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Abstract

It has become %ncreasingly clear in recent years that the quality
of domain-specific knowledge 1is the main determinant of expeftise in
that domain. This paper begins with an examination of the 'shift from
consideration of general, domain-independent skills and’procedures, in
both cognitive psychology and artificial intelligence, to the study of
the knowledge base. Next, the empirical findings and theoretical models
of other researchers in physics problem solving are detailed and
summarized. Then our own work is presented, consisting of eight
empirical studies. These studies show, in general, the importance of
differences in the knowledke bases of experts and novices t; their
problenm solving success. More specifically, they show (a) that it is
difficult to use protocols of problem solving episodes to jlrﬁmI;;te the
differences in the knowledge bases of experts and novices,‘ (b) that
experts and novices perceive the problems themselves differently, i.e.,
novices respond to the surface features of a problem while experts
respond to ite deep structure, (c) that less successful novices, at
least, have deficiencies in their declarative knowledge of physics, (d)
that novices tend to lack knowledge of when to use certain physics
knowledge, and (e) that deficiencies in knowledge appear to prevent
novices at times from wmaking key inferences necessary for solving

problems. Finally, these results and their implications for theories of

1nte1113gnce are discussed.
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EXPERTISE IN PROBLEM SOLVING

Michelene T. H. Chi, Robert Glaser, and Ernest Rees

i
Learning Research and Development Center

University of Pittsburgh *

INTRODUCTION

A; first glance, it may seem anomalous for a chapter on expert
performance to appear in ? volume on intelligence. But an accumulation
of scientific events indicates that the analysis of expertise in
semantically rich knowledge domains is quite relevant to understanding
the nature of intelligence., These events have occurred in a number of
disciplines, particularly cognitive psychology and artificial

____’,lntellléence. The first part of this paper briefly outlines work in
these [ields. The common theme 1is the increasing emphasis on the
structure of knowledge as a significant influence on {intelligence and
hiéh level cognitive performarce. The latter part of this paper
describes, as an illustration of this, investigations of high and 1low
competence in a knowledge-rich domain, namely, problem solving in

physics. f
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Intelligence has been studied by contrasting individual
differences, age differences, differences between the retarded and the
gifted, and between fast and slow learners. These dimensions of
éifference are well represented-by the past research of the contributors
to this volume, including ourselves. What have we learned Sy
investigating intelligent performance along these dimensions? If we
consider speed of processing, memory span, and the use of complex
strategies as three straightforward measures of cognitive performance,
the following picture emerges. More intelligent individuals have faster
processing speed, longer memory span, and use more sophisticated
strategies than less intelligent persons (Belmont & Butterfield, 19713
Hunt, Lunneborg, & Lewis, 1975; Jenson, in press). This is also true
of older versus younger children (Chi, 1976), and fast as compared with
slow 1learners. For example, good readers can encode words faster and
have a longer memory span for word; than poor readers (Perfetti &
Hogaboam, 1975). Thus, over these dimehsions of comparison, measured
intelligence correlates positively with faster processing, more complex

encoding and recall, and the use of sophisticated strategies.

Although this pattern of results occurs reliably, we still do not
understand what the underlying mechanisms are, and whether similar
mechanisms are operative in various disciplines and areas of knowledge.
This is one reason the andlysis of expertise has emerged as an
inteiesting area of investigation. The study of expertise forces us to
focu, on a new dimension of difference between more and less intelligent
individual s--the dimension of knowledge--since expertise is, by

definition, the possession of a large body of knowledge and procedural




‘
skill. Tée central thesis of this paper is that a major component of
intelligence 15 the possession of a large body of accessible and usable
knowledge. In the following section, we briefly outline the literature
in two related disciplines that have gradpally come to the same

conclusion. 4

THE FOCUS ON KNOWLEDGE
/

Cognitive Psychology

Memory Skills

In cognitive psychology, the effects of koowledge on complex
skilled performance were first explored in the seminal work of de Groot
(1966) knd Chase and Simon (19732, 1973b) fin their studies of chess
skill. In an attempt to discover what constitutes skill in chess, de
Groot (1966) found that differences in skill were not reflected in the
number of moves the players considered during their search for a good
move, nor in the depth of their search. Both the master and the novice
did not search any f;rther ahead than five moves. Both experts and
novices used the same search strategies,, that is, depth first with
progressing deepening. In order to capture the essence of skill
differences in chess, de Groot resorted to a different type of
task--memory for chess positions. He found that when masters were shown

aa chess position for a very brief duration (five seconds), they were
able to remember the posttion far better than the novice players. This
difference could not be attributed to superior visual short-term memory
on the part of the masters because, when random board positions were

used, recall was equally poor for masters and novices (Chase & Simon,

1973a).
3
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In order to understand the chess masters” regdll superiority, Chase
and Simon attempted to uncove; the structures of chess knowledge that
the masters possessed, Using chunks as a defining wunit of knowledge
structuré, Chasel,and Simon s8et out t; experimentally identify the
structure and size of chunks in the knowledge base of masters and
novices. Two procedures were used by Chase and Simon. One was to
record the placement of chess pie-es on thé chess board during the
recall of positions, and use two-second pauses during recall to segment
the chunks.‘ A second procedure was asking the chess player to copy a
position and using head turns from board to board to partition the
chunks. The theoretical rationale underlying both the pause and the
head-turn procedure was the‘notion that chunks are closely knit units of

knowledge structure; hence, retrieval of one item of information within

a chunk would lead to retrieval of another in quick succession.

Both master and novice did retrieve pieces in chunks--bursts
followed by pauses, and they reproduced chess positions pattern by
pattern, with a glance (or head turn) for each pattern. These patterns
were familiar and highly stereotypic patterns that chess players see

daily, such as a castled-king position, or a pawn chain, or they were

highly circumscribed clusters of pieces, often of the same color, and

located in very close proximity. The difference between the novice and
the expért chess player was the size of the chunks. The master”s
patterns were larger, containing three to six pleces, whereas novice’s
patterns contained single pieces. If one counted by chunks rather than
pieces, the novice and the master were recalling the same number of

chunks from the board position.

J
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There are limitations with the procedure of identifying chunks by a
two-second pause and/or a head turn. One limitation is that it does not
provide a dgfcription of the complex structure of the chunk, for
example, the overlapping nature of chunks (Reitman, 1976). A more
serious limitation is that it does not allow for the identification of
higher-order chunks., The pause procedure permits only the
fdentification of "local” chunks, that is, chunks that are Spatially
vglose and defined by such relations as next to, color identity, piece

identity, etc. (Chase & Chi, in press).

The existence of higher-order chunks is evidenced in the master”s
recall for sequences of moves (Chase & Simon, 1973b). That is, after
viewing all the moves of a game, a master’s% recall o¢f wmove s8equences
shows clustering of move sequences represenéed by pauses that is similar
to the clustering of pieces in the board-regall task. This says that a
given board position generates a sequenﬁé of stereotypic moves. Data
from eye movement sStudies clearly show. that chess players fixate
predominantly on the pieces interrelated by attack and defense strategy

(Simon & Barenfeld, 1969), and that these pleces are typically not

proximally related, as are the local chunk picces.

The study of expert-novice differences in the wuse of complex
knowledge in other domains has also revealed higher-order chunk
structures. In electronics, Egan and Schwartz (1979) found that skilled
technicians reconstructing Symbolic drawings of circuit diagrams do so
according to the functional nature of the elements in the circuit such

!
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as amplifiers, rectifiers, and filters. Novire techniciang, howcver,
produce chunks based more upon the spatialgproximity of the elements.
In arszfqgcqu;g,raiin (1980) foun. that during recall of building plans
by architects, several levels of patterns were produced. Firs:,' local
patterns consisting of wall segments and doors are recalled, then rooms
and other areas, then clusters of rooms or areas. The hierarchical
nature of chunka also has been illustrated in the recall of baseball
eveats. High-knowledge individuals can recall entire sequences of
baseball events much better than low-knowledge individuals (Chiesi,

Spilich, & Voss, 1979).

»

Lii@ the chess results, the eipert in several divergg domains 1is
able to remember “sequences of moves” much more rapidly than novices.
Also, we see a siﬁilarity between chess patterns, circuit diagrams, and
architectural patterns in that functional properties are more important
at higher levels, where§§ structefal properties (such as proximity and

identity in color and form) are more important at lower levels. And

with increasing skill, more higher-order chunks are developed.

In sum, one aspect of cognitive psychology research has clearly
jdentified the superior memory capacity of skilled individuals, as
exhibited in the large pattern oé chunks, whether they are adult chess
players, child chess players (Chi, 1978), Go players (Reitman, 1976),
Gomoku players (Eisenstadt & Kareev, 1975), bridge players (Charness,
1979), wmusicians (Sloboda, 1976), baseball fans (Chiesi, Spilich, &
Voss, 1979), programmers (McKeithen, 1979; Jeffries, Turner, Polson, &
Atwood, 1981), or electronic technicians (Egaa & Schwartz, 1979). While

a number of the above studies have uncovered the hierarchical nature of
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the patterns (Akin, 1980; Chiesi, Spilich, & Voss, 1979; Egan &
Schwartz, 1979), no work to date has explicitly related the knowledge

and chunk structures of these skilled individuals to thé Tomplex'skill

that they are able to perform.

Problem-Solving Skills

A currently prominent area of research in cognitive psychology is
problem solviﬁg. Problem-solving research was revolutionized in the
sixties when researchers turned from studying the conditions under which
solutions -are reached to the processes of problem solving. Following

the contributicn of Newell and Simon”s (1972) theory, problem-solving

H
research proceeded to model search behavior, and to verify that humans

indeed solve problems according to means-ends analyses. Numerous .

puzzle-like problems were Lﬁvestigated, all of which indicated that

.
human subjects do solve problems according to means-ends analyses to

P

some degree (Greeno, 1978).

In puzzle problems, sometimes known as MOVE problems, the knowledge
involved in solving the problems is minimal. All the knowledge one
needs to solve the problems is given: the initial staip, the number and
function of operators, and the final goal state. Solution requires that
a set of operators be applied to transform ome state of knowledge to
another, so that eventually the goal state can be reached. A variety of
puzzle problems have been investigated: the water jug problem (Atwood &
Polson, 1976; Atwood, Masson, & Polson, 1980; Polson & Jeffries, this
volume), hobbits and orcs (GSreeno, 1974;  Thomas, 1974), wissionaries
and cannibals (Reed & Simon, 1976), and Tower of Hanor (Egan & Greeno,

1974; Simon, 1975).

%
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The resegrch'on pu;zle problems, however, offered limited insights
into learning. Because, learning ‘in real-vorld subject matte;: requires
the acquis;tién.oé large bodies of domain-specific knowledge, cognitive
scientists turned their attention from knowledge-free problems, like
puzzles, to knowledge-filled domains like geometry (Greeno, 1978),
physics (Simon & Simon, 1978), Eﬁermodynamics (Bhaskar & Simon, 1977),

programming (Polson, 1981), understandini eléctronic circuits (Brown,

Collins, & Harris, 1978); -and recently, political science (Voss & Tyler,

%

1981). M

Solving real-world problems presents new obstacles that were not
encountered previously in puzzle-like ;roblems. Basically, the exact
operatots to be ussd are usually not given, the goal state is sometimes
not well defined, and more importantly, search in a large knowledge
space becomes a serious problem. (The research on aétificial
intelligence programs in chess, to be mantioned in the next sectiom,
gives the flavor of this difficulty.) Solving real-world problemé :J££§
large knowledge bases also prnvides a glimpse of the power of the human

cognitive system o use a large fnowledge system in an efficient and
automatic manner--in ways that minimi;e heuristic search. In general,
current stadies of high levels of tompetence by cognitive psychologists
appear to stport the recommendation that a significant focus for
understanding expertise is 1nvestigat18n of the characteristi%s and
influence of organized, hierarchical knowledge structures that are

acquired over years of learning and experience.
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, Artificial Intelligence

The goal of artifical intelligence (AI) research is to make a
machine act intelligently. In this area, the problem of understanding
intelligence has become increasingly focused on the karge structure of

domain-specific knowlegge that is characteristic of experts. This is in

coucrast to the early years of "the field, when the creatiog, of
intelligent programs was identified with finding “pure” problem-solving
techniques to guide a search, for any problem, through the problem space
to a solution, as ig the General }roblem §olver (Newell, Shaw, & Simon,
1960). The techniques elucidated, such as means-end analysis, are
clearly éart of the picture, but it was apparent early on that in
realistically complex domains, such techniques must engage a highly

organized structure of specific knowledge. This shift in AI is

characterized by Minsky and Papert (1974) as a change from a power-based
strategy for achieving intelligence to a knowledge-based emphasis., They
write as follows:

The Power strategy seeks a generalized increese in
computational power .~ It' may look toward new kinds of
computers (“parallel™ or "fuzzy” or “associative” or whatever)
or it ofly look toward extensions of deductive generality, or
information retrieval, or search algorithms....In each case
the improvenment sought is intended to be
“uniform”--independent of the particular data base.

The Knowledge strategy sSees progress as coming’ from
hetter ways to express, recognize, and use diverse and
particular forms of knowledge. This theory sees the problem
as epistemological rather than as a matter of computational
power or mathematical generality. It supposes, for example,
that when a scientist solves a new problem, he engages a
highly organized structure of especially appropriate facts,
models, analogies, planning mechanisms, self-discipline
procedures, etc, To be sure, he also engages “general”
problem-solving schemata but it is by no means obvious that
very smart people are that way directly because of the
superior .power of their general methods-—as compared with

\
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average people. Indirectly, perhaps, but that is another

matter: A very intelligent person might be that way because

of specific 1local :features of his knowledge-organizing

knowledge rather than because of global qualities of his

“thinking” which, except for the effects of his self-applied

knowiedge, might be little different from a child”s. (p. 59).

We can now elaborate on this transition in AI research from
building programs that emphasized heuristic search to knowledge-based
prograns, using chess programs as examples. The chess problem space can
be pictured as a game tree. Figure i shows a very simple exa;ple of
such a tcee. Each node represents a possible position (of all the
pieces) during a game and each link leading from a node represenfs a
possible move. At first glance, the problem might seem fairly simple:
Start at the top of the tree and fipd a gset of paths that force the
opponent into checkmate. However, as Shannon (1950) pointed out, at any
given point a player has on the order of 30 legal moves available, so
the number of nodes at successive levels of the tree increases
dramatically. In an entire game, each player makes an average of 40
noves (giving the tree 80 levels) and the number of possible paths to
the bottom of the' tree total about 10120. Even the fastest computer
could not search such a tree exhaustively, so intelligent choices must
be made to severely limit the exploration. There are two basic
limitations that can be applied: limiting the number of moves
considered from each node (width of search) and limiting the number of
successive moves that will be considered on each path (depth of search).
Both of thesek
are to be applied successfully. In the case of depth of search, since

positions reached are not final (won or lost), they must be evaluated to

determine if they are advantageous or not. In additlon, sinply cutting

10
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nethods require some chess knowledge to be used if they -



STARTING POSITION

WHITE'S FIRST MOVES

/

WHITE'S REPLIES

Figure 1. A chess game tree.
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off the search at a specified depth can cause problems (for example, the

cut off may be ‘n the middle of an exchange of pieces), so some analysis
£
is required tc determine if the search should be deeé%ned.

¢

Full-Width Search

Two gene 11 search-based approaches have been followed in attempts
to create chess playing programs: full-width (brute force) search and
selective search. Both limit the depth of search. In. a full-width
program, as the name implies, the width of search is not limited at all.
To date, i nodificatiqp of this approach has been ~he most successful.
It uses a mathematilal algorithm which eliminazes from consideration
moves by the opponent which are worse than the best move already found
(based on the evaluation of the positions to which they lead) since it
must be assumed that he will make his best possible move. The current
(1980) world computer chess champion, BELLE by Thompson and Condon at
Bell Labs, and the former champion, CHESS 4.6 by Slate and Atkin at
Northwestern, are both of this type. These programs, and others like
them, make use of a computer”s speed and memory to do vast amounts of

searching, and have a bare minimum of chess knowledge. Although these

programs cait now beat practically all human players, they cannot beat

k]

the top ranked experts (grandmasters). Estimates of 10 more years of
work to reach this level are not uncommon. The main reason for such
slow progress is probably the explosive branching of the game tree.
Each level contains about 30 times as many nodes as the level above go a
large increase in computing power is needed i»r a very small increase in

depth of search.
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Seleetive Search

Clearly, grandmasters do not play better chess becaise they
outsearch a computer. The limited size of short-term memory and the
amount of time required to fixate items in long-term memory limit humans
to very tiny tree searches. In fact, de Groot (1965) and Newell and
Simon (1972) have shown through protocol analysis that expert players
tend to choose good moves without any search at all and then conduct a
limited search to test their choices. This approach is an example of
the seécond programming method~-selective search. The Greenblatt (1967)
program, the first to make a respectable showing in human tournament
compe‘:tion, provides an example of how this approach has been
1mp1eme§ted. His program selects moves for consideration on the basis
of "plauability.” It ffrst generates all of the legal moves ava;lable
from the present position. A plausibility score is then calculated for
each move on the basis of a subset of 50 heuristics (not all are
applicable to a given situation). These heuristics are simply "rules of
thumb” for selecting a good move, taken from chess lore, which have been
roughly quantified to allow a numerical score to be c~lculated. The
moves are then ranked in order of Jecreasing plausibility and only the
first few are considered. In addition, all of the continuations used %o
evaluate a move are generated in the same way. Since only a handful of
the possible moves 1is considered - at each node, the game tree is
significantly reduced in size. The size of the search must be reduced
still further, however, so the mathematical algorithm mentioned before
is used to "prune” more branches from the tree and the depth of search

is also limited.
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Although expert players do choose a few plausible wmoves for
consideration, they do nor do it through computation and evaluation as
does the Greenblatt program. Rather, they respond intuitively to

patterns on the board, As mentioned earlier, de Groot (1965) has shown

_that grandmasters can teproduce complicated positions almost exactly

after seeing thea fo% only five seconds. Apparently, the years of
practice necessary to beLome a chess expert regult in a very large
knowledge base of patterns of pieces and probably patterns of moves as
well. When an expert looks at the board and “sees” good wmoves, he is
engaging in pattern recognition. Thus, an obvious direction for chess

program design is to build production systems that can recognize and

respond as human players do (Simon, 1976).

