
	DOCUMENT RESUME
ED 218.099	SE 037 899
AUTHOR TITLE	Kleinbaum, David G.; Kleinbaum, Anna Adjusted Rates: The Direct Rate, Applications of Statistics to Demography. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 330.
SPONS AGENCY PUB DATE GRANT NOTE	Education Development Center, Inc., Newton, Mass. National Science Foundation, Washington, D.C. 79 SED-76-19615-A02 43p.
EDRS PRICE DESCRIPTORS	MF01 Plus Pôstage. PC Not Available from EDRS. Answer Kéys; *College Mathematics; Demography; Higher Education; Instructional Materials; *Learning Modules; *Mathematical Applications; *Problem Solving; *Statistics; Supplementary Reading Materials

ABSTRACT

The document notes that in health and medical research the need to compare rates or proportions for some event can often occur. It is the module's goal to illustrate the conditions necessary for recognizing potentially misleading situations, and to show how to cope statistically with such situations. The four sections show: 1) when to adjust rates; 2) what adjusted rates do and how to compute the directly adjusted rate; 3) how to interpret adjusted rates; and 4) how to compute and interpret directly adjusted rates when adjusting for factors other than age. Both exercises and a posttest are presented, with answers to both provided. (MP)

021809

18 AN

David G: Kleinbaum Department of Biostatistics University of North Carolina Chape1 Hill, NC 27514 • Anna Kleinbaum 307 McCauley Street Chapel Hill, NC 27514 TABLE OF CONTENTS INTRODUCTION 1. WHEN TO ADJUST RATES . . . WHAT ADJUSTED RATES DO AND HOW TO COMPUTE THE DIRECT RATE INTERPRETING ADJUSTED RATES REVIEW USING A CONFOUNDING FACTOR OTHER THAN AGE 5. POST TEST RECOMMENDED FOLLOW-UP ACTIVITIES APPENDIX: A STANDARD MILLION . . 8. ANSWERS TO REVIEW SECTION QUESTIONS . . ANSWERS TO IN-TEXT QUESTIONS 1-20 . . . LO. ANSWERS TO POST TEST

. . . 23

ADJUSTED RATES: THE DIRECT-RATE

Intermodular Description Sheet: UMAP Unit 330

Title; ADJUSTED RATES: THE DIRECT RATE

	Anna Kleinbaum
Department of Biostatistics	307 McCauley Street
University of North Carolina	Chapel Hill, NC 27514
Chapel Hill, NC 27514	

Review Stage/Date: III 9/28/79

Classification: APPL STAT/DEMOGRAPHY

Prerequisite Skills:

You should be able to work through this package successfully without having formally taken a first course in biostatistics, although you will likely be more familiar with the terminology used and have more insight into the subject matter of this package having had such a course. Regardless of your formal background in biostatistics, you should have the following knowledge as prerequisites:

- 1. Experience in reading and constructing tables and graphs.
- 2. Ability to make accurate mathematical calculations either by hand or by calculator.
- 3. Ability to identify and compute a rate or proportion (p)
- 4. Ability to convert a rate in any base to a proportion and . vice versa.
- 5. Ability to define the following terms (refer to these definitions if you have trouble later):
 - a) population the totality of people defining a group of interest at the time of interest.
 - b. test population a population for which you have a question of interest (for which you wish to test something).
 - overall rate any rate describing or summarizing experience in an entire population (as opposed to a specific subgroup) for some characteristic of interest.
 - d. crude rate an overall rate defined by the formula: number in entire population with characteristic of interest during the time of interest/total number in entire population during the time of interest.
 - e. specific mate a rate for a specific subgroup of a population of interest (example: age group 10-20 years).
 - f. distribution a table or graph which shows the (relative).
 - , frequency of persons in a population distributed into nonoverlapping categories of a variable of interest.
 - g. population-at-risk (PAR) the number of people in a population used in the denominator of a rate.
 - h. a standard million a population (e.g., U.S. 1960) whose numbers in specific categories have been changed so as to a total one million while remaining in the same relative proportions.*

· · · · · ·

*If you would like more elaboration with an example, turn to Section 7, Appendix.

Output Skills:

This programmed instructional package will show you when and why you need to adjust rates and how adjustment by the direct method is done. You will learn how to adjust for factors other than age and how to interpret the results. Health-related examples are given and you are encouraged to learn by solving problems. When you have completed this program you will be able to:

1. State the conditions necessary for rate adjustment.

- 2. Use these conditions to evaluate whether such adjustment is appropriate.
- 3. Given the necessary basic information, compute the direct adjusted rates for two populations of interest.
- 4. Interpret the results of your computations as to the comparison of the overall mortality or morbidity experiences between the two populations of interest.
- 5. Compute and interpret adjusted-rates when the confounding factor is a variable other than age:

Estimated Working Time: 12 - 25 hours.

Intended Audience: Health salence students or professionals studying epidemiology and/or introductory biostatistics; students of demography.

Other Related Units:

C 1979 EDC/Project UMAP. All rights reserved. MODULES AND MONOGRAPHS IN UNDERGRADUATE MATHEMATICS AND ITS APPLICATIONS PROJECT (UMAP)

• The goal of UMAP is to develop, through a community of users and developers, a system of instructional modules in undergraduate mathematics and its applications which may be used to supplement existing courses and from which complete courses may eventually be built.

The Project is guided by a National Steering Committee of mathematicians, scientists, and educators. UMAP is funded by a grant from the National Science Foundation to Education Development Center, Inc., a publicly supported, nonprofit corporation engaged in éducational research in the U.S. and abroad.

PROJECT STAFF

,	
Ross L. Finney Solomon Garfunkel Felicia DeMay Barbara Kelczewski Paula M. Santillo Donna DiDuca Zachary Zevitas NATIONAL STEERING COMMITTEE	Director- Associate Director/Consortium Coordinator Associate Director for Administration Coordinator for Materials Production Administrative Assistant Secretary Staff Assistant
W.T. Martin Steven J. Brams Llayron Clarkson Ernest J. Henley William Hogan Donald A. Larson William F. Lucas R. Duncan Luce George Miller Frederick Mosteller Walter E- Sears	M.I.T. (Chair) New York University Texas Southern University University of Houston Harvard University SUNY at Buffalo Cornell University Harvard University Harvard University University of Michigan Press Indiana University SUNY at Stony Brook Mathematical Association of America
MAP STATISTICS, PANEL	
Roger Carlson Earl Faulkner Tom Knapp Feter, Purdue Judith Tanur Richard Walker Douglas A. Zahn, Chair	University of Missouri, Kansas City Brigham Young University Rochester University University of Kentucky SUNY at Stony Brook Mansfield State College Florida State University
This module use doubload	under state and the second to the

This module was developed under the auspices of the UMAP. Statistics Panel. The Project would like to thank Douglas A. Zahn, Chairman, and, Judith Goldberg, Charles H: Goldsmith, Donald Guthrie, Duane A. Meeter; and Janet Wittes for their reviews of this unit.

This material was prepared with the support of National Science Foundation Grant No. SED76-19615 A02. Recommendations expressed are those of the author and do not necessarily reflect the views of the NSF, nor of the National Steering Committee.

