
DOCUMENT RESUME

ED 215 899 SE 037 266

AUTHOR Chi, Michelene T. H.; And Others
TITLE Expertise in Problem Solving.
INSTITUTION Pittsburgh Univ., Pa. Learning Research and

Development Center.
SPONS AGENCY National Inst. of Education (ED), Washington, D.C.;

Office of Naval Research, Arlington, Va.
REPORT NO LRDC-1981/3
PUB DATE 81
GRANT / N00014-78-C-0375; NR-157-421
NOTE' 125g.

EDRS PRICE
DESCRIPTORS

MF01/PC05 Plus Postage.
*Artificial Intelligence; Cognitive Processes;
*College Science; Higher Education; *Intelligence;
*Knowledge Level; Models; *Physics; *Problem Solving;
Science Education

IDENTIFIERS *Science Education Research

ABSTRACT
Based on the premise that the quality of

domain-specific knowledge is the main determinant of expertise in
that/domain, an examination was made of the shift from considering
general, domain-independent skills and procedures, in both cognitive
psychology and artificial intelligenCe, to the study of the knowledge
base. Empirical findings and theoretical models of research in
physics problem-solving are detailed and summarized, followed by
eight empirical studies indicating in general, the importance of
differences in the knowledge bases of experts and of novices to their
problem-solving success. Specifically, they show that: (1) it is
difficult to use protocols of problem-solving episodes to illuminate
the differences in the knowledge bases of experts and novices; (2)
experts and novices perceive the problems themselves differently
(novices respond to surface features of a problem while experts
respond to its deep structure); (3) less successful novices have
deficiencies in their declarative knowledge of physics; (4) novices
tend to lack knowledge of when to 'se certain physics knowledge; and
(5) deficiencies in knowledge appear to prevent novices at times from
making key inferences for solving problems. These results and their
implications for theories of intelligence are then discussed.
(Author/JN)

***********************************************************************
Reproductions supplied by EDRS are the best that can be made

from the original document.
******************************************.****************************



LE
A

R
N

IN
G

 R
E

S
E

A
R

C
H

 A
N

D
 D

E
V

E
LO

P
M

E
N

T
 C

E
N

T
E

R

1981/3

E
X

P
E

R
T

IS
E

 IN
 P

R
O

B
LE

M
 S

O
LV

IN
G

M
IC

H
E

LE
N

E
 T

. H
. C

H
I, R

O
B

E
R

T
 G

LA
S

E
R

, A
N

D
 E

R
N

E
S

T
 R

E
E

S

C
D

/
-
 
0

w
 
WZ

0
 
<

0
 
C
C

w
°
L
u
Z

C
C

 uj
0Z0 I
C

l)

5
Ew

wo- <2

cnwcr0 0
C

l) E
111
C

C
wC

C

<Z0 w
Q
UZ0

0 '7:
ww

 2O
0 z

668S
IZ

G
3

°,9i_qQ
9s



EXPERTISE IN PROBLEM SOLVING

Hichelene T. H. Chi, Robert Glaser, and Ernest Rees

Learning Research and Development Center

University of Pittsburgh

1981

Reprinted with permission from Advances in the psychology of human

intelligence (Vol. 1). Hillsdale, NJ: Lawrence Erlbaum Associates, in

press.

The research reported herein was supported in part by

Grant N00014-78-C-0375, NR 157-421, Office of Naval Research and by the

Learning Research and Development Center, supported in part as a

research and development center by funds from the National Institute of

Education (NIE), United States Department of Health, Education, and

Welfare. The opinions expressed do not necessarily reflect the position

or policy of the agencies and no official endorsement should be

inferred.

0



Acknowledgments

The person who took the major responsibilities for any single study
is recognized as the study is discussed. However, almost everyone
worked to some extent on each study. We acknowledge particularly the

efforts of our colleague Paul Feltovich. Our thanks also go to Andrew
Judkis, Tom Laritz, and Christopher Roth. We are indebted to all the

physics professors who gener..zsly contributed their time by

participating in the study.



Abstract

It has become increasingly clear in recent years that the quality

of domainspecific knowledge is the main determinant of expertise in

that domain. This paper begins with an examination of the 'shift from

consideration of general, domainindependent skills and procedures, in

both cognitive psychology and artificial intelligence, to the study of

the knowledge base. Next, the empirical findings and theoretical models

of other researchers in physics problem solving are detailed and

summarized. Then our own work is presented, consisting of eight

empirical studies. These studies show, in general, the importance of

differences in the knowledge bases of experts and novices to their

problem solving success. More specifically, they show (a) that it is

difficult to use protocols of problem solving episodes to IllUminate the

differences in the knowledge bases of experts and novices, (b) that

experts and novices perceive the problems themselves differently, i.e.,

novices respond to the surface features of a problem while experts

respond to itp deep structure, (c) that less successful novices, at

least, have deficiencies in their declarative knowledge of physics, (d)

that novices tend to lack knowledge of when to use certain physics

knowledge, and (e) that deficiencies in knowledge appear to prevent

novices at times from making key inferences necessary for solving

problems. Finally, these results and their implications for theories of

intelligence are discussed.
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disciplines, particularly cognitive psychology and artificial

__intelligence. The first part of this paper briefly outlines work in

EXPERTISE IN PROBLEM SOLVING

Michelene T. H. Chi, Robert Glaser, and Ernest Rees

Learning Research and Development Center

University of Pittsburgh

INTRODUCTION

At first glance, it may seem anomalous for a chapter on expert

performance to appear in a volume on intelligence. But an accumula_tion

of scientific events indicates that the analysis of expertise in

semantically rich knowledge domains is quite relevant to understanding

the nature of intelligence. These events have occurred in a number of

these :ields. The common theme is the increasing emphasis on the

structure of knowledge as a significant influence on intelligence and

high level cognitive performance. The latter part of this paper

describes, as an illustration of this, investigations of high and low

competence in a knowledge-rich domain, namely, problem solving in

physics.



Intelligence has been studied by contrasting individual

differences, age differences, differences between the retarded and the

gifted, and between fast and slow learners. These dimensions of

difference are well represented.by the past research of the contributors

to this volume, including ourselves. What have we learned by

investigating intelligent performance along these dimensions? If we

consider speed of processing, memory span, and the use of complex

strategies as three straightforward measures of cognitive performance,

the following picture emerges. More intelligent individuals have faster

processing speed, longer memory span, and use more sophisticated

strategies than less intelligent persons (Belmont & Butterfield, 1971;

Hunt, Lunneborg, 6 Lewis, 1975; Jenson, in press). This is also true

of older versus younger children (Chi, 1976), and fast as compared with

slow learners. For example, good readers can encode words faster and

have a longer memory span for words than poor readers (Perfetti

Hogaboam, 1975). Thus, over these dimensions of comparison, measured

intelligence correlates positively with faster processing, more complex

encoding and recall, and the use of sophisticated strategies.

Although this pattern of results occurs reliably, we still do not

understand what the underlying mechanisms are, and whether similar

mechanisms are operative in various disciplines and areas of knowledge.

This is one reason the analysis of expertise has emerged as an

interesting area of investigation. The study of expertise forces us to

focm on a new dimension of difference between more and less intelligent

individuals--the dimension of knowledge--since expertise is, by

definition, the possession of a large body of knowledge and procedural
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skill. The central thesis of this paper is that a major component of

intelligence is the possession of a large body of accessible and usable

knowledge. In the following section, we briefly outline the literature

in two related disciplines that have gradually come to the sale

conclusion.

THE FOCUS ON KNOWLEDGE

Cognitive Psychology

Memory Skills

In cognitive psychology, the effects of knowledge on complex

skilled performance were first explored in the seminal work of de Groot

(1966) and Chase and Simon (1973a, 1973b) in their studies of chess

skill. In an attempt to discover what constitutes skill in chess, de

Groot (1966) found that differences in skill were not reflected in the

number of moves the players considered during their search for a good

move, nor in the depth of their search. Both the master and the novice

did not search any further ahead than five moves. Both experts and

novices used the same search strategies that is, depth first with

progressing deepening. In order to capture the essence of skill

differences in chess, de Groot resorted to a different type of

task--memory for chess positions. He found that when masters were shown

!a chess position for a very brief duration (five seconds), they were

able to remember the poOtion far better than the novice players. This

difference could not be attributed to superior visual short-term memory

on the part of the masters because, when random board positions were

used, recall was equally poor for masters and novices (Chase & Simon,

1973a).

3



In order to understand the chess masters' recall superiority, Chase

and Simon attempted to uncover the structures of chess knowledge that

the masters possessed. Using chunks as a defining unit of knowledge

structure, Chase_and Simon set out to experimentally identify the

structure and size of chunks in the knowledge base of masters and

novices. Two procedures were used by Chase and Simon. One was to

record the placement of chess pie-es on thd chess board during the

recall of positions, and use two-second pauses during recall to segment

the chunks. A second procedure was asking the chess player to copy a

position and using head turns from board to board to partition the

chunks. The theoretical rationale underlying both the pause and the

head-turn procedure was the notion that chunks are closely knit units of

knowledge structure; hence, retrieval of one item of information within

a chunk would lead to retrieval of another in quick succession.

Both master and novice did retrieve pieces in chunks--bursts

followed by pauses, and they reproduced chess positions pattern by

pattern, with a glance (or head turn) for each pattern. These patterns

were familiar and highly stereotypic patterns that chess players see

daily, such as a castled-king position, or a pawn chain, or they were

highly circumscribed clusters of pieces, often of the same color, and

located in very close proximity. The difference between the novice and

the expert chess player was the size of the chunks. The master's

patterns were larger, containing three to six pieces, whereas novice's

patterns contained single pieces. If one counted by chunks rather than

pieces, the novice and the master were recalling the same number of

chunks from the board position.

4



There are limitations with the procedure of identifying chunks by a

two-second pause and/or a head turn. One limitation is that it does not

provide a description of the complex structure of the chunk, for

example, the overlapping nature of chunks (Reitman, 1976). A more

serious limitation is that it does not allow for the identification of

higher-order chunks. The pause procedure permits only the

identification of "local" chunks, that is, chunks that are Spatially

close and defined by such relations as next to, color identity, piece

identity, etc. (Chase E. Chi, in press).

The existence of higher-order chunks is evidenced in the master's

recall for sequences of moves (Chase 6 Simon, 1973b). That is, after

viewing all the moves of a game, a master-s1 recall of move sequences

shows clustering of move sequences represented by pauses that is similar

to the clustering of pieces in the board-recall task. This says that a

given board position generates a sequence of stereotypic moves. Data

from eye movement studies clearly show that chess players fixate

predominantly on the pieces interrelated by attack and defense strategy

(Simon 6 Barenfeld, 1969), and that these pieces are typically not

proximally related, as are the local chunk pieces.

The study of expert-novice differences in the use of complex

knowledge in other domains has also revealed higher-order chunk

structures. In electronics, Egan and Schwartz (1979) found that skilled

technicians reconstructing symbolic drawings of circuit diagrams do so

according to the functional nature of the elements in the circuit such

5



as amplifiers, rectifiers, and filters. Novice technicians, however,

produce chunks based more upon the spatial proximity of the elements.

In architectures -Akin (1980) foul-, that during recall of building plans

by architects, several levels of patterns were produced. First, local

patterns consisting of wall segments and doors are recalled, then rooms

and other areas, then clusters of rooms or areas. The hierarchical

nature of chunks also has been illustrated in the recall of baseball

events. High-knowledge individuals can recall entire sequences of

baseball events much better than low-knowledge individuals (Chiesi,

Spilich, & Voss, 1979).

Like the chess results, the expert in several diverse domains is

able to remember "sequences of moves" much more rapidly than novices.

Also, we see a similarity between chess patterns, circuit diagrams, and

architectural patterns in that functional properties are more important

at higher levels, whereas structural properties (such as proximity and

identity in color and form) are more important at lower levels. And

with increasing skill, more higher-order chunks are developed.

In sum, one aspect of cognitive psychology research has clearly

identified the superior memory capacity of skilled individuals, as

exhibited in the large pattern of chunks, whether they are adult chess

players, child chess players (Chi, 1978), Go players (Reitman, 1976),

Gomoku players (Eisenstadt & Kareev, 1975), bridge players (Charness,

1979), musicians (Sloboda, 1976), baseball fans (Chiesi, Spilich, &

Voss, 1979), programmers (McKeithen, 1979; Jeffries, Turner, Poison, &

Atwood, 1981), or electronic technicians (Egan & Schwartz, 1979). While

a number of the above studies have uncovered the hierarchical nature of
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the patterns (Akin, 1980; Chiesi, Spilich, & Voss, 197.9; Egan &

Schwartz, 1979), no work to date has explicitly related the knowledge

and chunk structures of these skilled individuals to 66 "amplex'skill

that they are able to perform.

Problem-Solving Skills

A currently prominent area of research in cognitive psychology is

problem solving. Problem-solving research was revolutionized in the

sixties when researchers turned from studying the conditions under which

solutions are reached to the processes of problem solving. Following

the contributiGn of Newell and Simon's (1972) theory, problem-solving

research proceeded to model search behavior, and to verify that humans

indeed solVe problems according to means-ends analyses. Numerous,

puzzle-like problems were investigated, all of which indicated that

human subjects do solve problems according to means-ends analyses to

some degree (Greeno, 1978).

In puzzle problems, sometimes known as MOVE problems, the knowledge

involved in solving the problems is minimal. All the knowledge one

needstosolvetheproblemsisgivemtheinitialsta-e,the number and

function of operators, and the final goal state. Solution requires that

a set of operators he applied to transform one state of knowledge to

another, so that eventually the goal state can be reached. A variety of

puzzle problems have been investigated: the water jug problem (Atwood &

Polson, 1976; Atwood, Masson, & Poison, 1980; Polson & Jeffries, this

volume), hobbits and ores (Greeno, 1974; Thomas, 1974), missionaries

and cannibals (Reed & Simon, 1976), and Tower of Hanoi (Egan & Greeno,

1974; Simon, 1975).

7
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The research on puzzle problems, however, offered limited insights

into learning. *Because, learning in real-world subject matters requires

the acquisition of large bodies of domain-specific knowledge, cognitive

scientists turned their attention from knowledge-free problems, like

puzzles, to knowledge-filled dolains like geometry (Greeno, 1978),

physics (Simon & Simon, 1978), thermodynamics (Bhaskar & Simon, 1977),

programming (Polson, 1981), understanding electronic circuits (Brown,

Collins, & Harris, 1978)., and recently, political science (Voss & Tyler,

1981).

Solving real-world problems presents new obstacles that were not

encountered previously in puzzle-like problems. Basically, the exact

operatots to be used are usually not given, the goal state is sometimes

not well defined, and more importantly, search in a large knowledge

space becomes a serious problem. (The research on artificial

1

intelligence programs in chess, to be mentioned in the next section,

gives the flavor of this difficulty.) Solving real-world problems with

large knowledge bases also provides a glimpse of the power of the'human

cognitive system to use a large knowledge system in an efficient and

automatic manner--in ways that minimize heuristic search. In general,

current studies of high levels of competence by cognitive psychologists

appear to support the recommendation that a significant fOcus for

understanding expertise is investigatign of the characteristits and

influence of organized, hierarchical knowledge structures that are

acquired over years of learning and experience.
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Artificial Intelligence

The goal of artifical intelligence (AI) research is to make a

machine act intelligently. In this area, the problem of understanding

intelligence has become increasingly focused on the ]barge structure of

domain-specific knowledge that is characteristic of experts. This is in

coucrast to the early years of the field, when the creatioda, of

intelligent programs was identified with finding "pure- problem-solving

techniques to guide a search, for any problem, through the problem space

to a solution, as in the General Problem Solver (Newell, Shaw, & Simon,

1960). The techniqbes elucidated, such as means-end analysis, are

clearly part of the picture, but it was apparent early on that in

realistically complex domains, such techniques must engage a highly

organized structure of specific knowledge. This shift in AI is

characterized by Minsky and Papert (1974) as a change from a power-based

strategy for achieving intelligence to a knowledge-based emphasis. They

write as follows:

The Power strategy seeks a generalized increese in

computational power.JIt may look toward new kinds of

computers ("parallel" or -fuzzy-_or "associative" or whatever)

or it cay look toward extensions of deductive generality, or

information retrieval, or search algorithms....In each case

the improvement sought is intended to be

"uniform---independent of the particular data base.

The Knowledge strategy sees progress as coming' from

hetter ways to express, recognize, and use diverse and

particular forms of knowledge. This theory sees the problem

as epistemological rather than as a matter of computational

power or mathematical generality. It supposes, for example,

that when a scientist solves a new problem, he engages a

highly organized structure of especially appropriate facts,

models, analogies, planning mechanisms, self-discipline

procedures, etc. To be sure, he also engages "general-

problem-solving schemata but it is by no means obvious that

very smart people are that way directly because of the

superior poWer of their general methods--as compared with

9



average people. Indirectly, perhaps, but that is another
matter: A very intelligent person might be that way because
of specific local features af his knowledge-organizing
knowledge rather than because of global qualities of his
"thinking" which, except for the effects of his self-applied
knowledge, might be little different from a child's. (p. 59).

