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\ 141 What is Coding? ’ .-

. than an English langudge word.

- ‘ - Il
) ASPECTS OF'.CODING *

{‘1 ). < s

: " . - l.

A\ -

INTRODUCTION

. I3 .

Codlng is:a branch of information and communrcat1on
science. It draws extens1vely upon many:dxverse >
1 f1elds,.pr1mar11y abstract“and inear
-+ algebra, number theory, probablllty and statlstlcs
'combinatorial theory. 'If you.area frustrated
‘applications-oriented algebraist seeking a "real world"
outlet feor your knowledge, coding just'might be the.
answer. .

* mathemati

and

L4
-

. Coding can be thought of as a sort of reverse .
shorthand. by omitting
eerta1n letters from words, to reduce transcr1pt1on time.

N However, this saving in- timedis counterbalanced by “the
fact that one*is more 11kely to: mlsread a shorthand word

By means’ of shorthand one is able

In codlng, 1nformatlon i
s the form of blocks of b1nary k- tuples is transmitted over
a nolsy chrannel® The no1s1ness ,of the  channel presents
the pOSSlbIﬁlty that the reCelved k stuple may differ. from

the transmitted one. waever, by lengthenlng each k- tuple
to be transmitted . by adding d1g1ts~to it, channel distdw<
- tion is made bess likély. of course these additional
“digits increase transm1551on t1meM A central problem
l of coding is 'to find the most eff1§;ent way ‘of adding

thé%% so-called eheck dm?;ts &
. . Do R
4 s g

" 1,2 The ‘Coding Process =~ A

a

‘- 0 X, @
B . i

The processes involved in cod?%g are illustrated in
the flow- chatt in f1gure 1: The b1nary encoder receives
the ‘discrete outputs of a communlcatlons device and

associates a binary k- tuple (k' a predetermined positive

. v
) 8 o\ , f"-\% . o
0‘,&' y ' . sc
’

<

.n-tiples in the. code are called codewords

R . * . N
Binary | . |- Channel [._ Channel . Binary .
Encoder [ - | Encoder [ 7 Channel: Decoder Decoder F);
s [ » $- .
> Figure 12 The coding process. -

integexz) with' each of them. These outputs may he Tn the

forsm of human speech,.h&gh frequency radio waves, numer1calc
data, oy7in a host of o'thér ‘forms.
;re called messages.

The k- tuples so formed

The channel encoder ;receives a =
message from the binary encodef and, by adding n-k binary *
digits'to it, forms a binari n-tuple (n also 5 predeter- .
The.set of al1

n- tuples formed in this manner is called a code “and the .

mined p051t1ve integer, greater than k).

The channel
is the medium of transmission (e.g.,
high frequency radio links,

telephone lines,“
space communication links).
We assume that the channel is ncisy.(i.e., “'what goes in

- ——

is not negessarily what comes out'"). '

The cpding-sequence is thus: #n output enters the

* M ‘u ] ‘/.
.binary encoder wK®re it Ybecomes™ i message which in turn

Upon receipt of this [(possibly) pertur

"becomes" a coédeword. The channel (posslbly) perturbs®
this codeWord into another binary n- tuple and transmlts .
this (possibly) perturbed n-tuple to th channel decodern
Uzd n-tuple, the
which has knowledge of a¥l possible
cdewords,. attempts to determine which codeword in fact
entered the channel. The channelvdecoder then sends it

decision (a codeword) to the bimary decoderywhich, by:*

chanrel decoder,

5}&

. simply reversing the procedure of the channel, encoder,

determines the messagé contained in the.codeword received.
If the channel decéder mefes the correct declslon, the
message leav1ng the binary encoder is identical to the
message leaving the binary decoder.




2.,

Symmetric Channel (BSC). A schemat1c d1agram of this
channel appears in’ Figure 2. ) -

Figure 2. The Binary Symmetri® Channel.

,With the BSC a given bit (0 or 1) has probability q -
. of being tfansmitted unaltered and each has probability
b = 1-4q of being changed into the other. The BSC
assumes that exrors occur randomly and ‘independently of
one anothér. We shall st1pu1ate that p < a (actually, to

be con51dered a."good"'BSC p has to be on.the 6rder of

. ,
< 107 ) " . - . .
- . s . & -
-'1.4 Decoding ) ‘- .
i . The channél decoder assumes all codewords are

- équally 11ke1y 1o haVe been transmltted and makes 1ts
- decisions’ according to t e prznczple of mamtmum szel@hood

s

recéived. n- tuple r is décbded dnto that |,
codewgrd c which differs from r 1n the
least number of places.*

¢ r . . . ¢ .3
: It is now time for an example.

Example 1. Suppose we have .a communications device
with four outputs, a,”b, c, d, and choose k = 2 so that
1 9 - ' . . =
Y. *In.the event of 'ties" additional decoding criteria must be
given. | . 3

Q - o~ . . L,/
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. 1.3+ The Changel - each of them is répresented by a binary 2-tuple, say
; g ; A . a«= 00, b+ 10, c+ 01, d+ 11.' Without channel encoding ,
Thére are several mathematical models. for the .
” < S e e s, a message WOuld have to be .transmitted through the BSC
“channel. ,We shall deal exclusively with, the Binary

without error in-order to be correctly fnterpreted The

s

/probablllty of this happening is qz Let Us see what

.(We
Preclsely how these check d1g1ts are
chosen is discussed later and is,

happens if we add two check d1g1ts to each message
are taking n =
‘ of tourse, of crucial .
1mportance, but not for the purposes of this example )

We then obtain the four codewords 0000, 1001 0112, 1110.,
Now, using maximum 11ke1%hood decodlng, we make up the .

following decoding table. - , )
. ‘ ’ . .
0000 1001 ~ o1l 1110 - ¢,
0100  “11d1 0011 - 1010 ¢
0010 1on 0101 1100 : .
0001 1000 9110' nn .

At the top of each column appear the codewords. The’
other 4- tuples appearlng in a column gre those 4- tﬂbles
which d1ffer from the codeword aﬁ the top of the column

_in fewer places than they differ from the ‘other codewords.
(Ties have been broken by a§sum1ng an errQr has occurred
in position A.) All 1§ binary 4-tdplés appear in the
table and if a 4- tuple’r is recelved at the channel
decoder -it 1s decoded ‘into the codetvord c at the- top of
its column. ) ) St

' Have we actually 1ncreased the probab;llty of
1nterpret1ng a message by resorting ‘to this

of adding check digits?

correctly
procedure A codeword will be
decoded if and only if it or any 4-tuple appear-

ing in its column are receivéd.

correctly
Each of the noncodewords
appearing ‘in a column differs from the codeword at the
top 1d exactly* one of the positions 2, 3, or 4.- Thus if
a giveh codeword is transmltted ‘the probability of it

., or a 4- tuple appearlng in its column being* received is

P

-~




. gt + 3pq3 wh1ch can be shown (se% Exercfse 3) to be R

- . greater fhan q (the non~encoded probability) as long as

. -\1. p‘< q.' o . . . ~ IS . .
Exércises i N ‘
———— .

1. - Form a decodipg table for the code ’ consisting of the Tour
- ¢ .
¢ codewords 11000, ‘00119, 10011, 01101, o -
}9 2. For the igde in Exercnse I, if the codeword }IOOO is.transmitted,
what |svghe probability that it will be torrectly deceded? hd

- q .

¢ - EMNtquk+3m3>qzlﬂp$q - s,
. - g -‘ ’ : ‘. = A
N » ‘ - "E . M + . .
1.5 'Shannon's Theorem .° ! . !
34 . .

Wlth regard to Example 1 another questlon arises,
namely rCan we do better?"’
i . our <ode {to obtain,a new and different code) so as to -

.

That is, can we somehow'alter
incredse the probability of correct decoding° In dealing
® with this question we shgll fodus upop, thes effects of
. changing ‘k and/or. n and; not upon the actdal brnary digits(
in our messages and codewords.
by f1x1ng k and, 1ncrea51ng n, say by repéating the message
‘a sufficiént number. of times, we can obta1n a code with

However, is.method of repetition- has ‘the serlous draw-

i back of greatly 1ncfea51wg transmission t1me and decrea51ng

. o the code rate k/n. Generally speaking, ﬁn formlng “goodC

codes we. seek to maximize both the code rate and the%
probablllty of corréct decoding. By virtue of a o
remarkable theorem we can state categorlcally tha;(such

‘codés do 1ndeed exist’ . 8 .

Theorem 1 (Shannon S FundamentaL Theorem of Codlng)o
- ‘Let K be the capaclty* of a given BSC.
~ numbers R and e, where 0 <R < Kand € > 0, there exists.

. 19 -

'/-
7 v
Given any real

*Capacity is a’posltlve number associated with a BSC and is a
function of the probability p only. In fact, we have
-K=1-p1092p- (1-p) Tog, (1- p) . . 5

,}.F h ' ' .

10 S

AEar

)
R~ v e g . ,

It seems plaUs1b1e that™

N
probab;ll y of cogrect decoding as -close to 1 as we de51re._

‘
/

M ‘ ) / Al
a.code with. cede rate > R and probability, of cprrect

.decodlqg >1-¢. ) \ U )

. The proof of thls theorem es;abllshcs existence .
' nonconstructlvely Thls is very- unfortunate (fortunate?) *
"for 1t-foyces us 1nto an in- depth study of coding in order °

to produce deslrable codes. This is precrsely what_we {
.1n1t1até in the next chapter. . '

. R “2.°f LINEAR CODES « -
! ‘ . / -

3

N ’

- ~ .