ADJUSTED RATES: "THE DIRECT RATE

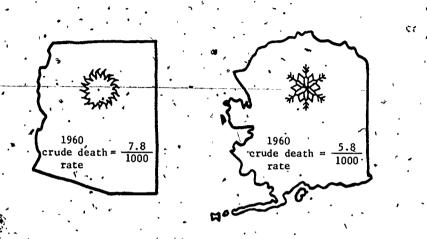
INTRODUCTION

If you ever become involved in health or medical research, whether through actual experience or through reading the literature, you are very likely to encounter the need for a comparison of rates or proportions for some event or characteristic across different populations of interest. If these populations (e.g., different communities, treatment groups, exposure groups) are similarly constituted with respect to factors (such as age, sex, race) associated with the event under study, there would be no problem in comparing simple crude rates as they stand. However, if the populations are not similarly constituted, a straightforward comparison of crude rates may be misleading.

This package is intended to teach you (1) the conditions necessary for recognizing such potentially misleading situations; and (2) how to cope statistically with such situations through a procedure which will remove the effects of additional factors. (such as age) on the comparison of interest. In general, we call this procedure rate adjustment. Rate adjustment uses several different methods; in this package, you will learn how to use the direct method.

This package is divided into four sections as - follows:

1., When to adjust rates.

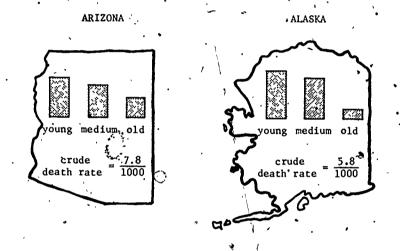

2. What adjusted rates do and how to compute the directly adjusted rate.

" 3. How to interpret adjusted rates.

How to compute and interpret directly adjusted rates when you are adjusting for factors other than age.

. WHEN TO ADJUST RATES

Briefly examine the illustration which compares the overall mortality of two states in 1960.



You might have guessed that the two states pictured above are Arizona (on the left) and Alaska (on the right). If you were a health researcher interested in the effect of climatic conditions on mortality, you might decide to 'study deaths in these two states. This would allow the comparison of mortality in a cold, damp climate with mortality in a hot, dry one.

Look at the coude death rates for 1960 in these two states: Alaska's crude death rate = $\frac{1313}{226167}$ (death(s)) = .0058 or 5.8 per 1000. Arizona's crude death rate = $\frac{10121}{1302161}$ (deaths) = .0078 or 7.8 per 1000.

You might be surprised, considering the climate, to find that Alaska has the smaller rate. Question 1. What state would you have expected to have had the *higher* rate if climatic conditions were generally associated with mortality?

A little knowledge of the populations of these states might cause you to adjust your interpretation. Look at the age structures of the two states as represented in the following diagram.

Alaska, a newer state, has tended to attract a younger population. The dry, warm climate of Arizona has, on the other hand, attracted many older persons. In fact, the difference in crude rates can perhaps be at least partially explained by the simple fact that Arizona has an older population than Alaska. We should consequently expect relatively more deaths in Arizona simply because there are relatively more old people there, and old people are at a high risk of dying.

-9

The presence of a variable such as age in this situation is one of the conditions necessary for computation of adjusted rates. We call such a variable a confounding factor because it confounds or blurs the comparison of interest. In other words, the difference we have observed in grude rates can be explained at least partly by the difference in age structures.

Question 2. True or False. If the two crude rates had been/exactly the same, this would give strong evidence to suggest that climatic factors have no effects of overall mortality.

A. Four Conditions

Although the presence of a (1) confounding factor is the primary condition for rate adjustment, there are in all, four basic conditions for rate or proportion adjustment:

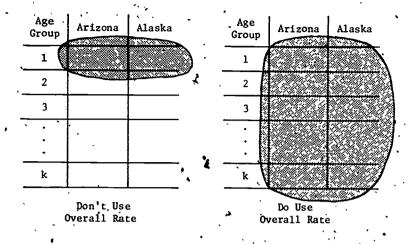
• (2) · You are interested in a comparison (not a single population).

(3) The event or characteristic of interest (in this case death) is defined for purpose of analysis as a rate (e.g., death rate) or proportion (not the mean of a continuous variable like blood pressure where other kinds, of adjustment are sometimes used).

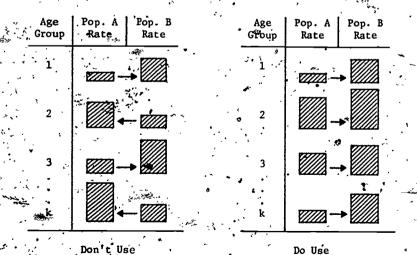
(4) Your comparison involves overall rates (no
'specific rates).

Note that all four conditions have to be satisfied to justify adjusting rates. And this is certainly true for the example we have been considering.

Question 3. True or False. If you had been interested in comparing mean number of physicians per county between the two states (instead of comparing death rates), you would need to do rate adjustment. Question 4. True or False. If for the above example you were only interested in comparing the mortality rates for persons in the age group 55-64, you would need to adjust rames with respect to age. Give two reasons for your answer.


·B. . Should Overall Rates Ever Be Used at All?

An epidemiologist named Woolsey (1959), expressing an opinion shared by several other researchers, has pointed out that "specific rates are essential because it is only through the analysis of specific rates that an accurate and detailed study can be made of the variation among population classes."


Nevertheless an overall rate can be quite useful as a convenient summary of the information in an entire schedule of specific rates. This is essentially because making interpetations can become difficult when the number of specific ratos is large. Also, a single rate is especially convenient when additional variables of interest need to be brought into analysis at a later stage.

Howevor, there certainly are situations when use of an overall rate would be inappropriate or at least of questionable value. The criteria for judging when an overall rate should not be used are:

Interest in a Specific Group. The comparison of interest is clearly restricted to'a specific group. (Note, again, that if your specific group is still very broadly defined, then age may still be a confounding factor and you may still need to adjust your rates.)

Inconsistency. There is noticeable inconsistency in the direction of age-specific differences; i.e., specific rates are noticeably higher for one population at certain ages but noticeably lower for this population at other ages... (Note that when this reason is valid, no single overall rate for each population would pick up the age-specific differences. Rather, use of an overall rate would tend to mask such differences.)

Overall Rate

Don't Use Overall Rate The following example illustrates use of the second criterion. Look at the following table of age-specific death rates for Alåska and Arizona in 1960:

ARI	CONA (1960)		AL	ASKA (1960)	
Age	Death Rate/1000	-	. Age	Death Rate/1000	-
< 1	33.9	•	<1	. 43.1	
1-4	1.8	, ,	1-4 २	2.1	
5-14	0.5	•	5-14	0.9	. *
15-24	1.5	9	15-24	1.4	,
25-34	1.9	•	25-34	1.8	•
35-44'	3.3		35-44	3.9	
45-54	7.7		45-54	9.1	
55-64	· 17.5		55-64	• 16.4	
65-74	35.9	•	65-74	39.8	
75-84	78.3	•	75-84	105.6	
85+	165.0	۰.	- 85+	142.9	
	. 7.8	•	- <u>-</u>	5.8	
			I		

Note that there is only one age-specific category (i.e., 85+) in the above data for which the rate for Arizona is noticeably higher than the corresponding rate for Alaska. Consequently, it is reasonable to conclude that the direction of the age-specific differences is more or less consistent for these data so that using an overall rate would be meaningful.

