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1. INTROD6TION
0

It is not always easy (of possible) to .evaluate the

definite integral Lbf(x) dx by finding anantideriva,

F2 of f and computing F(b)-P(a); It may happen that, al-

though the integrand f is a simple function, there is no .

simple function F such that E' = f. This happens, for ex-.

'ample, if f(x) = sincx). Or there might.be

but the methods of .integration needed to determine F are
,

excessively. tedious. to evaluation of definite integrals

occurs often enough in thoSe disciplines where calculus.

is used that this is an important problem; and it can be
. solVed by realizing that what is desired. ignot the whole

antilletivative function F(x), but just, the numerical quan-

tity F(bi-F(a).-

We shall describe' two methods for obtaining numbers

that are approximations to fbf(x) dx. ,How close'amap-
*- a

proximation is needed is of course determined by the con- '

text in ,which the integral.arises, but it isimport'ant in

any approximation method to have a way of knowing how far,

at worst, the approximation may be froM the true value o'f,

the integral. For example, knowing that 1.0999 is an ap.-
.0.

prOximation to

1 1-dx

is a relatively useless piece of information compared to

being able to say that
a

ak = 1.099 + 0.0059 .

For the latter assertion allows one to say with certainty

that
3

1.0940 < j dx 1.10,54 ,

1 x

while the original assertion really says/ nothing about

the value ok the integral.

/, 1

. 6.

Tire methods covered In this unit are the.Tfapezoi'dal

Rule and Romterg's Method. The TrApezeidal.Rule is 0

good place to begin for many reasons. The derivation of

A

the formula itisel.f is easy to program on a compuw.or

programmable calculator; the, method is accurate enough

for many applications; and tivere is often an easy way. to.

determine the magnItute, at worst, of, the error.

s Rombe'rgis Method provides a Clever way of slightly modi-

fying the results 44..o-mrthe Trapezoidal Rule thereby im-

proving the accuracyby a tremendous amount. Because

these formulas invollve considerable calculation, a'comput*

ter is usually used to perform these tasks. We discuss

..ome of 'the problems and pitfall .of computer implementa-

tion, such as'roundoff error,using compntA-dtawir graphs.

for illustration.

2.... THE TRAPEZOIDAL RULE - THEORY

Recall,that the deLhite integral f(x) dx is de-
,

Q
fined (using limits.Of_some sort see Exercise'4) to co-

incide (when ft* 1 0 on ta,b1) with our intuitive' notion

of the area between the x-axis and the graph, f(x),

and between x = a and x..= b. The Trapezoidal Rule is

based on the Obserration that trapezoids may easily be

used to approximate the area as follows

Fix a positive integer n and div'ide the intervalz
(a,b1 into n equal subintervalS using points xe,x..(,xn, .

with,o(o=aandX11=-b.NO
1

Note that +-iax where
Lx = (b-a)/n: Then by,''connecting the dots" fom (,f(a).)
to (x,,f(x)) to (x2,:f(x2),, and so-on to, (b,f(b)); one gets

n trapezoids, the sum of whose areas approximates

gf(x) dx. Since'the area of the ith trapezoid is

1/2(f(xj.1) + f(xi))ax, the'total trapezoidal area is:

Ax((kif(a)41f(x1));(11f(x1)441f(x2))4....+Ailf(xn.T441f(b))).

rt

7.
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Thus the Trapezoidal Rule gives an approximation to ln 3.

Here T
10
fi's not very accurate (the error is about 0.003).

With more work pne can'calculate T100,. which turns out to

be

Tioo

with an error of about 0.00003.

= 1.09864 ,

It evident from the geometric nature of the Trap-
.

ezoidal Rule that T
n
.is a perfect approximation whenever

the integrand is linear (ije:, has the form ax'+ b). For

.non-linear functions the trapezoidal approximation is, in

-general, not Perfett, but we can predict how great the

error can be in terms of the size 61 the second deriva.-

tive, f"(x), which.is a measure-of how Close f(x) is to

being libear. (If f(x) is linear then f"(x) = 0.)
.....

.

Combining terms lea sto the following definition.

1IDefini.tion. The nt i4,61pezoidai approximation, Tn, for

an Integral fa f(x) dx-is

(1) 'Tn -
(a)+f (b)

n.-E61

i=1

where x'= (b-a)/n, and the xi are as*.stated above..

As an example, consider the fntegral

01 .(ix

. For Ti o'
.

3 '1 0 2.- .

-Ax 11

Theorem. 'It f"(x),exists on fa,Wand n is a Ositive

integeL, then there is a number c between a and b such

that

(2) Tn -(
ia
bf(xj dx.- f'(c)

n2
(b-a)3 .

12

The point c' in this tivorem. is unspecified After

all if we knew c then the formula above would, allow us

to calculate the exact value of the integral from Tn.'

There is' no general way of telling where between a and b

c might lie. However, the following corollary is.an im-

mediate consequence and:has a form that is easier to
°apply.

corollary. (Theoretical-error bound'for Tn) IM"(x)
exists on fa,b] and K is chosen'so:ihat Ff"(c)I K when-

-
'and.the paints xi are Thus,

ever a < c < b, then'

T
10

= 0.2 1+T + 1 4 1
+

1' 1
'1.10156

.1.2- 1.4 1.6 2,8

In this case we may Use antiderixtives to get
,

3

f:i dx = ln x] = ln 3 7. ln l'= ln 3 = 1.09861 .

1
e 3

- .

4

(3) IT - (bf(x) dxl < K(b-a)3
f n J a

The proof of the theorem above is relatively long .

and the interested reader may consult [DM, p.233 or

p.305].

4
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Note,that this corollary gifes,only an upper bound

.on the error: Usually (although see Exercise "5) the.er-
.

ror is below this bound, someeimes by a,considerable

amount,
.

j3Consider how the theoretical error bound applies to
r 3

-i'dx, In this"' case f"(x) is 2/x3,.whichis positive
x

In-fact, 2/x3 is 'a decreasing function on (1,31 (sketch

its eraph)..and so its maximum Value for this`nterva>j I

occurs at x 1, Sild,is 2/13 or 2, Thus we may take,

= 2 and apply the corOl.lary to-deduce that the error
.