é.} The Code Concept Refined

-

Unt11 “now the only way fie have of descr1b1ng ac de-1s v

as a subset of binary n-tuples.. As there is not much - bne

can say about or do With arbitrary gets® “ofvn- tuples, we -
shall have to restrict our concept of a ,code somewhat

This restrlctlon will, however, pay great dlyldends .in. o =

. « ~

the quality of the results obtalned . v o °

i Let V be the vector space of, b1nary n\tuples over *
GF(Z) The field GF(2) is the two-element (0 and ¥) field
of binazy ar1thmet1c, wlth 0+ 0 =11 0,. o, .
1+0=0+1=41,0-0="71" o=0-11=~o,1-1°=.1:
the elements of V, are n-tuples of zeros and bnes from

this f1e1d & ' *

v

' Thus,
[

* . ., . .
AW (n3k) linear code 'is a k- d1men51onal <L e

subspace of v, X ° -

. -

In what follows the adJectlve 11near Will be omitted
and we shall simp;y452_ak of the (n k) code Cor, slmply, ‘e

\
the tode.C . \ -
« ~/ < -

- _ i : \
Exegcises : . <’ o, - ) T
Lxegcises -

k. How many codewords are there in,an (n,k) code? N

"5 Show that the three 5-tuples. (1,0,1,0,0), (1,0,0,1,1), (1,081,1,1) -
, .constitute a Innearly independent subset of VS' 1 o
N - .
6. Find the;codewords In ‘the (5 3) code which has the vectors'ln "

Exercise 5 as a basis. ‘ ' . L .
. < 4 - 0 v -
LI 1’ o -, . ) ’ X
. o 7 : 6 ’

. S T ..11.‘((} -




- . / d . ° ‘
2.2 Hamming Weight and Hamming Di‘stance M o - 2k o .
N ' (5) - WV, = v (c+A). { (disjoint)
Let x be a vector (n- tuple) in V The Hammng i . { . i=1 . ot . . . )
. wezght, w(x), of x is the number of l's appeanng .amofg’ ',. ) . In terme ol’ Hamming distance, maximum likedihood .
the coordinates of x. From the def1n1t1ons of binary asnd decotimg reads as follows A received n- tuple r is )
vector addltlon we see that the only coordinate pos1t1ons decoded imtp that codeword which minimizes {d(c r)/ceC}.
where x+y has a 1 are those positions where x or y (but. A$ a consequence of Equation (5), for any received n-tuple
- Tiot both) have a 1. Therefore . . by thbre ex1sts a unique codeword c. and an ay in A such . \
P _' (1) . ' w(x+y) < w(x) + w(y) ‘ . - “ that r = cJ + ak . Then for any c’in C we have . .
% _The Hamming distance,~d(x,y), between two n-tuples . (6) c-r = ¢ - (c. +ak) - 'ak . (c' c ) e ay +‘ C = - _-
/x*an'd"}" 18 ‘the *ha ber of pd51t1ons in which they d1ffer. J . : '
Note that ! 2:; ) . . ey “ g +,=2d(c,r) = wlc-r) > w(ak) = w(r-cj) d(c ,r)* , *
(2) - d(x,y) = w{x-y) ' § Whi»ch\tells us that r should be decoded as cj.' . i
> and d is g metric. That is N ’ __ . N From the result above we can deduce that the rows of."
‘ T (1) d(x,y) Z’O» with equality holding if and: L  the decoding table forl C are the cosets appearing in Equa-
. only if x = y. , ) . tie’n (4). This observation allows for the simple
. construction of the table. The algorithm is as follows:
(3) = (1) dixy) = dlr,x). . : SR .‘. AS is standard, the first row consists of the codewords . -
N (iii-) d(x,y) < d(x,z) + d(},x). i ‘ + » themselves. Of the rema1n1ng n~tupdes, one of minimum
o ) -t weight is chosen and placed under, the zero codeword. gﬁach
Exercises ) ’ ) : . of the remaining n- tuples in the second row is the sum of
7. Use Equation (2) to establish the fact that Hamming distance sat* . the codeword immediately above it and this minimum-weight
- isfies Equations (i)-{iif) in (3) above, so that it is a metric. . . .n-tuple (see thé decoding table in Example 1). Now once
. _: . ) + T , \ .again an n‘-‘ktuple of m1n1mum weight is gelected .from the .
. ' " - : ) S E ) . " remaining n-tuples, placed under the zero codeword, and )
‘2.3 Decodmg Rev151ted IR ; . the third roa" is filled out as was the second.” The )
" V}.ewmg V as a group (with respect, o n. tuple addi-- procedure is repeated until all n-tuples are exhausted.
tlon), and an (n k), céde C as .a sq,bgroup, we may j;;orm the ’ J i s '
coset decomposztlon of"V w1th-respect to C. ) o ., Exercises l‘
" “.,‘ . - ‘ o ‘ . 8f Form a decoding table for the 15,3)  code of Exercnse 6.
: . ’ i ’ zn-k :y:' . l - “ ‘ - ' ’ ) . 4: ) - = . ! - ) :
.. (4) vV, = U (a;+0), T (disjoigt). . ° . ) L s
. "" s} i=1 o et St 2.4 The. Genexfétor.‘a'nd Parity-check Matrices
‘ * where ~the" coset ltepresentatlves a; ‘are chosen to be i LA kxn matrix whose rows are basis vectors for an
o n- tup].es of m1n1mum we:.ght in the1r cosets Letting (n, k}’ code C* J.S called a genera.tor Qnatm:c $1r1t'lng down *
) ‘A_' ; {ai} and C = {ci}, it follows d1rectly from Equhtmn . . . \
) (4) 'tbat‘ 1'2 . ) ‘ . - 7. \ *Hote that a = -a,. ' . -8
R o e | - ' Py 13
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A ' \ : . ¥ . ’
.+ ._- . such’a mitrix-is actually a compact way of specifying a n-k matrix H' = [PTIn_k] satisfies the equation :
LT >c(—J_<_i_;3,°—f0r'kn0wing its k rows enables us to determine all - T . ¢
.\ * the 2k codewords in the cp'&q. (This is a éignif}icant . . G'H'" =0, E o ®
) . obse.rvation, for there are codes in use with k greater ’ " from which we conclude that H' is.a parity-check matrix.
than fifty.) ' ' : ) for C'. Applying o"! to the columns of H' will produces

-. . 3 . .
C is denoted by ct a _parﬁzmiheck matrix H for C.

- * +and called the dual code of C. That is . . Example 2. Thg matrix T, —
<7 . 2 . et ) , . .
e 61 ='{ern|2<')' = 0 f:or all ))g(}'}, . e - 1 010.0 R - -’
. : . : i . . G=110011 _ "
. . . . - . - « N - - 8
e where x-y is the usual dot preduct of n-tuples. Since the : 1.0111
< L e, P ' ' L . : T : )
,‘»"dlmensmn of C* 'isn-k, €' is an (n,n-k.) code.*, . ~ is a generator matrix for the (5,3) code of Exercise 6.
; ~ " Let H be an -(n-k) x'n generator matrix for Ct. Then The reduced echelon form of G is
(:I) xeC if "and only if XH =0.: T . [10000 <
.- ‘ . E=1{00100]|.. :
Letting x = (xl, Xgsbeun, xn), and denoting by hij the ‘ ‘ ~ 00011 . . e

entry in the ith_row and jth column of H, we may rewrite B . : - i
Equation (7) equivalently as . ' y-applying the permutation

.

2 ‘ o n . b = (243) , A '
- (8) xeCif and only. if jglxjhij =0 fori=1, ..., n-k (written- in cycle form) to the columps of E, we obtain the °
° L T ) , matrix Y. i .
. " Since we are working .over'GF(Z),_ Equation (8) says x is a : ‘;14 - n - . '
" codeworg if and only 'if the-rumber of integers j for®which o , 0000 } .
both x'j and h;3 are 1 is even for each i = 1, ..., n-k. - L G=foroo OJ ’ ] p
For thY® reason we call H a parity-cheek matpiz for C. . i 001 .0 1y . )
: Suivppée G i§ a ‘geng;‘ator. matrix for am (n,k)' code C. ' which is oaf“the. form [I3P]' Then . A
; The reduced echelon‘form. of G also serves as a generator B p " (00010 - *
} matrix for C. By p‘er}nuting certain columns of the. . H' =a[PIT‘12] = 0 0 1_0_1-] / - ’
. " reduced echelon form of G we obtain a kxn matrix of the ) ) . % P
: form G' = [IxP], Where‘"Ik is the k x k identity matrix and and’ applying . ) ) . TR
t‘ - P is a kx-(n-k_) matrix (call the perlquiation involved p).'~ p'.l = (234) . .

- t < s s -~ .t * -\
S . The matrix G' can be thought of as a generator matrix for ~ to the columns of this matrix we get

an (nk) code C'. .It can eas"ily‘be verified that the rank . ‘]‘ \
: . _— T 01000 '
. " - " H = - ’
- . . = [0 001 1]' . -
. *A proof that dim C* = n-k may be based upon the observation ‘ . . .
that C* can be identified as the solution space of a system of k . ‘ ! -
« linearly independent equations in n unknowns. - ) 9 . { - - . 1 5 . 10

N . - . ‘
- - PR )
’ LS -
N Lo e . .ol K - . . .
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2.5 Systematic Cédes . . -

Codes 1like the code C' of the preceding section,’
¥hich have a generator matrix of the form7G', are called

8yetematzc codes. The study of systematlc codes is

‘ ‘greatly facilltated by the simple nature of their generator

matrices, Forvlet rf R rw be the*rows of G'. Then

xeC' if and only }f'there exist scalars (binary digits)

a1y v ees ak'such that -
'k " . . v
. X = %air& Lo, ' .

Upon expanding this sum we get - . -

xeC' iF and'only if x = (ap,

a . for j

4~1):ZI.ng °orJ
? -

iJ i% the row i-column j entry in G'.

':’ak’hk+1""’an)
X -~ .
= k+:!.’

where aj = ..%, n and

[

< ThQ§1the fjrst k coordinates (the message digits) of
rémaining n-k coordinates (the check digits) are lingar .

igits. ., "~

" Example 3, If C = (1,0,1,C4)
in the systematlc code C' generated by the mytrix G' of

Example 2, then we must have

\ [

.°4 = Cpghq * Co8Yhy * Cagp = 1°040:0+1-0 2 0.
t,y Cs - Cy®yg+ Coghg + C58%5g = 1°0+0:0+1°1 = 1.
. _ -
Exercises . e, ; LT
9. What relationship exists between the codewords of C and €17 *
10. "Find the matrices ', H', and H for the (6,3) cdde with
-~ generator matrix
. 011710 .
¥ic=jro1011], .
: 000111 s 11
. <&

) is to. be a codeword *

v

I, Find the check digits for the codeword with message dfgits

111 in the (6,3) code of Exercise iO.
i
\ °

4

X 3. ERROR CORRECTION .-

;

3’1 A Criteriivn for Code Quality '

Suppose ‘that the chgnnel is sufficiently reliable
for the channel decoder to assume that at most t-errors
(i?e., t alteratian, & a positive integer) ecan occur in
Can we then be one hundred
percent certain that the decoder will decode correctly?

If the answer is yes, for every codeword in the code, ,we

a transmitted codeword.

say the code is t érvor- ¢orrecttng " More precisely, a

) code=C is t error-correcting if the .closed balls

R {8(c,t); ceCl,- ' g )
whgre . .