Question 5. Suppose you wished to compare two populations with the following mortality rates:

•		Population A	Population B
`•	Young •	13.2/1000	10.3/1000
, •	Qld	9.5/1000	15.9/1000

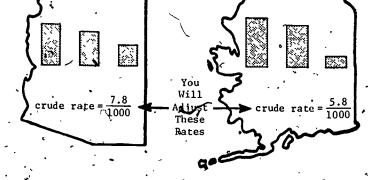
True or False. An overall rate is appropriate here.

2. 🧝 Review Questions

Suppose you were interested in comparing typhoid fever attack rates resulting from an epidemic in two adjacent communities. Suppose, also that you knew that race was associated with typhoid attack rate in the general population. Further suppose the data look like this:

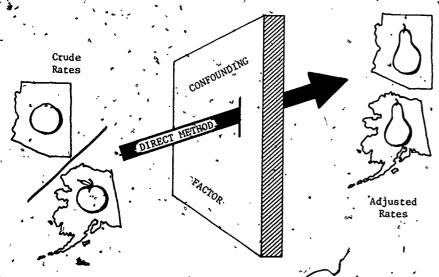
	•	Community 1 Attack Rate/1000	Community 2 Attack Rate/1000	
•	Blacks	2.18	- 1.96	3
	Whites	8.99	8.81	•
-	Overall Crude Rates	• 5.04 •	7.80	1

- 2. The confounding factor in the above example is _____?
- 3. Circle as many of the following terms as are appropriate that describe the characteristic of primary interest (i.e., the variable about which a comparison is desired)?
 - a. confounding factor c. attack rate
 - b. death rate d. mean of a continuous variable
 - a. Are race-specific rates consistently higher for one community over the other community? Yes No Y
 - b. Does your answer to 4a support the use of an overall rate? Yes No
- 6. True or False. If the rate for Blacks in Community 2 were 5.2 instead of 1.9 you should adjust rates. Why?


Check your answers on page 28.

2. WHAT ADJUSTED RATES DO AND HOW TO COMPUTE THE DIRECT RATE

A. ~ What Adjusted Rates Do


Now that you have learned when to adjust rates, you are ready to learn how to perform this adjustment. Let us return to the Arizona-Alaska example:

Recall that this example involves' a comparison of overall rates in order to draw conclusions about the possible effects of climate on the force of mortality. In making this comparison, we must remove the effect of the confounding factor (age); so that any difference in rates that is actually found can not be explained by age differences' in the two states.

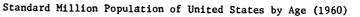
The method of adjustment to be treated in this program is called the *direct method?* The *direct* method gets its name because it faces the problem of adjustment head on. (Other methods of adjustment are discussed in . the references.) It does this by forcing the comparison of the two populations to be made on the basis of a common age distribution. In other words, the confounding factor is directly removed by the substitution of a common age distribution for the separate age distributions so that both populations may be compared as if they had the same age structure.

From the above illustration, it can be seen that because of the confounding factor, comparing crude rates is like comparing different kinds of fruits (e.g., orange and apple), whereas comparing adjusted rates is like comparing two fruits of the same kind (e.g., two pears). The direct method removes the confounding factor by substituting a common age distribution for the separate age distributions of the two populations.

The two basic pieces of information required for this task are:

a. The (age) specific (death) rates (or proportions)
f.for each test population.
b. A standard population.

The information for this example is presented in the two tables on the following page. The age-specific Tates for Arizona and Alaska are given in Table 1. A standard population (1960 U.S. standard million) is given in Table 2.


TABLE I

Populations at Risk (PAR) and Age-Specific Death Rates (p) for Arizona and Alaska by Age (1960)

100	ARIZ	ona	- ALAS	SKA
AGE	PAR	р	PAR	` p
、<1	. 34599	.0339	. • 7101	.0431
1-4	132367	.0018-	27092	.0021
5-14	285830	.0005	• 46110	.0009
15-24	186789	.0015	40722	.0014
25-34	169878	.0019	39672	.0018
35-44	17-3029	.0033	31981,	,0039
45-54	136573	.0077	18957	.0091
÷ 55-64 ·	92871	.0175	9146	.0164
65 - 74	63634	0359	3745	.0398
75-84	22499	.0783	1354	1056
85+	4092	.1650	287	.1429
<u> </u>		•	<u>، ،</u>	
TOTAL	1302161	.0078 -	226167	.0058

- TABLE 2

	• •	· · · · · · · · · · · · · · · · · · ·		
•	AGE	PAR		
	<1 1' 1-4 5-14- 15-24 25-34 35-44 45-54 55-64 65-74 75-84 85+	22883 89812 196727 133591 126559 133515 114381 92650 60158 24933 4791		
Ň	TOTAL ,	× 1000000		

Question 6. Look at Tables 1 and 2 to answer the following:

a. What is the 65-74 death rate for Arizona?

b. What is the 35-44 population-at-risk for the standard?

c. What is the 35-44 death rate for the standard?

Notice that the difference between the kind of information given in Table 1 and Table 2 is that Table 2 does not contain any age-specific or even total crude death rates. This was a purposeful omission because standard rates are not needed (and sometimes not even Known) for the computation of the direct rate. Actually, the age-specific PAR's given in Table 1 are not formally needed either and we have put them in only because this is usually done for completeness and to give a sense of the difference in age structures.

The standard population is that common distribution referred to above whose primary purpose is to serve as a reference group or 'stand-in (substitute) for the different age distributions of Arizona and Alaska. The choice of the standard depends upon the particular situation and is in some sense always arbitrary. The standard-used here was the U.S. 1960 standard million because this latter group, was a reasonable common demominator for the populations of the two states. This choice also has the advantage of being equally good for any other state we later decide to compare with both Arizona and Alaska ... Generally, the standard is chosen to agree as closely as possible with the populations of interest. (Often; indeed, the average of the two populations is used as the standard.). Nevertheless, as you would hope, the choice of the standard usually (although not always) does not ... affect the direction of the results of your comparison.

<u>Question 7</u>. What choice of standard population would; you suggest for comparing rates in England and Wales in 1970?

Question 8. Which of the following populations would be most appropriate for comparing 1974 death rates in two North Carolina counties?

a. 1974 U.S. pop. b. 1974 N.C. pop. .c. 1960 N.C. pop.

Question 9. Which of the following populations would be *least* appropriate as a standard for comparing 1974 death rates of whites and blacks in a given N.C. county?

a. 1974 N.C. pop. c. 1970 pop. of the given county b. 1974 pop. of the given county d. 1970 U.S. pop.

To summarize, the basic idea in computing a direct rate for a test population (e.g., Alaska) is to compute what the (hypothetical) crude rate would be for the test population if it had the same age structure as the standard (e.g., United States). When this is done for two test populations using the same standard, the confounding factor is removed because the two populations "are thus being treated as if they had the same age structure.

Note that since neither Alaska nor Arizona actually has the same age structure as the United States; their direct rates (using the same standard) are hypothetical. Allowever, although the adjusted rates are hypothetical, they are nevertheless comparable.

B. How To Compute the Direct Rate

You will now learn how to compute the direct adjusted rates for Arizona and Alaska using Tables 1 and 2. The procedure for computing the direct rate for any given test population involves three steps:

- Step 1: Compute expected cases for each specific group.
- Step 2: Compute total expected cases.
- Step 3: Compute direct rate.