Knowledge-Bagsed Chess

There is more to human play than just recognizing a possible next
move, however., The moves of a good player advance toward some goal;
they fit into a plan that looks at least a few moves ahead. An early
attempt to give chess programs simple goals {s the'Newell, Shaw, and
Simon program (1958). It has a series of 1independent goal modules.
Each module cgn recognize appropriate gituations on the board and
generate moves with specific purposes, such as king safety, center
control, etc. The purpose of these goals, however, is only to select a

few reasonable candidates for the next move in order to limit tHe search

tree; there is no overall plan.
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A program called PARADISE, written by Wilkins (1980), contains the

factnrs we have discussed that seem to give expert chess players an edge
over even the best gsearch programs. It uses an extensive knowledge of
chess board patterns, embodied in production rules, to establish goals,
which are then elaborated into more concrete plans. Search is used only

to check the validity of the plams.

PARADISE does not play an entire game; it plays "tactically sharp”
positions from the middle game. Tactically sharp simply means that
success can be achieved by winning material from the opponent--a common
situation in chess. The knowledge baserconsistu of some 200 production
rules; each has a general pattern of relationships among pieces as its
condition. Most of these rules are organized around general higher
level concepts necessary for effective play, such as looking for a
THREAT to the opponent”s pieces, looking for a way to make a square SAFE
to move a piece to it, trying to DECOY an opponent piece ?ut of the way,
etc. The effect of applying the production rules to a given position is
to suggest a plan or plans with the overall goal of winning material. A
given plan may include calls back to the knowledge base to produce plans
to accomplish subgoals of the original plan (if such a subplan cannot be
found, then the overall blann is scrapped). Plans are thus
hierarchically expanded wuntil they are ready for use. Each plan
containg an initial move plus a series of aléernative future moves
depending on the types of replies by the opponent.. Each plan also
contains information about why the knowledge ba;; produced it in the

first place. The plan and its associated information are then used. to

guide a very small tree search to determine if the plan is feasible.

15
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Troductions. in :hé knowledge base are used ;o generate the
defensive moves used in the search. Calls for additional planning aud
analysis to expand the original plan can also be kenerated by the
searchj The depth of search 1is not artificially limited in this
program; instead, analyses are conducted (using the knowledge base) at
the ends of lines suggested by the plans to determine if termination of
the search is proper. Since the plans limit the number of alternatives
considered at each node to only a few, the search can go much deeper
than in other programs. Since all of the analysis, planning, and
searching is guided by the knowledge base, altering or iaproving the
play of PARADISE consists of simply modifying or adding individual
production rules. Such a system Seens .:o have great potential for
playing expert chess, if the requisite knowledge can be determined and
coded into the knowledge base, oé_ if a self-learning system can be

designed to modify its vwn base,

. In sum, the example of chess programs illustrates the gemeral
tendency in Al toward kngwledge-based programning. Even t?ough
compukers have great advantages over humans in speed and menmory,
knowledge provides an edge which, it seems, pure power can only overcome

at great cost, if at all.

PHYSICS PROBLEM SOLVING AND EXPERTISE

In this section, we review what is known about how physics problems
are solved; and in particular, how expert physicists solve them &s
compared to novices. The first section reviews the available empirical
evidence, and the second section reviews the resulting theoretical
models simulating the way experts and novices solve physics problems.

16
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Empirical Findings

In the relatively small amount of work done in this area, there are
basically three types of empirical investigation. Ome is examination of
the knowledge structures of physics concepts. Shavelson (1974, also
Shavelson & Stanton, 11975) for instance, has investigated methods for
determining this “cognitive structure.” He delineates three methods that
may be wused s%ngly or in conjunction: word associztion, card sorting,
and graph building. Of “the three, word association is the wmost
venerable ‘and widely wused. Using this method, Shavelson (1974) has
shown that students” physics concepts become more interrelated and that
their cognitive structures become wmore like th> course “content
structure” (as determined by a structural analysis of the instructional
materials) at the end of the course than at the beginning. ‘Thro (197%)
has found similar results using the instructors” cognitive structure as

the content structure.
]

A second type of empirical research is inves:igation of subjects”
prior conception of the physical world, with a view toward how that
preconception might affect one”s learning of physics. For exanmple,
McCloskey, Caramazza, & Green (1980), have shown that a sizable number
of students who have had no physics courses, as well is some who have
had one or more college courses, believe that an object once set in
curvilinear motion (through a spiral tube, for instance) will maintain
that wmotion in the absence of any further external forces. Also,
Champagne and Klopfer (1980) have constructed the Demonstration,
Observation, and Explanation of Motion Test (D.0.E.) to test students”

ideas of motion due to gravity. They have found, similarly, that a
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sizabic number of students entering a college mechanics course have
erroneous ideas about motion (and that students who had taken high
school physics did no better than those who had not). They also found,
however, that results on the D.0.E. alone were of 1little predictive

value in determining success in the mechanics courses.

Thgﬁ:hird type of empirical evidence relates specifically to
problem solving and is wusually gathered in the context of solution
protocols. Careful analyses of protocols have indicated significant
differences between the expert and novice. The only obvious
similarities betweeén them are in the macropr;cesses they use in solving
physics problems. According to Simon and Simon (1978), both expert and
novice proceed to solution by evoking the appropriate physics equationms,
and then :solving them. Their expert often did this in one step,
however, simply stating results without explicitly mentioning the
formula he was using, while the rovice typically stated the formula, put
it into the appropriate form and Substituted the values of the variables
in discrete steps. McDermott and Larkin (1978) include another twe
"stages” prior to the evoking and instantiating of Equations,
postulating that solution proceeds in at least four episodes® the first
“stage” is s8imply the written problem statement. The second  “stage”
involves drawing a sketch of the situation, while the third is a
“qualitative analysis” of the problem which results in a representation
containing abstract physics entities. Generating the equations 1is the
fourth stage. According to Larkin (1980) experts seem .to perform all

four processes, whereas the novice may skip the "qualitative analysis”

stage. Beyond this gross similarity lies much more subtle and salient
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differences between the expert and novice protocols. These are

elaborated below.

Quantitative Differences

There are three major differences between the novice and the expert
physicist that are easily quantifiable, The most obvious one is time to
solution. The speed with which a problem can be solved depends a great
deal on the skill of the individual. Simon and Simon (1978) noted a &
to 1 difference between their expert and novice. Larkin (1981) also
reported a similar difference between her experts and novices., This
difference is not unlike the speed difference found in chess-playing

e ability of the master versus beginner. This is to be expected if we

postulate that experts in general are more efficient at searching their

solution space.

Related to time to solution is another quantifiable difference-—the
pause times between retrieving successive equations or chunks of
equations. Larkin (1979) has claimed that a number of physics eguations
are retrieved by the experts in succession, with very small
interresponse intervals, fol’nwed by a longer pause. Her novice did not .
seem to exhibit this pattern of pause times in equation retrieval. This

is interpreted to suggest that experts group their equations in chunks,

s0 that the eliciting of one equation perhaps activates another related

equation, su that it can be retrieved faster. (There is also some
evidence that the chunk {s associated with a “"fundamental principle” of
physics, such as Newton”s Second Law, or Conservation of

Energy.) Additional evidence for the rapidity of equation retrieval by
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the experts was demonstrated by Larkin (1981) when she found that
experts were four times faster than the novices in accessing and
applying equations during problem solving. This suggests to Larkin
(1979) ihat for the experts, physics equations are stored in chunks or
related configura;ions, so that accessing one principle leads to
accessing another principle. This result is appealing because it is
reminiscent of the chess results, where chess pieces were found to be
chunked when the interpiece pause times during reéall of a chess

position were examined.

Another interesting aspect of novice problem solving is not only
that they commit more errors than experts, but that even when they do
solve a physics problem correctly, their approach 1is quite different.
1t is this difference that we want to understand, as well as why they
commit errors. Likewise, it is also interesting to understand the
circumstances under which experts make errors.

Qualitative Differences

Qualitative differences between an expert and novice problem solver
are harder to define operationally, especially in empirical studies.
However, it is the qualitative differences that distinguish expertise
most noticeably. One prominent ye:l elusive difference between the
expert and novice is that expert phyégcis:s, as noted before, seem to
apply a "qualitative analysis” (Larkin, 1977a; Larkin, 1980; McDermoty
& Larkin, 1978) or "physical intuition” (Simon & Simon, 1978) to the
problem, prior to the actual retrieval of physics equations. There are

several possible interpretations of what constitutes "qualitative
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analysis.” One interpretation is that “qualitative analysis,” uccurring
usually in the beginning phase of problem solving, is the construction
of a physical representation, that is, a representation that has some
external, concrete physical referents. This ability to reprfsent the

problem physically in terms of real-world mechanisms was first noted

. over a decade ago, although not in the context of the expert-novice

ERIC
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distinction. Paige and Simon (1966) observed that when algébra word'
problems that corresponded to physically unr;alizable situations were
presented to subjects, a few af_ them immedfately perceived the
“incongruity” in the problem, whereas others proceeded to evoke
equations before realizing that the solution was meaningless (such as a
negative quantity for the length of a board). The former solvers

apparently imagined the physical referents of the objects mentioned.

In physics problem solving, the construction of a  physical
representation may be helpful, or even necessary, for several reasoms.
First, Simon and Simon (1978) suggested that physical representation
provides a basis for generating the physics equations. Second, physical
representat fon provides a situation that can be used to check one’s
errors (Larkin, 1977a; Simon & Siéon, 1978). Third, the physical
representation provides a concise and global description of the problem
and its important features. And finally, we conjecture that the
physical representation permigs direc{ inferences to be drawn about
certain features and their relations that are not explicit the
problem statement, but can be deduced once a representat L? is

constructed.

@.
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However, there is also reason to think that what occurs ’dur ng
"qualitative’ analysis” 18 more than the construction of a physic
representation, since the often complex physical configuration a
intuition deriving from what happens in a physical situation, may jiot
necessarily lead to correct inferences. As the aforementioned work of

Champagne ard Klopfer (1980) and McCloskey et al. (1980) have indicated,

naive pébblem solvers must not always rely on their physical intuition

(3 4 .

for constructing a representation. However, since it is predominantly
the experts who construct an elaborate representation, we postulate that
this representation need not correspond directly to a physical

representation, but may be more abstract.

A second qualitativ%_différence between the expert and thg novice,
observed by~ Simon and  Simon (1978), 1is in ~the number of
“metastatements.” “Metastatements” are comments made by the subjects
about the problem-solving processes. On the average, their expert made
only one met;comment per problem, wheieas the novice made an average of
five metacomments per problem. They were usually observations of errors

made, comments on the physical meaning of an equation, statements of

plans and intentions, self-evaluation, and so on.

There are Several possible explanations for why their expert mzde

fewer metacomments. First, he might be better ,at recognizing the
A

correctness of a solution, so that he need not voice any uncertainties,

etc. Secondly, their; expert may have multiple ways to solve a problem
(Simon & Simon, 1978),/50 that he can easily doublecheck his solution.
‘Finally, the expert tnight have a well-structured representation of the

problem to check his results against.

~
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Another blatant qualitative difference between the solution
processes of experts and novices lies in their solution paths (sequence
and order of equations generated) (Simon & Simon, 1978f{fg;he important
distinction between the expert and the novice is that the expert uses a
“working forward" strategy, whereas the novice uses a “"working backward”
strategy. The éxpert‘s strategy is simply to work from the variables
given in the problem, successively generating the equations that can be
solved from the given information. The novice, on the other hand,
starts with an equation containing the)unknoun of/the problem. If it

contains a wvariable that 1is not among"thq givens, then the novice

selects another equation to solve for it, and so on. (These processes

and models based on them will be explained more fully later.)

This interpretation of the novice”s performance initially seems
counter-intuitive; that 1is, the novice’s strategy appears to be more
goal oriented and sophisticated. One interpretation of this difference
is that the expert knows thzt he can achieve the goal simply by direct
calculations of the unknowns from the givens. Anothe: intepretation 1is
that experts do not require complex planning for simple p-oblems. They
probably have existing routines or production systems that they can
apply directly to the problems. This simple forward-working strategy of
the expert does change, howeveg, to a very sophisticated means—ends
analysis of the goals and planning when the problems become harder

(Larkin, 1977b).

’
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A puzzling question concerning the difference between the two

strategies is how people change from one,to the other. Wwhy is it that
the expert can develop a more efficient system? One possible answer :13
that over the years, the expert has built up and stored several
fundamental sets of subroutines which can solve several types of basic
problems. In this case, solving a problem becomes a matter of
categorizing the problem into one or more problem types and applyinyg the
existing subroutines. As we shall describe later, this ability to
quickly categorize thr: problem is faciltitated by a powerful parsing
mechanism that translates key words in the problem statement--words such

as "at the moment,” “catch-up,” etc.--into problem types.

The second question is how can the expert construct a more
efficient subroutine, if one does not already exist for solving a
complex problem? We think tha£ this facility lies in the riéh internal
representation that the expert has generated, a representation that
permits many appropriate inferences to be drawn so that the problem can

be simplified and reduced.

In sum, the analysis of the qualitative aspect of protocol data
raises a number of important questions: Why is the initial “qu itative
analysis” of the problem important? What kind of representation of a
problem is constructed during this initial stage of analysis? Why are
the sequences of equations generated by experts and novices different?
What enables an expert to generate a sequence of equations that is more
efficient? The quantitative analysis of the protocol data xsinply
confirms a number 'of intuitions that we slready have,}gzz\cannot

explain: experts commit fewer errors, they can solve problems faster,
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and they seem to store related equations in closely knit Achunk
structures. Moreover, none of these Quantitative findings provides any
answers to the qualitative questions. Nor do Ehey answer our questions
posed earlier, namely, why are novices less successful at solving
physics problems, and why are their procedures somewhat different, even
when they are successful. Answeri~o rhese questions is the focus of our
own experimental program, which is described in the latter part of this
paper. These questions alse drive current research and theory; we now
turn to considering the curremt state of theory.

¥

Theoretical Models of Physics Problem Solving

There has been a great deal more theoretical than empirical work

done on problem solving in physics. In this section, we will review all
R T S SR

those models that exist. They are of two types: psychological~ ;gééﬂﬁyd7
that explicitly attempt to simulate human performance and artificial
intelligence models which do not (although they may contain components

that are similar to human performance). Both types of models are 4

written in the form of computer programs.

Psychological Models

The majority of psychological models discussed here have several
things in common. First, the behaviors they simulate are geﬁé;ally
think-aloud protocols gathered while a person solves a physics problem.
Second, except for one ca;e, most of them solve mechanics problems taken

from a first course in physics. Although these problems are

straightforward, they are by no =xeans simple. They do require some
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thought and usually take at least two minutes to solve. Third, the
aspects of protocols that the models attempt to simulate are generally

the sequences of equations. generated by the soiver. Hence, the

Y
&

qualitative aspects of the protocols (such as the initial analysis of
the problem, the metastatements, and 8O on) are usually ignored.

Finally, the simulation usually takes the form of a production system.

To be more speciflc, the core of several of these models is a
symbol-driven process. The variables representing the knowns and
unknown(s) (the answer) in the problem are simply compared to the
variables appearing in the various formulas that the model has in its
possession. Two very simple selection criteria can be applied to
pioduce two different behaviors. On the one hand, a formula can be
selected in which all variables but one are knowns. That one unknown
variable can then be asserted to be known (tagged as solvable, without
any actual algebraic or arithmetic computation) and the process can be
repeated until the new known is the answer to the problem. This is a
working forward strategy typical of experts. On the other hand, a
formula can be selected because it contains the desired unknown. If all
the other variables in the formula are known then the problem is solved.
If not, the uunknown variable (the models discussed here generally
discard a formula if it has two or more unknowns) becomes a new desired
variable and the process is repeated; this is the working backward

strategy characteristic of novices.
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To make these two strategies more coﬁcrete, consider the following
very simple example: There are two formulas available, one relating the
variables a, b, and e and the other relating d, c, and evr

(1) e = f(a,b)

(2) d = f(c,r)
Suppose a problem is proposea such that a, b, and c¢ are given (the
knowns) and d is the desired a:zwer (the unknown). The forward working
nethod chooses equation 1 first, since a and b are known, allowing i:f
calculation of e. Since c and e are now both known, equation 2 can be
gselected and used to find d. By contrast, the working backward wethod
chooges equation 2 first since it involves the uesired unknown d. Since
e is unknown, it becomes the intermediately desired unknown, and
equation 1 i8 then chosen. Equation 1 can now be solved for e, which is

substituted into equation 2 to find d.

Simon and Simon models. The first models to be discussed wuse the

two strategies described above--working forward and backward. 1In the
Simon ard Simon (1978) models, the behaviors of two subjects, one novice
and one expert, working a series of kine;atics problens (déscribing
motion in a straight line without any consideration for the causes of
that motion), are simulated by two very simple production‘systems. The
available formulas are represented in the conditions of the productions
as lists of the variables they contain. The problem itself is presented
as a list of the known and desired varia?les it contains. As explained
above, the exberc productions match the knowns in the problem with the

independent variables in the formulas, while the novice productions

match the desired unknown against the independent vaciable ard the
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knowns against the dependent variables. The productions are listed in
different orders, reflecting the fact that the two subjects sometimes
used different formulas where both strategies might be expected to
choose the. same one. These two versions of the model simulate the

equation selection behavior of the subjects quite well.