S(c,t) = {xeV_[d(x,c) < t},
. . ! o < -
are pairwise disjoint. I .

" In view of .the factsthat w(x) = d(x,0), -

: dix,y) =.w(xry), and a code is a suhspacé (so that°x-y is-
"in the code whenever x and y are), we may conclude that W,
%}e minimum weight of alil nonzero ‘codewdgds, is equal to

. D, .the minimum distance betweeh different codewérds. It

.seems intuitively clear that for_a code to be t error-

correcting, the codewords have tq be "suff1c1ent1y far

*  apart.". Just how far apart is revealed in the next ‘theorem.
!
. Theorem 2. A code is t error-correcting if-D > Zt+ Y.
.
'
‘ Proof Suppose‘not Then there exist two codewords

c, and cz, such that the closed balls S(cy,t) and- §(c2,t)

have an n=tuple,. call it r, in common. Then

(10) d(cl,cz) i d(cl,r) + d(r,cz) St+t < 2t +1,
But, Lt ‘ g
¢ - A - 12
- ‘ 1
_ oo . - ) 17

B

s
E)

«




'

"W}Z . S +
J L . .
.. : .

1

>W=D>2t"+1,

—_ . — -

1) ’ d(cl,c ) = w(c -cz) =

\so.wefhave_arrived at a contradiction and the theorem is

.
! W \

proven.

/(1451

dependent and the lemma is proven. v

e 3

e E
=
"
,

-,.'° “

Equatlon (14) says the first w columns of H are 11near1y

N .

. . ES

P »
» ¢ .
ExercnSgs . R . ,
PZ. Establish the converse of Theorem 2. That is, show a code is

t error-;qrrecting only if 0 > 2t + 1., o0
/ A

‘ N << 3 - . ' \o

Comment ‘on the .error-correcting capabilities of the code in

Exercise 6. N . [}

-

PREEEN

. . ]
3.2 Error Cdrrection and the Parity check, Matrix-

An extremely elegant and simple characterlzatlon of
t error correcting codes may be expressed in terms of the Sy
parlty*theck matrix., L. v

Theorgm 3.
“If every’subset of 2t columns of H is 11near1y Jndepehdent

Eet'H be a parity-check matrix for a cede C.

then G 15 -tserror- correct1ng ‘\(

T
2 . H B . - < .

ThlSwresult is an immediate consequence of Theorem 2

’ -‘and the following lTemma. . ¢ N
Lemma 1. If C has a codeword ¢ of welght W, then some W
columns of H are linearly dependent, . ,
i--. "Proof Let ¢ = (cl, .fz, c ) NolWw w(c) = w means .

"that exactly w_of the {c Y are 1 (whlch We may assume to

¢ N,

'°f rank H =

3.3 Hamming Codes

We put Theorem 3 to immediate use! Let ﬂ&be a

?051t1ve integer and let H be ‘the m X(Zm-l) madrix whose

;;columns are the binary representations of the 1ntegers

e

l, Lo, 2 respectively. For m = 3,
. ‘{0001111
H=10110011]. o T
l1010101 -;' ) .

Slnce H contains the m columns of the 1dent1ty matrix I
m and H can,serve as a parity-check matr1x for a
(7m-1 2M.1- -m) code C, a type of ctbde referred to as a

Hammtng code. Since two nonzero bipary n-tuples are '

Jlnearly dependent if and only if they afg'zaentlcal

every pair of columhs of H are 11near1y 1ndependent
Hence, by v1rtue of Theorem 3, Hamming codes qre gingle

1

errorjcorrectzng

oreover, with the a1d of the matrix H the dehoder
can ea§Bly correct any single error. For suppose a 51ng1e
err01 occurs (say in position i) in the transmitted code-
word ‘c in C,
r’ which,differs from c. only in positlon i.

CHT

Then, since -

.rHT = (r-c)H' J)HT -

Y

0,

) .!.{.1i,'

i)

thus enabling the decoder to determine the ?osition of the

error. . -

a

_ be, w1thout loss of generallty, coordlnates:l 2, oy W)L
Now ce C means . B L :
(1.2.) ch = 0. . ‘ L.
‘penoting the ‘columns of H by h s ++.5 h 0’ EQuatlon (12)
may be Tewritten equivalently as °
n : T - ’ , '
@3 ).:Cihi =0 r . ‘ St
9 ‘1 '. . » . .
. Lo . {
or, using thef@mlues of the c;, N
i 13
) .-‘c «'a‘; gl. ' * . * ‘ . :
\* 4 .-l‘:h.‘_ - . -~ - K
\-‘ ] \ ‘4‘ ]8 . L, &::’V' .

{\g e ., - . e

Exercises

4. Find a par%ty-check matrix for the (15,11) Hanming code.

19 -

* o

* 50 that the channel. decoder receives an n-tuple

.
0)» . : . A -

(the ith éolumn of H, i.e., the hinary representation of i),




15. Flnd a generator matrsx for the (7,4) Hamming code.’

Exercises
17. -~Show that 2"

e
&

-——-*—-"ﬁ6"*wbrkngrw|th ﬂT’(7"EfﬁﬁhmﬁnrcGHeﬂnm;aymmﬂng—nummre‘than

one error occurs during tranSmsSSson,.what codeword was
]

=Mm . 3 . e
is indeed a minimum.
AY

A -

2

transmitted if (6,0,1,1,1,1,1) was received?

.+

.
3.4 Perfect Codes ‘ Needless to

Recall that a code-1s t error- correctlng 1f the' * of coding in this
closed balls {§(c t)} of rad1us t with centers at the code-
If, furthermore, these balls
fill the°space (i.e., their union is all of V ), the code

is said to be perfect.- To show thdt F“ﬁmlng codes are

Jinear algebra as
-jng at all about
If this module ha
) consﬁlt"the texts

words are Fa1rw1se disjoint..

Let

4. REFERENCES

.

say, we have only scratched the surface
unit. We have concentrated upon the

pects of the subject while hardly speak-

.the large role pYayed by moderh algebra.

s wetted your appetite, you may wish to
listed below. *

Iy

. perfect, we may use the following counting argument. ' ~ ! v
n = 2™1 and let C be the (n,n-m) Hamming code. Now < & .Bé lekamp, E.R., Algebraic -Coding Theory, McGraw-Hill,
= 2", Each of the' closed balls S(¢,1) contains n+l , ’ .4—{”%‘4 1[01:1(» 1968. . .
' gf"ﬂpleS- Since #C 5 2%, where k = 2"-1-m = n-m, and the Blaké, 1.E., and Mullin, R.C., The Mathematical Thedry of
oo balls are pa1‘rw1se disjoint, tl!e unlon of the balls con- Coding, Academic Press, New York, 197"5'. T
tains 2" (n+l) n-tuples. A llttle ar1thmet1c will show s v . - . Lt
o that 2n - 2n'~m(n+l) when f = 2 m_; . . Lin, -S., An Introduction to Error-Correct:1r1Jg Codes,
' . e Prentlce Hall Englewood Cliff4, 1970.
. 3 5 The Baseball Pool Problem . LA MacW1lllams, F; ,. and 8loane, .N.J.A., The Theory of s
v . Hamm1ng codes can be used to, supply a 51mple (a"lbelt Error-Cor ctlng Codes, North- Holland New York 1978.

a I

€

partial) solution.to a rather intriguing problem in o
combinatories, the Baseball Pool Problem:
n_baseball games .ar® to be played. .

Pet'erson, W.W., a
MOn‘a- g1ven day Y MIT Press, C

N
-

If.a singlée bet:is

nd Weldon, E.J. , Error Correctlng Codes,‘ ",
ambrldge, 1972,

‘ SJc"

. “ ¢ def1ned as p1ck1ng the winner in each of the n games, what Van I-‘mt M Spr1nger Verl,ag,\New York, .
‘ . , is the m1n1mum rumber of bets- one has ‘to make to guarantee .. ‘ 1973. C & .
Y. choosing at: least n-1 winners?"’ Clearly, 2" v bets are > . - - | .
’ -~sufficient ‘t-o guarantee at least n-1 winners. Weo so'lv‘e a ) y - 5. ANSWERS T0 EXERCISES
the problem for n o'f the form 2™ -1."" By denoting a home 7, T ’ .
f-‘f T team v1ctory by 1 and a home team defeat by D, each of« - 1. 11000 0010 cp 10011 - 01101
\ the 2" possible bets can be associated with a binary ’ ? ].]00] 00110:\. ”]90]0 01100 ' S
l N " n- tuple (i~ e‘, a vector 1n Vv ) Not1ng that Hammmg codes 11010 00100 . 40001 o ¢
are 51ngle error correctlng and perfect, the onl’y bets .we : :(])(]ng :??:2 " ,:?;: 2;?2: r,- )
“need place to guarantee durselves at least n-1 wnmers : . N e . b
: are the 2" m n- tuples 1n the (n nm) Hamm1ng code.' Thus, 0-1-299-----19119-.:---99911-----11191 - 21
: -when n < 2" —1(,\ we have reduced the suff1c1ency number Fiom. . Tio . 00000 "9_]0“ 10101
5 -l o oni ¥ N Lo < v 1s 01010 ‘ '10100 i .00001. ‘ -. 1
RIC 20 s C L i
AR e ;':‘ = t 2:., % .:‘ . ":t s -, "u'/{' . . ' .
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The S5-tuples bélow the codewords and above the dotted 1ine

dlffer from the codeword at the top in oné posikion and are e

¢ N
. uniquely decodeable. Those 5 tuples below the dotted line differ

in two positions from two or more codewords and are not uniquely..
decodeable using onlyethe principle of maximum 1ikelihood. . .
t -7 A L L 9.

2...». 11000 will be decoded correctly if and only if a 5-tuple in its
One -of these S-tuples‘:ﬁffers'from 11000

in“zero positions, five dlfferl in one position, and two differ

column is received,, ' AN
in two posntlons
s qs + 5pql' + 2p q )

- . ' ' R
Since p < q, )/2<q g Then ..

y
o'+ 3pa” - o¥ = " + 301

» qz(-2q2¢3q-l')q = 7q%(1/2-9) (a-1) > 0.

Hence the probabnlnty of correct decoding is
3 4

qz = -2ql',+ 3q_-3 - qz } !

-q)q? -
o

. L)
Since there are only two scalars, there are 2k codewords in an .
" : " (n,k) code. : . ' ¥
bt R . .
. . . P

5.
- have either, . . .
: i (0

(ii) one of the vectors ls the sum of the other two. .

