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Abstract

2

. I
Three views of the function Of computer simulation in cognitive

psychology, are alyzed. The strong view that computer simulations will'

produce more rigorously
ified theories is seen to be overstating the

case. Two more pragmatic views are suporred. One loloks at computer
,

method as a means of exploring or validating psychological theories.

'The other looks to computer simulation as asource of useful concepts .

Several recent simulation effate are presented aS illustrations o f

these .latter views. After establishing some perspective on the uses of

, simulation, the dinusiticinAtniX'to
-psychological simulation languages,

and to .aspects of programming environments which facilitate simulation

wont. A new simulation language, PRISM, is described. PRISMft design

is intended as a response to Some of the issues raised in this paper.

4
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1.0, OVERVIEW'

.

*

Although the primary purpose of this,paper is to discuss simulation
'

systems, how 'we view simulation as s methodology

perceptions, f wha,t copiLtutbs a useful simulation

the first part of this discussion 'considers several

role of simulation in cognitive psycholissy

strongly affects our

system. Therefore,

,common views of the

In the process of

evaluaiNg each of these'Views, I will be making some assertions about

usefuO principles of simulation, and 'reviewing igstanCes of simulation

work which illustrate those princpkes. OnCe some perspective is

established regarding simulation's uses,

Where I believe simulation work. is
a

c Osicfer the rise and fall of soh past

a uages,

I will turn to a discussion of

heading. That discussion will,

env

psychological simulatiop

as ,a means of focusing attention on aspects of programming

onments that-facilitate simulatioS work in general.

inally, -F.11 Close with a discussiop of a . particular class of

psychological simulation langu4ges, production syStems., That discussion

will focus on the design of a new production system .language called

(.

0 :
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4.PRISM, Which is being, developed in collaboration with Pat Langley of

\
Carnegie-Mellon University (tangey & Nechm, 1981),.

2.0 SIMULATION AS POLIMAN OF THEORETICAL RIGOR

I'd like to start by exorcising a.ghost, it the form of an extreme

argument fort simulation thatdwas propoun ed rather vigorously in the

late 1960's and early 1970's. This was the claim that computer

simulation was a, superior formalism for enforcing greater rigor in

theory 'specification.

-2.1 Five Claims For Computer Simulation

A strong example of this particular argument appears in Gregg & Simon's

(1967) article using concept formation as demonstration domaim fot

information processing models. Smhedded in that artIcle ,were five
_

4

claims for the advantages'()f requiring that run iitg computer programs be

associated with psychological theories:

Inconsistencies would be prevented by t e need to specify. a

particular set Of operations in .rder to implement a

hypotheiizedpsychologijf process. The ame set of-operations

would have to suffice for all cases in ich that procpss was

evoked. .

- Untested implicit as umptions would be rend red impossible by

the need to specify a complete set of pt cesses. A program

which does not specify processes completely c.uld not run.
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f's

- Overly flexible theories which could to easily fit data wotl

be prevented by the fact 'that computer programs contain

numerical parameters.

- Untenable theories would be eliminated by virtue of

'specific sequence ,of operations generated by a program, wlIich

could be treated as predictions about intermediate processes.

These predictions could be compared against processtrncAlig

data, such as verbal pro[ co s or eye movements, thus allowing

much more specific tests of a model (1).

- The nal for a program to operate upoq specific data would

prevent finessing critical questions about encoding and

representation.

a 9
,

9
There are some positive examples supporting these claims." John

Anderson, one cognitive psychcilogist clearly influenced by the .

Simulation apProdch (Anderson, 1976), has producqd 'a very detailed

theory which is often relatively specific in its claims., His work has

stimulated a number of studies, both supporting and opposing.

However, in spite of ')rogitive examples such as his, it is hares, to

gay that simulation' was tt*le causal factor in the develOpment of a

detailed model rtainly the history of psychology contains a number

4 of comprehensive theories not cast in a Computational formalism:

Footnote This, and the preceding point, is partiCularlyimportant if
,one adopts ,Popper's (1959) view of science. topper suggested that the .

dominant goal is to refute theories rather than support them-with a
theory being "accepted" only so long as no evidence can be foynd counter
to-it. In that view, a theory is best if it is highly specific and
therefore' amenable to disconfirmation. In that case, either ,,the cause" .

for its disconfirmation leads to-a newend betteil theory, or the failurt
to diinfirm lends credence to it.
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42:2 Six Pretblems With The Five,Claims

Furthermore, experience with'simulation since the early days of Gregg &

i\,Simon (14P67) has .shown that there are a number of Ways to avoid rig r

while do1.46 dimulatlon

- A fordal specification of a model needn't imply a comprehensible

presentation; since programs are rarely presented in full with

accompanying documentation, we remain dependent on verbal

descriptions of the model. This can raise problems i determiring
0

whether the program performs as it does for the reason claimed by

its author. For example, see Hanna & Ritchie's (undated) analysis

of Lenat's (1976, 1977) AM program, a system which has. received a

great deal, of attention, in the Artificial Intelligence community

for its apparent ability to re-discover a number of interesting

amthemarical theorems. Hanna and Ritchie suggest several points

that contribute to its performancl, but where the actual program

appears inconsistent with the general principles Lenat presented.

They also raise instantiations of our of the five potential,

problems listed beloW.

s

Programs ftequerly inVolvesimPlifying 'assumptions in order to

facilitate implementation. brhese_simplifkcations,ThoWever,_qause_.

the program to diverge from -the theory sit Supposedly represents.

Programs can be written to work only for a restricted set of

examples, 'thbse presented in the write-up of the research. In the

absence of some analysis of the' formal properties of

there is no automatic guarantee that the examples

representative of'the domain,,or-thdt the primcfples

7

thee'domain,

presented are

required to
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handle a given set of examples are sufficient to ,account for the u r
,entire domain.

I
The inputi or database for,the program enn be structured in ways

that simpiffy its task, but which: are not necessarily

psyshologically°plausible. That is, the real 04k of performing a

,task may be done before the progfam is,tarted.

Data or procedures supplied to the progrhm to define differeA

examples for it tg, handle may, in fact, Constitute nonnumerical'

parameters that give the, program considerable flexibility in
. .

fitting psychblogical data. Newell & Simon (1972, page 56), ,or

example; admit that the operators and table of.differences supplied

to.GPS constitute such parameters.

The programmer may hold back data or prdsedures that wamay d...have

confused the program had it been available. That is, the program
- ,

may appeartoperform well not because it has the capacity 6,

choose the correct, action -from all possibilities, but rather

because the difficult choices are Sot offered to it. '

fbr all the above reasons, there is no immediate assurance that a

Program's consistency with psychological data means the program rs of

psychological' significance. Nor," on the other hand, is an

inconsistency necessarily a sign- of failure. For example, Nbwell &

Simon (1972, page 47,2).admit.to a number of exceptions to.GPS' account

of protocols obtained from subjects solving logic problems.

I . '

9,
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Although Newell and Simbn are fond of claiming that the test of a

'a theory is a running program, this is no more true than claiming that

the 'true test of an experiment's validity is a 0.05 significance level...

The real qUestion is how, and why a particular resat was obtained. The

claim that computer simulation will necessarily lead to clearer and

more rigorous psychological models does nox hold up.