We can now elaborate on this transition in AI research from

building programs that emphasized heuristic search to knowledge-based

programs, using chess programs as examples. The chess problem space can

be pictured as a game tree. Figure 1 shows a very simple example of

such a tcee. Each node represents a possible position (of all the

pieces) durtng a game and each link leading from a node represents a

possible move. At first glance, the problem might seem fairly simple:

Start at the top of the tree and find a set of paths that force the

opponent into checkmate. However, as Shannon (1950) pointed out, at any

given point a player has on the order of 30 legal moves available, so

the number of nodes at successive levels of the tree increases

dramatically. In an entire game, each player makep an average of 40

moves (giving the tree 80 levels) and the number of possible paths to

the bottom of the tree total about 10120. Even the fastest computer

could not search such a tree exhaustively, so intelligent choices must

be made to severely limit the exploration. There are two basic

limitations that can be applied: limiting the number of moves

considered from each node (width of search) and limiting the number of

successive moves. that will be considered on each path (depth of search).

Both of these` methods require some chess knowledge to be used if they

are to be applied successfully. In the case of depth of search, since

positions reached are not final (won or lost), they must be evaluated to

determine if they are advantageous or not. In addition, simply cutting

15
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off the search at a specified depth can cause problems (for example, the

cut off may be In the middle of an exchange of pieces), so some analysis

is required to determine if the search should be deelined.

Full-Width Search

Two Lene 11 search-based approaches have been followed in attempts

to create chess playing programs: full-width (brute force) search and

selective search. Both limit the depth of search. In a full-width

program, as the name implies, the width of search is not limited at all.

To date, 4 modification of this approach has been the most successful.

It uses a mathematical algorithm which eliminates from consideration

moves by the opponent which are worse than the besE move already found

(based on the evaluation of the positions to which they lead) since it

must be assumed that he will make his best possible move. The current

(1980) world computer chess champion, BELLE by Thompson and Condon at

Bell Labs, and the former champion, CHESS 4.6 by Slate and Atkin at

Northwestern, are both of this type. These programs, and others like

them, make use of a computer's speed and memory to do vast amounts of

searching, and have a bare minimum of chess knowledge. Although these

programs can now beat practically all human players, they cannot beat

the top ranked experts (grandmasters). Estimates of 10 more years of

work to reach this level are not uncommon. The main reason for such

slow progress is probably the explosive branching of the game tree.

Each level contains about 30 times as many nodes as the level above so a

large increase in computing power is needed ilr a very small increase in

depth of search.

))
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Selective Search

Clearly, grandmasters do not play better chess becalse they

outsearch a computer. The limited size of short-term memory and the

amount of time required to fixate items in long-term memory limit humans

to very tiny tree searches. In fact, de Gro t (1965) and Newell and

Simon (1972) have shown through protocol analysis that expert players

tend to choose good moves without any search at all and then conduct a

limited search to test their choices. This approach is an example of

the se and programming method--selective search. The Greenblatt (1967)

program, the fiist to make a respectable showing in human tournament

compeition, provides an example of how this approach has been

implemeted. His program selects moves for consideration on the basis

of "pla4ility." It first generates all of the legal moves available

from the present position. A plausibility score is then calculated for

each move on the basis of a subset of 50 heuristics (not all are

applicable to a given situation). These heuristics are simply "rules of

thumb" for selecting a good move, taken from chess lore, which have been

roughly quantified to allow a numerical score to be calculated. The

moves are then ranked in order of decreasing plausibility and only the

first few are considered. In addition, all of the continuations used to

evaluate a move are generated in the same way. Since only a handful of

the possible moves is considered at each node, the game tree is

significantly reduced in size. The size of the search must be reduced

still further, however, so the mathematical algorithm mentioned before

is used to "prune" more branches from the tree and the depth of search

is also limited.

13

1"



Although expert players do choose a few plausible moves for

consideration, they do do it through computation and evaluation as

does the Greenblatt program. Rather, they respond intuitively to

patterns on the board. As mentioned earlier, de Groot (1965) has shown

that grandmasters can reproduce complicated positions almost exactly

after seeing they for only five seconds. Apparently, the years of

practice necessary to beCome a chess expert result in a very large

knowledge base of patterns of pieces and probably patterns of moves as

well. When an expert looks at the board and "sees" good moves, he is

engaging in pattern recognition. Thus, an obvious direction for chess

program design is to build production system? that can recognize and

respond as human players do (Simon, 1976).

KnowledgeBased Chess

There is more to human play than just recognizing a possible next

move, however. The moves of a good player advance toward some goal;

they fit into a plan that looks at least a few moves ahead. An early

attempt to give chess programs simple goals is the Newell, Shaw, and

Simon program (1958). It has a series of independent goal modules.

Each module can recognize appropriate situations on the board and

generate moves with specific purposes, such as king safety, center

control, etc. The purpose of these goals, however, is only to select a

few reasonable candidates for the next move in order to limit t e7 search

tree; there is no overall plan.



A program called PARADISE, written by Wilkins (1980), contains the

factors we have discussed that seem to give expert chess players an edge

over even the best search programs. It uses an extensive knowledge of

chess board patterns, embodied in production rules, to establish goals,

which are then elaborated into more concrete plans. Search is used only

to check the validity of the plans.

PARADISE does not play an entire game; it plays "tactically sharp"

positions from the middle game. Tactically sharp simply means that

success can be achieved by winning material from the opponent--a common

situation in chess. The knowledge base consists of some 200 production

rules; each has a general pattern of relationships among pieces as its

condition, Most of these rules are organized around general higher

level concepts necessary for effective play, such as looking for a

THREAT to the opponent's pieces, looking for a way to make a square SAFE

to move a piece to it, trying to DECOY an opponent piece out of the way,

etc. The effect of applying the production rules to a given position is

to suggest a plan or plans with the overall goal of winning material. A

given plan may include calls back to the knowledge base to produce plans

to accomplish subgoals of the original plan (if such a subplan cannot be

found, then the overall Plan is scrapped). Plans are thus

hierarchically expanded until they are ready for use. Each plan

contains an initial move plus a series of alternative future moves

depending ou the types of replies by the opponent: Each plan also

contains information about why the knowledge base produced it in the

first place. The plan and its associated information are then used to

,guide a very small tree search to determine if the plan is feasible.

15
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Troductions. in the knowledge base are used to generate the

defensive moves used in the search. Calls for additional planning and

analysis to expand the original plan can also be 'generated by the

search. The depth of search is not artificially limited in this

program; instead, analyses are conducted (using the knowledge base) at

the ends of lines suggested by the plans to determine if termination of

the search is proper. Since the plans limit the number of alternatives

considered at each node to only a few, the search can go much deeper

than in other programs. Since all of the analysis, planning, and

searching is guided by the knowledge base, altering or i,aproving the

play of PARADISE consists of simply modifying or adding individual

production rules. Such a system seems to have great potential for

playing expert chess, if the requisite knowledge can be determined and

coded into the knowledge base, or. if a selflearning system can be

designed to modify its own base.

In sum, the example of chess programs illustrates the general

tendency in AI toward knowledgebased programming. Even though

computers have great advantages over humans in speed and memory,

knowledge provides an edge which, it seems, pure power can only overcome

at great cost, if at all.

PHYSICS PROBLEM SOLVING AND EXPERTISE

In this section, we review what is known about how physics problems

are solved; and in particular, how expert physicists solve them as

compared to novices. The first section reviews the available empirical

evidence, and the second section reviews the resulting theoretical

models simulating the way experts and novices solve physics problems.

16



Empirical Findings

In the relatively small amount of work done in this area, there are

basically three types of empirical investigation. One is examination of

the knowledge structures of physics concepts. Shavelson (1974, also

Shavelson & Stanton, 1975) for instance, has investigated methods for

determining this "cognitive structure." He delineates three methods that

may be used singly or in conjunction: word association, card sorting,

and graph building. Of the three, word association is the most

venerable and widely used. Using this method, Shavelson (1974) has

shown tht.lt students' physics concepts become more interrelated and that

their cognitive structures become more like th.. course "content

structure" (as determined by a structural analysis of the instructional

materials) at the end of the course than at the beginning. lhro (1978)

has found similar results using the instructors' cognitive structure as

the content structure.

A second type of empirical research is investigation of subjects'

prior conception of the physical world, with a view toward how that

preconception might affect one's learning of physics. For example,

McCloskey, Caramazza, & Green (1980), have shown that a sizable number

of students who have had no physics courses, as wall Is some who ha "e

had one or more college courses, believe that an object once set in

curvilinear motion (through a spiral tube, for instance) will maintain

that motion in the absence of any further external forces. Also,

Champagne and Klopfer (1980) have constructed the Demonstration,

Observation, and Explanation of Motion Test (D.O.E.) to test students'

ideas of motion due to gravity. They have found, similarly, that a

17



sizablz number of students entering a college mechanics course have

erroneous ideas about motion (and that students who had taken high

school physics did no better than those who had not). They also found,

however, that results on the D.O.E. alone were of little predictive

value in determining success in the mechanics courses.

The third type of empirical evidence relates specifically to

problem solving and is usually gathered in the context of solution

protocols. Careful analyses of protocols have indicated significant

differences between the expert and novice. The only obvious

similarities between them are in the macroprocesses they use in solving

physics problems. According to Simon and Simon (1978), both expert and

novice proceed to solution by evoking the appropriate physics equations,

and then solving them. Their expert often did this in one step,

however, simply stating results without explicitly mentioning the

formula he was using, while the novice typically stated the formula, put

it into the appropriate form and substituted the values of the variables'

in discrete steps. McDermott and Larkin (1978) include another two

"stages" prior to the evoking and instantiating of equations,

postulating that solution proceeds in at least four episodes the first

"stage" is pimply the written problem statement. The second :stage"

involves drawing a sketch of the situation, while the third is a

"qualitative analysis" of the problem which results in a representation

containing abstract physics entities. Generating the equations is the

fourth stage. According to Larkin (1980) experts seem to perform all

four processes, whereas the novice may skip the "qualitative analysis"

stage. Beyond this gross similarity lies much more subtle and salient
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differences between the expert and novice protocols. These are

elaborated below.

Quantitative Differences

There are three major differences between the novice and the expert

physicist that are easily quantifiable. The most obvious one is time to

solution. The speed with which a problem can be solved depends a great

deal on the skill of the individual. Simon and Simon (1978) noted a 4

to 1 difference between their expert and novice. Larkin (1981) also

reported a similar difference between her experts and novices.. This

difference is not unlike the speed difference found in chess-playing

ability of the master versus beginner. This is to be expected if we

postulate that experts in general are more efficient at searching their

solution space.

Relhted to time to solution is another quantifiable difference--the

pause times between retrieving successive equations or chunks of

equations. Larkin (1979) has claimed that a number of physics equations

are retrieved by the experts in succession, with very small

interresponse intervals, followed by a longer pause. Her novice did not

seem to exhibit this pattern of pause times in equation retrieval. This

is interpreted to suggest that experts group their equations in chunks,

so that the eliciting of one equation perhaps activates another related

equation, st, that it can be retrieved faster. (There is also some

evidence that the chunk is associated with a "fundamental principle" of

physics, such as Newton's Second Law, or Conservation of

Energy.) Additional evidence for the rapidity of equation retrieval by
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the experts was demonstrated by Larkin (1981) when she found that

experts were four times faster than the novices in accessing and

applying equations during problem solving. This suggests to Larkin

(1979) .hat for the experts, physics equations are stored in chunks or

related configurations, so that accessing one principle leads to

accessing another principle. This result is appealing because it is

reminiscent of the chess results, where chess pieces were found to be

chunked when the interpiece pause times during recall of a chess

position were examined.

Another interesting aspect of novice problem solving is not only

that they commit more errors than experts, but that even when they do

solve a physics problem correctly, their approach is quite different.

It is this difference that we want to understand, as well as why they

commit errors. Likewise, it is also interesting to understand the

circumstances under which experts make errors.

Qualitative Differences

Qualitative differences between an expert and novice problem solver

are harder to define operationally, especially in empirical studies.

However, it is the qualitative differences that distinguish expertise

most noticeably. One prominent yet elusive difference between the

expert and novice is that expert phy4cists, as noted before, seem to

apply a "qualitative analysis" (Larkin, 1977a; Larkin, 1980; McDermottl

& Larkin, 1978) or "physical intuition" (Simon & Simon, 1978) to the

problem, prior to the actual retrieval of physics equations. There are

several possible interpretations of what constitutes "qualitative
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analysis." One interpretation is that "qualitative analysis," occurring

usually in the beginning phase of problem solving, is the construction

of a physical repreSentation, that is, a representation that has some

external, concrete physical referents. This ability to represent the

problem physically in terms of real-world mechanisms was first noted

over a decade ago, although not in the context of the expert novice

distinction. Paige and Simon (1966) observed that when algebra word

problems that corresponded to physically unrealizable situations were

presented to subjects, a few oil them immediately perceived the

"incongruity" in the problem, whereas others proceeded to evoke

equations before realizing that the solution was meaningless (such as a

negative quantity for the length of a board). The former solvers

apparently imagined the physical referents of the objects mentioned.

In physics problem solving, the construction of a physical

representation may be helpful, or even necessary, for several reasons.

First, Simon and Simon (1978) suggested that physical representation

provides a basis for generating the physics equations. Second, physical

representation provides a situation that can be used to check one's

errors (Larkin, 1977a; Simon & Simon, 1978). Third, the physical

representation provides a concise and global description of the problem

and its important features. And finally, we conjecture that the

physical representation permits direct inferences to be drawn about

certain features and their relations that are not explicit the

problem statement, but can be deduced once a representat n is

constructed.
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However, there is also reason to think that what occurs dur ng

"qualitative analysis" is more than the construction of a physic

representation, since the often complex physical configuration a

intuition deriving from what happens in a physical situation, may of

necessarily-lead to correct inferences. As the aforementioned work of

Champagne and Klopfer (1980) and McCloskey et al. (1980) have indicated,

naive problem solvers must not always rely on their physical intuition

for constructing a representation. However, since it is predominantly

the experts who construct an elaborate representation, we postulate that

this representation need not correspond directly to a physical

representation, but may be more abstract.

A second qualitative difference between the expert and the novice,

observed by Simon and Simon (1978), is in the number of

"metastatements." "Metastatements" are comments made by the subjects

about the problemsolving processes. On the average, their expert made

only one metacomment per problem, whereas the novice made an average of

five metacomments per problem. They were usually observations of errors

made, comments on the physical meaning of an equation, statements of

plans and intentions, selfevaluation, and so on.

There are several possible explanations for why their expert made

fewer metacomments. First, he might -be better ,at recognizing the

correctness of a solution, so that he need not voice any uncertainties,

etc. Secondly, their/ expert may have multiple ways to solve a problem

(Simon a Simon, 1978), / so that he can easily doublecheck his solution.

Finally, the expert bight have a wellstructured representation of the

problem to check his results against.
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Another blatant qualitative differen ce between the solution

processes of experts and novices lies in the r n aths (sequence

Pand order of equations generated) (Simon 6 Simon, 1978 . The important

distinction between the expert and the novice is that the expert uses a

"working forward" strategy, whereas the novice us s a "working backward"

strategy. The expert's strategy is simply to work from the variables

given in the problem, successively generating the equations that can be

solved from the given information. The novice,

starts with an equation containing the unknown of the

contains a variable that is not among th, givens,

on the other hand,

problem. If it

then the novice

selects another equation to solve for it, and so on. (Th ese processes

and models based on them will be explained more fully later .)

This interpretation of the novice's performance initi

counter-intuitive; that is, the novice's strategy appears

ally seems

to be more

goal oriented and sophisticated. One interpretation of this d &ference

is that the expert knows thst he can achieve the goal simply by

calculations of the unknowns from the givens. Another intepretati

that experts do not require complex planning for simple p-oblems.

probably have existing routines or production systems that they

direct

on is

They

apply directly to the problems. This simple forward-working strategy

can

of

the expert does change, however), to a very sophisticated means-end

analysis of the goals and planning when the problems become harder

(Larkin, 1977b).
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A puzzling question concerning the difference between the two

strategies is how people change from one to the other. Why is it that

the expert can develop a more efficient system? One possible answer is

that over the years, the expert has built up and stored several

fundamental sets of subroutines which can solve several types of basic

problems. In this case, solving a problem becomes a matter of

categorizing the problem into one or more problem types and applying the

existing subroutines. As we shall describe later, this ability to

quickly categorize thy problem is faciltitated by a powerful parsing

mechanism that translates key words in the problem statement--words such

as "at the moment," "catchup," etc.--into problem types.

The second question is how can the expert construct a more

efficient subroutine, if one does not already exist for solving a

complex problem? We think that this facility lies in the rich internal

representation that the expert has generated, a representation that

permits many appropriate inferences to be drawn so that the problem can

be simplified and reduced.

