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INTRODUCTION -

A question that frequently asises 1in,practical
situations is, "What is the best solution to this problem?"
_For example, a scientlsn or a'bu51ness analyst’ might .
require such information as 1éast amount of time, greateS§t
yolume,.least amount of work, maximum profit, minimum cost.

'(Can you think cf other. exumples of "best solufions"?)’
14
‘In many, cases, answers to such "best solution”

prqblems ca# bé obtained, or at 1dast approximated, by
using derlvatlves to maximize or; minimize single- varlable
functions. 'In th1s unit we consider’ several “'real- world"
problems 1n which '"best solutlgns“ are obtained in this

«

.' S i - - B ‘ -~ - e R4
*As we proceed through these exdhplé&~/§§§'will

frequently be asked to cariy out manlpulaxlonS\on y.our own.
< In somF cases these steps will be rout1ne,-1nLothers they
will involve moré tedious ‘calculations. In rbal-worlq
sitdﬁtions, people must often carry out such tasks in
order to solve a problem. {Thus, one purpose d} the exér-

c1ses in thlS ynit dis to help you become acquainted with
the type of calculatlyns‘necessary to*solve real1st1c
", problems. ! . ’

IS

A MINIMUM COST PROBLEM 'IN INDUSTRY.

2

’

2.1 'éutllne of the‘Problem o

-

Let us first consider a typ1cal problem faced»bx
manufacturers of commercial products. _Suppose t at a cer-
tain manufacturer wishes to minimize the total ¢o )
producing a particular item, We consider twl of the . types

"of costs that are involved; the Qosflof actdally-




. * ’ N .
+ -manufacturing the product, #nd thé cost of<storing it.

-
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(In so doing we ignore other costs, such as marketing,
shipping, and management.) ®

{
. - . .
. In our example we assume that the produgt units are
manufactured in batches - of'equal s1ze at gqually spated .

Qrme 1ntervals throughout the year, and that demand or
 the product rs at a known constant rate.’ «We " further assume
thaﬁ the total number_ of units prpduced m the year is

predeterm1ned to be equal to the tota} demand. - he w1sh to
find the number of batches the company should pxoduce
annually to minimize the totalﬂbroduction and storage’ cost.

- ‘: & I3 . N .
While we cannot expect our assumptlonsgto be satis- .
fied exactly in real situations, the agreement may be close
enoUgh,for our results to provide the manufacturer w1th a

¢

useful approximation.

.o .
2.2 Some Notation
. T

-

e shall use the following motation:

the number of batches-of the product produced

annually; °

.

the cost n dollar$s of storing one un:t of the
ofod$ct fog one year; . T

thé f1xed cost in dollars of settlng up the -
factory to manufacture each 51ngle batch " *

(usually includes 1nsurance, cost of equ1pment,

.
s - N

etc.)?

the cost in dollars of manufactur1ng on¢ unit of
_ the' product Ecalled the varrable cost); .

the. total number of un1ts,produced Lnnually -

) ]
In-our problem we assume that k, F v and T are known

constants, ¢ .‘ »

2.3 Derivation of the Cost Equatioh

d s " . .
' Let us first consider the manufacturing cost. Since
there are T units produced annually in\X batches of equal

2
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. ; '
. s - v ‘
) - . A -
’ » ' -h "\ - -‘ ’ -
. »size there : are T/X unit? 1in eath batch, TQus ‘the {otal
. producf1on cost M(X)‘for X batches per year i,s
THZad) s M(X) tp + )x‘dollars. .- o s
- by * . R .

ngt: we con51d£r storage cos;s We assume that eac
batch of T/X uq1£s is put intd’ storage,,w1th the suppl
. depleted at Lonstant rate down to zero when ‘the, next
. batch is therm completed and stored: Thus, the average
~number Oof uhits” in storage ‘at any given time 1s approxi-
matEIy (1/2)(T/X) = T/2X. Since thé cost of storing ome
un1t for a year is k dollars, she total annuad storage

" -~

cost is v . i . : !
. - W
(2.2) s(x) = X dollars. . . .-

Y e

Combining Equation§ (z.1) and (2.2), e oBtain the
3 total cost of product1on and storage (in dollars)

' -

- .L cx) = F + ¥hx - o N

- 24 The Mrniuum Cost

Y

At flr;E glance the’ variable X in Equailon (2 3)
seems to be a discrete, var1ab1e, since it represents “the ¥
number of batches produced gﬁévxear and this representa-
) t19n suggests integer vaIues, However, X may also-assume
rational values? for example-;3 product1on rate of 12 S
M batches per year would be 1nterpreted to mean a rate-of
25 batches every two years. Sinte any real nuMGer can be

apgﬁ6k1mated by rational numbers, we go one step further

and regard X as a co?%rnuous real var1able This assump;

h

tion permits us to'apply calculus technlques'to find the *

" nminimum cost. i
‘ Differentiating Equag'bn (2.3), we obtain-. 3
(2.4) c'(X) =r-—k%\ )
2X
; et 5

g Wmfe,?;,}p .

'y




Settlng c’ (X) €qual to zero and solv1ng for X we-obtain
_ the only p051t1ve critical value

(Z.S) . ‘.XO = VET;;ZF. . : ‘ ..

. Thag nhé 3alue of X, in (2 S) y1elds a minimum for
C(X} can be shown by the second derivative test. (See
Exercxse 1.) . .. N

U51ng 2.5) we find €(X;) to obtq1n the.minimum cost:

(2.6) s C

2.5 ﬁome Final Observations '

\

"As noted in Section 2 1, we cannot expect real
mxnufécturlng situations to be descr1bed by our model
_exactly. In those situatiogs in which agreement is good *
however, Equation (2.5) provides a reasonable approximation
for the number of batches per year that should be made in

order to minimize production and storage costs.

