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FINE APPLICATIONS OF MAX-MIN .THEORY FP,Ii0 CALCULUS

1.' INTRODUCTION

A question that Frequently wises impractical

situations is, "What is the best solution to this problem ?"

For example, a scientist or a' business analyt'might

require such Nformationas feast amount of time, greatest

yolume, lea'st amount of work, maximum profit, minimum cost.

(Can yoli think cf other. examples of "best .solutions"?)'

'In many. cases, answers to such "best solution"
2 i

priblems carf be obtained, or at Mast approximated, by

using derivatives to maximize or, minimize single variable

functions. 'In this unit we consider'sveral "real-worl d"

. problems in which "best solutions'' are obtained in this

way, ..

I 'As we Proceed through 'these you _will

frequently be asked to cony out manipulations.onypur own.

\In some cases these ;tgps Will be routine;in I- Others they

willinvolve More tedious 'calculations. In real-world

situations, people must often carry gut such tasks in-

order to solve a problem. Thus, one purpose of the exer-

cises in this unit is to help you become acquainted with

the type of calculatigns -necessary to'solye realistic

problems.

2. A miNrmum COST PROBLEM IN INDUSTRY

2.1 '6utline of the Problem,

Let us first consider a typical problem facd,bx

manufacturers of commercial products. Suppose t at a

i

cer-

tain manufacturer wishes minimize the total ost of

producing a particular item, We consider twt f the.types

of costs that are involved; the cost. of actaa ly

.0

I

5
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manufctuTed in batchesofoequal size ar.dqually spated

Ihme intervals throughout the year, and that demand Jr c
.

the product PS a-t a known constant rate.
,

further assume

that the total number of units prpduced in the year as

predetermined,to be equal to the tota ddmands.Wewfsh to

find the numbdr of batches the company lixoduce

annually to minimize the total,Production and storage'cost.

While we cannot expect our a ssumptiOnSl
.1
to be saris -_

fied exactly in real situations, the agreement may be close

enoUgh,for our results to provide the manufacturer with a

useful approximation..

2.2 Some Notation

Wd ,shall use the following notation:

' X = the numbelr of batches'of the product produced

annually;

k-= the cost In dollarS of storing one unit of the

. ptodiact fot one year;

F the.' fixed cost in dollars (a setting up the

factory to manufacture each single batch-"

(usually includes insu rance, cost of equipment ,

etc.);

= the cost in dollars of manufacturing one unit of

the'firo,duct Ecalled the variable cost);A
T = the. total number of units produced linually.

e

In-our problem we assume that k, y, v and T are known

constants.

-manufacturing the produCt, a.nd ttte cost oLstoring it.

(In so doing we ignore other costs, such as' marketing;

Shipping, and management.)

In our example we assume that the product mnits are

2.3 Derivation of she Cost Equatiob*
.

L'et us firgt consider the manufacturing cost. Since

there are T unitsproduc'ed annually inlX batches of equal

2
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rk
. . . -..

,

size, there are T /.X unit in each battil, TIlus,thb total
4 ;4'1

production cost- M(X) for R batches_ per year i,s

M(X) W.. 4)x. dollars. .

41-

.
.

Nsxt,
:

we cpnsldAr :storage costs. We assume that each
.

. ...,

batch of,T/Xu41.ts is put into'.,;torage'.,,with the supple
._ . ,

.. depleted at 'a .constant rate down to zero when:tihe,next
4

°

batch is therm completed and stored: Thus; the average .

number ,of uhAs'in storage'at any given time is approxi-

mately (1/2)(T/X) = T/2X. .Since the cost of storing one

unit fora -year is k dollars, the total annua4 storage
.

...

;..''?cost is t .
,

. '

o

(2.2) S(X) = .g Oollars. .' .

Combining Equationi (2.1) and (2.2),.14% obtain the

N total cost of production and storage (in dollars): ..
. -.

C(X)
vT).x kT

2.4 The Minimum Cost -4

At first glance the'varia4je X in Equation (2.3)

seems to be a discrete, variable, since its represents-the'p

number ,of batches Produced Arti0ear, and this representa-

tion suggests integerValues,,. However, X may alsoassle
t.

rational values for example, 1 t production rate of 12.5.
, batches per year would be interpfeted to mean a rateof

-25' batches every two years. nnCe any real nunger can be

appi4kipated by rational numbers, we go one step fUrtherP
and regard X as a codtinuousreal variable. This assump-

tion permits us to'apply calculus techniques to find the
;

.
minimum cost.

(2.4)

Differentiating Equat On (2.3), we obtain,
. ,

C' (X) = F -

kT

2X

4.

3
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Setting C1(X) equal to zero end solving for X weobtan as
the oply positive critical value ,'-

(2.5) . X0 = kT/2F, .