In sum, the analysis of the qualitative aspect of protocol data

raises a number of important questions: Why is the initial "qt. itative

analysis" of the problem important? What kind of representation of a

problem is constructed during this initial stage of analysis? Why are

the sequences of equations generated by experts and novices different?

What enables an expert to generate a sequence of equations that is more

efficient? The quantitative analysis of the protocol data *simply

confirms a number of intuitions that we Already have, ut cannot

explain: experts commit fewer errors, they can solve problems faster,
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and they seem to store related equations in closely knit chunk

structures. Moreover, none of these quantitative findings provides any

answers to the qualitative questions. Nor do they answer our questions

posed earlier, namely, why are novices less successful at solving

physics problems, and why are their procedures somewhat different, even

when they are successful. Answeri-,z these questions is the focus of our

own experimental program, which is dcacribed in the latter part of this

paper. These questions also drive current research and theory; we now

turn to considering the current state of theory.

Theoretical Models of Physics Problem Solving

There has been a great deal more theoretical than empirical work

done on problem solving in physics. In this section, we will review,all

those models that exist. They are of two types: psychological mOdelAr.,,

that explicitly attempt to simulate human performance and artificial

intelligence models which do not (although they may contain components

that are similar to human performance). Both types of models are

written in the form of computer programs.

Psychological Models

The majority of psychological models discussed here have several

things in common. First, the behaviors they simulate are generally

think-aloud protocols gathered while a person solves a physics problem.

Second, except for one case, most of them solve mechanics problems taken

from a first course in physics. Although these problems are

straightforward, they are by no means simple. They do require some
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thought and usually take at least two minutes to solve. Third, the

aspects of protocols that the models attempt to simulate are generally

the sequences of equations, generated by the solver. Hence, the

qualitative aspects of the protocols (such as the initial analysis of

the problem, the metastatements, and so on) are usually ignored.

Finally, the simulation usually takes the form of a production system.

To be more specific, the core of several of these models is a

symboldriven process. The variables representing the knowns and

unknown(s) (the answer) in the problem are simply compared to the

variables appearing in the various formulas that the model has in its

possession. Two very simple selection criteria can be applied to

pioduce two different behaviors, On the one hand, a formula can be

selected in which all variables but one are knowns. That one unknown

variable can then be asserted to be known (tagged as solvable, without

any actual algebraic or arithmetic computation) and the process can be

repeated until the new known is the answer to the problem. This is a

working forward strategy typical of experts. On the other hand, a

formula can be selected because it contains the desired unknown. If all

the other variables in the formula are known then the problem is solved.

If not, the u:iknown variable (the models discussed here generally

discard a formula if it has two or more unknowns) becomes a new desired

variable and the process is repeated; this is the working backward

strategy characteristic of novices.
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To make these two strategies more concrete, consider the following

very simple example: There are two formulas available, one relating the

variables a, b, and e and the other relating d, c, and er

(1) e f(a,b)

(2) d f(c,0

Suppose a problem is proposes such that a, b, and c are given (the

knowns) and d is the desired azzwer (the unknown). The forward working

method chooses equation 1 first, since a and b are known, allowing

calculation of e. Since c and e are now both known, equation 2 can be

selected and used to find d. By contrast, the working backward method

chooses equation 2 first since it involves the oesired unknown d. Since

e is unknown, it becomes the intermediately desired unknown, and

equation 1 is then chosen. Equation 1 can now be solved for e, which is

substituted into equation 2 to find d.

Simon and Simon models. The first models to be discussed use tho

two strategies described above -- working forward and backward. In the

Simon and Simon (1978) models, the behaviors of two subjects, one novice

and one expert, working a series of kinematics problems (describing

motion in a straight line without any consideration for the causes of

that motion), are simulated by two very simple production'systems. The

available formulas are represented in the conditions of the productions

as lists of the variables they contain. The problem itself is presented

as a list of the known and desired variables it contains. As explained

above, the expert productions match the knowns in the problem with the

independent variables in the formulas, while the novice productions

match the desired unknown against the independent variable and the
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knowns against the dependent variables. The productions are listed in

different orders, reflecting the fact that the two subjects sometimes

used different formulas where both strategies might be expected to

choose the same one. These two versions of the model simulate the

equation selection behavior of the subjects quite well.

In this theory, there is no need to postulate any differences in

the mechanism by which equations were produced; it is only necessary to

specify a difference in the order in which they were generated. Nor is

skill difference attributable to trivial differences such as the lack of

certain formulas. Both the expert and novice systems contain basically

the same set of equations.

Knowledge development and means-ends models. Two related models

are describe,. in Larkin, McDermott, Simon, and Simon (1980). One is

referred to as the Knowledge Development model; which simulates expert

behavior, and the other is the Means-Ends model, simulating novice

behavior. These models expand and improve on the Simon and Simon models

in several ways to reflect more accurately human information processing

capacities and the behavior of the subjects. Three separate memories

are present: Long-term memory (LM), working (short term) memory (WH),

and external memory (EM). LM consists of the productions themselves,

which contain the necessary physics and procedural knowledge. WM is a

small memory limited t, about 20 elements and it is the contents of this

memory that the condition sides of the productions are matched against.

EM represents the pencil and paper used by a problem solver. The

complete problem statement resides in this external memory and elements

can be periodically transferred back and forth between EM and WM by the
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actions of certain productions to simulate the changing focus of

attention of a problem solver and the ptocess of recording intermediate

results on paper.

The solution process begins with the problem statement in a coded

form that specifies the objects involved, their attributes and points of

contact-, instants and intervals of time and the desired unknown(s).

(The complex problem of natural languagc understanding is

avoided.) Both models have productions that assign variables to the

necessary elements of the problem so that the appropriate formulas may

be selected. As before, the two basic selection strategies, forward and

backward, are employed but they are more elaborate to more closely

simulate behavior.

The differences between the current and the previous Simon and

Simon models are the most marked in the selection of a formula in the

MeansEnds novice model, because novices are observed' to do this in

several discrete stages, first selecting a formula, then relating its

variables to items in the problem, and then using it. A formula is

originally selected for consideration if it merely contains a desired

quantity. In cases where more than one formula contains the desired

quantity, selectors tailored to represent observee novice preferences

pick one. This model produces the same backward chain of equations as

the earlier model. It then "solves" them by chaining forward, marking

each previously unknown variable as known until the originally desired

variable becomes "known." (Neither of these models has any actual

algebraic manipulation ability.)
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The Knowledge Development model is more similar to the previous

Simon and Simon expert model. This is because experts generally do not

exhibit the step by step behavior of stating an equation and then

connecting it to variables in the problem. Thus, as before, the

selectors select yormula on the basis of the unknowns and. assert that

the dependent variable is now known in one step. This situation can be

viewed as a "collapsed" or overlearned version of the novice model

(this will become clearer shortly when other models are discussed). The

main new feature of the model is that when more than one formula can be

selected based on the knowns, information from the problem is used to

decide among them. For instance if a (acceleration) and t (time) are'

knowns, then both x=1/2at
2
and v=at could be selected. If the problem

contains an object falling or rolling from rest, the first is selected;

in all other instances the second is selected, corresponding to the

observed expert preferences. It is in this sense that the knowledge

about the problem is used.

In addition to the differences mentioned above, the Larkin et

al. (1980) models have the ability to solve more kinds of problems than

the previous ones, which were confined to kinematics. They solve

dynamics problems (describing the motion of a body by considering the

forces causing or influencing that motion), using two basic methods for

solving such problems, Forces and Energies, and because they contain

more than one solution method, they have an attention focusing

mechanism. If a model is solving a problem using Energies, it should

not try a Force equation halfway through the solution, nor should it

select an equation when it is not through writing a previous one. To
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accomplish this focusing, goal elements are included in the conditions

of many of the productions. At the beginning of a solution process, a

goal is set (placed in WM and EM) so that only productions related to

that goal can execute.

Able models. The Able models of Larkin (1981) address a different
0

issue than strictly simultating the problem solving processes. Instead,

they attempt to simulate the learning processes, that is, how a novice

might become an expert. In the model's "naive" state, it is called the

Barely Able model, and after substantial learning, it is called More

Able. The learning process is modeled by a mechanism for adding

procedures that is generally used in adaptive production systems

(Waterman, 1975).

Barely Able starts with a list of equations that can be used in the

Forces or Energy methods, and operates with a general means-ends

strategy for applying them that is similar to the previous Means-Ends

model. The learning process itself is quite straightforward: Whenever

a production succeeds in applying an equation to derive a new known

_4r

value, it creates a new production that has the previous knowns on the

condition side and an assertion, of the new known on the action side.

For example, if Barely Able solves the equation V=V0+ At for a, then

the new production will check to see if V o, V and t are known and, if

so, assert that a is known.. Psychologically, this means that-the

procedure for finding the right equation and solving for the unknown

becomes automated once the initial production has been executed. Thus,

as Able solves more and more problems, it looks more and more like the

Knowledge Development model mentioned earlier - -it becomes

forward-working because all the backward-working steps become automated.
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There are two limitatioins to the Able model. The first is that the

learning takes place in one trial. This is psychologically unrealistic

and a more complicated learning function probably needs to be built in

which some aspects of learning take place faster than others. The

second limitation is that the model does not provide the capability to

concatenate series of productions into one, (Neves & Anderson, 1981).

Such a mechanism would allow two or more formulas to be combined into a

single step, as experts are often observed to do.

Model PH632. A model labeled PH632 developed by McDermott and

Larkin (1978), has a somewhat different focus than those previously

described. Its purpose is to examine and model in a general way the use

of problem representations by an expert solver, but not to exhibit a

detailed psychological model of the process. It is, again, a production

system with external, working, and long term memories. The condition

sides of the productions can contain goal elements that keep attention

focused on the specific task at hand and that allow the productions to

be hierarchically organized.

A series of four representational stages of a problem is

postulated: verbal, naive, scientific, and mathematical (see also

Larkin, 1980). The model assumes that a problem solver progresses

through these stages as a problem is solved. However, the detailed

description of the model (McDermott & Larkin, 1978) starts with the

naive representation. The naive representation is a sketch depicting

the components of the problem and their relationships, and is
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implemented as a data structure that encodes this information. The

scientific representation contains abstract physics concepts such as

forces, momenta and energies (which must generally be inferred by the

problem solver) and is usually depicted as a free-body diagram. The

mathematical representation consists of the equations relat-ing the

variables in the problem that must be solved to produce the final

answer.

Once PH632 has a naive representation, it tries one of the two

solution methods mentioned earlier--Forces and Energies. If both are

adequate, the one chosen may simply be the first one tried. Once a

particular method is chosen, its productions give the model the abiity

to scan the sketch qualitatively to determine where the objects and

systems of interest are, whether they are familiar or unfamiliar, and

how they are related. If a system is familiar (such as a hanging

block), FH632 can use its knowledge to build a production describing it:

If the system is unfamiliar, an extended analysis is conducted to

?roduce an encoded version of a free-body diagram. This difference in

representation corresponds to an expert's tendency not to draw an

explicit free-body diagram of a familiar system. The model makes

qualitative checks as it proceeds to determine whether its

representation seems correct and whether its approach is working. For

instance, in a statics problem (one with no motion), it checks to make

sure all of the forces are balanced by at least one opposing force. It

can also test whether all of the entities generated in the scientific

,representation, such as forces, can be related to the quantities given

, in the problem statement so the equations can be generated.
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Once assurance is gained that the model is on the right track, it

can write the equations for the mathematical representation. Because

all of the forces have already been located and resolved into components

in construction of the scientific representation, this step is

relatively simple. Unlike the previous models, PH632 can perform the

algebraic and arithmetic operations necessary to produce the answer.

Atwood. Larkin's (1980) latest program, Atwood, concentrates on

the verbal representation stage, an area generally ignored by the

previous models. Considering the difficulties and complexities

encountered by AI researchers in building language understanders, Atwood

accomplishes its task in a surprisingly simple and straightforward way.

Because mechanics problems in general contain a rather small set of

basic objects, attributes, and relationships, it can simply ignore most

of the words in a typical problem statement and concentrate on the key

,ords.

Basically, Atwood contains a set of schemes that tell it what words

to attend to and what situations those words may indicate. Thus, it

knows that the word "rod" is important and that there should be one and

only one length associated with it. "Pulley" is another keyword and

Atwood's schema tellsit that there will be a rope passed over this

object and that the rope should have objects connected to each end.

Using some rudimentary knowledge of English syntax, Atwood

processes the problem statement word by word, creating nodes for each

physics object it recognizes and connecting these nodes into a semantic

net with the help of the knowledge of their legal relationships

34



contained in the schemas. When tested on a set of 22 of the problems

collected by Chi, FeltOich, and Glaser (in press), Atwood was able to

build correct nets for 15 of them, while ignoring roughly two-thirds of

the words they contain.

Summary and discussion of the psychological models. The

psychological models so far developed, focus their attention on the"

different approaches that experts and novices take in terms of the

sequence of equations they generate--forward working versus backward

working. In these models, it is assumed that experts are forward

working because their initial backward solution procedure becomes

automated with learning. The question of initial problem representation

is generally avoided in these models, perhaps primarily because it is

difficult to obtain empirical information on this process solely through

the usual forms of protocol analysis. As we shall describe later, other

techniques are required for this purpose.
I

An alternative theoretical framework is to suggest that novices are

data driven. They treat the unknown and known variables as literal

symbols and plug them into equations in their repertoire. Ixperts, on

the other hand, are schema driven in the sense that their representation

of a probem accesses a repertoire r,f solution methods. Hence, for the

expert, solving a problem begins with the identification of the right

solution schema, and then the exact solution procedure involves

instantiation of the relevant pieces of information as specified in the

schema. This is particularly likely because mechanics problems are

'S
overlearned for the experts, especially experts who have spent -a great

deal of their time teaching. Another interpretation is to postulate



that novices also solve problems in a schema-driven way, except that

their schemas of problem types are more incomplete, incoherent, and at a

level hierarchically 'Mier than those possessed by the experts. In our

opinion, the development of psychological models should proceed in this

particular direction, building knowledge structures in the forms of

schemas, in order to to capture the problem-solving processes of experts

and novices. Some empirical evidence for the v lidity of this

interpretation will be presented later.

Artificial Intelligence (AI) Models

AI programs, unlike those previously discussed, are not

specifically intended to model observed behavior or to take into account

thrries of human cognitive architecture. Their general aim is to

successfully solve physics problems by any means possible. However,

they do contain elements that are very similar to both human behavior

and the previous psychological models.

One of the main issues addressed by the AI models is

representation--how to represent the knowlqdge the program needs to form

a representation of the problem and solve it. Indeed, the current

recognition in psychology of the importance of representation probably

derives from the early recognition of its importance in AI and computer

science in general. The--quentfon of how physics knowledge is

represented is a major research4Oroblem, as the rudimentary state of

such representations in the'psychological models indicates.
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The first phase of a problem solution is reading and understanding

(or translating) the verbal problem statement. Much work has been done

on the general problem of natural language understanding in AI and two

of the programs to be desribed put considerable emphasis on this stage.

Both are more detailed and complex than the simple Atwood (Larkin, 1980)

translator, since they aim for a complete translation utilizing all of

the Information in the oroblem statement. Thus, both use esoteric

translation processes and have extensive knowledge bases of syntactic

and semantic information, including specific physics knowledge in a

wellorganized form to allow a correct physical interpretation of a

problem. Once translation is complete, some kind of languagefree,

internal computer model of the problem exists. which can be compared to

a naive representation.

Issac. Isaac by Gordon Novagr(1977) is a program that can read tAe

problem statement. It does this for statics problems only. The key

feature of interest is the representation of objects as idealized

physics entities. FOr instance, in a problem that has a person standing

on a ladder, the properties that are important to the solution are his

mass and location on the ladder. He can therefore be represented as a

"point mass." But if he is holding up one end of the ladder, only the

point on the ladder he is holding is important and he becomes a "pivot."

This idealization is accomplished in Isaac by using Canonical Object

Frames (schemas) from the knowledge base. Each one contains the

knowledge necessary to abstract the proper characteristics from the

"real life" object and to use the idealized object properly in the

solution of the problem. This idealization process corresponds only
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partially to the formation of scientific representation because no

attempt is made to represent or analyze qualitatively the Other

essential physics entities in a statics problem--the forces. Instead,

all possible balance-of-forces equations are written at each point of

contact between objects, resulting in many more equations than are

actually needed for a solution. This illustrates the problems that can

arise if the representation of a problem does not generate an efficient

solution.