“to be linearly~dependent, we must

For three nonzero vectors in V-

.

two or more of the vectors are equal, or
. - Slnce ned ther of theSe condtlons Is true for the three vectors ™

3 glven’ihe veéths ‘are Ilnearlyq independent

6. ¢ \le find the seven nonzero codewords by forming all"possible sums

of the basis vectors taken 1, 2, and 3 at a time. The codewords

are 00000, 10100, IObII, jo111,_00100,~00011, 00111, 10000. .
o] '
\‘ 7. As (i) and -(i1) of Equ Eion (3) are obvious, we shall only . Rz
- prove (ili) ~ P . ’ ’

Pl

d(x,y) = Vi(x-y) = wlk-z+z-y) < wix=z) + w(z-y) = d(x,z) % d(z,y).

- o
¢ .
¥ . A

. 4 ’ K
.. *7 By AS in Exerclse 1, the table be]q}l Is not the only possible one. )
. N L N v , ; ) 17 . -
-4
. , . ®
. N . . o - \ PR
e o2 T K
o0 . . .

Co A N NI ° PRI o AR

10.

00090 10100 10011 10111 00100 00011, 00111 10000 ’
01000 11000 11041 111 01100 01011, 01711 + 11000
00010 10110 ,10001 10101 00110 00001 - 00101 10010
01010 11110 11001 11101 Q1110 01001 OJiOI 11010
The codewords of C' can be obtained by applying p to the code~
words of C. "W NS .
y . : T
The reduced echglon form of G is T. ’
-
10101 .
\ €E=]011001f. ;
000111 "° - . *
By applying the permutation o = (34) t& the columns of E, we
obtain °
' 100111
G'=]0.101 011, . ‘
001011
which,is of the form [1;P]. Then
. 1170100
H = PT3= 101010

111001 .

and applying p-l(? ’p) to the columns of this matrix we get

111000, °
10011 0f. '
110101

[ . -

Let C' be the systematic é¢ode generated by, the matrix G' of

. Exercise 10." Then ct = (I 1,1 ch’CS’CG) is the codéword of C!

with message digits 111. Furthermore, *
! = Ta . . ‘1. =
, cl‘; c]g”' + czgzh + c3931‘ 11 +1°1 +1-0 '0
[P} Vot Tal = ] . ] =
S5 = C19)5 + €295 + c3935 1*1+1:0+11 =0
Lg ol gl 1 1l = §. . g =
.G = 196 * c29426,+ c393¢ Tel +11 + 141 1
) 2% )
o . AR 18
» .
. *\“‘
<ot - !
_ \
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-

e o T

S

Thus ' = (l',l,l,o,o,ll) and the codewswd in C with message
digits III- is, using the idea in Exerdise '9 and the fact that
o7 - (34),(1,1,0,1,0,1). - .

12. Suppose D < 2t + |. Then there exist two codewords X and y
*‘such that d{x,y) < 2t +71. Let reV_be obtalned from x by
changing m of the digits in wi?ich x and y.g.lff&r, where

3d(x,y) <m< t.. Then, ¢. :

d(x,r) = m < t'and dly,r) < #d{x,y) <t =

the code is not t error-con:rectlng. , )
13. *The minimum weight of the code is 1| so'that it has extremely

poor error-correcting capabilities. In fact a single error in

the codeword 00000°wi]l produce the codeword ,00100.

.

.
- . ~

0011 1L1-1111)s ) .r\-

11000019 11 -

Nk, -0 000
*
0001

0
1

0o1100t100T10011
i

0101010101

o . ‘ ~

IOI‘O -

15, As a parlt);-chec_l_( matrix for,a code C ma.y be thought of as ay

generator matrjx for the code Ct, and a parity-check matrix for
C* regarded as a generator matrix for C, all we need—do is apply °*
the same techhique as in Example 2, with Ethe roles of G and H
reversed. Doing s¢, we find : K
L ) -

fi11000%0 R |

. . .
1001 100p 45, generator matrix for thes |
01701010

(7,4) Hamming code. , .
1101001 ‘ .

~

fH' = (QOLINT) [0 0 1Y% (01), which is the binary '.'—epresentauon
0 I‘Q of 3. Thus ,thé’re' is.a single

0 I#T error in position 3 and the ‘code- -
100 word transmitted was (0,0,0,1,1,1,1).
1101, - <t L .-
110

RURIY

.

“17. ' Suppose ll is a cellection of bets (i.e;.', a subset of Vn) which

guarantee at least n-1 winners. Then Vn = y {5(a,1)} =
agA

=4V =y (S, < [ #(5(a,1)}
n ;aeA'_ * acA

= (M) (nF1) > #A > o,
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out this” form and take it to your instructor for ass
you give will help the author to revise the unit.
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Student: If you have trouble with a specific part of this unit, please fill

- Your Name

A

(4

[N
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Unit No.
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i (::)~As§iscgd student in acquiring general.léarning and,problem—solviné
il skills (not using examples from this unit.) L o
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Name ‘ Unit No. \ ﬁate

Institution : Course No.

Chec

1.

k the choice for each question that comes closest to your personal opinion./

How useful was the amount of detail in the unit?

Not enough detail to understand the unit

Unit would have been clearer with more detail

Appropriate amount of detail

Unit was occasionally too detailed, but this was not distracting

2.

r

TOO much detail I was often distracted ' . . s \

<

How helpful were the problem answers? ‘

Sample solutions were too brief; I could not do the intermediate steps
- Sufficient information was given to solve the problems °

Sample solutions were too detailed; I didn't need them

3.

Except for fulfilling the prerequisites, how much did you use other gsources (for

, example, instructo:lffriends, or other books) in order to understand the unit?

;' wA Lot

4.

Longer

5.

Somewhat A Little: Not at all

i .
How long was this unit in comparison to the amount of time you generally spend on
a lesson (lecture and homework assignment) in a typical math or science course? .

Much¢ About Much
the Same Shorter

Somewhat
y Shofter

Somewhat-
Longer

Were any of the folIowinguparts“of the unit confusing or distracting?z(Check

/

as many -as apply.) R . '

S

-~

1
i

Prerequisites "
Statement of. skills and concepts (objectives) e '
Paragraph headings - ﬁé, oL
Examples | - )
Special Assistance‘Supplement (1f present)”
Other, please explain

[_

Please describe anything in.the unit that ybu did not particuldrly like.

- this

Were any of the following;parts of the unit particularly helpful? (Check as many
as apply.). .
- Prerequisites’
Statement of*skills. and concepts (objectives) - -
Examples ( .
Problems o )
Paragraph headings . -

Table of Contents

- Special Assistance Supplement (if present)
Othen, please explain )

.
’

s (4

.‘ N . Al -
. .

*

Please describe anything that you found particularly helpful
sheet’ if«you need more space ) e 4 ,

£

By R X

_(Please use the back of

4

-

.




s

—

N

- Undap

. UNIT 3374

.

’
-

5 MODULES AND MONOGRAPHS IN UNDERGRADUATE
« MATHEMATICS AND ITS APPLICATIONS PROJECT

)

r

"A DOUBLE-ERROR CORRECTING CODE
’ ) by »
. Gary J. Sherman _
Department of Mathematics
Rose-Hulman Institute of Technology .
.o Terre Haute, Indiana 47803

! U.S. DEPARTMENT OF EDUCATION
o “PERMISSION TO REPRODUCE THIS NATIONAL INSTITUTE OF EOUCATION
MATERIAL IN MICROFICHE ONLY - - . EDUCATIONAL RESOURCES INFORMATION
’ BY . CENTER {ERIC) ,
ne BE‘EN YGRANTED TR document has been reproduced as

. W \S:, o received from the person 0r organszaton
» A DOUBLE-ERROR CORRECTING CODE . originating it
A ~ - ~ “E‘Z . ig . Minor changes have been made to improve
Y . ¢ repraduction quality
. - .
ke G TO THE EDUCATIONAL RESOURCES ® Points of view br opinions stated i this docu
by Gary J. Sherman INFORMATION CENTER (ERIC).” : ment do not necessanty represent official NiE
¢ ) . = position or palicy
TABLE OF CONTEN, P
- -~ N - - . ~
. . . . .
v . 1 . ° ? - *
. B - * 1. INTRODUCTION '« + & v v v v v v o et vt e e e vee e e e e v i1
B - : 2.THEPROBLE}f.....°.‘...’...............‘."1
- \ | 3. CODEWORDS AS VECTORS . . . .'.- ) 4
. }r DCHANNEL_ ‘ . ! T T T
TRANSMITTER - > ' RECEIVER -~ s & -
N . . ° 4. A SINGLE-ERROR CORRECTING CODE . & . ... s'% « o v v v v v v 6 -
- - - N g‘
. ‘. @ . 9 o . ]
-3 T . - ° ] 3. A DOUBLE-ERROR CORRECTINGCODE . . . « . & 4 sue o o o . . "% . 9
. « " : ' 6. PROBLEM SOLUTIONS . . . . . .. ........ 4. ... ..17
-~ b o ’ ) ' v
. e . - . .
Yy N 7.”‘MODELEXAM,.........:._...._........._..22
- + APPLICATIONS OF ALGEBRA . 8. MODEL BXAM SOLUTIONS . . . . . . . . . .. .. L.......23
B - . TO INFORMATION THEORY : e
:%gi . 4 ., - I o e ‘ ° * A . ) .
B B - % . . o L . . . - . - -
pog ede/umap /55chapel st./newton, mass. 02160 . . ; i
- - : -y .. .
e /- Ct e T e . i
- \ . - .
, | . 29
. o e ) . . . e
L 4 X ., . . .



B

4

b

-
0

« -

Intermodular Descrivtion Sheet: UMAP Unit 337

Title: A DOUBLE-ERROR CORRECTING CODE

Gary J. Sherman

Department of Mathematics
Rose-Hulman Instjtute of Technology
. Terre-Haute,. IN 47803 -

kuthor:

Review Stage/Ddte: |!1 7/16/79

APPL ALG/INFORMATION THEORY

Classifications

Prerequisite Skills:
1. Elementary linear algebra (matrix notation, arithmetic of

vectors in finite vector spaces over 22, multiplication and *
division of polynomials). ’

Output Skills: - . . . . .
1. To see a brief non-technical introduction to applied algebra.
2. To provide motivation to learn abstract algebra.

Other Related Units:

Aspects of Coding (Unit 336)
Error;Correcting Codes 1 (Unit 346) \//'

. o - ,'!(1!
. P . )
: Y )
<
s . \
z - . .
2 % . \ ®
S S S ) - - T o .
© 1979 EDC/Project UMAP
1 nlghts'resgrved.
' S
N
’ 4

s

<

\ »

MATHEMATICS AND ITS APPLICATIONS PROJECT (UMAP) ’ . .