In this theory, there is no need to postulate any differences in
the mechanism by which equations ;ere produced; it is only necessary to
specify a difference in the order in which they were generated. Nor is
skill difference attributable to trivial differences such as the lack of

certain formulas. Both the expert and novice systems contain basically

the same set of equationms.

Knowledge development and means—ends models. Two related models

are describes in Larkin, McDermott, Simon, and Simon (1980). One is
referred to as the Knowledgé Development model; which simulates expert
behavior, and the other 1is the Means-Ends model, simulating novice
behavior. These models expand and improve on the Simon and Simon models
in severa) ways to reflect more accurately human information processing
capacities and the behavior of the subjects. Three separate memories
are prese;t: Long-term memory (LM), working (short term) memory (W),
and external memory (EM). LM consists of the productions themselves,
which contain the necessary physics and procedural knowledge. WM is a
small memory limited t> about 20 elements and it is the contents of this
memory that the condition sides of the productions are matched against.
EM represents the pencil and paper used by a problem solver. The

complete problem statement resides in this external memory and elements

can be periodically transferred back and forth between EM and W by the
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actions of certain productions to simulate the changing focus of
attention of a problem solver and the process of recording intermediate

results on paper.

The solution process begins with tﬁe problem statement in a coded
form that specifies the objects 1nvolved; their attributes and points of
contact; 1ﬁstants and intervals of time and the desired unknown(s).
(The complex problem of natural languagc understanding is
avoided.) Both models have productions that assign variables to the
necessary elements of the problem so that the appropriate formulas may
be selected. As before, the two basic selection strategies, forward and
backward, are employed but they are more elaborate to more closely

sinulate behavior. . .

The differences between the current and the previous Simon and

Simon models are the most marked in the selection of a formula in the
\

Means-Ends novice model, because novices are observed to do this 1in

several discrete stages, first selecting a formula, then relating its

-

variables to items in the problem: and then wusing it. A formula is
originally selected for consideration if it merely contains a desired
quantity. In cases wﬂere more than one formula contains the desired
quantity, selectors tailored to represent observe’ novice preferences
pick one. This model produces the same backward chain of equations as
the earlier model. It then "solves” them by chaining forward, marking
each previously unknown variable as known until the originally desired
variable becomes “known.” (Neither of these models bras any actual

algebraic manipulation ability.)
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The Knowledge Development model is more similar to the previous
Simon and Simon expert model. This is because experts generally do mnot
exhibit the step by step behavior of stating an equation and then
connecting it to variables in the problen. Thus, as before, the
selectors select a formula on tée basis of the unknowns and.assert that
the dependent variable is now known in one step. This situation can be
viewed as a “"collapsed” or over-learned version of the novice model
(this will become clearer shortly when other models are discussed). The
main new feature of the model i8 that when more than one formula can be

selected based on the knowns, information from the problem is used to

" decide among them. For instance if a (acceleration) and t (time) are”

knowns, then both x-&atz and v=at could be selected. If the problem
contains an object falling or rolling from rest, the first is gselected;
in all other instances the second is selected, corresponding to the
observed expert preferences. It is in this sense that the knowledge

about the problem is used.

In addition to the differences mentioned above, the Larkin et
al, (1980) models have the ability to solve more kinds of problems than
the previous ones, which were confined to kinematics. They solve
dynamics problems (describing the motion of a body by considering the
forces causing or influencing that motion), using two basic methods for
solving such problems, Forces and Energies, and because they contain
more than one solution method, they have an attention focusing
mechanisn. If a model is solving a problem using Energies, it should
not try a Force equation halfway through the solution, nor should it

select an equation when it is not through writing a previous one. To
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accomplish this focusing, goal elements are included in the conditions

of many of the productions. At the beginning of a scvlution process, a

goal is set (placed in W and EM) so that only productions related to

that goal can execute.

Able models. The Able models of Larkin (1981) addreif a different
issue than strictly simultating the problem solving processes. Instead,
they a;tempt to simulate the learning processes, that is, how a novice
might become an expert. In the model”s "naive” state, it is called the
Barely Able model, and after substantial learning, it 1is called More

Able. The learning process is modeled by a mechanism for addiﬂg

procedures that is generally used in adaptive production systems

* (Waterman, 1975).

Barely Able starts with a list of equations that can be used in the
Forces or Energy methods, and operates with a general mean;-ends
strategy for applying them that is similar to the previous Means-Ends
model. The learning process itself is quite straightforward: @henever
a production succeeds f;ggpplying an equation to derive a new known
value, it creates a ﬁéw production that has the previous kqbuns on the
condition side and an assertion of the new known ,on the action side.
For example, if Barely Able solves the equation V=V, + dt for a, then
the new production will check to see if Vos V and t are known and, if
so, assert that a is known. Psychologica}ly, this means that “the
procedure for finding the right equation and solving for the unknown
becomes automated once the initial production has been executed. Thus,
as Able solves more and more problems, it looks more and more like the
Knowledge Development model mentioned darlier--it becomes

forward-working because all the backward-working steps become automated.
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Theré are two limitatiors to the Able model. The first is that the
learning takes place in one trial. This is psychologically unrealistic
and a more complicated learning function probably needs to be built in
which, some aspects of learning take place faster than others. The
second limitation is that the model does not provide the capability to
concatenate series of productions into one, (Neves & Anderson, 1981).

Such a mechanism would allow two or more formulas to be combined into a

single step, as experts are often observed to do.

Model PH632. A model labeled PH632 developed by McDermott and
Larkin (1978), has a somewhat different focus than those previously
described. Its purpose is to examine and model in a general way the use
of problem representations by an expert solver, but not go exhibit a
detailed psychological model of the process. It is, again, a production
system with external, working, and long term nemories. The condition
sides of the productions can contain goal elements that keep attention
focused on the specific task at hand and that allow the productions to

be hierarchically Srganized.

A series of four representational stages of a problem is
“'bostulatedﬁ verbal, naive, scientific, and mathematical (see also
Larkin, 1980). The model assumes that a problem solver progresses
through these stages as a problem is solved. However, the detailed

description of the model (McDermott & Larkin, 1978) starts with the

naive representation. The naive representation is a sketch depisting

the components of the problem and their relationships, and is

:
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implemented as a data structure that encodes this information. The
scientific representation contains abstraét physics concepts such as
forces, momenta and energies (which must generally be inferred by the
problem.solver) and is usually depicted as a free-body diagram. The
mathematical representation consists of the equations relating the
variables in the problem that must be solved to produce the final

answer. .

\ Once PH632 has a naive representation, it tries one of the two
solution methods mentioned earlier--Forces and Energies. If both are
adequate, the one chosen may simply be the first one tried. Once a
particular method is chosen, its productions give the model the abiity_
to scan the sketch qualitatively to determine where the objects and
systems of interest are, whether they are familiar or unfamiliar, and
how they are related. If a system is familiar (such as a hanging
block), PH632 can use its knowledge to build a production describing it.
{f the system is unfamiliar, an extended analysis is conducted to
oroduce an encoded version of a free-body diagram. This difference in
representation corresponds to an expert’s tendency not to draw an
explicit .free-body diagram of a familiar system. The model makes
qualitative checks as it proceeds to determine whether its
representation seems correct and whether its approach is working. For
instance, in a statics problem (one with no motion), it checks to make

- sure all of the forces are balanced by at least one opposing force. It

can also test whether all of the entities generated in the scient{fjc

,representation, such as forces, can be related to the quantities given

t
' in the problem statement so the equations can be generated.
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Once assurance is gained that the model is on the right track, it
can write the equations for the mathematical representation. Because
all of the forces have already been located and resolved into components
in  construction of the scientific representation, this step 1is
relatively simple. Unlike the previous models, PH632 can perform the

algebraic and arithmetic operations necessary to produce the answer.
Atwood. Larkin’s (1980) latest program, Atwood, concentrates on
the verbal representation stage, an area generally ignored by the
previous nmodels., ’ Considering the difficulties and conplexities
encountered by Al researchers in bLilding language understanders, Atwood
accomplishes its task in a surprisingly simple and straightforward way.
Because mechanics .problems in general contain a rather small set of

basic objects, attributes, and relationships, it can simply ignore wmost

of the words in a typical problem statement and concentrate on the key

\(‘ord S,

y
}

Basically, Atwood contains a set of schemas that tell 1é what vords
to attend to and what situations those words may indicate. Thus, it
knows that the word “rod” is important and that tﬁere should be one and
only one length associated with it. “Pulley” is another keyword and
Atwood”s schema tells'it that there will be a rope passed over this

object and that the rope should have objects connected to each end.
9

Using some rudimentary knowledge of English syntax, Atwood
processes the problem statement word by word, creating nodes for each
physics object it recognizes and connecting these nodes into a semantic

net with the help of the knowledge of their legal relationships
AY
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contained in the schemas. When tested on a set of 22 of the problems
collected by Chi, Felta¥ich, and Glaser (in press), Atwood was able to

build correct nets for 15 of them, while ignoring roughly two-thirds of-

. the words they contain.

Summary and discussion of the psychological models. The

psychological m;dels so far developed, focus their attention on the”
different approaches that experts and novices take in terms of the
sequence of equations they generate--forward working versus backward
working. In these models, it is as;umed that experts are forward
working because their initial backward solution procedure becomes
automated with learning. The question of initial problem repres?ntation
is generally avoided in these models, perhaps primarily because it is
difficult to obtain empirical information on this process solely through
the usual forms of protocol analysis. As we shall describe later, other

techniques are required for this purpose.
¥

An alternative theoretical framework is to suggest that novices are
data driven. They E:eat. the unknown and known variables as literal
symbols and plug them into equations in their reperEgiig. Experts, on
the other hand, are schema driven in the sense that their representation
of a probem accesses a repertoire ~f solution methods. Hence, for the
expert, solving a problem begins with the 1dent1f1cat1;n of the right
solution schema, and then the exact solution procedure involves
instantiation of the relevant pieces of information as specified in the
schema. This is particularly 1likely bqugse mechanics problems are

overlearned for the experts, especially experts who have spent-a great

‘deal of their time teaching. Another interpretation is to postulate

o
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that novices also solve probloms in a schema-driven way, except that

their schemas of p{oblem types are more incomplete, incoherent, and at a
level hierarchicqlly lower than those possessed by the experts. In our
opinion, the development of psychological models should proceed in this
particular direction, building knowledge’ structures in éhe forms of
schemas, in order to to capture the problem-solving procecses of experts

and novices. Some empirical evidence for the vAlidity of this

interpretation will be presented later. ’ e

Artificial Intelligence (AI) Models

Al programs, unlike those prevdiously discussed, are not
sRecifically intended to model observed behavior or to take into account
Ekggries of human cognitive architecture. Their general aim is to
successfuily solve phys;cs problems by any means po;sible. However,
they do c;;tain elements that are very similar to both human \behavior

and the previous psychological models.

»
.

One of the main 4issues addressed by the Al wmodels is
representation--how to represent the knowledge the program needs to form
a répresenéation of the problem and solve it. Indeed, the current
recognition in psféhology of the importance of representation probably

derives from the early recognition of its importance in Al and computer

sctencéﬁ““in general. 771heﬁ»qge§t16h of how physics knowledge is
represented is a major research ywoblem, as the rudimentary state of

such representations in the psychological modefs indicates.

A .
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The first phase of a problem solution is reading and understanding

(or translating) the verbal problem statement. Much work has been done
on the general problem of natural language understanding in AI and two
of the programs to be desribed put considerable emphasis on this stage.
Both are more detailed and complex than the simple Atwood (Larkin, 1980)
translator, since raey aim for a complete translati&n utilizing all of
the information in the oroblem statement. Thus, both use esoteric
translation processes and have extensive knowledge bases of syntactic
and semantic information, ifncluding specific physics knowledge in a
well-organized form to allow a correct physical interpretation of a
problem. Once translation is complete, some kind of language-free,

internal computer model of the problem exists. which cau be compared to

a naive representation.

Issac. Issac by Gordon Novatf (1977) is s p}ogram that can read tQS
problem sgtatement. It does ;his for statics problems only. The key
feature of interest {is the representation of objects as idealized
physics entities. For instance, in a problem that has a person standing
on a ladder, the properties that are important to the solution are his
mass and location on the ladder. He can therefore be represented as a
"point pass.” But if he is holding up one end of the ladder, only the
point on the ladder he js holding is important and he becomes a “pivot.”
This idealization is accémplished in Issac by wusing Canonical Object
Frames (schemas) from the knowledge base. Each one contains the
knowledge necessary to abstract the proper characteristics from the
“real 1life” object and to use the idealized object properly in the

solution of the problem. This idealization process corresponds only
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partially to the formation of scientific representation becaqse no
attempt is made to represent or analyze qualitatively the Other
essential physics entities in a statics problem-—the forces. Instead,
all possible balance-of-forces equations are written at each point of
contact between objects, resulting in many more equations than are
actually needed for a solution. This illustrates the problems that can
arise if the representation of a problem does not generate an efficient 5

solution.

Newton. Newton by Johann de Kleer (1977) does not have any
language translation facility. It solves roller coaster problems
(blocks sliding on curved surfaces), and they are best represented as a
picture of the track, which is provided in a symbolic form. The key
feature of this program is a proce;s of qualitative analysis referred to
as envisionment. Newton envisions, as a human solver might, ;hat might
happen to the sliding block based only on the general shape of the
track. Thus, on an upslope the block might slow down and slide back,
down or continue up. At the crest of a hill, the block might be
traveling so fast that it fliess off into space or it might slide down
the other side. Using a series of production rules that codify such
qualitative knowledge, Newton builds a tree of possible paths of the
block that guides further' processing of the problenm. Some simple
problems may be solved using only this qualitative reasoning. If this
is not possible, then schemas are used that contain knowledge and
formulas necessary to analyze each node of the tree (section of the
track) mathematically. In cases where the value of a particular
variable is needed for the answer, the faniliar means-ends process is

usad to choose the proper formulas to apply.
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Hecho. Another language translator is Mecho by Bundy, Byrd, Luger,
Mellish, & Palmer (1979). This progiam solves prohlems from kinematics
and those with pulleys. It has also been extended (Bundy, 1978; Byrd &
Borning, 1980) without translation to so}ve problems in statics and
roller coasters in an attempt to make tPé problem~solving part as
general as possible by encompassing the ugrk of others (e.g., de Kleer,
1977; Larkin & McDermott, 1978; Novak, 1977). The salient feature of
this program and, perhaps, the key ;; its extendability, is a two-level
knowledge organization. On the object (lower) 1level 1is the physics
knowledge, organized as rules ;nd schemas and the problem itself. The
problem passes through several stages of representation on the way to a
solution. For example, the natural language translation feature
produces a symbolic representation specifying the objects in the problem
and their properties. Where necessary, schemas describing important
objects, such as a pulley, are cued i~ from the knowledge base. Thus,
this initial internal representation might be viewed as naive with

Y
elements of a scientific representation. The next general step 1is to
produce the mathematical representation, which can then Pe solved
algebraically. This #s not a simple step however. The
meta-(upper)level of the kuowledge base contains all of the procedural
knowledge necessary for the er.:ire solution process, organized as a set
of rules and schemas. It includes rules fdr interpreting the object
level knowledge for wuse at each step of the process, for making

inferences when needed information is not explicitly stated, for

deciding upon a general solution strategy, for selecting equationg
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(means-ends strategy again), etc. Athough a complete scientific

representation is not explicitly formed, the planning and inferencirg

/ powers of the meta-level implicitly use the elements of such a
representation to plan the solution ﬁbefore equations aré actually
generated. Thus, 4in a statiecs problem, for instance, the planning ’
process eliminates the problem of excess uumbers of equations

experienced by Issac.

hThe organization of procedural knowledge into explicit modular form
is :hat is most interesting psychologically about Mecho. Quite often,
such knowledge is buried in the structure of a progran and the
assumptions that went into writing it, making changes difficult and
modeling of procedwral learning impossible. This two—legel organization
also allows the declarative knowledge to be present in only one form,

which can be interpreted by the meta-level for use at each step of the

solution process. By contrast, both Issac and Newton contain separate

representations of the same physics knowledge for each step. In a
sengse, Mecho can learn (though }9: on its own) and has learned to solve
new problems in a fairly realistic\way psychologically because all that
is necessary .is to give it other new pleces of procedural and
declarative knowledge. . -
Summary. Although as noted, the purpose of these Al programs is
6;“” not to model human behavior, it is clear that they contain many
psychologically important features and ideas. The question of
representation of the problem and the knowledge base is common to both
fields and the proposed solutions--stages of representation, rules,

schemas, (often called frames in AI)--are generally similar. However,
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since Al is not limited by empirical knowledge of behaviofs, these
programs can venture into areas where psychological model builders have
more difficulty simulating, such as natural language translatiom,
qualitative analysis (e.g., envisionment), planning and inferéncing
processes, and the actual specification of knowledge organization. The
importance of these. items to the success of Al progams emphasizes, the
need for much more work to determine empirically how they goccur in

humans .

EMPIRICAL STUDIES TOWARD A THEORY OF EXPERTISE

The objective of ihe series of investigations that we hgye carried
out ;é to construct a theory of expertise based upon empir;cai
description of expert problem—solving abilities .in complex Jgnowledge

R 'domaing. In this case, the knowledge domain is physics, in garticuIar,
mechanics. There are basically three questions that guide our effo:tb.
First, how does task performance differ between experts and the novices?
This question has been partially answered in the rteview of empirical
evidence on physics problem solving. To recapitulate, 1he ‘basic
differences found thus far are: (a) .the two groups use different
strategies for solving problems, forward versus backward; (b) .they seen
to have different chunking of equations; (c) in an initial phase of
problem solving, experts tend to carry out a “qualitative analysis: of
the problem; and (d) experts are faster at solviné problems. On; of

- our goals 1is to describe more extensively these differences between

experts and novices.
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The gecond question asks: How are the know%edge bases [ of skilled

; and less skilled individuals differently structured? It fis clear that
the skilled individual possesses more knowledge, but how 1is that
knowledge organized? Again, some research has already addressed this
issue. Simon and‘51mon (1978) initially postulated a difference in the
knowledge base in terms of the conditions of the productions. Larkin
(1979) has postulated a difference in the way equations are stored.
Experts store them in relation to a high level principle, but this this
does not seem to be the case for the novices. In our work and in
Larkin“s model Atwood (1980), knowledge is postulated to be organized in

the forms of schemas.