.In thqse sxtuatlons for which our assumptions are
not reasonably accuratey ad)ustments must be made in the,
model. For example 1f demand is not constant, then the
expression T/2X may be inappronriate for the number of
unit$ in storage at any given t1me Qnd we would need a
‘dlfferent expression, depending on the -demand curve assumed.

Note -that the result X = VKT/ZF for the critical
value of X is reasonable As the storage cost k increases,
50 should "the ex1t1ca1 number of batches, as it does here
since /K dppears: in the numerator'. Simjlarly, as produc-
tion T rises, so should the numbeT.af be{ches, and this
also agrees wifn the model. Finally, as the fixed cost per
batch F’ goes up, the number of batches should go dgwn; this
behavior is consistent with ./F in the denomlnator. ‘

)
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T 2.6 Exercises

la. . Use the second derivative test to,shpw that the valud

LI ' " of X0 in (2 5) /1elda a minimum for C(X).
.. b. Find C(Xo) using the expre551on in (2.5) to show that
v, Cpin is as given in (2.6). '
. " 2. In Section 2.4 we noted. that the’only positive criti-

cal point of C€X) was the one given by (2.53)
vy a. Find the other critical poing of G(X)'. ‘

b. Explain briefly why the other critical point,1s dis-

" ‘regarded in the solution of the _problen.
N ’ c.> Why 15 0 n6& a critical.point of C(X) even though &\
7 C'(0) does not ex1st? . .
. 3. Assume that- the aver&ge annual storage cost per, unit

is $2.00, that%lO 000, ufvits are to be produced per
.. year that the fixed §ost per batch is $100 00, and

assumptions of Section 2.1, find: e

- a. the number of batches that wlll m1n1m12e the annual
(productlon/storage) i{zt *

-

b. the minimum annual cos /
N R . v,

4., Usfhg the values given 1n Exercise 3, sketch tﬁe

. graph of C(X), as given by Equation {2.3), for p051-'

L tive ‘values of X ) . . P

5. Let s assume’ that all condition$ are the same as
. . those in Section 2.1, exkept that now X is held
" constant and T allowed to vary. Then the right side
of Equation (> 3) becomes a function of T rather
-than.X; we denote this function by another symbok,
say B instead of Ca for correct usé ofafunctibnil
no;a}ionz

4

CB(T) = (F .+ VIVX)X + KT/2X .

= . Find the value of T that will minimize B(T). .

- .
. 4

ERIC. S .
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.that the variable copt is $3.00 per unit.” Under the

.
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, . 3.° A MAXIMUM PROFIT PROBLEM* -
3.1 The Sell1ng Pr1ce B i . s

. Seve}nl years ago the Boe1ng Aircraft Company was
< fated with the problem of determining the selling price far

a new model jet a1r11ner The basic problem was to find

the price per air®raft which would maximize! the company's

. . ]
proflt - . . 7T ° v e . -
~ .

N . : ’ . !

In this partlcular case, Boeing had one compet1tor,
wh1ch had a similar plane. It vad understood that the

comyan1es would tharge %he'same pr1ce, since any pr1ce -

adJustment by one company woulq automatlcally be me® by the

-,0thér. -Thus, the price would not affeet the relative ¢
shargs of the mérket It could however, have a s1gn1f1-

. cant impact on the total size of ~the market

« 3.2 Factors To Be Cbn51dered 0
f The following quant1t1es ‘were c9n51dered ~
p‘ = the sell1ng pr;ce pergalrilner (yn m1ll1ons ‘
. , : of dollars); # . ] . s .
* N(p) = the,total number of airliners.that .would be
\ sold ai,price p by Boeing and its compef1tor;
cXx) = thq,toxél cost (in millions of dollars) to
S Eb:qufng'of manufacturing.X airliners; .o,
T h =.the fraction of. the market .to be“won by
cL Boeing -(0 < Ir < 1); thus, if Boeing produces
‘* . X a1rl1ners, = X/N(p); -
P = the total prof1t (yn millions again) to Boé;ng

.+ The profit P is a function of the price p, andlls
the quantity that the company wished gto maximize. .
)

. v
M - . ¢ ., ¢ -

-

- N .
* Based on Brigham, Georges, "Pricing, lnvestment, and Gdmes of
Strategy," in Management Sciences, Models and Techniques, editedsby

C.W. Churchman and M. Verhylst. v. | pp 271-87 (Pergamon Press.
1960) . . T .

. ‘ ‘ N2
| . 6
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» 3 T
"\ "Our first objective is to express the profit«p

v .Y 3.3 The Profit Function

v (‘ e’xp11c1t1y as a functlon of the pr1ce p. rsince profit is ..

total 1ncome ;n-.nus total cost, we-first need ’ expressmns
*for both of the;e quantxtles . ..

Ana{ysts at Bpemg_m_ade bojth predictiOn;_,/on the mar?®
ket and estimates of costs ihvolved, and -used their .
. results to arrive at the éxpressions .o -
_(3.1) \:(;5) = - 78p°.+ 658 - 1125:+ : ~ "
. *s : . . ’
- ¢3.2) C(Xj 504 1osxe ax3/d
as.estxmates of the total market, N(p), at pr1ce p, and .
..the total cost to Boeing, C(X), (aso P, also in ml.lllons of
- dollars), of Producmg X airlfners. Sketche.s of N(pl and
- G(X) are shown in Eiguye 3- l,lwnh ‘smooth curves drawq : -
. ‘th;'dhéh actual discrete points. Routine calculations® with

v . Equatlon (3.1)-{e. > the quadratic formula) show Jthat the *

S . - . »

A _?N\(p) Lo ’ -'Ac(x):'_ ‘ : L

.
—

u + t $ +—
50 100 150 200 250 X

" (a) Predicted number -of airliners* (b) The cost ¢(X), in. m| 1lions ,
salaqle at prlce p, where p of dollars, 6f prpduclng X

is in mllllons of dollars' - airliners. . [N

.
- e . . < .-’ %

-~

. . v Figure 3-1..' .

i C" < . .-:9‘ . ‘I
- L -~ e )

lt'east value of p for which N(p) is nonnegative is‘slightly _ Y
. mere t;han $2. 408 million. Therefore, p must be at least '

$2.408 million. (also see Exercisg 6). C - Do
. ' - . . . . : 7
. . g N []
v .. P ,“,;«* ; (
- = -~ .\;
. ’ . ' | T
\ .
g v ¢ v .. .
. . )
AN ' . 1 1 ’
¢ . s I3 .
: ) 2 v o + 4 b . .
$ R ] - 4 .
ERIC o T, SR
. e 6
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" Since prof1t,1’s totak income minus total cost, we .
have £ 0 L "
*, 0 t . . .
T (3.3)f P =pX - C(X). . . . .