,

valueThat thel, of X in (2.5) yields a minimum for

C(XY can be shown by the second derivAtive test. (See

Exercise 1.)

ff Using t2.5) we find Q(X0) to obtAin fhe.minimum cost:

= vT + i2kTF .
(2.6) c C

min

2.5 tome Final Observations

As noted in Section 2.1, we cannot expect real

manufacturing situations to be described by our model
exactly. In those situatiogp in which agreement is good

however, Equation (2.5) provides a reasonable approximation
for the number of batches per year that should be made in

order to minimize production and storage costs.

In thqse situations for which our assumptions are
,

not reasonably accurate; adjustments must be made in the,
model. for example, if demand is not constant, then the

expression T/2X may be ,inappropriate for the number of

units in storage at any given time,4tndwe would need a

different expression, depending on the-demand curve assumed.

Note -that the result X
0 = IkT/2F for the critical

value of X is reasonable. As the storage cost{ k increases,

so should.the critical number of batcheS, as it does here

'since F &Ppears;in the numerator'. Similarly, as produc-

tion T rises, so shoulti the nbmbe'r.of bpt,ches, and this

also agrees with the'model. Finally, as the fixed cost per

bAtch rgoes up, the number of batches should go dawn; this

behavior is consistent with ./ in the denominator.

.
4

I
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2.6 Exe'r'cises

la.. Use tli:e second derivative test to, show that the Aralub
,of X

0 'in (2.5) yield4 a minimum for C(X).
'

b. Find C(X0) using the expression in (2.5) to show that
Cmin is as given in (2.6).

2. In Section 2.4 we noted.that the'only positive criti-
cal kint of CfX) was the one given by (2..5,).

a. Find the other critical point of C(X)'.

b. Explain briefry why the other critical point, is dis-

regarded in the Solution of the problem.
,

c.v Why is 0 at a critical.point of C(X) even though 41/4

C'(0) does not-exist?

. 3. Assume that- the average annual sto'rag© cost per. unit

is $2.00, thatts10,000. units are to be proucea per

year, that 'the fixed lost per batch. is $100.00, and

.that the variable core is $3.00 per unit.' Under the
assumptiolls of Section ?.l, find:A

a. the number of batches that will minimize the annual

(production/storage) coat.

b. the minimum annual cos ,

A. Using the values given in Exercite 3, sketch de
graph of C(X), as given by Equation (2.3), forTosi-
tivevvalues of X.

Leeds assume' that' all conditioni are, the same as

those in Section 2.15 except that now X is held

constant and T allowed to vary. Then.the right side
of Equation ('.3) becomes a function of T, rather

.than..X; we denote this function by another symbol,
say B instead of Co for, correct use of functiOngl

noption:.

B(T) (F + yr/1)X + kT/2X
]

Find the value of T that will minimize B(T).

5.

5
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3.," A MAXIMUM PROFIT PROBLEM

.<

3.1' The Selling Price

Seve)%11 years ago, the Boe'ing Aircraft Company was

fated with the problem of determining the selling price fqr

a new model jet airliner. The basic problem wAs to find

the price per airaft which woula maximize l the company's
4

profit.

In this particular,ca se, Boeing had ohe competitor,

which.had a similar plane. It was understood that the

companiep would the.sameprice,since arty price

adjustment by One company w.ould, automatically be met by the

-.other. -Thus, the price would not affect the relative

sharps of the market. It could, however, have a sigtlifi.

cant impact on the total size of Abe market.

3.2 Factors To Be Considered

The following quantities'were considered;"
t,

p = the selling price'perairlinee Lip millions

of dollars);

N(p)'= the.total number of airliners'that.would be

sold at price p by Boeing and its competitor;

C(X) = the, total cost (in millions of dollars) to

Bgeing of manufacturing..X ailiners';

h =.the fraction of, the, market .to be'llon.by

Boeing < It < 1); thus, iflloeIngproducte

X airlindrs, h = X/N(p); -

P = the totaj. profit* milklans again) to Boqing.

4
. The Rrofit P is a functioh pf the price p, ancyis,

tht-quantity that the compaWy wishedkto maximize.
.

4/

* Based on Brigham, Georges, "Pricing, Investment, and Games of
Strategy," iq Management Sciences, Models and Techniques, edited.by

1960).
C.W. Churchman and M. Verhtjlst. v. I Po 271-87 (Perciamon Press.

10
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.1 3.3 The Profit ,function

Our first objective is to expfess the profitP

explicitly,as a function of the price p. ,Sinceprofit is

total income ;Anus total coA we- 'first need'eZpressfons

'for both of thet se quantities. .

Analysts at Boeing made both predictiOnJon the mar-$

ket and estimates of costs 'involved, and-used their L

results to arrive at the expressions .

(3.1) N(P) = - 78p2.4 65n c

e3.2) 'CIX4 = 1.sx-. 813/4

as.estimates of the,total market, N(p), at price p, and .

..tHe total.cbst to Boeing, p', also in millions of

7 'dollars), of producing X airliners. 'Sketches of N(p), and

G(X) are shown in ,F,,i1ZY4 3-1 ,/.with'imooth curvts

-thrdb411 actual discrete points. Routine calculatrons"with

EquatiOn (3.1)-(e.4., the quadratic jorMula).showthat
\.

