervals so that

¢ . 4

c, = a, ci = a + Ax,

‘

-y Cy T (N«I)A§

then we can form a Riemann sum approximating the inte-

gral called the Zeft—rectangie approximation. It is
given by, the following expression: '
f(a)ax + f(a + Ax)Ax - .

+f(a + 20x)Ax *+ ...+ f(a + (N-1)8%)ax.

. This can be simplified to

*

. A

(1) [£(&) + f£(a + ax) + + f(a + (N-1)ax)]aAx.
s’ .
This approximation is shown’in Figure 2. - 1

‘ R f(a)+Ax‘) f(a+2Ax). »

%

[ 4

Pl f(a+ (N-1) -Ax
- ! Area of rectangle I is f(a)- x .

Area of rectangle Il is f(a+Ax).Ax = .
Area of rectangleIIIisf(a+2-Ax)-A§

.
.

Sum.of above is Formula (1)
. ’

‘ Figure 2. ' . ‘ 4

v 9 | .

N Ny L] ,

Area of rqctanéle N is f(a+(N-1)Ax) Ax N

ot

'l
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Let us use the left-rectangle method to approxi-

mate the integral .t f .
. r1 .
. J" —.—2 dx, .
o0 1ex . - :
‘wﬁich in fact ye khow to be o, . ‘.
arctan (1) - arctan (0) T = 78539,
. = 2 . & . .
Here* f(x) 1/(1 + x ). ) - .
Suppose we use N =4." Since b = 1 and a = 0 we -
have Ax = 1/4. Thus the partltlon ds . =

a =0, x, = 1/4,
e x2'=1/2 xs'is/a \Vl .
app{ox1mat10n (1) is
(£00) + ¥(144) ™ £(172) + £(3/4)) {174

[1 +16/17 + 4/5 + i%/ZS] “1/4

f

\
.941 + 800 + .540] .
Y

= .845. - - - \

[+ R .

LY .

Although w%'intend to use the Eomputer o find better

approxxmatxons by 1ncreasxn§‘the value of N, it is
1mportant that yow understand how t¢ USe these formulas

with hanébcalculatxons alsaq. . .

LY

~

Now we are read@ to devise a simpl
can easily be translated.,into a 1anguagz like BASIC)

that will compute an approxxMatlon to an integral by \
As Formuia (1) indicates,

we nee¢d-to have x range ;}rough the values-.of a,

the left-rectangle method.
a + Ax,
a +_24x, «» @ % (N-1)A¥, i.e., x ramges from a to

a + (N-1)Ax in steps pf Ax. We teed to calculate f(xyl

« for each such x, and ‘add up these terms to form a sum

S whxch we then multiply by Ax to gompute the left-
rectangle approximation. ,Suppose we use the'computer

variable D (for "delta") to represent Ax; the féllowing

~ . 5

program (which

L for A, B, and N respectxvely

A

~
«

. larger values

.~ . < . .

- -

program is probably what ydu would have designed. In
this examplé program, we use the function f(x) = l/(x2+1)
which we define in the first line of code. \§ . .
) '. -o ' -. \
' Example Prograﬂ 1 v
“ A } ©
100 DEF FNA (x) =.1/(x42 + 1) S -
110 INPUT A, B, N
" 120 LET D - (B-A)dw - :
" 180 LELS = 0. .
140 FOR X ='A to (A + (N-1)D) STEP D ' PN
160 CLET S =S+ FNA (X) . .
* 160 NEXT X’ . ’ ’ . .
170 PRINT S#D; "IS THE LEFT-RECTANGLE APPROX." - o
180 END ) . i S )

- ]
4
..

Note that when the INPOT A, B, N, 1nstruct10n ‘is
exectued

the computer will request 3 numerical values n\ )
(In an 1nteract1ve BASIC
sessxon these must'be separated by commas when typed in.)"-
Line 170 computes S:D and prints this uﬁ}ue out along

with the descriptive phrasenﬁnclosed in dﬁotes‘ ¢

If we increas® the number of subxntervafé by u51ng
of N, we expect to obtain a better approxi-
1ntegral since the Ax will be smafler and
more closely matched to’the.functxon _ This
the left- -rectangle approxxmat&gn, bexng a
Riemann sum, tends to the value of the 1ntegral as Ax 1s
 mad¢ smaller.. ) . . . : L
Néw, in Example Program 1, we used f(x) 5_1/(£231)
.Thu>, in thislcasé '
MWe can determlne the'exact value of the integral C

mation te,the
the rectangle

is so because

which thas antiderivative arctan (x)

o
i,

» arctan (B) - arctan (A) .

and compare it wlth our numerical approx1mat10n .
. -

We n make such a comparlson anytime we work with
.an f(x) fo¥r wﬁgﬂ’we know the antideriyvative. For - !
© v, < : e-6 . v
- . " .




\k'"

Q

PREWA i 7ext provided by ERIC

A PR

RIC

J \ ) \
.we could do this with f¢x) -= 4x3 -

3 2
M + x° -

2
Ix”© + 2x - 7

* We can easily

instance,

whose antiderivative-is x4 - X 7x.

modify the code 6f our ﬁxampfe Progrém 1 to handle this

rs

* new_function by changing I'ine 100 to

100 DEF FNA (X) = 4*x43 - 32x42 + 2#xx -7 . .

.
To make 1t easy to compare our numerical approximatidbn
with the exact value we can add a line or two of code to
calculate the exact valuelfrom the antiderivative and then
B <

print out that value. . {e could do this by adding the line

175, PRINT Bt4 - BA3 + B42 - 7+ - A44 + A3 L A2 + TxA

" N ‘ . -‘ b
« (Note this is not the most efficient way to evaluate a

polynomial, buf~lt is straightforward and easy to write.
Horner's method would be much better; see UMAP Unit 263,
Horner's Scheme and Related Algorithms,
Rheinboldt. :

many times, we might consider such improvements.)

by Werner C.
If we are going to perform such_an evaluation

]

Now that we have the program for the left-rectangle

.
method, we can perform many experiments. For instance,

we.can change the function we want to integrate. We can

also vary the N (and thus\pbgLAx)ntp”examinegrhkAfgoodneséﬂllﬁ_“.