T-I1 will .be.at most 2(2)3/12(102, or 4/3n2. So th TOT

in Tr isat most 4/30000'or 0.000133.... West ted

abgve that l',00 = 1.09864 and so we may now conclude that

(4) ' 1.09864 .00014 5 I 3
dx < 1.09864 + .00014 *

I x

or',equivalently, that 1.09850 < ln3 < 1.19878., (Exer-

cise 2 shows how a bit more InforMation can be extracted

in'this case.)

We may use the-formula for an error bound tip find

out which T we should compute tolobtain a given 'accuracy.
rn V%Suppose we wished to caloNlate
o
sicrx dx with an error .

.

a,. ono more thin Q.001.. (Of course it is rpUtine to eval-

uate ttis integral exactly as 2, 'but it still serves to

illustrate tbe method.) Since If"(x)1 = I- sin xl, and -'

-since sin .x,alWays lies between -1 and , we may.conclUde
that, If"(x) 1 < 1 and so take K = 1. Then by the ,theoret-

ical error bound (3), we know,that the error Tn is at

nnost 1.n3/12n2. Thus if n is so large that

.

then Tn will be within the retluired tolerance. In sol-

ving tills latter inequality for n, we find that
1

A 12n2 > 100010
.

n /12112 s 0.001 , ir

n > /100.00/12.

n > 5.0.8 .

5

Thus for n = 51 jor greater), Tn has the-desired accuracy.

In, fact, T51 = 1.99936, which differs from 2'A4y 0.0464. ,

.An important consequence,of the presence of the n'

in the denominator of the theoretical error hound in ..(3)

is tliat usually,(though there are exceptions) doubling n.

the number of trapezoids, cuts the error by a factor of

3. Similarl multiplying n by:ln s.hould cut the error

hy:a factor of 100. For

1
dx ,

31 a'

. x .

the.error in,Tio is about 0.003. Tte error in T, is
a

about 0.00003.

. -

In the previous 'two examples, i't ttas not vprA diffi-

cult to determine a value 'for K. The- determinatibn is ';

sometimes a bit more.inerdcate, and one may,have. to Use

the Methods of loCating maxima.an4 minimalearned.in

,elementaty calculus (see Exercises 7 and 8.). And thete

are times when the theoretical irrerr bound cannot be used.

Fos...,instance, if f(x) is cOmplicatett f"(x) may be even
4more so, and obtaining InUpperbound

,
K foelf"(x)1 on

(a,b] may be extremely difficult. For example, consider

(8 x3 A
--- uX ,

o
)

i e,
X '

.

an integral that arises in thermodynamics. Here f"(ic) is

.very complicated (check for' yourself) ain'a value >or K

.is difficult to,obtain. In such a situation yOu migh '4 °

wish to compute manyvalues of .Tn, halting whenthey seem

to have stopped changing in the decimal OnZ-es y.ou-care

about. This is discussed. further in the next section.
.

. 0
4 For some icaegrads tke, error bound can be lowered by

reducing the loss sustainein passing from f"(c).in

equaion (2).to K in the i-nequality (3). For if it is...

,possible to divide (a,b] hit() two subintervals so that on

one- o;Ithem f" Is substantially less than the botind, K, t,rs

- 6



for all of [a,b], then error bounds for the subintervals

may be computed, and added. As an example, consider

-f3 dx. The second deriVatiVe f"(x) = 2/x3 is larger

nearAear 1 than it is near 3. If n is even, we may consider
1Tn as the sumof Tin for g 1

dx and T1/2n for 13 dx.
2

Now, if K1, K2 denote bounds on 2/x3 on [1,2] and [2;3)

respectively, then

,K, = 2/13 A 2, K2 = 2/23 = 0.25 ,

and theerror in Tn is no greater than

1 K1 1 3 K2 13 0.75
12 ('111)2 + 12 (11102

Thus the error in Ti-is at most 0.000075 and the bound

on the integral given'' (4) can be improved to

3
.

11.09857 < I 1.69872 /X

The method of Exercise 2 improves this to

3

1,09857 s. ( 1 dx < 1.09864 .

"Another context in which the Trapezoidal rule is

useful, but the theoretical error bound lesg. so, is when

theintegrind isdeScribed by a table of values, as qp-

-p,aSedto a mathematical expressiol.` For instance, values

of-a might'be obtained in a laboratory ex-

periment and a definite integiAT-;of f is required. See

MK) .fpa#,S4,of which are in [TF,.p.216],).or'IDM, p.266]

for specdfid applications, the fprmertathe problem.,of

measuring cardiac\output, theelatterTaa,probIeti!in

thermodynamics. For exampje,,Suppose the following five °

yalues o 4 fuffrtion f(x) were determined',' 'an

meat, and An approximation to j
ri
of(X) dx is required.

a & ;

x 0.00 .25 .50 .75 1.0

'f(x)' 0.0D0 .2557 .388 .420 .349

2 7

. ,

air

Since .the Trapezoidal Rule needs values only at equally

spaced points, we can immediately compete

0+ .349
= 0.25

.
+ 0.235 + 0:388440.420 = 0.304 .

Note that since the integrand is not'given by an equation;

'no,estimate K on the second derivative is available, and

so the theoretical error bound is not applicable., Be-

cadse we have no idea of the behavior of the function be-

tweentween the tabulated points,,we haye no way of'tejaing how

close T4 = 0.304 is to the true value of the integral.

In practice one should obtain endual data paints to elim-

inate the possibility of bizarre changes insthe"function

,between the points. Note that in this example, T1 =

0.175 and T2 = 0.381.'. In Section .4 we shall :see howl

these values of T1, T2,'and T4 may be combined to yield

.a closer approximation to the integral.

Exercises- .

1 4
1. Compute T,.and Te for (a) f

x
dx; .(b) cos x crPi

-

sin x

Rn -e

TT

. .

3 1Ounsider the of to approximate dx. -Why is it that
x

for every n, -he value 9f Tn is larger than the true value of

". the Integral? This fact implies that the inequality in (4) can

be improved to 1.09850 < bi 3 < 1.09864.

3. Give an example (by sketching a graph if you like) of a function

f and two integers m and n with the following property: n > m

' but T
In,
-is closer,to,,1 ..f(x) dx than Tn is.

. The value of a definite integral can also.beapproxiniated by

sums of areas of Rectangles. Fix n, and let xi,...,xn partition.
(a,b] as oh page,;3, Let'thetn of the areas of the n rectan-

_ gles be denoted by



R' .Ax[nilfx.s] .
n t 1)

(Figure 2 illustrates the case n

0=a xi
=44

.

