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ERROR CORRECTING CODES I/

1

1. INTRODUCTION
1

With the prominence of 'computers in today's

)technological society, digiltal communication sySZems have

become widely_used_in_a_variety of applicatqns,__Epr_
1-

example, data gathered by.space.probes must be transmitted

-back to earth, where the informatibn can be processed for

subsequent use. This example includes satellite pictured

that are transmitted and processed digitally to,obtain
/-

reconnaissance and scientific information. Data links

between.cqoputers provide enormous gains in computer

applications: 'Military command and control systems also

tproVide a broad range of exaMples..-

In digital communications, information is transmitted

in the forth of -"binary messages," that is strings of,0's

and .1's which are coded in some.-way to convey information.

For example, in transmitting a satellite photograph,.

suppose that the"Pnboard instrument package can' is-

tinkluish 64 gray. levels from white to'black, andth t "\NN,.

each level is identified by a number from 0' to 63. The'

particular string 101011 which is. the binary representa-

tion of the decimal /lumber 43, could betransmitted to

indicate that, the light intensity at a particular pint

in the pl6ure is 'at level 43'.'

You may tasfry'iMagine some of the problems ti\at

arise in digital communication systems. Errors may occur

in the original eCod'ng of data and in the trangmitter
'Channels may be "noisy,' o that` bits are lost or

diStorted.. Security is often a problem--there may be

compelling reasons to deny' -information to some individuals

whcidhave access to our-channels.
. .

'In this unit we study the problem of correcting-

errors in digital
7
communication syst4s. Error correcting

. . codes are,developed asan,application of lineAr algpbra.

and finite field afgebra. 'The models chosen for.this'
A .1

unit.were.selected foi. yeLative ease,ofcomprehension; .© .

more complex models will. .be presented in
/

subsequentunits.
* :

, -
.

- ,7

1
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40.

of what happens to any other bit. We.assume that- 0 < p < 1/2-

. 1?, c ,
.

. . .

.
- .

2 THE BINARY SYMMETRIC CHANNEL
.1.

.
.

Suppose we wish to send a bi.nafY message t hrough a
,... /.

noisy channel whiCh,may corrupt the message by.changing

one/or moreof the bits. One*or moire zeros may be inverted

ones, or ones inverted to zeros. A liMple model' of such

a channel is called the binary syimetric channel,(BSC), And

is shown-in-Figure 1. In this model, a bit is inverted

with.,probability p, regardless of whether it is a 0 oa 1,

and the corruption-6f any bit is statistically independent

Transmitted Bit .

1-p.
. Received Bit

0

1 1

0'"

1

1-p

.

.

Figurel. The binary symmetric chignnel (BSC). Transmitted
bits are inverted with probability p.

We.note that the BSC is not a.good modelfor many

.real-life channels, although it does reasonably represent

the errors in same computers during, fast data transfers.

The assumption of statistical independence is. valid for

certain systems in which.encoded data are Multiplexed, .

' transmitted, 'and then demultiplexed before decoding.
2

..
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:Errors tend to occur in "burstsou-a relatively large t
.

number in, Ek Short time peribd, followed by a long error-,

free'peod.. Multii9/exin`minimizes- the damagiiig effects
,

of bursts by selectigg the successive bits in the
...

,

transmitted signal cyclically frowdifferent coUewords.
.

Burstl of several errors in a-relatively short span will

;then tend to corrupt bits .in diffefent codawords instead
. .

of/being-concentrated in a single, word or two and rendering
1 . ,

themLunrecognizable. (See 'Appendix 2.)

Even though the *BSC s an appropriate model for only

certain real Channels, we use it in this module fol.' two

primary reasons'.' The frrst, and more important reason,

a that the BSC affords the Mcstielementarydiscui-sion

of the theory of error correcting codes available: The

second is'that deipite its limitations, the BSC is"the

.principal model by which code performance is evaluated,

-because.-it is the only one for-which algebraic computations

of code performance aretractable Neverthele.ss, there-'

are other models that are available and.in current' use,

and we describe., one briefly in ApPendix 1.
r

-Of course, it is'dqsirable that a message be
. -

received correctly with high probability,- For example,

if the bi 1 signiftes "by'land" and 0 "by- sea," an

ern* in,t tr1 aAsmission could have. serious consequences!

In our first example we consider -a scheme that substantially

.ro

increases the Yorobabilityofgetting asingle bit of

information ihrough correctly.

-ExamplesE (Repetition, ,with .'majprity" decoaing).
, /

SuppoSe,we wish to transmit-a si.ngle'bit of informatiOn,
- .

that 0 ora I. Instead of a single 0 we,trans mit

the sequenCe (moo-, and instead of 1 we send 1-1111.

These two repetition are the,c7eleworaoin ourcode.
i

The receives Aecodes thellessage majority vote.
. .

. For example, if 10110 is received, the. decoder decides by,

a 3 to vote that,lllll was tratitted,shence the

igtended.bit was 1. This decodingalgotithm Thy Produce

1

-.8 .

N '1
3

. 0

''l

.1, . ..

the correct restilt,` butjit could also produce an error,

.. whiChwould be the,case here if 00000 had beentransMitted,,

and the channel,had corrupted the 1st, 3rd and.4th bits.

Under this scheme, the probabilityof a decoding vTo.j. is
., , . . .7.

ga.. yoll by:

..,

p .:P(E) = probability of 2 bits correct and 3 incorrect

+ probability of 1 bit'correct and 4 incorrect

+ probability.of 0 bits correct and 5 incorrect .

