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Prerequisite Skills:

I. Know the Fundamental Theorem of Calculus.
2. Be able to work with factorials.

3. Know the product rule of differentiation.
4. Be able=tq differentiate and antidifferentiate sin and cos.
5. ,Be able to‘compute higher derivatives.
6

7

8

9

Know the chain rule of differentiation.
Know the binomial’ theorem.

Be able to perform integration by parts.
Undgrstand mathematieal induction. . .

* -

*For those without prerequisites 8 and 9, Exercise 3 can be
used to replace Section 2.3. A ’
° . 3\
Output Skills: . . . :
1. To be able to prove that % is irrational, and to discuss the.
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INTRODUCT ION

»

Certainly you have mét the ﬂhmber n frequently in
~youl‘? study of mathematics. You have learned various
approximations to it.° Perhaps the most familidr are
22/7 and 3.14." Through the centuries there have been
many other approximations of n. In 1967 a computer
\_, Program calqulﬁted n\to 500,000 decimal places. But no
one has eveg_found an "exact" value of 7, and no one

7’

ever will, for a very good regson. The title of this
unit states that reason, and in this unit we shall
“prove the statemeft. . )

Y

<

1.1\ Rational and Irrational Numbers
7 ~

Recall that,a real number is said to be rational
ifdand only if 1t can be expressed in the form p/q
(i.éf, as a ratio) where p and q are iﬂtegers. ﬁ real
number which is not rational is said to be irratidnal.

On the face of it, it is not clear that there gre any,
‘1rrétional n?&bers. In fact, the ancient preeks believed
that all numbers were rational. We can- hardly blame the

since the Greeks thought geometrically, and geometric
""common sense'" seems to'cokfirm their belief. After all,
we can draw a straight'line-(in modern terms, think of the
x-axis) and mark off upon it equally spaced points corre-
'sp0nding'to the 1ntegers. ‘Then, by a straightforward tech-
nique of Euclidean ge;metfy, we can divéde each unit inter-

’

val on the line into q equal intervals, where q i's any
4 PQsitive integer we wish. If we, do this, for example, to
the interval from 0 to we get points whose distances from

0 are l,

2 EZT» A %, If we do this for all pc')gsiblﬁz q

and for all unit intervals, it is hard for us (and ‘was

*Many people, apparently overawed by decimals, assume without calcu-
lation that 3.TK must be the better approximation, presumably because
it"is in decimal form. But notice that 22/7 = 3.1429, which is 1
closer to m (= 3.141%) than is 3.14.
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‘hard for the Greeks) to believe that we do not get all
the points on the line (in effect, alt real ﬂ!ﬁbers).

But we don't. It is very e to.construct a line
segment whose length 1s ¥2; for ::;Rple the hypotenuse
‘of .an isosceles’ right triangle with legs‘of unit 1engthf
If we then pla%e this segment on the line of the precedlng
paragraph with its left end at 0, its right end will .be
at V2~ And Y7 is irrationég as the Greeks discovered to
their gonsternation,* a:f as you may have seen proved
elsewhere.

Therefore 1t is not one of the p01nts marked

off in the construction of the precedlng paragraph.

\ -

(.2 Decimal Representat ion

Mathematicians now know that there are very many-
irrational numbers. In fact, as you may already“know,
a real number expressed im decimal form is rational if

and only if it eventually becomes repeating. (A term-

" 1nat1ng decimal can be regarded as a decijnal that repeats

zeros~2 Some examp}fs are !

. - - - .

0.25000 ... = f =1 .
e - 183 . .
0.5183000..." = Jﬂ—
2O 10,000
~ L T+ g o
0.3333 = x .
'0.142857142857 .. = % :
- % ' . ‘ -
1
(,ao.‘m : 5 .
‘\6’\?4'333”..\.'= 0.333 ... -o02=%.L1._2
= ., ’ ~ 3 S S.

v
,

This is not.the same as saying that the decimal

[N

expansions of irrational numbers never have a pattern.

There are<some patterns which are got repeatlng

One

example is 0.10110011100011110600. ... ’

AN

PR v
¢

*The Greek' i

s epn
Y'common senseij{:red
them\ philosophy

— — <
sternatjon was based on much more than having their

Some” of their mathematucal theory and even of

3s based upon the erroneous belief that the .ratio
of any two line segw\ent lengths was rational.

L ’ 2




. ( . . .
. ’ Exercise 1 ol \) *

Each o)\fhe following decimals can be obtained from the

v repeating decimals listed above by simple algebra. Use this .- /

fact to express each of them in the form % , where p and q are -

@

integers‘.
- (a)  0.003333... . .
(b)  0.766666... . -
{c) 0.892857142857142857. ..
¢ (d) 0.253968253968. . . _ .