Now, in the Arizona-Alaska example; the cases we are considering are deaths. The total expected cases refer to the hypothetical number of deaths in the test population (e.g., Alaska or Arizona) that would be expected if the test population had the same age structure as the standard. To get the total expected cases, you must sum over all groups the expected cases for each specific group.

Tables 1 and 2 are repeated here because they are both needed to compute Step 1: Populations at Risk (PAR) and Age-Specific Death Rates (p) for Arizona, and Alaska by Age (1960)

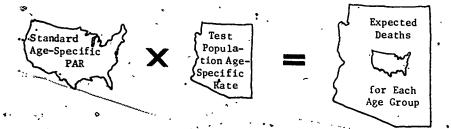

	· · ·	ARIZONA			ALA	SKA
: 	AGE	• PAR	р		PAR	`P
د ۲	< 1 **	34599	.0339		7101	.0431
•	1-4	132367	.0018		27092	.0021
• •	5-14	285830	.0005	r I	46110	.0009
	15-24	186789	.0015	11	40722	.0014
	25-34	169878	.0019	11	39672	:0018
	35-44 .	. 173029	.0033′	11	• 3 1981	. 0039 ·
	45-54	136573	.0077	 -	18957	.0091
	55-64	92871	0175	11.	9146	.0164
	65-74 ·	63634*	.0359	11.	3745	.0398
	75-84	22499`	.0783	11	1354	.1056
	85+	4092	1650		['] 287	.1429
	EOTAL	1302161	.0078		226167	.0058

TABLE 2

Standard Million Population of United States by Age (1960)

	AGE	PAR
	<1	22883 •
,	1-4	89812
	`5–14	196727
	15-24	133591
	[•] 25–34	126559
	35-44	133515
•	· 45-54 -	114381
-	55-64	• 92650
	[•] 65–74	60158,
	75-84	24933
73	85,+	4791
·. —	TOTAL	1000000

: Find the expected number of deaths for each age group by *multipbying* the standard population PAR by the test population rate for each agespecific group, e.g.,

For an example of Step 1, looking back at Tables 1 and 2 to get the data, you can multiply as follows to get the expected deaths for ages 5-14 in Arizona:

196727 × .0005 = 98 (rounded off).

(Note that conventions about rounding off vary. For simplicity we shall use rounding to the nearest whole number in the Arizona-Alaska example, but in later examples we will carry one or two decimal places—even though that will seem to involve thinking about fractions of deaths or of disease cases. In practice it is usually sensible to carry at least one more decimal place in intermediate calculations than you plan to use in the final result.)

Question 10. Using Tables 1'and 2, find the expected deaths for ages 55-64 in Arizona.

Question 11. Looking back at Tables I and 2, how many expected death calculations must be carried out in order to compute direct rates for Arizona and Alaska?

In order to perform more conveniently all of the necessary computations required for the direct method, the basic information of Tables 1 and 2 is rearranged into the following table. The unnecessary information is left out of this composite table and most, but not all, of the calculations have been performed.

	Т	ABLE '3			•	
Standard Comp	outing Forma	t for Din	rect	Rate	Adjustment	<i>,</i> •

	STANDARD	ARIZONA			LASKA
	PAR	р	E	P.	Ē
AGE	Col. 1	Col. 2	Col. 3 = 1 × 2	Col. 4	Col. 5 = 1 × 4
< 1 7	,22883	.0339		.0431	
1-4	89812	.0018		.0021	<u>ہ</u> 189
5-14	196727	.0005	98``	0009	· 177
15-24	133591	.0015	200 ^ک	.0014	18,7
25-34	. 126559	.0019	240	.0018	228
35-44	133515	.0033	· 441	.0039	521
45-54	··114381	.0077*	881	.0091	1041
55-64	92650	.0175.	1621	.0164	-
65-74,	60158	.035,9	2160	.0398	2394
75-84	24933	.0783	1952	.1056	2633
85+	4791	.1650	. 791	.1429	685
Total	1000000		*		

The main difference between Table 3 and, Tables 1 and 2 is that space is provided in³ Table 3 for the results of Step 1, expected deaths (E). You will be asked to construct a table like this later.

Question 12.	Fill in the remaini	ng blanks of expecte	ed deaths for
Arizona in Tab	le 3. You may ûte	the following space	for calcuations;
Arizona <1:	×		· · · · ·
Arizona_1-4:	×	* · · ·	.
	'ey.w.		

<u>Step 2</u>: Compute total expected deaths by adding expected deaths over all age-specific groups.

Step 2 is easy because all you have to do is add_the expected deaths computed in Step 4 over all age groups (separately for Arizona and Alaska).

Question 13. Compute the total expected deaths for Arizona.

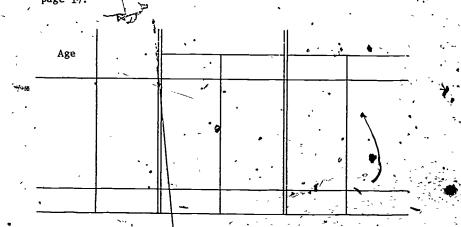
Step 3: Compute the direct rate by *dividing* the total expected deaths by the total standard population.

Step 3 yields the two (direct) adjusted rates which are comparable, though hypothetical. Thus, the direct adjusted rate for Arizona:

• 9322/1000000 = .009322

or .9.3 per 1000 if we round to one decimal place.

Question 14. Now perform Steps 1, 2 and 3 as needed to complete Table 3 for Alaska and arrive at the direct rate for Alaska.

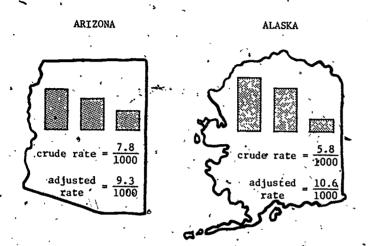

C. <u>Review Questions</u> .

Suppose you are given the following data for comparing the coronary heart disease (CHD) rates of white male *nonfarm* workers 40 and over with those of while male *farm* workers 40 and over in a certain county in Georgia.

Standard Nonfarmers. Farmers (combined groups) Age PAR p(CHD) . PAR p(CHD) PAR P 40-44 72 .125 37. .000 109 .083 45-49 91 158 .089 .055 249 .076 50-54 79 .177 76 .079 155 . .129 55-59 47 :277 43 .186 90 .233 60+ .500 ·`? .000 4 6 .333 360 .145 .076 Total · 249 609 .117

TABLE 4

 Rearrange Table 4 in standard format so that adjusted rates can be conveniently computed and nonessential information is left out. • (You need not fill in the cells that require multiplication, summation or division.) Try to do this without looking back to page 17.



2. Use the above rearranged table to compute adjusted rates for nonfarmers and farmers. Nonfarmers: Farmers: or per 100.

Check your answers on page, 29;

INTERPRETING ADJUSTED RATES

Again let us return to our Arizona-Alaska problem to interpret what has been achieved by adjustment.