= 5C2(1-p)
2
p, + 5C1(1-P)P

4
P
5.0

p
3
(10(1-p)

2
+ 5(1-p)p + p

2

= p (6p2- 15p + 10)..

Ft If we had simply transmitted the intended bit instead

qf using a code, the_proba'bility of an error would have ,j

been p. Using the cone fqe hare a new probability of error

P(E), which depends on the original p. We tabulate a

few values to show how these probabilities compare:r,

p. . 0.05 0.10 0.15 b.20 0.24
1)

0.30 .0.35 0.40 0.45

P(E)
2: ;

0.002 9.01 0.03 0.06 0.10 0.16 .0.24 0.32 0.41

4
'I

The table shows, the gain we have made qn reducingthe

probability of angerrox--by a factor jpf.10'when p = 0.1,

for example. But we .rave paid' a 'price for ,this VMprovement!

or.to transmit, one bit'of information we now need a block

of. fiVe.,,bit.s. Si n this case We would say that the .4n.ro74-

tion rate, or number of inforMation bits drvided.b)s the
/

number of Message bits, is 1)5. We note also that our-code-

willcorrect as Fany as' 2 errors in a message:- We have

designed a 2-erfor correcting binaryrepefition code of

block,lenkth 5, in which there are two possible codewords,

. 00000 and 11111,
a

L
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Exercises

1. For a 1-efror corre ing binary repetition code of block length.

3, with caewords oop a

a. find a formula fo P(E) in terms of p, ag was done in

Example 1;

b.. compare the valll'es of P(E) and .p

0.2; 0.25, 0.3, 0.35, 0.4, and 0.45;

c. find the information rate./

for p 0.05, 0:1, 0 .15,

S

3. HA6ING'COpES

. In the repetition, code we used redundancy to

increase the probability that a message will- be interpreted
. Icorrectly. The general theory of error correcting codes

addresses the question, "Can-We add redundancy in such a

way than the probability' of error will be decreased to an
acceptable- level and the informat

relatively high?" (The terms ."aCce able" andolreratiVely
high' are imiiieeiset the* must be lef ned by the

communication system desigher light Of available

equipment and 4brismigsion channels.)

.In this sectioil we introduce a Clas

.which redundancy is added more inXeflige

in the simple repetition code. These cod
.

better trade-off'belanceSetween the decre

n 1aVe will remain

ok cod es in

tly than it Was

s,provide a

se in the

e loss.

Its. and

1 error

probablVity ofrerror and the information ra

Also in this section we.aPply some ,cone

reults from lineal- algebra ito obtain practic

'1correcting codes. We perform our calculations over-GF(2),

7--the-field-wIth-two-elements-0-and I., -With-binary add'itkon

and multiplication. -If n.is a positive integer, let
GF(2),

n
-denote the vector space whose elements are the

Oltuples -With entries 0 or 1, and whose scalar field is

se

.1.

5

C

---IGE(2). For examjile, n = 4, the vectors qi,o,i,i)

and (0,0,0,1) 4are two of the sixteen elements of GF(Z.), .

We may now offer a formal definition.of concept
.

ss
which we have already used loosely in describing the

simple repetition code.

Definition. A binary,&ode of block lengthn is simply

'Wsuliset C of GF(2)n. Each element of C is called a

codewoWof the 'cpde.

Elements, of G(2)n, including codewOrds, may be

represented as row vectors', / as column vectors, or. as
-"words,' which pre stringS of

f
O's or lls. Thus, A

symKols

°

(1 ,
0

1 '
1

and 1011

/

.

representthe same element of G(2) 4 . 'We shallbe'some-

what cavalikr in pesiing between these representations,

sand between The terms "vector"and "woi-d."0
,..c

An early impetus to coding theory was provid g by
\..1
x ,,Richard W. Hamming,* when he develkped what are now p led :

Hamming codes., These Are binarypeodes Of- block lengte

2m-1, where m ig s-positive integer. In Examples

we describe the code and a corresponding decodin&

algorithm for the case m =-3.
... / r

/
'Example 2 (A. (7,4

3

) Hamming code**). TO obtain a °.
'

(7,4) Hammi...u...code'C, we first form the 3'x j2 .1), or 3 x 7,

matrix whose Columns are: the binamA representations of the

and.3

*R.W. Hamming did much of his pfoneeking work on coding theory.,
at the Bell.Tele?honc Laboratory, Murray Hill, Nei: Jerseys He is
currently a Professor of Computer Science at the Naval Postgraduate
School, Monterey, Californiat

* *The indefinite article is used because any permutation of the'
columns in the fundamental matrix H in -(3.1) yieldsehnotber (7,4).
Hamming code. °

11
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.
integers from -.1 to 7. Since these representations

in ordei, 001, 010, 011, 100, 101, 110,

which is called'the parity check matrix

0 0 0 ,1 1 1

(3.1) H= 0 1 1 0 0 ], 1 .

1 0 1 0 1 0 1

are,

111, this*matilx,

of 'the code, is:

A quick inspection reveals 4hat the rank of H over

GF(2) is 3. Hence, the 611sRace of H is a 4-dimensional'

sulnpace of GF(2)
7

(see Exercise,2), and this nullspace

is.the set. we takefor C. Thus, a vector x in GF(2) is a

codewprd if and -onlj. if x satisfies the condition = 0

(here 0 denotes .a zero vector), when x is represented as a

column vector. For'example, if

1 -1-

0 0

1 . 0

x = .0 and y =
1

them since,

0:
1

1
1
1
1

Hx = [0 01 and Hy = ,

. 1

0

haVe xeC--.AndyOC. That is, x is a codeword and y is not.