The third question guiding our work is: How does the organization
of the knowledge base contribute to the performance observed in experts
and novices?, The reiat{on between the structure of the knowledge base
and solution processes must be mediated through the quality of the

representation of the problem.

A problem representation, as we stated in Chi, ‘Feltovich, and
Glaser (in press) “"is a cognitive structure corresponding to a problen,
which is constructed by a solver on the basis of his domain-related
knowledge and its organization.” We adopt Greeno's (Riley, Greeno, &
Heller, 1981) notion of a representation, which takes “the form of a
semantic network structure, consisting of elements and relations between
thege elements” (p. 23). Hencde, we hypothesize that at the initial
stage of problem analysis, the problem solver attempts to “understand”
the problem (Greeno, 1977), i.e., constructing a representational

network containing elements specifying the initial state of the problem,




the desired goal, the legal problem solving operators, and their

relational structures. From such a structure, new inferences can be

deduced. Hence, the quality, completeness, and coherence of an internal

representation must necessarily determine the extent and accuracy of

derived inferences, which in ‘turn may determine the ease of arriving at

»

a solution and 1its accuracy. Therefore, the quality of a problem
representation is determined not only by the knowledge that is available
to the solver, but the particular way the knowledge is organized. One

way to capture empirically the difference between the representation of

the expert and that of the novice has been the amount of “qualitative

analysis” occurring in the beginning of the problem solving processes.

Becauge of its apparent overriding influence on problem solution
(Hayes & Si ,n, 1976; Newell & Simon, 1972), we have focused our
studies ma;nly on the répresentation of a problem. We employ methods of
tapping kn;%iedge in ways other than the analyses of problem solving

protocols, since as we will see shortly, the analyses of protocols often

- provide limited information. However, the first study we describe

examines the protocols of problem solving, to see what kind of
information they do provide, as well-as to see in what ways they provide
a limited glimpse into the knowledge sgructure. The nexé set of studies
looks at the categorization behavior of problem solvers; the third set
of studies looks at the knowledge available to individuals of different
skill levels; and finally, the fourth set of studies examines the

features in a problem statement' that wmight elicit the categorization

processes--or to put it another way, what is considered to be the

relevant features of a problem by experts and novices.
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Study One: Protocols of Problem Solving

In this first study, we attempted to characterize and contrast,

both quantitatively and qualitatively, the problem solving processes of

experts and novices, beginning with the reading of the problem, through ’

to the checldng of the solution, To do 8o, the problem solving
protocols of two experts and two novices solving five mechanics problems
were examined. This study 3?3 infitiated and ;arried out by Jo;n
Fogarty. The specific goals were twofold: First, we wanted tb describe
some quantitative parameters of expert and novice problem—solving
processes, and compare these data with those existing in the literature;
gsecond, we wanted to contrast some qualitative differences‘between

experts and novices, particularly focusing on the qualitative aspects of

the analyses of the problem.

.

The five mechanics problems used in this study were taken from
Chapter 5 of Halliday and Resn’-k (1974). The expert subjects for this
study were two professors of physics who had considerable experienc:
teaching introductory rhysics. The novices were two freshmen physics
majors (A students), who had just completed a term of “undergraduate
physics, using Halliday 'and Resnick (1974) as the textbook, in which
mechanics problems of the type used in this study were taught. Each
subject was presented with written .problems, one at a time, and was

instructed to "think aloud” while he solved the problems.

“
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Quantitative Results and Discussion

A variety of quantitative measures can be obtained fro

protocol

data. These are elaborated below.

Errors. The experts on the average, made 1 out of 5 poxible

errors, whereas the novices made three out of five errors. (See Ta

1. Errors are marked by parentheses around the solution time. If onl

a part of a problem is incorrect, then that part is indicated by a

subscript.) As anticipated, experts made fewer errors than novices.

The fact that one of the experts made two errors suggests that these i

problems are nontrivial. On the other hand, these are problems that a

competent novice (A student) can solve. Novice K.W., for example,

. . [}
P solved 4.5 out of the 5 problems correctly.

.

Solution times. Solution times. were determined by timing the

\ length of the protocols. Looking only at the correct solution times for

the entire problem (see Table 1), the mean solu lon time for the experts

1

averaged about 8.96 minutes, whereas the average correct solution time\

for the novices was 4.16 minutes. The magnitude ot our solution time

for ,coblem solving protocols is much longer than those obtained by
I

Simon and Simon (1978). Their problems were selected from a high school

physics text and were 1limited to kinematics; such problems can be

solved mainly through algebraic manipulation. Our problems were more

complex; they were chosen from a college physics text and involved
dynamics; which requires that forces be explicitly taken .into account.
Applying the Force Law requires some physical inferences to be made

before equations can be brought into play.
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Table 1

Solution Time (Sec), Number of Equations Generated, and

2 Number of Diagrams Drawn, for Each Subject and Problem
1]
Problems Problem 1 Problem 2  Problem3  Problem 4  Problem 5 " Mean’
{No. of Subparts) (1) (2) (2) (3) (2)

Expert R.E. Solution Time 225 625 555 5380 585 516
No. of Equations 6 8 12 9 14 9.8

No. of Diagrams 3 4 4 1 2 2.8

Expert M.V. Solution Time (165) (325) A,B 500 590 590 560
No. of Equations 3 5 7 12 15 8.4

5 No. of Diagrams 1 1 2 3 1.6
Novice C.H. Solution Time 275 (585) A,B {925) A (835) A,B,C (325) AB® 275
’ No. of Equations , | 7 10 12 19 8 1.2

* No. of Diagrams 3 3 5 3 3 34

Novice K.W. Solution Time 200 . 105 (20008 655 420 345
No. of Equations 7 10 ) 12 19 7 11.0

No. of Diagrams 2 0 2 2 1 1.4

problem.

®The subject attempted only Part A of this problem.

] .
The mean solution time was calculated only for problems correctly solved.

O
ERIC |
N (\’ . :J 1

Note Parentheses around the solution time indicate an incorrect solution. The following fetter(s) indicates the incarrect partis) of the
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The novices in this study actually solved problems faster than the 3
experts. However, this seems to be an artifact of the great number of
errors made by Novice C.H. That is, Novice C.H.”s only correct solution
was probles 1, which in fact, took him longer than the rest of the
subjects to solve. But, because problen 1 happens to be, a short
problem, and since that was the only problea he solved correctly, his
average latency was reduced, because it was determined by the speed of
solving that particular problem. Novice K.W.”s. solution times, on the
other hand, are actually comparable (averaging 7.01 minutes) to the

experts” (averaging 8.96 minutes).

The only obvious outlier in solution time occurs in problem 2, _——— ,
where Expert R.E. took significantly longer than Novice K.W. Examining
the protocols in detéil, we see that Expert R.E. in this case sought S
and calculated a value unnecessarily. When he discovered that the
problem was really muj{ simpler than he thought, the actual protocol for

the short solution todk only about 1.33 minutes.

Hence, barring unusual circumstances, competent novices not only
can solve these éroblems, but they can do so in approximately the same
amount of time as experts. However, if the task had emphasized speed,
the experts proPably could have solved the problems much faster than the

novices. We suggest, however, that, protocol data are not a particularly

viable way to assegs the speed of problem solving.
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Number of quantitative relations. Another quantitative parameter

that may shed some 1light on skill diffgrences between exzerts and
novices is the number of quantitative relations generated by the
subjects as they solve problems. Table 1 also shows the total number of
quantitative relations generated by each subject for each problem. A
quantitative relation 1is defined as any mathematical relation among
physical entities, and it generally takes the form of an equation.
Excluded were algebraic manipulations of already generated equationms,
and instantiations of equations’ (ie., substituting values for the
variables). In general, there appear to be no s&stematic differences in
the mumber of quantitative equations generated as a function of skill.
There wa§ greater variability in the numbe{ of equations generated by a

¢iven subject for the different problems, than between subjects on the

saue problem.

"Chunks” of equationms. As stated earlier, Larkin (1979) has

hfpcthesized that experts store physics equations in tightly connected

"chunks,” whereasl novices store them individually. To test the

v

“chunking” hypothesis, Larkin (1979) measured the times during the
: i
problem solving process when quantitative relations were generated. Her

results showed that the expert generated a great many pairs of equations

with short pauses between the equations, whereas her novice generated

fewer equations with shorter pauses.




%\.’

»

»

Using the same analysis, we' also examined the distribution of .
generated equations over :1m§. For each subject, the time interval

between the generation of each pair c¢f quantitative relations was

calculated for' each problem. Our data do not discriminate between the

generation pattern of xperts and novices. If anything, the results

indicated that the bépposite was true. That is, the novices seemed to

have generated a greatpr number of relations in close succession.

There are sub€tantial individual differences, however. Novicz C.H. :

showed the strongest degree of “chunking,” or generated the largest
. number of quantitative relations in rapid “burstg.” How do we account
for the discrepancy between our results and Larlgn”s?  One
interpretation is to hypothesizé that a burst of equation generation may
be ‘an artifact of various problém solving strategies that subjects may
adopt. ‘Our novice subjects, for example, reported that when they get M
\\\ s:Jck on a‘problem, they generate as many related equations as they can

\ think of on paper. They then look at the equations they have generated

to get so‘e hints about how to proceed. This would produce clusters of ’

P
equations. 6

Anotper strategy, reflecting the style of solution processes of
individual subjects, relates to the way equations are generated, that
is, often all at the same time. Novice C.H., for example, would spend a
consideéable amount> of time generating equations. This pattern of
solution processes would necessarily inflate the number of equations . A
generated within a short period of time. Perhaps the generating of
equations in bursts’ may also be the outcome of another artifact,

discussed in the next section: the drawing of free-b%gy diagrams.
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Even though we did not regplicate Larkin“s (1979) finding that

experts tend to genera 2quations in clusters, this does nct deny the
possibility that the storage of equations may indeed be different in the

knowledge base of the experts and novices. Our conclusion is that

—protocol —analysis of equation generation will not  address this

particular issuer directly. In. order to address the issue of how
equations ar “nr~d in the knowledge bases of experts and novices, one

needs to desi, . study where experts and novices are asked to generate

or freely associate equations outside the context of a problem solving

gituatior. -

Number of diagrams gefierated. Another potentially interesting

quantitative measure 1is the number of free-body i}agrams drawn oY the
subjects. The constr;ctlon of free-body diagrams, ;;pears to form an
important component of problem solving. Free-body diagrams are partial
figures that depict partial abstractions of the total physica}
situation.: They,dﬁ;Jbe drawn for all or part of ;he physical situation,

and utilize directional arrows denoting the forces acting in a physical

systam.

The number of diagrams including frece-body diagrams drawn by each

subject for each problem is also shown in Table 1. Again, there appears
to be no systematic skill differences, although ti..re steas to be some,

individual differences, with Expert R.E. and Novice C.H. drawing'thg

greatest number of free-body diagrams. These two individuals also

genefated the greatest number of e7uations, and also produced the

A

greatest amount of clustering.
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Drawing free-body diagrams may inflate \the number of equationﬁ
generated }n clusters. Both novices, as well as the experts to a lesser
extent, utilized the strategy of constructing free-body diagrams, which
is taught and emphasized 1; introductory physics courses. Ueing the
free-body diagrams, equations relating the forces can be generated.

; Hence, the more frequently a subject draws a free=body diagram, the more

~

likely he is to have clusters of equation generation. Therefore, bursts

of equation generation may be an artifact of a solver”s need to generate

many diagrams.

(

It is not clear to us what the purpose is of generating many
free—ﬁody diagrams. We speculate that when a problem is difficult for a
subject, the subject tendg’to draw more diagrams. Each drawing may be
seen as an attempt to create a meaningful representation of the problem.
For example, for problems‘that t;ok the longest to solve, a large number
of diagrams tended to be generated (such as problem 2 for Expert R.E.).
Furthermore, problem 2 was the one that Expert R.E. had some difficulty
with, having derived a value unnecessa;ily. Likewise, for Novice C.H.,
problem 3 took the longest time to solve (which he did incorrectly); he
a#lso generated the greatest number of diagrams for that problem. These
speculations need to be confirmed, but it seems that drawir;g free-body
diagrams may be a way of helping the subject to create a meaningful
representation. It may also indicate that the subject is having

difficulty going beyond the visual stage of problem representation.
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In-another study Study Five in this paper), when four expeﬁis and
four novices were acked to solve a problem, the novices generated four
times as many (4.7) diagr;;;‘hs the experts (1.0 diagrams). The novices
had more difficulty solving the problem correctly (3 out of 4 errors)
than the experts (1 out of 4 errors). This provides some additional
support for the notion that frequent generation of diagrams is used as

an external aid to create a meaningful problem representation, and

especially when subjects are having difficulties.

R .
£

Summary of quantitative measureg. The results of this study
indicate that few of the quantitative measures we used meaningfully
differentiated the experts from the noviées. The quantitative mneasures
obtained from protocols seem to be tenuous Eeasures that are confounded

with individual differences and the particulpr strategies adopted by the

problem solver. We now turn to qualitative analyses of the protocols to

locate differences that can be attributed to skill.

Qualitative Results and Discussion

For reasons already indicated, and since a great deal of attention
had been devoted to the equation generation and manipulation stages of
problem solving, in this section of the data anlayses, we will focus our
attention on the {initial "quali:a:ive' analysis” stage of prcblen
solving. We assume that during this stage of processing, a
representation of the problem is constructed, and that this occuss
primarffy during reading of the problem, and is completed in the fh

Lk
30-40 seconds after the problem has been read. We estimate that this

stage takes a very short time because it appears to be analogous to the

- e
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stage of “in.:ial analytical assessment” that Simon ard Barenfield
(1969) talked about for chess problem solving, and the stage cf
"precénception" that expert musical sight readers engage in prior to the
actual playing of a musical piece (Volé, 1976). The short duration of

these initial processes is an 1m§or:an: consideration in determining our

subsequent experjmental procedure.

* Figures 2 and 3 show two samples of protocols, one from Expert R.E.
and the other from Novice C.H., both on the first part of probleg 5.
The protocols have been segmented into four types of episodes:
"qualitative analysis,” drawing diagrams (which may be either the
diagrams depicting the main components of(the problem, or the abstracted
free-body diagram), generating equations, and manipulating equations.
There are several general remarks that can be made &bout the initial

stage of the protocols.

Before proceeding with the discussion of the protocol data, it may
be necessary to clarify a few terms and operational definitions. Any
statements in the protocols that do not relate to drawing diagrams,
generating and manipulating equations, were considered to be
"qu;iitatigc analysis” of the problem. These statements can further be
of a variety of types, such as references to planning, checking of the
solution, and so on. We focused Spgfifically on those “qualitative
analysis” statements that seemed to generate knowledge not explicitly
stated in the problem, that 1is, inferences. {These "%ualitative

analysis” statements are not to be confused with qualitative analysis of

the protocol data.)




ExperT R, E.
(PROBLEM #5)

TaxonoMy of ’
EPisoDES Puysics

ProTocCOLS

*QUALITATIVE ANALY-

Constant velocity—> Frictional
-81s (INFERENCES) o

- ---- force

Frictional force opposes force
due to weight of block

*Friction—>Coefficient of fric-
tion ~ angle ¢,

DrawiNG FREE BoDy
- DIAGRAM

GENERATE EQuATIONS  mgsine - f, = 0
. N - mgcos¢ = O

. Tk = wN = ukmgcosé

mgsiné - umgcesé = 0
wg = tang

ALBEGRAIC MANIPU-
LATION

Rereap QuesTion A
Figure 2.
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“There must be a frictional force

-retarding- the motion- because-

otherwise the block would accel-
erate down the plane under the
action of its own weight...the
angle ¢ must be-related to the
coefficient of friction somehow."

4

"You would have a normal force
perpendicular to the plane, the
weight down, and the force of
kinetjc friction would lie along ~
the plane.. the angle between

the weight vector and the normal
to the plane is also angle 4."

"For motion down the plane would
be mg times sin¢ minus f which
is retarding things and that's
equal to zero. For motion per-
pendicular to the plane, you
would have the normal force act-
ing upward, but mgcos¢ acting
downward or into the plane and
those two things sum to zero.
The only relation you need in
addition is that the force of .
kinetic friction is u times the
normal and is therefore u times
mgcos¢. "

"So substituting that {f = umgcos¢
into the first equation, which
I've circled, you would then have
mgsing, f which would be u times
mgcosé, and all of that would be
equal to zero, and so what one
finds then is that u, the coef-
ficient of friction must be tan¢."

Expert R.E.'s protocol on Problem 5, segmented into episodes.




(PROBLEM #5) CONTINUED |
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TAXONOMY OF
Er1sopes

PHys1CS

ProToOCOLS

Draw FRee Bopy
DiAGRAM

UALITATIVE
AnALYsIs

ENERATE

UALITATIVE
AMALYSIS

ENERATE

. -

ANIPULATE

“

UALITAT IVE
ANALYSIS
(INFERENCE)
(CHECK ANSWER)
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mgsing + UEMgeose =

figsing + ukmgcos¢ = fia

o
"

block s1ides uniformly

sin
v = tane = cos:

gS1n¢ X %%2%96059

29s5in¢

—>f, = F
kg
= mgsin¢//

fk now in opposite direc-

tions—>
Total Force = Fg + f

Ftota] = 2gsin¢

55

2

)

= 2mgsine

-

"So let's d#aw the plane again...

the difference is that the fric-
tiomal force...acts in the other
direction.” _ . . .