(,"V ) MODULES AND MONOGRAPHS IN UNDERGRADUATE

The goal of UMAP is to develop, through a community of users
and developers, a system of instructional modules in undergraduate
mathematics and its applications which may be used to supplement
existing cburses and from which complete courses may- eventual ly be
built. . ; .

.The Project is guided by a National Steering Committee of
mathematicians, scientists, and educators. UMAP is funded by a
grant from the National Science Folndation to Education Development

Center, Inc., a publicly. ed, nonprofit corpor%tion engaged s J
in eHucatidnal.reSEEF?ﬁ—TingzzFﬁ.S: and abroad. . '

PROJECT STAFF

Felicia DeMay
Barbara Kelczewski
Dianne Lally ,
Paula M. Santillo
Carol Forray
Zachary Zevitas

NATIONAL STEERING COMMITTEE
W.T. Martin

L9
Ross L. Finney Director
Solomon Garfunkel ~ Associate Director/Consortium
t Coordinator

Associate Director for Administration
Coordinator for Materials Production
Project Secretary S
Administrative Assistant

Production Assistant

Staff Assistant .

M.1.T. (Chairmen)

Steven J. Brams New York Universityl .
Llayron Clarkson Texas Southern University ?
Ernest J. Henley University of Houston: ’
Q William Hogan Harvard University -
Donald A. Larson SUNY at Buffalo ° . ‘ ,
William F. Lucas Cornell University “
R. Duncan Luce Harvard University
George Millei” Nassau Community- College
Frederick Mosteller \ Harvard University. . . |
Walter E. Sears University of Michigan Press ¢
George Springer - Indiana University
Arnold A. Strassenburg . SUNY-at Stony Brook
Alfred.-B. Wi)lcox Mathematical Association of Amefrica
The Project would like to thank Martin E. Flashman and .
Jack M. Robertson for their,reviews, and all others who assisted in
the prbéduction of this unit. , -
- =~ THIS matéria1~was— prepared With the support6F National A -
_[Science Foundation Grant No. SED76-19615 £02. .Recommendations .
JexpreSsed are those of the author and do not necessarily reflect
the views of the NSF, nor of the National Steering Committee. . .
i ’ ' L'afd fx . , - -
o S 31
. % ’

}éﬁ' . A‘ A ¥




) . ~
E " ‘

. A DOUBLE-ERROR CORRECTING CODE

1. [NTRODUCTION

-
I

. Algebraic codlng theory originated in the late

»
an’ electronLc message through a noisy channel. From
- beginning, as a hybrid of algeghraic and probabilistic
results, the theory has developed, while shedding light

1940 ] 1n the attempt to solve the problem of bransmx\{iﬁg

).9.

3
S

For. example,

transmitting
transmission
our purposes
and send two
receiver.

occastional
a0 is

In/practice all channels afe noisy; 1i.e.,

ansiifted and a 1 1s received.

there is a fixed nonzero probability, p,'of incarrect
transmission.

)

the model could represent a satellite
radio signals to a statlon on earth or the
of telephone signals along a cable. Tor
we agsume that the transmitter can produce
sypbols, 0 and 1, along the channel to the

» @ 1l 1s transmitted ahd a 0 is received, or

We assume that

The probability of correct transmission is
L3

q = 1-p. .Such a channel is called a binary symmetric
et _'on the original engineering problem to, thespoint where. . ,channel: ' . . . . |
it is being applled in other .areas of mathemat1cs (e.g. - ’ \
: group theory and comblnator1cs) . '
- - This module will.provide you with a-brief introduction ? . {
: to algebraic céding theory. via an giample: we will con-
struct a doublererror correcting code. Only elementary ‘
i algebraic techniques will be used. _ The prerequisites ’
are an elementary l1near algebra course and some_ faC1l1ty .
T for man1pulat1ng polynomials. . . . I
. _ o - . Y|
*°. . .. If, after .reading this module you would like to ’ » . N B
" learn more algebraic coding théory, then The Theory-of " Let's be Specific. Suppose you transmit a message,
R Error Correcting Codes I and II by F.q. MacWilliams and mo=omom,. - -mls: Conlisting of a secquence of fifteen
N.J.A. Sloanc is the hook to see. ‘ symbols chosen_from {0,1} through the channel to the
. ° ‘ receiver Ifr=r.r

1727 " 'T15 is received can the C
transmltted message be’ recovergd by the recelver9

. Since p > 0, r could differ from m in up to fifteen
— - . '
The following simple model is- appropriate for the . places.

X . study of many communication problem?

i BREA 2,

s . . [

THE. PROBLEM:

From th® receiver's point of view any one of 215
. - " possible messages could havj
) .o ’ . ) JAf p is close to zero {a re

been transmitted’ However,

iab}e c¢ annel) he or she
. . ) . ) , would not expect many errors in\ tran
L S ' . Channel ~ e et e~ message—should~be near the recei

a N . N
transmirrer 2 Receiver 1 thag they do not differ in many places.

the
d in thé sénse” .o

rsslon, i.e?,

Throughout this
— . ' - - -+ discussion we will assume p is so clese to zero that more
- ' (If you

the probab1lLty of two,  or fewer

33

] thany two errdrs in transmission are unl1kely
' S N : } ' 1 " 'know some probability:




A‘,‘

<,

6L ; ﬁllemm&% OTWJ % o
5 ouid haveqbesn 1greed§§hﬂf

only*one.message w1th1tw O
110111111111111 Glxgg b
restr1ct10n the: re;emver couId e Gt

l < (1)

[ 3

Prlor to trans 185

transmlss1on, say m ¥

that. errors were !
probably ‘a. 51ngle enxcr 1n the third b1t

q,

e o

T

. (iir that the. message WAS {probably) - e
11011}111111111 - g v

»

e

The problem: Can a set, C, of message ‘words be *

. chosen from the set of

v

b1nary fifteen-tuples so that
the ‘o¢currence of ‘two or fewer errors in transmlssion can -°
_be detected and correéted ‘by the receiver? "We' will refer

. to such @lset%s a code and*to its elements as codewords

Some obvious .choices -for C are {000000000000000}
{Lllllllllllllll} aiid {000000000000000 111111111111111}"“
But, while these choices for:C sat1sfy our error,
tlon and correctlon requlrements

etec-'

they 'do not enable us, Do

+1deally C should contaln o
However, 51nce there are ‘

22, rl non- empty subsets of binary. fifteen- tuples {more

than a bllllon)(one cannot rummagé through them at

to transmit much 1nformat10n
asgﬁmy codewords as possible.:

. ,»--random~lookang—for a- Large»codev-We mus t-restrict ~our ——-——= * -~ -

dttention & sets of binary fifteen-tuples which possess
some sort of regular structute.

L]
Our approach is algebraic. m
» - i

. '- 241‘2‘ - ) -. 'i‘

e 2 5

CODBWORDS AS VECTORS

.l eng . -

) —:’V-We,denote the set of. blnary.ljfteen tuples by 22ls o
-:Ehbcéjuz 1s the fleld with_two elments ;) 0 and ), and -
Qpérat1ons, nd giyen by the " table below . )
g R «TABLE.L
Addztlon and "Hulttplmatfxsu Zz -;
+ /0 1:’—, T N - 0 1 . .
0~ 171 ‘ o || o
1 ("o " 1 07} 1 R
_'—‘ " it 3 ' \
U51ng the add1t1on of Z2 to add elements of 22ls compjonent-
nge ) ‘ ) Lo
e 1101710010211 01
’ "+ . . ‘
011010111101 0-11
101101110110110

« .

15

enables ys to view Z2 as a vector space of dimension-

. 15 over (the finite fleld) Z,.. This obsewatipn is useful
. for _the fbllow1ng reasons. N _Z/‘,(,Y, ) .

The 1ntroduction of errors by the channel can
?hbe described algebraicajly.

‘’is received,

If m is transmitted and r
then we can write -

k-4

(1) T =m+ e, .
where.e = ele2 -eis is called the érror word and is
deflned as fOllQWS
“.,g “‘”-'\e':;—{e- ,‘if ri = mi o ,\; e ‘
1 .. if ry f my _ '

Notice that Equation (1) is equivalent to, -
\ .

2 (2) - r+e‘=mn . o




A .

- |
1 + 1 =0). Thus

and addlng tor y1e1ds the transmitted message.

since e + e = 0 (remember, finding e-
)

Problem 1. Gompute e if - 101010101010101 and

r =10101011%010100.

(ii) Subspaces of Zzlshare obviou¥ candldates to
serve structured sets of message words—codes. 4

Better yet, théy are easy to construct' We can take
3

+15

C e Z, o be thé set of solutions to the equation )

(3) . Hm~ = 0,
where H is somé' n XIS“Binary matrix and m® is the
The matrix H is called~the

parity- check matriz of the code C it determines. (In
the literature;

¢ transpose of m = LOLPERRS IS

H is called a Hamming matrix,,and C a
Hamming code.) ’

-

(iii) The receiver can use the a1gebra1c descrip-

tlbns of C and e to advantage. It follows from (2) and L
(3) that - :

t

Hr~ = H(m+e)t t

A ]
= H(mt+et) = Hmt + He® = Hel,

_Hrt # 0. This means that an error (or

.~ 3 .
errors) occurred in transmission since r¢C. More-

; Case 1.

{ ovéer the error-word is among the solutions to the
nonhomogeneous equation He® = Hrt

N h 3
Hrt = 0. This means that r is a codeword.

Either transm1551on was error-free or the error-.

- - Gase 2.

-

codeword.’ . .

. These remarks illustrate ige inportance -of the
vector Hr' to the- error detection and correction process.

“We will refer to..Hrt

word satisfies Het ="0; i.e., the error-word is a

as the syndrome of r and denote it

by S. ’ f:'j . . N

] . . te

\

L M [

4. A SINGLE-ERROR CORRECTING CODE
. A

" To"use the observations in Section 3 we need to
specify a parity-check matrix. Let's try
v .

111111111111100
Hy=1101010101010010

‘0101 01010101001
1 o,
The code, Ci, is the set 'of .solutions to H
is equivalent to the system:

\

1mt =0 which‘

‘+m

+m5'

m +m2+m +.m

1 4 4 +m, + m

g * Wy tmgtm

+m +m

9 * Mg +m

11 12 T3

11

+m9 +m =m14

+m + m

10 12 © M5

These equations are called the parity-check equations of
Cl' As written, they imply that My My, “ply o may be
chosen freely from 0,1 as long as m 13%M140 and m s are
chosen to be the appropr1afé\§ums (You might, think of
LI PPRER 12 3s 1nfowmat10n bits and m 3

as check bits.)