* . Since also X = hN(p), we obtain an expression for P in . .
o terms of p by substituting hN(pj for'X in (3.3): * T
[ . b - . ..

. i '(3.4)? . P = phN(p) -~ C[hN(p)] . Lo ‘. v

' ¥ -

. 3.4 Determ1nat1on of tixe Best Selling Prlce -

. e
' s We note first that p and X are both ‘discrete vari-

ables, each assummg ‘only integer va\lues Nevertheless,
- formulaf"s (3.1) and (3.2) both determme functl'ons of
continuous real varlab‘.les,, as 1nd1cate<i in Flgure 3 1,, and

e

»
these functions can be used to obtain approxmatums for <,

the required. integer va'lues e v

Equatlons (3 1) and (3.4)- ZOnstxfute a cham of ot
. fudctions that wbuld yxe‘ld an expllcxt formula for P if we
v .. carried out the actual subst1tut1on However, this sub- '
\ *Stitution wquld produce an unnecessgrxlx compljicated .

. " u . expr‘éssmn, and w /.- ayeid th1s r?lff.lculty by d1fferent1at1ng
2. (3. 4) axth respect to p a~s it .stands, using the thain rule

MENCEIREI RN Ok hN(p) . é-rhncp)lhn '(p) -

. Next,, 1f we .set P'(p) equal tg zero, wé see, fhab p
pee f’must savisf {the equation o
¢ y q -
’ “ . - R ' [y . .
5.6, P ;}‘,%,Z; [ es! . GFNGD) ¥, 05 )
* . 3 - \ [ .
, A wor"d 0 atgion 1s in’ order here If N (pj =, 0 oo \,
then ttre eq'uatmn P'(p)t =90 ’reduces to «the equatJ.«pn . &y
g}f —" hN(p) 0. You shoul@ show (Exercise. 7) at the’ only' ]
’ " value of ‘p.for which N'(p) 0 is Mot a cTi N po.1,tL10f
- l - . - ve
P, unless h = 0, . . LA . o '
‘ f'/ 4 ! . v . -
T, 3.5 Numer1cal‘Va1ue of thﬁ“Best Sellwg Price .“‘_‘, .

b N oo § .

Using the relaflons N {p) = -"lSGp,‘ GSS' C'(X) <
155 % 6x 4 and x = hN(p). = B -78p? + 'sssp - nzs)q we




eould subst1tute into Equation - (3.6) and solve the result-
ing ‘equation for p. However, this approach would lead to
<. difficult calculatlons, and so we try an alternative-

" -approach.
Pp 4

. T ‘Let us spppose that fthe company will produce 70
airliérs. Theén sinée X '= 70,.Equation (3.6) reduces to
, te ‘ ’

P .

- 2 . :
-78 Sp -112
(3.7) p o+ 9_1§‘g§5+p6551 5 = 3.57432.

N

. Equation (3.7) ¢an be reduced easily to a quadratic \
equation% which can be solved by elementaTy techniques. (a

-

calculator will be most useful here). The roots of ‘tlhe‘i
equation are, to two places, 5.05 and 2.94. Using the i
T second derivative test (see Exercise 9), we see that .
P*(5.05) < 0 and Pﬁ(2.94) > 0. Hence, if the company pTo-

duces 70 airlingrs, it should charge approxlpgtgly $5.05 o

» million to maximize its profit. . v

7 [

Similarly, if X = 109, then C!(100) = 3 39737. In'

this case, solution of (3.6) for p yields p;- 5.0 and

‘ p= 2.86. Of these values, p =5 y1e1ds the desired
-maximum, < .. :

3.6 A Look at the Cost Equatipn ‘ R

From our calculations in Section 3.5, you might have
noticed that a large change in X produced a relatively T,
‘5;zsmall change in"p (when p is measured in m11110ns) Let

" us see why this is so. ‘

oo . T.Recall that C' {X),= 1.5 +'6X§;/4. Hence, C"(X) =
-(3/2)X‘5/4. Thus, for large X the' graph of C X) has '
. " slope near zero. Thus, changes in C'(X) w111 be rela-»; .
tivef& small for large X (See Flgure 3-2. ) Such changes,
in turn, will produce., only small changes in the rlght 51de
“of _Equation (3 6), and* thus? small changes in the value of.

P. -

Caw . »ﬁ;,{
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' WX (X) (in mitlions)

51

44 :
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. 4 ~
24 .
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ArY . ’ ¢ !
! % ) ’ N Taae
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10 20 30 4 50 60 70 80 90 100 110 120 X
. " Figure 3-2. Graph of C'(X). .
3.7 Exercises , \

Find ;h% maximum value of the function N(p) giQen

'.by \3.13. How many airfiner§ should actually be

7.

8.

Qa.

. b.

Fthat C'(X) - p = N

. [}
sold at price p? (Recall that a company cannot sell a

. . (.
fraction of an airliner). 4

For N(p) given by'Equ;tion (3:1), show tha; if,
N'(p) = 0, then P'(p) #.0, unless h = 0. ®
Using “(3.5), compute P"(p). -

?