Looking at the two adjusted rates in the above picture, you notice that a very interesting change has occurred. The adjusted rate for Alaska (10.6/1000) is higher than the adjusted rate for Arizona (9.3/1000)! This is arreversal from the earlier crude rates (5.8/1000 for Alaska and 7.8/1000 for Arizona). Thus, when the differences in age structure of the populations in Alaska and Arizona are removed, the force of mortality in Alaska is actually higher than that in Arizona.

Question 15; Using the adjusted rates for Alaska and Arizona, which state appears to be better off with regard to mortality? <u>Question 16</u>. Which of the following do you think best describes the likelihood of your getting a similar reversal if a standard other than U.S. 1960 was used?

a. impossible to get reversal with another standard

b. certain to get reversal with another standard

c. possible, but generally unlikely to get reversal with another standard

d. generally likely to get a reversal with another standard.

, You may wish^ttó review what you have learned by working through another example. Furthermore, you may •be interested in an example for which the confounding factor is not age.

4. REVIEW USING A CONFOUNDING FACTOR OTHER THAN AGE

Let us return to the data on typhoid fever attack rates resulting from an epidemic in two adjacent communities:

TABLE 5

•	Race	Comm	unity-1	Comm	unity 2	Standard (Combined Communities)
.		PAR	· P	PAR	• P	e PAR
· .	Black	, 2757	.00218	, 1020	.00196	3777
	White	'2002	.00899	5901	00881	7903
	Total	4759	.00504	6921	.00780	* 11680

You should have previously (page 8) concluded that raceadjustment was appropriate for comparing the attack rates of the two communities controlling for the confounding factor race.

.

Question 17. Rearrange Table 5 in Standard form leaving out extraneous information and compute the direct race-adjusted rates. Use the space below:

		•				•
Race		•	• •	·		-
		· ·				
<u> </u>	<u>}</u>	·	<u>_</u>	·	<u>. </u>	, • [•]
Total:		·		·		•

Adjusted rate for Community 1: Adjusted rate for Community 2:

Question 18. Using the adjusted rates just computed, which community has the higher attack rate?

Question 19. True or Pare. The community with the higher crude rate also had the higher direct rate.

Question 20. Did the adjustment process widen or narrow the difference in rates between the two communities?

Every example in this module has adjusted rates for a single confounding factor. These techniques, however, can be extended to adjust for several confounding factors, for example, age and race simultaneously. All that is needed is rates specific to each subgroup (e.g., death rates for white males age 15-24) and a standard population classified into such subgroups.

To test your knowledge take the post test that follows If you get less than 90 percent on this test, you should either review this module or read from another source (see Section 11, References).

. POST_TEST

(At least 90 percent is the expected performance level.)

• I. The following table presents mortality data for year X on two hypothetical communities (A and B) in North Carolina, giving the population (PAR) and the death rates (p) for each community and for a combined standard (A + B) within each of three age groups:

Age	Community A		Commu	ņity B	Standard $(A+B)$		
Аде	PAR	• p	· PAR	р.	PAR	Р	
Young Medium • Old	2000 2000 200 <u>0</u>	.0020 .0050	1000 2000 3000	.0010 .0050 .0090	3000 4000 5000	.0017 .0050 .0094	
	60,00	.0057	. 6000	.0063	12000	.0060	

TABLE Ia

	i.				•	•
	. ii.		•			
	iii.	`. `		•	• •	•
•	ív.		· • • •			
		- 9 -				<u>.</u>

c. Assuming that you are not interested in only one , specific age group, what should you check to determine whether use of overall rates are appropriate?

TABLE Ib

<u>.</u>

Points

	·•					TABLE ID			Points
	Points	• •		Standard	Commu	nity A	Commu	nity B	
d. Give the result of this check for the above example.		·	Age	(Á + B)	P	Expected Deaths	'p	Expected Deaths	
	3 pts.		Young	3000	.0020	•	.0010	,	
			Medium	4000	.0050		.0050		
2. a., Which of the following standard populations, would	• .		01d	5000	•	50	.0090		
be least appropriate for use in adjustment of the 🐲	*	\$			/	·			
above data?		د .	Total	12000		<u> </u>	·	·	
i. Pooled communities (A+B) for Year X	-	ч ,				l	<u> </u>	L	8 pts
ii. U.S. population for Year X+2	· · ·	•	lleind		ults in (3	a)	a'sha din.		
iii. Pooled communities for Year X+2	· · ·	-			for each			ect , , ,	[•]
iv. N.C. population for Year X	3 pts	- `			Jor each	community	· ·	• , • • •	
			Commu	inity A: _		<u> </u>			
. b. Which of the following characteristics are appropri-	1	- 1	Commu	mity B: _		• ,		- '	8 pts
ate for describing the standard population in this		, , <i>, ,</i>	•		,		````		
example?		· · · C			adjusted r		, •	-	-
i. Stands-in for the age distribution of both A			worse	off? •		·1		<u> </u>	3 pts
and B		ł			You woul	1			• • •
ii. Should be chosen to resemble A and B as much					you had on				
as possible	-				s A and B.	iy used t	ne erude i	ates	
/ iii: Standard rates are not needed for computation	· •			Johnnahltie	S A and b.	• •			3 pts.
of the direct rate	3 pts	, II.	Table	IIa div	oc incid	· 1		-) (per live
	9								· ,
c. Which of the following characteristics correctly	· ·				ic to bi: higan for				al age
describe the adjusted rate for Community A?		• . •.	groups	s in Mic.	nigan ioi	the pe	1100 195	0-1904.	• ''
i. The crude rate for Community A if this		• • ~~~	-		4	TABLE IIa	2	• •	
community had the age-specific rates of the	-							••	• *
standard 🦨	• • •		Birth		ernal	Mate	rnal	, Md al	
ii. A hypothetical rate		· · ·	Order	1 A00	20-24	Age	< 20	, micr	iigan
iff. Comparable to the adjusted rate of B if the		}	<u> </u>	PAR	- P	PAR-	Ρ,	PAR	"р — Т
• same standard is used	5 pts	(1	330000	.00043	230000	.00047	731000	.00056
		<u>}</u>	. 2	327000	• 00046	72000	.00035	725000	.00068
3a. Complete the following table for calculation of			3.	176000	.00040	15000	.00020	569000	.00083
the direct fate:	te.	1	4	69000	.00038	² 2000	.00044	358000-	.00115
		•	5+	. 31000	.00026	500	.00000	443000	.00167
	24	• • •	 Total	933000		319500	<u> </u>	2826000	
					1.00043			2020000	.00090 ·

٣-\$-

	, ^{n'}				
· / -	. What is the confounding factor in this example?	Points	_	Compute the adjusted rates for both maternal age	Points
,4 . a	. What is the contomiging factor in this example:	3 pts.	_c.	•	
,		3 pts		groups. 20-24:	
	How many birth order groups contain higher specific	- 	•	< 20:	8 pts.
	rates for maternal age group < 20 than for the			· 20 A.	
	20-24 group?	3 pts	6. a.	Which group is of higher risk for mongolism births?	
ų .	•				5 pts.
, c	. True or False. Your answer in (4b) gives support.		•••	•	
•	for rate adjustment.	3 pts	b.		
	. What two basic pieces of information have been			comparison when going from crude to adjusted rates.	5 pts
J. 8	provided which are necessary for computation of	- *:		State the one reservation that you should have	
• .•	adjusted rates?	• •	· ' C.	regarding the conclusions you have reached in	· ·
			5	(6a) and (6b).	
	₱ <u></u>	1 . ·			
~	11	5 pts	۰. ۱		
• •	an is				5 pts
/ _ E	. Whether or not you think it is appropriate in this		•	•	TOTAL
	case to use an overall rate, rearrange the above data into standard computing format and fill in all		- '	•	SCORE:
•	the blanks in the table below.				. –
· ·		1			· •
•	TABLE LID	· ·		6. RECOMMENDED FOLLOW-UP ACTIVITIES	ŧ
•	· · · · · · · · · · · · · · · · · · ·		•		•
· · ·	Maternal Maternal Maternal	· · · · .	•	It is recommended that you now study the indi	rect
ì	Birth Standard Age 20-24		•••	d of rate adjustment and its comparison to th	
	PAR	-		d. Then you may want to continue with statis	tical
\$1	1 731000	· ,	infer	ence'for comparing adjusted rates.	•
	2 725000	· · ·	· .		e (^
·	3 / 569000		· _		•

18 pts.