56ince-C is a 4- mensional.vTor space ovei GF(2),

thOe are -precisely 2,,,= 16 codewords in the (7,4) Hamming

So far wehaVeen.Only-one element.pfiC,(the

`.vector x that, as a woad, is represented- by the string'

101'0101) inLthca'aat display, But, we know that 000000.,1,s.

also,ir C, siride'HO =.0 by eiementar);'properties of Matrix:"
. .0.

.

multiPlication. In Exercise 3' you will be challengid to
lf,,, .

nd All thei$0eW, ordS in'this code. ,4, . .. ,/ ,

lop -*-'- .
'In Example 3 below we present a decbding.algorithm

. 4 ' '

for ,the r7,4) Hamming code _of ExaMple 2.. Ii,ttlis tocte,i

fourf of the'seven bits iti.a codeword may be desi n 1,ed as

the information bits. ,The-remaining three Rare. cal/id,the

1 2

.

parity check bits 4.1 simply,, the check bits. In this

case the information-rate is 4/7, For a more general

Jiamming'code,,with m any pcisitive integer, tRe parity

check matrix H will hlve dimensions m x (2m-1) and rank

2m-m-1,and the i orwtion rate will be (2m-m-1)/(2m-i).

Before 'we pr sent Example 3, we offer several exer-

cises and'some a ditional discussion designed to get you

better acquainted wiith the "(7,4) Hamming codes. This '

material will help you understand,the decodirkg algorithm

in Example 3.

"."

Exercises '

2. Consider the

vectors):

1

1

1

x
1
= 0

0

0
0

following elements of GF(2) 7 (regarded as column

x
2
.=

1

0
0

1

0
0

, x
3

=

0
1
0
1
0
1
0

=
4

1

1

1

1

1

J.

1

a. Show that for i = 1,2,3,4, xi is a codeword in the (7,4)

Hamming code of Example 2. (That is,"show that each'xisC,

the nullspage of the matrix H in (3.1).,

b. Show that the set lx1,x12,x3,x41 is linearly indeylendene in

the vector space GF(2) 7 oven the scalar field GF(2).'- (Hence '

.the subspace C has dimension 4; this agrees with our earlier

oblorlAtion,that the rank of gis

3. Use the result of Exercise 2 to

.(7,4) HailMing code.

list all 16 codewords in our.

Although we "now 'have,111--list Of the codewords; the

approach used to oftaln-it,in Exercises 2arid 3 is not

parttOlarly instructive.' We offer better technique

. using elementary matrix manipulation. We first introduce

two additional 3 x

4.3



O 0 0 1 ; 0 0 0 0 Q 0 ; 1 1'1

p.
0110;000 H 0000:011..
1010;000 0000;101

a

1

I
4

r 1 11 -1 1110
(3.5) [0 1 1 = 11 0 11 <

1 0 1 Ll 1.1

S

Then.1)y-matrix addition we have "' (see Exercise 4), we may multiply both sines of Equation
,.

H = H1 + H2'

nel,:`a r any element x. (represented as a column vector) in

GF.C, h,I we av,e 1

,
__

Hx = H
1
x + H 2x.

s.

Thgrefore,, if x c C, the.,nullspaCe of H, then

II'
1
x, + H

2
x -= 0'

f Hlx = -H2x.

since we are calculating in GF(2), we }lave

H
1
x, = H 2x.

let xo,x2., ;,x6 be -the coordinates of x. Then,

:bcause 4the blocks of zeros in. H1,H2, we obtain the

following .redug.,,t,lons:

o o a-,

'(3,.3) H
1
x = 0 1 1 0

1 0 1 0,

1 1 1

H2x [0 1 1 x5..

. 1 0 1
x6

Subs,titute (3.3) into (3.2)' to obtain
.
x
0

(3:24) 0 1 1 x = 0 1 1 0

1 0 1

1' 1 0 0

x6
1 0 -1 0

X

X2

1

2

x3

Equation (3.4) can be solved to obtain x4,x5,x6 in

terms of xo,x1x.x.by a matrix inversion. Since 9'

1,1 - , .

(3.4) by this Matrix to obtain

xr

(3. 6)

x4

x5

x6

1 1 0 0 0 0 1
= 1 -0 1 0 1 1 0.'-

1'1 1 1 0 1 0

x0

x2

x3

6,4

x1 + x2 + x3

X
0

+ X2 + X3

+ X1 + X3

(after two matrix

multiplications),

,Now, the steps used to derive Equation (3.6) are all
reversible (see - Exercise 5). Hence,

/for x =

-
x0

x
1

x2

3

x
4

x5

X6_

E. GF (2)
7

A

. .

x4 :--- xi +' x2 + x3.

(3.7) )is.le C if. and r-ally if xs = xo + x2 + X3

x6 x0 + x
1

+ x3'

We note that xi, xi, xi( may betaken as the check

bits is long as the columns i, j,. 1C form linearly inde-

pendent vectors so that the 3x 3 matrix consisting of

these Columns is invertible.
10
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Exercises.

- 4. Verify that the two matrices (3.5) are indeed mutually inverse.

7s4
5. ghow that if the coordinates of a vector ro GF(2) satisfy the

-, condition in 43.7), then Hx = 0. (The verification may be

accomplished by reversing. the steps4that led to Equation (3.6),

or bxmperforming°the Matrix operation needed to findHx.)

`,6. Again list the 16 codewords (as in Exercise 3), this time using

the condition (3.7).,

7. FOr word x = 1000000 in GF(2)
7

(you may want to represent x

as a column vector),

a. find Hx; and compare.Hx with the individual olumns of H

.(to which column does Hx correspond?);
. ^

1.). list the 16 elements in the coset.C+r.
At

.Carry out the 'instructions of both parts of Exercise 7 for th e

word. y = 0100000.

at.