Suppose Boeing decides to produce 70“}r11ners ReLall
that for X = 70, we ‘showed?in Section’ 3.5 that

P'(p) = 0 for p = 5.05 and for p = 2.94. "Now use’ 'b
second derivative test to show that P httains its
maximum for p = 5.05 and xts minimum f£6r p = 2.94.
(Hin{: Compute C"(70) from (3.2). Thenuse "the fact
(fto 3.6)) to simplify your
~answer in Exercise 8. Finally use thé fact that ~

0 <hzx loto show that P"(5.05) < 0 and P"(2. 94) > 0.
A calculator wlll‘help') .

For X = 70, find the maximum vaIue of P (1 e. find

. P(5.05)). e '

10.

El

‘petltogg

If Boeing produces 70 a1rl1ners, compute n{5.05), -the
total number of a1r11ners*sold.g%%§oe1ng and its com-
. Also dompute h in this N

aad £
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. 4. SNELL'S LAW - LIGHT REFRACTION

. 4.1 How Water !'Bends" le .

of light rafs.

*  You may have néticed that when you see an ob)ect
partxall) submerged in water, it appears to be bent. This
phenpmenon 1s known as refract1on Our understand1ng-of
refractlon is based on ‘a pr1nc1ple due to Pierre Férmat,.a
famous 17th century mathemat1c1gn and phys1c1st Accord-
ing to~ Fermat's pr1nc1ple when élght travels through one
or more homogeneous media, 1t follows the path that
requires the least amount of total time. Thus, when there
1s only one med1um such as air, the pdath that w1ll' minimize
distance is a stralght 1iRe, since the rate is constant.

For example, when light travels from water into air, it

n
travels along one straight line to the surface and along

. another in the air: As a result, we see the "bending"
effects. (See Figure 4-1.) '

N

’

>

. N

s:ic’k\ 0>sye ]
BN ' ! '
X Air
ﬂ . ’ t < Water

Image end P

of stlck\ ’

Actual end ;
' . of stick
Figure 4-1. The image of a partially subme‘rged stick
. being "'bent' by water. The arrows
. indicate the path of the light rays to
- the eye.

R »
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4.2 Some Notation _ .

Let us assume that the speed of light in water is v
. 3 . - . L ‘
(in appropriate units) and in air w. Assunme that‘the' d
object 1s a units below the surface, the eye b above.

3 .
Let X, ¥, a, B be as indicated in Figure 4-2, and put

.

cC =X +y.

water

“A (Object) .

Light is diffracted (deflected from its path) as
it crosses the boundary between transparent media
that have different densities. )

Figure 4-2,

' 4.3 Minimizing the Travel Time of Light , .

. K ; < .
o We wish to minimize the total time light takes to
‘travel from point A to point B. Using the formula

. .
distance : rate,

time = we obtain the tgtal time as a
« function of x: | , ; ~
‘ / - /az + xz /E + (¢ - x)2
.' (4.1) . T(x) = v + — ,
Then w.e have ’ s . / LT

. . .

«X = C

w/b-zxw (c - x)2

ir

{ : (4.2) T

<X .
‘ . ‘v/a2‘¢ x2

and /\
(‘4 ’3). ™"(x) = ) a2 ;9 b2 _,'
' wov@ e xNIT GT - 0HIE
S O T
« ‘ﬂ: '_ .
. (4 2 ’ : .

N

B

¢ . . T *
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Now, since vvand w are both positive, T"(x) is always
. p051t1ve. Hence anf critical value,will yield a minimum.
Cgee Exerc1séilz } Sett1ng T'(x) = 05-we obtain

A s .

4.4y A oXD c - x .
v/at s xzﬂhiw¢62 + (c _‘X)Z,'
or ° .

x/l 2 2 sin a '

(4.5)

w ’T—__Tf 31n B : v .
. . Y/ ~ ) .
" The equation /// ) ’ '
v _ sin a ' .
& (4.6) F.: ?in—.g .

s ‘

' 19 Rnown as Snell’s Law. Snell's Llaw states that? since v,
and w are known constants and since, .by Fe;mat s Pr1nc1p1e
the travel.tlme of light from p01nt A to point B is mini-

mized, the ratio of sin a to sin

change this ratio.) This
;onstant, v/w, 1s called the index of refraction. Snell's
" Law is believed to have ‘bee f1rst discovered by W111ebrord

Snell in 1621. -

4.4 Some Concluding Remarks

Notice that the choice of air and water is not crucial
to 'the derivation of Snell's Law. In fact, any two media
through which light travels at-a constant rate could have
been used,’ w1th similar results. . ”

L]

)3 You- shpuld note also that we derived Snell's Law °

bl w1thout explicitly finding a critical walue for T(x) Thew

) actual solution of the equatlon T'(xY 0 (see (4.2))° would
involve a<cumbersome fourth degree pélynom1a1 In‘addl-
tion; it is_not at all important to have an explicit
expression for a critical value. The ability to obtain *
useful results knowing only the existence of certain nunm-
bers (without-knowing‘their values) is a phenomenon which

occurs frequently in applied mathematics., - 13

3 ’ -

(Tnat is, 7
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4.5 Exercises .- . x

; " .. .

11, Using equation (4.1), compute T'(x) and T"(x). Your
answers should be equations (4.2) and (4.3), respec: )
tively. . “ t

. i . \.

12. (This exercise is for those who are famih'e_ir with the
intermediate value theorem.) Using 4.2), Show that
there is a number x between 0 and ¢ for which T'(x) = 0.
»(Hint: find T'(0) and T'(c), then . . . .)

13.

Suppose that a light rayéasses through a transparent
-plate (Figure 4-3). pPro¥

that, with reference to
. that figure, o = §,

(Hint: 1let v be the _spéed of
light in air, w the speed of light 1n the plate, and
apply Snell's Lgv’.) v

~

LR ’ b

N e

.

L3
LR
.