;

N(p) G(X)

i

. '200 ..' # '

O /. ' t e,i

1 2 3 5 P 50 100 150 20.0 250 X.. , . .
',. (a) Predicted number .of a i rl Leers' (S) The cint' C (X) , I n,..mi 1 1 ions

salable at price p, where p of dollars, 8f predUcing X
. its in millions of dollars. airliners. ;

4 I

. . ' .'0 , ;t- Figure"3-1. 4
A 1 S 1 1

A .'; 0

least value.,Of p for WhActi N(p) Is nonnegative is'slightly
.

, ft.

more than $2.408 milliop. Therefore, p must be at least '

$2.408 million.(also see Exercise 6).

-.: .

:-,"."'

41444.

.
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Since pitofit, total. income minus total cost, we
have

(3.3) P = pX - C(X) .

Since also X = hN(p), we obtain an expression for P in
terms of p by ,sub§tituting hN(p) for' X in (3.3): '

(3.4) 7 , P = phN(p) C(hN(p)1
a*

3.4 Determination of the Best .Selling Price ,. We note first that p and,X are both diicrete vari-
abies , each assuming -only. integer yaques' .. Nevertheless,

'
formules (3.I) and '(3.2) both determine functions of

, ,
continuous real variables:, as indieateod'in Figure 3-1,. and

these functions can be used to obtain approximations for !;,....

; -the required. integer values. e. II . 4 .
tquatidns .(.1) and (3.4) donst)itute a chain of ''b,

filactions t-hat wbuld yield an explicit formula for P if we..

carried out the actual substitution. However, thi,s -dub -'tituion would produee an 'unnecesst rilx compli.cated .

exprtssioh, and le,;,e, aOrld this ctif'ficulty by 'differeqtiacing
6. ..

rule:

.

" (.4? itCresp'eCt t b, p as it .stands, using the 'chain

(3.5) PL(p) = phN' (p) + hN(p) - C' (h,14p))11N'(p)."
. .

' Next,, if we .set P',(p) equal zero, we fee, that P-
f must satisfy f the equation

"'^
.

(3.6) p +
.. ,

, .

... c.

.
A word o atilon'is in order- here. If X' (p1,= 0,

. then tire equation \P' (p)f: 0 'reduces to ,..the equatifn

1N(p).,= 0.` l'Ou shoul# shoW (Ecerti.s9., 7) at the. only.'
. -,I, value of -p .for which N'(p) = 0 is not a -cri

i Ai.
po.ikt o f

P, unless h = 0, . ..'-1 .
.- -

, 3.5 Num.ericarValuesof. the'SestSellixig Prize ;:.,,,
. r - - ,T. 1 /

Using the relations- N!.Cp) = -154,4 "655; C' (X) 744 '
,

I."5 + 6X:114, and .X = hN(p), = h(-:7'8p2 ±'655p /12'S)4 we
- .

-
0t

y
C'(X)

4

4

1/4

ti
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0.

could substitute into Equation(3,6) and solve the result-

ing equation for p. However, this approach would, Lead to.
difficult calculationsc4and so we try an alternative.

approach.

Let us suppose thatfthe company will produce 70

airlireers. Then since X'= 70, Equation (3.6) reduces to
.4

(3.7) -78P
2
44Pfa5p 1125

4

156p + 655 3.57432.

Equation (3.7) an be reduced easily to a quadratic

equation, which can be solved by'elementa'ry techniques. (a

calculator will be most useful here). The roots of the'

equation are, to two places, 5.05 and 2.94. Using the

seconddetivatiiretest (see Exercise 9), we see that

y.(s.os) < 0 and P "(2.94) > b. Hence, if the company 0o-

duces 70 airliners, it should charge approxisiately $5.05

, million to maximize its profit.

Similarly, if X = 100, then C;,(100) =.3.39737. In'

this case, solution of (3.6) for p yields pt= 5.0 and

p = 2.86. Ot these values, p = 5 yields the desired

-maximum.

3.6 A Look at the Cost Equation '

From our calculitions in Section 3.5, you might have

- noticed that a large change in X produced a relatively

it:small change in p (when p is measured in millions): Let

us see why. this is so.

'.Recall that C'(X,= 1.5 1.6:61/1. Hence, CH(X) =

-(3/2)r5/4. Thus, foi. large X the4graPh of C'(X) has

slope near zero. Thus, changes in C'(X)

tively small for large 1. (See Figure 3-2.) Such changes,

in turn,, will producp,,only small changes", in the right,side.
,

Of.Equation(3.6),antl-thus-small chnges in the value of.
I

a

p.

1 3



o

C'(X) (in millions)

t

1

10 20 30 40 50 60 70 80 90 100 110 120 X,

Figure 3-2. Graph of C'(X).
3.7 Exercises

t

6 Find the maximum value of the function N(p) given

.by 3.1). Hew many airliners should actually be
4

sold at price p? (Recall that a company cannot sell a

fraction of an airliner).