14,’%nd m s
Th1s observatlon (or the number of
columns of H minus the row rank’ of Hl) implies that the ¢
dimension. of C1 is 12 and IC | = 212

Problem 2. List a feW'of'the codewords.

With this code you can transmit a lot of messagesl

) How does the receiver fare? Let's suppose yg transmitted
m and hg,rece1ved T = 11111111111&000. ;
Since let = § wat least one error occurred in traﬁsi
mission'aﬁ? the error-word is aébng tﬁe solutions to
HleF = é » which is equivalent to_theﬁg&nhbmbgeneoﬁs
system - . . . . '
. .

f_(s

s




- ' . - ° e
| - 4 -
- e . . . \\ t*: . . . . -
€ . R - -
b ! - . . . 1 . . . .
ey tey ey + e, +eg + e +_e7 +eg ey + e{0 te, + et ey =1 which 111ustrates the receiver's problem with this code. ’ .
. . He has no way of knowing which one of the six equally
&1 te +oeg te teg tey tey,=0 ) likely errorwwords actually occurred.
) e" ‘te + e + e + e +e, +te ., =1 5
- .2 4 6 8 - 10 12 7 715 ) . Problem 3. If r = 111111111110000 and two errors
~ - N . * . - ‘ 7 .
The receiver might solve this system and look for error- - occurred in transmission, what was m? :

* words 1n the solution set which have 1's in only one or To avoid this difficulty the columns of the Cparity-
two positions. A shortcom1ng of thit approach i thzlag ’ check matrix should be distinct. This is 1mpos§1b1e
after solv1ng the system the receiver must exam1ne 2

N using a’ 3 x 15§ parity-check matrix since only eight binary
words, This is bound 'to be time consumlng (expens1ve)' '

e 5 . three-tuples exist. Let's try.a 4 x15 parity-check matrix,
’ * A more efficient approach' to error identification is . say -
1, s T 6 00 1 :
to view the syndrome of T, [0] = H‘Iet, as a linear combina- o . 00 0~0i9c0 0Il1111111 ,
o , Cu e - 0001111000011 11
tion of the columns of Hi: 0 K : . H, = N T
) ’ ) Ea ——— . ‘011001100110011 .
- 1 e Ny 1], 1] . 1 1 ) - "110101010101 001 .
T e |lf * e, l0] +ueq|1]| +e, |0f F e f1] + e |0 + e 11] + . o . . - o
o 21 3o 4 510 6111 7o . - ‘ ‘
S lat G ) . oL T -Problem 4. Why is it a bad idea to have a column of o
- I’l'l i '[1' [1]’ ‘[lj‘l . [1] [1}' «.0's in a parity-check matrix? . ' .
+ e |0 + eq|1] + et f0] + e, 1Y + 0] + es|O[ % - ) .
N 8 9 10 11 f1 137 : - ‘ - =
‘1l OJ . 1F- 40 % 1- » 0 The "dimension of C, is eleven so there ar€ 211 .
N ) . |0 . T 17 N . ':‘ " codewords; fewer than in Cl’ but the recelve-r can now , °
— * €14 0 _+ elsr(l) = (l) L ’ ! ' detect afid correct any ﬁ;ngle error 1n trandmissie : s
. » - P ) . /‘ i - . Indeed, a single error occurs in the ith p051t10n ‘f, and <
yﬁ" The error-words with a‘'single 1 are easy' to find: the 1° * only if, < : '
’ ‘must'occur in a position_ coarresponding to a cqlumn whlch} B t : . B
fe " equal. to the syndrome. A1l such error; worh and the, " " . N , = Hgro = Hpe™ = ¢y, - )
il’»‘ . . . . ' ’.‘ ‘ t ‘
S s:orrespondmg messages, are listed 1n the follow,ag ‘a:rra?', "%+ where, ¢ denotes the ith columh of H;.
2 * . : o '-f‘,- L M M , - *
A r e L Lo “ . 0= mo oL, e E le 1 fr=110000 0 h issi
A h . ' . ‘ ‘e V""'J- Xample 1. If r = 110000111111101, then transmlssmn i
v : . .'[0100000000_00000~ . 101111111110000 - - " was incorrect since . e *
N ) ’“ ' Lo 000100000000000 ’111011111110000 1]
h R . . > t_ o
A - 10 . . - . = . .
S 111111111110000, + 1 00001000000000 - ‘111110111110000+ Vs H,r 1] # 0 v . .
s ] ] 0000090100000617\ < -1111111101130000|—5-. —-- ~~ B 1) R ,
S 000000000100000 111111111010000f _ & _ ] e 2 .
- ' ‘0000000009’0100” » + {111111111111000, . Assumlng a single error occurred, it was in the tenth .
. ‘ 4 . : ’ . pQ51t10n since the syndrome is the tenth column of H2 » .
. ' : Te ' i 7 " Thus ! . gl




3y
&

110000111111101
110000111011101.

E,
]

Note that each column of

b1nary ‘representation’ of the column number.

Y e

L
o Hzr‘_ =

OO s

s

T e

.-occurred in the tenth position.

+ 000000000100000°

<

o

H, can be viewed asgthe

Thus

0
.

Emblies,the error (assuming-a_single egror)

The rece1ver s1mp1y
changes the tenth bit of r to recover the message.

»

"

. %ﬁé%Lem 5. Show that if 7 -
transmissien was incorrect.
« occutred 'and ‘recover the message

111100101001101,
Assume a single error

‘4
Show that more than

then’

[y

Sy T os.

one, double error‘can give the same syndrome-as r.

+

S30Y »
g ~

& ' e

. A DOUBLE- ERROR.CORRECTING CODE
1 ot —F

Are H, and C, useful on double errors?

If two

. ’ﬁﬁwiirors ‘occur in transmission, say in the ith and jth

poszt1on5, then
& ) ; t - t _ -
3 s Hzr ; Hze c; *
o,
(i) ‘Detection?

and nonzero, s = c, +
. was incoFfect.

(11) Correction?
by the syndrome (see Problem SYy.

c. + ¢, =
i i

«Another equation in Ci and C.

Not hardly!
sponalng to the error locations are not un1queLy detérmifed

The columns-corre-

This is because

s 'is one (vecto:) equatlon in two unknowns.

would be helpful

ce the columms of H, are-distinct
j~#'0, vhfﬁh implies transmission

If .

we cont1nue to”’ th1nk of par1ty check matrices as’ matrices
of columns, then an 8x15 matrix of the form

‘A “[,}) Hs =" i ; . . B
o f(cl)f(cz).-. f(cls) _ @

. ‘4‘0 | .

,Ef. ° . .
: where n is the mth colpmn of H2 and f(c ) is some <y

prOV1des a second equat1on in N and-c, Spec1f1ca11y,
. 3 A
c, ° c's s
. H3rt = ---1-- + ---J-- = - -~
f(ci) s f(cj) S,
1mol1es‘ % m}éi‘ ' . .
c1 + Cj = sl, . *
—(4) P - '
f(ci) +'f(c5) =S5, L ?

where the eight-component syngrome Hsrt

is‘wrigten as two

foﬁr-component syndromes ¢

Whether (4) can be sof%ed uniquely for <4 .and c.
depends on how the functlon f is defined. leen ourJ%E
ability to add c¢olumns, and multiply them by 0 or 1,
the only a1gebra1c choice fbr f is linear:

about

f(cml = bcm +

g

Cp>

',g: L 4

"where b €2, and ck 1s a four -component binary column.

With.this definition of £,

the second “equation in (4) is

) (bey *+ ¢ + (bey + ¢) =(s,, : ’ ‘ -
. ] ‘ "?
b'(CI + Cj) + (C‘k‘ + Ck) = 52’ if’

N o .

¢ " e b(c. + Cj) = s .

t -~

Either chpice of b léads to a redu d%nt second equation

(cs * ¢5°

mining c; and €5

s

\ Someth1
widl do, if §
four-component columns,
four- component column with

three or les$.
- . )

S, 0r 0 = s,) and’prOV1des no help in deter- {{:

nonljnear is required.

This 1dent1f1Catlon process

¢

-

Maybe £(c) =

a binary polynomlal of degree

£ 1o,

Y
Y T

o éi.l

e ) S
canr 1nvent a multiplicdation procedure for
The key is _to, assoc1ate each s,




e

1

g7 'Lr i
¢

F Ty ;,';, P

o1t Problem 6. ‘Which column of H, serves as the .
57
i 01180 <« xz . x mu1t1p11ca:1ve identity under the multiplication just
4ol introduced? Show that €y * €y = ¢ and €132 = 0"
-7t ™ | A ) - Although we will not prove it, the columns of H,,
?_ U I . togetheg with the eez.'o column, f(‘er‘a f%nite field v,jlith
it * respect to the addition and multiplication we have just
it v .o . ’ -introduced: Less precisely, we can manipulate the
preserves. column addition. columns algebraically asgif they were real numbers. For
) 3 2 example, it follows from the rdsults of Problem 6 that
. 0110 +1011 = 1101 «- x +x +1-(x +x)+(x +x+1), N ..
) ‘s Ci3/Cy =Cyz-Ciy = ¢ b .
. and makes column muthpchatwn poss1b1e \ 13 1 12 710 \
o3 . ‘ .
« (0110) - (11011) <= (,;2 + x)(x +x + 1¥ . . ) s1nc.e>‘c12 is the multiplicati?ve inverse of c,- The fol- *
* 5 4 3 5 5 lowing table will gnable us to multiply and divide columnss
; (5) L. ST XD P X4 Xt o+ xT 4 xT X modulo x* + x3 + 1 quite easily.
'Y e . e
= x> +x* o x5 ¢ x es 110010, ' , . ;
. : _ P , C + TABLE 2 i

- although closure is not gudranteed as you gan sie. §h1s . . Column Multiplication for the Matiix H, of Section 4
deficiency 'is not fatal. We can identify x” + x" + x° + x 2 . - J
“with a polynomial of degree at most three, namely 1ts"‘ . ) - Tl .
remainder upon division by a (prevmusly agreed upon)’ - ’ . (‘:2)2 =c, (‘:2)7 =c, : . (ep) 2 =c,
fourth degree polynomial, say p(x) = x4 + x3 + 1. "S1nce 3 g 13