. Figure 4-3, Light passin§ through,a transparent plate. By

Exercise 13, although the ray is displacedsby

N FREE "' %the plate,’its direction i% unchanged. : ;
TR - o
we, ‘g . v.“ . ,
. R ""S, -SURFACE AREA OF A BEE'S CELL
B }: , 3 Ay . \ ) N
5.1 . The Shape of:mey Bee's Cell '
. X
One of natwi*e's_most_remarkable Creatures is the honey
bee--nature appears to have given him some amazing engi-
neering abilities. . {See*Thompson.) 1In this. section wg‘
study the construgtion of a'\honeycemb cell,
r N : 144
D e - ’ IR
v {A‘i -
AR ¥
- [
. - L] 1 « i ,
Q -L8 B

.EK
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The open face of a single cell in the comb approxi-
mates .a regular hexagon.' (See Figure 5-la.) The
horizontal (vertical in our diagram) portion of the cell
is constructed geometriéally'as follows (see Figure.S5-1b).

Y

Over the wegular hexagon abcdef with sides of length s 2
construct a rlght hexagonat prlsm of he1ght h, with top
‘vertices A, B, C D, E and F, (Vertices D
and F are not shoun 1n Flgure 5-1b )

respectively.

l 1
1 1
¢ ) H .
! ! '
. | ; ‘
H )
() !
. ,/)""""'k\ . r
» - \
»” \
. ; ] 4
! - f a
< . -
.. (a) ) . 1 ] (b)
‘ ;I -
///— o Figure 5-1. A Honey, Bge's cell. .
. S, . ] -
L ' are cut off by planes passing through the lines AC, CE and

- EA, respectlvely, which meet at- a point V on the axis VN

of the prism. (The*point N is the 1ntersect10ﬁ of -the

, ax1s of the prlsm with the line through B and L. ) The
e . gpt off" p1eces are then placed atop the cell so that the
po&nts thq; were at X, Y and 'Z will meet at V.. .. i
a f Observe that the new 5011d (the cell) has the same - .
volume "as the or1g1hal prism. Note also that the lines AC,
! . CE and EA are axes of rotation for ‘the "cut- off” p1eces,
] i.e., the tetrahedra ACXB, CEYD and EAZF, respédﬁgvely .
:‘ . ) i l,\md.. ' < 185,
L} ' 4 '
P . ' N " b ' . '
Y. ~ ﬂ?‘s‘”
. 17 .-
[ * . 'LJ O
Q ‘ ’
ERIC . .. - .. . e

. . . . -

The corners B, D and F'

.
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, ' amount of wax in cell constructlon

Description of the Problem : S

. - - ~ -
The bees form their cells in such a way as to minimize
surface area for a given volume.

Thus, they use the least
The mathematical prob-
lem. 15 to cut the hexagonal prism at an angle (8 = LNVL
J1n Flgune 5-1b) which mln;mlzes the total surface anea.

. f -~

5.3

~
The Surface Ar&a Equatlon s

-z

First, let us express the area of the top portion of
the cell in terms of 6. Not1ce that
outlined in Section 5.1,

by the construction
the top surface conslsts of three
rhombi, AXCV and two others that are congruent to it

"(Figure 5-2). i i

A X

One of the three rhombi that
form the upper surface of
the cell. .. .

. Figure 5-2,

Let L be ghe 1ntersect10n of the segments VX and AC. -
Then, VNL and L&X (Flgure 5-1b) are congruent r1ght tri- \
angles (the point N lies in the plane of the vertices A,

B, '~é F and F), so that NL = LB. From plane geometry

we r & b that in.a regular hexagon of edge length s the
dlstancﬁgggom the center to each vertex is also. s. Thus,
NL = s/2 (slnce NB = s) AR

R

:wan BCN-xs a equ11ateral triangle W1th altitude CL

so - -
= s/3/2.
In addltlon, from Figure 5-1b, We: see thaf
«VL = NLcsc @ = (s/2)csc 0, ’ ‘

and hence the area of each rhombus of the three that~form
the upper surface (see Figure 5.2) is .
. 16"



.14), ge obtaln

(52/3/2) csc 8. . o ' s P

o
., f

Therefoﬁe the total area of the.three rhomb1 is

’ - .

(s l) P (352'/3‘/2) csc e . B .' )

,From triangle NLV we have W.,= (s/2) cot 8, and since VN ~
= BX, we have ) ) )

L \ )

. ’ Area‘(ahXA) = s(h + (h - (5/2) cot 6))/2~

.
. -

Hence, the total léteral surface area of the cell is o
.(5.2) 6(sh - <(s2/4) cot 6 = 6sh - (3s%/2) cot 6.

‘Finally, combining (5.1) and .(5.2); we find the total = . N
surface arez\\ftej, of the cell to be - . -

«(5.3) £(8) = 6sh -. (3/2)s’cot'® + (3s°/3/2) csc 6. o

4 ’
5.4 Minimizing the Surface Area : \
\To minfhize £(8), which is given by Equation-(5.3),
first note that for o measured »n radians“ 0 < 8 < m/2.
Differentjating Equation'[S.3) ‘and 51mp11fy1ng TExerc1se

. 552 v Co LN ~ e
(5-4) o £1(0) = T(csc 8)(csc o - YIcot).

Settlng F¥(8) equal to 0, we obtain cos, 8= 1/73. The
only value of 6 between 0 and 7n/2 that satisfies this equa-
%ion is 8 = 0.9553 radians. - (The*symbol = means appnpx1-
mately equal to. ) In degrees, this angle is about %i 44n., i\

o

You shod@d carry out the details to show that this
value of ] does 1ndeed mlnlmlze the: total area of the cell,
as given by quatlon (S 3) (Exercxse 15) ) : -

.