7. For N(p) given by' Equation (3,11, show that if.

N'(p) = 0, then P'(p) #.0, unless h = 0. 0

8. Using'(3.5), compute P "(.p).

9a. Suppose Boeing decides to produce 704Orliners..Recal1

that for X = 70, we -showe in Section' 3.5 that

P'(p) = 0 for p = 5.05 and for p = 2.94. Now use Om

second' derivative test to show that P !attains its

maximum for p = 5.05 and .ft'sininimum f6r p = 2.94.
ft

(Hint: Compute C"(70) from (3.2). Then'use he fact

!that C'(X) - p =
P)

(ftoM3.6)1 to simplify your

,answer in Exercise 8. Finally use the fact that

0 < h < 1 to-show that P"(5.05) < 0 and P"(2.94)' > 0.

. A calculator will help!).

, b. For X = 70, find the maximum value of P find

P(5.05)).

j10. If Boeing produces 70 airliners, compute n(5.05), the

total number of airliners'sold oeing and its com-

petitor Also compute h in this use. o
.

14
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4. SNELL'S LAW LIGHT REFRACTION

4.1 HoW Water /Tends" Light

In this section we examine a v ryiwortant property

of light

You may have noticed that when you see an object

partially submerged in water, it appears to be bent. This

phenomenon is known as refraction. Our understandingof

refraction is baspd on a principle due to Pierre Fermit,.a

famous 17th century mathematician and physicist. Accord-
.

ing to.Fermat's principle, whet tight travels through one

or more homogeneous media, it follows the path that

requires the least amount of total time. Thus, when there

is only one medium, such as air, the pdth that will minimize

distance is AstraighCirile, since the rate is constant.

For example, when light travels from water into air, it

travels along one straight line to the surface and along

another in the air: As a result, we see the "bending"

effects. (See Figure 4-1.) .%

t

Image end

of stiole\41, /

Stick

Actual end I

,of stick

Figure 4-1. The image of a partially submerged stick
. being "bent" by water. The °arrows

indicate the path of the light rays to
the eye.

Air

Water

15



4 . 2 Some Nott t ion

Let us assume that the speed of light in water is v
(in appreopriote units) and in air w. Assume that the
object is a units below the surface, the eye b above. .

Let x, y, a, t3 be as indicated in Figure 4-2, and put'
c = x + y.

surface of
water

A (Object)

Figure 4-2. -Light is diffracted (deflected from its path) as
it crosses the boundaey between transparent media
that have different densities.

4.3' Minimizing the Travel Time of Light
a

We wish to minimize the total time light takes to
travel from point A to point B. Using the formula
time = distance i rate, we obtain the total time. as a

0 function of x:,,

/a2 x2 12
+ (c x)2(4.1) T(x) +

Then we have

-
(-

x - x - c(4 .2) T'x) ' +
. ,

/ .; 2. vial '+' x
2

w424. + (c - x)

and
a

a2(4.3)" T"(x)
v(a

2
+ x

2 3/2
.

16

b
2

w(b
2

+ (c - x)2)3/2
12



". C

C

Now, since v and w are both positive, T"(x) is always

positive. Hence an)tcrliical value,will yield a minimum.

tee Exerc.ise1t2.) Setting T'(x) = 01'we obtain

(4.4)
A -x' _ c x

v/a2 + x2 + x
, 2

Or

/ ,
v°_,x/ra

2
,+ x

2
sin a.

(4.3)
's an

Y/4-2

The equation ///

(4.6)
v sin a
w

, is known as Snell's Law. Snell's taw states that': since v,

and w are known constants and sincetlyTeTmat's Principle

the travel.tiie" of light from point A.6 point B mini-
.

mized, the ratio of in a to sin s con'st. . (That is,

chahges in x, y, a or b will change t is ratio.) This

,Fonstantl",v/w, is called t e index of refraction. Snell's

Law is believed to have lee first discoVeredT Wilebrord

Snell in 1621.

4:4 Some Concluding Remarks ,

Notice that the choice of air

to the deiivation of Snell's Law. In fact, any two media

through which light travels at s constant rate could have

been used, with similar results.

and water is not crucial

You should note also that we derived Snell's Law

A without explicitly finding a critical value for T(x). The*,

actual solution of the equation T'(x)/ = 0 (see (4.))°woule

involve a4Cumbersome fourth degree polynomial. In ,addi-

tion, it is not at all important to haye an explicit

expression for a critical value. The ability to obtain 4

useful results knowing only the existence of certain num-

bers (without knowing their values) is a phenomenon which

occurs frequently in applied mathematics.,
13
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4,5 Exercises

. .

11, Using equation (4,1), compute T'(x) and T"(x). Your
answers should be equations (4,2) and (4,3), respec-
tively.

