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v ) . o l: INTRODUETION MR . The methods covered 'in rhxx un1t are rhe %rapozo;dal
T . ~ i T '-‘ ’ Rule and Romberg's Method. The Trape~01da1 Rule is g ’
-7 It is not always easy (or possible) to £valuate the - _ good place ta begin for many reasons. The derlvatlon Qf .
definite integral f £(x) dx by finding an~ant1der1vat1m5, thg\trape zordal formula: 1s 1013t1V91Y ~tralghrforward ’ 2{
' F, of f and computing F(b)- F(a) It may happen that, al- . the formula 1g<eLf 1s easy to program on a copputgr or o N
Y though “the integrand f is a 51mple functlon there is no . programmable caltulator; the, method 1s accurate enough ') A
simple function F such that F' = f. ‘Thrs happens, for ex- for many applicarxon< and thpre 18 often an easy way. tor . oo
° ample, if f(x) = sjn(xﬁ. Or there might.be 3 §uitable'F T determing the magnlrude, at worst, oﬁ.the error, - N
but the methdds of Jdtegration needed to determine F are \ RombeTg{s Method provides a clever way of slightly modi- .-
.. excessively tedious. @gg evaluatlon of definite 1ntegrals ' fylng the rebultb +romthe Trape201dal Rule thereby 1m-
iy occurs often enough in those d15c1p11nes whére calculus~ ) prov1ng the accuracy by a tremendous amount .+ Because RO
. is used that this is an 1mportant problem~ and it can be these formulas 1nvolﬁe considerable calculatlon a'compue * -
‘ . solved by realizing that what is de51red is not thre whole " ter is usually used to perform these tasks. We dxscuss.
antiderivative function F(x), but Just the numerlcal quan- °, ’ some of ‘the problems and pitfalls of computer implementa- -
Jtity F(b) F(a). . tion, siuch as’roundoff error, using Lomputél drawn graphs -
We shall descrlbe two methods for obta1n1ng nUmbers -+ . for illustration. : N SN
that‘fre approxrmatlons to j f(x) dx. , How close an-ap- . . C ot . ’ .
proximation is needed is of course determined by the con- * 2o~ THE TRAPEZOIDAL RULE - THEORY ~ .
text in which the integral,arises, but it is ,important in‘ o ’ i
- any approx1mat10n method to have a way of knowing how far, . ‘ Recall,.that the def1n1te integral [ f(x) dx is de-
at worst, the approx1matron may be from the true value of fined (using limits Of .Some sort - see errcxce 4) to co- )
,I the 1ntegral For example, knowing that 1.0999 is an ap- lﬂC{dﬁ gwhen f{x)» > 0 on fa,bl) with our 1ntu1t1Ve.not10n
- prox1matlon to ) . v R ‘ : Y - . of the area between the x-axis and the graph y. s f(x),
. . . ‘ L . . . and between x = a amd x<= b. The Trapezoidal Rule is .
J ;»dx ] ’ . ) . $ased on the, observatlon thar trapezoids may easily be < —
! : ) . . used to approximate the area as followsk ' ) < ’
is a relatively useless piece of information compared to . N .
be1ng abtle to say that, i, © Fix a positive integer n and d1v1de‘the interval
zégl - . 3 ) T . . fa,b] into n equal subintervals using p01nts XgsXp,..8,X, J
.. L 2 dx = 1,P99 + o,oqsg - ‘ . withax) = a dnd X, = b. Note that X; = a + iAx where
e o o o .o bx = (b -a)/n. rhen by.'connecting the dots" from (a’ £(a)) i
For the latter assertion allows one to say with certainty
oot d A . to (x,,f(x )) o (xz,f(x ),‘and so on ro,(b f(b)); one gets
L 4. ‘ \ . ] v, N trapezoids, the sum of whose areas approx1mates ﬂ/
: . 1.0940 S‘j Tax < 1.1088 , . ‘ [bf(x) dx. Since'the area of the ith trapezoid is 4::“(
X v hX \ 4(f(xi_1)‘+ f(xi))Ax, the total trapezoidal area is: >
« hlle the or1g1nal assertlon really says/nothlng about . ' - R N . . g .
the value of the 1ntegral L : AX((%f(a)+%f(xl))*(%f(x1)+%f(x2))+...t(%f(x I %f(b)))
e = S o SRy
o . . . o, . : . .
TERIC - 6 . - Lo | 7 |

A - 7cx: Provided by ERIC .
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2, . " 4 L4 R . ~
Ay : : ' 3 Thus the Trapezoidal Rule gives an approximation to ln 3.
. < - ’ . ’ ’ . . .
’ P Here Tlo{1E not very acgcurate (the error is about 0.003).
e . B . - - - L4 |
. . . . . : . , With more work gne ctan’calculate T, ,,.which turns out to
- - K (xl,f(le‘;zﬁssj be < ' . . e )
-7 - o . . _o.
N L3 _ "
. .. o DTy, = 1.09864 .
‘ with an error of about 0.00003.
. e .f(a) b N . . 4 B
- g , It is evident from the geometric nature of the Trap-

ezoidal Rule that Tn,is a perfect approximation whenever
the integrand is linear (i:b.b has the form ax + b). For

«non-linear functions the trapezoidail approximation is, 1in

. B 2 -.generdl, not perfet¢t, but we can predict how great the
. Lo ¢ - . -
8 - ’ . Figure 1. ) ' error can be in terms of the size 8F the second deriva-
, ca ‘ tive, f"(x), which'is a measure~of how close f(x) 1s to |, {
B . ) ) o -, . - being 11near (1f f(x) is 11near then f''(x) = 0.) o
. Comb1n1ng terms leals -to the following definition. L Theorem If £ (x) eXIQtS on {a,b] and n is a pds1t1ve
?!iﬁlﬂ&ElQ& :he n” tfgpezozdal approximation, ?nj for integex, then there is a number ¢ between a and b such .
.. an Ln%egral Iaﬁ{xl dx*is ] . ! . . ‘ that ) ': S - . \ .
o S L. f)+£() | " , : PP . I fix) dan e EN(e) (o) T
S n ix[ ' 151 .f’(xi) 2 : @) . n o Ja (?) i v n? . y
-~ , e . . C } The po1nt ¢"in this theorep is anspec1f1ed Afgb}
. where x'= (b-a)/n, and the Xj‘are ag.stated above. s all, if we knew c then the formula above would allow us
L As an example, consider the integral _ ' . to calculate the exact value of the 1ntegral from T,
. - . ‘
- f i - . \ - There is no general way of te111ng where between a and b
. I d T ‘ ) ¢ might lie. However, the followang corollary is_an im-
. r. : ) * ' . mediate consequence and has a form that is easier tg
For T;o’ ¥ oot . S
. - : . . aeply. =7 )
~ . ... . X = 3',1 - 0 2 7 T s - <*
¢’ Vi o ;A 10, th ’ v e . .Gorollary. (Zheoretical-error bound for T,) If\ f'"(x)
! . ‘and_ the points <. are 12i.2,1.4,...;2.8,3.' Thus, -i< exists on [a,bl and 5 is chosen so: that [£"(c)| % K wh?n-
1 . . ~ ever a < ¢ < b, then © - N -
v - o L - -
soflT . L, 1, 1 1 Py N ST T K(b-a)?
, T 70 2[\2 ‘17T tTe et z..s]b 1.10156 . -y, (3) . |Tn - (P 0x) dx| < Xb-a)
. , . ’ ‘ f Ta -7 12 n .
Y . = . ' ‘ Lo
" In this case we may use antiderivatives to get - RO The proof of the theorem above is relafively long ~.

.3 .- and the interested reader may consult [DM, p.233 or

. 3 M
1 = = - 1°= 1 = 1.09861 . *
L T dx=1Inx], =1n3+.1n n3=1 p.305]. , Te

re B . . —
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Note, that this corollayry gifes only-an upper bound
on the error: Usually (although see ExerCLse “S) the er-
ror 1s below this bound, sometimes by a,conS1demable

amoun t . - .