R4 = Ixf(x0) + Axf(X1) + Sxf(x2) t Axf(x3)

Figure 2.

Show that Tn = Rn + (b- a)(f(b)- f(a)) /2n ,

= f(x)

S. Compute T for fl x2 dx. .How much leSs than.the error bound
1

o

/given by (3) is the error in T1?
,.... ,

6. Which T should one compute when approximating I
2

e0(
2,

dx to be
o

sure that the error is at most 0.0905? Show that a much smaller

n will
, do by computing the error bound separately on [0, 11/2.] and

4111, i), as was done in thb text for dx.
3 1

1

7. Use the ineqbality in (3) to show that

2

lO

e dx = T100

Of,

o

If you have a computer

1.- 0.015 .

available, calculate Tiee to show that

(10

2

18.631 5. e dx 5_18.662.
0

4
8,. Consider the integral of Exercise 1(c). Use the inequality (3) -to

say byhow much, at worst, T, differs from the true value of the 4

integral (Hint: In (3), K needmot be the exact maximum of

f"(x)1 on (a,b) (which in this case is hard to find):` any

upper bound on If"(x)1 gill do.).,

9

. 14

.st

9. The temperature outdoors was token every 3 hours during a

24-hour period, with the following results: II

mid- .
- mid-

Time , night 3 6 9 noon 3 6 9 night

Temp., 10.0° 9.1° 12.4° 18.6° 25.9° 32.7° 31.5° 20.0° 18.9°

Recalling that the average value of a function f(t) defined on

[0,24) is q--24f(t) dt, use the trapezoidal rule to approximate
24

the average' emperature duffing the day.°

3. THE TRAPEZOIDAL RULE - PRACTICE

Because of the many calculations required to compute

Tn, one normally uses a computing machine either a

large scale digital computer, or a programmable, calcula-

tor. If all that 'is-wanted is Tn for a single value of ,n,

it is very easy to write a program to compute it. How-
),

ever, it is often des'iiable to compute many different

values of Tn. fr instance if, as'we saw in Section 2,

a theoretical error bound is not*readilyubtainable, one

would like to produce a sequence of values of Tn until

the values cease changing by much. If one adoptg a-

straightforward approach to- computing Th, T2, :-,T1001

then (2+3+...+101) 5150 evaluations 4 f(x) will be

made (since Tn requires n+1 evaluations' many'of'

them more than once.

-/A more efficient way to compute=maqy valme of T
n

with no duplication .of function evaluations iltu compute
T1, T2, To Te,, T16, , To see why this is efficient

note' that having just computed T4, say, the valuesof

f(xi) needed to compute T; are exactly the S values just

used for T4, plus the 4 vales occurring midway between

1them.

\
10



.1.

I. 1.
a=x

0 X1

I. 1
I )

base points

a x 1 X2 'Xy xg
for T8

base points
f

X3 b=x
4

or Ty

A

This observation' lekds to
-;

the following formula for cal-

culating
. ,

III from Tn: ,......

b-a Tn '4
'.

4;1
2n 717- -fliar io

( 11

(5)

-

I

f la + (2i4-1) 11

140 DIM i(30)

150 PRINT "WHAT ARE A AND B?"

160 INPUT A,B

170 PRINT "HOW MANY T(N)'S WOULD YOU LIKE?" -

180 INPUT M

190 REM

200 REM . WE FIRST USE, ONE TRAPEZOID, STORING

210 REM THE RESULT IN T()
3

220 D=B-A

230 T(1)=D/2*(FNA(A)+FNA(B))

240 REM

where, the

":f[a

all' appear

values of f at .the

2i01)

in

evenly indexed xi ' s e . ,
250 REM NOW COMPUTE THE (2tN)TH :TRAPEZOIDAL

.260 REM APPROXIMATION FROM THE 2f(N-1)ST,

270 REMil. USING FORMULA 15) ABODE, AND

280 REM STORING IT IN' TIN)

290 FOR N=2 TO M
Al

Tn/ b- a)

Using this method one first decides the number of
44.

4 evalua (x)_ theie_is, time...X0r, say 514, and,

stead of computing, just Taal, or computing T1, T2, T3, ...

T30, one can compute T512, and obtain the values of T1, T2,

T4, i T16, T32, T64 T128, T256 along" the way: It ks.

useful to have'all this output for Compa'fison. Moreover,

in' Section 4 14e, shall develop 'a method which begins with

such a ,sequence of Valups,of Tn' and modifies them to ob-

tain still closer-approximations.

fieze is a program wr ten in BASIC which uses Equa-

tion (5) to /generate asse uence of values of Tn, The

program was written for -the integrand x/(ex-1). For

otherfunctiOns , line 130 must be. modified.

100 REM TRAPEZOIDAL APPROXIMATION OF INiEGRALS

110 REM FIRST DEFINE INTEMND; THIS LINE

120,REM MUST BE MODIFIED FOR NEW INTEGMWS

130 DEF RPO)=X41/(EXP(X)-1)

11

300 D411/2

310 S=0
4

320 REM,

330 R4M USE S TO FORM THE SUMMATION IA (5)

340 FOW J =1 TO 2t(N-1) STEP 2

T

350 S=E+FNA(AtJ*D)

360 HEX J. 4_,

370 T(N)=T(N-1)/2+D*S

380 NBX1',N

390 REM'

0 REI NOW PRINT THE RESULTS.

410 R,N=1 to M

420 PRI "T(";2t(N-1);")=";T(N)

430 NEXT N

440 END

Here rs a sample output .(on

coMputer). for

-E--
3

dx
ex-1

17

4

a 12 significant digit

12,

1
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RUN

WHAT ARE A AND B?

i;g
HOW MANY T(N)'S WOULDYOU LIKE?

11 r
7(1)=2 . 63826923395

1(2)=4.90201237702

T (4)=5 . 76289887395

T(8)=5 . 95446195063

T(16=5.99988421985

T(32)=6.01109575704

T(64)=6 . 0138885681 7'.

' T(128)=6.01458613933

T (256)=6 .01476049262

._ 7(512) =601480407847-

T(1024) =6. 0'1481497477 .