It is perhaps be tter seen from a .historical' perspective, as an

argument stemming partly from the days of simplex programs, but

primarily from a 'need toAmake a case `for the respectability cif

0 ..

simulation methodology compared to established mathematical modelling

an experimental approaches . Unfortunately, the proponent of °

4...
simulation ,approachei have, if anything, damaged the credibility of

their case by overstating.it.

3.0 SIMASTION AS.A METHOD OF EXPLORING OR VALIDATING THEORIES

, Therefore, I 'd like to turn 'to some less ambitious views of

'simulation, in whic14 a computer implementation is fiewed not as a

necessary formalism for expressing a dodel, but rather as simply one of
,

several means for gathering information about it. Even this more

restricted view may, still be controversial.

3.1 The Significance Of A Running Program

4
One of the issues in the controversy i,e the. significance of the fact

.
that a program runs. L. Miller (1978) does a very nice job of

summarizing the debate, twhich he saggeies stems' from alternative
,

assumptions about the difficulty of theory validoion. One side, he

claids, believes that theories are easy to generate but difficult to,

w. 41.
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te;t., The -other believes that a good theory is a significallt and

difficult accomplishment, and is accordingly more impresied by a '

demonstration of a mode?' s sufficiency, through the successful'

implementation of a computer program.

A rebated question has to do. with the ultimate discrfminabflity of tly

psychological .model's \ __.611dgi.5011_119/8) 1oic_exa1ple4_has claimed that__

many different models tan produce empiqcally identical predictions,
.

and - has even gone so far as to suggest that it.is futile to try to.
411

distinguish which alternative is correct by experimental methods.

Naturallx, this claimhas been disputed. Mayes Roth (1979) has offered'

one of the more detailed y arguing that if twq, set;

. - 0
of processes are not identical, then it shou d be possible to find some

5

form of process tracing data for which the twb sets make different

predictipns. Without taking a firm position'on the ultimate resplutiop
4 .

to these cluestforis, we still can say die( simulation gives a means>f

exploring the plausibility of models Where theoretical sophistication

exceeds the state of the art in empirical testing.

In such cases, there are a number of ways that modelling can aid.

our thinking: The demonstration that a theory is sufficiqntly powerful

to guide implementation pf a working program is certpinly4.encouraging

for iti credibility. Efforts to produce working programs can also lead

to a better understanding of the computations]. requirements Of, a task,
4

_
which irrtilfirldaii -to constrain the set of plausible theories.

f ;

a

r

'V.
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, 3.2 Empiricil Analyses Of ,Programs

Another important contribution of simulatidn comes froN our greAter

freedom to perform psyCho-svgety on a program, since no. clearance from

a, Human Subjects Committee Ja'required in order to modify a, computer

simulation. This pefmits use of simulation for experiments that would
X

be-umerhital-or-4Tapossible-writh-human7subjecti-, experiments that tan

./
help in understanding the interactions between components in complex

\

models. 'I'd like to offer McClelland S. Rumelhart'S (1981) model of

Page 8

word perceptiod a9 an interesting example of this.
0

HcClellac & Rumelhart (1981) :iiere concerned 'with explaining a

dumber of phenomena id the perception of woas sand letters in

tadistoscopically presented displays. Among their key concerns xere.

(a) modelling the process df recognizing words and letters within

words; (b) explaining the facilitating effect of pseido-words for

. .

letter recognition; (c) explaining, the senhitivity.of t he, pseUdo-word

effect. to expectations etiout what will be presented;, add, (d)

explaining the differential effects of.various kinds,ofmaiks.
,

. . ., .
.

. ,

.

The model which they bUilt assumed a highly-linked structure ,of

'

,
nodes, representing hypotheses at various Levels about what stimulus

,r 4

was presented. An example ,of such astfucture,ia illustrated it Figure

'1. Each node has an activation level' aSsocia0d with it, which

represents thelmOdel's confidence at the current time in the hypothesis

represented by the node. Hypothesis nodes vary in their baseline

activation level. C '

.

\

0
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Each node has a large number of weighted slinks to other hypothesis

'nodes. Excitatory links, send activation to hypotheses consistent with

'a node. . Inhibitory links, decrease activation of nconsistent

.
Page 10 .

hypotheses.

The activation of a node at any point'in time is a function of its

baseline activation and the excitatory a nd inhibitory activation

received frnalcated.hypothesis nodes. The,/function used modulated

the activatiodlevel to keep it within a restricted range'andallow for

time decay., Activation reverberates thioughthe,netiork, aild at some

point in 'time whichever 'hypothesis is most,active at.that point is

accepthdz; true.
i

In this model,-the word superiority effect andthe facilitating

_effect of words .on letter recog nition were explained in terms of
.

, , *. . 4

activation flows to and from nodes at the word hyPothesis 'level. The

facilitating effect of pseudowords on letter recognition could be
b 0

understood as an outcome of partially activated word 'hypotheses-

reinforcing the letters. For:iitample, the pseudo word "TROP" contains

4letters which would activate hypotheses such as; "TRIP", "TRW, and
:

"PROP"s these, in turn, woulOtnda4iwation back.to theZhypothesep

for the letters "T", "11; ', "0". and'`'- 1'P": IFFinally, the effects of
_

yariona-kinds of masks weraexgaided in terms of the relative times at
- ,'-:V:( r.

.
. .

.

.
.

which'activatiOn for the MisOgrOkto levels sufficient to interfere

with activation, for a targets °,

This lastieffect deserves discussion in' somemore'detail, because

it nicely illustrates some of the advantages obtained through compUter

modelling. The general phenomena Which McClelland and 4gmelhart tried

to capture was as follows. When a tachistoscopically presented target

i3
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display is followed -Closely by presentation, of a mask display, o number

of 'factors affect the extent to which the mask will interfere with

recogniticin of tht target. The basic findings of interest involve
9

comparing 'letter and wordy recognition for three different kinds of

masks: feature-masks consisting of -14,,itter-like geometrical shapes,

. ,I,etter masks consis;ing of non-word letter strinP'and word masks. A

umber of studies have shown that letter recognition is About equally
I-X

; '.1.akteted by gall three kinds of masks, while word recognition is.
. .

.

markedly less affected by feeture masks than by letter or word
,

asks.
---,

'Given the formulation of their model, the uniform effects of the

thiee different 'kinds of masks on letter recognition Are easily

understood. All three kinds of masks' quickly engender competing

hypotheses at the letter levei These can' depress the, correct

hypothesis* activation through their inhibitory links before. that
%MA

hypothesis can reach, its peak activation level.

In the case of wor8 recognition, the difference in effects between
A

feature masks and others is somewhat more complicated to understand.

McClelland & Rumelhart, in spite of a long and fairly detlled

. discussion pf their, model, do not make it clear why it produces the

desired effect. (This is worth rating, in the light of Gregg & Simon's

claims that computer simulation would eliminate exactly this kind4ef

4

.
uncertainty.)

It appears their explanation is that random feature di'splays

weakly'-activate many different letter hypotheses, rather,than strongly

activating a few. Thus, none of the competing alternatives.have enough

strength for their inhibitory links to have an immediate effect on the

activation for the correct tlypothesistp One indication that this is

9

-L4
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indeed the intended explanation comes from their report that the

program was very sensitive to the degree of similarity between featuree

in theamAk and the target.