Consxder how the theoretxoal error bound applxes to
In .thi® case f"(x) is 2/x?, wh1ch~1s posxtxve
2/%° (sketch
its graph)iand so 1ts maximum value ¥or this 1nterva§1
occurs at x =1, and\is.2/1® or 25 Thus we may take,

X =2 aud apply thé cordllary to’ deduce that the error in

3
l'— dXI

In. fact is "a decreasxng functxon on [1,3]

T will be .at most 2(2)° /12(n) or 4/3n*. So th ror
\*/)1n T, is- at most 4/30000 or 0.000133.... We stated )
. abeve that Typ = 1.09864 and so we may now conclude that
- ‘, . - . .e.
3 .
. (8) N 1.09864 - ,00014 < I % dx < 1.09864 + 00014 ¢*°
, |3

. . -
-1 .
or,equivalently, that 1.09850 < In 3 < 1.09878.. (Exer-
cise 2 shows how a bat more 1nformat1on can be extracted

in this case.) . L.

" We may use the ‘formula for an error bound ﬁo flnd
out wh1ch T we should compute to\obta1n a given accuracy
Suppose we W1shed to caloulate
of no more than g.o001.
uate Egls 1ntegra1 exactly as 2, but it still serves to
illustrate the method.) Since |f"(x)|
‘since sin x .always lies between -1 aqd 4 we may conclude

} si®® x dx with an error,

(0f course it is rputine to eval-

|- sin x|, and -*

that, {£"(x)| £ 1 and so take K = 1. Then by the theoret-
ical error bound (3), we know thab the error Tn 1s\at
‘most 1.7%/12n2%. Thus if n is so large that ’
? - 3
. /12n? 50001, - .
then P, will be wifhin the re§uired tolerance. In sol- '
ving tQis latter 1nequa11ty for n, we f1nd that
! . .
R . 1zn? 10007 . <
» it n‘._>_ n Hj_m - ) “
. : .>50.8 )
S

S

&

" Jds difficult to obtain.

- s

Sll(or greater), Ty has the-desired- accuracy.
= 1.99936, which differs from 2*&2 0.00ﬁ64. .

Thus for n

In, fact, T,

‘. An important consequence.pf the-presence of the n?
in the denominator of the theoretical error bound 1n 7(3)
1S Lgpt usually (though there are caceptions) doubllng n.
the’numhor of trapecoids,
4.

cuts the error bv a factor of

Similarl , mulrlpiylng n by ;10 should cut the error

0y

by*a factor of 100. <For Se

* o 3] . R . !

- [z dx - ’

Fd 1 -, - .
- v . - . .
the error in T , is about 0.003. Tfe error in Tioo 18
i - N

about 0.00003. R - ‘ ¢

. )
In the previous ‘two examples,'xt kas not vgrx diffi-

gult to determine a value for K. The determlnatlon is

'
somgtimes a bit more.intricate, and one may, have. ta use
the methods of locatlng maxima, and m1n1ma learnedo1n
plementa?y calculus (see Exercxses 7 and 8). And there/
are times when the theQret1cal irrcr bound cannot be used.
For., 1nstance, if f(x) is compllcated{ f"(x) may be even

more so, and obtaining 4y upper. bound” K for [f"(x)l on

fa,b] may be extremely difficult. For example ‘consider
' 8 3 ’ (3 .
} i dx , -~ -
. o ~ 1(‘"1 . . N

. ~ . .
an integral thaf arises in thermodynamics.

”»

Here £"(X) js
. very comp11cated (check for yourself) aﬁﬁ‘a value for K

In such a situation you mxghér . ¢

wish to compute many<values of . Ty ha1t1ng when ’théy seem

to have stopped changing in the .decimal p?nces vou care

about

This is discussed. further in the next section. .:

As

-

0y

K

For some igtegrals the, error bound can be lowened by

reduc1ng the loss sustained in pa551ng from f"(c) in

équa51on (2),to K in the inequality (3).

For if it is o

Ep— A‘pos51b1e to divide [a,b] irfto two sub1ntervals so that on

0y

,

) one‘oi&them £ 4s Substant1ally less than the bound, K,

13

L4

<

(|




'~Ia % dx.
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for all of [a,b], then error bounds for the subipntervals
may be computed, and added.
The second derivative f'"(x) = 2/x?

As an example, consider

; is larger
If n is even we may consider

z =  dx and T, for [? 1 dx.

on [l 2] and [2%3]

near 1 than it is near 3.
T, as the sum-of Ty, for
Now, if K,, X, denote bounds on 2/x?

respectively, then ~

- K, = 2/1° 42, Kz = 2/2% = 0.25 ,

- -0
(]

and the-error in T, is no greater than -

"
'

Ky 13, Kp 13 _0.75
VA CTY RIS VA CTY LR U

Thus the error in T;,,-is at most 0.000075 and the bound
. . a8 -~ .
on the integral given"in (4) can be improved to

s
- h ,

3

1.09857 < [ < 1.09872 .. |

1
The method of Exercise 2 improves this to~

'
3

dx < 1.09864
1 .

1.09857 < I

‘Another context in whiph the trapezoidal rule is
use?ul,'but the theoretical error bound less.so, is when
the%integrand is described by a table of values, as qp-
posed -to a nathenatical expressioﬁf For- instance, values
of'a,funct&on, £, might be obtained in a laboratory ex-
periment and a definite integrﬁlﬁof f is required. See
[HK] £partﬁxpf which are 'in [TF, p.216]).0r™[DM, p.266]
,for spec1f1c appl1cat10ns, the fgrmer to the problen, of
measuring cardrac\output theolatter to. a, prob}em*ln

thermodynamics.

values of‘a £untt1on f(x) were determlnedqzn an_experi- -

«

ment, and an approximation to f(x) dx is requ1red P
. 1
a & I

0.00. .25 .50 .75

0.000 .235%

For example,,suppose the folkow1ng five

Since the Trapezoidal Rule needs values only at equally
spaced pointsl we can immediately compute

.T, = 025 QiQYEiE £ 0.235 + 0 sss‘.po 420 = 0.304

Note tHat since the integrand is not ‘given by an equation,
'no‘est{mate K on the second derivative is available,.and
so the theoretical error bound is not applicable.: Be-
cause we have no idea of the behavior of the function be-
tween the tabulated‘points, >we hayve no uay of telling how

close T, = 0.304 is to the true value of the 1ntegral

\,1\.‘3.,

In practice one should obtain enough data po1nts to el1m-

inate the possibility of blzarre changes in the’ funct1on
Note that, in this example, T, E

= 0,381."_ In Sect1on 4 we shall -see how

sbetween the points.
0.175 and T,
these values of T, Tz, and T may be combined to yield

.a closer approx1mat1on to the integral.

. A3

Exercises-~ -t

1. Compute T, and T, for (a) I -7—5dx, b) I coS X &?; .

sin x | .

| 'E@ﬁ" aé’..)

.
P . . -~

ﬁi s :

i? =- Cons1der the e of ﬁ to approx1mate I dx. Why is it that
g9 .

; for every n, he value of T is larger than the true value of

the integral? This fact 1mp11es that tRe 1nequa11ty in (4) can
b improved to 1. 09850 < In 3 < 1.00864. .

3. G1ve ah éxample (by sketch1ng a graph if you like) of a funct1on
f and two integers nAand n with the following property: n>m
but T s closer to f £(x) dx than Th is. -

. . ¥‘ﬁ; .

- v."'-w

The vaiue of a definite 1ntegra1 can also ‘be_approximated by
sums of areas of. tectaqgles F1x n, and let Xisee
(a,b] ‘as oh page: ‘3. Let'thd“sum of the areas of the n rectan-

gles be denoted by “;3U

DXy part1t1on .