It appears from this output that

1

4

e 3
X dx = 6.D148

to. 5 -significant digits (in tact, the true valpe is

6..0148 186...). While it is geperally true that, when the

values: get closer to each other, they are close to the

limit, i.e.; the true value of the integral, there are

% some examples of -3nnovnt looking integrands vihere the

vallesarelmomntarily quite close, but then change, sig-

nificaptly as, they approach _their limit. (An example Of

:this-ft discussed -in EXercis4 17) . -ExPerienOd and some
A !,

60ii&fv'afiithheli'out;,e., from the data above' one:

cif* Merely conclude That the tgue Value is :6.014.-..

,a& a- .signifiCanidiltit.,1; req4ired, more values might
be dompate4. Oi another method used. HoweVer'1000 'is.

:~ Often a practical- upper bound on. the number of trapez=oids
that cao'be used '-'the computer used above, working with

so raapy significant digits; takes, a lot of time, while on

a machine with fewer significait digits the-- results areA.

1, 13'

R.

.

less trustworthy beeave of roundoff error, which we nOw.
4'discuss.

So far everything that wehave 4one (fo'r instance,

concluding from (3)1 that Tn.'. approaches (x) .dx as n 03)\

is based on the fact, that -the real numbers have infinitely

many. decimal 'digits. Wowever, any computer can Work: only :

with a 'fixed finite number of .digits :1: This drdates. unex-

pected difficulties, which often reqUiTe great inphuity

to avoid. Consider ..Filtpre 31 which gives a pictorial

representation of the results of using 4 computer* to ob-

tain Tn for
(3. 14 1592

sin x

-3
10

10
7-

10-5

JL

rheozetl_.
al

rror
Bound'

1 4 r7r--1
10 t 1 44 .14441 i r I

1000 2000,

Number of Trapeioids

Trapezoidal Error for sin(x)-from

Figure 3:

3000

* it";

4000

0 to 3.141592

5000.

*A DigltalEquipment ,VAX, 'which uses 7 Significant digits, was used.
'Equation (1) was itseein this example and the one of Figure 4.
When Equation, (R. is used, there-is less roundoff error, though the
same general behaVior is . '

y,
.. 14

1 9
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The absolutevalue,of the error is plOtted.logarithmical-

'ay on the verticl axis,, against the.number of trapezoids.
.14/592f3

Since J, . sin x dx = 2.00000 this means thdt the '

graph labelle4 "TRAPEZOIDAL ERROR' is the graph of )'T
n
-21.

The theoretical error bound for this integral was worked
0 out in Section 2, and is' (3.141592)3/1 n2. For small

.

values of.g,.say n 500, the observed or:coMputed error

agrees quite well with the theoretical preection - it is

leis than the, error bound, and the 'two graph are roughly

parallel:: As is the case with thp theoretic error

bound graph, the actual error* is quartered when 11 is dou-

bled. As the number of trapezoid* reaches and passes

about 700, however, something quite strange happens: The

actual error curve becomes less smooth and is soonoggeat-

er than the theoretical error bound, in clear contradic-*

, the

i

..,

tion toP(3): Lf one decided to compute T2.
9 t)

error bound would indicate an' error of at most

4 x 107 but the error in'the computed *ue would be
v.

-' -about 3 x 10-6, almost 10 times greater then expected. ,

The reason foi this deviation 'froM the theoretiCally

predicted behavior'is that thecomputei uses vnly

nificant digits, andthe rounding necesgary to .perform

additions, in this mode can,,,when repeated
,

Very often, ,.'
'

cause a sub&tantial buildupcof what is commonly kneyn'as,
..-:

--% .roundoff error. -.

et 11
For example, consider how 'a computer.wor)cingin 0

significant 4ilt floating point arithmetic adds'123.45'6

and .987654:: It:41rst converts to exponential fpower.4Of

-

v.

2

when this °cars repeatedly tfie error buii6up Can be

quite suhStantial (even though founding may cause some

cancellation of error, since.it:sometimes increases

sometimes decreases the "result). For a drastic example

' ,consider a sum of the form 1.00000 + 0.000004'+ 0.000004.

The first addition is done as .100000 E 1 + .000000 E 1, .

yielding a result of 1;00000; and similarly, the next ad-

dition yields a final result of 1.00000. But the true

answer is 1.069,008 which, rounded to 6 digits is 1.0600i.

L-\
1 %

.1 . , ,,,, , .

ten) notation WiiNa common exponent, say .113.456.E 3
;-,

and

.000988 B 3-,.;punding the smaller numberit cannieltore

.00987654 E 3, since this requires 9 signian.t dggits13

NoW iadds i-0- -get A24444%E 3 di 114.444, 'when the true

sum-24.44'3654 The 'error her.e (in theamtUnt4f

' ..090346) 'May seem inconsequential since it does not af-

-:: lect the first"-6,significdgidig10 of the rels1,4t1. but'
_

..-;.

.

This is exactly what happens in the computation of Tn.
/

For instance, when computing T400 for
r.3.141s 2

sin x dx

YroM Equation (1) we e.alculate the sum

399
E sin(x.) .

.1=1 1

The subtotal,of the first 200 terms is about 127, and in

completing the sum we add to this subtotal 199 more num-
. .

bers that are each between -1 and 1. The repeated round-

ing causes a significant loss in accuracy.

Note that we are using the term accuracy in a slight

ly-new sense here, as we are not talking about the differ-
f3.1415i2

ence 'between -T40
0

and po sin x dx Cwhich is often

called truncation error), but rather the difference be, ..
.

tween the real value of T
400

and the-computed value.of

T400: It is-.got generally possible tO'determiae.whether

the roundoff error will cause the competed value of Tn to

be closer .6o or farther from the,actual value of the in

tegral. One should therefore 4iStinguish between the two

types of error and, once it is determined that a certain

T will. have a sufficiently small truncation error, T
nn

should be computed An a way that minimizes- the roundoff

error. We shall discuss one such technique Mlortly, but

note that one should avoid dealing with Tn a11%,. en n

large.ihat the machine being used-cannot car.VK

.enough decimal places to calculate T
n

ac.,curatel.g1";`,:While*

a I3-digit computer or programmable calculator.can.dom-
,.

'-` 4-.

.