This is an interesting point, because we see here that the program.

is perhaps just as complex -for an outsider to understand 'as a verbally

stated model. However, there are some real differences in=the value of

.a program over a verbal_model in situations where the complexity of a

theory obsCures its implications. With .the program' -- unlike a,

Verbally expressed theory -- it is possible to perform manipulations to

help understand exactly what factoti contribute to its performance.

For _example, ling detprmined tHat the program was sensitive to

similarities at the feature level, McClelland and Rumelhart set out to

equate their stimuli in order to eliminate that confounding factor.

Doing that required coming up with feature, letter, and word masks

which all three had just as many features same/different with respect

to the target display. Worse yet, to properly equate the stimuli, the

equivalences had to hold letter-by-letter, for each letter position in

a four character. string.

This would be.a rather Haunting task if the stimuli had to be

created for human subjects in an experimental design of any statiselical

rigor. It is difficult to create even one grouping of a target word

and three masks which would satisfy these criteria. FortdoaLy, in

evaluating the performance of the pro-gram, one is all that is needed.

Since [he program is a deterministic entity, there is no concern of

statistical error. When running experiments with a program, the only

concern is-with finding a range of inputs that Verify the generality of

the results. The geed to be concerned with noise, or de statistical

15
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reliability of measurements of the program's performance, is

eliminated.

Even with the statistical issue of noise eliminated, though, it is

still difficult to 4nscruet stimuli in this particular case.

McClelland',& Rumelhart's ability to dq so illustrates yet another

virtue of models implemented as running programs, the ability to turn

thought-experiments into real tests of a theory. To create stimuli

meeting the desired criteria, they simply iodifiet .the knowledge base.

of their program. For example, they selected as a rget string the

word, "MOLD ". As a letter mask, they se cted the string, "ARAT". In

the specialized character font:bsed in the experiments simulated, the

letters of "ARAT" and the letters of "MOLD" had, respectively, 2
c .

similar features in the first letter position, lin.the second, .2 in.

...-

the third, and 2 in the fourth.

It was easy to produce a feature string with,the same number of
74,a

similirities to the target string "MOLD". Where the constraints upon

the stimuli become tricky is in finding a common four-letter word whfch

also hag the same pattern of similarities. however, because e progrim

can be much moreteasily modified than a human and, McCieltand

Rumelhart were able to sidestep the constraint. After obtaining the
.

resv3 of running their program with the letter string "ARAT" used as

. the mask fOr "MOLD" they simply modified the program's database go
ft

that "ARAT" was now represented as a known word. Whn they then ran
6

the program again, the results of the new run could be interpreted as

representing' a word mask rather than a letter mask.' Thus, they were

able to explore the effect of top-down knowledge about words without

the confounding effects of feature differences due to different letter
O

16 .
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4.

To see -where, some -of those'

A

and to see another virtue of

model; we need to consider 'some

Rumelhar t

confounding effects'could be

gage 14

Ooduced,

an4lyzing the performance of a computer

other observations made by McClelland-&

0

Since programs can beifmodified at any pOint, it is possible to

insert code to record virtually any kind of data about its run-time

characteristics. This can permit' ohe to make observations about

implications of a model which might not come out nearly as clearly

otherwise. For example, tracing the time, course of activation Flow

enabled *McClelland & Rumelhart to analyze three different factors
4

influencing activation level.

The ,first they Called the "friends and enemies effeCeN4

Activation is clearly going to depend on the number bof excitatory and

inhibitory links from other active nodes. Thus, the likelihood of a

r
hypothesis being accepted, whether correct or not, is partly dependent

on the relative amount of knowledge whichjhe system has, stored about

it

tlhe second effect they called the "rich get richer" effect, the

empifical observation that feedback loops inherent to the-structure'

greatly accentuate 'over time any initial differences in baseline

activation levels. This is one of several aspects of the model which

offer accounts of expectation effects. In particular, by- makings

baseline activation encode. word frequency, they were-able to simulate

common frequency effects. Figure 2 illustrates this, by :showing how

small initial differences in activation due to differing frequency were

1 -9
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t

enhanced over time for three alternative hypotheses entertained by the

program when presented with the string "MAVE". Note that all three

hypotheses have three letters in common with the presentation string,

and thus all receive equal bottom-up support.
7

The third effect was called the "gang effect ", Observation of the

program showed that stiijong hypotheses at a given level indirectly

reinforced a subset of their competitors at the same level, those that

"'ended on the same supporting evidence. This is becapse a hypothesis

node sends activation to lower-level nodes, which. in turn send

increased activation not only back to that node, but tlso to all other

higher-level nodes to which they are linked. Ffgure,3, for example,

shows how three additional hypotheses fare over time in responsettb the/

same presentation string, "MhE". Once again, all three .alternatives

have three letters out of four in common with the string actually

presented, and so start out with initial bottom-up activation.

However, "SAVE" litdirectly receives activation from five other word

4p
-hypotheses that-boost the activation of the letters "A", "V", and VE"

(e.g., "HAVE" and "GAVE").. Similarly, the program had stored five

other words involving the4hletters ."1.1",, "A", and "E", and those

alternative word hypotheses boosted the activation levels for, "MALE "' by
o

way of those three shared letter hypotheses. On the other hand there

were no other hypotheses involving "le, "V ", and "E" to indirectly

support the hypothesis that the word, been was "MOVE". Thus, it#-

activation is markedly lower than for the other alternatives.
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3.3 There Are No Simple Standards

It is interesting to note that this simulation does not at all fulfill

the promised advantages of simulation outlined by Gregg & Simon (1967),

but instead illustrates the objections to their claims outlined in

section 2.2. We were promised specificity through parameter-free

. models; McClelland and Rumelhart present a full-page table listing

%'parameters; and vary, the settings in simulating different experiments.

- A
We were promised deepet,concern with encoding and representation; trey

present a system which pre-codes information about letter position (and

which iequires,creating such a large number of links for exciting

consistent hypotheses and inhiting inconsistent alternatives that one

has to wondez about the psychological processes tequired to add a new
. I

piece of knowledge). Finally, we were promised extensibility to

'related tasks; they presented a program which could not even easily be

modified to handle 44-letter words.

'However, these objections really dd injustice to what we

e . ! '

instinctively know is a respectable piece of work. The problem is with

' the standards offered by Gregg & Simon., which basically amount' to ,a

promise. that we will 'never again have to think hard to understan or

evyuare someone else's work. Those standards do ,not fully ca ture

whit can be gained by simulation.

s

McClelland & Rumellart's observations about interactions between

components of , the model'are significant because of their implications

1dr other work, A point which 'I'll' return to beldwi What is of

interest for the moo elst\ thod§h, is that the ability to perform

empirical analyses of a program has enabled them to provide greater

t insight into the implications of their model. In addition to
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information about how well the model account
- .

capacity to mrforra experirgeny a d make

means that we can also get tnfOrm4ion abo

fails.

4.0 SIMULATION AS A SOURCE OF NEW IDEAS

).