.

By now have a good understanding of the space C.

Weknowthat of the 27 = 128 elements in GF(217, exactly

16 are codewords; we know which ones they are,-andwe have

a way to identify them (Condition (3.7)), We also haire

good Feeling for the coset structure: we know that the

are eight cosets, each with 16 elements, and that tire-

, glemenfiThrany one of the cosets other than C itself

-can be obtained by choosing a fixed bit (or coordinate)

position andinyerting the bit in that position,for each

element of C. (In Exercise TWe chose the first coordinate,

in Exercise-8 the second-)

We call special,attentibn to Condition (3.7). This

condition shows- that. while lottrof the seven bits in a

codeword may be assignecfras we wish (here the indicated

bli'S are x
0'
x
l'

x
2'
x
3
), there is no choice in the remaining

three. For if we-assign values to xo, x Ohen

6
11

the values of x4, x5, x
6

are then predetCrmined by (3.7).

Thus, each 7-bit codeword contains oiM 4 information

bits, which confirms our earlier observation that the

information rate is 4/7.

We now present a decoding algorithm for our (7,4)

Hamming code, This algorithm is called a maximum likelihood

decoder, although the reason for...this name will not become

apparent until the discussion after the example.

4
Example 3 (Maximum likelihood decoder). Syppote that

a c)eTtain 7-bit codeword c from our (7,4) Hamming Cade C

in GF(2)
7
is transmitted Over a noisy channel, and thatithe

word r = 1001010 is received at the other end. If we

represent r as a column vector, we may calculate Hr, for

H the parity check'matrix

(3.8). Hr = H

1
0
0
1
0
1
0

fl.4 T.
CO] [0]

SinceHr.# 0, the message recipde t knows that r 0 C, and

jpmhence r # c, and therefore an or has been made in '

.---.

transmission. ,What word was originally sent? ./

'.Suppose we repretent the received word r as the

sum of the transmitted codeword c and an error e:

(3.9) = c + e.

I

Now let Hr = s; then also'He--.-gobecaus&

s = Hr = He + Hc= He + 0 = He.

e

Therefore, while the message,repipient clods not knowc or

e, he or she-does know that e is contained in the same

coset as r, i.e., that eeC + r. The problem of determining.

c therefore reduces to that of making an "intelligent"

choice for e from the coset C + r.

e I

i.

12
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In seeking the best choice of e in C.+ r, we first

note that the column vector Hr in (3.8) coincides with the

third column of H. But by elementary properties of matrix

algebra (see also Exercises 7 And 8), we know ajso that

the column vector given by the product

r0-

0

1

H 0
0

0

0

I

also equals the third column of H. Hence the word

0010000 is also in the coset C + r. Moreover, if

we call the number of l's" in a word the weight of that

word, then no single coset may contain more than one

vector of weight one. (This fact can be seen from the

results ofiExercises 7 and 8 and the observation that, as

,vectors, the columns of H are all aistinct.) The word we

". take from the coset C +.r as our choice for the error when

the received word is t = 1001010 is the word

(3.10) e = 0010000.

We' now use Equation' (3.9) to find our "best" guess for the

original c: .

r = ,C e c-

- from which (since e + e = 0000000)-

c= r +'e

-= 1001010 + '0010000'

= 1011010:
.-

.

,We note that our choice of c-can be obtained brdnverting

the third bit in the received word r. - .

.

Now suppose that instead of a, 1rd-(Such As 1001010)

from a coset of C, a codeword c-: haa'been received. Then,
) 4,

o

, d 13

the error c c' would be a codeVord, so the choice of

an error would be made om.0 itself. - In this case )ye
choose the iero word 0000000 for tho error, that isl we

assume that no error occurred, so .we take-c' itseTf as

the choice of c. (The reason for this choice will be

explained after this example.)

We summarize the procedure above as Our! decodin0

algorithm for a 67,4) Hamming code.

Maximum likelihood decoder. Forsa (7,4) Hamming'

coda; when a 7-bit word ris received, we:

i repiesent r as a 7 x 1 column vector;

find the column vector Hr by.matrix

multiplication over GF(2);

test Hr to determine" hether FIT i6 the

zero vector,Ur a column, of H;

choose r tp be c itself if Hr = ON,pr

then,rc C;

IC choose c to be the codeword obtained from

r by inverting the jth bit, if qdr is the

jth column of H.

Exercises!

9. For the (7,4) Hamming code of Example 2 with maximum.likelihood

.decoder, decode each of the following received words r:

a. .1.101011;

b. 0011110;

c. -1010101;

d. .0100000: -

.

immediate questions arise in connect.ionwith

Exatple 3: The first is: since we are trsibg 7-bit code-:

words.to convey 4bits of infofmation, which means an

information rate of' 4/7
?

or 0:57,..what!tdo we again in '

14

19



c.

,
trade for this 43-percent The'second concerns the,

name oil the algorithm, -why Is it called the "maximum gain for several' values of p.

likelihood" decoder?
A

TABLS 1.
We begin with the fiirst. of these'questio . The

in the Probability'of,No Error
basic response is that 5y using the code we reduce the"

probability of error in.convering each 4 bits of informa-

tion. We shall_MeaLrg this gain, as we measpeed the

'corresponding gain ih Example 1, but we etphasi.ze-that in

studying gains, a realistic user, must never Jose sight of ,

. the losses involved.
'

For an analysis of the gain madetby using a (7,4)

Ramming code weuse the-binary-symmetric channel 4§-Ci)

I: model'as in Example In this case, however, itvis more

cdnvenient to study the increase in the probability of

"no error,;" P(N; instead of the decrease in the proba-

bility of-error, P(E).' .
°

If we simply broadcast 4:bies of informatiop across

a asc -vritheut using a code, then 1* would have

P(N)= (1 -p)4. 7Using a (7,4) Hamming codeaWith'maximum

likelihood decoder, we make no error ireciselY'wben .

tither one'Or none of the 7 :transmitted bits is corrupted

.In "tiiis.-case we have

'-.1 : '. ''
i- g

x(3.11) P(N) =.probattility of/ 7 bits correct and 0 incorrect:A.