I's

of our method.

Exercise 1.

2

£ ,'Run Example Program 1 for ffx) = J - 3x + 2x - 7 for fixed

values of A and B but make N 1ncreas1ng1y larger. Copy some of

your results Qn notepaper including the values of A, B, N for -

1§everalichoices of N. Does the approximation getr closer to the

exact value of the definité integral?

.. r

3 ]

Jaw . You, mlght have noticed that it-is only necessary to
_calculate once.Phe exact value of the 1ntcgral for given
V&Iués of N. .Thus lxne 175 really should not be executed
every time you run- the program for a new N. If you plan.
to_run many experiments, you should cons1der placing 1ine -

175 o;&sxde the ''loop" f ydur changes to N,

for -instance, *

S s

.

.

makes use of only the value of f(x) at the left endpoint -

. - - - . » -
by doing the exact evaluation before you begin any approx-

imations. This would also help you to determxne 1f your
This

‘nique; namely,, testing a,program with
-3

program 1s° running correctly. s a standard tech- .

Wn results.

2.2 lhe nght-hectangle Me thod .

“Suppose instead of choosing cJ

of each sublnterval we choose ¢

|
as the'left-endp01nt ' . i
as the right-endpoint 1

|

6f each subinterval so that c; 2Ax,

1
Then our approximating Riemann

=a + Ax, ¢, = a +
.,.c& = a + NAx = b.

sum becomes‘ . . \
(2) *
‘As th1s formula 1nd1cates

a + 2Ax
and add up these terms to form a sum $

(f(a + Ax) + f(a + 24x) + + f(b)]- Ax.

we need to have x run througﬁ
the values a + Ax, ., B, talculate f(x) for
each such X,
‘which is thei" mulitplied by Ax to compute what is called

the rzghtqrectangle approxzmatbon

4
0y

Exercise 2.
Modify Example’ Program 1 so that the sum S is calculated as the

rigﬁt-rectangle approximation. Type in this modified progrgm on a

Lomputen_termxnal~w1th instruction-175 which prints out theexact ~~~ -~ -
value of the /b £(x) dx for £(x) = 4x> - 3x% + 2x - 7.

for fixed values of A, B but use several increasingly larger values
of N, Make a hard-

copy- llstlng "of your program This should be turned in to your . S

Run ‘this "
Compare your results with those of Exercise 1.

instructor.

3. THE TRAPEZOID RULE . .

. : ¢
- T - .
. - o ‘

One way to see why the left-rectangle method is some-

what, cryde is that the approx1m3t1on on the j th subinterval

xj_ - Although this is not too bad if the graph of f(x)

*looks like' the one shown in Figure 1, it is not all that

~gogd if the
F%éure 3.

raph of f(x) looks 1like the function in

13 :

e -
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C(x

,illustrated by the followxng dxagram for the J

xj-l

Figure 3. Figure 4..
.

i}
.

3 @
a

One way in wh}ch the error might be reduced is

illustrated in Figure 4.

X.
47
X3 1
J

. S
Here, we approximate
kY

g
Aix

N
[

by the integral of the function whose graph is the
straight line connectlng ‘the points (x .10 f(xJ l)) and
(x., f(x )). As Flgure 4 shows, this would mean approxi-
matlng th; area under the grapﬁ of f(x) over the sublnter-
val [x .13 x ] by the area of the shaded trapezoxd Thls
is the basxs for the methqd kpown -as the trapezoxd rule.

. ActualTy, this anhd other methods of numerical 1ntegrat10n

that-we shall discuss follow the same approach as the’
left and right rectangle approximations by trying to

approxxmate the atea under the curve of f(x) for each
subinterval. The idea behxq! the trapezoxd ‘rule is to

sum areas of trapezoids m&t’ld of areas of rectahgles.

<

In general, a,trapezoid
BT PCHETE {C3

an be formed by the 4 points

2100 (x5 01, (x5 £(x;)) as

j-

val (Figure 5). (In Figure 5 ‘we are really using a linear
function, 'namely the one represented by the line through
foj_l) and f(xj) to approximate the curve of f(x) in the

.

¢ ) ) 9

subinter- .

jth subinterval.) From elementary geomgtry, we know

the area of the trapezoid 1s given by"

A=1/2 E?(lel) + f(xJ)]Axi

X; lﬂ-———' Ax --——’xj

. Figure 5.

-
:

Now suppose we have partitioned the interval
a <x <b 1nto N equal subintervals of length Ax = (b-a)/N’

as before. Then we will have N trapezoxds,51mllar to the

one described in Figure 5. ?pe total.area of these N

trapezoids‘ over
<
-
a'= Xg» (a + Ax) B Xga e,
. LA .

may be e(pressed as

AX{1/2[£(a) + £(a,+ AX)] + 1/20f(a + Bx) + £(a + 28]

N 3
+ L
.

+1/20E(8 ¢ (N-1)a% + £(b)])

+ f(a # (N-J*g)}

.+ l/z(f(a)' + £(b))Ax. .