. ., [(n-1 .
.: < ~ Rn = Ax[ igo_f(xi)]

(Figure 2 illustrates the case n =.4.)

y = f(x) - .
I Xg=a X; Xy Xz b=y, » )

Ry = Exf(§03 + BXE(x)) + &xf(izg 3 BxE(x

4 > Show that T =

>

.Figure 2.

3)

Ry + (b-a) (£(b)-£(a))/2n .

¥

5. Compute T, for f x? dx. How much less than.the error bound
o . ngven by (3) is the error in T ?

. 2 -

6. Which T .should one compute when approximating e(xz) dx to be
sure that the error is at most 0. 0()05" Show that a much smaller
n will do by computing the error bound separately on [0, 1%} and

- {1%, 21, as uas done in the text forf L dx.
1

.
.

c t .
7. Use the ineqlality in (3) to show that ﬁ“‘%
. Y '\: ﬁ.

. . "2 :
I [’o ex—%‘. dx = + 0.015 .“ ) ' .
. Jo T1oo
. o I you have a computer available, calculate T 0o 'O show that
N . P < - o
- 18.631'_5_[o e ®ax <.18.662.

. ’ * - . .
8, Consider the integral of Exercise 1(c). Use the inequality (3) to
say by how much, at worst, T, d1ffers from the true value of the

e , integral (Hint:

“In 3), X need not be the exact maximim of
« - |£'(x}} on [a,b] (which in thzs case is hard to find):"
‘e upper bound on [£"(x)| will do.)., ]
- ; o .
: -9

“ l ) .. .
ERIC .. " .14 ' -
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- .
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9. The temperature outdoors was taken every 3 hours during a

24-hour period, with the following results: -
. . .
. mid- . -, . . mid-
Time _|night 3 6 9 noon 3 . 6 9 night
. Tamp., 10.0° 9.1° 12.4° 18.6° 25.9° 32.7° 31.5° 20.0° 18.9°

A Y

Recalling that the average value of a function f(t) defmed on

2y
[0,24] is ‘%Tf f(t) dt, use the trapezmdal rule to approximate

s the average "temperature dunng the day. « ‘

0y
L]

3. THE TRAPEZOIDAL RULE - PRACTICE

Becaose of the many calculations required to compute
}n’ one normally uses a computing machype - either a
large scale digital computer, oy a programmable .calcula-
tor.
How-
ever, it is often desitable to compute many different
values of T ®hr instance if,

a theoret1ca1 error bound is not ‘readily -obtainable, one

it is very easy to write a program to compute it.
as'we saw in Section 2,

would like to produce a sequence of values of T, until

the values cease changing by mich. If one adoptd a. —

straightforward approach to .computing Ty, T,,.. .»,Tlool
thep (2+3+...+101) = 5150 evaluations of f£(x) will be
made (since T requires n+l evaluatlons of . f), many of

them more than once. !

.

of Tn

A more eff1C1ent way to 'computefmany valif'
s¥to tompute
e

with no duplication of function evaluations i ke
L] < .

Tl’ Tz’ T-.’ Ta’» sz’
note that having just computed T,

To see why this is efficient
say, the \'lalues of

are exactly the 5 values just
used for T,, plus the 4 val}‘ues occurring midway between
them. ’

f(x;) needed to compute T,

- : '
. D L

£3

' : 10

If al1 _that "is-wanted is T, for a single value of .,

—-’/’

J
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» e . Q;‘ - .
- L4 . . - \“ . . N
“ ~ . Teoe ~ ¥
. ¢ - .
Ty | y . ; base points
. e %" : ! 1 for T
a=sx, ,. X, X, X, b=x, .
- ¥ . L » hd N - \
. . . , .
N e - , ) . Y ) " base p01nts
. .7 C) T T 1 for T,
- a -x;, X, X;°'X, X{ X, X, b
Y * : . - .
This observation’ leqﬂs to the following formula for cal-
_culating T from T ~

- H _— L oael ' ,
: (R (s IR \

-

where the values of f at .the evenly indexed_xi's, i.e.,

. 5 . -

e .f{b-a . . . .
oy -f[a A 21(75— J > )
L P
" all’appear in S
A . '
) b-a - ’
h T/ (‘«T‘] . .o .

051ng this method one first decides the nomber of

S - evaluatlons“o£.£(x) there is lee.ior, say 513, and, in-

stead of computing just T,;,, or computlng T,, T,, T

¢» ONe can compute Ty,, and obtain the values of T,

gr s
3
Tys Tg» Tie> T32s Teuws Tiz2as Tase along the way: It is.
‘useful to have®all this output for comparlson Moreover,
; in Section 4 we,shall develop 'a method which beglns with

such a. sequence of values, of T,» and modifies ‘them to ob-

..

tain st111 closer- approxlmatlons .

v Here is a program wr
B t;on (5) toggenerate a sefjuence of values of T,

tten in BASIC which uses Equa-
“The
program was written for -the integrand x’/(e 61) For

otherbfunctlons, line 130 must be.modified.

oS

100 REM TRAPEZOIDAL APPROXIMATION OF -INTEGRALS

110 REM  FIRST DEFINE INTEGRAND; THIS LINE .
120.REM  MUST BE MODIFIED FOR NEW m'mcmns :
130 DEF m\(x)-x'rs/ (EXPC)-1)

- 2 : 11

L

\). !

A FuliText Provided by ERIC

» Ty’

PGP
T
. .
. .
.

[

.

.

i PRI
: .
[ - -
140 DIM E(30) , ©
150 PRINT "WHAT ARE A AND B?" -2
160 mpu'r A/B
170 PRINT "HOW MANY T(N)'S WOULD YOU LIKE?" ’
'180 INPUT M .
190 REM a
200 REM . WE FIRST USE,ONE TRAPEZOID, STORING.
210 REM  THE RESULT IN T(1) T
220 D=B-A
230 T(1)=D/2*(FNA(A)+FNA(B)) ° " _
240 REM . _ . ' . )
250 REM  NOW COMPUTE THE (24N)TH TRAPEZOIDAL N
.260 REM  APPROXIMATION FROM THE 24(N-1)ST, '
270 REM| USING FORMULA (5) ABOVE, AND
280 REM  STORING IT IN T{N) - i
290 FOR N2 O M . : <
300 D=D/2 \. '
310 S=0 ) - ) ]
320 REM, '
(330 REM _ USE S TO FORM THE SUMMATION N (5) \‘\
340 FOR'J=1 TO 24(N-1) STEP 2 - . :
-~ 350 s=SfFNA§AfJ*D) 4 / L ‘ ‘ ”
360 NEXT J, : o ;. .
370 T(N)=T(N 1)/2+D*S : \\ 5
380 NEXT N . K . ' o
390 REM] b . [
- RﬁM‘z  NOW PRINT THE RESULTS. ’ -

-

R$N1toM

420 PRIRR "T(";24(N-1);")="; T(N)f . .
430 NEXT N, : .
440 END . ' T
Here i's a sample output (on al2 51gn1f1cant d1g1t
computer) for : . \
“r8 3 <
I _ ; dx -
y e°-1 . °
., 1 7 - . ; — 124




RN ;

WHAT ARE A AND B? .

i,8

HOW MANY T(N)'S WOULD-YOU LIKE? N
. . . c\ C\ . R ¥

] 11 U Pt -

’ “ T(1)=2.63826923395 ’ <L

~ T (2)=4.90201237702

T(8)=5.95440195063 ° . I ' - 3

T(16)=5.99988421985 v ; :

T(32)=6.01109575704 -, ‘

_ T(64)=6.01388856817" . ,

7 T(128)=6.01458613933 - ) ‘

. T(256)=6.01476049262' - R

= T(512)=6,01480407847- . . P .
T(1024)=6.01481497477 , .