) ] (7)) (ey)T =y (e =gy -, (e))™” = cg
x v 1 - F ) - 4 t 9 . 14 -
. . ’ (c,))" =¢ ! ()" = ¢ . (c)) =c,, . .
(6) x4 + ;‘(3 + 1 x5 + x4 + x3 + X ” , . 2 2 v 2 5 R R 2 12
R -~ - : o 5 _ 10 _ -
x> + x4 + x : . ("= ey (e =g (™" = ¢
. Tox3 ¥ . 6 o1l )
X R . = c -~
: , . ‘ - ' e = o5 (e) 7, = ©13
xs.+ PLPRVC I x is identified with x3. We dehote this . . o ¥
X ’ ) L} s
identification. by xS + x4 + x2 + X = x3 and say S . o, . ,

S50, L4 3,0 . ‘ 3 -4 3. . - - .
Xo + X'+ x.+'x 1s congruent to x” modulo X' + x” '+ 1. . : Problem 7. Verify that w(gcz)5 = c11 and determine the ,
It follows from (5), and (6) that . — ’ multiplicative inverse of each g» 12 <115, . ’

. ‘ . Lo —_ ~
5. 7101 = . 4 / - . i ' *
(0110) - (1011) = 1900’ : « . K By.- now you have probab‘ly guessed' that choosmg .
that is, W ' o - p(a() 4 + xsi + 1 to get mu1t1pl1cat1ve closure was no , ,

- _ . : ) accident. It wasn't. _A discussion of the properties of
€% - .€13 = -cg- N : 4 3 vy
. - 5;7 ' 11 X't xT + 1 wh,1ch guarantee such ‘a nice column algebr‘a can +

g . ! - ‘A ' ,12 B

. - N . > o
3, . fea ! ’ . -~ .

g, T, r . e .. o, LN ‘

O - o . : . ‘ =

. : - . % ﬁ% - < . e .

3

L, . .o, . « L2
2 e LR Y TR PR S S iz R et - R . . f e

.
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o be found in The Theogy of Error -Correcting Codes 1 by *Since S1 # 0, .
: ' ‘MacW1111ams and Sloane. : : ‘2
: ‘ - Sz/s1 = cyjey ¢t (sl) .
L » ) The requirement f(c ) = (c ) is legitimate now that - . . .
L . ,
. . . we have invented a way to square columns, but it is not so that i & o
useful. The.second equation in (4) becomes N\ , o .
! 8 . 2

. ) ) R cjrey = (s + sy/s .
o : (€)™ + (c5)7 =55, ¢ . .

(? v oo v . which implies - - ’
I which is redundant, since ‘ y
-] . i (5,)° + s,/s;- & .
- . - . c. = —_— . .
S - (sl)2 = (c; + cj)2 ~ I, ‘1
B ‘ ) 2 2 ‘T . Y WTIN . .
b \ - - (Ci)6 + cjiey + c°C5 + (cj) \\ . Suabstisuting for c; in ii + cj =) yields
- * ) . '. ' . - . . ~
s \‘ . * = (Ci)z + (Ci'cj + gi-cj)@ (_cj)Z‘(Remember, 1+1=0.) (51)iZ + 52/51‘ £
s - Y RN ) . . Ci + C. = 51! ) ‘
‘ + 1ey2 - . ’ b K ) :
] . N (ci) {'CJ’) » v ‘ . . y% N
s . 5., ’ ' which is equivalent to
. - =, 24 \ . s . r
F -

.,

That is, the second equation is the square of the first.

,-Similarly,

ith and jth positions must satisfy the quadratic equation .

) Pressing on, ‘we try f(gm) (cm)3 The associated
system is - . ) .
- " ‘ L
. . Ci + CJ- \= S.l 9 : o .

R (8) - 3 ' . .

- e 2 (o7 =5y a #

K : i .

N v . N . Y
‘éot}ce that @ - - Sy
- . . . 3 3 . -
= M + . ~
> SZ ‘,(,,Cl)' (CJ) : 3 “ o > /
& . : 2 2
' LW % (cy + c-J[(c-)— + TaCy ch);l (
’ = sl - {C 6C + (c‘ ) + -(Cj) 2] -

| ’ = 5, - e.-c. +-(c, + c,)z] )
e . 1 1 7) i j - R
..t o s 3
%_4 ’ - sl o ]
a 4%‘ 13
0 . ‘ Ly :
= o’ . :6 . ; -

2

+

(c)

o1

s1°¢4 +‘[(Sl)2 + szﬁglJ = 0.

-

.

0..

» [(sl)2 + sz/le

associated with errors in the

Thus the columns c, and ci

- 5

52 1 - ] R
z° + Slﬂl +;{(Sl)2 + sz/si] = 0, .
If only one error occurs, say in the ith p051t10n, then

c; ='s1 and (sl) 2

¢

We have solVed the problem posed 1n Sectlon 2.
code, C3, 1s the set of soluth:§ to H3m = 0,- where

Y




Hoo= bSu S2 15 ‘

T 3 C N3 03 3

. . (€))7 (cp) (cys)

' \ [00.000001111111 1] -7
0001111000012111 )
011001100110011 '
101010101010.10T1f

, . lor11100100000101]"
- ’ 00120111000001%0 ¢

. 011101010010070f !

'.JOLIIIIILY}IOLQ ‘

) - Problem 8.

’ -

Determine the number of codewords in Cs.

- Our 1nstruct10ns to the rece1ver are® upon receipt

-

- Y r, first compute *
. . -
- . fs ,
, . Hsrt =t > . ) . L
! . -
. . . 52 . -
Then: .°. - P l ' i e
- . N "L . ' - »
(i) If’s = s,7= 0, assumé no errors occurred. - ° i -
. ‘ (ii) 1f- 1 r# 0 -and S, = (sl) » assume a single  error

. occurred in the ith. p031t10n where s, = ;- ~
. ’t’

(iii) 1f sy £ 0 andl s, # (sl) , e€xamine
{c,: 1<k <15} for,solutions to .the quadratic equation
k S q
@ ' .o . ,
>

) a2 f‘sl~zlf-[(sl)2 H 52/51] ot b

— 4 ]
‘and CJ, .are kound, assume errors

occurred in the ith and jth 9051t10ns Gtherwise, assume
. three errors.occurred {and réQuest retransm1551on)

¢ (iv) 1If $1 =.0-and P # 0, assume three errors "
-oceurred (and request retran;mission). L

“If two solutlons, ¢y

Examglevz;

H3rt yields

Shppbse T

el 4% L e

Computing

f
!
|
P
=

101110000110001.

5 S U = C13
and * r-...--e“‘—
- 13 3,0, 3" 3 3 3
, 52 l (Cl) + »(CS) . + (Cd.) + (Cs) t (Clo) + (le)‘ ‘}r
1 - ) .
- . 0 _ .
=11 T €10 -
0
gince Sy # 0 and (sl) Cg #*sz, we are.in case (iii)
aboves Equatlon (9 pecomes
2% . Ciz* 2 +cCc. =0 ’ e )
o . 13 11 - 2
;&nce = o R . !
e 73 e 22 10,,° .11
.t ,(Sl) + (52)/51‘= (cgi S (cz) ,/(CZ) K
. 2 -1
" = (cy) 24 (Cz)
, T -
’ ¢~ = ()] + (e )'14 " "L
g e s * - : .
c ECC .-,
-~ - 7 #Z £
. Cyqe 2 L
. .. e ‘~ 3 1} £ . # : j:'
Testing for roots, we find that .. . : .‘g; .
4 ", o > » . o . -
e 2 . - 3 ¢ -0 [y 4 "'
. leg)®e glél €z ¥ e =0,
‘.;& s ’
. and 7 - . ..
. . .. - »
S 2, a4 - L ] s ..
. , (614) C13 C14 + Cl;!. s 0: Co
» ‘Q > . . ’ . ’ " : .’
which imply errors occurred ‘in the ‘3rd and 14th positions. ]
A . - N - - o 1
é - ’ ] s R
’ e . L] .

® -
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A, i
TH' A‘(;’

e
—

.

I K “
. -~ ) < - .
. A ® i »
The messTge was (probably) - s MRD
. » = 100110000110011. , i
" Problem 9. Apply the receiver's, instructions to
° t . ry = 110100010110010 - .
. . . 5.
- I =_0100001110/1’901)0 ‘
! T~
ry = 110100011000010 i ' - .
LN . L} Y
"r, £ 110000010100011 < . -
. . \ 6.
and recever the corg‘gspénding message when possible.
. N . . ~O
1Problem 10.. ConJecture the form of a parity- check
matrix, H, for a cdde that will detect and ‘correct up to --
. Ithree errors in transmission. o . | ¢
. 7 ' % . g ' ..
‘. . 6. PROBLEM .SOLUTIONS . ,
"l. r=m+e implies m=r + e . .‘ - :
& . \
. = lolo10101010101- o - :
r = 101010111010100 . a
e = 000000010000001
. “ L N -
2. c, =<0000000000000003,, | o _
. o L ot -
c, = 011011011101011 : o, :
: L4 - - . .
‘. " - n . N .
I o= uummmneo 0 on . | o
‘y - - . . - fm} .
¢, = 111000000000100  © . . - Vs
e 1 - < . 1 ’
«  Hr = - The only tfo. columns of H, which sum to |0 are the -
.1 al; : 1 ] 1l 7.,
13th and 15th. Thus c = 000000000000101 adm=rde= .o
, 111111111110101. : :_’) s s
48. -~ . _— . 17
y . 3 . a
. v 31. h AL - ,
N . RN . 2 Ll B B

9

- ~ B

If che ith column is a column of zeros then a single error 1n

the ith column w111 not be detected; i.e.,
t »r e
Hr™ = Hm +He=0+0=01fe=0°°010°°'0.
. * +
ith position

-
.