21 16



-S

.
purte T

n where n L 1000-with little(loss of accuracy, a

6-digit compUter cannot. Thus if the-theoretical error

bound says that Tn is needed where n L 800 .(as'in Exer-

- cise 6) and one is,working-on a 6-digit machine, it is

ss
' probably worthwhile to seek another, more efficient
'method of estimating the integral, like ROmberg's Method-,

...discussed in the following section,

Consider-again the examples cited above of a comput-
er addition. Note that rotindoff loss is much less likely

if the .numbers to be added'are of the same order of mag-
nitude, fOr then the shifting necessary to get the 'expo-

ne%fsto agree is unnecessary, and the cqncomitant round-
:,

offsloss avoided. (Rounding error is not entirely
0,:ni?ted; in adding .44444 -and .88888, the_result, .333332

will have to be rounded to 1%33333.) It follows that'

14heemanyiltumbers_which vary substantially in size are to
dt" 66 added, rothidoff error can bd.lessened by adding them

in ?rder-from smanedt.o largest. This is because the
/smaller numbers, may then toptribute to the sum' and

of the intermediate additiens'14ill 'be of .two 'numbers of

the same order of magnitude, If the larger ones were

added first, then very few of the additions,would in ve
numbers of the same order of magnitude: For a simple ex-
aMple, note that when 1,, .000004, .000004 (see above) are

added lioreVersecrderone firsi gets .000008:which

is rounded to .00000l E 1 so it can -be added, tp .100000

E'',1,; giving a result of 1.00001, correct to 6 significant
.

:n decendirig order the cOmputedtsum is 1.00000.

This fact is dramatically ,brought home"by '

-ing the,trapezoidal,approximation taTse-x dx: The
o

values of,,e-,?: On the' interval [6, 151 range froM 1 down
to 3 x so substantiai.rdundoff error is expected

for Tn, the computation cifwhich involves sumMing,values'
of e-x as x ranges from '0,.to 15. A simple way to add- the
numbers in-.reverse order, i.e., from smallest to.largest, :

22- ;

17

O

is toctonsider Tn for jls -e-x,dx, where fhe minus sign
is included to accoUnt'for the interchange of liMIts.

Forothe latter integral Ax will be negative,-.and so Tn

will.be computed from right to left. Theoreticilly Tn
"for these two integrals are equal, but as demonstrated in

Figure 4, the 5pAlbuted values differ by a lot when n
1000. Recall

so
thaf the error (vertical) scale is 10

rithmic, and so the difference i's really quite great.

w

0
-4

5
4J 10

ees
.

Frro
eo

4k,

c

Trape3
Error

Oidal

10
-6

I0
-7

Backwards Trapezoidal Error

0
1 A:

2000 4000 6000

Number of Trapezoids

6000

Trapezoidal Error for ap(-Xrfrom 0 to iS

-Figure 4.

10000

The mathematicalstudy of'roundoff error is general-
ly quite difficult. Techniques of probability thbory

come into play, toaccount for the probable cancellation

-18

. -23
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of'rounding errors. :For instance, it can be shown that-vow

in the. addition'-sf n numbers, roundoff error will usually

bt3,ild up proportionately-to /H. This helps to explain

the shape of the right hand sections of the graphs in

Figures 3 and 4.

Soniecimes tht way in which*oundoff error creei)

into a.calculation is quite subtle, and anyone using a

computer to perform many arithmetIcal*bperations must be

aware of how it can destroy certain .types of. calculations.
4 -

e-.

Exercises

is , fo

IS9
bottl J 0 e's dx and J -e-x dx?

. .

40. In Figure.4 why is'the thedrevical error bound the same for

ir. Write a program in a lajiguage other than pASIC, e.g., in the
language. of alerogrammable calcurator, that computfm,

for a given integral.

12. Apply the program of the previous exercise to the integral of
Exercise Z. Then do it "backwards" as in the text and compare

_ the results. _

4. IMPROVING THE TRAPEZOIDAL RULE BY ROMBERG'S METHOD .

Often rules for bounding the error in a numerical

method are ignol'ed in practice because they are too dif--
ficult to apply. Still, a detailed analysis of error can

be useful in another way, for it may lead to a new method

which is better than the original one. In this.section

we will develop Romberg's Method, the basic ideas of

which have a wide range of application in numerical

'analysis.

Suppose a,b, and f are giv9n, and let

.( 21
el`

c.
- 19

E
n
=T

n is
lb f(x)1;. . 7

f-(F)(1
n

)-W
12 2

As you know from Section 2, the point c depends on n. If

We changed n to n + 1, then most likely Would change as

well: It turns out that E
n can be represented in a dif-

ferent, rather more'useful way; namely, if f is suffi-

ciently differentiable, then

(6)* A B CE, + _ + +...n
..-.

n? n4 nz

* ,-'c,

where A, B, C, ... 'are constants that depefid on-a

f, but are independent df n.

In other words,

(7) Tn = I b
f(x)dx + + C

a
_

"

+ +....
n2 n.

and

This representation of the trapezoiddl erro is a conse-

quence of the Euler-Maclayrin summation formula - see

[DR, p.108 and p.327]. With no fu'rther assumptions On-
A, B, C,... i1t seems that' the term /612 will be the kart-,

est contributor to the error. The key idea in Roilibei'er;

Method is to
.

eli41ae this.term in th 'following waY.)-

We first'replAce n by 2n in (7) to get

(8) m T2n1= 11
b
f(x)dx A

+ +
C

4n2 16e- 64n&

We then subtract T
n

from 4T
2h to get

(9) 4T2n - Tn'' 31bf(x)dx
a Sert

When we divide both s-ide"s equation.,b
.obtain

*AgEually' the
Jestr,iin

ttrk`ifg o%Yt as _qty osfiiy ititSe
, "

_



.
47:2n- Tn, fb

f(x)dx +-38/12 - 15C/48

.. n4
.

n
. .

--Equation (10) shows that '(lT2n - Tn)/3 is a 15tttei'apprdl,

._...imation.to the integral than either Tn or T.2n, in the

sense that its error has germs inv.oVving n'', n-6,..., '.

but:Zone_involving n-2:-

.

c.

' 'If wejlet TV= (4T2n.- Tn)/3, it follows that the.,

error for T' can be written ss a series beginning with

n'", and we can repeat this/procedure starting with Tik

and T'
2n to eliminate the term from the error., The

numbers 4' and 3 will be replaced by 16 and 15, and so we

Vet T" = (16Tin TA)/15. There' is no need to stop here.