» Vv

1+ It appears from this output that

.o 3 8 d

i o0 . . | . x3
. - e e*-1
° ) to-S-significant‘digits (in fact,
' 6.0148186...). While it is geperally true that, when the
L valués: get closex to‘each.other, they are close to the

dx = 6.0148 - .

>

the true valye is - .

. limit, i.e.; the true value of the integral, there are

- some examples of- 1nnoient looking integrands Qhere the
4\" . nzflcantly as, they approach the1r 11m1t. (An example of
&7 this is d1scussed in Exerc1se 17) Exper1ence and some
RS conservat1sm help out, e. g., from the data above oné: T
s mlght merely conelude that the t%ue ualue is,6.014.., 3‘
g '1E£ a st
] - be computed, oi another method used
1451 5 often a practlcal upper bound on the’ number of- trapeto1ds
«that can’be used:- the computer used above, working - with 4
s \-, so mqpy s1gn1f1cant diglts; takes, a 1ot of time, while on
v a mach1ne Wlth fewer s;gn1f1cant d1g1ts the® results are

However 1000 “iss ~

‘. D ’. -
.o .’ .

. . - .
. . « ~ «
'k : P [a 137
r M PR .
' . . . .
- B PR s Tuw . M
“ERIC S ¢ 7 el X
oo provsa oy e [ * - Yy e .Y o A
e PR O JEETE i B -i{,'.{" e x A

T(4)=5. 76289887395 ) o, . | .

. values are}momEntarlly quite close, but then change s1g- -

/]
s1gn1f1cant dléit 1s requlred more values m1ght"u

" concluding from (3% that T

«»

Pyl

., )
less trustworth) beeau;e of roundoff error, which we now

*discuss. oLl ‘ . (; .
.. .So far everyth1ng that we: havb done (for 1nstance
approaches f(x) .dx as n -+ w)\
is based on the facL that the real numbers have 1nf1n1te1y
many.decimal d1g1t ﬁowever, any cOmputer can work only °*
with a ‘fixed finite ntmber o6f digits ¥ This dreéates.unex-
pected difficulties, ‘whlch often requ1re great 1ngenu1ty

to avoid. Consider Fy&ure n wh1ch glves a p1ctorLa1

representation of the results of us1ng ‘a computer* to ob-

tain T for [3- 101892 sin x dx. | | . ’ -
o, e N
b > H e PR
1073 : . .
". LN - . . L]
’ . - -
. e N . L S . -
10-4__ ) N ‘ . *
:6-: ‘ 3 : ’ ( ’
&
: -5
3 1077
=] 3
3 3
5 3]
2 ]
- -
< -
L1078
& ’
1077
0. 1000 © 2000 3000 4000 5000 ,
Number of Trapezoids .. - .
- Trapezo1dal Exxror for 51n(x) from 0 to 3 141592
. - S . - Figure 3.
. -o « + ;(3‘A ) Y KI:‘ ) ~
‘i.“‘w A ' "’»\—"' ’," - et B ¢
*A ngftal Equipment VAX, ‘which uses 7 51gnif1cant digits, was used.
Equatlon (1) was used’in this example and the one of Figure 4. o
When Equatxon,(§;gls used, thege is less roundoff error, though the
same’ general behaV1or is exh1b1ted oo .
. i ' ’ : A .
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«~ out in Section 2,
[

" The absolute _value,of the error is plotted logar1thm;cal—
1y on the vert1csi ax1s, against the.number of trapezo1ds
S1nce !: lﬁlsgz sin x dx 2.00000 th1s means that the j
graph labelled "TRAPEZOIDAL ERROR' 1s the graph of ]T -2
The theoret1ca1 error bound for thlS integral wgs worked
and is (3. 141592) /1 n2 For small
,.say‘n < 500, the observed oh\computed error
agrees quite well with the theoretjcal pred ctioen - it is
less than the error bound,
parallel.:

values oful

and the two graph% are roughly '

- _ 3

As is the case with the theoretica¥ error
: \

the actual error is quartered when n is dou-

-

bound graph,
bled.

As the number of trapezbids reaches and passes
about'700, however, something quite strange happens-=

The |
actual error curve becomes less smooth and is soonog&eat-'
er than the theoretical error bound, in clear contradic-
tion tor (3)! If one decided to compute Tzeco’ the théo-
ret1cal error bound would imndicate an ‘error of at most

4 x 10 but the error in‘the computed v%lue would be

-about 3 X 10 "%, almost 10 times greatgr then expected.

. The reason fof thi's dev1at1on frOm the theoret1cally
predicted behav1or is that the’computer uses ‘only 7751g—
nificant digits, and “the rounding necessary to perform
additions- 1n this mode’ can,awhen repeated. Very often,
cause a substant1al bu1lduptof what i§ commonly known as

£

roundoff error " s - . "Tm'

. - .
' H
’

For example, consider how’a computer work1ng in 6

51gn1f1cant dlgrt floating point arithmetic adds*123.456 .

'and 987654. It £Jrst converts to exponentlal (power'of )
ten) notat1on with-a cmmon BXpOnent say .173456. E 3 and »
.000988 E 3, -gpunding the smaller number~(1t cannat “Store

-00987654 E 3. since this requ1res 9 s1gnlf'Eant dtglts)
Now it adds to- get l24444 E 3 dr 124, 444 when tite trué ’
sum 1s 124 443654 The error here (1n the- am‘unt of

000346) may seem 1nconsequent1al sihce it does not af-

fect the f1rst‘&.51gn1f1canthdgg1is of the resﬁlty but”
:.;C‘ \ . . ‘rt.»

. - By

‘.l

-
-
I

-2@

w

f

s o

I

" bers that are each between -1 and 1.

LT

[
-

[}
H

. when this occzrs repeatedly the error bu1lﬂup can be
qu1te substantial (even though founding may cause some
cancellat1on of error, since, 1t-somet1mes incredses an& -
sometimes decreases the ‘fesult}. "For a drast1c example -
.consider a sum of the form 1.00000 + 0. 000004'+ 0.000004.
.100000 E 1 + .000000 E 1,
yaeld1ng a result of 1,00000, and similtarly, the next ad-
d1t1on yields a final result of 1.00000. But the true
answer is 1. 000008 which, rounded to 6 digits is 1. 00001.-

3 =~

The f1rst addition is done as

This 1s exactly what happens in the computation of T .

S/141592
For 1nstance, when computing T,,, for sin x dx

¥rom Equation (1) we walculate the sum
‘ ’ 399 .
’ _Zl s1n(mi)

fhe subtotal of the first 200 terms is about 127, and in
‘dompleting the sum we add to this subtotal 199 more num-
‘ The repeated round-~
ing causes a significant loss in accuracy. L :
- Note tRat we are using the term accuracy in a slight-
ly new sense. here, as we are not talking about the differ-
_ence BetWeen T,,, and f Rlhrsez

called truncatzon error), but rathef the difference bev
stween the real value of T =~ and the, computed value d?
'I‘,.00 It is- nob generally possible to' determ1ne whether

.tﬂe roundoff error will cause the computed value of T to

sin x dx (which 1s often

be, closer 4o or farther from theaactual value of the in-
tegral One should’ therefore d1sthgulsh between the two
types of error and, once it 1s determ1ned that a certa1n

n wil} have a suff1c1ent1y small truncatlon error, Tn
:should be compyted .in a way that minimizes the roundof £
error. We shall discuss one such technique Shortly, but |
note that one should avoid deal1ng with T <t allgﬁhen n

us 59 large that the machine being used- cannot carry}

- . .
“l -
- . N

s 2 4
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v
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pute T, where n > 1000-w1th little Toss of accuracy, a
6- d1g1t complter cannot.
bound says that T I
: -cise 6) and one is.working-on a 6- -digit machine,