+pxobability of 6 bits correct and 1 -incorrect

1 6 ."
- (1-0%.4. c (1-p) p

4- 2..,(1-0 ,(1,-.0711p 443).-....

-,, . .,
..

-
polynoillial

.
f (p) = 1 --I-, 4p - llp 2 + bp

3
-. provides:,

of the gain in the Ifrobability or no. QXXer,

. Since f..(0) =,f(1/"* ,7'i.Z'all4.an easy analysis of the

are

.7 6 . _

derivativeAhow thatT(p) > 0 for 0 < p < 2/9.ah44,
ft(p):<, 0 -for 2/9 < p :,< 1,; our best percentage gairii.in_

16-probability of no--erjor-occuip ki/9. \YL
fb/9) ..: 1.41 maximu is .44)and\Al percent :::-

20
- ,

, .

. 1'' % - . ,
"ul,:..

'io '
.

4A

'We tabulate the valeps'of (1-16)4, P(4),' and the

Percent, Gain

(for selected values of p)

percefitage

P ,

(1-04
P(N)

Percent Gain

(f(P)-1).-

'

4.01 - , 0.96 1.00 4 .,

. b' 0.05 0.81 0.96 17

-0.1b 0.66 . 0.85 30

0.15
. .

0.52 7 0.72 37

0.20 0.41 0.58 41

. 2/9 0.37 0.52 41'

0.25 0.32 0.44 41 .

0.30 0.24 0.33 38.
ft.

.

.

0.35. 0.18 0.23 31 - -

0.40 . 0.13 0.16 ''i2

0.45 "- 0.09 0.10 12

: - /

. The table indicates that this coding scheme may vely

appealing, depending on requirements for 'accuracy

4'anIkther factors, tuch'as constraints.on tIleinformation

::;rate. addition; it may be that th4tscheme would be

R:de-§irable for values of p that do not yield maximum

percentage gain in the'in.obab,ility'of no error. For
:

example,.if,.alpOdegree of accuracy is required, then

tiie:increasritlYle probability of no error from 0.96 to

0.998 (iounded 8'1,00 in the table) for p = 0.01 could

le attractive to the user, and well worth the trade in the

information rate:':

The second question indicated above also has an

answ4n\ In the decoding algorithm of Example

'there is a. test to be made, namely a determination ,of
16. 21

,-49
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whether,..thd received word ,r is a codeword or not. If
..

r e C, then the error vector. 6:4i also in C, and the basis'

".,

of our choice of e = 0 for the error is that under' certain'
.... .

-conditions this choice maximizes the probability that the

chosen TectOt is the error vector: Similarly, if r i C,

- the choice of the vector of weight one from the .coset
k. ,,

C + .'4.maximizes. the probabilityrof the error vector (again,

undercertain conditions).

. Let us explore these probabilities, again'using the

BSG model. Whenowe transmit' a 7- bit' ward over a noisy

channel; the error vector component is CY -if the bit is
..

correctly .received, and 1 if the bit is. inv.exted in the

channel. Thus, the error vector may be regarded as the

outcome of 7 repeated Bernoulli trials with probability

p of a 1 at' each rial and 1 -p of a- 0. Hence, for a an

intestr with 0 <.a < 7, the' probability that the error

vector will have weight ,a (i.e.-, a entries ,1 and 7-a

entries 0) is binomial!

(3.12)

'
its weight. When e C, we seek the vector in C which ,

= '7CaPa(k-P)7ra a,=

Thus, the probabilit)) of any error vector dep-6:41 on

. .

maximizes (3.12J.
..

and that no vector

a Vector of 14-eight

then we would have,

1

1

0

0 = H 0 = H
0
0

0

1

0

0

0

0
0

0_

e noteathithe zerg vector is in

f weight 1 is in C. But C cannot .have

either; for example, if 1100000 e C,"

+ H H - H
a

.which would imPiy that the words.1060000 ande0100000 are iA

,the same cosec. -Sinde 1111111e C, we see that -no'vector of

weight S o 6 can be a codeword, either.%;:(These facts are
,

'also known from the rdsults, of Exercises 3 and 6.) Thus,
17

to.maximize the function P(a) in ('3.12), we need consider

only a = 0,3,4,1.- But since 0 < p < 1/2, we need

consider only 0 and 3. From (3.12) we have

P(0) = (1:p)7, P(3) =35(1-p)4p3.

Therdf. e,

(1 -p)3

35p
3

4

and (1-p)
3
/35p

3 > 1 when 0 < p < 1/(14- YM., or 0.<.p < 0.234.

(approximately). Thus, when the yeceived word r is a

codeword, i.e., when r C, the choice of e. = 0000000 for

the error (with the concomitant choice of r for c) is the

choice that maximizes the probability that the chosen

vector is indeed the error'; provided only that- 0 < p < 0234

In practice, real-world digital communication channels

satisfy this modest requiredent, witIvroom to spare:

When' the received word r is not a codeword, we would.

like to know the condition(s) under which the choice of

the vector, of weight 1 from C + r maximizes (3112). Since

-C + r has vectors of weights1,2,3,4,5)and 6 only, and

since 0 < p < 1/2, we must. maximize P(a) in (3.12) for

a =- 1,2,3, only. From (3.12 we haye

q.1) = 7(1-P)6p;.
7

410(2) 21(1- p)5p? -; P(3) = 551(1-p)4p3:
- 4

-it follows that .