= Ax{f(a + Ax3 + f(a + 24%) +

A

Let us find an approximation for ﬂ)l/(l + 2% dx by
means of the trapezoid rule (3). Again we use N = 4 bO
Ax = 1/4 and the partition is‘a ='0, X, = 1/4, x, = 1/2,
Xz = 3/4, b = 1 as*whem we used, the left-rectangle method

for this example. The approximation (3) gives ®
%

10
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k4

17416174 + £01/2) T £(3/0)1 + 1/a
1/4116/17 + 4/5,+ 16/251 + 1/8[1 + 1/2]

1/2[£(0) + £(1)]

‘N

4/17 +41/5 + 8/25 + 316

<2353 + .2000,.+ .1600 + .1875

.7828. . < N

, -
\

Compare this result ¥or this same problem with the left-

Tectangle method and 1ts result as shown on page 5.

¢ * .
H

Exercise 3. . .. . . .
Compute ff 1/x (dx) by hand calculations using the trapezoid

rule (3) where N = 6. Note the exact value‘is in (2), . ~

e
‘Instead of writing a program to compute the approxi-

‘mation by Formula (3), we shall try to writé this in an-
other form. You should recognlze that (3) is just the
rjght-feciangle approximation .

) (2) - £(b)Ax + 1/2[f(a) + f(b)]aAx.
Now *he quantity

. {- f(b)ax + 1/2[f(a) + f(b)]Ax}
can be 51mp11f1ed tor

1/21£(a) - f(b)]&k. . : ..

GThfs means that if the approximating sum (2) computed by

the right-rectangle rule is adjusted by addition of the
term 1/2[f(a) - f(b)lAx then we have the trapezoid rule.

Thus the trapezoid rule is about as easy to-program
as the rectangle rules. In fact we can- take the program
for computing the approximating sum by the rlght rectangle
rule and insert additional 1nstruct10n5rthat compute
1/21£(8)
rectangle approximating -sum. A cog{lete program for
doing this is now given. Does your solution. to Exercise
2 resemble this?

“ ” 11

f(b)1Ax and then add this term to the right- ..

.
-

- . Example Program 2

L b
100 DEF PNA(X) = 4xX43 = 3+Xt3 4 2¢X = 7 ° .
110 INPUT A, B, N o )
120 LET D = (B-A)/N te ",
130 LET S = 0 X
140 FOR X = (A + D TO) TO B STEP D - .
" 150 BET S = S + FNA (X)
160 NEXT X. )
170 LET S1 = S«D' ) .
1752 LET S2 = S1 + D« (FNA(A) - FNA(B))/2

180 * PRINT S2;-
185 , PRINT S1;
190 END

"is TRAREZ§ID APPROX."
"IS RIGHT RECTANGLE APPROX."

Here we use line 185 to print out S1, the right-rectangle
approximation so wé gan compare this with the result from

. the trapezoid method. -

Exercise 4,

Type in Example Program 2 at a computer terminal. RUN this
program for fixed values of A, B and fﬁcreasingly larger values of .
.N. Copy down on notebook paper the results from these runs including
your input values of A, B, N,r’ﬁ£:t is the smallest yalue of N that
0 B =

the trapezoid rule compare with the previous methods?

gives the exact value of the integral for A = 17 How does
Turn in your

solution for this exercise to your instructor.

\
4

Let's review what _we have done so far in computing
approximations to definite integrals. Our.first method
‘was derlved directly from the definition of the definite
1ntegral " The left and right rectangle approximations
con51st in approx1mat1ng our given function for each
small subinterval by alconstant (either the value of the
function at the left endpoint or its value at the right
endpoint). The approximation to f(x) obtained by, piecing
together all of these constant functions for a given

' o

] - ) ‘ A 12
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. and linear function is a polynomial function of degree one;

EE

[ -~

subdivision of the ?nterval~[a,b] is called a step
function, and the corresponding approximating sum (left
or right) is actually the integraf of this step function.
ThHis is illustrated by the following diagram with a sub-

¢ division of 5 points (Figure 6).
3 - - » .
Dl A A
‘ L)
+ N .
. . - ’
.
?
) A S .
e -
T t ; t 1 ——
XO )(1 XZ x3 X4
. ﬁm&&6. L .

! ,The trapezoidal rule used a linear aé%roximation to
f(x) on each-subinterval. The approximating function
obtained by piecing together all of the linear pieées for

"\ a given subdivision of [a,b) is calléd%piecewise lineaf,

-and the approximating trapezojdal sum 1s actually the

integral from a to b of such a piecewise linear function.

e, The previous exercises should have demonstrated to you
that the trapezoid method gives a better approximation for

each N than the rectangle methods.

“This i}lustraies hqy complicated functigns are
approximated .on suitably small portions of their domains
by simpler functions, and the desired anélysis is done
with these simpler function§. Polynomial fUnctiohg are
" the best gxa@ples_of s%mpde\functions bechsq‘their values
i are easily computed and.there are simpler formulas for

IS

. integrating and differentiating these. Actually, a-

constant function is a polynomial function,of degree 0

thus, we might expect greater accurac& (or better fit} by
using second-degree polynomial functions, such as parab&las,
. . ) . ' 13
\) .‘ ; -’( . « b N N
.L'?

RIC - - :
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°

to approximate f(x) on suitably small subintervals and
piece these together-to approximate the integral of f(x)-

over [a,b]. - s .
. " -

- . .

4. SIMPSON'S RULE " “

~

) . .
L

This approach leads to our next me’thod of numerical
integration which is called Simpson's Rule anC approxi-
mates the area under the curve of f(x) over tko adjacent

. N - \ oo, .
subintervals by means of a parabola. The approx1mhglon

.

for the integral .
X, N
I £(x) dx
*j-1 ' A

is derived by passing a parabola g.(x) through the three
points (xi-l’ f().(j-l))" ‘(ij f(XJ)),\ and‘(x3+l’ f(x'j+l))
of the adjacent Subintervals [xj.l’"xj] and [x,., Xj+l]‘

. . J°
The approximation to the area under fThe curve.of f(x) over

-

the adjacent subintervals [xj_l; xj] and [xJ, x.+i] is
given by calculating the area under the parabola gj(x)
over these subintervdls. This is sHown in Figure\7.