S A P
Note that the m1n1m121ng value of & does not depend s -
upon either s or h. . N 7

5.5 Do Bees Know Matheéat1¢s° s P

Several points are wQrth” ‘Roting here, First, actuél
honeycomb cells are not perfectly hexagonal as we Jassumed
in derlvlng Equatian (3 3). However, as you mlgh; have :
noticed from pictures or. by actoal, observatiop, theeg cgllé

are usually *¢close to pét@ect hexagons

»" P 4
3 p
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As You might imagine actual measuren\ent Qf the angfe ) Wi
v 6 1n a beehive 1s difficult. Howeyﬁr suchexﬁedsurementg ,
) “car be made, and the measured anglé% e%ld\m\«hffé’r Ircn'n v

~our calcula’ted valu‘e by more thdn r}egrees,' o (Z{, Fejes
. TSth in the referpnces ) . f‘}*

o0
Finally, while hexagonal sollds e@;}‘gﬁ“vn the ) 7\

use ofr wax 1n cell construct~10'n other p héd ,,pcr*’ml@

.even greater economy (see Tdth). . How;evz;r .Tq%ﬁ‘ a.lsg\ pamts 7

out that 1f be€s used the most efficient dgy ngn:;&i“@rmi

of m1n1mum surface area for .a given volume, y"‘_

save less than two" f£1fths "of one percent 1n.w

tion, the actual construction described -an. Ses\gx ‘;‘:'s'.u : "‘!‘ “
cons1derably easier for bees to carry out’ ulian.,i.s t}&e’ S .
building for more eff1c1ent cells. '~§;"‘; oo .
' : For more information on these fascmatmg “crﬁfures’ R
. see Batschelet, Thowpson, and Tot'h in the refer&?@es
26 Exerc1ses _”( . '.\- K
. 14, Carry out ‘the details of ckgerlng (5 4) from (5 3) D
15a. Show that the value 8 = arccos(1/v3) y1qlds 3~m1n1- & ) .
R mum value for’ f(e), as_given in (5.3).; (Hint: - Lt P
. * is more efficient ‘to analyze the sign of £'(8) to N
— 2. determme values far which f(e) Ais decreasm?g a}fd Loy
I * “those for which it is increéasing than to apply the , *
Sy Y second der1vat1ve tést here.) RN . -t

b. Use (5.3) to fi nd the value of the minimum surface ‘1- < ’
area of the cell. (Hint: Use the exact result )
oS 8 = l//§eto evaluate sin 8 and cos 0.) I

o

l.6a. Find the surface area of a right, regufar hexa- o
gonal prism w1th base edge of length s and a1t1tude ce
h, if the surface is closed at the top and open at '

‘ S“the bottom (no corners cut off here). i :

° x

b. Compax;e the result of 16a with that of Exercise ISb.

EMC ‘l ‘ . .‘ ’ ' . -'W_ l . ‘~‘ .

L. - v , ' < ‘.




ARTERTAL BRANCHING
4

651 A Surge8n's Dilemma B

.Consider the case of a.surgeon who must attach a
bloocd vessel to an artery AB, which will lead to a gfgnt C.
(See Eigure 6-1.) The surgeon wishes to* attach the vessel

cam
.

Figure 6-tx A blood vessel connectnng artery AB to a qg{nt C

LS
. .

in such a way as to minimize the resistance to the flow of
blood from point A to point C, since.this, in turn, wi}l
minimize the strain on the heart. :

Now, according to Poiseuflle's Law for lamlnar fluid A
flow in rigid pipes, resistance is dlrectly proportional
] to the length of the pipe and 1nversely proportional to ;
the fourth power of the radlus of the pipe: : b

.
N

(6.1) - R = kd/r
1
where h’ls ,the constant of proportionaity, d the length

and r fhe radius of the pipe.*. ("Laminar flow"emeans that
all part1c1es of the fluid pass through the tube along.

paths that are paraliel toe;Eilggll, and that the rate of
flow increases smoothly frem the wall toward the™center.)

2 -

¢

. e
- » hd
~ ks

-

1For a very readab]e discussion of Poiseuille's Law, see Philip
’Tuchlnsky s Viscous Fluid Flow and the Integral Calculus, UMAP Unit
# 210, Education Development Center, Newton, Massachysetts, 19781

A v 7o proviaea oy eric [N
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- * ,. t . [ 3 ', . ‘
The proportlonallty constant ls detérmined by the viscosity
» of the’ flu1d blood ig this case. Of course, blood vessels
° , are not actually rigid, but for short distances, as 15 /
usually the case ip surgery, they are .nearly . rigid. -
Now the surgeon's problem becomes apparent. If the
' vessel is attached closer to the point A, (Figure 6-1), the
. blood travels :lgss total dlstance, but farther in the ves-
¢ °sel, which has a smaller radlus On’ the other hand, 1f
! the veSsel is attached closer to B, so that the blood
flows farther in the tube of larger rad1us, then the’ total
dlstance is 1ncreqsed. The problem is, to find the point
between A and B at which the vessel’ sh 1d be attached in

) orQer to minimize the resistance to the' flow of blood.
- ‘

. 6.2 A Resistance Equation®

We shall use the notation in Figure 6-2. (Note that
without loss of generality, we may lecate B\so that ABC is

(— ¢, »le . x >

Figure 6-Z, Notasional diagram for the arterial branching

. : problem, - . b
- a right angle.) The known quantities are d Ty, Ty, eo

‘ ‘and d, + x> while the variables .are @, dl’ d2’ and x. The.
problem is to find the value of 6 that m1n1m1zes the total

N

- resistance to the flow of blood from A to C. -

.
4 v ,

We first éxpress dy, dy, and x in terms of 6. From
v Figure 6-2 we see that csc @ = dz/do, cot eo = (d1 + x)/d0 .
. ) b I . -~
. - , " 90

«ERIC - © SRR
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st and cot 6 = x/do; hence s ’. .o
., “ ' ! .
d, = d, csc 6
\ - . 4 -
. . 2 0 ' . ..
dl = o-X + d0 cot 90, and .

0

*x % dg cot 6. :

. . .o . . . -

, From the tatter two expressions we obtain

]
?