Newton. Newton by Johann de Kleer (1977) does not have any

language translation facility. It solves roller coaster problems

(blocks sliding on curved surfaces), and they are best represented as a

picture of the track, which is provided in a symbolic form. The key

feature of this program is a process of qualitative analysis referred to

as envisionment. Newton envisions, as a human solver might, what might

happen to the sliding block based only on the general shape of the

track. Thus, on an upslope the block might slow down and slide back,

down or continue up. At the crest of a hill, the block might be

traveling so fast that it fliesioff into space or it might slide down

the other side. Using a series of production rules that codify such

qualitative knowledge, Newton builds a tree of possible paths of the

block that guides further processing of the problem. Some simple

problems may be solved using only this qualitative reasoning. If this

is not possible, then schemes are used that contain knowledge and

formulas necessary to analyze each node of the tree (section of the

track) mathematically. In cases where the value of a particular

variable is needed for the answer, the fa.niliar means-ends process is

used to choose the proper formulas to apply.
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Hecho. Another language translator is Mecho by Bundy, Byrd, Luger,

Hellish, & Palmer (1979). This program solves problems from kinematics

and those with pulleys. It has also been extended (Bundy, 1978; Byrd &

Borning, 1980) without translation to sojve problems in statics and

roller coasters in an attempt to make tb problem-solving part as

general as possible by encompassing the /work of others (e.g., de Kleer,

1977; Larkin & McDermott, 1978; Novak, 1977). The salient feature of

this program and, perhaps, the key ,t'f its extendability, is a two-level

knowledge organization. On the object (lower) level is the physics

knowledge, organized as rules and schemas and the problem itself. The

problem passes through several stages of representation on the way to a

solution. For example, the natural language translation feature

produces a symbolic representation specifying the objects in the problem

and their properties. Where necessary, schemas describing important

objects, such as a pulley, are tued i^ from the knowledge base. Thus,

this initial internal representation might be viewed as naive with

elements of a scientific representation. The next general step is to

produce the mathematical representation, which can then be solved

algebraically. This is not a simple step however. The

meta-(upper)level of the knowledge base contains all of the procedural

knowledge necessary for the er.:ire solution process, organized as a set

of rules and schemas. It includes rules fir interpreting the object

level knowledge for use at each step of the process, for making

inferences when needed information is not explicitly stated, for

deciding upon a general solution strategy, for selecting equations
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(means-ends strategy again), etc. Athough a complete scientific

representation is not explicitly formed, the planning and inferencing

powers of the meta-level implicitly use the elements of such a

representation to plan the solution 'before equations are actually

generated. Thus, in a statics problem, for instance, the planning

process eliminates the problem of excess numbers of equations

experienced by Issac.

The organization of procedural knowledge into explicit modular form
to.

is what is most interesting psychologically about Mecho. Quite often,

such knowledge is buried in the structure of a program and the

assumptions that went into writing it, making changes 'difficult and

modeling of procedural learning impossible. This two-level organization

also allows the declarative knowledge to be present in only one form,

which can be interpreted by the meta-level for use at each step of the

solution process. By contrast, both Issac and Newton contain separate

representations of the same physics knowledge for each step. In a

sense, Mecho can learn (though not on its own) and has learned to solve

new problems in a fairly realistic\way psychologically because all that

is necessary is to give it other new piecas of procedural and

declarative knowledge.

Summary. Although as noted, the purpose of these AI programs is

not to model human behavior, it is clear that they contain many

psychologically important features and ideas. The question of

representation of the problem and the knowledge base is common to both

fields and the proposed solutions--stages of representation, rules,

schemas, (often called frames in AI)--are generally similar. However,
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since AI is not limited by empirical knowledge of behaviofs, these

programs can venture into areas where psychological model builders have

more difficulty simulating, such as natural language translation,

qualitative analysis (e.g., envisionment), planning and inferdncing

processes, and the actual specification of knowledge organization. The

importance of these, items to the success of AI progams emPbasizes,the

need for much more work to determine empirically how they 'occur in

humans.

EMPIRICAL STUDIES TOWARD A THEORY OF EXPERTISE

The objective of ,he series of investigations that we have carried

out is to construct a theory of expertise based upon empirical

description of expert problem - solving abilities ,in complex knowledge

domains. In this case, the knowledge domain is physics, in particular,

Mechanics. There are basically three questions that guide our efforts.

First, how does task performance differ between experts and the novices?

This question has been partially answered in the review of empirical

evidence on physics problem solving. To recapitulate, the -basic

differences found thus far are: (a) the two groups use different

strategies for solving problems, forward versus backward; (b).they seem

to have different chunking of equations; (c) in an initial phase of

problem solving, experts tend to carry out a "qualitative analysis:* of

the problem; and (d) experts are faster at solving problems. One of

our goals is to describe more extensively these differences between

experts and novices.
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The second question asks: How are the knowledge bases of skilled

and less skilled individuals differently structured? It s clear that

the skilled individual possesses more knowledge, but how is that

knowledge organized? Again, some research has already addressed this

issue. Simon and Simon (1978) initially postulated a difference in the

knowledge base in terms of the conditions of the productions. Larkin

(1979) has postulated a difference in the way equations are stored.

Experts store them in relation to a high level principle, but this this

does not seem to be the case for the novices. In our work and in

Larkin's model Atwood (1980), knowledge is postulated to be organized in

the forms of schemas.

The third question guiding our work is: How does the organization

of the knowledge base contribute to the performance observed in experts

and novices? , The relation between the structure of the knowledge base

and solution processes must be mediated through the quality of the

representation of the problem.

A problem representation, as we stated in Chi, Feltovich, and

Glaser (in press) "is a cognitive structure corresponding to a problem,

which is constructed by a solver on the basis of domain-related

knowledge and its organization." We adopt Greeno's iley, Greeno, &

Heller, 1981) notion of a representation, which takes "the form of a

semantic network structure, consisting of elements and relations between

these elements" (p. 23). Mende, we hypothesize that at the initial

stage of problem analysis, the problem solver attempts to "understand"

the problem (Greeno, 1977), i.e., constructing a representational

network containing elements specifying the initial state of the problem,
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the desired goal, the legal problem solving operators, and their

relational structures. From such a structure, new inferences can be

deduced. Hence, the quality, completeness, and coherence of an internal

representation must necessarily determine the extent and accuracy of

derived inferences, which in 'turn may determine the ease of arriving at

a solution and its accuracy. Therefore, the quality of a problem

representation is determined not only by the knowledge that is available

to the solver, but the particular way the knowledge is organized. One

way to capture empirically the difference between the representation of

the expert and that of the novice has been the amount of -qualitative

analysis" occurring in the beginning of the problem solving processes.

Because of its apparent overriding influence on problem solution

(Hayes & 1976; Newell & Simon, 1972), we have focused our

studies mainly on the representation of a problem. We employ methods of

tapping knolledge in ways other than the analyses of problem solving

protocols, ,ince as we will see shortly, the analyses of protocols often

provide limited information. However, the first study we describe

examines the protocols of problem solving, to see what kind of

information they do provide, as well as to see in what ways they provide

a limited glimpse into the knowledge structure. The next set of studies

looks at the categorization behavior of problem solvers; the third set

of studies looks at the knowledge available to individuals of different

skill levels; and finally, the fourth set of studies examines the

features in a problem statement' that might elicit the categorization

processes--or to put it another way, what is considered to be the

relevant features of a problem by experts and novices.
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Study One: Protocols of Problem Solving

In this first study, we attempted to characterize and contrast,

both quantitatively and qualitatively, the problem solving processes of

experts and novices, beginning with the reading of the problem, through

to the checking of the solution. To do so, the problem solving

protocols of two experts and two novices solving five mechanics problems

were examined. This study was initiated and carried out by Joan

Fogarty. The specific goals were twofold: First, we wanted to describe

some quantitative parameters of expert and novice problemsolving

processes, and compare these data with those existing in the literature;

second, we wanted to contrast some qualitative differences between

experts and novices, particularly focusing on the qualitative aspects of

the analyses of the problem.

The five mechanics problems used in this study were taken from

Chapter 5 of Halliday and Resn,-k (1974). The expert subjects for this

study were two professors of physics who had considerable experienc:

teaching introductory physics. The novices were two freshmen physics

majors (A students), who had just completed a term of 'undergraduate

physics, using Halliday and Resnick (1974) as the textbook, in which

mechanics problems of the type used in this study were taught. Each

subject was presented with written problems, one at a time, and was

instructed to "think aloud" while he solved the problems.
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Quantitative Results and Discussion

A variety of quantitative measures can be obtained fro protocol

data. These are elaborated below.

Errors. The experts on the average, made 1 out of 5 po ible

errors, whereas the novices made three out of five errors. (See Ta

1. Errors are marked by parentheses around the solution time. If onl

a part of a problem is incorrect, then that part is indicated by a

subscript.) As anticipated, experts made fewer errors than novices.

The fact that one of the experts made two errors suggests that these

problems are nontrivial. On the other hand, these are problems that a

competent novice (A student) can solve. Novice K.W., for example,

solved 4.5 out of the 5 problems correctly.

Solution time's. Solution times were determined by timing the

length of the protocols. Looking only at the correct solution times for

the entire problem (see Table 1), the mean solu on time for the experts

averaged about 8.96 minutes, whereas the average correct solution time'

for the novices was 4.16 minutes. The magnitude of our solution time

for ,roblem solving protocols is much longer than those obtained by
I

Simon and Simon (1978). Their problems were selected from a high school

physics text and were limited to kinematics; such problems can be

solved mainly through algebraic manipulation., Our problems were more

complex; they were chosen from a college physics text and involved

dynamics, which requires that forces be explicitly taken into account.

Applying the Force Law requires some physical inferences to be made

before equations can be brought into play.
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Table 1

Solution Time (Sec), Number of Equations Generated, and
Number of Diagrams Drawn, for Each Subject and Problem

Problems

(No. of Subparts)

Problem 1

(1)

Problem 2

(2)

Problem 3

(2)

Problem 4

(3)

Problem 5

(2)

Mean'

Expert R.E. Solution Time 225 625 555 590 585 516

No. of Equations 6 8 12 9 14 9.8

No. of Diagrams 3 4 4 1 ' 2 2.8

Expert M.V. Solution Time (165) (325) A,B 500 590 590 560

No. of Equations 3 5 7 12 15 8.4

No. of Diagrams 1 1 1 2 3 1.6

Novice C.H. Solution Time 275 (585) A,B (925) A (835) A,B,C (325) A,B° 275

No. of Equations , 7 10 12 19 8 11.2

No. of Diagrams 3 3 5 3 3 3.4'

Novice K.W. Solution Time 200 105 (290) 13 655 420 345

No. of Equations 7 10 12 19 7 11.0

No. of Diagrams 2 0 2 2 1 1.4

Note Parentheses around the solution time indicate an incorrect solution. The following letter(s) indicates the incorrect parts) of the
problem.

'The mean solution time was calculated only for problems correctly sowed,

°The subject attempted only Part A of this problem.
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The novices in this study actually solved problems faster than the

experts. However, this seems to be an artifact of the great number of

errors made by Novice C.H. That is, Novice C.H.'s only correct solution

was problem 1, which in fact, took him longer than the rest of the

subjects to solve. But, because problem 1 happens to beo a short

problem, and since that was the only problem he solved correctly, his

average latency aas reduced, because it was determined by the speed of

solving that particular problem. Novice K.W.'s. solution times, on the

other hand, are actually comparable (averaging 7.01 minutes) to the

experts' (averaging 8.96 minutes).

The only obvious outlier in solution time occurs in problem 2,

where Expert R.E. took significantly longer than Novice K.W. Examining

the protocols in detil, we see that Expert R.E. in this case sought

and calculated a value unnecessarily. When he discovered that the

problem was really mu h simpler than he thought, the actual protocol for

the short solution todk only about_1.33 minutes.

Hence, barring unusual circumstances, competent novices not only

can solve these problems, but they can do so in approximately the same

amount of time as experts. However, if the task had emphasized speed,

the experts probably could have solved the problems much faster than the

novices. We suggest, however, that, protocol data are not a particularly

viable way to assess the speed of problem solving.
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Number of guantitative relations. Another quantitative parameter

that may shed some light on skill differences between experts and

novices is the number of quantitative relations generated by the

subjects as they solve problems. Table 1 also shows the total number of

quantitative relations generated by each subject for each problem. A

quantitative relation is defined as any mathematical relation among

physical entities, and it generally takes the form of an equation.

Excluded were algebraic manipulations of already generated equations,

and instantiations of equations' (ie., substituting values for the

variables). In general, there appear to be no systematic differences in

the number of quantitative equations generated as a function of skill.

There was greater variability in the number of equations generated by a

given subject for the different problems, than between subjects on the

sane problem.

"Chunks" of equations. As stated earlier, Larkin (1979) has

hypothesized that experts store physics equations in tightly connected

"chunks," whereas novices store them individually. To test the

-chunking" hypothesis, Larkin (1979) measured the times during the

problem solving process when quantitative relations were generated. Her

results showed that thp expert generated a great many pairs of equations

with short pauses between the equations, whereas her novice generated

fewer equations with shorter pauses.
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Using the same analysis, we also examined the distribution of

generated equations over time. For each subject, the time interval

between the generation of each pair of quantitative relations was

calculated for' each roblem. Our data do not discriminate between the

generation pattern of xperts and novices. If anything, the results

indicated that the pposite was true. That is, the novices seemed 6

have generated a great r number of relations in close succession.

There are su tantial individual differences, however. Novice CO.

showed the s rongest degree of "chunking," or generated the largest

number of quantitative relations in rapid "bursts." How do we account

for the discrepancy between our results and Larilin's? One

interpretation is to hypothesize that a burst of equation generation may

be an artifact of various problem solving strategies that subjects may

adopt. Our novice subjects, for example, reported that when they get

stuck on a problem, they generate as many related equations as they can

think of on paper. They then look at the equations they have generated

to get some hints about how to proceed. This would produce clusters of

equations.

Another strategy, reflecting the style of solution processes of

individual subjects, relates to the way equations are generated, that

is, often all at the same time. Novice C.H., for example, would spend a

considerable amount' of time generating equations. This pattern of

solution processes would necessarily inflate the number of equations

generated within a short period of time. Perhaps the generating of

equations in bursts' may also be the outcome of another artifact,

discussed in the next section: the drawing of free -bogy diagrams.
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Even though we did not reJplicate Larkin's (1979) finding that

experts tend to genera equations in clusters, this does not deny the

possibility that the storage of equations may indeed be different in the

knowledge base of the experts and novices. Our conclusion is that

-protocolanalysis of equation generation will not address this

particular issue, directly. In, order to address the issue of how

equations ar in the knowledge bases of experts and novices, one

needs to desio . study where experts and novices are asked to generate

or freely associate equations outside the context of a problem solving

situation.

Number of diagrams generated. Another potentially ,interesting

quantitative measure is the numbqr of free-body diagrams drawn 'oy the

ft,

subjects. The construction of free-body diagrams, appears to form an

important component of problem solving. 'Free -body diagrams are partial

figures that depict partial abstractions of the total physical

situation. They,may be drawn for all or part of the physical situation,

and utilize directional arrows denoting the forces acting in a physical

The number of diagrams including free-body diagrams drawn by each

subject for each problem is also shown in Table 1. Again, there appears

to be no systematic skill differences, although tl.zre sz.ms to be some,

individual differences, with Expert R.E. and Novice C.H. drawing-the

greatest number of free-body diagrams. These two individuals also

generated the greatest number of equations, and also produced the

greatest amount of clustering.
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Drawing freebody diagrams may inflate the number of equations

generated in clusters. Both novices, as well as the experrs to a lesser

extent, utilized the strategy of constructing freebody diagrams, which

is taught and emphasized in introductory physics courses. Using the

freebody diagrams, equations relating the forces can be generated.

I Hence, the more frequently a subject draws a freebody diagram, the more

likely he is to have clusters of equation generation. Therefore, bursts

of equation generation may be an artifact of a solver's need to generate

many diagrams.

It is not clear to us what the purpose is of generating many

freebody diagrams. We speculate that when a problem is difficult for a

subject, the subject tendg,to draw more diagrams. Each drawing may be

seen as an attempt to create a meaningful representation of the problem.

For example, for problems that took the longest to solve, a large number

of diagrams tended to be generated (such as problem 2 for Expert R.E.).

Furthermore, problem 2 was the one that Expert R.E. had some difficulty

with, having derived a value unnecessarily. Likewise, for Novice C.H.,

problem 3 took the longest time to solve (which he did incorrectly); he

also generated the greatest number of diagrams for that problem. These

speculations need to be confirmed, but it seems that drawing freebody

diagrams may be a way of helping the subject to create a meaningful

representation. It may also indicate that the subject is having

difficulty going beyond the visual stage of problem representation.
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In-another study Study Five in this paper), when four experts and

four novices were asxed to solve a problem, the novices generated four

times as many (4.7) diagrams as the experts (1.0 diagrams). The novices

had more difficulty solving the problem correctly (3 out of 4 errors)

than the experts (1 out of 4 errors). This provides some additional

support for the notion that frequent generation of diagrams is used as

an external aid to create a meaningful problem representation, and

especially when subjects are having difficulties.

Summary of quantitative measures. The results of this study

indicate that few of the quantitative measures we used meaningfully

differentiated the experts from the novices. The quantitative measures

obtained from protocols seem to be tenuous easures that are confounded

with individual differences and the particul r strategies adopted by the

problem solver. We now turn to qualitative analyses of the protocols to

locate differences that can be attributed to skill.