. agC 1.4

, -ce

ody of -.pea, Ahe'"

servatt,00'pfir'te.;,,p41ati4r.

t e model sucfet,da
13,404,,,

14. a

t

1r

. 1 ,

Another view of sintulation is as a source of new ideas-film
processing mechanisms, whi h implies a close partnership', a. . . ,r),-60.!... 0.... . .-cognitive pszchology and artificial intelligence. Psychology, in e.

.1. . ,

.

of recent' clitims to the contrary, has made several contributions to, ,Al.. f 6
...Among them are the notions of means.-ends analysis embodied in CPS. ; . . 0...

(Ernst .& Newell, 1969; Newell & Simon, 1972'), of discrimination sets

'(Feigenbaum, 1961; ,Simon & Feigenbaum, 1964), and of various semantic-

network representations . (e.g., Kintsch, 1974; Norman & Rumelhart,

1975; Anderson, .'1976).

Psychology has certainly been influenced by AI. Winograd's (1972)

SERDLU,, for example, was considered of sufficient importance to have an

entire issue of Cognitive Psychology devoted to it. Another important,
ft o.although perhaps. not as well-known., example is the HEARSAY speech

understanding system (E rman & Lesser, 1975). That system introduced,

notions of a central memory structure shared by co-operating _parallelf
knowledge sodrces; these notions have influenced psyChologists in,

-44 topics ranging from models of leading processes (Rumelhart,t 1977) to
ti

`planning (Hayes-Roth & HayeS-Roth, 1979). Scripts (Schank & Abelson,
(19 ), .frames (Minsky,' 1975), or schemata (Bobrow & Norman, 1975) have

gener. a number of lines of research, as has the work on story

gramma s Rumelhart,- 1?75; Handler, 1977; Thorndyke, 1977).

0

t
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Although the examples just mentioned are all cases where ideas

about processes have'been transferred fairly ditectly,simnlation work

can have a much more subtle impact on psychological thinking. This is
. -

because solutions to sub-problems encountered in the ,course of

dr

jp

...,.

implementing a program can turn out to have implications for

psychological issues that _.the program was not originally intended to

address., Often, this can help us gain a teleological, understanding of

-

mechanisms, by making ui aware of constraints that necessitate their

existence or forcd them to operate in a particular way.

All computef programs are fundamentally concerned with issues of

--control and focus of attention (or, to put it less elegantly, getting

the right effIng 'done at the right time). Thus, the process of

developing a simulation can suggest domMn-independent mechanisms which

4
other researchers can apply in dever4ing models of behavior in quite

different topic- areas..

To ill trate these rather abstract claims, I will first discuss

some of m own work on a learning simulation called RPM, then describe

.a simulati n of eye fixations in reading (Thibadeap, Just, & Carpenter; k

1981); Aim d briefly return to McClelland & Rumelhart's (1981) word

perCepti n model,. I will try to show how these disparate systems

contrib e a model of sloppy errors in algebra problem-Wving.

4.1 H M: An Example Of A Spin-off Discovery

The (for Heuristic Procedure Modification) program is a model of

lear In_ through the incremental refinemedt of procqdures (Neches,

1981 1981b). Although primarily concerned with learning, it turns

out to provide a new explanation for an old observation from the days
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oegespalt psychology called the Zetgarnic effect. (For an English

description of this effect, ,see Lewin; 1935, pages 243-244.) The0

effect, which Gestaltistslnee4reted as illustrating the phenomenon of

"closure", boils down Co the observation that delayed recalls of a task

are richer and more detailed when' subjects Were stopped part-way

th'rOugh thvask than when they were allowed to carry the task through

to completion.

In order to make clear-HPM's account of this phenomenon, it is
0

necessary to
1111.1

ptov'ide some background about the program. is a,

prodUction system, which means that it belongs eo the Class of

programming languages in which procedures,are specified as a-set of

condition- action rules and data is represented as propositions in a

rking memory. The system runs through a cycle-of finding the set of

roductions Whose conditions are satisfied by the current contents of

.working memory, selecting a subset of those rules for execution, and

modifying the contents of working memory according to the actions

specified by the rules selected for execution.
6

°

The program wais inspired by protocol studies by myself' (Nephes,

1981b) sand others '(e.g., &mai F. Simon, 197-9) indicating that people

use a number of common-sense heuristiCs to improve their procedures on,

the basis of experience applying them to 'a task. Most of the

simutation work has concentrated on,getting the sitfem to acquire an
P

addition, strategy similar to that used by many second-graders, given a

simpler strategy employed by most pre-schoolers. Figures 4 ,shows the!

heuristics which seem to be most relevant to this task, along with a

sequence of strategies that the system discovers. The initial strategy

adds two numbers by counting out a set of objects correapondi;i?to each
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.

addend, combiping those two sets, and counting the total set. The

final strategy adds the numbers by incrementing the largei addend a

number of times,given by the smaller addend.
'a

RPM. was designe4 as,, a vehicle for exploring the -prOblem of

operationalizing heuristici such as those in Figure 4. Thu's, the kinds

of questiohs I was concerned with were ones likes` "What sort of

information about a procedure is necessary in order to apply heuristics

like theSe?"

The answer embodied inHPM
involves solving problems by settiqg up

a hierarckiqal goal structure not u9like SacerdoWs (1977) planning
. .

nets. Productions in RPM respond to nodes in a partiallyconstructed

goal structure by adding propositions that further elaborate the goal

structure. Whenever a production. fires, a linkage is established

between the
propositions which satisfied its conditions (i.e., caused ,

its'firing), and the propositions'which wee 'Added as its ,a4ions.

This information allows, WPM to'' implement heuristils like those of.
tIgt;re 4 as sets of productions which look for configurations in goal

structures indicative, of 'inefficiencies. ,The program represents

' learning by using the information to construct new productions, with.
' tconditions that cause them to fire in circumstances when the

inefficiency is likely to be repeated.: The information allows the

koductiong to construct actions for the new productions that cause the

system to sidestep the inefficiency.

Figure 5 illustrates the structures in RPM's memory, after

executing its first production for addition' in response to an

externally supplied goal to add two Numbers; When we remember that the

,semantic network shown in this figure represents only knowledge about

.
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the first of a large number of steps to be taken, it is easy to =see

that a huge, body of information must be retained in order for, the

system to represent a complete problem-solving sakuence. (For an

4 explanation of the necessity of the information retained, see .Neches,

1981b, section 5.2.)

FrOm both the Computational consideration of minimizing the

of the database to be sefrched, and'the psychological consideratiori of

limited short. -term memory, it was essential to have some mechanisms in

the syytem Which would cut down the number of propositions required for

consideration without eliminating any critical information.

size

The mechanism, adopted in RPM assumed an extremely rapid decay of

/17,1;721Ing memory', contents; propositions drop out of working memory

unless used'Oirbin two processing cycles. The propositions in working

memory consisted of those required to specify the current 'goal, plus a

iMbroughtin from long*term memory by a spreading activation process.

To' reduce the number of propositions brbught in from long term memory,

activation wa'slasumed to spread'uneveply through the semantic network,

with the primary direction in which it spread being dependent -on the

processing status of the current goal. S.