"We know the initial speed is
o...I'm sort of fishing here

" for a minute, the final speed...

is obviously zero.”

"We have an expression which
relates several things of
interest to us...all at the
same time."

"We can easily solve for x
providing we know the other ‘
things in the equaticn....We
don't knuw a but that's not
hard to find."

“This time both mgsiné and
the frictional force...those
two forces-act in the same
direction.”

"The massés cancel everywhere
..ue 2150 'know uy...ug iS the
tangent of ¢... wmch 1s the sin

of & over the cos of ¢...the
c0s¢'s cancel and you're left
with the acceleration down the
plane of...twice gsine.

[

"So effectively you have...an
acceleration...of twice the
weight... I n the first part
of the problem...friction...
must be exactly equal to gsin¢
and if you have it operating
in the opposite direction..."
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ExperT R. E.

Taxonomy oOF"
EPiSoDES

(PrOBLEM #5) CONTINUED

PHysics

ProTOCOLS

MANIPULATE

0 - Vo2 = 2(-2gsiné)x
X = V02/4gsino

56

"Now let's go ahead and solve
for...V Final squared was 0., _
V initial squared was what it
is...s0 what you end up with

for, for x is Vo squared over
4gsing."




TAxoNoMY OF
Ep1sobEs

3

Novice C. H.
(PrOBLEM#5)
PHysics

g

ProTocoLs

[

Draw D1AGRAM

QUALITATIVE ANALY-
§1s (INFERENCES)

.

Draw Free Bopy
DiaGrAM

GENERATE EQUATIONS

Figure 3.

Constant velocity

—>IF = 0
—>friction

Force paraliel to plane =

mgsiné
Fy = mgcose
f = uFy

f = umgcosé

2 it -
a Vo© + 2a(x-xo)

4

v

57

~

"Let me draw a picture. An in-
clined plane with siop angle ¢
...and it's (the block) sliding
down the plane with a velocity
...constant velocity."

"Since it's (the block) sliding
down the plane with constant
velocity, it means, the sum of
the forces is zilch so.there's
3, there's got to be some kind
of friction on the thing..."

"I'11 draw a free body diagram.
There's thé weight mg, there's
the frictional force, then
there's the normal force per-
pendicular to the plane.

"0k, So I'm going to draw

trusty axes and resolve weight 1
into a, into....You've got ¢

there so this mgcosé, and this '
is mgsiné...normal force is

going to be equal to mgcos¢

and friction equals, umm...u

times the normal force."

"So that frictional force is .
equal to umgcose.” .

"The block is projected up the
plane with an initial velocity.
So I'm going_to use...equation
for motion V¢ = Vo2 + 2 times
acceleration times change in
distance.”

Novice C.H.'s protocol on problem 5, segmented into episodes.




~Novice C. H.

(PROBLEM #5) CONTINUED

TaxonoMYy OF
Ep1soODES

=
PHYSICS

ProTOCOLS

MANIPULATE

*QUALITATIVE
ANALYSIS
(INFERENCE)

Draw FRee Bobpy

DiaGrAM

GENERATE

MANIPULATE
¥

O
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mgsing + f = ma
mgsiné + umgcos = ma
a = g(sine + ucosé)

X = Vo2
{gsiné * ucosd)
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"Initial position I'm going to-
call 0...final veJocity equals
0 so' I get Vo(sic) over 2a is
going to equal the x."

" "a is going to be acceleration

due to the frictional force."
(WRONG)

“Now we've got a different
drawing. We've got mg and the
velocity is up the plane so
frictional force...is down the
piane.”

"...sum of the forces in my
x direction is going to equal
mass times acceieration.”

“So, you've got mgsiny + fric-
tional force equals the mass
times acceleration, so fric-
tional force is equal Zo...

u times the normal force...

my m's go out so the accelera-
ticn equals g times sin¢ +
ucosé. So I substitute back
in the other equation."”
(Leaves out factor of 2) n

~
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| First, contrary to the picture painted earlier, the protocol data
indicate that our novices also spent time analyzing the problem
qualitatively. During this stage, some inferences about the problem are
drawn. A simple count of the number of propositions that were made that
can be judged to be 1nferen;es shows that experts make, on the average ;
12.75 propositions and novices make 10.58, which is not reliably
different. 'Con;is:en: with our earlier assertion, the 1n1t1;1 episode
of "qualitacive analysis” is usually short in duration, taking only one
paragraph in the protocols.
The second observation is that, unlike what is commonly believed,.
:ﬁe “qualitative analysis” episode often occurs throughout the
protocols, not just at the beginning. For example, the inference
episode occurs, on the average, 2 1/2 times throughout each- problem for

the experts and 1 1/2 times for the novices, although this difference is

again not significant. Because of this phenomenon, it is difgiculn to

ascertain exactly when the construction of a representation is
completed. These protocols lead us to think that a gross representation
is initially constructed; then if it needs to be refined, that can

occur later in the protocol.

The third observation is that errorg in solution have.two sources.
One source is trivial computation error, resulting either from faulty .
manipulation or instantiation of equations. An example of a trivial
computation error occurs in the lasE episode of Figure 3. In
manipulating the equations, the novice made an error by a factor of two.

The other source of solution errors can be traced to either the

generation of wrong inferences, or the failure to generate the right
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inference. The inference episvde in Figure 3 having an asterisk beside
it, indicates an example of a wrong inference. ¥We attribute the source
of golution errors in general to these incorrect inferences, even though
qin this particular case, this incorrect inference was not the cause for
the problem”s incorrect solution. This is because the novice was able
to generate all the correct equations. The nistake in this problenm
arises from the solver’s failure to complete the solution by,
substituting for M. Incorrect’ inferences are relatively easy to detect
in the protocols. What is more difficult to capture in these protocols,
is the solver’s failure to generate a necessary inference. This can be
captured only by comparing and contragting the expert”s and the novice's
protocols, in trying to Pnders:and a novice”s error. Our interpretation
is that Novice C.H. did not complete the solution (see the last episode
of Figure 3) because he failed to ‘erate the inference that the
coefficient of friction ¥ is somehow related to the angle ¢, as did the
expert (see Figure 2, the first episode). Without setting an explicit
goal to relate the two (M and angle ¢), Novice C.H. could not solve the

problem, even though he had all the necessary equatioms.

Hence, in general, we would ‘conclude from examination of the
inference generating episodes of the protocols, that both experts and
novices are just as likely to spend time generating tacit knowledge
about a problem, and both groups are just as likely to do so iteratively
across the entire problem solving protocols. However, it is the quality
of the inferences that matters. Noviées are more likely to either
generate tne wrong inference, or fail to generate the necessary

inferences. A large number of the novices” errors can be traced to this

source.
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Studies on the Categorization of Problems

To say that noviées either fail to make the appropriate inferences
during qualitative andlyses, or that they do not generate inferences at
all, does not explain the source of incomplete or erroneous inference
making. To wuncover this limitation of the novices, Wwe have to
understand the knowledge structure of the experts and novices, and how
that knqwledge enhances o; limits their problem solving abilities.
Analyzing the protocolg of problem solving does not appear to provide
enough information of this kind. Our research descr;bed here,
therefore, is concerned with ways of exploring the knowledge of a

problem solver, through means other than analyzing solution protocols.

We hypothesize that a problem representation is constructed in the
context of the knowledge available for a particular type of problem.
Further, we make the assumption that the ‘“knowledge useful for a
particular problem is indexed when a given physics problem is
categorized as a specific type. Therefore, expert-novice differences
may be related to poorly formed, incomplete, or nonexistent problem
categories. Given this hypothesis, we investigated knowledge contained
in problem categories. Our first order of business then, was to
determine whether our initial hypothesis is true: that 1is, are there
reliaole categorizes to which problems are typed, and if so, are these

categories different for novices and experts?

6l
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Evidence already exists to suggest that solvers represent problems
by category, and that these categories might direct problem solving.
For -instance, Hinsely, Hayes, and Simon”s (19%8) study, found that
coliege students can categorize algebra word problems into types, and
that this categorization occurs very quickly, sometimes even afté;
reading just the first phrase of the problem statement. This ability
suggests that "proﬁlem‘schemata" exist and can be viewed as interrelated
sets of knowledge that unify superficially disparate problems by some
underlying features. We ' refer to the knowledge associated with a

category as a schema. The chess findings of Chase and Simon (1973a,

1973b) can also be interpreted as shoéing that choosing a chess move

results from a direct association between move sequences and a chunked
representation of highly stereotyped (or overlearned) chess pieces or

patterns. There 1is also evidence in studies of medical diagnosis that

expert diagnosticians represent particular cases of disease by general

categories, and these categories facilitate the formation of hypotheses

during diagnostic problem solving (Pople, 1977; Wortman, 1972).

Study Two: Sorting Problems

To determine the kinds of categories subjects of different
experience impose on problems, we asked eight advanced Ph.D. students

from the physics department (experts), and eight wundergraduates

N

(novices) who had a semester of mechanics, to categorize 24 problems
selected from eight chapters (5 through 12) of Halliday and  Resnick’s

(1974) Fundamentals of Physics. The subjects” task was simply to sort

the problems based on similarities in how they would solve them.
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Analysis of quantitative results. Again, no gross quantlitative
dif ferences b%tween the two skill groups were produced. For example,
there were no significant differences in :h? number of caéegor{es

_produced by each skill group (bo:h‘ grou;s .averaged about 8.5
categories), and the four largest categories produced by each subject
captured the wmajority (about 77%) of §he problens. There was also
little difference in the amount of time 1t°;ook experts and novices to
sqr: the problems, a}though experts tended to take élightly longer time
about 40 seconds per problem (discarding one outlier), whereas mnovices

took about 37 seconds per problenm.

The absence of gross quantitative differences .in measures such as
nuamber of‘ categories, number of largest categories, and time to
categorize confirms the notich that there are no fundamental capacity
differences between experts and novices. That is, the novices are not
inherently slower, for example, nor do they have limite; abilities to
discriminate the problems into eight categories. The lack‘%fya general
quantitative difference points to the necessity of examining the

) ¢

qualitative differences.
f

h

Analysis of qualitative results. If we examine the nature of the

categories into which experts and novices sorted the problems, they are

qualitatively dissimilar. This difference can be most draﬁaticalltgseen
&

Y
4

by observing the two pairs of problems that the majori:ngf the subjects
of each skill group sorted together. Figute & shows two pairs of
problems that eight out of eight novices grouped together as similar,
These‘problems have noticably similar “surface structures.” By “surface

structures,” we mean either (a) the objects referred to in the problem
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Duwgrams Depicted from FProblems Categonzed Novices' Explananons for Thewr Smulant)
by Novices withn the Same Groups Groupings

Problem 10 (11) Novice 2 "Angular velocty, momentum,

D circular things™

Novice 3 “Rotational kinematics, angular
9 speeds, angular velocities” .
Novice 6 "Problems that have something
rotanng angular speed”

Problem 11 (39)

10M

Problem 7 (23) [ Nosice 1 “These des! with blocks on an

mcline plane”
Novice 5 “Thelned plane problems,
coetficient of fncnion™

Novice 5 “Blocks on inclined plane:
with angles”

Problem 7 (35)

ERIC
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Figure 4. Examples from novices™ problem categories. Problem
numbers represent chapter and problem number from
Halliday and Resnick (1974).
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(such as a spring or an inclined plane), (b) the keywords that have

physics meaning (such as center of mass or friction), or (c) the
physical configuration that involves the interaction of several object

components (such as a block on an inclined plane).

The suggestion that these surface Structures are the bases of the
novices® categorization can be further confirmed by ex;mining subjects”
verbal justifications for the categories, which are presented on the
right-hand column of Figure 4. The novices” explanations indicate that
they grouped the top two problems together because they both 1involved
“rotational things™ and the bottom two together because they involved

“blocxs on an inclined plane.”- X

5

For experts, surface featires do not seem to be the basis’ for
categorization. There {s neither a similarity in the keywords used in
the problem statements, nor in the visual appeacance of the diagrams for
the problems, as shown in Figure 5. No similarity is apparent ;; :qé
equations used for the problems that are grouped together by the
majority of the experts. The similarity underlying the experts”
categorization can only be detected by a physicist. It appears :hag the
experts cla;sify according to the major physics principles (or
fundamental laws) goveraing the solution of each problem (sometimes
referred to as the solution method). The top pair of problems in Figure
S<can be solved by the application of the Conservation of Energy Law
while the bottom pair is be::;r solved by the application of Newton's
Second Law (F=MA). The verbal justifications of the subjects confirm
this analysis. We might refer to the principles underlying a problem as
the "deep structure” of the problem, which is the basis by which experts

categorize problems.
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Dugrams Depw.ted from Problemns Catergonzed Experts' Explananons for Their Simulant;
by Experts within the Same Groups Groupings
Problem 6 (21) Expert 2 “*Consenanon of Energy ™
J 6m Expert 3 "Work«Energy Theorem
K = 200 nt/m | . -+ They are alt straight-forward
Lo B e —
A 1 Expert 4 "These can be done from energy
l 15m considerations Either you shoutd
equihbrium know the.PnnﬂpIe of Consenation
of Energy, ot work 1s lost
somewhere.”

. Probiem 7 (35}

Problem 5 (39} Expert 2 “These can be solved by Newton’s
Second Law ™

Expert 3 “F = ma, Newton’s Second Law '

T Expert 4 "Largely use F = ma, Newton's
Second lLaw ™

-] L'
M

mg
Mg

Problem 12 {23}
I Fp = Kv
71
h

mg

Figure 5. Examples from experts' problem categories. Problem
numbers represent ¢hapter and problem number from
' Halliday and Resnick (1974). 7
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In sum, the results of this study uncover several facets of problem
solving that were not observable from protocol analyses. First, through

a sorting task, it became apparent that categories of problems exist.

*

These categories probably correspond to problem schemas, that is,
unified knowledge that can be used to solve a particular type of
problem. Second, caiegory membership can be determined rather quickly,
between 35-45 seconds. This is the amount of time we initially alloted
to tlhe qualitative analysis episodes of problem solving. Third, the
resuits also imply that within 45 seconds, the experts at least, can
already perceive the solution method applicable to the probleq;ﬁglhe""
possibility that such categorization processes may occur during problem
solving is never evident from the problem solving protocols, because
there was never any cause for solvers to mention either the principle
underlying a problem or the surface stvucture of the problem. Only

through an alternative task, such as sorting, are we able to detect the

presence of categories that may be related to solution methods.

Study Three: Sorting Specially Designed Problems

N

If the interpretation of the previous Borting results is accurate,
then one should be able to replicate the findings, and further, to
predict how a given subject of a specific skill level, might categorize

a given problem. In this study, we specially designed a set of 20

problems to test the hypothesis that novices are more dependent on
surface features whereas experts focus more on the underlying

principles. Table 2 shows the problem rumbers and the dimensions on

EI{[C L)
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Table 2

. Problem Categories
Principles
- Momentum
Surface Structure Forces Energy {Linear or An{mav)
Pulley with hanging blacks 20t }
1t 19t i
14* 3"t (
Spring 7
18 16 1
17+
9 6+
Inchined Plane 14° 3"t
’ 5
Rotational 15 2
- 13
Single hanging block 12
Block on block 8
Colhsions {Builet “Block”
or Block-Block) 4
6+
10+

Mote ° Problems with more than one salient surface feature Listed multiply by feature
t Problems that could be sotved using either of two principles, energy or force
+ Two step problems, momentum pius énergy

68
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which they were varied. The left“column indicates the major objects
that were used in the problenm; t three right headings are the
solution methods (or the basic laws) that can be used to solve thenm.
Figure 6 shows an example of a pair of problems (corresponding to
problems 11 and 18 fn Table 2), which contain the same surface structure
but different deep structure. In fact, the problems are {dentical
except for the question }led. From the results of Study Two, we
predicted that the novices H0u;3\2$06§/;ogether problems with similar
surface features, such as the two problems shown in Figure 6, whereas
experts would not. Experts, instead, would group together problgms that
have similar deep structure, regardless of the surface features.
intermediate subjects might exhibit some c:aracteristics of each skill

group.

The results confirmed oura/;}exious interpretations. QOur one
novice, who had completed one course in mechanics, grouped strictly on
the surface structuregs of the problems. Table 3 shows his problen
categories, and the explanations he provided for his groups. First of

all, 1{f one scans only the verbal justification column (far right), it

is evident that, exe€pt for the fourth group, where he mentioned

“"Conservation of Energy,” a physics principle, the remaining categories
were all described by either physics keywords (such as "velocity
problems”), or the actual physical components contained in the problen
(“spring”). And indeed, he collapsed problems across the physics laws.
For Group 5 (Table 3), problem 18 {s obviously solvable by the Force
Law, whereas problem 7 {s solved by the Energy Law (see Table 2 again).

The only category for which he made any reference to a physics principle
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No 11 {Force Prohlem)

A man of mass M, lowers himself to the ground
from a height X by holding onto a rope passed
over a masstess ftictionless pulley and attached to
another block of mass My The mass of the man
15 greater than the mass of the block What 18
the tension on the rope?

No 18 {Energy Problem)

A man of mass M1 fowers himsetf to the ground
from a height X by holding onto a rope passed
over a massiess frictionfess pulley and attached to
another block of mass My The mass of the man
1s greater than the mass of the block With what
speed does the man hit the ground?