Qualitative Results and Discussion

For reasons already indicated, and since a great deal of attention

had been devced to the equation generation and manipulation stages of

problem solving, in this section of the data anlayses, we will focus our

attention on the initial "qualitative analysis" stage of problem

solving. We assume that during this stage of processing, a

representation of the problem is constructed, and that this occurs

primardy during reading of the problem, and is completaiin the fii

30-40 seconds after the problem has been read. We estimate that this

stage takes a very short time because it appears to be analogous to the
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stage of "ins:ial analytical assessment" that Simon and Barenfield

(1969) talked about for chess problem solving, and the stage cf

"preconception" that expert musical sight readers engage in prior to the

actual playing of a musical piece (Wolf, 1976). The,short duration of

these initial processes is an important consideration in determining our

subsequent experirdental procedure.

Figures 2 and 3 show two samples of protocols, one from Expert R.E.

and the °tiller from Novice C.H., both on the first part of problem 5.

The protocols have been segmented into four types of episodes:

"qualitative analysis," drawing diagrams (which may be either the

diagrams depicting the main components of (the problem, or the abstracted

free-body diagram), generating equations, and manipulating equations.

There are several general remarks that can be made about the initial

stage of the protocols.

Before proceeding with the discussion of the protocol data, it may

be necessary to clarify a few terms and operational definitions. Any

statements in the protocols that do not relate to drawing diagrams,

generating and manipulating equations, were considered to be

"qualitative analysis" of the problem. These statements can further be

of a variety of types, such as references to planning, checking of the

solution, and so on. We focused specifically on those "qualitative

analysis" statements that seemed to generate knowledge not explicitly

stated in the problem, that is, inferences. (These "qualitative

analysis" statements are not to be confused with qualitative analysis of

the protocol data.)



TAXONOMY OF

EPISODES

EXPERT R. E.

(PROBLEM4#5)

PHYSICS PROTOCOLS

QUALITATIVE ANALY-

-SIS (INFERENCES)

DRAWING FREE BODY

DIAGRAM

Constant velocity----> Frictional

force

Frictional force opposes force
due to weight of block

*Friction--->Coefficient of fric-

tion -N. angle 0,

GENERATE EQUATIONS mgsino - fk = 0
N - mgcoss = 0

fk = picN = 11101gCOS,

ALBEGRAIC MANIPU-

LATION

mgsins - ymgcoss = 0
yk = tans

"There must be a frictional force
retarding-the motion- because-

otherwise the block would accel-
erate down the plane under the
action of its own weight...the
angle must be,related to the
coefficient of friction somehow."

"You would have a normal force
perpendicular to the plane, the
weight down, and the force of
kinetic friction would lie along
the plane.. the angle between
the weight vector and the normal
to the plane is also angle ."

"For motion down the plane would
be mg times sins minus f which
is retarding things and that's
equal to zero. For motion per-

pendicular to the plane, you
would have the normal force act-
ing upward, but mgcoss acting
downward or into the plane and
those two things sum to zero.
The only relation you need in
addition is that the force of
kinetic friction is y times the
normal and is therefore y times
mgcoss."

"So substituting that (f = ymgcoss
into the first equation, which
I've circled, you would then have
mgsins, f which would be y times
mgcosS, and all of that would be
equal to zero, and so what one
finds then is that y, the coef-
ficient of friction must be tans."

REREAD QUESTION A

Figure 2. Expert R.E.'s protocol on problem 5, segmented into episodes.
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(PROBLEM #5) CONTINUED

TAXONOMY OF

EPISODES PHYSICS PROTOCOLS

DRAW FREE BODY

DIAGRAM

UAU TAT I VE

ANALYSIS

ENERATE

UALITATIVE

ANALYSIS

ENERATE

ANIPULATE

UALITATIVE

ANALYSIS

(INFERENCE)

(CHECK ANSWER)

Vf2
Vo

2 2
= 2ax

mgsino + ukmgcoso = ma

Ogsino + uolgcoso= Oa
" sino

uk = tano
coso

a = gsino x Viigcoso

= 2gsino

block slides uniformly

---'fk Fg

= mgsino

f now in opposite direc-
tions-->

Total Force = F
g
+ f

k
= 2mgsino

_ Ftotal = 2gsi"
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"So let's (1;:.;aw the plane again...

the difference is that the fric-
tional force...acts in the other
direction."

We know the initial speed is
Vo...I'm sort of fishing here
for a minute, the final speed...
is obv;ously zero."

We have an expression which
relates several things of
interest to us.. -.all at the

same time."

"We can easily solve for x
providing we know the other '

things in the equaticn....We
don't kmw a but that's not
hard to find."

This time both mgsin4 and
the frictional force...those
two forcesact in the same
direction."

"The masses cancel everywhere
...we also'know pk...uk is the
tangent of wnich is the sin
of 0 over the cos of 0...the
coso's cancel and you're left
with the acceleration down the
plane of...twice gsine.

"So effectively you have...an
acceleration...of twice the
weight... I n the first part
of the problem...friction...
must be exactly equal to gsino
and if you have it operating
in the opposite direction..."



EXPERT R. E.

(PROBLEM #5) CONTINUED

TAXONOMY OF'

EPISODES PHYSICS PROTOCOLS

MANIPULATE 0 - Vo
2
= 2(-2gsino)x

x = Voz/4gsinq
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"Now let's go ahead and solve
for...V Final squared was 0.
V initial squared was what it

is...so what you end up with
for,, for x is Vo squared over
4gsino."



TAXONOMY OF

EPISODES

NOVICE C H.

(PRoBLEm(15)

PHYSICS PROTOCOLS

0

DRAW DIAGRAM

QUALITATIVE ANALY- Constant velocity

SIS (INFERENCES) >ZF = o
>friction

RAW FREE BODY

DIAGRAM

ENERATE EQUATIONS

ANIPULATE

ENERATE

Force parallel to plane =

mgsinc
FN = mgcosc
f = uFN

f = umgcosc

"Let me draw a picture. An in-
, clined plane with slop angle 0

...and it's (the block) sliding
down the plane with a velocity
...constant velocity."

"Since it's (the block) sliding
down the plane with constant
velocity, it means,the sum of
the forces is zilch sothere's
a, there's got to be some kind
of friction on the thing..."

"I'll draw a free body diagram.
There's the weight mg, there's
the frictional force, then
there's the normal force per-
pendicular to the plane.

"Ok. So I'm going to draw
trusty axes and resolve weight
into a, into....You've got
there sothis mgcosc, and this
is mgsinc...normal force is
going to be equal to mgmsc
and friction equals, umm...0
times the normal force."

"So that frictional force is
equal to umgcos0."

V2
'

V . Vo- 4 2a(x-xo) "The block is projected up the
plane with an initial velocity.
So I'm going to use...equation
for motion V2 = Vol + 2 times
acceleration times change in
distance."

Figure 3. Novice C.H.'s protocol on problem 5, segmented into episodes.
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NOVICE C. H.

(PROBLEM #5) CONTINUED

TAXONOMY OF

EPISODES PHYSICS PROTOCOLS

MANIPULATE

'QUALITATIVE

ANALYSIS

(INFERENCE)

DRAW FREE BODY

DIAGRAM

x
0
=0 V= 0

Vol
7i- = x

GENERATE EFx = ma

"Initial position I'm going to-
call 0...final velocity equals
0 so' I get Vo(sic) over 2a is
going to equal the x."

"a is going to be acceleration
due to the frictional force."
(WRONG)

"Now we've got a different
drawing. We've got mg and the
velocity is up the plane so
frictional force...is down the
plane."

"...sum of the forces in my
x direction is going to equal
Mass times acceleration."

MANIPULATE mgsino + f = ma "So, you've got mgsino + fric-

v mgsino + umgcos = ma tional force equals the mass

a = g(sino + ucos0) times acceleration, so fric-
tional force is equal' AT,

X=
Vol u times the normal force...

(gsino + ucosO my m's go out so the accelera-
tion equals g times sine +

ucoso. So I substitute back
in the other equation."
(Leaves out factor of 2) ,
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First, contrary to the picture painted earlier, the protocol data

indicate that our novices also spent time analyzing the problem

qualitatively. During this stage, some inferences about the problem are

drawn. A simple count of the number of propositions that were made that

can be judged to be inferences shows that experts make, on the average

12.75 propositions and novices make 10.58, which is not reliably

diffe:ent. 'Consistent with our earlier assertion, the initial episode

of "qualitative analysis" is usually short in duration, taking only one

paragraph in the protocols.

The second observation is that, unlike what is commonly believed,.

the "qualitative analysis" episode often occurs throughout the

protocols, not just at the beginning. For example, the inference

episode occurs, on the average, 2 1/2 times throughout each-problem for

the experts 'And 1 1/2 times for the novices, although this difference is

again not significant. Because of this phenomenon, it is difficult to

ascertain exactly when the construction of a representation is

completed. These protocols lead us to think that a gross representation

is initially constructed; then if it needs to be refined, that can

occur later in the protocol.

The third observation is that errors in solution have.two sources.

One source is trivial computation error, resulting either from faulty

manipulation or instantiation of equations. An example of a trivial

computation error occurs in the last episode of Figure 3. In

manipulating the equations, the novice made an error by a factor of two.

The other source of solution errors can be traced to either the

generation of wrong inferences, or the failure to generate the right
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inference. The inference episode in Figure 3 having an asterisk beside

it, indicates an example of a wrong inference. We attribute the source

of solution errors in general to these incorrect inferences, even though

in this particular case, this incorrect inference was not the cause for

the problem's incorrect solution. This is because the novice was able

to generate all the correct equations. The mistake in this problem

arises from the solver's failure to complete the solution by

substituting for P. Incorrect inferences are relatively easy to detect

in the protocols. What is more difficult to capture in these protocols,

is the solver's failure to generate a necessary inference. This can be

captured only by comparing and contrasting the expert's and the novice's

protocols, in trying to understand a novice's error. Our interpretation

is that Novice C.H. did not complete the solution (see the last episode

of Figure 3) because he failed to !prate the Inference that the

coefficient of friction u is somehow related to the angle 4), as did the

expert (see Figure 2,, the first episode). Without setting an explicit

goal to relate the two (II and angle 4)), Novice C.H, could not solve the

problem, even though he had all the necessary equations.

Hence, in general, we would conclude from examination of the

inference generating episodes of the protocols, that both experts and

novices are just as likely to spend time generating tacit knowledge

about a problem, and both groups are just as likely to do so iteratively

across the entire problem solving protocols. However, it is the quality !

of the inferences that matters. Novices are more likely to either

generate tne wrong inference, or fail to generate the necessary

inferences. A large number of the novices' errors can be traced to this

source.
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Studies on the Categorization of Problems

To say that novices either fail to make the appropriate inferences

during qualitative analyses, or that they do not generate inferences at

all, does not explain the source of incomplete or erroneous inference

making. To uncover this limitation of the novices, we have to

understand the knowledge structure of the experts and novices, and how

that knqwledge enhances or limits their problem solving abilities.

Analyzing the protocols of problem solving does not appear to provide

enough information of this kind. Our research described here,

therefore, is concerned with ways of exploring the knowledge of a

problem solver, through means other than analyzing solution protocols.

We hypothesize that a problem representation is constructed in the

context of the knowledge available for a particular type of problem.

Further, we make the assumption that the -knowledge useful for a

particular problem is indexed when a given physics problem is

categorized as a specific type. Therefore, expert-novice differences

may be related to poorly formed, incomplete, or nonexistent problem

categories. Given this hypothesis, we investigated knowledge contained

in problem categories. Our first order of business then, was to

determine whether our initial hypothesis is true: that is, are there

reliaole categorizes to which problems are typed, and if so, are these

categories different for novices and experts?
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Evidence already exists to suggest that solvers represent problems

by category, and that these categories might direct problem solving.

For-instance, Hinsely, Hayes, and Simon's (1978) study, found that

college students can categorize algebra word problems into types, and

that this categorization occurs very quickly, sometimes even after

reading just the first phrase of the problem statement. This ability

suggests that "problem'schemata" exist and can be viewed as interrelated

sets of knowledge that unify superficially disparate problems by some

underlying features. We refer to the knowledge associated with a

category as a schema. The chess findings of Chase and SimOn (1973a,

1973b) can also be interpreted as showing that choosing a chess move

results from a direct association between move sequences and a chunked

representation of highly stereotyped (or overlearned) chess pieces or

patterns. There is also evidence in studies of medical diagnosis that

expert diagnosticians represent particular cases of disease by general

categories, and these categories facilitate the formation of hypotheses

during diagnostic problem solving (Pople, 1977; Wortman, 1972).

Study Two: Sorting Problems

To determine the kinds of categories subjects of different

experience impose on problems, we asked eight advanced Ph.D. students

from the physics department (experts), and eight undergraduates

(novices) who had a semester of mechanics, to categorize 24 problems

selected from eight chapters (5 through 12) of Halliday and Resnick's

(1974) Fundamentals of Physics. The subjects' task was simply to sort

the problems based on similarities in how they would solve them.

62



Analysis of quantitative results. Again, no gross quantitative

difftrences between the two skill groups were produced. For example,

there were no significant differences in the number of categories

.
__produced by each skill. group (both' groups averaged about 8.5

categories), and the four largest categories produced by each subject

captured the majority (about 77%) of he problems. There was also

little difference in the amount of time it took experts and novices to

sort the problems, although experts tended to take slightly longer time

about 40 seconds per problem (discarding one outlier), whereas novices

took about 37 seconds per problem.

The absence of gross quantitative differences,in measures such as

number of categories, number of largest categories, and time to

categorize confirms the notidh that there are no fundamental capacity

differences between experts and novices. That is, the novices are not

inherently slower, for example, nor do they have limited abilities to

discriminate the problems into eight categories. The lack-0Iva general

quantitative difference points to the necessity of examining the

qualitative differences.

Analysis of ualitative results. If we examine the nature of the

V

categories into which experts and novices sorted the problems, they are

qualitatively dissimilar. This difference can most dramatically seen

by observing the two pairs of problems that the majorityf the subjects

of each skill group sorted together. Figure 4 shows two pairs of

problems that eight out of eight novices grouped together as similar.

These problems have noticably similar "surface structures." By "surface

structures," we mean either (a) the objects referred to in the problem
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Diagrams Depicted from Problems Categorized Novices' Explanations for Their Sin:dant)
Groupingsby Novices within the Same Groups

Problem 10 (11)

Problem 11 (39)

10M

Problem 7 (23)

Problem 7 (35)

Novice 2 "Angular velocity, momentum,
circular things"

Novice 3 "Rotational kinematics, angular
speeds, angular velocities"

Novice 6 "Problems that have something
rotating angular speed"

Novice / "These deal with blocks on an
incline plane'

Novice 5 "Achned plane problems,
coefficient of friction"

Notice 6 "Blocks on inclined plane:
with angles"

Figure 4. Examples from novices" problem categories. Problem
numbers represent chapter and problem number from
Halliday and Resnick (1974).
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(such as a spring or an inclined plane), (b) the keywords that have

physics meaning (such as center of mass or friction), or (c) the

physical configuration that involves the interaction of several object

components (such as a block on an inclined plane).

The suggestion that these surface structures are the bases of the

novices' categorization can be further confirmed by examining subjects'

verbal justifications for the categories, which are presented on the

right-hand column of Figure 4. The novices' explanations indicate that

they grouped the top two problems together because they both involved

,-rotational thi0" and the bottom two together because they involved

-blocxs on an inclined plane."'

For experts, surface features do not seem to be the basis' for

categorization. There is neither a similarity in the keywords used in

the problem statements, nor in the visual appearance of the diagrams for
/

the problems, as shown in Figure 5. No similarity is apparent in tite

equations used for the problems that are grouped together by the

majority of the experts. The similarity underlying the experts'

categorization can only be detected by a physicist. It appears that the

experts classify according to the major physics principles (or

fundamental laws) governing the solution of each problem (sometimes

referred to as the solution method). The top pair of problems in Figure

5can be solved by the application of the Conservation of Energy Law

while the bottom pair is better solved by the application of Newton's

Second Law (F -MA). The verbal justifications of the subjects confirm

this analysis. We might refer to the principles underlying a problem as

the "deep structure" of Se problem, which is the basis by which experts

categorize problems.
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Diagrams Deported from Problems Catergonzed Experts' Explanations for Their Sum lant;
by Experts within the Same Groups Groupings

Problem 6 (21)

K 200 ntim I .6 m
*Ilionimf ., .

r---1
! I

M

equilibrium

Problem 7 (35)

15 m

Problem 5 (39)

Problem 12 (231

Mg

Expert 2 "Consenation of Energy"

Expert 3 "WorkEnergy Theorem
They are all straight-forward
problems "

Expert 4 "These can be dont from energy
consideration: Either you should
know the Principle of Consenanon
of Energy, or work is lost
somewhere."

Expert 2 "These can be solved by ,Vewton's
Second Lent"

Expert 3 "F ma, ,Newton's Second law

Expert 4 "Largely use F ma, Vet:ton's
Second /ant"

Figure 5. Examples from experts' problem categories. Problem

numbers represent chapter and problem number from
Halliday and Resnick (1974). '
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In sum, the results of this study uncover several facets of problem

solving that were not observable from protocol analyses. First, through

a sorting task, it became apparent that categories of problems exist.