358000 443000

54

Total 2826000

7. APPENDIX: A STANDARD MILLION

A standard million is a population (PAR) whose inumbers in specific categories have been changed in order to total-1-million, while remaining the same relative proportions. The process of revision to total 1 million amounts to finding the proportionate part of the total population in each specific group (analagous to the

percentage in each specific group) and multiplying the propertion by 1,000,000. An example demonstrating this process for the 1960 U.S. population categorized by age Is given in Table A below,

		- 57	and the second	ماسية بجهرت سينت ويستندرا المتعاد والمتعاد	له مشرق مرتد من		100, 101 000
·					ا میں سببہ عرب اور میں دیکر ک	be-meaningf	ul and this
•		1960	proportionare part	Standard Million		< ~	got all th
•	Age	PAR	age-specific PAR	1,000,000 × tionate		are ready to	. . .
39 0 0	and a strategy		180,325,775	part		thần one you	ought to
							e i fai e Martin di mar
•	<1	4,126,403	.022885	22,883		<u>2C. Ràyiew (</u>	Questions .
	· 1-4	16,195,413	1089812	89,812	م او بروید ا	1. Your-rearra	nged table s
- 	5-14	35,474,882	196727	196,727	т. Т.	<u> </u>	•
. •	15-24	24,089,957	133591	133,591			
	25-34	22,821,888	• .126559	- 126,559		Age	Standard -
	35-44	24,076,192	133515	133,515		-	PAR
	45-54	20,625,775	.114381	114,381		*Injnjnjnjnjnjn	
•	` 55-64	16,707,225	.092650	92,650		40-44	109"","
,	65-74	10,848,086	.060158	60,158		و 45-49	_249
·• `	75-84	4,496,032	.024933	24,933	, ,	50-54	155
	- 85+ [•]	863,922	.004791	4,791	•	·55 , 59	· 90
``	<u> </u>				· ·	60+	6 '
	Total	180,325,775	1.000000	1,000,000	OS		╞┷╼╢

TABLE A Computation of the 1960 U.S. Standard Million 4. Tes to both questions. All/four

one of the four descriptions is correct, name

6 .- False, because the race-specific rates would not vary in the same direction for each race. Thus an overall rate would not ngful and this condition for adjustment would not be met

ou got all the answers on the review right you. to proceed to Section 2. If you missed more ou ought to reread Section 1 before proceeding

rranged table should look as follows:

24,089,957		133,591	· · · · · ·	<u> </u>		Nonf	armers	Fair	ners
22,821,888 24,076,192	.126559	133,515		Age	Standard 'PAR		exp.	p	exp.
20,625,775	.114381	114,381	· · · · · ·	*1~1~1~1~1~1~1~		• •, _{a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a}	cases		cases
16,707 <i>,</i> 225	.092650	92,650		40-44	109'-'	.125		.000	
10,848,086	.060158	60,158		45-49	_249	·089	ININIALINIAL	055 ،	· ·
4,496,032	.024933	24,933 ~			1 1				;
863,922	.004791	4,791		·55 , 59	90	.277 ·	Z	.186	•
100 225 775		,	<u> </u>	60+	0	.500		•000` \$,
180,325,775	1.000000	1,000,000		Total	_609				- , <u>, , , , , , , , , , , , , , , , , ,</u>
. •			- 1°	÷	ليهت ا	Ľ		L	

		2.	- 5ª		Nonf	armer's	. Fari	ners	
1	8: ANSWERS TO REVIEW SECTION QUESTIONS		Age	Standard PAR	p	exp. cases	р	exp. cases	
÷.	C. Réview Questions		40-44	109	. 125	13.625	ر . 000	0 0	
ŗ.,			45-,49	249	.089-	22.161	.055 、	13.695	
· , .	5. comparison d. confounding factor	σ	50-54	155	' .177	27.435	.079	. 12.245	•
· · ·	The best and the best former and the state		55-59	÷90	.277	24.930	.186	16.740	
e ann an	The best answer from the information you are given is race. Although it is possible that age might also be a factor, the		. 60+	<u>'</u> 6	. 500	3.000	.000	0,	• .
	example does not consider age.	3 ••• **	« Total	.609		91.151	· · .	42.68	

*35

Adjusted Rate for Nonfarmers: $\frac{91.151}{609} = 0.1497$ or 14.97 per 100. Adjusted Rate for Farmers: $\frac{42.68}{609} = 0.0701$ or 7.01 per 100.

(Note that we have earlier expressed rates as number per thousand but we are expressing these rates as number per hundred. The choice of such a base is really arbitrary. The guiding principle is usually that the smallest rate has a single digit to the left of the decimal point.)

. 9. ANSWERS TO IN-TEXT QUESTIONS 1-20

- Alaska, because of its colder, damper climate, which you would expect to make it have a higher mortality rate.
- 2. False. Though there would be some evidence to suggest that there are no climatic effects overall, the comparison of interest is confounded by the factor age. If no difference in crude rates is observed, this may be entirely due to difference in age structures between Alaska and Arizona. Similarly, any large difference (such as the one we observed in the illustration) is might also be explained entirely by the age factor. Also, there may be other confounding factors such as the number or quality of medical care facilities that could explain any observed difference.
- False, because your event of interest is not defined as a rate but rather as a mean.

ference or mask any true difference.

False, because (a) you would not be interested in comparing overall rates, and (b) because age would not be a confounding factor. Note, however, that the age group, 55-64 may not be restricted narrowly enough so that within this age group, there may still be confounding due to age.

- 5. The answer here should be False since the comparison of rates within age-specific groups (broadly classified into old and 'young) differs greatly and in a different direction depending on the age group.
 - a. .0359 b. 133515
- Fither total Great Britain 1970 or England and Wales 1970 would be good. U.S. 1960 would not be as good as it would be further removed in time and place.

c. not given.

- (b.) since 1974 N.C. population is more closely related to the two counties than the other two.
- Since 1974 U.S. population is the least related to the population of the two groups of interest, the answer is (d.).
- 10. $92650 \times .0175 = 1621$.
- 11. 22, since there are 11 age groups in Arizona and 11 in Alaska,
- 12. Arizona < 1: 22883 × .0339 = 776 Arizona 1-4: 89812 × .0018 = 162.
- 13. 9322, which is obtained by summing all expected deaths in column 3 of Table 3.
- 14. .010560 or 10.6 per 1000 if we round to one decimal place.
- 15. Your answer should be Arizona, since that has the lower adjusted rate.
- 16. The correct answer_is (d.), because usually (though not always) the results will be comparatively the same regardless of the standard-chosen, especially if the standard reasonably relates to the populations being compared.
- 7. Your answer should be as in the following table: .