P(1) >.P(2) whenever 0 < p < 1/4,- and

p(1) > P(3) whenever 0 < p < 0.309 (approximately).

The-verification is -similar to the one above flithe case

r e C. Therefore, in all cases the algorithm in Example 3

calls for the choice of e that. Will maximize Pca) in (3.12)
,1/4*,

mwhenever 0'< p < 0.234 (approxiately); hence the name?

"maximum likelihood- decoder.",

23
18
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We nate that if the chkInnel noise causes.l error in

e-fr 7-bit message, i.e., inverts 1 bit, then the decoding

algorithm will correct the error. 'Thus, in Examples 2 and
3 weAhave a 1-errOr correcting binary code of block length
7 with 16 possible codewords.

We close this section with an exercise that represents

aft invitation to share the experience of working through a
Hamming code model from the beginning.This model cor
responds to the value 4 of the parameter.m.(we considered
the case m = 3 above). No doubt you Swill find that the

4
calculations rapidly becOme tediousfas m increases;. Larger
models .are best handled by computers..

Exercises -

10. For the (15,11) Hamming code with col MDS of the parity check

matrix in natural order, and with max m likelillOod decoder:

a. find the parity cAck matrix H;

b. -find the information rate;

c. decode the received word 111100101100010;

d. find conditions, corresponding to (3.7) that characterize

codewords in GF(2)
15

;

e. carry out an analysis to compare the gain in the

probability of conveying information correctly under this

coding scheme With the corresponding probability of no Li

error under no coding scheme, which is/ (1 -p)11.

4. MODEL EXAMINATION .

1. For a 3=error.correcting binary repetition code of
,

block length 7; with codewords 1111111 and 0000000,

a. ,find.the'informatfon :rate;

b. decode the received word 0011000;

c. find the prObability of an.error p(ty, using
the BSC model. 19

2. Usipg our (7,4) Hafting code with maximum likelihood

decoder: decode the words:

a. r = 0110011;

b. r = 1101101.

_

In problems 3 and 4 you will need results from
Exercise 10.

3. Using the (15,11) Hamming code of Exercise 10, with

maximum likelihood decoder, decode the words:

4.

a. r = 101010101011111;

b. r = 110111000101101..
A

In'our (7,4) Hamming codet'we found the fallowing
distribution in C: 1 word of weight 0, 7 of weight 3,'
7 of weight 4, 1 of weight 7, and 0 of weights 1,2,5,6.
In the (15,11) Hamming code, find:

a. the number of words of weight 0;

b.. the number .18f words of *eight 1;

c. the number of words of weight 2;

d. '"et least one word Of weight .3 (there are 24--of them).;.

e. the total number of codewords.

5. SOLUTIONS TO EXERCISES-'

1. a. P(E) = probability of 1 bit correct and 2 incorrect-

b.

+ probability of 0 bits correct_an0.-itdoirectl-

c/_ . 2 + 3 6 23 ikl NI) T P . P

p 0.1i _ 'DJ
, ,

__

-ft. - -. 0,,--2 2-0:PO '

.a

4-.., 7 -.

.

1?-.1-E) 0.007..0,020-.0-,028 ".r0:061%0.104 ,0,456 .,-10:21 ft 82--0,3 --0.05:--7

c. 1/3.
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- ';, '-fr 7 -
, 1100110, Y.111111,

- , - 10' Verifliatiodcan be accomplished by "c out the indicated

matilx multiplication to obtain the ;dentity matrix.

4

. 'We periOtta-the Suggested matrix multiplinition:

sc
a

.1/

' 2. a. The verification can be acdomplishedTy carrying out the

matrix multiplication to show that Hx = 0 for i = 1,2,3,4._

For example,

1.
1

00011
Ilx

1
= 0110011

101010'1

1
0
0
0
0

0+1 +1 +0 +0 +0.0 =

+ 0+ 0 +0+ 0+0 + 0

4 +1+0 +'O +o+oo
14

b. Suppose that a linear combination of the x 's vanishes, i.e.,

thSta1 xL 2 2
+a3 x

3
+a4 X

4
= 0. (Note that the d's'are

'a110 oi-1.'and that alkakithMetic is carried out in GF(2),)

Then from the first and second rows we have
. _

e1"-+ a2 + a4.'= 0, and

+ 63. a4 °'

,Upon adding we obtain d2 + a2 =2t3. The third

rosishOs'that,a1= a4, the fift that a2'= al., and the

seVenth'that a4 = 0. Thus, al= 0, i = 1,2,3,4, so

.

x x
2
,x

3
,x

4
are linearly indepehdent.

in.0 biibriaing all possible linear

combinations aixi -1.c(2;24.:a3x5 + a4x4, where the al's may assume -,'

he-valuee 0,1,, 'We list the-'16 elements .in C as words:

6000000,', 1110000; 1001100, 0101010,. 0010110, 0100101, 100611,

994111 oipqqo,

[0 0 1 1,1 1

0 1 1 0 0 1 1

101010L

x0.

x
1

x2

x
3

xi+x2+x3

ko+]q+x3
a

xo+xi+x3

7
x3+x1l-x2+x5rxex2+x5+xo+xi+x3

X1-1-x2ftex2-1-x3+xexl+x3

x
0
+x

2
+x

1
+x

2
+x

3
4.x

0
+x

1
+x

3

,

0

: .