12. (This exercise is for those who are familiar with the
intermediate value theorem.) Using (4.2), show that,

=
there is a number x between 0 and c for which T'(x)

.(Hint: find T'(0) and T'(c), then
. , . .)

13. Suppose that a light ray asses through a transparent
-plate (Figure 4-3). Pi-0; that, with reference to
that figure, a = (S. (Hint: let v be the _speed of ..

light in ajr, w-the" speed of light in the plate, and
appay Snell:s Lai.)

Figure 4 -3. Light passin' through,a transparent plate. ByExercise 13, although the ray is displaceddby
*the its direction is unchanged.

r. ''5, SURFACE AREA OF A BEE'S CELL

5.1 The Shape oflaironey Bee's Cell

0

One of nat4e's.mostremarkable
creatures is the

t

honey
bee--nature .appears to have given him some amazing
neering abilitieS. ,(SeeThompson.) In this, section we
study the constriition of ahoneycomb cell.

14

18



The open face of a single cell in the comb approxi-

mates .a regular hexagon. (See Figure 5-1a.) The

horizontal (vertical in our diagram) portion of the cell

is constructed geometrically'as,follows (see Fagure5-1b).

Over the.-regular hexagon abcdef with sides of length s '

construct a right,hexagonakprisr; of height h, with top

`vertices A, B, C, D, E and F, respectively. (Vertices D

and F are not sho'wn in Figure 5-lb:) The corners B, D and F

(a)

V

f

(b)

a

Figure 5-1. A Honef_Bsp's cell. .

are cut off by planes passing through the lines AC, CE and

EA, respectively, which meet at, a point V on the is VN

of ate prism. (The' point N is the inters-ection of -the

axis of the prism with the line through B and L.) The

lcta=off" pieces are then placed atop the cell so that the

ppqnts tha.t Were at Y and 'Z will meet at V.,

Observe that the new solid (the cell) has the same

volume 'as the origihal prism. Note also that the lines

CE and EA are axes of rotation for the "cut -off" pieces,

i.e., the.tetrahe4ra ACXB, CEYD and EAZF, resPtqNely.

1 1 s.
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5.2 Description of the Problem

The:bees form their cells in such a way as to minimize
surface area'for a giVen volume. Thus, they use the least

*amount of wax in ce1.1 construction. The mathematical prob-
lemds to cut the hexagonal prism at an angle (6 = LNVL
in Figure 5-Lb) which minjmizes the total surface area.

'5'.3 The Surface Area Equation

First, let us express the area of the top portion of
the cell in terms of 6. Notice that, by the construction

outlined in Section 5.1, the top surface consists of three4
rhombi, AXCV and two others that are congruent to it
+(Figure 5 -2).

V C

ot
Figure 5-2. One of the three rhombi that

form the upper sur -face of
the cell.

I
Let L be the intersection of- the segments VX and AC.

'Then, VNL and 1,1p (Figuike 5 -lb) are congruent right tri-

angles (the point N lies in the plane of the vertices A,
B, ,

. .

V S
F and F),,so that NL = LB. From plane geometry

we r I Opt in.a regular hexagon of edge length s the..1

distanciWom the center to each vertex is also., s.. Thus,
NL = st2 (since NB = s). 1-,

.1.

Nbw, BCN. is an equilaterartrianglp with altitude CL,.. . .-

so ,

.

CL = s3/2.
.

In addition, from Figure 5-1b,weisee that.:

..VL = NL csc 0 =(s/2)csc 0,

and hence the area of each rhombus of the three thatfdrm
the upper surface (see Figure 5.2) is

X

20
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(s
2
411/2) csc e. ,

Therefore the total area of the.three rhombi is ,

(5.1) ' (3s26/2) csc 6.

From triangle NLV we have V444,= ,(s /2) cot 6, and since VN
,

= BX, we have

Area (abXA) = s(h (h - (s/3) cot 6))/2.

Hence, the total lateral surface area of the.ceil is

.(5.2) 6(sh -"-(s /41 cot 8 = 6sh (3s
2
/2') cot 0.

Finally, co bindng (5.1) and .(5.2), we find the total - ,

surface area feel, of the cell' to -1;.°6 ...,

-(5.3) f(6) = 6sh .,(3/2)s2 cote + (3s2/3/2) csc 8.

i
$

5.4 Minimizing the Surface Area
, A .

\TO minimize f(6), which is giVen by EquitiOn(5.3),

fir ii.note that for 0 measured i radians, 0 < 8 < n/2.

Differentjting Equation'i5.3) sand simPiifying''(Exercise

.14), le obtain'
,

.
,

i 's 2 . .

(5.4) ,, f'(8) =,(csc 6) (csc 0,- t3 cote) .

betting <y7(6) equal to 0, we obtain cos.8.= 1/,/3. The
.

only value of 6 'between 0 and n/2 that satisfies this equa-

't ion is 8 = 0.9553 radians. (Tha>symbol = means apptjoxi-

mately equal to.) .In degrees, this angle is abOut 54°441,
. .