- _t . : .
dl -_,do(cot 90 cot 6): s - .

Let R = R(e)‘ denote the total resistanpce to the flow '
of blood. ‘Then R is the sum of the resistance through, the

. artery plus the resistance through the vessel. By (6.1), .
) we ha . N
. !w¢ ve o . ,
kdl kd2 - ‘ -
- o R = .T + -T . ! - ¢
“’ : . T ;' - !
§ ) 1 2 ,C ) . .
B . e f‘-"\
dg cot 8y - dj cot 8 dg csc 8 /
- ¢ = k + )
’ Y Y | L .
. . rl : rz -~
£ we put K = ‘kdo/rli CONO’ a constant, we obtadin the Vo .
) , following expression for the resistance;. -
o . , - ’
(6.2) R(8) = K + kd, E-S%—é - Lot 8}, : -
T T
. 2 1 . .
r 6.3 Minimizing the Resistance - : . '

] .
V% “Without loss of generality, we- may assume G <9 <,

v

; Differentiating R(8) using (6.2),, we obtain . ) !
; ) LBY = -csc 8 ¢cot 8 . cscl 6 : Y .
(6.3) R%“(8) = kdo 7 + r'3 . h
. L. r v

} (Be sure-to ‘carry out-this differentiation in detail.)
" Setting R'(8) equal to 0%and solving for 6, we find that
2 the only critical value is
, . S

-

(6.4) 0 = arccos(r,;/.lrf). ) ’ . ' ‘




- . - T

¢ (See Exerc1s{17 ) Next *you *shoutd show ‘that. the valud
of 8 given by Equat1on (6 4) yields a minipium for *R(8)
,J(’Exerc1se 18).

Notice thdt the critical value of 9 depends only~on
. ' the radii of the tubes. Thgrefore, the locations of .the: :
3
pomts A, B and C were ndt crucaal to our work, except . \

. for the effect that the lengths involved nfay have on the
" assuMBtion ‘of r1g1d1ty M -

. . You should noté€ also that ynder thd CO.ndltlonS ‘of ghe '
problem, the §urgeon issrconcerned ‘chiefly with the fact e -
that the resistance st bg minimizeg, an_d not with the

' g'ctual amoun; o}‘ [ re,slstance For this reason we do

* . not f;nd R, -' «Lﬁ thig example. - "I - S
RV . . L ¢ .
W ' ‘ R ) >
. ‘6.4 Some Concludmg Obqervatlons . )
- Experlmental observations have\shown that the ‘angle® . .
- given by Equatlon (6 4) is close to.the actual angles at - . |
which blood vessel‘s are attached to arteries in the body s 7‘
. . Fmally, le; us retur%he—&u’tgeon, who 1s waiting
o " patiently (*:?22) for us t;o complete our ca?mons and !
. obServatmmr 33 we.

ore, the crxtx.ﬂ‘x\v ue ¢f 8 in >~ |
he St l't\s(pn t kno where 'éo attach

3 .Can you 'help. ut with a_little "

©, ™

Equatm\! (6.4)-, he or

, right- angle trxgonomet)r’ > . a'/\"

< 2 T : -

o v 6.5 ExercxseS’ . i.g! . RN , .
s ?\ 317, Wslth R’((;) ag,°gl i'en by (6 3) .5 lve ‘the - eqUatmn R
rf o . AN - » . S P
) , R'ﬁ = 0‘,for ] to obtaln (6.4y .. ~ .
Lo - .« - Y 3 ¢ o ..

188. Obtaln RJ‘(G) from (6. 3)r . '

@ b Show that the value of 8 given by (6.4) ;@t’\sfles : :
e’ the condition R"(e) > 0, and ‘hence that thlsgvalue,
T m1n1m12es R(9)- _ I - ’

- N 4 l‘

-.1907 Wlth reference to Flgl.ire’ 6 2, for a known 8 ¢(5uch as « »

SUVROOUL _~the vatue in. (6. 4)a/fmd the distance P*B' in terms -
S of 8, dg and 1, . .. . e
B . o , . 22 »
I .
2o Ry .. // , - X .
- - =z . + . hd
o . . N,
¥ [ hnd ‘ ~ I} .
s Y 30 : ‘ .
Y . ~D g . .
. U
v 4 o ¢ ¢ .
- \ . . M ’ ; . ’ ) \
E . : - * Lo ]
' El{fC N : v . .

BN 2
. . . .
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7. MODEL. EXAMINATION

Y N

1. “Suppose that a light ray from a po1nt A s refleé%ed

in a mirror to a poiat B, with the path of the ray

complitely in air and-forming angles 81, 92 with the

. S . .

mirror, as shown in the diagram. Apply Fermat's
t

Principle to prove that o = 8.

4

Mirror.

2. Suppose that analysts for a refrigerator manufactur1ng
firm have determined that the total cést in dollars
involved 'in produ$1ng x refrigerators of a certain

- kind is approkimately .

<

" 4
C(x) = X ‘x% 4 50b .
12 x 10° 7766

and that at ac¢price,of p dollars per unit, a total of

: N(p)

refrlgeraxors cduId be sold
. costs

(Here C{(x) includes all

such as material, manufacturlng, stprage ads

o 'vert151ng, shipping, and management.) .

a. Find an expression for the total profit P in terms of

-ithe” sell1ng price p. & -

b\£4F1nd the yalue of p that max1m1zes the prof1t P = P(p)..

4 N [ '

9.

=‘1267f6 \ .

-:‘t’“ < . ’ * ~ w4 3 .
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~of T, with' positive slope.
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. 8. ANSWERS TO EXERCISES

C"(X) = kTX"3. Since X0 > 0 (see Equation 2.3)|.
_C"(XO) > 0, and hence X0 yields¥a minimum for

C(Xy) = (Fx'0 + vT) +_§T/2x0

= E/RT/IF + vT + KT/2/KT72F A

= VT + VkFT/Z + /KFT/2

= vT + /TEFT.‘ .
:vkT/ZF.