Thus if the-theoretical error
is needed where n > 800 -(as'in Exer-
it is
probably worthwh11e to seek another more eff1cfent -
method of est1mat1ng the integral, like Romberg s Method,

g

“,d1scussed in the following sect1on ‘ . ’

Consider-again the examples cited above of a comput-
Note that rotndoff loss is much less likely
if the numbers to be added are of the same order of mag-

er add1t1on.

n1tude, f%r then the sh1ft1ng necessary to get the ‘expo-
nentg to agree is unnecessary, and the cqncomitant round-
off  loss avoided. (Round1ng error 1s not ent1re1y elimi-

//,/tl'nated in adding 44444 ,jand .88888, the result, 1.333332

: will have to be rounded to 1.33333.) It follows that:
w‘hen““many‘umbers whlch vary substant:1a11y in size are to ’

“ be added, roundoff error can be lessened by addzng them
i Th1s is because the
f smaller numbers, may then contr1bute to the sum' and more

ok the 1ntermed1ate add1t1pns W111 ‘be of .ewo humbers of

. tn orders from smallést -to Zargest.

the same order of magnitude, If the larger ones wer

€y
" added first, then very few of the additions would 1nvﬁ§ve .

 numbers of the same order of magnitude: For a s1mp1e ex-
ample, note that when 1, .000004, .000004 (see above) are
added ;;hreverse order, -one f1rst gets ,000008, which

L is rounded to .000001 E 1 so it can.be added tp .100000
E-1, g1V1ng a result of 1. 00001 correct to 6 s1gn1f1cant'
‘d1g1ts., In decend1ng order the computed ysum 1s 1.00000.

°
-

ThlS fact 1s dramatically brought home by cons1der¥
"X dx. The -,
values of e "X on the interval [0, 15] range from 1 down
to 3 x 10'd, 30 substantlal-rdundoff error is expected

11ng the- trapezo1da1 approx1mat10n to. f

© for T, the computation of wh:ch involves summing ,values *

of e‘x .8s X ranges from 0. to 15 A s1mp1e way to add- the

numbers 1n~reverse order, i. e., from smallest to largest

PRA ruirext provided by eRic L.

-

“for these two integrals are equal,

2 40
1s to ‘consider T, for Ls -e"X.dx, where the minus sign
is 1nc1uded to account ‘for the 1nterchange of limits.
For.the latter integral ax will be negat1ve, .and so T
will be compuged from right to left. Theore§1ca11y Tn
but as demonstrated in
Figure 4, the Spﬂbuted values differ by a lot when zai{;>%
1000. Recall gthat the error (vert1cal) scale is Jdo .

.

rithmic, and so the difference is realdy quite great.

-
~

\
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. The mathematical-study of ‘roundoff error is general-
ly quite d1ff1cu1t. Teggn1ques of probab111ty théory
come intg play, to account for the probable cancellation

.]_§

-23




- . . o <y

. of'?ounding errors. .For instance, it cah be shown that. =
in the addition~ef n numbers, roundoff error will ustially
build uﬁ'proportionately-to vIi. This helps to explain
the shape of the right hand sections of she graphs in

Figures 3 and 4. N

R ..
Sometimes th® way in which“roundoff error credps
into a“calculation is quite subtle, and anyone using 4 .
computer to perform many arithmetical’bperations must be

aware of how it can destroy certain types of  calculations.

) ) . . . -

In Figure.4 why is*the thedreuacal error bound the same for'
both, f e™* dx and "X gx? : -

Exercises‘

¥0.

1r. Wrxte 3 program in a lqnguage other than §ASIC e.g., in the
language of ﬁ‘programmable calculator, that compuues,\ A

T,,T,,T,, E . for a given xntegral‘

12. Apply the program of the previous exercise to the integral of
* Exercise 7.
the Yesults.

. N

Then do it 'backwards" as in the text and comparg

. * ’
R Load

- 7 ] O

¥,

>

IMPROVING THE TRAPE&OIDAL RULE BY ROMBERG'S METHOD ,

"

Often rules for bounding the error in a numerical
. method are 1gnored in pract1ce because they are too dif- -
Still,
be useful in another way, for it may lead to a new method

f1cu1t to apply. a detalled analysis of error can

: which 1s better than the original one. In this ,section
we W111 develop Romberg's Method, the basic 1deas of
which have a wide range of application in numer1cal

'ls

‘an yszs
Suppose a,b, and f are givgﬁ, and let

o 24

Elk\l‘c . . ‘ L eEry .’ . .

Aruitoxt provided by Eic: - - ﬁ
. ’ .
. \
. PN . <

19

. ! . .
.- ’ ~ N
' .o . fb C_ £7(c) (b-a)? N
R e T ,
As you gpow from Section 2, the point ¢ depends on n. If

we changed n to n + 1, then most likely © would change as

well. It turns out that E can be represented in a dlf-
- ferent, rather more useful way; namely, 1f f is suffi- )
. ciently differentiable, then e : ' ‘ (
. (6)* E <A ,B ,C , ’
o n n2 n* né

) . X o

- where A, B, C, ‘are constants that depend on.a,rb and ’

f, but are zndependent of n. , ' ~ Cs .
. . e B
In other words, § o~
* . c, v . !
- N -7 T, = fbf(x)dx + A? + Ef + 9; . e .
,, a n n . n’ -
« : . ‘@

WMo . .
This representation of the trapezoidal errof is a conse-
quence of the Euler-Maclayrin summation formyla - sece

[DR, p.108 and p.327}. W1th no further'assumptlons on - ;, ' i.i

A, B, C, # secems that the term A/n? will be the larg- ﬁ. ..
- est contributor to the errof. The key,idea in Rombefgﬁé’ STy
Method is to e11m§nate this term in thg follow:ng way *“;?ff,>f”;y
, ’We firstreplace n by 2n in (7) to get .7 X
~ ” A B . C
8 e T3, §= I flx)dx + — + —— + —— 3+,
(.) 2?‘ a (x) 4n*  16n*-  64n° .

: We then subtract Tn from 4T2h to get

0 b E g-é:/_:’"

4 A
'(9) 4Ty, - T, ® 3[ f(x)dx +’"f{" e rad
When we d1v1de both sades of thls lagt,-
obtaln N o

e e

*Aqﬁually’the rlghtfﬁand eipresa;on”;5<ndt/sfﬁgll,an‘infin‘/
but”is an Masymptotic: series’! ijh ;5}nofﬁ;ng;z£ally/1o$
thﬁﬂgn@wyiixya i n@ﬁ&ry I ﬁfrfbs/ —

-
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- but Tone 1nvolv1ng n~2%

|

.
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~

sy
oo

- Equat1on _(10) shows that- (4'1’2n - Tn)/S is a Bétter approx-

\‘~ 11y h;gh degree, if-one computes suff1g1ently many Tows.
» [

P

“NT\ :l":“%*‘ . .
. {,;‘_,.»: ' :’4‘1;. s T * -‘ -”‘
a0y - ans “-=“Ibf(x)dx . 3Bg12 . 155{48 .

-

dmatlon to the 1ntegral than either T, or Ty, in the
sensg that its er{or has terms 1nvolv1ng n~*, n-®

e

*

v

“1f weflet T"= (4T, - T )/3 it follows that the«
error for T" can be written as a semies beg1nn1ng wi'th
n™, and we can repeat this procedure starting with Ty

and T' to eliminate the n* term from the error. The
numbers 4 and 3 will be replaced by 16 and 15, and S0 We

T let T" = (16T T')/15 There is no need to stQp here.'

The following diagram.shows that by- beg1nn1ng with_the..