Race	Standard PAR	Commur p	nity.1 exp .* deaths	Commu P	nity 2 exp. deaths
Black	3777 7903	•00218 •00899 ⁴	8.234 71.048	.00196 .00181	• 7.403
Total	11680	* * *;	79.282		77.028

. Adjusted rate = total expected deaths total standard population

Community 1: $\frac{79.282}{11680} = .00679$ or 6.79/1000 $\frac{1}{1000} = \frac{77.028}{11680} = 0.00659$ or 6.59/1000.

38

18. Your answer is Community 1.

19. False.

20. Your answer should be narrow, since the difference between crude " rates is 7.80/1000 - 5.04/1000 = 2.76/1000 whereas the difference between adjusted rates is 6.79/1000 - 6.59/1000 = 0.20/1000. Thus the adjustment process narrowed the difference considerably.

10. ANSWERS TO POST TEST

a. (i) rate or proporation (iii) overall rate
(ii) comparison (iv) confounding factor o
b. all of them

c. Check to see whether differences in specific rates are consistently in the same direction over all specific groups. d. Community A's specific rates are as high or higher than those of Community B in every case, if rates are sistent. Thus an overall rate is appropriate.

a/ 'ii
 All of them
 c. All but (i)

• ,.

TABLE IN

		Stand- ard	Commu	nity A	Community B		
	Age	(A+B)	. * р	Expected Deaths	р.	Expected . Deaths	
_		•	•	· · · ·	· ·	•	
	Young	3000	.0020	6	.0010	<u>3</u>	
•	Medium	4900	.0050	20	.0050		
_	01d	5000	.0100	· 50 🤹	.0090	<u>45</u>	
	Total	Î2000	. <i>.</i>	• <u>76</u>		<u>_68</u> *	

b. Community A: $\frac{76}{12000}$ = .00633 or 6.33/1000 Community B: $\frac{68}{12000}$ = .00567 or 5.67/1000.

c. Community A

ty A

d. True

II. 4. a. Birth order

5. 1WO .

c. False

5. a. (i) (birth order) specific rates

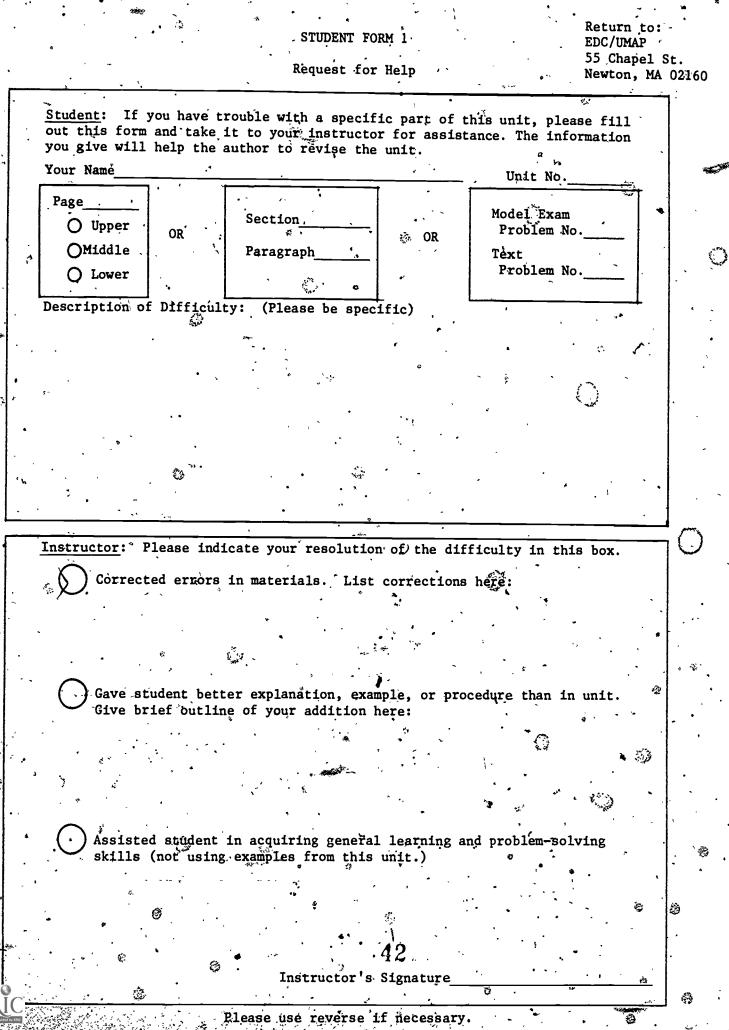
(ii) standard population

FABLE IIb

Birth Order	Michigan Standard PAR	Maternal Age Group 20-24		Maternal Age Group < 20	
		р	Exp. Cases	p	Exp. Cases
• •			-1. Se		
1	731000	.00043	` 314.33	_00047	343.57
2 ∙	725000	.00046	- 333.50	.00035	-253.75
3.	569000	[°] 00040	227.60	00020	113.80
4	358000	.00038 ;	136.04	.00044	157.52
·5+	443000	•000026 ·	115.18	.00000	000.00 [.]
Total	2826000		1126.65	•	868.64

Adjusted ge 20-24 Adjusted _____868.64 = ~000307 or 30.7/100,000.

2826000


Rate 20-24 maternal age group.

True (crude rates were equal, adjusted rates different). Since one maternal age group does not have consistently higher birth-order specific rates than the other group,

use of overall rates is questionable, because overall rates mask birth order specific differences.

11. REFERENCES

- Colton, T. 1974. Statistics in Medicine. Chapter 2. Boston: Little Brown & Company.
- Fleiss, J.L. 1973. Statistical Methods for Rates and • Proportions. Chapter 13. New York: John Wiley & Sons, Inc. 🚟 🎻
- Remington, Richard D. and Schork, M. Anthony. 1970. Statistics with Application to the Biological and Health Sciences. Chapter 13. Englewood Cliffs, NJ: Prentice-Hall, Inc.
- Woolsey, T.D. 1959. Adjusted death rates and other indices of mortality. Chapter 4 in F.E. Linder and R.D. Grave, Vital Statistics in the United States 1900-1940. Washington, D.C.: U.S. Government Printing Office.