You shod carry out the details to show th'St this

value of 6 does indeed minimize thetotal area of the cell,
. . f.

as given by Equation f5.3) (Exercise.15) -.

. Note that the minimizing-value of 6. does not deg'end'

upon either s or 11"..
. . /,

5.5
,

Do Bees Know Mathematics?

,

tics?
a

.
.3

4 . .
Several points are worth- rioting here: First, actual .

honeycbmb cells are.not perfectly hexagonal, as we.assumed

in deriving Equation (5.3). However, as you mighP.have
. .

noticed from pictures or, by actual... observation, ths.. -e cOls

1.
are usually'close to peVec.t hexagons. . .' '--.i: ! 4 17

4,

e
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a .0
0 p-As You might' imagine, actual measurement 4.f the angle

8 in a beehive is di,fficult. Howet., suchz.'lleaSurement&
can be made, and the measured angl.. ,e4, -..cgli cf. er, tram51,, k4'our calculated valde by more than Ovees!.,, (See. F es

:44 Sa:4
el

pP- (7Toth in the referpnces.) ,

:. -:'.:-.;Finally, while ilexagonalsoli.d-s :t ..' elm. in 'the,..,
,

4cA4C4..' 1.7:.use of wax in cell construction, other p ladnrta peiiiT4)
even greater economy (see TOth,) . tioviever,,:,14t Pl aks$,,j3o.ints
out that if bee's used the most efficient d.4 cc' 'thrttms *4.: t

1 - 0.
.' % , ip

, 11.of minimum surface area for _a given volume, t eji' ,,," :.
at- d.1 31 %,

save less than two-fi fths;of one percent in-. w *;-.,
4. . li.. t. !,tion, the actual construction, described -in,SeCt.iirt. sr.

. .6t, ... ,....,, hat .considerably easier- for bees to carry out tinan,,,i:s. tile - -.-
_y!building for more efficient cells. "...rt/.1. , . ;...,., .1..

For more information on these fascinating critafures',
- see Batschelet, Thompson, and Ti eh in the refert144es^.

a ...,.. . .5..6 '"exercises
al, i

.

...r . . .
14. Carry o-ut the details of ckeriving (5.4) from (5.3).

g..
15a. Show that the value 8 = arccos(1/1.3) yields*4,mini-

- 0r mum value for. f(8)., as given in (5.3) ..;. (Hin,t: . Lt
-is more" efficient to analyze the sign of fill)) to

, determine' values for which f (8) is decreasidg Ad,
those for which it is increasing than to apply the
second derivative test here.)

b. Use (5.3) to And the value of the minimum surface
area, of the cell. 61int.. Use the exact result

e ,= 1/3Oto evaluate sin 9 and cos 9.)
16a. Find the surface area of a right, regular hexa-

gonal prism with 'base edge of length s' and altitude
h, if the, surfa ce is closed at the top and open at'

The bottom (no corners cut off here).
b. Compare the result of 16a with that of Exercise 15b.

'Iv
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6. ARTERIAL. BRANCHING

6:1 A Surgeon's Dilemma

,Consider the case of a surgeon who must attadh a

bloots vessel to an artery AB, which will lead to a point C.

(See Figure 6-1.) The surgeon wishes to. attach the vessel

Figure 6-11. A blood ves sel connecting artery AB to a pint C.

in such a way as to minimize the resistance to the flow of

blood from point A to point C, since.this, in turn, will

minimize the strain on the heart.

Now, according toPoiseuille's Law for laminar fluid

flow in rigid pipes, resistance is directly proportional

ito the length of the pipe and inversely proportional to

the fourth power of the radius of the pipe:

4(6.1) R = kd/r

where lo 'is the constant of proportionality, d the _length

and r the radius of the pipe. ("Laminar flowntmeans that

all particles of the fluid pass through the tube along.

paths that are parallel to its wa 1, and that the rate. of

flow increases smoothly fr the wall toward the.-center.)

-14

, .
,

. .

*'For a very readable discussion of Poiseuille's Law, see Philip
'Tuchinsky's Viscous Fluid Flow and the Integral 61calus, UMAP Unit
1 210, Education Development Center, Newton, Massdchusetts, 19781. 1

19
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. 1.

The proportionality constant is determined by the viscosity
. of the'tluid: blood iu this case. Of course, blood vessels

are not actually rigid, but for short distances, as is

usually the case ip surgery, they are_nearly.rigid.

Now the surgeon's problem becomes apparent. If the

vessel is attached closer to the point A,(Fiogure 6-1), the

blood"travels.less total distance* , but farther in the yes-

; sel, whifch has a'smailer radius. On'the other hand, if

the vessel is attached closer to B, so that the blood

flows farther in the tube of larger radius, then thetotal

distance is increased. The problem isto find the point

between A arid B at which the vessel'slicld be attached in

order°to minimize the resistance to the flow of .blood.