These categories probably correspond to problem schemas, that is,

unified knowledge that can be used to solve a particular type of

problem. Second, category membership can be determined rather quickly,

between 35-45 seconds. This is the amount of time we initially alloted

to the qualitative analysis episodes of problem solving. Third, the

results also imply that within 45 seconds, the experts at least, can

already perceive the solution method applicable to the problem. _The

possibility that such categorization processes may occur during problem

solving is never evident from the problem solving protocols, because

there was never any cause for solvers to mention either the principle

underlying a problem or the surface st':ucture of the problem. Only

through an alternative task, such as sorting, are we able to detect the

presence of categories that may be related to solution methods.

Study Three: Sorting Specially Designed Problems

If the interpretation of the previouS--burting results is accurate,

then one should be able to replicate the findings, and further, to

predict how a given subject of a specific skill level, might categorize

a given problem. In this study, we specially designed a set of 20

problems to test the hypothesis that novices are more dependent on

surface features whereas experts focus more on the underlying

principles. Table 2 shows the problem numbers and the dimensions on
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Table 2

Problem Categories

Principles

4. Momentum

Surface Structure Forces Energy (Linear or A ular)

Pulley with hanging blocks
11

20t

191
i

14' 3't

Spring 7

18 16 1

17+

9 6+

Inclined Plane 14. 3't
5

Rotational 15 2

13

Single hanging block 12

Block on block 8

Collisions (Bullet "Block"

or BlockBlock) 4

6+

10+

.%ote ' Problems with more than one salient surface feature Listed multiply by feature
1 Problems that could be solved using either of two principles, energy or force

+ Two step problems, momentum plus energy
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which they were varied. The lef column indicates the major objects

that were used in the problem; t three right headings are the

solution methods (or the basic laws) that can be used to solve them.

Figure 6 shows an example of a pair of problems (corresponding to

problems 11 and 18 in Table 2), which contain the same surface structure

but different deep structure. In fact, the problems are identical

except for the question aqked. From the results of Study Two, we

predicted that the novices woul>grot(together problems with similar

surface features, such as the two problems shown in Figure 6, whereas

experts would not. Experts, instead, would group together problps that

have similar deep structure, regardless of the surface features.

Intermediate subjects might exhibit some characteristics of each skill

group.

The results confirmed our pret.ious interpretations. Our one

novice, who had completed one course in mechanics, grouped strictly on

the surface structures of the problems. Table 3 shows his problem

categories, and the explanations he provided for his groups. First of

all, if one scans only the verbal justification column (far right), it

is evident that, ex for the fourth group, where he mentioned

-Conservation of Energy," a physics principle, the remaining categories

were all described by either physics keywords (such as "velocity

problems"), or the actual physical components contained in the problem

("spring"). And indeed, he collapsed problems across the physics laws.

For Croup 5 (Table 1), problem 18 is obviously solvable by the Force

Law, whereas problem 7 is solved by the Energy Law (see Table 2 again).

The only category for which he made any reference to a physics principle
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No 11 (Force Problem)

A man of mass M1 lowers himself to the ground
from a height X by holding onto a rope passed
over a massless frictionless pulley and attached to
another block of mass M2 The mass of the man
is greater than the mass of the block What is
the tension on the rope,

No 18 (Energy Problem)

A man of mass M1 lowers himself to the ground
from a height X by holding onto a rope passed
over a massless frictionless pulley and attached to
another block of mass M2 The mass of the man
is greater than the mass of the block With what
speed does the an hit the ground,

Figure 6. Sample problems.
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Table 3

Problem Categories and Explanations for Novice H P

Group 1

Group 2'

Group 3

Group 4

Group 5.

Group 6

2, 15

11, 12,

4, 10

13t, 17

6, 7, 9,

3, 5, 14

16',

18'

19

"Rotation"

"Always a block of some mass hanging down"

"Velocity problems" (collisions)

"Conservation of Energy"

"Spring"

"Inclined plane"

Groups 7, 8, 9 were singletons

Note Problem discrepant with our prior surface analysis as indicated in Table 3
t Problems disrepant with our prior principles analysis as indicated in Table 3

Table 4

Problem Categories and Explanations for Expert V V

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

2,

18

1,

19,

12,

6

13

4

5,

15,

10,

20

91,

17

16,

11,

7

8, 3, 14

"Conservation of Angular Momentum"

"Newton's Third Law"

"Conservation of Lineat Momentum"

"Conservation of Energy"

"Application of equations of motion" (P MA)

"Two.step problems Conservation of,. Linear

Momentum plus an energy calculatVol
some sort"

Note 1 Problem discrepant with our prior principles analysis
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is Group 4, which he described as a "Conservation for Energy" category.

However, this is to be distinguished from the expert's labeling of

"Conservation of Energy." This novice only labels those problems as

"Conservation of Energy" when the term "Energy" is actually mentioned in

the problem statements themselves, as was the case here.

In contrast, the expert's classifications are all explained by the

underlying principles, such as Conservation of Angular Momentum,

Conservation of Energy, etc. (see Table 4). Furthermore, as predicted,

the expert collapsed problems across the surface similarities. For

example, for Group 3, problem 1 is basically a spring problem, and

problem 4 is a collision problem.

Table 5 shows the groupings of an advanced novice (an

intermediate). His categorizations of the problems are characterized by

the underlying physics principle in an interesting way. These

principles are qualified and constrained by the surface components

presen in the problems. For example, instead of classifying all the

Force ,problems together (Groups 4, 6, and 7), as would an expert, he

explicitly separated them according to the surface features of the

problems. That is, to him. there are different varieties of Force

problems, some containing pulleys, some containing springs, and some

containing inclined planes.

To summarize this study, we were. able to replicate the initial

finding tha_ experts categorize problems by physics laws, whereas

novices categorize problems by the literal components. If we assume

that such categories reflect knowledge schemas, then our results from
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Table 5

Problem Categories and Explanations for Advanced Novice M H

Group 1.

Group 2

Group 3.

Group 4

14. 20

1, 4, 6, 10. 12t

9. 13t 17 , 18t

19. 11

"Pulley"

"Conservation of Momentum" (collision)

"Conservation of Energy" (springs)

"Force problems which involve a massless
pulley" (pulley)

Group 5 2. 131 "Conservation of Angular Momentum"
(rotation)

Group 6 71, 161 "Force Problems that snyolve springs"
(spring)

Group 7 8, 5t, 3 "Force problems" (inclined plane)

Vote Italic numbers mean that these problenis share a similar surface feature, which is indicated
in the parentheses, if the feature is not explicitly stated by the subject,
t Problems discrepant with our prior principles analysis.

'13

..,
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the person at the intermediate skill level suggest that with learning,

there is a gradual shift in organization of knowledge, from one

centering on the physical components, to one where there is a combined

reliance on tae physical components and physics laws, to finally, one

primarily unrelated to the physical components.

Study Four: Hierarchical Sorting

The results of the previous two sorting studies strongly suggest

that the problem categories of the experts are different from those of

novices. That is, we assume that the differences lie not only in the

"category labels" that subjects of different skills prefer to use. We

assume that problem categories corresond to problem schemas and,

theoretically, schemas can have embedded in them subschemas, and be

embedded in higher-level or super-schemas. Hence, if we can identify

some similarity of the contents of schemas at different levels for

individuals of different skills, then perhaps we will have converging

evidence that the schemas of the novices and experts are indeed

different, and tha, their schemas might be the same when different

levels are compared.

To test this assumption, a hierarchical sorting task was designed

by Christopher Roth. In this task, subjects were first43ked to sort

the problems in the same manner as in the previous two studies. Then,

their groups, which they had initially sorted, were returned to them,

and they were asked to further subdivide each group, if they wished.

The sorting of each group was conducted in a depth-first manner. When

all the discriminations of each group were completed, they were also

74



asked to combine their initial groups, until they no longer wished to

make any further combinations. Subjects' rationale for each group that

they made was also recorded.

Sixteen subjects were run. They ranged from graduate students

(experts) to fourth year physics and chemical engineering majors

(intermediates) to A and C studhnts (novices) who had taken courses in

physics (mechanics and electricity and magnetism). sample of these

subjects' data will be discussed.

The 40 problems used in this study were selected from Halliday and

Resnick, covering the chapters 5-12 of the text (as in Study Two)) which

is the minimumm amount of material typically covered 4n a first year

mechanics course.

There are two aspects of the data to examine: the contents of the

groups, and the tree structures. We believe that the most naive

structures are those generated by the novice C students (H.R. and J.T.),

as shown in Figure 7, top two panels. The circular nodes represent the

groups from the initial sort, and the numbers inside the nodes indicate

how many problems are in that group. The square nodes beneath the

circular nodes are the groups formed when the problems were further

discriminated, and the triangular nodes above the circular nodes

indicate the combinations. The tree structures of these two novices

have three distinct characteristics that none of the other more skilled

Subjects exhibited. First, the initial groups (circular nodes) have a

greater than average number of categories. (Eight categories is the

average number derived from Study Two.) The second characteristic is
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Novice J.T.
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Figure 7. Groupings made by novices and experts on a hierarchical sorting

task. Circular nodes are the preliminary groups made, squares

and hexagons ar subsequent discriminations, and trianges are

the combination
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iLthat they ither cannot make further discriminations (Novice R.R.),

suggesting that their categories are already at the lowest level, or

they make such fine discriminations (Novice J.T.) that each problem is

in a category by Itself. This is reminiscent of the chess results.

Beginners chess players have chunks consisting of one or two pieces. The

nature of the initia\ categories is physical configurations, much like

what was found in Study Two, such as "gravity," "pulley with

weight," etc. When the novice (J.T.)'breaks the categories down so that

each problem is a category, the descriptions of these categories are

very specific, and still *bound to the physical configuration. For

example, one of the initial categories of Novice J.T. is -tension in

rope. When that category was further broken down, one of them was

specified as -tension with two blocks on incline" and another was.

"tension with two blqcks and pulley on incline."

The most sophisticated ,Jree structures of the experts are shown in

the lower two panels of Figure 7. The initial circular nodes are

lgenerally the different varieties,of physics principles, much like those

uncovered in Study Two. For Expert C.D., one group of circular nodes

contains Conservation of Energy, Conservation of Momentum, and

Conservation of Angular Momentum, and the other group of,three are F -MA,

F-MA to find the Resultant Force, and Simple Harmonic Motion. Each

group of three (circled) categories was further collaps 'to two

superordinate categories: Conservation Laws and Equations of Motion.

The subordinate categories for the same subject are Inerally

discriminations based on physical configurations, such as -tension

problems." Hence, from our limited analyses, we could hypothesize that
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the subordinate categories of the experts correspond to the initial

categories of the novices. Although this study is not definitive in

hypothesizing that experts" categories are at a higher level than

novices' categories, additional da from Study Five will converge on

the same notion.

The results of this study can also be interpreted in the framework

1
proposed.by ttosch (1978) of "basic" categories. The term "basic" can be

used loosely to mean the preferred or dominant categories to which

problems wera.' divided by the subjects. Hence, one could say that the

"basic" categorie!. of the novices correspond to the subordinate

categories of the experts.

Studies of the Knowledge Base

If the knowledge bases of the experts are different from those of

the novices, in what ways are they organized differently, and in what

way does the knowledge of experts and novices enhance and hinder their

problem solving processes? These questions, coupled with the results of

the categorization studies, lead us to an examination of the knowlcdge

bases. The categorization studies sh,.; that without actually solving

the problems, and in less than 45 seconds, exirts were able to encode

the problem into a deep level of representatioa, one that enables them

to grossly determine the solution method applicable to the problem. We

speculate that such encoding skill necessarily reflects the knowledge

base differences between experts and novices. The next set of studies

asks to what extent and in what ways are the knowledge bases of the

novices less complete and coherent than the experts.
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Study Five: Summaries

With these questions in mind, we attempt to capture what subjects

knew about physics, independent of a problem solving context. One

simple approach was to ask subjects to summarize a chapter. This should

reveal the knowledge they would have on a particular topic. We selected

chapter five on particle dynamics of Halliday and Resnick (1974),

because it was the knowledge in this chapter that subjects in the first

protocol study needed in order to starve those five problems correctly.

.
Furthermore, this chapter introduced Newton's three laws, which could be

a common theme of the chapter that all subjects might mjntion during

their summaries, so that we would be able to do some comparispns.

We asked four experts (two college professors, one posruoc who had

never taught lower division physics, and one fifth-year graduate student

who had often taught lower division{ physics) and four undergraduates

(who had just completed the introductory physics course with a B grade.,

.using Halliday and Rensick as a text) to review the chapter for five

minutes, then summarize out loud the important concepts of the chapter.

Subjects were run individually. Fifteen minutes were allotted for the

summary.- The book was also available to them while they summarized, so

that any fimitation in their summaries could not be attibuted to a

retrieval problem. (Then they were all asked to solve a single problem

taken from Chapter S. These problem solving protocols provided the cite

for discussing the frequency of diagram drawing men.ioned in Study One.)
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We began again by looking at various quantitative measures, such as

the length of the summaries, the number of quantitative relations

mentioned in the summaries, and so on. Cursory examination of the data

again suggested that there were no skill differences in any of these

quantitative measures. We then turned to an examination of the content

of the summaries. Since every subject mentioned Newton's three laws of

motion, we compared what they said about two of them.

The top of Table 6 states Newton's Third Law, and the bottom of the

table shows one possible way of breaking down the law into its

subcomponents. Using these subcomponents as a scoring criterion, we

could analyze the summaries Jf the experts and novices, and see what

proportion of the subcomponents were mentioned by each skill group.

ouch results are shown in Table 7. The X's in the table show the

subcomponents of the law chat were mentioned by each subject. On the

bottom of this table are samples of protocols of a novice and an expert.

It is clear from Table 7 that experts in general make more complete

statements about the physical laws than novices, even though the

textbook was available for them to use. Table 8 is another instance of

a similar analysis of Newton's First Law. Again, experts mentioned on

the averge three subcomponents, whereas novices tended to mention on the

average at most two subcomponents. It is also interesting to note that

Expert S.D.'s performance in Table 8 is most "novicelike,- perhaps

because he did not have any experi'nce teaching mechanics.
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Table 6

Newton's Third Law and Its Decomposition

"To every action there is always opposed an equal reaction, or the mutual actions of two
bodies upon each other are always equal, and directed to contrary parts."

Components of the Third Law

(1) The law applies to two general bodies (or particles)

a) Discussion must mention 2 bodies, and

b) These must be general bodies or particles
(Pacpcular exarriPle bodies alone are not sufficient to meet this condition, although
example bodies are allowed to be present)

(2) Action and reaction refer to Forces exerted by each body on the other, where these
forces need not be of any particular type

a) Must be an explicit statement that each body (however body is discussed) exerts a
"force" On the other, and

L)) "Force" must be in general terms (particular example forces, such as kick, push,
alone won't do although such examples are allowed to be present)

(3) Reaction (however stated) is equal in mannitude

(4) Reaction (however stated) is opposite in direction

(5) Line of action/reaction is in a straight line between two bodies
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Table 7

Newton's Third Law Decomposed into Five Components Ynd Two Sample Protocols

Novice Expert

KO SB CH 0,G MV SD BP

Reaction opPbote in direction X X X X X X X X

Reaction equal qmagmude

ActioniReaction involves two
general bodies X X X

Action Reaction are general
forces extended by each body
on the other X X X

Direction of Action Reaction
is a straight line

Examples of Subjects' Summary Protocol

Nov S 8 And his third law states that for every action there's an opposite reaction to it "

Exp 0.G 'The third law states that for every action there is an equal and opposite reaction, or in other
words, if Body A exerts a force on body B, then Body B exerts a force on Body A in a direction
which is along the line Joining the two points When you say bodies in this chaoter, y mean they

are really particles, point masses "
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Newton s First Law ''Every body persists in of state of rest or of uniform motion in a straight lire
unless it is compelled to change that state by forces acting on it."

Novice Expert

J YV SB. KD CH SD OG MV BP

No Net Unbalanced Force X X X X X X X

Rest X X X

Uniform Motion, X X X X X

Straight Line X X X

Examples of Subsects' Summary Protocol

Nov J.W The first one is inertia, which is that a body tends to stay in a certain state unIcss a force acts
upon it "

Nov. S.B First of all there s, the body wants to stay at rest, the body just, it s resi.:once toward any other
motion "

Exp B.P. His first law is a statement that a body IS moving in a uniform velocity in a given straight line or
statics It will keep moving or stay where it is unless some external forces are applied

. Exp 0 G The first law is called the law of inertia And it states that a body persists in its motion along a
straight line of a uniform rate unless a net unbalanced force acts upon the body
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The summaries of experts and novices on a given chapter from a

physics text indicate that experts do have more complete information on

physics laws than novices. This is not surprising in the sense that one

would expect experts to know more. On the other hand, it is surprising

because the students have been taught this knowledge and had the book

available to them. One would hope that, after instruction, the students

have mastered at least the declarative knowledge of the laws of physics,

however, one obvious deficiency of novices is that they had not. One

cannot automatically assume that all students have mastered the

prerep1isite knowledge needed for solving problems. Nor can we assume

that the novices' deficiencies lie mainly in the inadequate strategies

or procedural knowledge that improves with experience in solving

problems.