. A%

A

9 §

Figure 7.




. means choices for thé values of N which represents the gJ(xj - Ax) = a(xj - a0l . b(XJ - Ax).+
total number of subinterwvals must be even. To derive a 2 2 >
formula f Rule t 12e(x) 4 ‘ TalxT s 2hx xg e axT) 4 b(x) - Ax) v e
ormula for 1mpson s Rule to approxxmate x) dx we and 1likewise _
wuul assume there are an even ‘number of sub1nterval& 1n . ) . 9 ! 5 :
‘the partition of [a,b] ‘and that each of these subintervals T 85Xy Ax) = a(xt s 20xx5 + AXT) + bx; + ax) + c.
has the same length which we denote by Ax as in previous Therefore, ‘e
discussions.  Observe as Figure 7 indicates that T . g (X; - AK) * g.(x: + Ax)
¢ X, - Ax and Xx. = x. + AX. 1)) j
o, i+l J & 5 > .
First, let us-derive a formula for the approximation g = a(sz * 28x%) + b(ij) + 2c
- .to : . so that 1f we add -
X.+AX - - . 2
. T f J f(x) dx . L N . ldg.(x-) = dax.” + 4bx- + 4c
e . X - Bx . - : , . J .

.
.8 i
) Ll L
.
.

Of course the overall approx1mat10n ] f(x) dx >

consists of the sum of the areas for these approximations,
by parabolas? g 3, 5,
., N-1. A palr of adJacent subintervals must be used

S -

where-j funs through the jindices 1,

)
as 3 points are requ1red to un1quely determlne each approxi-

4 dmating parabola g. (x) and there must be an even number of

. +subintervals - altogether so these can be paired off. This

@

.

and c. Aﬁpendix

+ .
contains a more detailed discussion of

this gnd the general method®of detprﬁining coefficients

1 °n ¢
a x" + a 1, ..

of the polynomial p(x) = a, n-1%

+81X+a

which approxlmates f(x) and passes through n+l points

(X, £(x1)),

‘An easier approath is to observe that

cees (X4 f(xn+})) of the curve for f(x).

to thls, we obtain the express1on enclosed by parentheses

using these ideas. Let us assume the parahola g (x) has »

2" . 1n Formula (4 a), i.e. .
the form~gj(x) = ax” + bx + C. The area under the para- . . . L e )
. . 4 ) . - A dg. (x. (x. +°
bola is o ‘ . ; . . 8J(xJ ax) + gJ(xJ) + 8J(XJ +'AX)
. 3 2 . v . . <
I .} (ax® + bx + ¢)dx C : . . = 6ax.2 + 6bx: +Zan2 + 6cC,
X_-AX - : | * . J J *
- 2 ' - ) This means ) , .
7 . 3.j 2 xj+Ax . -y , X. +AX ’
*.,=1/3ax” + b 2+ o - . . X e
- '/ a. X / (_:X XJ"‘AX ) ; 3 _J J g, (X) dx 2
.s < ) . . - . R . ‘< xJ-Ax J - .
By substitution and algebraic sim lification, this equals . - . )
. 4 ‘ § P ) . /‘q L;;&\ . = 1/3Ax (gj(xj - Ax) + 4gj(xj)
. (8- . 1‘3. x+ (6ax, + 6bxy + 2anx” + 6 " e .
(4-3) /3. 8% ( 5 x asx® + 6¢). . . + 850 + %),
A computat1onal formula should involve the values, ) | Finailya ) ) .
.. of the original fudttion f(x) at the points x..-¢Ax, xf, ; ’ a4
and x . + Ax; this will occur through the determination of ° ‘(F_%)_ f J gJ(x)dx i
. the coefficients a, b; and c. Finding the solutiory of the : X;-hAx o
‘ . three equations f(x ) g(x 1), f(X‘) = g(x; )‘gand ) ' = 1/3Ax (f(xj - ax) + 4f(xj)
. s one t h u fo l ul t 2, b, ’ 3
f(xJ+1) g(xJ+l) i \e echnique r ca“t e 1ng‘if > , . f(xj ‘1)), ]
t 4 © e - \‘\"\\; Mw < - . :’ ‘i‘* o \‘ i 0 s
. Y R . . 15 : - N
20 . C ‘ <l © L 16
~ \.1 . ’ % Lt P24 o :.‘f"‘ R . i .
. S r e ‘:"}'., ° ‘:::. »:‘ 5’. . ’f ‘:.'n:‘} vy ] ' . (S ‘ e [ B ,-..'. ‘ "
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Since'gj(xj - &x) = f(xj.-%Ax)k gj(xj) =
gjng + AX) =xf(xj + AX) by ‘construction.

-

If we add up the areas under these dpproximating
parabolas for all\ﬁonoverlapping pairs of adjacent sub-

f(xj), and

-intervals, i.e., [xo, xll with [xl, x2], [xz, x3] with f

;‘[XS’ X4], [X4, Xsl (With [X

5’ x6])

PN [xn_z, Xp-1) with

Txn-l’ xn], then we obtain the sum of these approximating

..dareas from (4-b) as

RIC

BE/31E(xg) + 4f(xlj + £(x,)]
+ Ax/f[f(xg) + 4f(xg) + £(x,)]
(5) i o + .. ..

+

Ax/3[f(xn_j) + 4f(xn_1) + f(xn)]

YAn alternftive way to write Formula (S5) is
\ .