The following diagram shows that by.beginning,,witkihe

'n values, T1'; T2, T'T8,..., one4ets -#.:0;0fi dlar

array, ending with ,a row-

T'
2 T. ; T16 IA T2 n-1

1?, T'T:

T" Tt;

i

,_
. . ' Figure .0'

P 01-1)Covisting of just T
1 ,

which is usdallY the, ap- ... , p-
''proximation in. the, array:

':.;

,,,:

A
''.

There are many reasons why:this 9ethodlis anexcel-,
-

-. lent '.ova'ta use Unlike many methqds (Trapezoidal Rule,

:11aC tingI-Rule,, 'tiiiiin, Rule)ule) whltf; 'ate---pg i=feCi f ; r
,

polynomials of a crtain. iegree(1,0,3 respectively),

leMherg'S Me*thod As Petfbtt far :polynomials of arbitrgr-
...,.-

-,ily.htgh,degree, if-one computes sufficiently. rows.

. - .

21,

d

.More.Oftiipely,.the first TOW is perfect forVinear func-

tions, the second for cubics,,and in gener'al Tcli) is per-

fect.,for:polynomials of degree'2i + 1.

Moreover, in termsof computing effort, the amount

of work needed to,_apply Romberg's method once thg trape-

zoidal valuesare obtained,js:really quite minimal com-

pared-to the gain in accOtAcy.....:Andeed, if onebegins

with_the program in SectiOn is'a simplematter to

add a few instructions to 'produce the Romberg array. No

furthJr evaluations ofthe'inegrand are needed, only

some straightforward arithmetical manipulations with the

T(I)'s. Constructing a suitable program for RoMbert's

' method is left as an exercise-v.

Examples

J31 CI X 11* 3.3e

-True value:
1.11111

1.09861 . 11,09863

.1.16667, 1.11667
r.l0000 1.09873
.1.09864

lsiote. that TP), Which-needed Te, is closer

true value than too Cse,9.

' .0 -- 1'.57080 1.896 2' 1.97423
2.09440'2%00456 2.Q00 7
1.99857 1,L999.98
2.0000V

/

it takes-600 trapezoids to obtain a

T
n'

as accurate-As T13.) , which /required only

-111t

1.10321

to the

2. 1 sin n-x dx

True value:

In, this case,

valiie for
4

.9 function evaluations.

3. dx 2.63827 4.90201
e. -1 -

.t 5.65659 6.04986
True value:1 6.07608 6.016113
6.01482.

Comparing wiith the results-in Section 3, we ,e'thati
(here T4 3)-

, is about as accurate as TI.

'`,:thismethld'is..particularly useful when the
grand ii gi'vazili)y a table-of 'values obtained in an ex-

.

pdrient. In'the example at the end of Section 3, we

22

5.762'90
6.01$24

5.95440 ,
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obtained

T1 = 0.175, T2 = 0.281, T: = 0.304

' Romberg's method may be applied to yield

T; = 0.316, T; = 0.312, T'' = 0.311

Without redoing the experiment, that is, without obtain-

ing more function values, we improve our original approx-

imationeOf this integral from 0.304 to 0.311.

The field of approximate integration is vast, with.

many methods sdited to special types of integrands. Rom-

berg's method is an excellent one to use when the situa--

tiontrequires equally spaced x-values.

Exercises

13. Write a program in BASIC which starts with the program in

Section 3 and produces the Romberg array.

14. Use your program you wrote to compute the Romberg array for

11 1

J
o

1+x
dx .

pi

15. Compute the Romberg array for ]
0

cos (8 sin x-x) dx (which

equals 0.73713182...). Does Romberg's method improve on the

trapezoidal results?

16.- If you know about Simpson's Rule, show that the entries in the

second row of the Romberg array (i.e., the TA) are the approx-

imations one gets from Simpson's Rule.

17. Consider the integral

(+1[; cosh x - cos x dx

where

cosh x =
1

(e
x

+ e - x)

Compute Ti, T2, and T. Then compute two more rows. of the

2g 23

it

Romberg array. Note that Ti agrees with T7 to 6 decimal

places, and so one might cease the computations here, expect-

ing the true value of the integral to be 0.479555... . But

this is not so, as the true value is 0.4794282... (compute

some more rows a the Romberg array, or do the.integral by

finding an antiderivative). This points out the inaccuracy

that can arise if one stops computing when the values agree to

a certain number of digits. (This example is adapted from

[DR, p.317].)

18. Compute the Romberg array for some integrals of your own

choosing, preferably some for which you can determine the

true value.
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6. MODEL EXAM

(A calculator is necessary for problems 3, and 9.1

11 With the help of a calculator, evaluate T5 for

dx.

e -1
o.1

2. Show that if T is used to approximate

1 dx

/az

then the.txuncation error is no greater than 0.107.

3. If you were to use Tn to approximate

12
(lnx)2dx,

1

and you wished the truncation error to be no greater than 0.0005,

which n should you use

4. From the point of view of evaluating the trapezoidal rule approxi-

mation with minimal roundoff error, which of the'following four

forms of the definite integral is best to use?

-10

dx
x
6

+ 1

c)

211° 1

X
6

+
dx

0

b)

- dx
x6 + 1

10

d) 1° 1

3. The following Iwo Integrals are equal.

im
sift xdx and sinxdx.

o Jo

ior w!lich one .111 the trapezoidal approximation, In, be

closer to the true \,alud of the integral?

b. Why. when computing a sequence of trapezoidal approximations

to an integral. 1,, it better to compute 1,, 12, T4, F,, T,,,
.

rather than T1, T, T F4, T5, ...?

7. T(11) dendtes the first entry of the fourth row of the Romberg

array for 1

rb
f(x) dx .

Ja

How many times must the integrand, f(x), be evalfuated in order
(3)to compute T1 '

8. Which row of the Romberg array always gives the true value of ,

the integral, when the integrand is a polynomial of degree 5?

9. SUppose all that is known about a function2f, is that f(0) = 0,

f(1) = 1, f(2) = 3, f(3) = 5, and f(4) = 0, and that an

approximation to

*

f(x) dx
1

is desired. Compute as much of the Romberg"array as is possible

from the given set of f-values.