ERIC
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Figure 6. Sample problems.
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Table 3

Problem Categories and Explanations for Novice H P

Group 1 2,15 ‘Rotation”
Group 2 11,12,16%,19 *Always a block of some mass hanging down"’ :
! Group 3 4,10 “Velocity probiems’” {collisions)
Group 4 131,17 "Conservation of Energy”’
" Group 5. 6.7,9,18 - “Spring”’
Group 6 3,514 “inclined plane”

Groups 7. 8, 9 were singletons

Note * Problem discrepant with our prior surface analysis as indicated in Table 3
1 Problems disrepant with our prior principles analysis as indicated in Table 3

Tabte 4

Problem Categories and Explanations for Expert V. V

Group 1 2, 13 “Conservation of Angutar Momentum®
Group 2 18 “Newton’s Third Law”
'
Group 3 1, 4 ~Conservation of Lineat Momentum™
Group 4 19, 5, 20 16, 7 “Conservation of Energy” -
3
Group 5 12, 15, 91, 11, 8, 3, 14 “Application of equations of motion” {F = MA)
Group 6 6 10, 17 *“Two-step problems Conservation of, Linear

\ e
Momentum plus an energy calculat)or'wgof
some sort”

Note t Problem discrepant with our paior principles anatysis
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ig Gfoup 4, which he described as a "Conservation for Energy” category.
However, this is to be distinguished from the expert”s labeling of
“"Conservation of Energy.” This novice only labels those problems as

“Conservation of Energy"” when the term “Energy” is actually mentioned in

the problem statements themselves, as was the case here.

In contrast, the expert”s classifications are all explained by the
underlying principles, such as Conservation of Angular Momentum,
Conservation of Energy, etc. (see Table 4). Furthermore, as predicted,
the expert coliapsed problems across the surface similarities. For
example, for Group 3, problem I 1is basically a spring problem, and

problem 4 is a collision problem.

Table 5 shows the groupings of an advanced novice (an
1nte£mediate). His categorizations of the problems are characterized by
the underlying physics principle in an {interesting way. —These
principles are qualified and constrained by the surface components
presen in the problems. For example, instead of classifying all the
Forcer‘problgms together (Groups 4, 6, and 7), as would an expert, he
explicitly separated them according to the surface features of the
problems. That s, to him. there are different varieties of Force

problemns, some containing pulleys, some containing springs, and some

containing inclined planes,

To summarize this study, we were. able to replicate the initial
finding tha. experts categorize problems by physics laws, whereas
novices categorize problems by the literal components. If we assume

that such categories reflect knowledge schemas, thea our results from
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“'Pulley”’
**Conservation of Momentum® (collision}
**Conservation of Energy ™ {springs)

“Force problems which involve a massiess
pulley” {pulley)

**Conservation of Angular Momentum®*
(rotation}

"Force problems that involve springs”
{spring)

**Force problems” {inclined plane)

Group 1. 14, 20

Group 2 1, 4,6, 10, 12t
Group 3. 9,13t 17, 18¢
Group 4 19. 11

Group 5 2. 15t

Group 6 71, 151

Group 7 8 5t,3

Note

italic numbers mean that these probienis share a similar surface feature, which is indicated
in the parentheses, tf the feature 1s not exphicitly stated by the subject,
t Problems discrepant with our prior principles analysis. N
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the person at the intermediate skill level suggest that with learning,
there is a gradual shift in organization of knowledge, from one
centering on the physical components, to one where there is a combined
reliance on tne physical components and physics laws, to finally, ome

primarily unrelated to the physical components.

Study Four: Hierarchical Sorting

The results of the previous two sorting studies strongly suggest
that the problem categories of the experts are different from those of
novices. That is, we assume that the differences lie not only in the
“category labels" that subjects of different skills prefer to use. We
agsume that problem categories corresond to problem schemas and,
theoretically, schemas can have embedded in thea subschemas, and be
embedded in higher-levél or super-schemas. Hence, i{f we can identify
some similarity of the contents of schemas at different levels for
individuals of different skills, then perhaps we wllf have cénverging
evidence that the schemas of the novices and experts are indeed
different, and tha. their schemas might be the same when different

levels are compared.

To test this assumption, a hierarchical sorting task was designed
by Christopher Roth. In this task, subjects were firse’fsked to sort
the problems in the same manner as in the previous two studies. Then,
their groups, which they had initially sorted, were returned to them,
and they were asked to further subdivide each group, if they wished.

The sorting of each group was conducted in a depth-first manner. When

all the discriminations of each group were completed, they were also




asked to combine their initial groups, until they no longer wished to
make any further combinations. Subjects” rationale for each group that

they made was also recorded.

Sixteen subjects were rum. They ranged from graduate students
(experts) to fourth year physics and chemical engineering majors
(intermediates) to A and C students (novices) who had taken courses in
physics (mechanics and electricity and magnetism). . sample of these

subjects” data will be discussed.

The 40 problems used in this study were selected from Halliday and
Resnick, covering the chapters 5-12 of the text (as in Study TVO); which
i{s the minimumm amount of material typically covered .An a first year

mechanics course.

There are two aspects Of the data to examine: the contents of the
groups, and the tree structures. We believe that the most naive
structures are those generated by the novice C students (R.R. and J.T.),
as shown {n Figure 7, top two panels. The circular nodes represent the
groups from the initial sért, and the numbers inside the nodes {indicate
how many problems are in that group. The square nodes beneath the
circular nodes are the groups formed when the problems were further
discriminated, and the triangular nodes above the circular nodes
indicate the combinations. The tree structures of these two novices
have three distinct characteristics that none of the other more skilled
subjects exhibited. First, the initial groups (circular nodes) have a
greater than average number of categories. {Eight categories is the

average number derived from Study Two.) The second characteristic Is
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Figure 7.

Croupings made by novices and experts on a hierarchical sorting

task.

Circular nodes are the preliminary groups made, squares

and hexagons ar
the combinationj\

subsequent discriminations, and trianges are
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that they fther cannot wmake further discriminations (Novice R.R.),

suggesting that their categories are already aE the lowest level, or
they make such fine discriminations (Novice J.T.) that each problem !s
in a category by itself, This is rQminiscent ;f the CWFSS results.
Beginzip chess playérs have chunks con;isting of one or two piefes. The
nature of the lnitlé\ categories is physical configurations, much like

\
what  was found {in Study Two, such as ‘“gravity, pulley with

weight,” etc. Whe? the novice (J.T.) breaks the éa:egories down so that

=

each problem is a category, the descriptions of these categories are
very specific, and still "bound to the physical configuration. %or
example, one of the initial categories of Novice J.T. is “tension in (
rgpe." When that category was further broken down, one of them was

’ B

specified as “tension with two blocks on 1incline” and another waf/,/

-

“tension with two blocks and pulley on incline.” ‘,////
t

-

The most sophisticated free structutes of the experts are shown in

the lower two panels of Figure 7. The initial circular nodes are
) generally the dif ferent varieties ,of physics principles, much like those
uncovered in Study Two. For Expert C.D., one group of circular nodes
contains Conservation of Energy, Conservation of  homentum, and
Conservation of Angular Momentum, and the other group of,three are F=MA,
F=MA to find the Re;ultan: Force, and Simple Harmonic Motion. Each
group of three (circled) categories was further collapset ‘to two
superordinate categories: Coh§ervaflon Laws and Equations of' Motion.
The subordinate categories for the same subject are gpnerally

discriminations based on physfcal configurations, such as “tension

problems.” Hence, from our limited analyses, we could hypothesize that
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the subordinate categories of the experts correspond to the initial
categories of the novicds. Although this study is not definitive in
hypothesizing that experts” categoﬁf@g/ are at a higher level than
novices” categories, .:dditional d;sa from Study Five will converge on

the same notion.

The results of this study can also be 1nte;preted in the framewnrk
proposed. by &osc; (1978) of "basic” categories. The term "basi.” can be
used loosely to mean the préférred or dominant categories to which
problems wera divided by tiae subjects. Hence, one could say that the
“basic” categoviers of the novices correspond to the subordinate

categories of the experts.
‘

-

Studies of the Knowledge Base

If the knowledge bases of the experts are different from those of
the novices, in what ways are they organized differently, and in what
way does the knowledge of experts and novices enhance and hinder their
pr;blem solving processes? These questions, coupled with the results of
the categorization studies, lead us to an examination of the knowlcdge
bases. The categorization studies sh-w that without actually solving

<
the problems, and in less than 45 seconds, ex;.rts were able to encode
the problem into a de;p level of representatioa, one that enables them
to grossly determine the soldtion method applicable to the problem. We
speculate that such éhcoding skill necessarily reflects the knowledge
base differences between experts and novices. The next set of studies

v

asks to what extent and In what ways are the knowledge bases of the

novices less complete and coherent than the expercs. 2t
.
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Study Five: Summaries _\\

-

With these questions in mind, we attempt®i to capture what subjects
. -

knew about physics, {ndependert of a problen solving context. One

- .

simple approach was to ask subjects to summarize a cﬂapter. This should
reveal the knowfédge they would have on a particular toplc. We selected
chapter five on particle dynamiés of Hallipay and Resnick (1976),’
because {t was the knowledge in this chapter that subjec:s’in the first
protocol study needed in order to solve :ﬁose five problems correctly.
. Furthermore, this chapteé introduced Newton”s three laws, which could be

a common theme of the chapter that all subjects might méntion during

the!¢ summaries, so that we would be able to do some comparispms. :
]

We asked four experts (two college professors, one postuoc who had
nevér taught lower divisf;n physics, and one fifth-year graduate student
,
¢, who had often taught lower division(~physics) and four undergraduates
{who had just completed the 1ntrodhbtory.physlcs course with a B grade),
;using Halliday and Rensick as a }exr) to réview the chapter for five
minutes, then summarize out loud the important concepts of the chapter.
Subjects were run individually. Fiftcen minutes were allotted ftor the
summary. _ The book was also available to them while they summarized, so
v .

that any Iimitation {n thelr summariqs could not be attibuted to a
retrieval problem. (Then they were all asked to solve a single problem

taken from Chapter 5. These-problem sulving protocols provided the caita

for discussing the frequency of diagram drawing mei.ioned in Study One.)
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We began again by looking at various quantitative measures, such as
the length of the summaries, the number of quantitative relations
mentioned in the summaries, and so on., Cursory examination of the data
again suggested that there were no skill differences in any of these
quantitative measures. We then turned to an examination of the content

of the summaries. Since every subject mentioned Newton's three laws of

motion, we compared what they said about two of them.

The top of Table 6 states Newton's Third Law, and the bottom of the
table shows one possible way of breaking down the law into its
subcomponents. Using these subcomponents as a scoring criterion, we
could analyze the summaries Jf the experts and novices, and see what
proportion of the subcomponents were uwentioned by each skill group.
ouch results are shown in Table 7. The X“s in the table show the
subcompunents of the law chai were meationed by cach subject. Jn  the
bottom of this table are samples of protocols of a novice and an expert.
It is clear from Table 7 that experts {in general make more complete
statements about the physical laws than novices, even though the
textbook was available for them to use. Table 8 is another instance of
a similar analysis of Newton”s Flrst Law. Again, experts mentioned on
the averge three subcomponents, whereas novices tended tu mention on the
average at most two subcbmponen:s. It is also interesting tc note that
Expert S.D. s performance in Table 8 1s most “"novice-like,” perhaps

.

because he did not have any experi~nce teaching mechznics.
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Table 6

Newton’s Third Law and Its Decomposition R

"To every action there is always opposed an equal reaction, or the mutual actions of two
bodies upon each other are always equal, and directed to contrary parts.”

- Components of the Third Law .

(1) The law apples to two general bodies (or particles)
a) Discussion must mention 2 bodes, and
" b} These must be general bodies or particles
{Pacticular exaniple bodies a/lone are not sufficient to meet this condition, although s
example bodies are allowed to be present)

(2} Action and reaction refer to Forces exerted by each body on the other, where these
forces need not be of any particular type

al Must be an explicit statement that each body {however body is discussed) exerts a
- “force” dn the other, and :

L) "Force” must be in general terms (particular example forces, such as kick, push,
alone won't do although such examples are aliowed to be present)

{3) Reaction (however stated) 1s equal 1n mannitude
e
{4) Reaction (however stated) s opposite in direction

{5) Line of action/reaction i1sin a strarght line between two bodies
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Table 7

Newton's Thied Law Decomposed into Five Componems?nd Two Saniple Protocots

. Novice Expert
KD SB JW. CH 0.6 Mv SD BP

Reactidn oppdwite in direction X X X X X - X X X
Reaction equal 1n'magnytude X X X X X X X
Action: Reaction involves two
general bodies - X X X
Action Reaction are generai
forces extended by each body .
on the other X X X
Direction of Actior Reaction
15 3 str31ght Line X

Examples of Subjects’ Summ.'a‘ry Protocol

Nov 5B  ““And his third law states that for every action there's an Opposite reaction to 1t "

Exp 0.G  The third law states that for every action there 15 an equal and 0pposIte reaction, of in other
words, 1f Body A exerts a force on body B. then Body B exerts a force on Body A in adwection
which 15 along the line joining the two pOInts When you say bodies in this chroter,y  mean they

are really particles, point masses

82
Lo




ks

Newston s First Law  "Every body persists in 175 state of rest or of uniform motion in a straight lire
uniess 1t is compelled to change that state by forces acting on it.”

Novice . Expert

JW $B. KD CH SD [eX ¢} MV BP

No Net Unbalanced Force X X X X X X X
i Rest X X * X
T Uniform Motron. X X X X X
Straght Line X X X

Examples of Subjects’ Summary Protocol

Nov JW  ‘The first one 15 inertia, which s that a body tends to stay 1n a certain state unicss ¢ force acts
uponat

Nov.S$.8 First of all there s, the body wants 1o stay at rest, the body just, it s resi*iance toward any other
motion

Exp B.P. * Hus first law 1s 3 state-nent that a body is moving «n auniform velocity in a Given stiaight line or
statics 1t will keep moving or stay where it 1s unless some external forces are apphied

. Exp OG The first law 15 calied the law of inertia And it states that a body persists in its motion along a
straight line of a uniform rate unless a net unbalanced force acts upon the body

ERIC
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The summaries of experts and novices on a given chapter from a

physics fext {ndicate that experts do have more complete {nformation on

4 physics laws than novices. This {s not surprising in the sense that one
would expect experts to know more. On the other hand, {t is surprising
because the students have been taught this knowledge and had the book
available to them. One would hope that, after instruction, “the students
have nmastered at least the declarative knowledze of the laws of physics,
however,- one obvious deficiency of novices is that they had not. One
cannot automatically assume that all students have mastered the
preregﬁﬁsite knowledge needed for sclving problems. Nor can we assume
that the novices” deficiencies lie mainly in the {nadequate strategies
or procedural knowledge that 1mpr$vcs with experfence in solving

problens. <

Up to this poin , our data show that novices are deficient in three
aspects of knowlelige. First, very good students, as Study One shows,
make errors in problem solving only when they have either generated the %ﬁ
incorrect {inferences or failed to generate the correct i{nference during
the init{al encoding or representation-generation stage of problenm
. solving. We attribute the generating of the wrong {nference to
fncomplete knowledge in the data base, so that the appropriate {nference
(the right link bgtueen certain nodes in th; semantic network; Greeno &
‘“4/ . Rile¢, 1981) coula not be made. Second, we discovered that, whether
novic:s andsexperts have the same knowledge base or not, {t is organized
diff2rently That i{s, we can view the knowledge of problem types as

schemas, and the experts” schemas center around the physics principles,

whereas the novices” schemas center around the objects. Finally, a "\\)
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third deficiency in the novices” knowledge base, at least for B
students, is that they lack certain fundamental knowledge of physics

principles.

Th;se three deficiencies in the knowledge base that we have already
tdentififed are general in the sense that we do not have a good grasp of
exactly what knowledge is missing from the nozices' data base (except
for the summary study), nor do we have any means for comparing the
krowledge bases. And most {mportantly, we have tapped only the
declarative knowledge that the subjects have. The next study attempts
to be more detailed in assessing the knowledge that subjects do have,
provides a means of comparing the knowledge bases between subjects, and
begins to look at the use of procedural knowledge,/ since {t 1{is the
procedural knowledge that will ultimately determine how well a person

can solve a problem. -

4

Study Six: Elaboration Study

In this stuly, we were interested in the knowledge associated with
certain physics concepts. These are concepts generated by the category
descriptors provided by the subjects in the sorting studies. We view
these concepts as labels designating schemas. Hence, the purpose of the
present study was to uncover whg; knowledge {s contained i{n the schemas
of experts and novices. From :h: sorting studies, we concluded that the
schemas of the experts are principle-oriented, whereas the schemas of
the novices are object-oriented. What we needed to know now is h;; the

schemas of the two skill groups differ. Do the schemas of the experts

contaln more Information, a different kind ot information? Are the

:

ERIC
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schemas of the novices subschemas of the expert schenas? This study

addressed these issues.

Two experts (M.G., M.S.), both graduate students, and two novices
(H.P., P.D.) were asked to elaborate on a selected sample of 20
prototypical concepts thacﬂggbjects in the sorting studies had used to
describe their classifications. Figure 8 gives a frequency count of
those category labels that were used by the experts(and novices in Study
Two. The sample of 20 used i{n this study ranged from those provided by
experts (e.g., Force Law), to those provided strictly by novices (e.g.,
inclined plane). Subjects were presented with each concept
fndividually, and given three minutes to tell everything they could

think of about it, and how a problem involving the concept might be

solved.