-

b

f £(x) dx =-Ax/3[f(xg) % 4f(x;)2-2£(x 40

e R Zf?x ) +x1f(x ) f £(x.)].

n-2 n-1 n'ce

Let us apply Férmula.(5) for Simpson's R&le to

. approximate A}l/(l + x?) dx. For comparison with the

rectangle and trapezoid methods, we will again use N = 4
e, = 1/4, x, = 1/2,
Xz = 3/4, b = 1 as before. Now Formula_ (5) gives

i

$0 AX = 1/4 and the partition is a = o0, * =

I/4 + 1/30£(0) + 4-£(1/4) + £(1/2)]
= 1/4 - 1731H(1/2) + 4-£(5/4) + £(1)]

=1/4 * 1/3[1 + 4+ 16/17 + 4/5) .
' +.1/4 - 1/3[4/5 + 4 - 16/25 + 1/2]
o = 1/3[1/4 + 16/17 + 1/5 +'1/5 + 16/25 + 1/8]

= 1/3[.2500 + .9412 + 2000 + .2000 + .6400 + L1250}
= 1/3 [27.3562]

. <= .18, g

‘This is illustrated by Figyre 8.

lefe-

J‘.

Simpson's Method can be made iné}easingly dccurate by

. 1/"/ //: -

0 V2 1/2 ©3/4 1

Figure,8: .

. ) T | .
Figure 8‘indicétes how closely the parabolak”gl(x)
1/(11x2) over the

two pairs of subinterval® and the computations illustrate
that for about the same amount' of _effort as the trapezoid

and g,(x) approximate the curve y =

formula, Simpson's Rﬁlg gives much better accuragy:
Another exgmple which compares Simpson's Rule and the
trapezoid rule is'giyen‘fn Shenﬁf p; 375. .

Consider now a funskion who%e'grth over the pair of
adjacent subihtervals [xj-l’ ?j} and_[xj, xj;ll behaves
fndicated by Figure 9(a). Here sthe graph of the
huaiiﬁtic fuhction pP(x) through, the points corresponding

as

to.xj_l, x., and xJ.+1 is a poor‘%ppmoximaqion to the
graph of f(x). This is an exce%ient-illqgtration of how

successive doubling of the number of points(in the, - 7,

»” e
.
e

. | -
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.a + (N-1)ax

»

\
- Sy
Y y .
‘ y=px)
y = £(x)
. £y v »
+- e X b
X.
j X X
S R EY - IO
. »
Figure 9. T

subdivision of the 1nterval [a,b] of 1ntegrat10n (this
procedure will be dlscusqed in more detail in the next
As Figure 9(b)
pair of subintervals 1s.subdivided inte 2 pairs of sub-

pz(x) of quédrat&e functions

section). illustrates, when the original

intervals, theq‘a pair pl(x)

is used to approximate f(x) and gives a closer fit to the

graph. Note that in this example, the trapezoid method

would still not give as goaod an approximation. Thls can

& -
be seen by’ draW1ng four line segments to connect pairs

[l

of adjacent: points on the graph of f(x) since as you \

should recall, the trdﬂezold method would use such a

A -

p1ecew1se linear approx1mat10n

Now to %mplement Formula (S) bn a'computer, w;\reed

“a computational routine whereby x ranges through the

middle point® o{ each pair of nonoverlapping adjacent sub-
ihtervals so that thé quantities f(x - Ax) + 4f(x) +

To be precise, X
ces Xy of
our partition 51nce the pairs of subintervals are [xo, X, ]

f(x + Ax) can he computed and summed.
must range through the values Xy, x3, Xg,

with. [xl, X ], [xz, X ] with [x
with, [x N-1’ xN].
a partition means Xy = a * Ax,

s Xy.p = @+ (N-1)ax,

Xgbo ooy DXyl 20 XyN-1)
Now using the unlform width Ax for such

X3 a + 5Ax,
, X varies from a + Ax to

e

= a + 3Ax, xS =
i.e.
in steps of 2-Ax. Then we can use a summing

P

19
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vairable S to add the quantities £(x - Ax) + 4f(x) +.
£lx + Ax) for each x Finally, according to Formula (S5),
$ 1s mu1t1§4f;§ by Ax/3 to compléte’thb computation of .

the sum of the areas under the parabolas. ~
. Oinouslv to have a computer routine for this
calculation process we wou]d use a FOR-NEXT loop. \baxn

using D for Ax, we ‘have the following anmple Prog*"m 3
to calculate the approximation to the* 1nte$ral fAPNA (x)

d
using Formula (5) for Simpson's Rule. Here again I‘N*A(x) i
; 5 .

4x3 -,3x" + 2x -'7,.but any function FNA(X) can be defined
for any function by a suitable program instruction at line
100. ' o .

. ) EXAMPLE PROGRAM -3 - 4
90 'SET DIGITS 10 ] - ) .
400 DEF FNA(X) = 4sx43 ~ 3#x42 + 2#% - 7 . ) .
110 INPUT A, B, N *¢ ° -
120 LET D = (B-A)/N_ . -
IS0 LETS =0 . : A
140- FOR X = (A + D) TO (A + (N-1)+D) STEP 2+D ) .
150 LELS €S + FNACX - D) + 44ENAQX) + FNA(X + D3 % o
160 NEXT X . ' \ S
170 PRINT S*D/3, "IS-SIAPSON'S APPROXIMATION" ‘ T
180 END - : '

N
. N . * .
~ - o
e

Note the . 1nstructLon in line 90 SET DIGITS 10 specified
that when the computer prlnts numerical output thi® will :dif
4

\\° I SIS (0N

Exercise 7. . -

consist of/10 digit numbers. < A .25: .