attended to the the second of the second of the

	· · · · ·	1 4			- 1
	· ` * .	,	STUDENT FORM 2		Return to: EDC/UMAP
	•	ςι π'ι Τ	Jnit Questionnaire	· · ·	55 Chapel St.
•		· · · ·	mit Quéstionnaire	<	Newton, MA 021
Ne	ame	· ·	Unit No	Date	• ·
Ŀr	nstitution_,		Course No	•	٠
Ċ	heck the choice i	for each question	that comes closest to,	vour personal	opinion.
	_ ^^	-	letail in the unit?		· · · · ·
		h*detail to under		-	\$ '
			er with more detail		•
		te amount of deta		· •	~ .
*			detailed, but this was	not distract:	ing
	Too much o	detail; I was oft	en distracted . 👎	•	
· 2.	. How helpful we	ere the problem a	inswers?	`.	
• - •	·		brief; I could not do	the intermedia	ta chance
			s given to solve the pro		and areba
			detailed; I didn't nee		•
•			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	15
3.			requisites, how much did or other books) in ord		
,			•	0	
	A Lot	Soméwhat	A Little	N	ot.at all .
4.	How long was	this unit in com	Darison to the amount of	f time you ge	nerally spend o
			k assignment) in a typi		
		Somewhat	41		Much
•	Much	Somewhat	"About · 🔥 ' S	omewhat	nuch ,
	Much Longer	Longer	· · · · · · · · · · · · · · · · · · ·	omewnat horter	Shorter
	Longer	Longer	the Same S	horter	Shorter
5.	Longer	Longer		horter	Shorter
5.	Longer Were any of the as many as app	Longer he following part ply.)	the Same S	horter	Shorter
5.	Longer <u>Were any of th</u> as many as@ap Prerequis	Longer he following part ply.) ites	the SameS	horter	Shorter
5.	Longer <u>Were any of th</u> as many as@ap Prerequis Statement	Longer <u>he following part</u> ply.) ites of skills and co	the Same S	horter	Shorter
5.	Longer Were any of the as many as app Prerequist Statement Paragraph Examples	Longer <u>he following part</u> ply.) ites of skills and co headings	the SameS ts of the unit confusing oncepts (objectives)	horter	Shorter
5.	Longer Were any of the as many as a prerequist statement Prerequist Statement Paragraph Examples Special As	Longer <u>he following part</u> ply.) ites of skills and co headings ssistance Suppler	the SameS	horter	Shorter
5.	Longer Were any of the as many as a prerequist statement Prerequist Statement Paragraph Examples Special As	Longer <u>he following part</u> ply.) ites of skills and co headings	the SameS ts of the unit confusing oncepts (objectives)	horter	Shorter
• •	Longer <u>Were any of th</u> as many as app <u>Prerequist</u> Statement Paragraph <u>Examples</u> Special A Other, plo	Longer <u>he following part</u> ply.) ites of skills and co headings ssistance Suppler ease explain	the SameS	horter	_Shorter ing? (Check
5.	Longer <u>Were any of th</u> as many as app <u>Prerequist</u> Statement Paragraph <u>Examples</u> Special A Other, plo	Longer <u>he following part</u> ply.) ites of skills and co headings ssistance Suppler ease explain	the SameS ts of the unit confusing oncepts (objectives)	horter	_Shorter ing? (Check
• •	Longer <u>Were any of th</u> as many as app <u>Prerequis</u> Statement Paragraph Examples Special As Other, plo Were any of th as apply.) Prerequis	Longer <u>he following part</u> ply.) ites of skills and co headings ssistance Suppler ease explain <u>he following part</u> ites		horter	_Shorter ing? (Check
• •	Longer <u>Were any of th</u> as many as app Prerequist Statement Paragraph Examples Special A Other, plo <u>Were any of th</u> as apply.) Prerequist Statement	Longer <u>he following part</u> ply.) ites of skills and co headings ssistance Suppler ease explain <u>he following part</u> ites of skills and co	the SameS	horter	Shorter ing? (Check
• •	Longer <u>Were any of th</u> as many as app Prerequis: Statement Paragraph Examples Special As Other, plo Were any of th as apply.) Prerequis: Statement Examples	Longer <u>he following part</u> ply.) ites of skills and co headings ssistance Suppler ease explain <u>he following part</u> ites of skills and co		horter	_Shorter ing? (Check
• •	Longer <u>Were any of th</u> as many as app Prerequist Statement Paragraph Examples Special A Other, plo <u>Were any of th</u> as apply.) Prerequist Statement	Longer <u>he following part</u> ply.) ites of skills and co headings ssistance Suppler ease explain <u>he following part</u> ites of skills and co		horter	_Shorter ing? (Check
• •	Longer <u>Were any of th</u> as many as app Prerequise Statement Paragraph Examples Special As Other, pla Were any of th as apply.) Prerequise Statement Examples Problems Paragraph Table of a	Longer <u>he following part</u> ply.) ites of skills and co headings ssistance Suppler ease explain <u>he following part</u> ites of skills and co headings Contents	the SameS te of the unit confusing oncepts (objectives) ment (if present) ts of the unit particul oncepts (objectives)	horter	_Shorter ing? (Check
• •	Longer <u>Were any of th</u> as many as app Prerequist Statement Paragraph Examples Special As Other, pla Were any of th as apply.) Prerequist Statement Examples Problems Paragraph Table of Special As	Longer <u>he following part</u> ply.) ites of skills and co headings ssistance Suppler ease explain <u>he following part</u> ites of skills and co headings Contents ssistance Suppler		horter	_Shorter ing? (Check
• •	Longer <u>Were any of th</u> as many as app Prerequist Statement Paragraph Examples Special As Other, pla Were any of th as apply.) Prerequist Statement Examples Problems Paragraph Table of Special As	Longer <u>he following part</u> ply.) ites of skills and co headings ssistance Suppler ease explain <u>he following part</u> ites of skills and co headings Contents	the SameS te of the unit confusing oncepts (objectives) ment (if present) ts of the unit particul oncepts (objectives)	horter	_Shorter ing? (Check
6.	Longer <u>Were any of th</u> as many as app Prerequise Statement Paragraph Examples Special As Other, pla Were any of th as apply.) Prerequise Statement Examples Problems Paragraph Table of a Special As Other, pla	Longer <u>he following part</u> ply.) ites of skills and co headings ssistance Suppler ease explain <u>he following part</u> ites of skills and co headings Contents ssistance Suppler ease explain	the SameS <u>ts of the unit confusin</u> oncepts (objectives) <u>ts of the unit particul</u> oncepts, (objectives) <u>ment (if present)</u>	horter g or distract ? arly helpful?	Shorter ing? (Check (Check as many
6.	Longer <u>Were any of th</u> as many as app Prerequise Statement Paragraph Examples Special As Other, pla Were any of th as apply.) Prerequise Statement Examples Problems Paragraph Table of a Special As Other, pla	Longer <u>he following part</u> ply.) ites of skills and co headings ssistance Suppler ease explain <u>he following part</u> ites of skills and co headings Contents ssistance Suppler ease explain	the SameS te of the unit confusing oncepts (objectives) ment (if present) ts of the unit particul oncepts (objectives)	horter g or distract ? arly helpful?	_Shorter ing? (Check (Check as many
6.	Longer <u>Were any of th</u> as many as app Prerequise Statement Paragraph Examples Special As Other, pla Were any of th as apply.) Prerequise Statement Examples Problems Paragraph Table of a Special As Other, pla	Longer <u>he following part</u> ply.) ites of skills and co headings ssistance Suppler ease explain <u>he following part</u> ites of skills and co headings Contents ssistance Suppler ease explain	the SameS <u>ts of the unit confusin</u> oncepts (objectives) <u>ts of the unit particul</u> oncepts, (objectives) <u>ment (if present)</u>	horter g or distract ? arly helpful?	_Shorter ing? (Check (Check as many

. 0

ί

_-'

.

<u>د</u>

; ?

ER