We use two ways to analyze the contents of these elaboration
protocols. One way is to depict the contents of the protocol in terms
of a node-1ink network, where the nodes are simply key terms that are
mentioned that are obvious physics concepts. The links are simply
unlabeled relations that Jjoin the concepts mentioned contiguously.
Using this method, the nerworks of a novice’s (H.P.) and aa expert”s
(M.G.) elaboration of the concept “inclined plane” are shown in Figures
9 and 10. Since we view each of these concepts as representing a
potential schema, the related physics concepts mentioned in the inclined
plane protocol can be thought of as the variables (slots) of the scheaa.
For example, in Novice H.P.”s protocol, his inclined plane schema
contains numerous variables that can be instantiated, fncluding the

angle at which the plane is inclined with respect to the horizontal,
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Labels

. springs Expent Category
/
; vectors :

) linear kinematics

work

Conservation of
Angular Momentum

statics ]

.

center of mass

circular motion

+ langular motion

fomentum Principles

Energy Principles

Force Law ,
1 2 3 4

free fall . Novice Category
‘ Labels

Momentum Principles

venticle motion

friction

velocity and acceleration |

pulleys

work

kinetic energy

inclined plane

«{center of mass

- springs

angular niotion
2

i 1 i i . i
1 2 3 4 5 6 7 8

Figure 8. Frequency of use of category labels by eight experts and

eight novices. Asterisks indicate iabels used by both

groups of subjects.
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Incline Plane

Angle of ,
tnchine

Surface
Property

Conservation

Mass Height
of Energy

Coetficient
Kinetuc
Friction

Coefhicient
Statc
Friction

Normal N\
Corce /

Figure 9. Network representaticn of Novice H.P.'s schema of 1
inclined plane.
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Principles
of

Mechanics

Newton’s
Force Laws

Conservation
of &nergy

Aiternative
Coordinating
Axes

Acceleration

Inciine Plane

Surface
Property

\ Frction

Normat
Forces

'Figure 10, Network representation of Expert M.G,’s schema of
an inclined plane,
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whether there is a block resting on the plane, and what are the mass and

height of the block. Other variables mentioned by the novice include

the surface property of the plane, whether or not}it has friction, and
if it does, what are the coefficients of static and\ kinetic frictionm.
The novice also discussed possible forces that m%y act on the blcok,
such as possibly having a pulley attached to {it. He\also discussed, at

the end, the pertinence of Conservation of EneLg . However, his
mentioning of the Conservation of Energy principle was not elicited as
an explicit solution procedure that is applicable to a configuration
involving an inclined plane, as is the case with the e*pert,sgg will be
seen later. Hence, in gemeral, one could say that the "inclined plane”
schema that the novice possesses is quite ricﬁ. He knows precisely what
variables need to be specified, and he also has default values for‘;ome
1
of thew. For example, if friction was not mentioned, he brobably knows
that he should ignore friction. Hence, with a simple speq}fication that

the problem is one involving an inclined plane, he can qeduce fairly
!

_accurately what are the key components and entities (such as friction)

that -such a problem would entail.

The casual reference to the wunderlying physics | principle,
*

i

1!

.o

Conservation of Energy, given by the novice in the previ&us example,

contrasts markedly with the expert”s protocol, in which she immediately
\

makes an explicit call to two priciples which take the status of

procedures, the Conservation of Enmergy Principle, and the Force Law

(Figure 10). (In Riley & Greeno’s 1981 terminology, they would be
\

considered calls to action schemata.) We characterize {them ‘as

4
procedures (thus differentiating them from the way the novice mentioned
i




[E

a principle) because the -expert, after mentioning the Force Law,

continues to elaborate on the condition of applicability of the
procedure, and then provides explicit formulas for two of the conditions
(enclosed {n dashed rectangles {n Figure 10). (She.also explained the
conditions o; applicability of Conservation of Energy, but did so during
other gegments of the study.) After her elaboration of the principles
and the conditions of applicability of ope principle to ‘inclined\ plane
problems (depicted in the top half of Figure 10), Exphrt M.G. c;htinued
her protocol with descriptions of the structural or surface features of
inclined plane problems, much like the descriptions ptovided by Novice
H.P. (see Figure 9). Hence, it seems that the knowledge coméon to
subjects of bot' »kill groups pertains to the physica! configuration and
1. preperties, out that rvhe expert has additional xnowledfe relevant to

the solutidén procedures based on major physics laws.

’

+Another perspective on the difference betweer the novice’s and
exeert’s elaboraticns of "inclined plane’ i{s to look at the description
that Rumelhart (1981) aszribes to schemas of inéctive objects. That is,
an "inclined plane” 1s viewed by the novice as an tnactive object, so
that jr specifies not actions or event sequences, but rather, spatial
and functional relationships characteristic of "i{nclined
planes.” Because novices may view inclined plane as an object, they

" thus cite ‘the potentisl configuration and {ts properties. Experts, on
the other hand,.may view an inclined plane {in the context of the

potential sgolution procedures; that is, not as an object, but more as

an entity that amay serve a particular function.

*
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An alternative way to analyze the same set of protocols is. to
convert thém directly into "production rules,” or IF-THEN rules (Nzwell,

1973). To do so, a simple set of conversion rules can be used, such as

'A;Egﬁn" Ehé :protgcols manifest an IF-THEN or \IF—HHEN or aﬁEN-TﬁEN
*.structure. This transformation is ﬁuite straightforward, and covers a
najority of the protocpl data. Tablig 9 and 10 depict the same set of
’ protocols that were previously' analyzed in- the form of nodé-iink
structures. fwhqt is obvious from such an analysis is that the experts”
production fules contain explicit solution procedures, such as "us
FsMA,” or |"sum all the forces to 0." None of the novices” gules
depicted 1n‘Tab1e 10 contain any actions that are expligit solution

procedures. Their actions can be characterized as attempts to find

specific unknowns, such as “"find mass” (see rules with asterisks in

4 .

Table 10). .

Ve Qlluded to an important difference between the way Conservation

" of Energy was méntioned by Novice H.P. ver;us Expert M.G. The present
analysis makes this difference more transpare;t. The difference lies in
the observation that the novice’s statement of Conservation of Energy
(Rule 8 in Table 10) was part of a description of the condition side of
ta production rule, whereas the statement of thie principle by £oth
experts (Table 9 see asterisks) is described on the action side of the

’

production rules.
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Table 9 A ‘
Expert Productions Converted from Protocols =
7 \ -
- , MS. -
1. IF probiem involves an inclined plane ~ \
THEN a) expect something rolling or sliding up or down
b} wuse F = MA

) g) use Newton's 3rd Law 4

-

*2, IF plane is smooth
THEN use Conservation of Mechanical Energy
3. if plane is ndt smooth *
THEN use work done by friction .
4. IF pgoblem involves objects connected by string and one object being pulled by the other
THEN consider string tension

5. [IF string is not taut
THEN consider objects as independent

M.
1. (IF problem involves inclined plane)*
THEN a)} use Newton's Law
b} draw force disgram
%2, (F problem involves inclined plane)®
THEN can use Energy Conservation .
3. IF there is something on plane i \

THEN determine if there is friction

4, |F there is friction
THEN put it in diagram

5. (IF drawing dl'agum)'
~ THEN put in all forces - gravity, force up plane, friction, reaction force

6. (IF all forces in diagram)® N
THEN write Newton's Law's

7. IF equilibrium problem
THEN a) ZIF=0 .
b) decide on coordinate axes

8. IF zcceleration is involved
THEN use F = MA -

9. IF “that's done” (drawing diagram, putting in forces, choosing axes)?
THEN sum Components of forces .

* Statements in parentheses were not said explicitly by the subject but are indicated by the context.

\
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. Table 10
Novice Prodictions Converted from Profocols

’ HP. .
? .

{IF problem involves inclined plam)
THEN find angle of incline with horizontal

If block mtmg on plane
THEN a) find mass of block
Ea b) determine if plane is frictionless or not

IF plane has friction

THE?N determine coefficients of smic and kinetic friction ,
IF there are any, forces on the block

., THEN.....

IF the block is at rest
THEN.....

IF the block has an initial speed B
THEN.....

IF the plane is frictionless
THEN the problem is simplified

IF problem would involve Conservation of Energy and height of block, length of plane, height of plane
are known . .
THEN could solve for potential and kinetiv energies !

- e [
ro.

{IF problem involves an inclined plane)’
THEN 3a) figure out what type of device is used
b} find out what masses are given
¢} find outside forces besides force coming from pulley

IF pulley involved
THEN try to neglect it

IF trying to find coefficient of friction
THEN slowly increase angle until block on it starts moving

IF two frictionless inclined planes face each othe: and a ball is rolled from a height on one side
THEN ball will roll to same height on other side

IF something goes down frictionless surface - *
THEN can find acceleration,of gravity on the incline using trigonometry

IF want to have collision .
THEN can use incline to accelerate oise object

* Statements in parentheses were not said explicitly by the subject but are indicated by the context
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In Figure 10 on the elaboratio; of an incldned plane, we stressed
the observation that the ‘Experr mentioned :he conditions of
applicability of'.the Force Law (the q;gtgments in the dashed
enclosures). This points to\ the prese;:e(ﬁaf not dnly qxplicit

!
procedures in the experts” repertoires, but also of explicit cogditions

p‘ ’.

for’ uhen a specific procedure applies. Another/analysis~agpponts this

\
difference. We examined all statements made by the two expé/&\\e the

two novices throughout the protocols of the entire,ser/of 20 c1ncepts,

~ N
d

and recorded all statements made about Conservation of,VEnergy. Nearly
. : 13 :

. : . . R A h
half of each expert”s statements (10 out of a toéil b6f 22 for Expert

~ i
M.5., 9 out of a total of 21 for. expert M.G.) weféy‘specifylng the
, A . ; Y

conditions under which Conservation of Energy could be used. For
! "
example, the following are two quotes, one from each subject.

Expert M.S. - "If the (inclined plane ,1is smooth, of course
then you cuuld use Conservation of Mechanical Energy to solve
the problem. If i{t”s not smooth, then you“ve got to take into
account the work done by frictional forces.”, “w

Expert M.G. - “"Energy conservation can also be uvsed (in a
collision problem) but only for an elastic collision because
no heat is produced.” .

L

The novices on the other hand, made only one such statement between them
v .

(1/22 for H.P., 0/13 for P.D.).

. n . \

In sum, this study shows that the contents of the .schemas are
different for the novices and the experts. Pirsttjfor an object schema,
both experts and novic%s possess the fundamental knowledge about the
configuration and their(eroperties; but the experts possess asdditional
knowledge, which may be éiewed also as activating higher level schemas
(Rumelhart, 1981) that are relevant to the principle, -Second, the

ochemas of the expegt% contain more procedural knowledge. That is, they




praveny

.
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"have explicit procedurés, wh}ch may be thought of as the action side of
the prodqctio?s. Ffnally, the experts” schemas contain much wmore
knowledge about the explicft conditions of applicaﬁility of the major
principles underlying a problem. 'Hence, this study, coupled with the
éuq?aryﬂ Study, emphasizes the impoverished nature of novices” scﬁemas,
which can seriously hinder their problem éolving succe;s.

B 14
Studies to Identify the Key Features of Problems

The previous étuéies‘have suggested that novices in general, have
deficient kuowledge in a variety of ways (perhaps with the exceptions of
A students), It is also 1mpor;ant to ascértain whether the difficulties
n?vices encounter in problem solvifg lie also in their 1nab?11ty to
identify the relevant cues in the problem as is the case with poor ;hess
players. The common finding in chess research is that the.Sborer
players have great;r difficulties seeing the mfﬂgiég&al ﬁhtterns on the
chess board. The ability to perceiye the relevant chess—board patterns
reflects the orga&lzation of the chess knowledge in memory. Hence, we

need to determine whether novice and expert problem solvers both have
1

the ability to identify the relevasut cues in a problem, and if so,, how

' this ability affects problem solving. From the studies we have already

discussea, we speculate that the difficulties novices have derive from
their inability to generate the appropriate knowledge from the relevant

cues,




Study Seven: Basic Approach

In this study, designed and carried out by Paul Feltovich, we were

| :

- interested in kaowing about the features Ehat_hglp a subject decide on a-

= “solution ﬁethod," which can be interpreted as,%ng~gf the three major
principles (Conservation of Energy, COnservatgéﬁ of Momentum, and Force

Law) that can underlie a mechanics problem of the kind we use. Putting

it another way, wg(g;gﬂg;;gmptinshto_determine the problem features that
subjects could have used in the eliciting of their category schemas, 1if
i

the "solution methods;"'at least for the experts, may be viewed as their
1 ‘ '

St s

schemas of problem types (seezStudy Three).

s
i

Subjects in this study were asked to do three things. First, they

were to read the problem statement, and think out loud about the "basic

approach” that they would take to solve the problem. "Basic approach”
: wag not further defined for them. Second, they were asked to re-state

.

the “basic approach” explicitly in one concise phrase. Finally, they

i
were asked to state the problem features that led them to their choice.

i
L We will focus predominantly on the last aspect of this study.
» ‘Additional details_ can be gathered froam Chi, Feltovich, and Glaser (in
press). The rfubjects were two physicié}s (J.L., V.V.) who had
frequentl& taught. introductory mech%nics, ‘and two novices (P.D., J.W.)
who had comple:;d a bagic college'cgurse in mechanics with an A grade. }
The problems used were the same %0 (described in Table 2) used for the

sorting repl%catiop (Study Three).
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o - Table 11 -summarizes the key features cited by the experts and

- novices as contributing to their decisions about the “basic approach to

- ’

T l;he solution of the problems. The numbers in the table show the
f o fEequency- with which each feature was cited. A feature was included,

i . .

_ . for each skill group, only if it was mentioned at least twice (across

the 20 problems), once by each subject or twice by one subject.
Analysis of these features shows, _first of all, _that—there—1i5 ~ B

essentislly “no overlap in the featurés mentioned by novices and experts

except for the object "sﬁring." Second, the kinds of features mentioned

+
-

as relevant by, the novices are different from.those identified by the .
experts. Novices, again, mention literal objects and key terms that are
explicitly stated in the problenm, such as "friceion" and "graviey." This
is consistent with the results of the categorization studies. .Experts,
on the other hand, identizy features ;het can be characterized as -

: - descriptions of states and conditions of the physical situation, as

: . described 1implicitly by the problem. In some instances, these are

transformed or derived features, guch as a “before and after situation”

or

no external forces.” Because these features are not explicitly

stated in the problem, we refer to _these as secopd-order features (or as

we previously mentioned, generated tacit knowledge).

In dum, the most interesting finding of this study is ;kat the

,features mentioned a3 relevant for suggesting a soldtion method are

different for the experts and novices. Because the subjects used their

own words to describe what the features are, there is often a lack of
©

congsensus concerning relevant features, particularly between the

. f
experts. In Table 11 for example, in 14 out of the 24 features cited, _

Aruitoxt provided by Eic:




Table 11

i
i
i

. .3
. 2 Key FéalLras’ Cited by Experts and Novices
- . M Experts
' V.V
Given initial conditions .
Before and after situations -
« Spring N
No externat force
Don’t need details of motion / 5

Given final conditions

Asked something at an instant in time

« Asked some characteristics of final condition

Interacting objects

+» Spéed — dgslanee relation

Inefastic oHision

+ No inilialsaonduions

No final conditions

Energy easy to cal'culale at two points-

No friction or dissipation

. Force‘loo complicated

Momeplum edsy to calculate at two points

» Compare initial and fina! conditions

» Can compute wo.k done by‘ex(emp! force
Given distance

+ Rotational component

« Energy yields direct refation

» No hefore and after

» Asked about force

o

NNOO-—NNNOQ-‘&bNO'Obbml;&Ow(O

CONNMMWOODO =W=2=NOONLSLLO =20 —=0bdw|e-

Novices

h
o

“
£

Friction

Gravity ,
Pulley !
Inclined plane

Spring

Given masses

Coin on turntable

Given forces

» Force — velocity relation

O = - WNWWWW

N et ee N W NWWOO

,’ Asterisks indjcate features mentioned by only one of the

a
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the experts did not refer to the same”features, whereas this occurred

only once for the novices (see the as;erisks).. This is consistent with
3 1 .t

the 1néerpretation fhat novices wust have geater consensus because they

L
refer to the explicit key terms in the problem statement themselves.

Exﬁérts, on the other hand, must ‘ necessarily show a gieat deal of
- P ’

-

1nq1v1duaI“differences " because they transform &the literal surface

features into some second-order features, based on their individual

'

,knowledge bases. However, even with such wide individual differences,

»

’ N
‘there was a distinct characteristic to the experts” cited features that

distinguished them from the novices’ cited features.

. -
Study Eight: Judging Problem Difficulty

Even though the - exgerts "cited the abstracted features as the

relevant cues in the previous stidy, it is still possible that the

experts transf&rqed the same basic set of key terms as those identified
. .