Specifically, when a new goal is initiated, RPM sends. activation

down through the network to retrieve information most likely to be

helpful in deciding how to process the goal. When *an old goal is

-terminated, RPM sends activation up the hierarchy towards higher goals
.

towards planned. successor goals, thu retrieving

most ,likely to be helpful in deciding what action to take

next. Although this part of the model was developed in ,response to-,

computatidOal overloads produCed by large semantic structures, it turns t

and _sideways

' information

1,

4
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out in retrospect to provide a psychologically plausible account of the
4

Zeigarnic effect. In this account, the effect is ''an outcome of
v

associative retrieval processes primarily intended to minimize the size

of working memory needed for prqcessing goal structures.

Assume that, as in HPM, a goal structure is built as a task and is

carried out in which goal nodes are represented as either active or

completed. , In the .case where the task is interrupted before

completion, the rapid decay process causes their loss from active

memory; they are, however, retained in long term memory.. The

instruction to give a recall causes retrieval of some of the

.higher-level nodes in the goal structure, since these are the nodes

that define the task. Because these goals are represented as active,

their return is treated as a re-initiation,-andactivation is sent down

the network according to the processes outlined above. This retrieves

a set of nodes which contains more detailed information about the task,

since it consists of the more specificsub-goalsset up to perform the

task, along with information about the operands of those goals.

On the other hand, if the task is alloOed to go 'through to

completion, the goal nodes are all represented as completed when they

return to long .tcirm memory. If the same higher-level nodes are

retrieved due to a recall instruction in that case, HPM will.try to

send activation up and sideways through the network. Since 4the goals

it wIrks from are already near the top of'the structure, there is

simply. not much up to go. HPM therefore retrieves, a smaller ser of

propositions, which 'furthermore consist, of more general,and abstract

propositions because they are drawn from near the top of the goal

structure. -
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The significhpoint of this example is that the demands, of

formalizing a model in computational terms led to new ideas about

issues not initially seen as related to modelling learning processes.

-HPK, Although basically 'a model of learning, led to development of a

notion of directed activation -- a distinct variant upon current

notions of unfocused spreading activation (Calins & Loftus, 1975;

Anderson, 1976). An additional property of the stipulation is that Lt

gives us some insight intO: the teleological role of activation in an

information processing system. The simulation suggests that it should:

be viewed not only as a mechanism for focus of attention or information

retrieval, but also as a Component of a la4er meebedism for minimizing

working memory loads. In that larger mechanism, activation mly serve

to enable relatively drastic measures for eliminat4ng propositions from

active memory, by providing an assurance.that critical propositions

will return when needed. n

4.2 READER And CAPS: An Example Of Concern With Control Processes

It is worthwhile to consider another example of directed activation,
*

,
Thibadehu , s READER

.t.

model, which develops the notion in a much more

sophisticated way*. Thibadeau (1981; Thibadeau, Just, II 'Carpenter,

1981) has develOped a prbduction system langUage;called CAPS.in order

to implement the READER model. CAPS is a programming architecture of

some interest, only in part becSuse it illustrates another useful
*ft

property of "simulation research: the development of geneial notions of

c ntrol and focus of attention.

30
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READER's mission is to account for gaze' duration data from eye

movement studies of reading. It is similar in some respects to

4 McClelland & Rumelhart's word perception model, but differs in

implementation and modefs' a broader range of processes. The

'similarities stem from the notion of nodes representing hypotheses with

activation levels representing confidence in ths correctness of the

hypothesis, excitatory relations to ether hypotheses ,consistent with a

given typothesis, and inhibitory relations to others which ate

inconsistent. Rather than'doingparallel processing on a feature array

representing a four-letter ,character string, as McClelland and

Rumelhart's program did, READER sequentially processes a String of

letters and spaces representing a paragraph of text. Hypotheses in

READER are maintained at the letter - cluster, word, syntactic, and

semantic, levels. The system tries to do as much as possible at all

levels before moving on to the next input element. These properties

allow the model to explain gaze durations in terms of the time required

for hypotheses to rise above the threshold for acceptance and thus

*allow the system to move on.

3

The READER model offers explanations for a number of effects. For

example, at the word encoding level, the sequential processing of the

input string causes4 the system to take more. time to activate longer

words, reproduciTg the linear increase.in gaze duration found in data

fiom human subjects.. Gaze duratiod'also turns out to be a log function

of word frequency, a phenomenon modelled in READER as essentially

- .

similar to McClelland & Rumelhart's "rich get richer" effect on

baseline activation levels. At the syntactic parsing level, the system

displays a number of effects similar to those observed in the human

data, most of,which occur because of,the way that interacting semantic

31
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17

and syntactic processes contribute to activation levels of srtactic

hypotheses.

Among other things, the 'collaboration between semantic and

syntictic processes 'alloWS the system to parse difficult noun phrases

like, "the greater the mass" (det adj det noun);. It also produces the

.negative correlation observed in humans betweeh the number of modifiers

in a noun phrase and the fixation time for the head noun. The more

omodifiers there are, the mire semantic _constraints imposed, thus

preraising the activation leVels for likely candidates for the noun

itself, and thereby decreasing the time required to raise the correct

alternative above the threshold for acceptance. Much the same prqcess

undOilies READER's 'ability to duplicate human subjects' tendency to

skip over function words entirely.
6

Finally, 'the processing structure of the READER system, which

enables it to do as much processing as possible at all levels befocre

moving on to the next input, allow it to reproduce several effects at

the semantic level, such as increased gaze durations at the first

mention of 'a.tppic and at the end of sentences.

Thibadeau has found himself, in the enviable position for a

modeller of having an extremely rich body of data against which the

performance of his program can be evaluated. (cf., Just & Carpenter,

1980). And, in fact, the program does quite reasonably; without

special tuning parameters, Thibadeau, Just, &Carpenter-(1981) claim

that READER-accourirs for 79% of the.variance in their data, in contrast

to the 722taccounted for by the model offered by Just & Carpenter

(1980).

t
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However, the principles embodied in the program are of, even

greater interest than its account of the data, because Thibadeau haa,

done an especially impressive job of embedding his model of performance
a

at a particular task within an information processing architecture of

great potential generarity. To see this, we need to look more closely

at CAPS (Thibadeau, 1981), the interpreter for the language in which

READER was implemented.

CAPS, which stands for "Collaborative Activation-based Production

System ", is a LISP interpreter for a language oriented towards

concurrent ,processing of hypothesis at multiple levels. Its

fuhdamenta processing units' are productions, independent

condition-action rules. Its fundamental data objects are propositions;

consisting of node-relation-node triples with an associated activation

level. ActtWtion 'represents the system's current confidence for

certainty that the proposition is correct.* The conditions' of

productions specify some set of propositions, along with threshold

activation levels fort: each, below which the production will not be

eligible for execution. CAPS executes all. productions whose conditions

are satisfied. Once a production becomes eligible for execution, it

continues to fire On each processing cycle until some event occurs that

causes 'it to stop: The primary action of a production is altering the

activations of specific propositions by some 'proportion 4ef the

activation of one of prodUction's evoking propositions.