Run th1s
program for fixed values of A, B and vdlues of N 11ke 2, 4,8, }6. 3
Remember N must be even fér Simpson' s Rule to work Recxil ‘that the
PRINT BM-= Bf3'+ B¢2 - 7*8

- A%d + A%S - AR2 +7rA w111 print the exact yalue of ;he—lntegral

Type in Example Program 3 at a computer'terminéli

additional 1nstruct10n glven as 175

f (4x - 3% 2x - 7)dx . L ,// i - - *—,‘—“f'
—_ ot
7 O ) K - -

Pl
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* 7 t, then the distance traveled -between times t.= a‘®and

JA ruiimext provided by R

2
- . &

s Copy down on notebook paper the results from your computer'
run including your. input values of A, B, N. What is the smallest
valpe of N that gives the exact value of this integral for A = 0,
B = 1?
results fa},;his exercise to your instructor.

How does this compare with the trapezoid rule?_ Turm, in youg

[y

~ B

An Application

,

4

We now give an appliEation of these approximation .
Recall that if an
object is moving at velocity v(t) as a function of time

techniques to a practical problem.

o

t = b is .given by >

JZV(.’:) d.t — -

o

provided v(t)tg\i.‘ = L‘

‘For example, suppose a ﬁoqorist on a two hour trip.
noted his speed at 10 minute intervals as 0, 57, 51, 55,
0, 62, 60, 58, 35, 60, 33,
estimate the distance traveled by using either.the

35, and-0 miles/hour. We*can

Trapezoid method or Simpson's method (since there are an
odd number of equally spaced speed valu€s) to approxi-

0 13

mate

< ’ fZ" ' .
¢ ™ t) dt ;
] 0V( )dt;

»

. -hert't is time measured in hours and 10 minutes-= 4t

# = 1/6 hour. ° . ‘ ‘
9 .
Pf we use Sihpson's method, then by Formula 5 we
- : . o
have . o, .o
. -
1 - IS

g (0 +4:57 + 51) + 3%3 (51 + 4-55 + 0)
i (0 4-62 4 60) + g (60 + 4°58 +35) - -

. ¥ -

X -
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Ca e .

-

1 . ‘
R B 1
35 (35 + 4:60 + 33) g (33 + 4:35 + () .

. -

n
I

o ]
~~
D
_n
~
N
N

f

93 miles. i .

'

5. DOUBLING THE NUMBER OF SUBINTERVALS
IN PARTITIONS OF UNIFORM WIDTH °

& "l

.So far we have disctsséd iﬁree technidue; of

numerical integration and applied each of these, to

F(x) = ax” - 3x% + 2x -7 over the interval (0,1] to obtain

computer calgulgted approximations. Because we could find
‘tbe'aﬁtiderivative for this.example, we coﬁ}q compute the

exact value of the integral and comﬁﬁ?e how close the

approximaFe values were when we used different numerical

techniques and larger values of N. _Actually when an anti-
oderyiative can be determined, there is .really no point in

using’ techniques of numerical integration. On,the other
hand, suppose we want “to evaluate
- T2 2, - - .
[ e"X°/2 . : .
-\Z yL“lt R .

3
Here

we can not find the exact value of this integral by using
antideriva'tives..’ - - ’ )

- ’ *
for which an antiderivative canwnép-be calculated,

We have seen that lfrger value} of N usual}; give

better dpproximations by the numerica;wﬂgthods and we

4 expect this to be.true}theoretically sinée we ar% using
‘Riemann Sums where x approaéhes 0 as N approaches infinity_
(see Shenk, p. 207). In actuality though, a machine
created error called "round-off" error Will build up as N -
increases and more arithmetic computations are\pgéformed ’

- by the computer since each number is represented by a-
finite number of digits in the computer and arithmetic

" computations are rounded off during machine calculationss
« . N &

L e | ‘ 4 27 _‘ ’ zz‘j .




* trapezoid method. Here, we observe that 2.3925 is the 3
' approximation for .
’ ~ ) ) .
R f o XS/2 . - Sl
S = 2 - [

L

ERIC
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o
2

-

If we neglect the effect of Found-eff error which -

will be insignificant on most computers when accuracy
g to only 5 or 6 decdmal places 1s" desired, then we .can 2
Thus,

and when the

simply double the value of N each time. we would
c&hpute-sums SZ’ S4, 58’ Sla, caey
difference betwéen the value, Sy» of the approximating
sum for some N and the value, SZN’ of the approximating
sum for 2N becomes less than a specified tolerance, then

the computational process would be terminated.

Suppose for example we want an approximatioﬁ accurate
T to 0. 00005 for the.integral of - )
o™X /2
over [-2,2]. Here we use Example Programs 2 and 3 with
- DEF FNA() instruction changedn to DEF FNA(X) = EXP(X42/2)
and make use of the built-in function EXP() for e().
The following tables give the results of some computer

TUunsS.
N  Trapezoid Approx. ° N Simpson's Approx.
2 2.270671 2 2.847114
4 2.348397 .3 4 2,374305
8 ° 2.381347 - 8 2)392331 ¢
16 2.389759 . 16 2.3922331
32 2.391871 32 2,392572 ‘
N 64 2.392399 t 64  +2.392575-
128 . 2.392531 . A
256 2.392565 . ' ] )
512 2.302573 .

We want ISZN‘- Syl < 0.00005 so 2N = 32 works for

Simpson's Methed while 2N = 256 is necessary for the

that "is accurate to 0.00005,
is obtained by both methods

A¢C3 ) - 23

i.e., 4 decimal places, and

Q

>
Observe that the example programs can be used to
compute approximations for the integrals of other func-

tions by simp?y changing the DEF FNA() instruct}on. For

"F(x) = e'xz/2 -
we used thbuilt-in function EXP(); other built-in
functions are SIN(), LOG()-natural logarithm, COS()% etc.
Appendix A contains a complete list of such built-in
functions available 1n most versions of the programming
language BASIC. \ »

Exercise 8 . ;

' Use the trapezoid and Simpson techniques to compute sin (1n{x)) dx
accurate to 0.0000005 by doublinb N fgf successive computer runs.
Here DEF FNA(x) = SIN (LOG(x)).
for each technique?
10.