'-2 r --- dx.
+ 1 10. Show that, when the Romberg technique is applied to In and T3n,

1
Jo ,.

rather than to T
n
abd T

2n' the resulting improved approximation. The graph of r---- on 1-10,10] i shown in Figure 6.
x + 1

Y
1

x

-10 10

Figure 6. The graph of y = 1/(x6+1), -10 < x < 10.

25

"30
,

has the form

9 T
3n

- T
n ,

8

instead of

4 T
2n

- T
n. .

3

26
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7. SOLUTIONS TO EXERCISES
(h-a)(f(b)-f(a))

n 2n

1 (a) T = 3.13118, T, = 3.13899
,,,, ;(f(0)+f(1)] 12_ 1

Since
(b) T4 = 0 , T, - 3.13899 (whys) ,1 i , 1k-
(c) T, = 1.03229, T, - 1.98235

If"(x)I = 2, a constant, we may take K = 2 in (3). The error

2. Because the graph of y - 1/x is concave up on [1,3), the

trapezoids completely enclose more than the area under the

graph. Thus, Tn is too large. 1.

3.

Alternatively, f"(x) - 2/x3 is positive on [1,3i, so that the

difference Tn -f bf(x) dx in Equation (2) is positive.
a

/ )

If f(x) as in the diagram is such that f f(x) dx = 0, that is
o

if the areas above and below the x-axis exactly cancel, then

T1 = 0 will be perfect while 12 is positive.
e

, b-a (f(a)
EI-31 x

c,.., 1
4/

'n n '2 ' z 2 "1-1'

b-a I f(a) f(b))n If(a)
+ f(xl) + : + 'f(xn-1) 2 + --2--1

is at most =
12 12 6

1 1

Since (xtdx =t , the error in T, is exactly
1

Jo

6. f(x) = e(x2), f'(x) = 2xe().!2), f"(x) = (2x)(2x)(e
(x2)

)

+ 2e(x2) = (4.x2.+. 2)e(x2)

Since f"(x) is a positive increasing function on [0,2].

f"(x)1 < f"(2) = 180. .

.Using (3), we want n so that

n2'

18e.23 4

000512n2
<

1
0.0005, or

2e

"I'

or 1144.7 < n
12n

,Accordingly, n should be at least 1145. .

However we may improve this estimate by noting that, for n even,

Tn is the sum ofTtin for

11.5e(x2)dx
o

and 1, for
In,

2

e(X2)dX .

15° .0

Since If"(x)1< f"(1.5) = 104.365 on [0,1.5], and If"(x)1

< f"(2) = 18e4 = 982.'768 on [1.5,21, the error Tn 15 at most

104.365(1.5-0)3 982%768(2;1.5)3

12 (lin)2 12 (1/211)2

158.359 : 158.359 '

which equals go if n is-large enough to make
n2

< 0.0005, then Tn will be within the desired tolerance.

27
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Soje(x)1 < 0.2283 X 1.7072 < 0.3808 and we may

Thus the erKor in T8 is at most

0.3898(2103
< 0.126

12 64

For f(t) dt,
0

T =
2

8 8

4' [10.0+18.9

2
+ 9.1 + 12.4 +,..+ 20.0)

The-maxima and minima of f "(x) must occur at x = 0;3,6, or 1

The values of f" at these points are respectively, 0.667,

-1.494, Q.667, and 0.0065, whence the. maximum value of f"(x)

on [0,10] is 1.494 Taking K = 1'.494 in (3) shows that the

is 493.95/24 = 20.6, which approximates the average temperature

The second derivatives of the two integrands differ only in

sign. Since K must bound If"(x)1, K is the same for both inte-

grands.

11. 'Here is a program in the language of the Texas Instruments

000 LBLA STO 01 HLT

o c'006 LBL B STO 02 1 STO 06

015 RCL 02 -'RCL 01 = STO 03
*



,.

026 X(RCL 01 E + RCL 02 E)

038 +2=

40041 LBL C STO 04 HLT

047 24INV PROD 03PROD16

OSS 0 STO OS i

059 RCL 06 STO 00 ,

065 LBL D RCL 01 + RCL 03 X

075 (RCL 06 + 1 RCL 00 =

086 E SUM OS

090 1.Iyv SUM 00 dsz D

097 RCL OS X RCL 03'+

10'S RCL 04 + 2 = GTO C

113 LBL E rtn

Register usage: R01:

R02:
b-a b-a b-aR03: b-a, 7, 7-4

R04: T1,T2, T4, T8,...

R05: accumulates summation in (5)

R06: 1, 2, 4, 8,...

R00: index for\loop to compute

summation

User; Instructions

1. Fill-in instructions 115 on, to provide a subroutine that

computesf(x), the integrand. Use register 07 if necessary.

Don't use use (...) instead.,

2. Enter a, press A, enter b, press 8:,

3. T1 is in display. Press run.

4. T2 is in display. Press run repeatsdlo see T., Te,

T16, e" 4410101

31

12. Example:

o , 2/6
For e--- dx, first fill in 115-132 as follows:

115 STO 07 (RCL 07 - RCL 07 x2 4. 6)INV lnx rtn

Then press 0, A, 10, B, and run repeatedly to get:

5.006363169

14.00806104'

18.1343902

18:'5166875

18.61450407

18.63898675

18.64510821

18.64663861

(T1)

ti

Due to the 12-digit accuracy of programmable calculators, one

gets the'same results for the integral backwards, i.e.,

I-ex-x2/6 dx.
10

Discrepancies would come in with the use of thousand s of

trapezOids. On'a 6-digit machine however, the forward and

backward results would already differ at T120.

13. Line 140 has been changed. Lines 440 - 560 compute

Romberg array from the trapezoidal data.