6.. The answers, whicnare given in the solution for Exertige 3, can
C

be obtained by maying all possible assignments for x
0'

x
l'
x
2'

x
3',

then applyingib.p. For exapple,fif we take xo = 1, xi = 1, .

x2 = 1. x5 = 0,./thed-x4,= 1 + 1 + 0 = 0, x5 7 1 + 1 + 0 = 0,

7.'

x
6

= 1.-i.

a. Ex --
-..

\

b. The words

1 + 0 = 6,aI-,,we obtain the codeword 1110000.

'0 ".

0 , which corresponds to the first columnof H.
1 at

-in C + x can be obtained from the codewords by

, inverting the first bit .1.h each word. Referring to the'

solution Dor Exercise 3we obtain the 16 words in C +.x:

*1000000, 0110000', 0001100, 1101010, .1010110, 1100101,

0600011, 1011001, 1001111, 1110611, 0010101, 0101001,

0011010, 1111100, _0100110, ,11111.

,8. a. Hy = 11, which 'corresponds to the second
0

lump of H.

The words'

inverting

0100600,

21 1108011,

hum,'

. \ _

. ,

in C + y cabe ohteined from th codewords by

Ehe second bit each word:

1010000, 1101100, b001010, 10 10110, 0000101,

6111001, 01q111, 0010011, 10101, 1001001;

0011100, '1000110, 1011111. J. 27 .2

4



9. a. 1101001

b. 0010110

c. ° 1010191

d. 0000000

10. a.

b.

c.

d.

00060001 1.j. 1 1 1 I 1
0 0'0 1 1 1 1 0 0 0 0 1'1 1 1

011001101011001-1
1 0 1 0 1 0 1 0 1 0 1 0 1 0.1 .

11/15.

111100101100000.

Some care must be taken in using the technique that resulted

in Condition (3.7). F4 example, if we try to echo the

method to find the last 4 variables in terms of the first 11,

we obtain a singular matrix., We must select a set of

unknowns with a matrix of rank 4. There are many choices,

of which, one is the following:

'00000001 0000; 1 1 1-

0 0 0 1 1 1 10 000 01111

I oll
1o1

H1 011.00110 000'0
1 01°,01010 0000

0 0 0 Q 0'0 0 0 i 1 1 1 1
.
o 0

0 0 0 0,0 0 0 0 0 0 0 1. 0 0 0
H2

0 0 0 0."0',00 '0 olio lo 0,0
b0000,000 iolo o 0 0

If x is a codeword then, as in Equation (3;2), when we

,representx as a column Vector we find H
1 . 2

If we

denote. the bits, (or the coordinates) of x by .x041, .

we abtaAn a resat similar to' EquatiOn (3`.4):

z - - -

1 1 1
0 0 0
0 1 1

1

.1 0 1

1

1

0

.0

x8

x9

x10

x 3._

Ala

0 0 0 0 0

0 0 0 1 1

01 1'0 0

1 01 0 1

0 0

1. 1

1 1

0 1

1

0

0

0

1 1

1, 1

0 1

1 0

1

1

1

1

_
x0

xl

x2

x3

x4

x5

x6

x7

x12

x13

x14

Since

1 1

0 0

0 1

1 OA-

we obtain

x8

x9

x10

x11

1 1
0 1
1 0

0

-1

ori,,il'oo
1 0 1
1 1 0
0 0 01

1 1 1 0
1 1 0 1
1 1 1

0 1 0 0

0,'1 1 0
/ 0'0 1

1 11

1 0 1
1 1 0

'1 1 1 0

0 1 1 1

x0

x2

x3

x4

x5.

x6

x72
x13

x14

Therefore, x is codeword if and only if

x8 x + x2 + x3 + x4 + x7 + x13 + xi4._

x9 x0 + X3'4. x5 + x7 ÷ x12 + x14

x10 x0 4" xl 4" x3 '4" x6 4" x7 '4" x1.2 + X134.

x13: 2C 2C4 "5 "6 + X2 x1.3 "14

_

29

4

Lt
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e. Using,thp code, we have for the probability of no error:'

P(N) - probability of 0 bits incorrect and 15 correct
+ probability of 1 bit incorrect and 14 correct

(1-p)15 + 15(1-p)14P,

p_p)11(1 1113 - 39p2 + 41p3. - 14p4).

The following table shows the gain for a few values of p:

p 0.001 . 0.005. 0.010 0.05

(1 -p)11 0.989 0.946_ 0.895 1 0.569

P(N) 0.99990 0.9975
1

0.990 0.829

6. 'ANSWERS TO MODEL EXAMINATION

1. a.

b.

a.

b.

1/7;

0000000; p4(35 - 84p + 700

0110011;

1101001.

3. a. 111010101011111;

1,`'`
b. 110111000101101.

a. 1;

b. 0;

. 0;

- 20p3). 1.

a

.,-,:l._"Use_the,result_of_Exereisn_10dr___Lor example, if we assign

x0 1, and xic .(i for k = 1,2,3;4,5;6,7,12,0,14; _then
x`` h- 0 *x

9 1
x-

0
x
11

b, arid.we Obtain the codeword

_100000000110000;

11 or 2,048..

APPENDIX 1

AN ALTERNATE TO THE BSC'

We describe briefly a model that is applicable in

some situations where the BSC mddel fails. Note first.

_that'the psc model may be represented as a finite Markov

chain witUftwo states, an.4rror state" E.and a Vcorre

state" C, with matrix o transition probabilities

C E
p

E p 1 -p

t

byn

A graph- theoreticemodelis also useful in visualizing

this chain. -.The states maybe represented as vertices,

and the transition probabilities are shown on the edges.