Figure 6 illustrates this by showing the general -form of 'CAPS

productions, and a hypothetiCal example paraphrased into English. The

example can be paraphrased, further as saying, "If you think ,you're

seeing the letter T, but only if you think it'4 startingag new word,~

14
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Figure 6

)4_

GENERAL FORM OF CAPS PRODUCTIONS

(p production-name
-( propositions to send activation

context in which to send
. conditions for starting firing

conditions for stopping firing
->

( <spew> from sending propositions.
- to target propositions

and side-effect propositions)))

EXAMPLE (PARAPHRASED INTO ENGLISH)

Page31

(p Letter -to -ward
( the letter menivas "T", ackivation 0.2 or greater
ihe later begins a new Nord: activation 0.3 or greater
Vie word seen is "TH E"7-activation 0.01 or greater
ihe ;lard seen is "THE ", activation 0.999 or less

(<spew> fromthe letter seep was f_r_
to 114 word seen LT "THE") ))

.34
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and you also, think thstthe word might be THE, then increase your

c ertainty that the word in fact is THE by a proportion of your

certainty that you've seen a T." Note that the conditions are specified

in ,suctl a way *at the production would begin to fire when tie

hypbtheses first began to be entertained, and would' stop firing when

the target hypothesis is either accepted (activation greater than .999)

or rejected (activation drops to zero).

' In actual CAPS productions, the proportion of activation
,

transmitted is 'specified in the production,,ba that proportion is

actually a multiplier for a global parameter which can be adjusted by

an action of productions called "<REWEIGHT>". This is one of a number

-s

of actions that allow the system to modify the rate at which activation

flows from one hypothesis to another, along with thresholds for

acceptance or rejection.

In short, Thibadeau has built not just a model of reading, but a

very general 'processing language for implementing a large Class of

models based on a tommon theoretical'framework. His work is a very

nice example of how a concern with control processes and focus of

attention can pay off.

"/

4.3 Sloppy Errors: An Example OfTransfer,To New DOmains

There are many similarities between READER and McClelland & Rimelhart's

model, and many complementary features as well." Thibadeau offers a

model of parsing processes and a general control structure. McClelland

and Rumelhart provide an analysis of interactions in'the transmission

of interaction under this sort of control structure -- namely, the

"friends and- enemies" effect, the "rich get richer" effect, and the
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"gang" effect...Yrhey also offer .spme mechanisms for explainkpg hoe

expectations come Into play: contextdependent adjustments, of'weights

on links between hypotheses at different levels. Thibadeau, in turn,

provides in CAPS processing mechanisms such as <REWEIGHT> that make it

possible to model those adjustment processes.

Together, they set the stage for a simulation of a seemingly very.

different topic, "sloppy" errors in algebra problem solving, which I am

now working on in collaboration with James Greeno and Michael ?tanney.

Greenol has collected a large body of protocols illustrating a'common

and persistent probletii. Novices make a-large range of seemingly random

errors, which they themselves can sometimes detect as'errors if asked

Pt
to review their own work. These errors occur with much greater

frequency in novices than experts. It is not that the sub jects have

missing or incorrect rules for solving the problems, since thty can

identify their own errors. Nor is it that they have buggy rules:(Brown

1.*Burton, 1978), since they caw identify the correct actions and since"

the errors' do not consistently occur.

model we are developing to account for these observations

postOlates pn act vationba910\ parsing process, like Thibadeau's

REAbER, that is tryi to buildan internal representation of an. input

algebra expression. The effects that McClelland & Rumelhart outlined

can cause Xhe system to mis ate some of its hypotheses. about ',the

content of expressions. If one of the wrong hypothes is accepted

before the correct 'hypothesis has time to gain sufficient strength, an

error will occur through the System applying correct algebra rules to

incorrect data. In our model, learning to avoid errors has two

components: learning the appropriate thresholds for accepting
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hypotheses of various types, and learning the corr'ct 'weights to be

used in taking pne hypothesis as supporting another.

What these examples illustrate is one of the mostL/important

properties of the simulation ,approach: the-developTent of general

concepts of information processing mechanisms. Regardless of the

particular topic area, all simulation systems` must solve the same

problem: specification of .control processes that will produce

appropriate focus of attention. That is, whatever the program is to

do, ensuring that it actually doesit requires specifying meclUnisms,,

that,will select.appropriate actions in the proper sequence. Sitce all

psychological simulations share the concern of modelling an intelligent '

system, general concepts about these control mechanisms may be

developed which have applications in areas far removed from their

origin.

5.0 LANGUAGES FOR PSYCHOLOGICAL SIMULATIONS

111

So far, I've been talking about some simulations of interest and trying .

to ssuggast some principles which they illustrate. At this point, I'd

like to shift gears a bit and consider the languages in which

simulations are implemented.

Although many different languages have been used to Write

simulation ,programs for. psychology, historically the three most

important are probably IPL'," SNOBOL, and.LISP. Obese are the languages

which introduced the key concepts of Hat processing, pattern matching,

and function notation.
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4

It's worth quoting two sentences about IPL -5 fro; Sammet's (1969)

review of 'programming languages, because ey capture some critical

points abouC.t the fate of many special-purpose languages. . The first.. -- ',
.

quote reads, "The most significant property of IPL-5 is that it has a

closer notational ,resemblance to assembly language than any other
. *

language in this book..." The second quote brings some other sad news,

"The- implementation and developmeht of this line of language stopped

with IPL-5 because the people most vitally cbncerned Were more'

interested in the problems they were trying to solve than in further

language development." ,

It is these two factors., ease of use and certainty of support,

that suggest why LISP caught on to a much greater extent then IPL. By

and, large, it has.been such pragmatic factors that have influenced

attempts to-develop simulation languages especially for` psychology. It

would be a little grandiose to count the languages just mentioned as

strictly psychological, since their development fell more within the

bounds of AI and since they hdve also been put to use by other

cognitive scientists (such as, the MIT linguists whose work with COMIT

led to the development of SNOBOL).

r 5.1 The First Generation Of Psychological Simulation Languages

%

Therefore, the first generation of specialized languages should

'probably be consiplered to have arrived in the early '70's with Newell "s

(1973) PSG production system, Norman & Rumelhart's (1975)AMO.MOD,

interpreter for' the language SOL, and Anderson's (1976) ACT4model.

These are all systems in whiCh a number of specific simulations have
1,

4
^..s.

been implemented, but where the system itself' was an object of
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psychological interest because it wad seen at.an analogy to at least

some glObal aspects of the human information processing system. Newell

emphasized event-driven processing and working memory limitations.

Norman & Rumelhart emphasized long-term memory and the notion of

"active semantic networks". Anderson's system tries to integrate :all

of these concerns. I will refer to all such systems as, "whole-system"

simulations;r_d it is important to distinguish them from

"special-purpose" programs intended to, simulate performance , in a
a

,particular domain.

It is worth noting thilt, although their developers are still'

active in simulation work, all three df the systems just.named have

been phased out-. Their developers seem to have turned, instead, to

special-purpose programs designed to explore restricted aspects df

verbally specified theorieh. Rumelhart's model of word perception was

implemented 'in a program that did only that (McClelland & Rumelhart,

1981). Rumelhart & Norman (198f) have developed a complementary model

typing; again, implemented in a special-purpose program. Anderson

has implemented some of his recent ideas about knowledge compilation as

a J..al.ning mechanism (Neves, & Ande'rson, 1981);not,in his own ACTF

program, but in a simplerpepoductIon system architecture which retained

only those features of ACT deemed immediately Terevant to the task at

hand.