\

by the novices. A direct way to ascertain whether subjects of different

skills consider the same set of words as important, is to ask them to

point out the important words in the problen statements. In this study,
we presented six430v§ces (approximately B students) and s8ix experts
(graduate students) the same set éf 20 problems uéed earlier; and asked
them to judég (using a 1-5 rating) how difficult a problem was to solve

after reading the problem state&en:. We then asked them to circle the

key words or phrases that helped them make that judgment. Finally, they

. +were asked hoy those particular key words' helped them make that

decision. ‘

N .
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The most striking finding is the extensive overlap between the cues

2 A

that experts and novices identified as important for deciding on the
difficulty of a problem. If anything, experts identified fewer cues as

important, comparéd with the novices.. Table 12 présents one of the 20

- problemai\gzgken down into eight propositioﬁs. There were, on the

average, seven pfopogitions per problem. The enclosed words were chosen

by three orn more of thersix'novices, and the asterisks represent those

that three or more experts selected. For 19 out of the 20 problems, the
.experts and the novices circled the same-sets of words or phrases in the

- problem sctatements, which are embedded in 2.7 propositions, on the
average. Only in seven of the 20 pioblem; A1d Athe experts identify
‘additional cues {(about 1.6)‘ wheréss in. 13 of the 20 problems, the
novices identified an additional (2.1) cues as important. This result
suggests, al least, that novices” diffxculties in proplem solving do not

* stem from their failure to identify the relevant cues.
=

5 «

The sdbjec;s‘ responses to bozh the questions of why these

particular cues are Jimportant and ow‘they help them make decisions,

were classified according to the following categories: (1) whether the

cues refer.to one of the three fundamental principles ("the cues tell me

,

. to use Energy Conservation”), (2) whether.the cues refer to some surface

featube of the problem, much 1like what novices refer to when they

categorize problems, (e.g., Figure 8), (3) whether the cues bring their-

2 -t

attention to some characteristic of the problem that is not related to

physics ("it is difficult to visualize,” or "it has many concepts”), -OT

(4) whether the cues elicit some reasons that are unrelated to thk

+

3 .
' |
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specific problem (the problem is difficult “"because I have never solved’
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.
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Table 12

Decomposition of a Problem Statement into Propositions

Problem No. 8

1. A block of mass M1

_ 2. isputontopofa |block of mass M2

2 *3. In order to cause the top block to slip on the bottom one,

t.
*4. a ‘horizontaﬂ fgri_e_l F1 must be applied to the top block

5. Assumea [frict;)nles table, o

§ e
—*6. Find the {maxifum horizontal | force F2

7. which can be applied to the lower block
t

a + N\
*8. so that both,block\s\wi_ll
Sy «£ '} . . 1

o
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- it before," or "it has a lot of words"). Table 13 is a bveakdown of

- ? N - - .
experts'§and novices” reasons for why a,problem was judged difficult or
= i .
easy, along with samples of quotes. Consistent with our previous

-

findings, experts,. much more often than novices, rely on the{underlying
A B

physics principle when Judging the difficulty of a probfem‘(e.g.,
- ! . "

“compressing spring tells me to think Energy”). They both rely equally

: often on problem characteristics, such as whether a problem iavolves

friction or the center. of mass. However, novices are much more likely
1

! 3 .
- than experts to rely onh superficial nonphysics aspects of a problem to

makL their judgments (the third category in Table 13) such as ‘whether

"ic” ,13 abstractly phrased,” and it has a lot of words.” Finally;’the
noviées often introduce reasons for why a problem is difficult that are
not specific to a \given problem, such as "I have never done problens

\

h like this before,” i .- . .

‘ /

;' wWhen inferences were generated in the protocois o§ problem solving

(Study One), and when Second~order features were identified (Study

Seven), we speculated that such tacié knowledge was genérated from th;
literal key teéms in the proglem statement. Now, we can verify some of
these speculations directly, by examining some of the .reasons that
subjects gave for how some particular keyghsgrms thaé they circled

! ‘contributed to their judgmeht of problem difficulty. Table 14 presente
“examples of the kind of statements produceé by experts. These
statements of reasons‘can be judged to be 1nferencés generated either
directly, from the literal terms in the problem, such as “frictioﬁless,

use Conservation of Momentum,” or the inferences may be generated fr&é\a

7 derived cue, such as "no dissipative forces.” These c3¥§esbond to the
< - \

1
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. - “faﬁie 13

Proportion of Response Types

\
y

Movices

_ Experts

Abstract Principle .
“straightforward application of Newton's
~ Second Law”
“collision problem, use Conservation of
Moementum”
“no friction, no dissipative forces, just
apply Energy-Conservation”

Problem Characteristics
“frictionless, problem is simplified
“‘massless spring simplifies problem”’
“pulley introduces difficulty”

Nonphysics Related Characteristics
“problem is difficult to visualize”
**easy calculations but hard to understand”
“many factors to consider, make problem

difficult”

Nonproblem related Characteristics
“never did problems like this"’
“numbers instead of symbols'*
“must consider units”
"diagram‘ distracting” .

Se f 5

9%

33%

40% -

3
18%

30%

28%

7%

*all our problems used symbols for known quantities rather than actual numerical values
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~ Table 14

i
Inferences Generated from Literal and Derived'Cues

i -

Literal Cue- Derved Cue - ~ - Inference
Frictionless . - ) Conservation of Momentura
Frictionless No dissipative forces -
L No dissipative forces Conservation of Momentum

. No dissigative‘:ynem Conservation of Energy
Frictionless ’ No dissipative force Conservation of Energy
Frictionless / Vel No dissipative force Conservation Laws

N / Energy not consumed Conservation of Momentum
y (, . . then calculate new Energy
Frictionless / Only force 1s restoring

N /
Center of Mass 7
atrest

Center of Mass
atrest

Center of Mass

atiasi

Mass and Radius
of Puliey

Mass of Pulley.
Massive Pulley
Compressing Spring
Motion ..
Slip and Force

M, + M, Collide

M, Stops after
distance L
#

Merry-Go-Round

-

forcé
No externa! forces

Pulley must be taken

into account

Pulley kan't be neglected

i i

Friction

Rotational Motion

Newton's Second Law
L

IM, V= M,V

Relative Momentum = 0

Newton's Second Law for
transiation and rotation

Consider Rotational
Kinetic Energy
"Rotational Dynamics
Rotational Energy
Rotationa) Dynamics
/ Think Energy
Energy Analysis”

Conservation of Energy
and Momentum
Work-Energ «

Newzon's Second Law to
Find Acceleration then
Equation of Motion

Conservation of Angular
Momentum




second-order featutes mentioned in the previous study.

v, .o

Recall that:tﬁe purpose of this task was to ask the experts and
\ .

novices to judge broblem difficulty. The experts, in éeneral, were more

accurate at judging Rpe difficulty of a problem than novices. Accuracy'

~

was determined by comparing the ratings of problem difficulties that

subjects gave with our own assessment of how difficult a problem
actually i1s to solve, The aforementioned examination of the reasons
subjects gave for why a particdlar problem is difficult, and why those

\
particular keywords were helpful in identifying a problem”s difficulty

(Table 13), suggest that novices are less accurate at Judging a .

problem”s difficulty because they rely heavily on nonphysics related or
nonproblem related features to determine its difficulty. Oﬁviously
these are not the reliable factors to. consider when one atteapts to

solve a problem.

fn sum, even though the gesk of this study--requesting sources of
problem difficulty—is slightly different from either a problem solving
task, or tasks used in the ot;er studies, such as sorting, we suspect
that the features identified as relevant in this task are the same as
those used in other tasks. Basically, the results show that the
relevant and important key terms in a physics problem can be identified
by novices quite accurately. In this sense, a physics problem is not
analogous to a ‘“perceptual” chessboard, in which case the beginner
~cannot pick out the relevadt or important patterns. However, the
_8imilarity between a chess expert and a physics expert remains, and can

be seen in their ability (compared to novices) to abstract the relevant

tacit knowledge cued by the external stimuli. The chess masters”
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superior ability derives from the ability to abstract or impose a

-
cognitive stracture onto the pattern of black and white chess pieces.
That is, novice chess players are Jjust as capable as ‘experts at

Y
.

;, ) perceiving the chess pieces per se. However, to “see" thé relations
‘among gbe pieces requ{fg the fitt}hg of oné;s s;hemas ﬁperhaps) to the
conf{guration of éﬁess piéces.’ Similarl&;*the novice physicist is just
as capablie as the expert physicist at 1dent1fy1né the key ;erms in a

problem statement. The diff! .lty resides in’ the novice’s limited

abilitz}to generéte inferences and relations not explicitly stated in
. . »

2

the problem. LA
el )
- . )
GENERAL DISCUSSION
N ¢
The goal of this chapter has been to contribute to our
- under;tanding of high-level competence in complex domains of human
_kpowledge. Expert individuals in various areas of knowledge perform
remarkable intellectual 13ctivities, and cognitive psychlogists are on
’! w the threshold of understanding these feats of memory retrieval, rapid

'

perception, and complex problem &olving. Since intelligence is

generally measured through tests that assess skili i1n acquiring new

knowledge in scholastic settings, ﬁnderstanding the nature of the
?

competence attained should shed light on this ability to learn.

§

Early in this chapter, evideace was provided for the necessity to
focus on the organization and structure of knowledge, in both

psychological and Al researcl.. This trend towsrd understanding the

. \
influence of knowledge is relatively récent, in contrast to the earlier
. .

emphasis on- search algorithms and other heuristics for deducing and

107
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retrieving information. The techniques and theories that'evolved, such .
as means-end analysis, were intended to be independent of the particular

data base, and as such, have proven to be valuable search heuristics

Ty M
il ———— !

that. are generalizable across different tasks and knowledge domains.

- The turn to a focus on the knowledge base was necessitated in part )

'by the 1nab{1¥ty of psycholbgical theories to model human capabilities
N “"éolely on the basis of search heu:istiés} and in part by the limitations
discovgred in attempting to construct'AI programs that would outperform
humang, even though, the compute "8 search Capagilities are essentially .
limitless.' Hence, the constraints of powerful search techniques, whea
they did not eng;ge an organized knoblédge structure, sooy:_compelled
- resesrchers to de;elop theoriesAand pf&érams’that took ac;ount of the

N role of knowledge structure.

’. 2 e;phasis on the knowledge base has also changed the direction
of research. Since knowledge has different degrees of structure,
depending ;n an individual”s experience, it was intuitjvely apparent
-~ that an 1méortant problem was how a particular knowledge base is .
structured. The obvious cLoice was to model the expert”s knowledge, as
was done most’dramatically in a uumber of Al programs. This choice has
also led to psychological '1nvestigations of developing structure of

novices” knowledge, in contrast to the richly organized structure of

experts” knowledge.

\




The research on problem solving geperatéd by this new emphasis has
revolved around undé;st?naing the processes of arriving at a solution,
in the context of the kno;ledge available to a solver. 1In physics, this —
has led to‘éhe construction of numerous theoretjical models that attempt
to simulate the processes of‘ problem solving, in particular, the
= knowledge that is necessary to genergi a particular seg,u“g:;(‘:e'of

equations. Other theoretical models constructed by AI researchers have

put more emphasis on the reprecentation of Ehe problem in the context of

\\th available knowledge. a , ' .
i — aan b - \ -

The important issue of problem representation has alﬁb been

ey

ﬁiecognized in the psychological research. It 1is conspicuous in
i th§:c°15 of problem solving in the form of “qualitative analysis™ of -

ti.. \problem, which usually occurs early 1q the solution process. Most
{ -

- 4
- empirfeal findings to date have failed to ?xplicate this initial

“qualitative analysis” of the problem, although the consensus has been

that a representation of the problem, constructed at this point, is a
significant factor 1in driving the solution process. Numerous
quantitative differences between the experts and novices have also been
identified, 'such as solution speed, errors, and é%ﬁ;iion generation
pattern. None of these measures, hoquer, has succeeded in shedding

"
much 1light on understanding the different problem~-solving processes of

- experts and novices. *
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N
The research from our own laboratory has been’ oriented toward

A . 3,
magnifying the repr sentatfonal “gtage” of problem solving through

techniques other than the anglysis of problen~solving protpcols. Our
s - : §
findings (Stud One) havéremphaslzed the iolnt that solution protocols
provide limited 1nslghts to the procesges of representation, and
.
further, produce quankitative measures that are difficult to interpret
because they are| subject to large —1nd1v1dual differences. These
. : N
individual differences are dictated by a variety of particular
strategies that solvers gdopt, such as ggheratlng a numbercof equations
when one cannot think of a way to proceed. Through the use of a sorting ~
:ask,%Studleé Two, Three, and lour); we were able to uncover a potential
source Of repregentational difficulty for novices. If we assume that a
problem is tepresen:ed in the context of the available knowledge, then
novices will undoubtedly have an incomplete and gless coherent
representation, oecause of the organtz?tlon of thélr knowledge. . Their

knowledge 1is organlzed around dominant objects (suqh as an inclined

plane), and physlcs concepts (such as friction) [mentioned explicitly in

4

‘the problem statément. Experts, on the zéiher hand, organize their

knowledge around fhndamentol principles of physics‘(such as Conservation
of Energy) that:Gerive from tacit knowledge not apparent in the problem
statement- An kndlvldual’s “understanding” of a ploblem has been
explicitly defined as being dictated by knowledge of such prlnclples
(Greeno & Riley, 1981). Hence, during uali%htlve analysis” of a

problem, an expert would “understand” a problem better than a novice,

'

because he “sees” the underlying, principle.




1 .
i !
ﬁxpernon’s “understanding” of a principle can be evaluated in

i
1
several ways (Greeno‘ & Riley, 1981). One way is to have it stated

%'— explicitly; as was done.by experts in the Sqmmafy Study (Study Five),
and in the rationale they provided in the Sorting Studies (Two, Three,
and Four). Another way is to analyze .the nature of the categories into
vhich individuals sort problems; ‘this constitutes ;n fmplicit

assessment of their "understanding” of principles. An alternative but

consistent interpretatfon of the Sorting Studies is that experts and

novices organize their knowledge in different ways. Experté possess
schemas of principles that may Subsumé schemas of objects, whereas
nov*ces may possess only schemas of objects. Some support for this

AN - .
L conjecture was provided in both Study Four, oﬁ the hierarchical nature

of the sorting caéegories, and in Study Six, oﬁ the elaboration of the
- contents of object and principle schemas. Once the correct schema is

activated, knowledge (both procedural and deciarative) contained in the )
- “ schema is used to process the problem £further., —The declarative
’&nowledge containea“ in the schema generates = potential problem
configuraéions and conditibns of applicability for4procedures, which are . "
then tested against the “information in the problem statement. The
0 procedural knowledge in the schema generates potential solution methods
that can be ugsed on the problem. Experts“%cﬁemas contain a great deal
of procedural knowledge, with explicit conditions for applicability.
Novlces’ schenas may‘ be character{ied as cortaining sufficiently
eiaborate dec{arative knowledge about the physical configuvations of a B

potential problem, but lacking in abstracted solution methods. -




i
.

Our hypothesig 18 that the problem-solving difficulties of novices

}
can be attributed mainly to 1nadequac1es of their knowledge bases dand
not to limititations in either the architecture of thei; cognitive

systems or processing "capabilities (such as the inability to use

’

powerful |search heuristics or the inability to detect important cues in
~ ° . . .

the groblem statement). This conjecture follows from several findings.
7F1rst, sim%larity in the archiieciure of exéerts’ and novices” cognitive
systems 1; probably 1mplied/,by the fact that there are generally no
differences between expertg and novices fn £he number of categories into
wh}ch they prefer to sort préblems, in thé:latency féquired to achieve:a
/3tab1e sort, and in a variety of ther measures.  These _qua;titative

14 .

‘measures point to the, invariance ih the cogniEive architecture of

>

experts and n0v1ces./: Second, novices do-, show effective searsh
heuristics 'when the; solve problems hsing backward-working solutiénsl
Thirdly, in our last set of studies (gtud;eg Seven and Eight), we showed
that novices are'eés;ntially;just as competent as experts in identifying
the key featuregxin a proble; statement. The limitation of’the mnovices
derives from tﬁeir inability to infer further knowleége from the literal
cueg in :hé problem statement. In contrast, :hgse inferences

necessaril& are generated in the context of the relevant knowledge

structures that ~xperts possess.

Tn concluding this chapter, we would 1like “to ‘speculate on 'the
implications of the u;;k and theory reported here for a conception of
intelligence. The tests of intelligence in general use today measure
the kigd of ‘1nt;11ectua1 pe{formance most accurately called “general

scholastic ability." Correlational evidence has shown that the db{lities




’szresentations

* under which it is applicable, etc.\:Nbgice learners, on the other

tested are predictive of

operational faci, thege commonly used

tests of intelligegce in

conclusions on their predictive_vplidity, we can conclude that they

primarily tests

present-day scheol Lituations.
1n¥elligence

tests mwmeasure

situations, which leads to

success in

same

of abilities

school learning. Given this

. PN .

tests of 1ntelligeQ§e are not
. o

abstract way. Rather, if we base our

are

that aré helpful for' learning in

More generally, we can assume that these

the ability to solve problems in school

learning. The problem-solving ability

possessed by the

expert learner

is a result of experience with the

domaifis of knowledge relevant to schooling.

If expertise in leprning is the ability for representing and

solving school problems, then for a less intelligent learner, a problem

representation may be in close correspondence with the 1literal details

of a problem, while for a more intelligent learner, the representation

contains, in addition, inferences and abstractions ®4erived from

S
knowledge structures acquired in past experféqses.

experience in various knowledge domains relebhnt to the

.

required for solving school probkgms are more enriched,

schooling,

~ i
and' contribute to the ease and efficiengy with whicdh learning- problems

are solved. We speculate further that the knowledge the expert learner

brings to a problem would 1ncof§orate a good deal of procedural

knowledge——how a knowledge Structire,.can be manipulated, the conditions
hand,

would have sufficient factual and declatative knowledge about a learning

. problem but would lack procedural skill and thiJ weuld weaken their

e,

'!1

ability to "learn from their available knowle&ge. -

N z
. . § B
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As,a result of prior‘
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A knowledgetbased conception of 1ntelligence, could have
1mp11catron% for .how 1nd1v1dualsf;1ght be gaught to be more effectiYe
léarnérgﬁ Such an attempt would de-emphasize the possibility 'of
influencing mental processinglskill (i.e., developing better methods for
searching memory). Improved ability to learn wo&id be developed through
a knowledge strategy in which individuals would be taught ways in which
fﬁeir‘ availaﬁle knéwledge can be recognized and manipulated.
Improvement in the skills of learning might take place tﬁrough the
exercise of procedural (problem-solving) kn;wledge in the éo?text of
specific, knowledge domains. zo date, conceptlohs of 1nfelligence have
been highly.process orien:ed, ;;miniscent of earlier notions of powers
of mind. If, in contrast, one did take a knowledge-emphasis *approach to
the differences'between higﬁ and low performers in school learning, then
one might begin to condpcghiqvestigations of knowledge stru;thre and
proﬁlem representation in the way that we have begun to- do in the

expert-novice studies described in this chapter. This orientation might

provide new insights into the hature of the expert performance we define

as intelligence. - B
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