6.2 A Resistance Equation'

We shall use the notation in Figure 6 -2. (Note that,

without loss of generality, we may lecate B\so that ABC is

14-- d, ---,I.

Figure 6-2. Witabional diagram for the arterial branching
problem.

a right angle.) The known quantities are do, r1, r2, 00

and d1 + x, while the'variables,are 0, d1, d2, and x. The

p

d
0

problem is to find the value of 0 that minimizes the total

resistance to the flow of blood from A to C.
,

We:first express dl, d2, and x in terms of 0. FrOm

Figure 6-2 we see that csc 0 = d2/d0, cot 00 = (d1 + x) /d0

20
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-1.

-
And cot 0 = x /d0; hence

d d
o

csc 6,

"4-

di = -x + d0 cot 0
0'

and

%x dm cot 6.

From the latter two expressions we obtain

d1 =:do(cot 00 cot 6),:

Let R = R(0) denote the foial resistance to the flow

of blood. Then ,R is the sum of the resistance through, the

artery plus the resistance through the vessel-. By (6.1),

wg have

kd1
R 7 7 77--

r1
r2

d0 cot 00 d
0

cot 6. d. csc 0
0k

%4
r
1

r
2

If we put K.= kd0 /r,
4
coNo, a constant, we obtain the

following expression for the resistance:.

0
(6.2) R(0)R(e) K kd csc 6 cot e

r
2

r
1

6.3' Minimizing the Resistance
Cr4

-Aqiihout loss of generality, we-may assume

Diffeientiating R(0) using (6.2)-, we obtain

(6.3) 0 cot e c2 e

,
-

M(6) = kd -csc s

- r
4

2

_].
r -
1

(Be sure:to carry outthis differentiation in detail.)

Setting Ri(e) equal to rand solving for 6, we find that

<460 <'7.

the only critical value is

4(6.4) 6 = arccos(r2/ri).

25
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(See ExercisCl7.) Nekt,you'shOuld show that, the valtiC

of 0 given by Equation' x(6.4) yields a miniMbm forR(8)

(Exercise 18) ,
.

Notice that the critical val -ue of 0 depends onlron

the radii of the tubes. Therefore, the loeations of ,the=

points A, B and 'C were nit crucial to our work, except

for t t p.effectthat the lengths involved day have on the
assn tion'of rigidity.

You should not also that under t4 conditions of the

problem, the Surgeon is concerned 'chiefly with the fact ,

that the resistance rtyrfst b4 minimized, and not with the

*ctual 'amount. oY e ye,sisfance. FOP this reason we do

.not geld Rmir.--0 thi4 example.

6.4 Some Concluding Observations

; .

given by Equation (6.4) is close tothe actual angles at

which blood are attached to artexies in the body.

Finally, lex us'retuzreor&wl-geon, who is waiting

patiently (!:??) for us,to,coffiplete our calcu tions and

observations: If we ort. t,te erx v ue of 0 in

EqUati4;(q.4)., n's kno where io attach

the vessel to the artey yon help. ut with a little

right-angle trigonemee ev:Ex
.r.

6.5 Exercises' ,

Experimental observations haveshown Thai the angle"

,With R"(6)-.14Vgiretty (6.3),.s lve the .equation

,- ki li; = 1:t:'fbr 6 ,O'obt-alii.?(b.q
,

-18a: Obtain R."(0) from (6.3)r.
.

b. Show that the value of 8 given by (6.4) §Atfies
..,

.

the condition Ru(0),> 0, and hence that tills
t
value,

minimizes,R(0.): 0 7

-,

-.19. With refefence to FigOrW 6-2, fdr a known 8,(Lich as .

.-the value in, (6.4 )3 , find the distance PS' in terms

Of 8, d0 and rl.

22 s
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7. MODELEXAMINATIQN .

1. °Suppose that a Ugh/ ray from a point A is refle&ed
. -

in a mirror to a point B, with the path of the ray

comp1.4tely,in air and forming angles 61, 02 with the

mirror, as shown in the diagram. Apply Fermat's

Principle to prove that a = B.

Mirror,

6 2. Suppose that analysts for a refrigerator manufacturing

firm have determined that the total cost in dollars

involved in producing x refrigerators of a certain

kind is apvokimately

/(4 Alf 2C(x) A

12 x 10S
+

and that at apprice,of p dollars per unit, a total of

N(p) 120:4513

refrigerators cd6Id he:sold. (Here C(x) includes all

costs, such as material, manufacturing, stprage, adg-

vertising, shipping, and management.)
o.

a. Find at expression for the total profit P in terms of

.;the-P'Seljing price p.

b. Find the yalue of p-that maximizes the profit P = P(p).,

27
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8. ANSWERS TO,EXERCISES

la. C"(X) = kTX-3. Since X0 > 0 (see Equation 2.3)

C"(X0) > 0, and hence X0 yieldsta minimum for

b. C(X0) = (FX0 + VT) +.kT/2X0

= FT/2F + vT + kT/2T[2F

= vT + FT/2 + FT/2

= vT + 21FT.1

2a. - T/2F.

b. All the quantities in the cost equation must be
positive.,

c. Fero is not in the domainc'of the function C(X).