Up to this poin , our data show that novices are deficient in three

aspects of knowlelga. First, very good students, as Study One shows,

make errors in problem solving only when they have either generated the

incorrect inferences or failed to generate the correct inference during

the initial encoding or representation-generation stage of problem

solving. We attribute the generating of the wrong inference to

incomplete knowledge in the data base, so that the appropriate inference

(the right link between certain nodes in the semantic network; Greeno &

Riley, 1981) coulo not bee made. Second, we discovered that, whether

novices and,experts have the same knowledge base or not, it is organized

difflrently That is, we can view the knowledge of problem types as

schemas, and the experts" schemas center around the physics principles,

whereas the novices" schemas centcr around the objects. Finally, a
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third deficiency in the novices' knowledge base, at least for B

students, is that they lack certain fundamental knowledge of physics

principles.

These three deficiencies in the knowledge base that we have already

identified are general in the sense that we do not have a good grasp of

qxactly what knowledge is missing from the novices' data base (except

for the summary study), nor do we have any means for comparing the

knowledge bases. And most importantly, we have tapped only the

declarative knowledge that the subjects have. The next study attempts

to be more detailed in assessing the knowledge that subjects do have,

provides a means of comparing the knowledge bases between subjects, and

begins to look at the use of procedural knowledge,/ since it is the

procedural knowledge that will ultimately determine how well a person

can solve a problem.

Study Six: Elaboration Study

In this study, we were interested in the knowledge associated with

certain physics concepts. These are concepts generated by the category

descriptors provided by the subjects in the sorting studies. We view

these concepts as labels designating schemas. Hence, the purpose of the

present study was to uncover whli knowledge is contained in the schemas

of experts and novices. From the sorting studies, we concluded that the

schemas of the experts are principle-oriented, whereas the schemas of

the novices are object-oriented. What we needed to know now is how the

schemas of the two skill groups differ. Do the schemas of the experts

contain more information, a different kind of information? Are the

fa
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schemas of the novices subschemas of the expert schemas? This study

addressed these issues.

Two experts (M.G., M.S.), both graduate students, and two novices

(H.P., P.D.) were asked to elaborate on a selected sample of 20

prototypical concepts that, subjects in the sorting studies had used to

describe their classifications. Figure 8 gives a frequency count of

those category labels that were used by the experts and novices in Study

Two. The sample of 20 used in this study ranged from those provided by

experts (e.g., Force Law), to those provided strictly by novices (e.g.,

inclined plane). Subjects were presented with each concept

individually, and given three minutes to tell everything they could

think of about it, and how a problem involving the concept might be

solved.

We use two ways to analyze the contents of these elaboration

protocols. One way is to depict the contents of the protocol in terms

of a node-link network, where the nodes are simply key terms that are

mentioned that are obvious physics concepts. The links are simply

unlabeled relations that join the concepts mentioned contiguously.

Using this method, the networks of a novice's (H.P.) and an expert's

(M.G.) elaboration of the concept "inclined plane" are shown in Figures

9 and 10. Since we view each of these concepts as representing a

potential schema, the related physics concepts mentioned in the inclined

plane protocol can be thought of as the variables (slots) of the scheMa.

For example, in Novice H.P.'s protocol, his inclined plane schema

contains numerous variables that can be instantiated, including the

angle at which the plane is inclined with respect to the horizontal,
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Figure 8. Frequency of use of category labels by eight experts and
eight novices. Asterisks indicate labels used by both
groups of subjects.
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Figure 9. Network representaci.:n of Novice H.P.'s schema of / 1

inclined plane.

88

0



t7

Principles
of

Mechanics

Newton's
Force Laws

If
Acceleration
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whether there is a block resting on the plane, and what are the mass and

height of the block. Other variables mentioned by the novice include

the surface property of the plane, whether or n3t it has friction, and

if it does, what are the coefficients of static and' kinetic friction.

The novice also discussed possible forces that may act on the blcok,

such as possibly having a pulley attached to it. He also discussed, at

the end, the pertinence of Conservation of Energy. However, his

mentioning of the Conservation of Energy principle was not elicited as

an explicit solution procedure that is applicable to a configuration

involving an inclined plane, as is the case with the expert ,t5 will be

seen later. Hence, in general, one could say that the "inclined plane"

schema that the novice possesses is quite rich. He knows precisely what

variables need to be specified, and he also has default yalues for some

of them. For example, if friction was not mentioned, he probably knows

that he should ignore friction. Hence, with a simple specification that

the problem is one involving an inclined plane, he can deduce fairly

accurately what are the key components and entities (such as friction)

that'such a problem would entail.

The casual, reference to the underlying physics \ principle,

,

COnservation of Energy, given by the novice in the previous example,

contrasts markedly with the expert's protocol, in which she immediately

makes an explicit call to two priciples which take the status of

procedures, the Conservation of Energy Principle, and the Law

(Figure 10). (In Riley 6 Greeno-s 1981 terminology, the' would be

considered calls to action schemata.) We characterize them as

procedures (thus differentiating them from the way the novice mentioned
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a principle) because the expert, after mentioning the Force Law,

continues to elaborate on the condition of applicability of the

procedure, and then provides explicit formulas for two of the conditions

(enclosed in dashed rectangles in Figure 10). (She.also explained the

conditions of applicability of Conservation of Energy, but did so during

other segments of the study.) After her elaboration of the principles

and the conditions of applicability of one principle to inclined plane

problems (depicted in the top half of Figure 10), Exprt M.G. continued

her protocol with descriptions of the structural or surface features of

inclined plane problems, much like the descriptions provided by Novice

H.P. (see Figure 9). Hence, it seems that the knowledge common to

subjects of brae, akin groups pertains to the physical configuration and

I,. properties, out that ,-he expert has additional knowledge relevant to

the solution procedures based on major physics laws.

.Another perspective on the difference between the novice's and

expert's elaboratiL.ns of "inclined plane' is to look at the description

that Rumelhart (1981) ascribes to schemas of inactive objects. That is,

an "inclined plane" is viewed by the novice as an inactive object, so

that it specifies not actions or event sequences, but rather, spatial

and functional relationships characteristic of "inclined

planes." Because novices may view inclined plane as an object, they

thus cite the potential configuration and its properties. Experts, on

the other hand, may view an inclined plane in the context of the

potential solution procedures;, that is, not as an object, but more as

an entity that may serve a particular function.

91

9

is



An alternative way to analyze the same set of prdtocols is, to

convert them directly into "production rules," or IV-THEN rules (Newell,

1973). to do so, a simple set of conversion rules can be used, such as

whea the protocols manifest an IF-THEN or \IF-WHEN or WHEN-THEN

*structure. This transformation is quite straightforward, and covers a

majority of the protocol data. Tables 9 and 10 depict the same set of

protocols that were previously analyzed in the form of node -link

structures.
1

,What is obvious from such an analysis is that the experts'

production rules contain explicit solution procedures, such as "u

P.MA," or "sum all the forces to 0." None of the novices' rules

k

depicted in Table 10 contain any actions that are explicit solution

procedures. Their actions can be characterized as attempts to find

specific unknowns, such as -find mass" (see rules with asterisks in

Table 10).

We alluded to an important difference between the way Conservation

of Energy was mentioned by Novice H.P. versus Expert M.G. The present

analysis makes this difference more transparent. The difference lies in

the observation that the novice's statement of Conservation of Energy

(Rule 8 in Table 10) was part of a description of the condition side of

a production rule, whereas the statement of 111..s. principle by both

experts (Table 9 see asterisks) is described on the action side of the

production rules.

o 7
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Table 9

Expert Productions Convened from Protocols

M.S.

1. IF problem involves an inclined plane
THEN a) expect something rolling or sliding up or down

b) use F MA
c) use Newton's 3rd Law

*2. IF plane is smooth
THEN use Conservation of Mechanical Energy

3. If plane is nit smooth
THEN use work done by friction

4. IF pepblem involves objects connected by string and one object being pulled by the other
THEN consider string tension

5. IF string is not taut
THEN consider objects as independent

*2. (IF problem involves inclined plane)
ca

3. IF there is something on plane

1. (IF problem involves inclined plane)'
THEN a) use Newton's Law

THEN can use Energy Conservation

b) draw force diagram

M.G.

THEN determine if there is friction

4. IF there is friction
THEN put it in diagram

5. (IF drawing diagram)'
*' THEN put in all forces - gravity, force up plane, friction, reaction force

6. (IF all forces in diagram)'
THEN write. Newton's Law's

7. IF equilibrium problem
, THEN a) IF 0

b) decide on =ordinate axes

8. IF acceleration is involved
THEN use F MA

9. IF "that's done" (drawing diagram, putting in forces, choosing axed'
THEN sum Components of forces

s Statements in parentheses were not said explicitly by the subject but are indicated by the context.
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Table 10

Novice Productions Converted from Profixols

H.P.

1. (IF problem involves inclined pains).
THEN find angle of incline with horizontal

'2. If block resting on plane
THEN a) find mass of block

b) determine if plane is frictionless or not

3. IF plane has friction
THEN determine coefficients of static and kinetic friction

4. IF there are any, forces on the block
THEN

5. IF the block is at rest
THEN

6. IF the block has an initial speed
THEN

7. IF the plane is frictionleu
THEN the problem is simplified

8. IF problem would involve Conservation of Energy and height of block, length of plane, height of plane
are known
THEN could solve for potential and lanes's. energies

47.

*1,

P.D.

(IF problem involves an inclined plane)'
THEN a) figure out what type of device is used

b) find out what masses are given
c) find outside forces besides force coming from pulley

2. IF pulley involved
THEN try to neglect it

3. IF trying to find coefficient of friction
THEN slowly increase angle until block on it starts moving

4. IF two frictionless inclined planes face each other and a ball is rolled from a height on one side
THEN ball will roll to same height on other side

5. IF something goes down frictionless surface
THEN can find acceleration,of gravity on the incline using trigonometry

6. IF want to have collision
THEN can use incline to accelerate one object

a Statements in parentheses were not said explicitly by the subject but are indicated by the context
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In Figure 10 on the elaboration of an inclined plane, we stressed

the observation that the 'Expert mentioned the conditions of

'42

applicability of the Force Law (the atetements in the dashed

points to the presence of, Rot Jai 'explicit

experts' repertoires, but also of explicitcil,ditions

enclosures). This

ptocedures in the

/
for when a specific procedure applies. Another,analTsitapPintsthis

difference. We examined all statements made by,the two exp tts nd the

two novices throughout-the protocols of the entire,serof 20 incepts,
-1

and recorded all statements made about Conbervation of,\Energy. Nearly

half of each expert's

M.S., .9 out of a total of

conditions under which

statements (10 out of-e'tnlr 22 for-Expet4

21 for, expert M.G.)

Conservation of Energy

example, the following are two quotes, one from each subject.

werqi,specifytng

could be used.

the

For

EFperf M.S. - "If the (inclined plane is smooth, of course

then you cuuld wee Conservation of Mechanical Energy to solve
the problem. If its not smooth, then you've got to take into
account the work done by frictional forces.", slr

Expert M.G. - "Energy conservation can also be used (in a

collision problem) but only for an elastic collision because
no heat is produced."

The novices on the other hand, made only one such statement between them

(1/22 for H.P., 0/13 for P.D.).

In sum, this study shows that the contents of the schemes are

different for the novices and the experts. First, for an object schema,

both experts and novices possess the fundamental knowledge about the

configuration and theirfproperties; but the experts possess additional

knowledge, which may be viewed also as activating higher level schemes

(Rumelhart, 1981) that are relevant to the principle. Second, the

schemes of the expetts contain more procedural knowledge. That is, they
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have explicit procedures, which may be thought of as the action side of

the productions. Finally, the experts' schemas contain much more

knowledge about the Explicit conditions of applicability of the major

principles underlying a problem. Hence, this study, coupled with the

Summary, Study, emphasizes the impoverished nature of novices' schemas,
, -

which can seriously hinder their problem solving success.

Studies to Identify the KeY'Features of Problems

The previous studies have suggested that novices in general, have

deficient knowledge in a variety of ways (perhaps with the exceptions of

A students). It is also important to ascertain whether the difficulties

novices encounter in problem solving lie also in their inability to

identify the relevant cues in the problem as is the case with poor chess

players. The common finding in chess research is that the. poorer

players have greater difficulties seeing the meaningtml patterns on the
-----

chess board. The ability to perceive the relevant chess-board patterns

reflects the organization of the chess knowledge in memory. Hence, we

need to determine whether novice and expert problem solvers both have

the ability to identify the relevant cues in a problem, and if so,, how

this ability affects problem solving. From the studies we have already

discussed, we speculate that the difficulties novices have derive from

their inability to generate the appropriate knowledge from the relevant

cues.

1O
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Study Seven: Basic Approach

In this study, designed and carried out by Paul Feltovich, we were

interested in knowing about the features that help a subject decide on a-,

"solution method," which can be interpreted as one of the three major'

principles (Conservation of Energy, Conservation of Momentum, and Force

Law) that can underlie a mechanics problem of the kind we use. Putting

it another way, we are attempting_to_determine the problem features that

-----
subjects could have used, in the eliciting of their category schemes, if

the "solution methods," at least for the experts, may be viewed as their

schemes of problem types (seelStudy Three).

Subjects in this study were asked to do three things. First, they

were to read the problem statement, and think out loud about _the "basic

approach" that they would take to solve the problem. "Basic approach"

was not further defined for them. Second, they were asked to re-state

the ."basic approach" explicitly in one concise phrase. Finally, they

were asked to state the problem features that led them to their choice.

----- We will focus predominantly on the last aspect of this study.

' Additional details, can be gathered from Chi, Feltovich, and Glaser (in

press). The subjects were two physicists (J.L., V.V.) who had

frequently taught. introductory mechanics, 'and two novices (P.D., J.W.)

who had completed a basic college course in mechanics with an A grade.

The problems used were the same 20 (described in Table 2) used for the

sorting replication (Study Three).

97



Table 11- summarizes the key features cited by the experts and

novices as contributing to their decisions about the "basic approach" to
/ /

NZthe_solution of the problems. The numbers in the table show the .

frequency with which each feature was cited. A feature was included,

for eact skill group, only if it was mentioned at least twice (across

the 20 problems), once by each subject or twice by one subject.

Analysis of these features shows, first of ell-thatthere--ts----

essentially no overlap in the featuiles mentioned by novices and experts

except for the object "spring." Second, the kinds of features mentioned

as relevant by the novices are different from those identified by the

experts. Novices, again, mention literal objects and key terms that are

explicitly stated in the problem, such as "friction" and "gravity." This

is consistent with the results of the categorization studies. Experts,

on the other hand, identify features that can be characterized as

descriptions of states and conditions of the physical situation, as

described implicitly by the problem. In some instances, these are

transformed or derived features, such as a "before and after situation"

or "no external forces." Because these features are not explicitly

stated in the problem, we refer to,these as secopd-order features (or as

we previously mentioned, generated tacit knowledge).

4In Sum, the most interesting finding of this study is at the

features mentioned as relevant for suggesting a sointion method are

different for the expert's and novices. Because the subjects used their

own words to describe what the features are, there is often a lack of

consensus concerning relevant features, particularly between the

experts. In Table 11 for example, in 14 out of the 24 featured cited,
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Table 11

Key Fiat ref Cited by Experts and Novices

V. V. . J. L.

Given initial conditions

Before and after situations

Spring -

9
3

0

3

4

5

No external force 4 1

Don't need details of motion 4 1

Given final conditions 5 0

Asked something at an instant in time 4 1

Asked some characteristics of final condition 4 0
Interacting objects 4

Slited dAstance relation 0 4

Inelastic collision 2 2

. No initial V.onditions 4 0

No final conditions 4 0

Energy easy to calculate at two points- 1 2

No friction or dissipation 3 1

Forceitoo complicated 0 3

Momentum e4sy to calculate at two points 2 1

Compare initial and final conditions 2 0

Can compute wo.k done by.exteroal force 2 0

Given distance 1

Rotational component 0 2

Energy yields direct relation 0 2

No before andafter 2 0

. Asked bout force 2 0

Novices

P. D. J. W.

Friction 3 5

Gravity 3 3

Pulley 3 3

Inclined plane 3 2

Spring 2 3

Given masses 3 2

Coin on turntable 1 1

Given forces 1 1

Force velocity relation 2

Asterisks indicate features mentioned by only one of the two subjects.
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the experts did not refer to the same features, whereas this occurred

I

only once for the novices (see the asterisks). This is consistent with

the in4rpretation That novices uust have seater consensus because they

refer to the explicit key terms in the problem statement .themselves.