I
vy

[y

“h values, T3 Ty, T,,'T,,..., Tyn-1" One>gets a triangular
" array, ending with a row-

a.
*r

«

N

T, trz' ‘Tg', Te . T /trz n-1 -
. ‘. 1 L L ‘ :
T; . T‘z Tb - Ts ) . e
) . 7y - e L *
N " g4} ”"
e, T oom i, | | .
., .nv n'; N a X /
trl ot T‘Z‘ . e
-~ ; A, i
(4) 5. . . - a/l,' . 3 :
- : ;_' ,'. ~," -
‘=. J': : .
o T] (lel) s H . .
S el s ) s P . o
NI - Figie SRR :
- ,'.1 g“A, Ca

con51st1ng of Just T @’1), which is usdally the, best ap-.
proxamatlon in, the array. 5 '

PR

1
A

N ;», b

There are many reasons why th1s méthodf1s an, excel-»
lent pne to usew Unl1ke many methqu (Trapezo1da1 Rule,
Rectangle Rule, S1mpson s Rule) whlch are perfect for ‘_}'~V~N
pOIYnomlals of a certa1n “dégree- (1,033 respect1vely), L
'Romberg s method is ﬂerfect for“polynomlals of arb1trar-

.
~-

.

v

H

e

1l

.

. per :unent .

ks

-

.More fg%ﬁigely,‘the first Tow is perfect for.llnear func-
tions, the second for cub1cs,.and in general T(d) is per-
fectufor polynomxals of degree” 2+ 1.

Moreover, in terms of computing effort, the amount
of work needed to_apply Romberg's method once the trape-
zoidal values are obtained:is. really quite m1n1mal com-
pared tp “the gain in accuracy. éndeed, if one.begins
with _the program in Sect1on 5, it is*a simple .matter to )
add ayfew instructi No
urthér evaluattons of the‘wntegrand are needed, only
some Straightforward ar1thmet1cal manipulations with the

T(1) 's.

method is left as an exerc1se‘ .

In

ons to produce the Romberg array.

Construct1ng a .suitable program for Romberg's

‘ I
1y

” -
vvg‘.u‘

&

- [ )

1.§lj L ax 733333 1.16667, 1.11667 1.10321
1 X , 1.11111 T1.10000 1.09873 ° :
-|True value: 109926 .1.09864

© '1.09861 . . 1.09863
) %ote that T3, which~needed Tq» is closerjto the*
true value than T,,, (Se@,page\‘), - v
2. Tﬂ sin x dx N 1.57080 1.89612° 1.97423
o, “ . "2.09440  *2.00456 2.Q0027 4
True valye: 1.99857 £ 1,99998 - B
2 ,' 2. 0000?
. In th1s case, 1t “takes. 600 trapezoids to obta1n a
value for T as aCcurate*as 1{3) s which required only’
.9 functlon evaluat1ons. ’
) 83’« ) :t' .
3. [' — dx . 2263827 4.90201 5.76290 5.95440
1 €71 5.65659 6.04986 6.01824
True value: | - 6.07608 6. 016?3
» 6.01482 j . 6.01518"

»'ﬁr_gquar1ng wgth the results .in Sect1on 3, wejgee that

here T 7is about as accurate as T)26-

¢* Th1s meth d is«partlcularly useful when the inte-*
grand 1s g1ven by a table of values obta1ned in an ex- .
In the example at the end of Sect1on 3, we

e@ .
7

22 "

.

E R
«

1

.

e
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Aruitoxt provided by Eic:

.

obtained

T

. T, = 0.281, T

2 4

0.304 . ¥

i

0.175,

Romberg's method may be applied to yield

* T, = 0.316, T, =0.312, ™ = 0.

311
!

Without redoing the experiment, that is, without obtain-

ing more function values, we 1improve our original, approx-

imation of this integral from 0.304 to 0.311.
t i3

The field of approximate integration is vast, with,
many methods suited to special types of integrands. Rom-
berg's method is an excellent one to use when the situa-’

. ,{ . -
tion; requires equally spaced x-values.

, . -
Exercises é .

13. HWrite a program in BASIC which starts with the program 1in

Section 3 and produces the Romberg array.

14. Use your program you wrote to comﬁute the Romberg array for

1
[ 1 1
— dx .
Jy 1#x i )
. . .
15. Compute the Romberg array for ]o cos (8 sin x-x) dx (which ¥
equals 0.73713182...).

trapezoidal results?

16.- If you know about Simpson's Rule, show that the emntries in the

Does Romberg's method improve on the

second row of the Rombérg array (i.e., the Tﬁ) are the approx-

imations one gets from Simpson'é Rule. !

17. Consider the integral .

f+1 -
.J [%% cosh x - cos xfdx ,
-1

where N

-x)

'

cosh x = % (eX+ e

' Compute T,, T,, and T,. Then compute two more rows of the

28 . - " ’ 23

AN
i

Romberg array.

Note that T} agrees with T| to 6 decimal
places, and so one might cease the computations here, expect-
ing the true value of the integral to be 0.479555... . But
this 1s not so, as the true valuc 1s 0.4794282... (compute_
some more rows of the Romberg array, or do the integral by
finding an antiderivative). This points out the 1inaccuracy
that can arise 1f one stops computing when the values agree to
a certéxn number of digits.

{DR, p.317].)

(This example 1s adapted from

18. Compute the Romberg array for some integrals of your own -
choosing, preferably some for which you can determine the

true value.
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Aruitoxt provided by Eric

6. MODEL EXAM

(A calculator 1s necessary for problems 1,.2, 3, and 9.)

1. With thecpelp of a calculator, evaluate Ts for

1.1 1
¢ < dx. .
e”-1 L

2. Show that 1f T , is used to approximate

1

1
I X dx
0. 2

then the.txuneatlion error is no greater than 0.107.

3. If you were to use Tn to approximate
2
I (1n x)? dx,
1

and you wished the truncation error to be no greater than 0.0005,

which n should you use?

. * -
4. From the point of view of evaluating the trapezoidal rule approxi-

mation with minimal roundoff error, which of the’ following four

forms of the definite integral.is best to use?

‘ =10
b) 1
JowET

a) 10
J sl dx
1o
d) ¢ 1
-ZI ;rj—ldx.
Ao

x° + 1
-10

.

¢) ) LI ix
x® ’
¢

+ 1

-~

+ The graph of ;rl:—~ on [-10,10] i$ shown in Figure 6.
1

1

-10 10
Figure 6. The graph of y = l/(x6+l), -10 < x < 10.

~

% ) 25

30 ° ;

ur

10.

The following two integrals are equal.

m (9"
sin x dx and sin X da.

0 P

tor which one will the trapezoidal approximation, ‘n’ be

closer to the trug valué of the integral?

Why. when computing a sequence of trapezoidal approximations

to an integral. 1s 1t better to compute Ty, 1, T, T, T,

rather than Tx’ T:, T,, r“, Ts' o7 .
Tfﬂ dendtes th@ first entry of the fourth row of the Romberg
array for
fb ' )
J f(x)dx. : p
a v

* °
How many times must the integrand, f(x), be evalfjuated 1n order

(3) ,
to compute T,

Which row of the Romberg array always gives the true value of

the integral when the integrand is a polynomal of degree 57

1s that f(0) = 0,
f(1) =1, £f(2) = 3, f(3) =5, and f(4) = 0, and that an

approximation to
L .
I f(x) dx " . I R
1

is desired. Compute as much of the Romberg array as 1s possible

Suppose all that is known about a functlon,\f,

from the given set of f-values.

Show that, when the Romberg technique is applied to 1n and Tan’
rather than to Tn abd Tzn’ the resulting improved approximation
has the form
? Tan j Tn B o - . ‘
8 .

instead of

4T -7 !
2 e 0 e e
. . V.
31
4
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Aruitoxt provided by Eic:

(a) T, =
() T, =
(¢) T, =

1

P
7. SOLUTIONS TO EXERCISES

.

3.13118, T, 3.13899

0 » Ty - 3.138%9 (Wwhy?)