1-p .

I/-
. : The Markov 'Chain approach cant be used to obtain a

model which represents reasonably 'well some channels in

'which,errors occur in bursts, for example, certain HF
. . -

channels., In this model there are.thiee states': CG is
,

a "guard state," and,-the transmission is /rror* free while

the system is in this state; the,remainini states CN and

r

E are "burstyL(loisy) _states: The matrix_of transition

probabilities is given by



C
G

C .1-n
G '3

C
N

E -1-pi-q1

P

:,

CN

0 ,

1-p2

q1

P3

P2

p1

channels accurately. However, there are two major

difficulties. First, as the number of states increases,

the physical significance of these states may be difficult

to ascertain; and, second, even in the case of the 3-state

model, computation of P(N) in Table 1 in terms of p
12

p
22

p3, qi is quite complicated.

this chain may also be repirsented as a graph.
a

qi

This model can be interpreted in a straightforward
way. For example, suppose that the system is in state

C
G, so that error-free. transmission'is dri progress. If

p3 is small, then there-is a 1igh'probability of continuing

. in state CG; but it is also possible to make an error. We

move to the error state E with probability p3, and from

this state it is possible to continue in state E, return

to state C ',or enter the error-free state CN. Analyti-

cally, the. diffefence between statesC and C
N
"is :that p3

is Much.sMailer than p2.. Thud when the- channel is in state

GP has a , tendency to remain .there;..When the error

burst is over, we move back to state
G

for another period

of error -free transmission.

. This 3,-state MfarkOv model can be generalized to a

model"with any numberof states". Increasing'the number of s

,sratetto'5;'say,withthrte--efref=freedate-W46d:tVio-----
error states May,enable tomodel-a'wider class of

_
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The customary method for constructing an analog to

Table 1 for a multi-state Markov model is to use a Monte

Carlo approach, that is, to generate an "error stream" of

0's and l's according to the model. The error stream is

then divided into n-bit blocks and decoded. If decoding

produced any.result othet than 00...0, the all-0 block,

,then a decoding -error hai occurred.

It is worthwhile to notethat if errors tend to occur

in bursts,then a code, such-as a Hamming code, which is

designed to Correct single, isolated errors may be'worse

than useless, for two reasons. First, most of the time,

while the channel is in the guard state, no errors occur

at all, so that all the code is doing in this state is

adding unnecessary redundancy; and second, when errors do

`occur, the c1tances are that any block with at. least one

error will contain more thari one, whiCh results,in a de-
.

coding error, thus producing even more errors. Therefore,

channel consideration's are very important in designing

. error, correcting codes. Our nexf two modules on error-

correcting codes will contain some examples:of codes that

are-designed to correct burst errors,
.

I
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STUDENT FORM

Request for Help

'Return to:
.EbC/UMAP

55' Chapel St.

Newton, MA 02160

.

T-f,you have,trouble witbAt speCific part of this unit, please fill
-----oWt-his 661 and take It to your instructor for assistance. 'The information

be10.,the author to revise the unit.

i!'781<kr gime

Page

k 0 Upper

()Middle

C) Lower - .

Unit No.

,

SectiOn

Paragraph
,

-

Description of Difficulty: (Please be specific)

bR-

Model Exam
Problem No.

Text
Problem No.

oP"

'4°

Instructor: Please indicate your resolution of the:difficulty Al this box.
o

CorreCtedlerrors inmaterials. List corrections here:

Gave student better explanation, example, or procedure
Give brief outline of, your addition here: . 1°,

1'

an in unit:,

Assisted student in acquiring general learning and-problem-solving
skills (not usfng examples-froi-tas unit.l',

Instructor's Signature

Please use reverie if necessary.



Name 400

Institution

Return tq: .
STUDENT FORM 2; EDC/UMAI'

55 Chapel St.'
Unit questionnaire

Newton, MA 02160
-.-.

Unit NO., Date

Course No.

Check the choice for each question that comes closestAto your petsonal opinion.

How useful was the amount of detail in the unit? *,

Not enough.detail to understand the unit
Unit would have been clearer with more.deteii
Appropriate amount of detail
Unit was occasionally too detailed, but this was not distracting
Too much detail; I was often distracted

.2. How helpful were the' problem answers?

Sample solutions were too brief; I could not do the intermediate steps
Sufficient information was given to solve the problems
Sample solutions were too detailed; I didn't deed them

3. Ekcept for fulfilling the prerequisites, how much did you use other sources (for
example, instructor, friends or other books) in order to understand the unit?

A Lot Somewhat, A Little .Not at all

k ; .

4. How long was this unit in comparison to the amount of time you generally spend on
a lesson (lecture and homeworksignment) in a typical math or science course?

Much Somewhat !bout
-

-Somewhat Much

Longer Longer the Same Shorter Shorter

5. -Were any of the following_ parts of the unit cdhfusing or distracting? (Check
as many as apply.)

Prerequisites
Statement of skills and concepts (objectives)
Paragraph headings
Examples
Special Assistance Supplement (if present)

Other, please explain

6. Were any of the following parts of the unit particularly helpful? (Check as many

as apply. )

Prerequisites
Statement of skills and concepts (objectives)
Examples
:Problems

Paragraph headings
Table of'Contents
.Special-Assistance Supplement (if present)

Other;, please explain

?lease deaCtibe anything in-the unit-that you did not,"particulitly like._

;

Please describe anything that you found particularly helpful. (Please use the back of
.

this sheet if you need more space.)