What are the values of N required
Remember to insert the instruction S SET DIGITS

.

= Arctan (1) = n/4 then

Exercise 9. Slnce L)l/(l+x ) dx
Use the method of doubling the number of

fol/(l + X )dx 2T
subintervals to find the value of 7 accurate to 8 decimal places.
What are the values of N required for this technique? Use only
Simpson's Method (Example Program 3) and the additional instruction
175 PRINT 4xS*D/3, "IS THE APPROX}MATION‘TO LA
Note: = = 3.1415925535897932%846264.,.

b ’ g Co- !

=, .
In practlce, most numerical integration techniques

are carried out on a c0mputer, and the accuracy of the

approx1mat1on is usually determined by doubllng the number

of sublntervals until two successive approximations differ )
This "stopping- ¢
rule", although widely used, does nof always work o *T“
efficiently. this shows that 4
unless the number of subdivision points is large enough

by less than the prescribed tolerance.

+

Consider the Figure 10;

to_require the 1ntegrand to be evaluated at p01nts in _the

intérval [c, c+h], very ‘little change will be not1ced .
betyeen two successive approximations.
. R N - . -

.

N SR TN

K
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N R 5 - . .
! °
- . ~ .
¢ . - A : ' can usually be obtained b} Simpson's method., Thi;
) means that hand computations could suffice if a computer
.. ) - . ' is not available. Because of the preceeding observa-

tions, it should not be surprising that Simpson's rule
is widely used in practical computations.

T ¥
, a c c+h b \

Figure 10. i

There is another reason for doubling N until two !

- successive approx1mat1ons differ by less than the pre- . \
scribed tolerance. If an "optimal"™ N were on the order ‘ °
of 400 for example, one would expect S200 and 5202 to be )

* very close to each other, even if neither were close - N
enough to the correct approximation. Actually, a more
elaborate computational dlgorithm can incorporaté the Lo
computations used in the.calculation of SN when SZN is ¢
s computed. This approach would give a moresefficient . N
program and eliminate unnecessary duplication .of compu-
tations which occurs when a straightforward program l1ke * . ) . :

. Example Progrdm 3-i's simply repeated for N =2, 4,78,.... i . N
An example of such an algorithm for Simpson's Method is ~ . .
described by D.A. Smith (Zl,‘p. 121-122). '

. It is important to note that Simpson’s rule requxres ‘
an evenly spaced partltlon with an even number of subin- . -
. . tervagls. Thus, glven y = F(x) if the x-values ‘do not
satisfy this criterja then the trapezoid method is the .
only one of these two methods” that can be used. -This . ) *
will only occur for.functions defined from experimental ’
data as in" the .applications example of Section 4. When
a8 function is defined by a formula, then any given inter-.. - - - .o i ... T Tt T T s e e
val of integration can be part1t10ned in such a way that ~ *
S1mpson s rule can be applied. . Several xamples have
* demon§trated that for N = 8, accuracy to.4 decimal places

i ’ . . . -

:,) . “ P s ' . . . ' ..

-5 . .
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Suppbse we Want to’ apptoxmate the curve-of T(x)

\

r/1+x2 by a quadratlc Iunctmn g(x) = ? + bx + ¢ o\zetj
e the “interval [0, 1]. T We must Sase three pemts ‘on the
,.:~graph ogu)?x} ba’y"(O' B, (1,475), and_(1,1/2). 'Phese
L. cho.lces make usefof thes paTtlth}I/IO 1/2] [1/2 I} of
"'_ - the~-1nter»va1 (o, 11 -Smce g{ﬂ) -F{0), g(1/2) = F(172y, ~n it

- ; nd ng) F(l) we -have: the sys;tm of 3 equatlons with 7= .=
.. <3 urvknowns a; b, ¢ as follaws:™ .. .
. FUNCTON': LT 2 7 -~ - ’
« - AH_S,(njB)-_‘-; P e :' _?;ar0/+b0+c—-1 . . . - c=1
A’I‘ﬁ(jj'e;) o ’ \‘I:‘n’ms' Ehe arezarng{m::eff’ne m the pr1nc1pa1 /Aa('l/,Z) +'b(1/2‘) + ¢ = 4/5 a*1/4 +'b-4/2 + ¢c = 4/5 .
B vaJue “range - -n/Z tor/7, o e . ‘
‘CoS'(ne) . _ Fmds‘the coalne. otf,m-‘the an,gla ne. is = " 3(1) + b(l) *"L 1/2 . a1+ bl +c=1/2
e ie‘xgressed 2 Iamﬁi‘ L TR S Thi's 51mp11f1es to’ - /
EXP(ne) " - I‘z,nd§ t?re—xaiue-a,f e-fo The powe,r of ne. . S . e
« INTéne) h "Fmds “the. ‘largest/—lnteger not greater than _ - - ) ] c=1 N
‘ . = -6 Bxampifr. INT_(,S.QEE ¥ apd INT(-S. 95) . " Sa +:10b + 20c = 16 .
“"LGT(ne) - F,1nds the base 1o logarlthm of ne; ne>9,,y . . 2a # 2b + 2¢c = 1 ~
- N otherwise.an executlon error Causes program . .
Y termination, i . . - The solutions are c = 1, a = ~1/5, and b = -3/10 so that
) LOG(ne) Finds the-natural logarithm of ne; ne >0, ' ) } -
otherwise- an execution exror causes program - . ex 3, 4 '
o termination. '\’- . ‘ g(x) = == - 17 . )
- SIN(ne)». ~ Finds the sine of me: the angle ne is exs . ) ) .
. « @ pressed.in radians. . » . Observe that : . .
y SQR(ne) Finds the. square ‘root of ne; ne > 0, other- . 1 dx = 47
. ) wise an executien error causes program . g(x) X 0
) termimation. . . AN . . ‘ -
b TAN(ne) Finds the tangent of nej-the- angle ne is and Formula (4-p) of Simpson's approximation gives '
: expressed in radians. . 1 - . :
L o - 1 1. 172y = 47
o o | - fo”’f) dx= g+ FFO) + 4F(1/2) + FQ)) = gF .
’ ! ‘also when the subdivision 0-= X 1/2 = X{5 1= X, of ,
. ) ) ) * [0,1] is used. ’ ) .
b e e e m e m e e e e e e e e e e e et e e e e e i e e e e B L e e ee e e »!—‘~~7¢~4«_M—w—k—-w‘+—k‘-
ST | e . . The above procedure is often called the method of
T ‘ 4 . - & undetermmed coefficients, If we had 4 pomts of some
' ‘0. ‘ function, say (:1,172), (0,1), (1,2), (2, 4), we could
u-l c . ’ E ' 30