If a single error occurred it was in the 4th posiuo?smce
Hzr =c,e 111000101001101
1. + €5 = c3' + c7 = c[‘ errors in the llth and 15th posic?ons

—

Therefore m = Since

- or in the 3rd and 7th p031cions give the same syndrome. *

¢, < 1 is the multiplicative identity

:- €13 * €p = ¢ since ¢ ; SR xz, ) B % and N
(x +x2)x‘x4+ 2]+l .
Y 11 ) -
SRR 1 [ H e )
v * ! * ’ x4‘+: x3 + 1
. . 1 - . .
‘e -c'=c'"since‘c SR R
13 © ©12 T §pq Since cpy L, S
¢y, - x3’ + x2\, 2and (x3 + x2 + 1)(x3 + xz)’; x%+ ;c[':+u(3__+ xz, -
-3 . .. v ¢ - f P hd
H + x> ' -
‘x X €10 i N . L,
ity
. xz + x N &‘ ¥
x4+x3+1\Ix6 . +x‘4+x3+x2'/ .
Co. f <2 + x5 x2 L. )
. v + 5 + x[' + x3 ) . A >
N . 5 + x[‘ 5 -4'-‘x - .
N x + x > ) ’
N 5. .3, .
(e))” & x7 = x tx+le e, - .
! Y A - 4
,:".‘ 4
¢ " $ I3
%
. . e . ' /
. " o ’ P .1‘ o
L - - . .
% s * Q v . ,
L {3 49 -} "l

0 N

.
—r




4 - -
= v e b
i -* 1(4-!-1c3-!-1l:<5 R,
o x” +x +x * N
o ' ‘ox + x "
#M“” . 3
. . X +x + 1 -
v . \ . 3 ‘.
-, L. x“+x+1 *
L
17 7% % 7% 3T % 37 " %07 s s -
g .
N ! =c, . c,, =¢C Cyp =1 ‘-
. 7 14 2 12 '
iB‘ Since the row raTk of ﬂ3 is 8 the dimension of C3 is 15 - 8 = g/‘ ’
Therefore |C3| = 27.
‘ . a . s . A4
. 9. ‘Compute Hr © = [ 1:|. ) ‘
. . i 8 .
2
: Ty 8 @ 0, sy = ¢s implies that at least ‘three errors occdrred.
P T Ask for a retramsmisgion. ‘ . '
L N
» \ ' 3 . * ‘ l ;
rzl: 8 =. Cigs Sy = 0, (slz { sy implies khat errolrs_ occurred
ip/the 2nd and. 13th positions since the roots of - .
".zz+c. 'J-z;’+‘.(‘c )'2=z2+c ~“z+c =-0.'a~1:ec °
15 . 15 15 3 '

_ SECTY
' @, = 00000(,31116'1'0100. ! ]

3
Tyi 8) =g, Sy = Cq, (sl) s, implies that an error

occurred in the 8th position. m, = 110100001000'010.\ .

s, = 0 implies that m, = r4§

ra: s =0,

10. This is a difficult problem, and a complete solution requiresv the - !
development of the-finite field theory behind our choice of

: p(x) = L ¥x3+1. sucha development is beyond the scope/of ’ -
/ * this module (see The Theory of Error cOrrectir;g Codes I and I(I,
‘;" a by~ ﬂac‘;illiams an‘d Sloane). Still, an educated guess is,possible.
;’ - Indeed, our~discussion’at the beginning of Section 5 suggésts that,
5 we might add four rows to H3 to correct the t:i:irduerror. The '
oo .
U G 19
VRO, T
‘ o S <>/<~»— 2 e
il:'gw;*’f =3 . ] ' ‘2

.

[4 ’ .

matrix we obtain, say H;»would be a 12 x15 matrix and: the

syndrome of a received word could be written °
i - '
i - -
- s S N »

1 ) . \ 5.
s, t° : .
2 .
Sy ) \

where each sy is a binary four-component column vector.

Thus, /

¢ % Ll S5 . ;
377773 3
Cl C2 Cl5 > '
P ‘g(cl) glcy) i g(°15? _ ) : .
. . 1
and ¢ ¢
[y ' “. . e

g gy g =8 '

(*) e,3 + ¢ + ¢3 =g

3
i . j ?"\_k o 2 ‘.
g(ci-) + S(CJ.) + g(clg,ﬁf S35

where errors occur in the 1t:h,-jt:h .and kth positions, and the
fanction g 1s' to be determined such that (*) can be solved
e h

and ¢ .

3 k"

uniquely for ci, [
i K 2 .
g(ci) = ¢y g(ci) ¢y and'g(ci) —‘c

How should we define g? Since
13 won't do,
g(ci) --614. Then -

4. 4 .._.

53*=(:il‘-!-cj +'f:k . - -
. (Ciz).z . (€i2)2 i (°k2.)2, -
B . 35‘ (ci'zf?jz)z . (ckz)z L. : o
TElreteed |

='[(c1+cj)2 + ckzjfz . '

>
let's try

e

g




?. -~ . -
: 7
A s 2,2 L’ . '
: = lleg ey HeE .
v ) “'l. s
» —_ = (ci+c:i +c) Koaauad
H - s 4 )
’ 1 * .
That is, the first and-third equatiohs in (*) are redundant., .
L ’ Our nex: guess 1is g(c ) = e Hard as you may try, you won't ,
. ‘ be! ablerto fimd any redundancy in phe system. .
, ¥ : >
N e, +c, +c @
; . 1757 % T8 \ 9
: c 3 +c 3 c 3. ‘
d i § k © %2 ’
3 { : 5, .5, 5 * .
? ey + cj + Cp = S3- - ~ \
o Conjecture:* -7 LT
‘ e
. _ . ® .
: o °
< ’ c, ¢, . c -
;o 1_2 ' """ ™5
- 3 3 * :
- ‘1 % £15 |°
: NI . .
i "2 * 715 -
] -%’,‘“&
.q. “ 'v\ﬁ _ i .-
’ hd -
. .
’ \
' ’ A B
1 e v: ) .
o ‘ | .
. . -
- 3 ; .~
¢ . , T 21
¢ . ol , e . N
I N TN .

<,

v oo . e .

- 7. MODEL EXAM .

1. The binary Mmatrix

- . 11110 ' : \
H=1{01111
. 10101

H . Y

déte;mipes a code G‘containeghin ZZS. - ' )
, - N

v

a. Compute the s&ndrqme of r = 10I11.

b. Is r a codeword?
c. How pany codewords are there in C?

d. List all of the codewords'‘in C. .

- '

e. If r is received, what is, the ﬁost~1ike1y message?

f. The code C can detect all singlg errors.
Why?

Can it
correct all single errors?

2. Solve the equation x6 +,x4‘+ x2 + 1 2 p(x) (mod&io
x4+ x” + 1), whére*p(x) is a binary polynomial of
degree at most three. ) ) ~ Y

.

3. This problem refers to the code C3§of Section 5.
Determine,; if possible, the message if .
r = 100100110010110 is feceived.

ey
‘4, Is it poss;ble to apply the results of the module

1 toxa blnary symmetric¢ channel fQr which-pl> %2
/Jl P:

¥

. . - .
LI ‘ s . - R
H o - .




2,

8, =

17 (1) 7z e sy

P

0
0
1
0 .

o
we conclude that a smgle error occurred, in the second position.

That is, the 'message tias 110100110010110 ¢ ’

0
. LAY <
, . . .

: ; : : so e ! ; :
Yes. If a 0'is received, rewrite it as a 1. If al is rédeeived,
rewrite it as a 0. _ -

implies ml =;m5, Dy =@, + o, and

. P? = 9. \
Th 'r fare, “:

.
Fadt \

€ = {00000, 01010% 11001, 10011}.
’ e Y% N

_e.. 10011. )

£.. No. If 00010 {s reeeived, then 00000 and 01010 are equally
likely to have -been sent. B

. ;)
p(x) = x + 1, since

.
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STUDENT FORM 1

Request for, Help

-

Retﬁrn\to:
. EDC/UMAP .
*55 Chapel St.

Newton, MA 02160

. -

e

|
Student: If you have ;rggp%e with a specific part of this unit, please fill "i
out this form and take it to your instructor for assistance. The information
you give will help the author to revise the iinit. L
Your Name ° ' Unit No. : |
L] %M
Page i
age___» Section Model Exam
O Upper | . ection ' Problem No. -
OR o OR n
OMiddle Paragraph Text -
O Lower . Problem Noﬁ;i——-
& ’ . )
. Description of Difficulty: (Please be specific) . )
: o :
. )

.

\\

s
Gave

) Give

LY

“r

.

Instructor: Please indicate your ‘resolution of the difficulty in this box.

% <::> Corrected errors in materials. List cortections here:

-

o~
o
. -
student better explanation, example,

brief outline of your addition here:

X! .

|\

P
~

Assisted student in acquiring general learning and probleni-solving -
skills (not using examples from this unit.)"

A\

Instructor's Signature

0

or procedure than in unit.

A, C \

Pleagse use reverse if’necessary. . - o

s,

Fi




) . 7 ’

Al

. -

. Reéturn to: /

STUDENT FORM 2- EDC/UMAP .

55 Chapel St. '

_ e ~ Newton, MA 02160
Name - &ww; Unit Wo.' " Date - ° :

. ] . 14 s "EJ? . -
Institution . . z - Course No. .

.-Unit Questionnaire-

Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount\of detail in the unit?

N ’ Not- enough detail’ to understand the unit P ] S, .
Unit would have been clearer with moré detail - - ' \ﬂ}
Appropriate amoynt of detail .
- Unit was occasionally ‘too detailed, but this‘was not distracting
___Too much ‘detail; I waé ofcen distracted 2
xﬁ
2. How helpful were the problem answers?

Sample solutions,were too ‘brief; I could not do -the intermediate stleps’

—_ Sufficient information was given to solve the problems ,’
. ____Sample solutions were too detailed I didn't need them

: 3. Except for gulfillingfthe;prereqpisites, how much did you use other sources (for
example, instructor, friends, or other books) in order to understand the unit?

A Lat Somewhat . A Little ‘ . Not at all

L)

4. How long was this unit in comparison to the amount of time you generally spend on
a lesson (lecture and homework assignment) in a typical math or science course?

‘Much , .  Somewhat %' About " Somewhat Much
Longer ____Longer the Same Shorter Shorter

5. Were any of \the following parts q{ the unit confusing,or distracting? (Check
as many as apply.) \\___J,/r . .

Prerequisites . . )
Statement of skills and concepts (objectives)\ ; . .
Paragraph headings \
Examples e e .
‘ Special Assistance Supplement (if present)

ther, please explain -~

) »-

6. Were any of the following parts of the unit particularly helpful? (Check as- many

2
lllli
<
-

R & as apply.) ) ‘ o
: - Prerequisites ’ -
- Statement, of skills and concepts (objectives) *
, - __Examples . - o '
Problems : .
. " Paragraph headings T
* Table of Contents, T e ) .

> Special Assistance Supplement ,(if present)
____Other, pleasé.. explain .

>

v

Please describe anything in'the unit. that you did not paféicularly like.
\ ‘ ” .

[ ———— . \ . - - . '
Please describe anything ‘that you found particglarlﬂ helpful. (Please use the back of * *
this sheet if you need more space ) : \