Their new

. . . .

work is quite consistent 'with their old, 73o the

abandonment of the whole-system simulations cannot be taken as a

rejection of the theoriesaN: Rather, it seems more a question of

"0';
practical matters. .I'd like to speculate on a numbervof factors that

lead researchers to abandOn'large systems.

NO
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- The systems become slow,add expensive to run; there is a feeling

that the cost is not justified when portions of the system are not

di;ectlyMplated to the current topic of interest.

t

- The problebs of developing and debugging a system grow as it

'increases in complexity;' trained psychologists' may prefer

psychological research to hardcore computer science.

Demand from others for chances to use the system are generally low;

many 'researchers, even if they have the facilities to bring up the

program at their own site, are hesitant-, to do so due 4 to the

theoretical unwillingness to buy an entire set of assumptions, and

to the pragmatic fearof poor maintenance.

Ass-
- At the same time, the dedands of the few .who are interested in

adopting the system can become burdensome; 'one hesitates tocommit

the resources'required for documenting and extending a system in

order to make it usable outside the lab. (Norman and Rumelhart,

who produced a manual for their MEMOD systei running over 100

pages, are a notable exception to this remark;)

There are a number of advantages of pre-existing languages like '

LISP that make these difficulties seem especially discouraging. LISP

is available on a wide range of machines in more&brless compatible

dialects (e.g., DEC KL-10s and 20e, Wes, IBM 160's). -With the

exception of MIT's MACLISP variant, reasonably clear Aocumentatiorr is

readily accelpible..- The language is- fairly well-structured,

symbol-oriented, and has many list processing 1m4 string. manipulation

constructs. It is relativdty easy to define new data structures.

Last, but by no means Meet, most variants of LISP offer fairly useful

4 0 .
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'
interactive debugging and trace methenisme.

<bus, it may seem that the trends favor small special-purpose

simulation Proglamt. However, °to balance the picture, there are two

points to consider. First of ,all, there are new whole-system

simulations'.being developed. Thibadeau's (1981) CAPS and my own

(Hynes, '1981 ).7re two examp les of such systems. Second, the way

that 'CAPS- adelIPM were developed show that there are some benefits to

the Ap4e!system approach in terms of generality and. understanding ,of

unexpected

prOcessing

inter-relations

system.

Although itIay,ttitiltout

between components of the information

that the CAPS and UM efforts are subject

to ,the same pitfalls as previous whole:;ysteni simulaplogsrthere is

another system Under development which attempts to 'steer 11 middle

'course "between. the alternatives of special-purpose Modelling and

whole-system simulation. That system is called PRISM, for Program for

Research Into Self-Modifying systems, and is being developed by Pat

Langley.of CarnegierlieliOn University and myself, (Langley- 6 Neches,.

'1981).

so.

.5.2 The PRISM Production Sybrim ArchiteCture
ft o

PRISM is a production stem interpreter implemented by augmenting

-LISP with anumber of special functions. It owes a major debt to

Porgy:...s (1979) OPS4, from *which a large portion, of its code is

a
borrowed.

zi . 4 1

4

a
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Production system programs are more difficult to follow than

traditional programs, because of their many conditignal rules and the

absence of an explicitly specified outer of execution for the rules.

This has probably been a major factor in limiting their acceptance.

Nevertheless, there are a number of attractive properties to production

systems, as Newell & Simon (1972, pages 804 -806) and Langley, Neches,

Neves, & Anzai (1980) have pointed out. They can model both

goal-driven and data-drivep processing, the program organization offers

a closer analogy to +an memory limitations than other programming'

formalisms, and the relative independence of individual' pzoductioh

rules gives programs a degree of modifiability which might fcilitate

models of learning processes.

.
- The design philosophy underlying PRISM is,that there are too many.

Unresolved questions about the details of how a production system.

should work. Thus, it is premature to fix a particular set of choices

and try to impose them upon users. Instead,, PRISM seeks to identify

the key choice points in specifying a production system architecture,

offer plausible options at those ,points, and make if, easy for

sophisticated users to implement alternatives to those options. Thus,
. .

. I

rather than being dwhOle-system-simulation of a particular information
er

processing theory, PRISM defines a class of theories, and leaves it to

the user to specify the details.

In order to do this, PRISM expands somew4af Upon the traditional

yiew A a. production system as consisting- of a data memory and's

production memory,WO.th productions. being selected and applied in a

repeating "recognize-act" oycTh. Figure7 shows the general structure
c

of the PRISM system. Fixed components are shown as rectangles, those

1.,

As)
4
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involving user-controlled options are shown a- circles. Arrows
0

indicate information flow.

Poi. example, PRISM divides the process of modifying memory- into

three components: add-to-wm, which puts propositions into working

memory for temporary storage; add-to-net, which puts propositions into

long-term semantic memory; and, add-connections, which ties

propositions to others in a way that perm'its activation to pass between

them. Almost all operations performed by .PRISM can be specified by the

user to be either default actions (performed on all propositions

, asserted as the action of a production) or special -case actions

performed only on the propositions explicitly specified as their

arguments. Thus, the user has case-by-case control over how these

operations Are spoiled.

Once a proposition enters working memory, it becomes subject t8

-policies selected by the user for determining how long it will reside

there. Among other things, users select a decay function to be used in

computing how activation will decrease over time, along with a

threshold below which proposit ns will be treated-as.inactive.

As'Figure.7 shows, data can enter 'active memory frod several

directiols. In addition to explicit assertions of new data, old data

may retufn to active memory via a process of spreading activation, or

associative retrieval. We have seen several examples in this paper..

illustrating why this is a useful component of a model. However, the

details in those examples differed enough. fore it to be clear why

options are worthwhile. PifSM offers three. options.

A
a A.

,
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The "Spread-to-depth" option assumes that activation is sent out

only from a subset of active nodes, and travels with decreasing

strength to all nodes within a specified, distance. The

"Spread-to-limit" option also assumes that activation travels with

decreasing strength from a subset of the;active.nodes, but allows the

activation to travel from node to node until it drops below a threshold

level. The third option permits directed activation schemes similar to

ptibadeau's (1981). Like all PRISM options, it is relatively easy to
; ,

implement alternatives to those supplipd,,aince all that is requited is

to provide the name of a function which will be executed by PRISM on

the list of propositions from which activation is to spread.

That list-of propositions is.determined by choices made by the

user; as with other functions, the associative retrieval functions may

either be called as explicit actions of productions or specified as

default actions' 'to be applied to all propositions asserted by

productions, '

"IRISH can operate with a wide range of policies for selectini

productions for execution, a process also known as "conflict

resolution". This turns out to be one of the key pints of difference

between various production systems offered_in the past. Anderson's

(1976) ACT,.for example, fired some productions in parallel, but not

all of those eligible for execution. The complex restrictions imposed

by the system involved assumptions about varying lengths of time

'required to select different prpductione, about generalized and

specialized variants of productions, and 'so forth. Allen Newell (1980)

offered a model of the human information processing system designed to

account for some effects in speech perception, in which he claimed that
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sfied productions containing constants could fire on a given

cycle, but only one production involving variables in its conditions.

Thibadeau's (1981) CAPS, on the other hand, allows all matChed,

productions to fire. My own liPM (Neches, 1981a) divides productions

into seven classes, with different rules for each class, and fires the

union ofthe set of selections-from each class.