- ' 20 e H — .
[ \‘lc‘ - . ad . ’ ’ - - .

EN ! °




.

nomial of degree n, i.e.,

.
¢ D
. s

. -

. approximate‘this by a third degree'polyhomiaL p(x) = .

»

ax> + bx% + cx + 4. The equations p(-1) = 1/2,
p(0) = 1, p(1) = 2, and p(2) = 4 “translate into

-a+ b+ c+d=1/2 -
d=1 9%
a+ b+ c+d=7 . oy
. L4
QP +4b + 2¢ +d = 4.

After some labor, one finds a = 1/12, b = 1/4, ¢ = 2/3,
d=1, and '. .
3 2

p(x) = I +§-Y*%’5+1.‘

\ . In general,- to approximgi; a function by a\?oly—

p(x) = anxx + an_lxr?'1 v a;x + aoh
requires (n+1) points on the graph of F(x). These wiltl
give n+l linear equations involving the n+1 unknowns a,,
a,.1» 342> "-++» 3g. As the above examples illustrate,
the method of undetermined coefficients can become quite
tedious. A simpler method called Lagrange Interpolation
has beén devised. A good discussion of this may be found
in Flanders (5, p.377-379).
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’ - , " Return to:
. STUDENT FORM 1 EDC/UMAP

. ® 55 Chapel St.
Request for Help Newton, MA 02160

Student: If you have trouble with a specific part of this unit, pleage fill
out this form and take it to your instructor for assistance. The information
you give will help the author, to revise the unit.

!

Your Name - . : \ ,Unit No.

Page * e
ge ] * Section . .Model Exam
O Upper OR - —_— OR . Problem No.
OMiddle ' Paragraph - Text, .
O'Lover . o . . Problem No.

Descriptien of ﬁifficulfy{ (Please be specific)

[ . ~

)

L]
;e

° A .

Instructor! Please indicate your resolution of the difficulty in this box.
r:

(::) Corrected errors in materials. %}st cogfections here: . ‘

s
P

<::><Ga§e student better explanation, example, or procedure than in unit.
Give brief outline of your addit@on here:

i
v
v [ -

<::> Assisted student in acquiring general learning and problem-solving
skills (not using examples from this unit.)

¢

-

e
~1

t

Instructor's Signature

i

. ’ . Pleage use reverse if necessary.
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) ) Return to:
Vo STUDENT FORM 2. EDC/UMAP
Y 55 Chapel St.

Unit Questionnaire Newton, MA 02160

Name Unit Wo. Date

Institution Course No.

Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detailn the unit?

Not enough detail to understand the unit -
Unit would have been clearer with more detail \
____Appropriate amount of detail

Unit was occasionally too.detailed but this was not distracting
Too much detail; I.was often distracted - .

»

~ )

2. How helpful were the problem answers?

Sample solutions were too brief; I could’ﬂé; do the intermediate steps

Sufficient information was given to solve.the problems .
-~ Sample solutiors were too detailed; I didn't need them
3. Except for fulfilling the prerequisites, how much did you use other sources (for

example, instructorlffriends ‘ex, other books)fin order to understand the unit?

|
© A Lot Somewhat A Little __ Not-at all

5 L

4. How long was this unit in comparison to the amount of time you generally spﬁnd on
.,a- lesson (1ecture and homework assignment) in, a fypical math or science course?

Much Somewhat . About L Somewhat Much
___Longer Longer -+ ,  the Same ___Shorter Shorter -

l k7

5. Wereany of the followi;g parts of the unit confusing or distracting2 (Check .
as many as apply.) _ .

?

Prerequisites ’
Statement of skills and concepts (objectives)

Faragraph headings ’ ' r
Examples ] ‘ )
Special Assistance Supplement (if present)

. ’ Other, please explain -

I :

6. Were any of the follow__g parts of the unit particularly helpful? (Check as many
as apply.) - : . ‘
__. Prerequisites
Statement of skills and concepts (objectives)
Examples - . . ) .
. Problems ’ .o t ‘ g
Paragraph headings .
Table of Contents .
Special Assistance Supplement (if present),
Other, please explain v

4

Hl'

|

Please describe.anything in the unit that.you did not particularly like.-
\ - “,

- " t
P
. .- - KRR e mmnde oy, -

Please describe anything that you found particularly helpful.. (Please use the back of
this sheet "if you néed more space.) \ 5.

. - v