100 REM TRAPEZOIDAL APPROXIMATION OF INTEGRALS

110REM' FIRST DEFINE INTEGRAND; THIS CINE

120 REM MUST BE MODIFIED FOR NEW INTEGRANDS

130 DEF FNA(X)=Xt3/(EXP(X)-1)

140 DIM T(30)

150 PRINT "WHAT ARE A AND B?"

160 INPUT A,B

170 PRINT "HOW MANY ROWS OF THE ROMBERG ARRAY?"
4 180 INPUT.M

4. 90 REM

200 REM E FIRST USE ONE TRAPEZOID, STORING

,210 REM THE RESULT IN T(1)

220 D=B A

230 T(1)=D/2*(FNA(A)+FNA(8p

A
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240 REM

250 REM NOW COMPUTE THE (2tN)TH TRAPEZOIDAL

260 REM APPROXIMATION FROM THE 2t(N-1)ST,

270 REM USING FORMULA (5) ABOVE, AND

280 REM STORING IT IN T(N)

290HPUR N=2 TO M

300 D=D/2

310 S=0

320 REM

330 REM USE S TO FORM THE SUMMATION.IN (5)

340 FOR J=1 TO 2t(N-1) STEP 2.,

350 S=S+FNA(A-4-J*D).

360-NEIT-J

370 T(N)=T(N-1)/2.4-D*S

14. 3.00000

3.13333

j.14212

3.10000

3.14157-

3.14159

3.13118

3.14159

3.13899

3.14.59 4
15. 0.0000000 1 5540803 .125062t0 .73627360 .73713182

2.0721071 -.35007730 .93971077 .73741790

-.51155626 1.0256966 .72393171

1.0500975 .71914179

.7178432

Iii this rather unusual example. Romberg's method provides

worse approximations than the original trapezoidal approxima-

tions.
.

16. Using (5) in the form

380 NEXT N -

390'1134. .N

400 REM ,N( PRINT THE RESULTS

E410 FOR N=1 TO M todd
= f(x.) ,

420 PRINT "T(";2t(N-1);")=";T(N)
1.---)

.
j odd

1<j <2n:1
.

,430 NEXT N

y440 PRINT
. A.: we have

ee4
450 F=1 j I.

T' = (4T2n-Tn)/3
: n

where

Tn 1)--a rodd

T2n 2 2n !"-

460 FOR 1=11 TO M-1

470 F=4*F
. ..

ik
= (2Tn:--,

4(621-1a)

. 480 REM COMPUTE AND PRINT THE ITH ROW

490 REM OF THE ROMBERG ARP Y'

500 OR J=1 TO M-I'
. .

510 T(J)=(F*TtJ4-1)-T(J))/(F-1)
- *

,./
520 PRINT T(J)

.

530, NEXT' J ,,,,

340 PRINT

550 NEXT I .

. . 560 END.

38

zodd_Tn)/3

1 (17(f(a);f(b) even) 4(b-a) edd]
2n

RIM odd)

which is precisely Stepson's rule with 2n subintervals.

17. 1.758664

.479555

.479555

.479428

.799332 .

.479555

.479430

.559499

-.479438

.499453

:

33 ') Or 34
..e..)
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" Or

-8

8. SOLUTIONS TO MODEL EXAM
ca

1. 2.21S,

2. =- 2/x3 which is decreasing on (.2:), so K may be taken

to.be 2/(.2) 3 which equals 250. Thus

3.

4.

5.
'

ERROR
250 (.8) 3

< 0.10666 ... <. 0.107.
12 100

,12-2(In x) 1 sine
1

1 < x2 .<4 on [1,2). Taking K

.4

.613 < 2-2(ln x) < 2 'arid&

In the error formula yields

0

n > S1.6, 'or n 52.
.

g

(d) 'is' best suited sin it adds f-values in order from smallest
'fi .largest.;

iltsin x dx. For n fixed, a smaller b -:-A leads to a smaller error.
o ,

6. The first sequence reuses the f-values already comptIted. Moreover,

the first sequence can be used to start Romberg's method.

The third row.

=0 T2 = 6 = 9

T' = 8 =

= 10.1333

A B10.
Tn.= b f(x) dx + + +

n n
-.00$$ a

T3n = b f(x) dx + +

a
9n 81n"

So
1 ,

9T - T b fig' C'$n n
8 a

f(x) dx + --;^ + -76. + .",n n /
and the term of the error

-
involving n2 has been eliminated.

(4 0

1'

. j.

t
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STUDENT FORM 1

Request for Help

Return to:
EDC/UMAP
55 Chapel St.
Newton, MA 02160

Student: If you have
out this form and take

trouble with a specific part of this unit, please fill
it to your instructor for assistance. The information

you give will help the author to revise the unit.

Your Name
Unit No.

OR OR

Page

Section Model. Exam.

Problem. No.0 Upper

()Middle

Q Lower

Paragraph Text

Problem No.

Description 'of Difficulty' (Please be specific)

Instructor: Please indicate your resolution of the difficulty in this box.
.

Corrected errors in materials. List corrections here:

Gave student better explanation, example, or procedure than in unit.
Give brief outline of your addition here:

Assisted student in acquiring general learning and problem-solving
skills (not using examples from this unit.)

1

41
I

Instructor's Signature

Cease use reverse if necessary.



STUDENT FORM 2

Unit Questionnaire

Name 4 Unit No. Date

Institution Course No.

'Retuin to:
EDC/UMAP
55 Chapel St.
Newton, MA 02160

0

Check the choice for each question that comes closest to your personal opinion.

1. How Useful. was the amount of detail'in the unit?

Not enough detail to understand,the unit
Unit would have been clearer,wiekmore detail,
Appropriate amount of 'detail
Unit` was occasionally too detailed, but this was not distracting
Too much detail; 'I was often distracted

0

2. How helpful were the problem answers?
4

Sample solutions were'too brief; I could not do the intermediate steps
Sufficient information was given to solve the problems ,

Sample solutions were too detailed; I didn't need them
Alb

3. Except for fulfilling the prerequisites, how much did you use "other sources (for
example, instructor, friends, or other books) in order to understand the unit? '

A Lot Somewhat A Little Not at all
7 .

cod
-

4. How long was 'this unift in parison to the amount of time you generally spend on
a lesson (lecture andhomework assignmenk) in a typical math or science course?

. ,

Much Somewhat 'About Somewhat Much

. Longer Longei Aire Same Shorter Shorter

5. Were any of the following parts of the unit confusing or distracting? (Check
as many as apply.)

Prerequisite's 4
Statement of skills and concepts (tibjectives)
Paragraph headings
Examples
Special Assistance Supplement (g. present)
Other, please'explain

6. Were any of the following parts of the unit particularly helpful? (Check as many
as apply.)

Prerequisites
StateMent of skills and concepts (objectives)
Examples

'Problems
Paragraph headings
Table of Contents
Special Assistance Supplement (if present) 8

Other, please explain

Please describe anything in the unit that you did not particularly like.

.
/

Please describe anything tHat youfdund-particularly helpflil. (Please use the-back of

this sheet if you need more epace.)
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