PRISM's scheme for selecting productions for execution is shown in

Figure 8. Like RPM, PRISM allows users to divide their set of

production rules into independent classes-which fire in ,parallel. In

PRISM, users can specify one to infinity such glasses, although the

, default is that all productions are placed in one common class. For

each class that usereallow, they define a "filter", or set of tests

which must be passed,for a production to be allowed to fire. Those

f

productions 'Sassing the first.test are sent on to the second, and et;

on. This elitists the user to specify a wide range of conflict

resolution policies.

PRISM also has a number of options related to modelling, learning

processes. In a production system, leavting.is mainly simulated by

building new productions or by modifying. preexisting oness (Ist'ris

possible to also model learning, in terms of changing or adding new

declarative structures to longterm memory, of course, but there is no

need to offer any special options in order for that to bedpne in

PRISM.)

Note that the ability to.-iodel learning easily has long been a
.

promise for production systems, eye since Newell 6 Simon, (1972)
p

started arguing for produttion iystems as a formalism` capturing. key

properties of the human information processing system. The argument

U
tI

1
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has essentially been that learning models would be easier to implement

than in traditional programming formalisms because of the modular

properties of condition-action rules, with each production specifying

the range of tituatons in which its applicable, independent of all

Other productions (2). Up until quite recently, this promise was

little more than just a promise. the last few years, though,

several different simulatians have been developed in the formalism of

N self-modifying production systems. Anzai

Anderson, Kline, & Beasley, 1973; Langley,

Neves, 1978; Neves & Anderson,
4-

1981). The

offered have -incorporated seileral different

ti

Anderson, & Kline, 1979;

1981 ; Reches,__1981ab;

models which have been

features, and PRISM offe

S Simon,. 1979;

rs options.1-elated to each:

Tr4ce data: several learning models

Langley, Ne es, Neves, & Anzai,

heavily on a s

options that

memory. representation

executions,

- Designation: since Waterman $1975), building new productions

's memory for

(e.g., Anfai & Simon, 1979;,

1980; :Necz s, 1981ab) depend

paste .actions., PRISM off %rs

allow users to determine the, form and content of the

that* is built after each production

has

been a staple feature of `production system models of learning.

'PRISM contains anumbel of. options governing the, form Of new

productions constructed by pre-existing productions.'

r.

Strengthening and weakening: PAIS, offersooptions governing means

for altering 4he likelihood o a particular production being
'. It .

,
$

0_
.

---------- A.
.

Footnote 2: This assuMption puts a heavy ihurden 'on procefses for
selecting appropriate productions for firing, one rea'on why PRISM is
designed with such a generalized view of conflict resolution.A'4 .

A8
A
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selected for firing.

Generalization: there are also options governing mechanisms for

expanding a production's range of applicability, through

substitution of yariables for constants in the production's

conditions.

- Discrimination: there are a parallel see of options governing

mechanisms for restricting a-production's range of applicability

through the insertion of additional conditioils.

In summary, simulatiod work-in PRISM ,starts with specifying a

processing environment that controls how productions will be

' interpreted. the environment also includes long-term memory, active

4

Wbrking memoryt and processes which manage theiecontentso learning

mechanisms. The system is built on top of LISP, and can therefore

'implement any knowledge representation which can be expressed as WI'

data structures. PRISM can be thotight of at two levels: either as a

kit from which. phola-system simulation packages can be assembled, or

simply as a progratming language which collects features found to have

been Convenient in other systems for cognitive simulations. '
. .

There are severalmoti/ations behind the development of the PRISM

system. ' Production sysjeMs have been a useful simulation tool, but

is simply tosh-e4ty for any consensus to have arisen about the most

useful form for a production system language to take. ISM is

. e
intended to let researchers pick and choose the best combination

features for their particular purposes, without being forced

complete system from scratch. As I suggested in earlier sections,

4 there is a strong gain, frOm the exercise of trying to work within a

to build a

. 49
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whole-system simulation. We hope that systems like PRISi, by

encouraging researchers to specify whole systems, will promote a

greater concern with the interactions between components thit is,

with the question. of how the pieces of the puzzle are going to fit

together, At the same time, 'PRISM's system of options, and the fact

that it is built on top of.a powerful programming language like bISP,

are intended to make it relatively easy to modify and extend." This

property of flexibility means, we hope, that models of particular tasks

can be implemented within whole-system.simulations without being forced

into the Procrustean bed of a fixed system.

6.0 CONCLUSION

One of the most exciting things about simulation work is that

because of its necessary concern with contrpl of processing and focus

of attention issues, ideas can come out of a simulation project, that

...-...1 ...J!I applicable in areas,..quite different from the domain in which the

. otiginal work Whs,done. I've'Eried to illustrate that., point in the
tal

,:exam'Oles of simulation which' I've pre's'ented: I have afro tried to

6 .
touch on einm till oWa0 tors whith'ae s mak.g simulation Irk easier

, ,a 4 , o 1; 4'% c c 4. I
^ v , 4and more accessible than ever befor,:

.
0.-01166-factof'd th eloOsent of

? e

..`-'. /simulation langua s; like CAPS and PLISH,%04,ch) d /n.t4foroe,:their
: ;r
c

°users to acc4t ny single theory ottheltifanfilfdiation'pro4psing'
,

, ,,- .,* z c,--,- % ,,; .

system, butt prov de frameworks1 in which mod s of the isygteme4. or '

G ei

components of the whole system -- can devel?ped and eici.?.plqred. .

machines, 4sa119
l' q %

leAnother factor is the development of lower ost ma
1%

VAXes, with more powerful capabilities.. A third actor is t

increasing availability these 'machines of core languages such as

LISP, which facilitate dircct implementation of special - purpose
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simulations ix addition to providing a foundation upon which simulation

languages more specific to psycholOgy can be constructed.

At the same tide, though, I would like to avoid a presentation.

IF
from the messianic genre. As' we have seen, there are a number of

advantages which have been claimed for the mOulation approach that

really do not hold up in actual practice. A computer simulation does,

not necessarily guarantee that a, theory is more consistent or

comprehensible. Nor does a program' successful6performance guarante

that the theory is generalizable, or even that the causes far' th
4

success are those predicted by the theory. The psychological

significance of a computer program can only be determined by close

careful examination of each piece of work on a case. -by -case asis:

There are also some practical limitations Mitch will limit the spread

of simulation work for some time to come. It-fa still time-con uming

and hard to delegate. Interetting projects often have many of their

payoffs only at the end,. with fewer pub4s ble milestones along the

way. Computer hardware and software facilities are not

planned with the potential for simulation work in mind.

always being

These difficulties are due in part to the'fact that the piomise of

simulation methodology -- the differtint levels at which it can
ti

stimulate thought about psychologiclil issues -- is not as widely

appreciated as it could be. I have tried in this paper to illustrate

some of the ways in which simulations can aid us in thinking d

reasoning about the human mind. They provide a tool for empirical

analyzing theories to better understand their implications and

1,
predictions. They ...Are -a means of exploring interactions between

*0 components of complex'models. They pose a practical .challenge to

C>

-.0
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operationalize theoretical constructs, which can lead to incidental

discoveries about related processes. And, finally, they engender a

concern with ist:u- s of process control that contributes t the

development of general principles 'with broad applications.

CM

r

G
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