All the quantities in the cost equation must be
positive. N ,

ferd is not in the domain®of the function C(X).

x0 =;10. I . ‘- )
Cpin = 552,000.90
. . ' ’
4¢(x) (n_units of'$1,000.00)
. %‘,.r N f ~
32.5¢+
32.4¢
32.31 - -~
¢
32.21 . .
32.1+
32.01 ’
.- ‘; - ' .
. 1 } | 4 »
: T F 3 ! g
5 10 15 20 X
/ .

.T=0. B'(T) is never zero, but the domain of B(T)
is {T: T 3 0}. Note that B(T) is a linear function

24

-
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»

-~

et




“ . 3

.
N %

max 250.08; N

'—'fZSO.

: Qe
7. I[f §'(p).= 0, then P'(p) = hN(p): Since N(p)} # 0,
‘. (otherwise the problem wquld be trivial) we have
p! (p) # 0- unless h = 0.

8. P"(p) = h(2N'(p) - C"(X)h(V eNE - ©x) - pINT(P)).

By Equation (3.6) the expression for P"(p) in the
answer to Exexcise 8 reduces to:

o

pn(p)

= hi2N'(p) - C"(X)h(N'(p))?

Also note that C"(70)

=.-0.0074.

’

a. P"(5.05)

Pr(2.94) =

= h(130.65h - 492.97) < 0, since 0

1A

h <1;

h(285.64h + 493.22) > 0, since 0 h.

| A

b.

10.

By Equation (3.3), P(5.05) =
4.90 milldon. b

With X =

(5.05)¢70)

- C(70) =

{

70 we use p, = 5.05 as the critical value

that maximizes the profait,

Then,

N(5.05) =

193.56.

a total o

94 airplanes will be produced,

. ' Thus,,
) and hence h =

~36.

a

.. 12.

the competition produces 124,

rc/w/gz + cz < 0;’Tk

T'(0) =

0 and ¢ such that T'(x) =0,
value thebrem.

By Snell's Law, °

!

(¢) =

0 < a,

LA
W

.°sin o
RN
sin R’

gnd

w
v

Since B, = Y, we must have sin « =

_sin Yy

T sin & °

sin §.

é//a2.+ cz > 0.

Since T'(XQ{TS continuoug, there is a point x between
by the'intermediate

«

Since

5 SN .
R s S R I ~ -, -

$ <”ﬁﬁ2,
¢

we must have ag= 6.

£1(0) = ~(3/2)sP(-esc? o) + (3s2/3/2) (-csci 8 cot

SO

8)

-

N(p)_ v o
‘va N (P)]-_ 4

-

. = 352 1~ - l cos 81 ) .

! ] sin O sin © , =
, N . n ] oo . _
ﬁ ; - 352 1.+ /3 cos 8 . .
. 2 sin® 6 -
s . 25
: :iég . / Fad < h
5\ .‘ ,% ’ ‘ " l ’ '83 .




15a. Since 3s%/2sir 6\> 0 for 0 < 6 < 1/2, the sign of

£'(8) is the same\as that of the factor 1 - /3 cos 6.

For 0 < 6 < arccosv/3, 1 -vF cos 6 < 0; and for o

—— arccos/3 < 6 < /2, 1 -/3 cos 8 > 0. Thus, f(8) is

) ~ decreasing for 0 < 8 < arccosv3 and ingreasing for P
arccosY3 2 8 <,m/2. Hencer f(8) has a minimum at e

. K 6 = arccosv/3. . .

b. For the critical value & =_arccosv3 we have sin 6§ =
Y7//3, cot & = 1//7, and = . -

£(9) i 6sh + 35%//7 =.6sh + 357/7/2. |

~ . s -

. 1 16a. 6hs + 3/3 s¥/2

©

- ’
; b. ©6hs + E%Z s% < 6hs + §§§ s? .\\
' 'n:l\' [ ) :. J ’ >
s L . 2 3
4 - n® -Csc 6 cot 8 -Csc” 84 ., -
17. R'(8) = 0+ kd, T - r J ;
. r, o

the calculation requires onl} elementary *differentia-
tion formulas and the fact gthat. K, k, dO, ry, r, are

constants. The formula (6.3) follows by elementary ..
algebra. . !
- l ) csc B cot® 8 +-cscd 9 2cscl 8 cot e
- ~+ * 18a. R"(8) = kd ) = -
B * . N r, - . Ty,

' b, csc 8 = r ' //r § - g, cot's = r //rf - {j;
. g\
kd r4/r2/r rE > 0.

2

£
——

T R"(8)

-

y » 19, p'B! =K(d0 - rjdeot 6. g .

. 9. ANSWERS FOR MODEL EXAMINATION

b ek meaes s e an e e

- . £ . . .
‘Since the path is completely «in the air there is no.
. ’ . .
.~ Change in the speed of light, and hence ‘the travel .
ime will be at a minimum if we minimize the distange.
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oy, g 8

p

4‘%
The distance traveled by the light ray is
) e
D(x) = /;2 +_X2 + /gz + (¢ - x)2 , .
from which ' .
D' (x) = X + -(c - x) ) )
“ /22 + x2 ,g2 + (¢ - x)2
The equation D'(x) = 0 yields 3in a = sin 8, and '

since 0+< a,. B < w/2, we must have a = 8.

Za. The profit can be found by subtracting the total cost
from the total income from sales: ® '
£ [ ?
P(p) = (120/10p)p - C(120/10p) ' '
. .

120410 p>/% - 10p% « 20p - 500.
b. P(p) = 180710 pl/% * 20p + 20,
P"(p) = 90v/10 p'l/2 - 20.

The equation P'(p) = 0 has two solutions, p = 812.00
and p = .0012. Direct calculation yields P"(812) < 0
and P'(0.0012) > 0. To maximize its profit, the firm

should charge $812.00 per refrigerator.

e
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