1.03229, T, - 1.98235

Because the graph of y - 1/x is concave up on [1,3], the

¥
trapezoids completely enclose more than the area under the

graph.

Thus, Tn_ﬁs too large. 7

.

Alternatively, f"(xJ - 2/x® is positive on [1,3], so that the

difference Tn —fz?f(x) dx in Equation (2) 1s positive.

L

. / 1
£(x) as in the diagram is such that f £(x) dx = 0, that is

0
the areas above and below the x-axis exactly cancel, then

it

0 will be perfect while T, is positive.

- b-a

n

b-a
n

2 122

(f(a) , f) f(’xl-)} s f(xn_l)}

(f(a) + f(x,;) + f:. + ?(xn_l) -

-

f(a

o

), f(b))

27

e 0] < £7(2) = 18et .

.Using (3), we want n so that

- .
‘Since ]f"(x)|'§ £1(1.5) = 104.365 on [0,1.5}, and | f"(x)]

7

SR+ (b-a) (£(b)-f(a))
2n

n
(£(0)+f 1)] 121 .
T, = 4 ( )2 ( =5 =35 . Since
\ 272

| £'(x)| = 2, a constant, we may take K = 2 in (3). The error
«13 .

is at most &L - L
1217 6 .

Sinc (ledx =,l~ the err;r in T, is exactl .11

£ 3 . ! Y7°3°%

0
. 2 . 2 N 2
£ = e, preo 2 2™ ), e = 2o e X))y
2 < (2 .
+ 2e(x ) . (JAZ-t 2.)e(x )
Since f£"(x) is a positive ingreasing function on [0,2],

-

w93 ' N
M ﬁ_0.000S, or lzi. /;nz’ or 1144.7 < n

,Accordingly, n should be at least 1145. .

However we may improve this estimate by noting that, for n even,

Tn is the sum of‘T,in for

1.5
Jo e(xz)dx

. L .

‘

and 1,  for*
’in) -

2 2
J e(x )dx .
‘lyse

< £7(2) = 18¢* = 982.Y68 on [1.5,2], the error T, 1s at most ‘

N

104.365(1.5-0)° , 982.768(2-1.5)° -

12 (n)? 12 (m)?
which equals l§§%§§g . So if n is large enough to make lé%%EEQ
< 0.0005, then T w#ll be within the desired tolerance.
28
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o(sin x?//?_ f'(x) - (cos x)e(s,m xi//_ l__'-k’ )
N 21! ~- LT 2/—“ 3 -; >" o <:/ . - "
- e(Sln xX)/¢2 cos? x:; _sin XJ LT ._:"i Q .::
.2/213_ -4 ./" 5«, o o (f.— i .
tb;m /qarchmg: for crytical po1fits of f"(x) Ex may N

~

e obtae.n' a value £or K-by notyxg’that - - e
f - c‘._."* . - .
A A e e s a0
£ - :‘ - --
._ and that; ofn_.[O,__Z], . -
S [T = -1 “" - *
find ‘Ehe mxf-nmn an&-mmmmf ﬁ{x{«m;ﬂ 16; e first. Sl e o lsin )/V2) /Y2 o
) compute\ f'"(x)\to fmd the cmtlcal pomts ' - : » ) ;_‘: . _’/:»’{: 2V27 . = 2/2n £0.228% .
. ot A '
ToeEL - 77 So_|£M(x)] < 0.2283 x 1.7072 < 0.3898 and we may let K = 0.:3898. -°
LT, "L~ " Thus the ergor in T, is at most -
- e - 0.3898(2m)°
— . 17 - 68 0126
2 L, 4
M

24 :
9. For[ £(t) dt,
0

"o _ 28 [10,0+18.9
Te = 5~ {——2—+ 9.1 + 12.4
p Thus T, for
- @ (36 =0 - T "o . ' * £
XxX=30rx =6. - . 0
' The' maxima and minima of £ {x) .must occur at x = 0}3,6, or 10. % i is 493.95/24
The values of f" at these points are respectxvely, 0.667, during the cﬁly. .

-1.494, 0.667, and 0.0065, whence the maximum value of £"(x)
on [0,10] is 1.’494.; Taking K = 1.494 in (3) shows that the .« sign. Since K must bound |£"(x}|, K
error in T is at.most S

100 - v . i grands.
3 . § v .
. li;Q: >1<010 = 0.01245 , . : ’ 11. * Here is a program in the language of

e e e oD T L - 1 U

000 LBL A STO 01 HLT
> “"006 LBL B STO 02 1 STO 06
SR . .- . 015 RCL 02 -RCL 01 = STO 03
. . . A >

-

R

[ ~

O
g
¥

..+ 20.0f = 493.95
L

= 20.6, which approximates the average temperature

10. The second derivatives of the two 1ntegrands differ only in N .

is the same for both inte-

the Texas Instruments

.




g 026 X(RCL 01 E + RCL 02 E) < - .
' 038 :2= . . "
@041 LBL C STO 04 HLT
047 2 SINV PROD 03 'PROD ‘06
0S5 0 STO 05 T4 - .
059 RCL 06 STO 00, — ' . ‘
065 LBL D RCL 01 + RCL 03 X : ¥
. 075 (RCL 06 + 1 - RCL 00 =
086 E SUM 05 ) '
090 1-INV SUM 00 dsz D
097 RCL 05 X RCL 03 +
105 RCL 04 : 2 = GTO C .
" 113 LBL E ... rtn ) v
_ , \
Register usage: R, .a
g i“z' z_a b-a b-a b-a ‘
03 » T T TE o X
Rou: TioTys Tos Toree
Ros' accumulates summa;ion in (5)
Rye: 1,2, 4, 8,...
R index forjloop to compute

o

ERIC.«

T |,
T,

2
R

summation |

User .Instructions

1.

o

2.
3.
4.

Fill-in instructions 115 on, to provide a subroutihe that

computes -£(x), the integrand. Usé¢ register 07 if n&cessary.

. o 3
Don't use =; use (...) instead.

Enter a, press A, enter b, press B.® > ) -
T, is in display. Press run. T )

T, is in display. Press run repeatedly*to see T,, T

8? R .
Tier_ L ) -
¢ . 31
. e
2 ]
26 ¢ - 2

12.

13.

L] -
Example:
10, .2 :
For [ XX/ 4y, first £ill in 115-132 as follows:

[}
115 STO 07 (RCL 07 - RCL 07 x* + 6)INV Inx rtn

Then press 0, A, 10, B, and run repeatedly to get:

A
5.006363169 (T) \g N

14.00806104' ) .
18.1343902
18°5166875 { .

_18.61450407

18.63898675 .

18.64510821 (1,.)

18.64663861

(Ty24) ) ' o

‘

Due to the 12-digit accuracy of programmable calculators, one

gets the’ same results for the integral backwards, i.e.,
°  x-2/6

f -e dx.
1o

- .

h -
Discrepancies would come in with the use of thousands of
N * - PR . i -
trapezoids. On"a 6-digit machine however, the forward and

backward results would already differ at T;:a.

Lines 440 - 560 compute “the

Romberg array from the trapezoidal data, . . -

Line 140 has been changed.