Experts, on the other hand, must necessarily show a great deal of

individuar-dIfferences because they transfOrm the literal surface

features into some second-order features, based on their individual

knowledge bases. However, even with such wide individual differences,

there was a distinct characteristic to.the experts' cited features that

distinguished them from the novices' cited features.

Study Eight: Judging Problem afik.11152

6en though the experts cited the abstracted features as the

relevant cues in the previous study, it is still possible that the

experts transfdrmed the same .basic set of key terms as those identified

by the novices. A direct way to ascertain whether subjects of different

skills consider the same set of words as important, is to ask them to

point out the important words in the problem statements. In this study,

we presented six novices (approximately B students) and six experts

(graduate students) the same set i>f 20 problems used earlier; and asked

them to judge (using a 1-5 rating) how difficult a problem was to solve

after reading the problem statement. We then asked them to circle the

key words or phrases that helped them make that judgment. Finally, they

.were asked how those particular key words, helped them make that

decision.
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The most striking finding is the extensive overlap between the cues
,

that experts and novices identified as important for deciding on the

difficulty of a problem. If anything, experts identified fewer cues as

important, compared with the novices... Table 12 presents one of the 20

probreme broken down into eight propositions. There were, on the

average, seven propositions per problem. The enclosed words were chosen

by three 09 more of the six novices, and the asterisks represent those

that three or more experts selected. For 19 out of the 20 problems, the

.experts and the novices circled the same sets of words or phrases in the

problem statements, which are embedded in 2.7 propositions, on ,the

average. Only in seven of the 20 problems did the experts identify

additional cues (about 1.6) whereas in. 13 of the 26 problems, the

novices identified an additional (2.1) cues as important, This result

suggests, at least, that novices' diff culties in problem solving do not

' stem from their failure to identify th relevant cues.

The subjects' responses to bo h the questions of why these

particular cues are important and ow they help them =kg decisions,

were classified according to the following categories: (1) whether the

cues refer..to one of the three fundamental principles ("the cues tell me

to use Energy Conservation"), (2) whether.the cues refer to some surface

featule of the problem, much like what novices refer to when they

categorize problems, (e.g., Figure 8), (3) whether the cues bring, their-

attention to some characteristic of the problem-that is not,related to

physics ("it is difficult to visualize," or "it has many concepts "), .or

(4) whether the cues elicit some reasons that are unrelated to thlk

specific problem (the problem is difficult "because 4 have never solved'
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Table 12

Decomposition of a Problem Statement into Propositions

Problem No. 8

1. A block of mass M1

2. is put on top of a block of mass M2

3. In order to cause the top block to slip on the bottom one,

*4. a Fl must be applied io the top block

5. Assume a frictionless table.

Find the I maxiMum horizontal I force F2

7. which can be applied to the lower block
,

8. so that both,blocks

1

move together

A

1
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it before," or it has a lot of words").. Table 13 is a breakdown of

experts'kand novices' reasons for why a problem was judged difficult or

easy, along with samples of quotes. Consistent with oil: previous

findings, experts,. much more often than novices, rely on theiaunderlying

physics principle when judging the difficulty of a problem-(e.g.,

"compressing spring tells me to think Energy"). They both rely equally

often on problem characteristics, such as whether a problem involves

friction or the center of mass. However, novices are much more likely

than experts to rely oh superficial nonphysics aspects of a problem to

makL their judgments (the third category in Table 13) such as whether

;"it',is abstractly phrased," and it has A lot of words." Finally, the

noviCes often introduce reasons for why a problem is difficult that are

not specific to a \given problem, such as "I have never done problems

likelihia before."

When inferences were generated in the protocols of problem solving

(Study One), and when second-order features were idenediled (Study

Sever), we speculated that such tacit knowledge was generated from the

literal key terms is the problem statement. Now, we can verify some of

these speculations directly, by examining some of the reasons that

subjects gave for how some particular key4E:rms that they circled

',contributed to their judgment of problem difficulty. Table 14 presents

examples of the kind of statements produced by experts. These

statements of reasons can be judged to be inferences generated either

directly\ from the literal terms in the problem, such as "frictionless,

use Conservation of Momentum," or the inferences may be generated fro \a

derived cue, such as "no dissipative forces.," These co\respond to the
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Table 13

Proportion of Response Types'

Novices Experts
_

Abstract Principle 9% 30%
"straightforward application of NeWton's

Second Law"
"collision problemuse Conservation of

Momentum"
-,

"no friction, no dissipative forces, just
apply Energy-Colservation"

Problem Characteristics
Al

33% 35%
"frictionless, problem is simplified"
"massless spring simplifies problem"
"pulley introduces difficulty"

Nonphysics Related Characteristics 40% 28%
"problem is difficult to visualize"
"easy calculationscalculations but hard to understand"
"many factors to consider, make problem

difficult"

Nonproblem related Characteristics 184 7%

"never did problems like this"
"numbers instead of symbols"'
"must consider units"
"diagram distracting"

"ell our problems used symbols for known quantities rather than actual numerical values

V
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Table 14

InfereriEes Generated from Literal and Derived'Cues

Literal Cu. Derived Cue Inference

Frictionless Conservation of Momentum
Frictionless No dissipative forces

No dissipative forces Conservation of Momentum
.-4o dissipative system Conservation of Energy

AFrictionless /
No dissipative force Conservation of Energy

Frictionless No dissipative force Conservation Laws
Energy not consumed Conservation of Momentum

then calculate new Energy
Frictionless Only fc'fice is restoring Newton's Second Law

force
Center of Mai; / No external forces / !MO./0 .IM2V21

at rest
Center of Mass

at rest
Center of Mass Relative Momentum 0

ugu

Mass and Radius
of Pulley

Mass of Pulley,
Massive Pulley
Compressing Spring
Motion
Slip and Force
M: + M2 Collide

M Stops after
=distance L

speed

MerryGoRound

Pulley must be taken
into account

Pulley an't be neglected

Friction

Rotational Motion

Newton's Second Law for
translation and rotation

Consider Rotational
Kinetic Energy

"Rotational Dynamics
Rotational Energy
Rotational Dynamics
Think Energy
Energy Analysis'

Conservation of Energy
and Momentum

WorkEnerg

New7on's Second Law to
Find Acceleration then
Equation of Motion

Conservation of Angular
Momentum
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second-order features mentioned in the previous study.

Recall thattile purpose of this task was to ask the experts and

novices to judge problem difficulty. The experts, in general, were more

accurate at judging the difficulty of a problem than novices. Accuracy

was determined by comparing the ratings of problem difficulties that

subjects gave with our own assessment of how difficult a problem

actually is to solve. The aforementioned examination of the reasons

subjects gave for why a particular problem is difficult, and why those

particular keywords were helpful in identifying a problem's difficulty

(Table 13), suggest that novices are less accurate at judging a

problem's difficulty because they rely heavily on nonphysics related or

nonproblem related features to determine its difficulty. Obviously

these are not the reliable factors to. consider when one attempts to

solve a problem.

In sum, even though the task of this study requesting sources of

problem difficulty is slightly different from either a problem solving

task, or tasks used in the other studies, such as sorting, we suspect

that the features identified as relevant in this task are the same as

those used in other tasks. Basically, the results show that the

relevant and important key terms in a physics problem can be identified

by novices quite accurately. In this sense, a physics problem is not

analogous to a "perceptual" chessboard, in which case the beginner

-cannot pick out the relevant or important patterns. Howe/er, the

similarity between a chess expert and a physics expert remains, and can

be seen in their ability (compared to novices) to abstract the relevant

tacit knowledge cued by the external stimuli. The chess masters'
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superior ability derives from the ability to abstract or impose a

cognitive structure onto the pattern of black and white chess pieces.

That is, novice chess players are just as capable as 'experts at

perceiving he chess pieces per se. However, to "see" the relations

among the pieces require the fitting of one's schemes (perhaps) tq the

configuration of chess pieces.' Similarly;-the novice physicist is just

as capable as the expert physicist at identifying the key terms in a

problem statement. The diffi .1ty resides in the novice's limited

ability to generate inferences and relations not explicitly stated in
.

the problem.

GENERAL DISCUSSION

The goal of this chapter has been to contribute to our

understanding of highlevel competence in complex domains of human

,kpowledge. Expert individuals in various areas of knowledge perform

remarkable intellectual activities, and cognitive psychlogists are on

the threshold of understanding these feats of memory retrieval, rapid

perception, and complex problem "Solving. Since intelligence is

generally measured through tests that assess skill in acquiring new

knowledge in scholastic settings, understanding the nature of the

competence attained should shed light on this ability to learn.

Early in this chapter, evidence was provided for the necessity to

focus on the organization and structure of knowledge, in both

psychological and AI researcL. This trend toward understanding the

influence of knowledge is relatively recent, in contrast to the earlier

emphasis onseara algorithms and other heuristics for deducing and

107



retrieving information. The techniqt.es and theories that'evolved, such

as meansend analysis, were intended to be independent of the particular

data base, and as such, have proven to be valuable search heuristics

that are generalizable across different, tasks and knowledge domains.

The turn to a focus on the knowledge base was necessitated in part

by the inability of psychological theories to model human capabilities

solely on the basis of search heuristics; and in part by the limitations

discovered in attempting to construct AI programs that would outperform

humans, even though, the compute 's search capabilities are essentially .

limitless. Hence, the constraints of powerful search techniques, when

they did not engage an organized knowledge structure, soon compelled

researchers to develop theories and programs that took account of the

role of knowledge structure.

a emphasis on the knowledge base has also changed the direction

of research. Since knowledge has different degrees of structure,

depending on an individual's experience, it was intuitively apparent

that an important problem was how a particular knowledge base is

structured. The obvious choice was to model the expert's knowledge, as

4.,

was done most'aramatically in a number of Al programs. This choice has

also led to psychological investigations of developing structure of

novices' knowledge, in contrast to the richly organized structure of

experts' knowledge.
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The research on problem solving generated by this new emphasis has

revolved around understanding the processes of arriving at a solution,

in the context of the knowledge available to a solver. In physics, this

has led to' the construction of numerods theoretical models that attempt

to simulate the processes of problem solving, in particular, the

knowledge that is necessary to generate a particular ses4nceof

equations. Other theoretical models constructed by AI researchers have

put more emphasis on the reprecentation of the problem in the context of

h
,

e available knowledge.

The important issue of problem representation has alsi3 been

`recognized in the psychological research. It is conspicuous in

protocols ,f problem solving in the form of "qualitative analysis" of

tt.. problem, which usually occurs early in the solution process. Most

empirital findings to date have failed to a explicate this initial

"qualitative analysis" df the problem, although the consensus has been

that a representation of the problem, constructed at this point, is a

significant factor in driving the solution process. Numerous

quantitative differences between the experts and novices,have also been

identified, such as solution speed, errors, and -eqgation generation

pattern. None of these measures, however, has succeeded in shedding

much light on understanding the different problemsolving processes of

experts and novices.

No

109



Ja

The research from our own laboratory has been oriented toward

magnifying the reprIsentatIonal "stage" of problem sol,ving through

techniques other than the anfilysis of problemsolving protOcols. Our

findings (Stud One) havj emphasized the Point that solution protocols

provide limited insights to the processes of representation, and

further, produce quantitative measures that are difficult to interpret

because they are subject to large individual differences. These

individual diffe ences are dictated by a variety of particular

strategies that solvers adopt, such as geiterating a number of equations

when one cannot think' of a way to proceed. Through the use of a sorting

task ,KStudies Two, Three, and Tour), we were able to uncover a potential

source Of representational difficulty for novices. If we assume that a

problem is represented in the context of the available knowledge, then

novices will undoubtedly have an incomplete and bless coherent

representation, because of the organization of their knowledge. Their
1

knowledge is organized around dominant objects (sue:h..as an inclined

plane), and physics concepts (such as friction)
I
mentioned explicitly in

the problem statement. Experts, on the Aber hand, organize their

knowledge around fundamental principles of physics (such as Conservation
J ,

of Energy) that:derive froM tacit knowledge not apparent in the problem

statement. An individual's "understanding" of a problem has been

explicitly defined as being dictated by knowledge of such principles

.'1,,,, (Greeno & Riley, 1981). Hence, during "quali't'ative analysis" of a ,

problem, an expert would "understand" a problem better than a novice,

because he "sees" the underlying, principle.
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A person's "understanding" of a principle can be evaluated in

several ways (Greeno fi Riley, 1981). One way is to have it stated

explicitly, as was done by experts in the Summary Study (Study Five),

and in the rationale they provided in theSorting Studies (Two, Three,

and Four). Another way is to analyze the nature of the categories into

which individuals sort problems; this constitutes an implicit

assessment of their "understanding" of principles. An alternative but

consistent interpretation of the Sorting Studies is that experts and

novices organize their knowledge in different ways. Experts possess

'schemes of principles that may subsume schemes of objects, whereas

novices may possess only schemes of objects. Some support for this

conjecture was provided in both Study Four, on the hierarchical nature

t

of he sorting categories, and in Study Six, on the elaboration of the

con ents of object and principle schemes. Once the correct schema is

activated, knowledge (both procedural and declarative) contained in the

schema is used to process the problem further.. The declarative

1 knowledge contained in the schema generates potential problem

configurations and conditibns of applicability for procedures, which are

then tested against the information in the problem statement. The

procedural knowledge in the schema generates potential solution methods

that can be used on the problem. Experts'-ectiemas contain a great deal

of procedural knowledge, with explicit conditions for applicability.

Novices' schemes may be characterized as containing sufficiently

elaborate declarative knowledge about the physical configurations of a

potential problem, but lacking in abstracted solution methods.
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Our hypothetkis is that the problem-solving difficulties, of novices

can be attributed mainly to inadequacies of their knowledge bases, and

not to limititations in either the architecture of theii cognitive

systems or processing -capabilities (such as the inability to use

powerfullsearch heuristics or the inability to detect important cues in

the problem statement). This conjecture follows from several findings.

First, similarity in the architecture of experts' and novices' cognitive

systems is probably implied , by the fact that there are generally no
I

differences between experts and novices in the number of categories into

which they prefer to sort problems, in the latency required to achieveia

stable sort, and in a variety of other measures. These .quantitative

measures point to the, invariance ih the cognitive architecture of

experts and novices., Second, novices do% show effective search

heuristics when they solve problems using backward-working solutiOns!

0
Thirdly, in our last set of studies (Studies Seven and Eight), we showed

that novices are essentially, just as competent as experts in identifying

the key featurea in a problem statement. The limitation of'the novices

derives from their inability to infer further knowledge from the literal

cues in the problem statement. In contrast, these inferences

necessarily are generated in the context of the relevant knowledge

structures that ^xperts possess.

In concluding this chapter, we would like to 'speculate on the

implications of the work and theory reported here for a conception of

intelligence. The tests of intelligence in general use today measure

the kind of intellectual performance most accurately called "general

scholastic ability." Correlational evidence has shown that the abilities
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tested are predictive of success in school learning. ' Given this

operational fact, these commonly used tests of intelligence are not

tests of intelligence in some abstradt way. Rather, if we base our

conclusions on their predictive validity, we can conclude that they are

primarily tests of abilities that are helpful for learning in

1

present-day school situations. More generally, we can assume that these

intelligence tests measure the ability to solve problems in school

situations, which leads to learning. The problem-solving ability

possessed by the expert learner is a result of experience with the

domains of 'knowledge relevant to schooling.

If expertise in learning is the ability for representing and

solving school problems, then for a less intelligent learner, a problem

representation may be in close correspondence with the literal details

of a problem, while for a more intelligent, learner, the representation

contains, in addition, inferences and abstractions derived from

knowledge structures acquired in past experiences. As a result of prior

experience in various knowledge domains relevant to schooling, the

l'epresentations, required for solving school problems are more enriched,

and contribute to the ease and efficiency with whidh learning- problems

are solved. We speculate further that the knowledge the expert learner

brings to a problem would incorporate a good deal of procedural

knowledge--how a knowledge strucukeecan be manipulated, the conditions

under which it is applicable, etc.061iee learners, on the other hand,

would have sufficient factual and declarative knowledge about a learning

problem, but would lack procedural skill an1d thJ would weaken their

ability to learn from their available knowledge.

1.13
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. A knowledgeTbased conception of intelligence could have

implicatkoni for low individuals might be taught to be more effective

learner., Such an attempt would de-emphasize the possibility of

influencing mental processing skill (i.e., developing better methods for

searching memory). Improved ability to learn would be developed through

a knowledge strategy in which individuals would be taught ways in which

their, available knowledge can be recognized and manipulated,

Improvement in the skills of learning might take place through the

exercise of procedural (problem-solving) knowledge in the context of

specific, knowledge domains. To date, conceptions of intelligence have

been highly process oriented, reminiscent of earlier notions of powers

of mind. If, in contrast, one did take a knowledge - emphasis'approach to

the differences between high and low performers in school learning, then

one might begin to conduct,investigations of knowledge structure and

problem representation in the way that we have begun to do in the

expert-novice studies described in this chapter. This orientation might

provide new insights into the nature of the expert performance we define

as intelligence.

I
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