3a. X
0

=-10.

b. C
min = $52,000.00

4 c(X) (in units OP$1,000.00)'
. 41P

32.5

32.4

32.2,

32.1".

5 10 15 20

S. ,IT=0. £'(T) is'never zero, but the domain of B(T)

is (T: T > 0). Note that-B(T) is a linear function

-.of T, witti'positive slope.

23
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. 6. 'N
max

a 250.08; N

7. If N'(p).= 0, then P'(p) = hN(p): Since N(p)

b. (otherwise the problem would be trivial) we have

P'(p) # 0- unless h = O.

8. P"(p) = 11(2N'(p) Ch(X)h((p)) 2 (C'(X) - ON"(P))

9. By Equation (3.6) thQ expression for P"(p) in the

answer to Exeicise 8 reduces to:

1"(P) = hf2N'(p) C"(X)h(N'(p)) 2 N'

p(
r

)

)
N"(p)) .

10. With X = 70 we use p0 = 5.05 as the critical value

that maximizes the profits Then, N(5.05) = 193.56.

Thus, a total oll1094 airplanes will he produced, so

the competition produces 124, and hence h = :36.

12. T' (0) = -c/wro 2
+ c

2
< 0; T'.(c) = kra 2 + c

2
> O.

/.

Since T'(x s continuous, there is a point x between

0 and c such that T'(x) ='0, by the intermediate

value thebrem.

tol 13. By Snell's Law,

v 'sin a w sin y
Tr sin $'

and
v Ti-177

Since 8r = y,, we must have sin a= sin 6. Since

0 < a, 6 < we, we must have ag= 6.

P(6) = -(3 /2)s 2
(-csc

2
0) + (3s

2
/372)(-csc,6 cot 6)

, 3s2( 1 . vs 1 cos 9
2 sir7273 sin 0 sin 0

3s
2
[1. iS cos e2

sing

a= sin 6. Since

0 < a, 6 < we, we must have ag= 6.

P(6) = -(3 /2)s 2
(-csc

2
0) + (3s

2
/372)(-csc,6 cot 6)

, 3s2( 1 . vs 1 cos 9
2 sir7273 sin 0 sin 0

3s
2
[1. iS cos e2

sing

25
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1Sa. Since' 3s2/2siri 0 > 0 for 0 < 0 < n/2, the sign of
f'(0) is the same, as that ,of the factor 1 - /I cos 6.
For 0 < 0 < arccosVT, 1 -/3 cos 0 < 0; and for

arccos/T < 6 < n/2, 1 -IT cos 0 > O. Thus, f(0) is
decreasing for 0 < 0 < arccosVT and increasing for

arccosT z e <4m/2. Hence=f(0) has a minimum at
6 = arccos/T.

b. for the critical value 6 =Zarccos/T we have sin 0:
7//3, cot 6 = 1//7, and

f(6) :* 6s1h + 3s2/7 =,6sh + 3s2/7/2.

16a. 6hs + IiT s2/2

3/7 3/3b. 6hs 4. -- s
2
< 6hs + - s-

I ')

17. R'(0) = *4. kd
o

[

-csc e cot e
4

r
4

r
2

2 k

1

the calculation requires only elementary'differentia-

tion formulas and the factothat,K, k, d0, rl, r2 are
constants. The formula,(6.3) follows by elementary

18a.

algebra.

R"(0) = kdo csc 0 cot 2
6 +-Csc

3
0 2csc

2
0 cot 0

4 4
r
2

r

csc 0 = r1 / /r1 - cot10 =-4/,14 -
'

r
8

2

itt\

R"(0) = k do rl/r42/4 - 4

; 19. P'B' =, (do - r1)cot 0.

9. ANSWERS FOR MODEL EXAMINATION

Since the path is completelyin the air there is no.

changein the speed of ii'ght, and hence 'the travel

me will be at a minimum if we minimize the distance.

30 I
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The distance traveled by the light ray is

D(x)
42 x.2 42

+ (c x)
2 ,

from which

D'(x)
x -(c - x)

42 x2 42

The equation D'(x) 0 yields in a = sin 8, and

since 0-< a,. 8 < v/2, we must have a = B.

2a. The profit can be found by subtracting the total cost

from the total income from sales:

P(p) = .(12010p)p - C(120/1-0p-)

= 120/TU p3/2 - 10p2 - 50.0.

b. .131.(p) = 180TU p1/2 : 20p + 20,

P"(p) = 9o/ru p 1/2
20.

The equation P'(p) = 0 has two solutions, p = 812.00

and p = .0012. Direct calculation yields P"(812) < 0

aid '(0.0012) > 0. To, maximize its profit, the firm
should charge $81.2.00'per refrigerator.

I
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