100 REM TRAPEZOIDAL APPROXIMATION OF INTEGRALS

110 REM ©  FIRST DEFINE INTEGRAND; THIS LINE
120 REM  MUST BE MODIFIED FOR NEW INTEGRANDS
130 DEF FNA(X)=X+3/ (EXP(X)-1)
140 DIM T(30)
150 PRINT "WHAT ARE A AND B?" -
160 INPUT A,B '
170 PRINT "HOW MANY ROWS OF THE ROMBERG ARRAY?"
180 INPUT.M
190 REM = ‘ N
200 REM  WE FIRST USE ONE TRAPEZOID, STORING -
.210 REM //THE RESULT IN T(1)
220 D=B-4
" 230 T(1)=D/2* (FNA(A)+FNA(B))
. :3:;’ ' 32
¥ * .
: A




AN
‘ 240 RBM

250 REM  NOW COMPUTE THE (2+N)TH TRAPEZOIDAL

260 REM  APPROXIMATION FROM THE 2+(N-1)ST,

270 REM  USING FORMULA (5) ABOVE, AND

280 REM  STORING IT IN T(N)

290 FOR N=2 TO M

300 D=D/2 a

3080

320 REM . .

330 REM  USE S TO FORM THE SIMMAPION_IN (S5)

340 FOR J=1 TO0 24(N-1) STEP 2+_ ° ;

350 ‘S=S+FNA(A*J*D). ‘

360 -NEXT* J :
’ ) \

370 T(N)=T(N-1)/2+D*S
\ 380 NEXT N
o 390-REM * .
‘ 400 REM  NOW PRINT THE RESULTS
410 FOR N=1 TO M .
420 PRINT "T(";24(N-1);")=";T(N) - ﬁ
430 NEXT N )
440 PRINT .
) 450 F=1 . >
460 ROR 131 TO M-1 -

470 F=4*F .
. 480 REM  COMPUTE AND PRINT THE ITH ROW

490 REM ~ OF THE ROMBERG ARRAY'

"S00 ROR J=1 TOM-I* °

510 T(J)=(F2EJ+1)-T@))/(F-1) ¢

520 PRINT T(J)

530, NEXT J T

. §40 PRINT
. 550 NEXT I

“ . 560 END. - .

)
.

.
>

-

14.  3.00000 3.10000 3.13118 3.13899 _
3.13333 3.14157-  3.14158 - o
614212 3.14159
3.14.59 L

15.  0.0000000 1 5540805 .125062Y0  .73627360 73715182
2.0721071 -.35007730  .93971077  .73741790
-.51155626  1.0256966  .72393171

, 1.0500975 .71914179 ’
71784332

In this rather unusual example, Romberg's method provi’des

worse approximations than the original trapezoidal approxima-

tions. .
/( ’ 16. Using (5) in the form . .
_Tn , b-a .odd
. - Tm=2* 3 & -
. ‘1 where : ) '
® -
’ . odd _ I .
_ 7= §oda 7
.o 1<j<2n-1
ces 4 we have A :
* N _ i
L LT = (4T, T /3
.. 4 . i 4{b-a) sodd_
= (2Tn.+ T z Tn)/3 )
. .
. . . 1 [b-aff(a)+£(b) . geven| | 4(b-a) Zodd
. 3{n 2 2n
G, : . [1}{b-a : even' odd
R o oo
o . which is precisely Sigpson's rule with 2n subintervals.
A 17. 1.758664 .799332 . .559499 .499453
. .479555 .479555 - .479438 s ,
’ .479555 .479430

.479428 .

>
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l PRErAIR ] _, ~ .
* 'f /
. 8. SOLUTIONS TO MODEL EXAM
. o <
:(/. ) .'~ .{‘-v"t% . ‘
ol 1. 2,218, : -
g 2. (%] = 2/x® which is decreasing on [.271], so K may be taken
: to,be 2/(.2)%, which equals 250. Thus
-— 250 (.8)% _ oL e
. ERROR 27 oo = 0-10666 ... < 0.107.
. . K
TeUs eeo) = 2220 (2 since 613 < 2-2(Inx) < 2 aia®
& < g
; 1< x? <-¢ on [1,;]. Takmg K= 2, in the error formula y1elds
. vooon2 51.6, .or n >-52 - Ny K p
' 4. (d) is best qu.t'ed singe it adds f-values in order from smallest
. .- . largest 7 ~ " .
> o ¢ 2.
5. ’ ‘ '
T i sinxdx. For n fixed, a smaller b --a leads to a smaller error.
- - - i o P . . e .
> 6. The first sequence reuses the f-values alxready compyted. Moreover,

- .
9. .
L .
P -
i
: . 1o,
X
o 3
” 5
-
P
*, + ;{!::,L i
T S
- r'a v
‘ e
. o
-‘0
P
-t
-, H

“the first sequence can be used to start Romberg's method.

7. ’ i , .
¢ N s &
. ' 8% The third row. . ) . » .

T, = 0 T2 =6 /T..:g ’
Ty =8 ?‘5 =10 . R .
T} = 10.1333 R ’
. A / )
A ‘
T =

b A B
n J £(x) dx + nz"‘nh AT Ly o
i . LN . ¥ n "

- b A B i
T J f(x)dxi-g—f*-g—..* ey

n in
a ‘ - s /
So ; . / " .
or._ -T. [b o U :
sn " 'n .
T=IafCX)dx+ 'r‘l'r;*;g-*..., / )

* and the term of the error involving n? hgs been eliminated.

s +

ERY



Return to:
" EDC/UMAP

| 55 Chapel St.
) ) Request for Help 7. Newton, MA 02160

STUDENT FORM 1

; , X
Student: If you have trouble with a specific part of this unit, please fill
-out this form and take it to your instructor for assistance. The information
you give will help the author to revise the unit,

~ P2

Your Name - ’ ’ . Unit No.

Page

—F ‘¢ Model Exam’
. li
C) Upper Sectioq_________ ; Problem. No.

".. OMiddle : Paragraph Text,
O Lower Problem No.

-

Description of Difficulty; (Please be specific)

.

Instructor: Please indicate your resolution of the difficulty in thiq box. ~

(::) Corrected errors in materials., List corrections here:

. "
" ’ N

\

'
i
]

Gave student bétter explanatiorn, example, or procedure than in unit.
Give brief outline of your addition here: o

4

Assisted student in acquiring general learning and'problemnsolving
skills (not using examples from this unit.)

AR

11

° Instructor's Signature

~

%
/.’

i —
E}ease use reverse if necessary
. 4 .

o




- ‘Return to:
i STUDENT FORM 2 _ EDC/UMAP
55 Chapel St.

Unit Questionnaire . Newton. MA 02160
. 5
Name 4 Unit Wo. Date - ) ,
Institution - Course No. !

Check the choice for each question ,that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?

____Not enough detail to understand .the unit -
" Unit would have been clearer. with:more detail
Appropriate amount of detail
. Unit' was occasionally too detailed, but this was not distracting
____Too much detail; 'I was often distracted

£} a

2. How helpful were the pxoblem answers?

Sample solutions were 'too brief; I could not do the intermediate steps
Sufficient information was given to solve the problems
Sample solutions were too detailed; I didn't need them -

3. Except for fulfilling the prereqpisites; how much did you'use/other gources (for
example, instructor, friends, or other books) in order to understand the unit? °

A Lot . 'Somewhat‘ S A Little ___Not at all ~

4. How long was this un t in” coﬁparison to the amount of time you generally spend on
a lesson (lecture an 'homework assignmenf) in a typical math or science course?

Much Somewhat . "About - _ Somewhat " Much
Longer ____Longer ‘ .the Same ____Shorter Shorter

5. Were any of the following parts of the unit confusing or distracting? (Check

as many as apply.) . .

)

Prerequisites
_.____Statement of skills and concepts (objectives)
Paragraph headings
Examples .
Special Assistance Supplement (if present) .
___Other, please explain . C :

)

6. Were any of the following parts of the unit particularly helpful? (Check as many
as apply.) .

Prerequisites )

Statement of skills and concepts (objectives)

Examples Co . .

* Problems »

Paragraph headings .

Table of Contents

__-_Special Assistance Supplement (if present) s .

_._Other, please explain "

Please describe anything in the unit that you did not particularly like. /
. [ 4

~

RAE

/

-~

Pﬁease describe anything tJat you ‘fdund- particularly helpful. (Please use the back of
this sheet if you need more space )

*f :- “

o . o R

a3