2. THE PROOF

. « In 176; Joh;nn Heinrich Lamhert (1728-1777), - an
Alsatian philosopher, scientist, and mathematician,
proved that m is irrational (see Exercise 10)}. It ’ N
follows that we- can never write down a %raction or
terminating decimal which equals m; wé must always

. -

settle forcan approximation. T, s ,

. Since then there have been many different ﬁrobfs ¢
v that 7 is irrational. The proof presented in this unit

was originally discobered,by Ivan Niven in 1947. It has _

R the‘virtue that a first-year calculus student can read

' 1t, but -it doés contain, unfortunately, a considerable .

- amount of ‘computational detail. It will be much easjer ~

“to follow 1f, before getting into that detail, we present ~
an outline, a

LY

+2.1  Outlifte ' .

l|. \ It is much easier to work computatipnally with
the notion of rational number than with that of irrag
tional number. After all, an irrational number is
defined by what it is not- (not rational) rather than

what it 1s. So most proof tQit any specific number

s : 3

e

» . ] .
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is irrational are indirect; they begin by assuming it 1s

rational, and then arrive at a contradiction, Our proof
is no exception. : .

If ‘'we assume 7 is rational, then so is w2, and we
can write 7% = p/q where'p and q are integers. The heart

of our proof will consist of arm intensive study of the

expression &

(1) K = upn E F(x) sin wmx dx l ' N
where . ) *

(2) F(x) = (,3_" 0"

) 2
'

and where no1s a fixed p051t1ve integer. Notice that K

depends upon . (but not upon X). .
First, we shall make an estimate of the size.of the(v

using thlS estimate, shall show that- for
K < 1.

1ntegrand and,
very Zarge integers n

Second we shall perform the 1nd1cated 1ntegrat10n,
obtaining an expression for K-in terms of F(0), F(1),
and higher aerivatives‘of F éWaluated at x = 0 and x = 1.

Third, we shall derive certain propertles of
F(x) and its derivatives and apply théh.to this expression
to show that for all positive integers n, R is a po§ztzve
Y . -

integer. ; .. . ¥
. - . - ’

The two italicized statements contradyct each
other. Slnce our #nly assumption along the waysls that
m 1s~rat10nal  this assumption must be false.

.

2.2 Part Ore (K < 1) = _ -
he function we must integrate in “cdmputing K 1s
n (1 - x)n sin wx . s >
o . We are integrating from x = 0 to .
- > <

x = 1. In this.intg¢rval qte numerator is the product

’

. , L4

M P - .

Y




of three factors, each’of which is between 0 and 1, and
-s0 it must also be betwe?n 0*and 1. .

-

0 < xn(l - x)n sin 7mx

n .
" . xn(L - x) sin ®mx
- nl

1 »
ﬁ—!dx

< xn(l - x)n sin

= )y - n'l

< I‘xngl - x)B sin
0 n!

We have in;réduced strict inequality signs in the last
line, siice the only way we could have equality would
»Be for the integrand to be identically 0 or i&entlcally

#T for 0 < x < 1. Clearly this is not so.

Multipfying by npn we get
. n N

BERETE .

)
This part of the proof will be complete if we can

n <)
show that %Fr-< 1 for very ldarge"n. To show this we ™

IS

let
.‘r=2p.

*r

. ¢
The{e is some positiVve integer m for which
N ¢
2™ %&— (See Exercise 2)1
, .

Then \

.

and we have

. 1,pr§m *
ri{r+l) (r+2). .. (r*m)

m’ . p_ .

r! T+l
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Exercise 2

Assuming p and r are given positive integers, find positive
. é m TYEr PP
integer m so that 2° > I Try your answer out for specific

values of p and r. , -

2.3 Part Two (Integratian)

The second part of our proof consists of performing
the 1ﬁtegrat on indicated i1n (1). The most direct way
to go about this requires integration by parts and .
mathematical %tnduction. If you have never studied
these fopxcs you wi1ll find an alternate approach 1n
Exercise 3 at the ‘end of 'this section. Although it is

a little awkward it is perfectly correct.

Let f(x) be any differentdablé function, and,
for any positive integer k,. let ﬁ(k)(x) denote the kth
derivatiye of f(X). We sha&l'use mathematical induction
on n to prove that, for all non:negatxge 1ptegers n,

(4) frew) sin nx ax = £LLEQO) T €100 (0)
. K 0 . . ’ n

+

) 1
£ £ 1) £ B ) -
- —Inel Wity

»
B

L‘G(Z?*Z)(x)sin nx dx

-

wher; the uppe? signs apply if n'is even, and the lower
signs if n is odd. The proof, like -all preofs involving
mathematical induction, requires two steps: (A) Proving
(4) for-an initial value of n (in this cage, n=0);

(B) Proving that if (4) hélds for n=k then it holds foy
n = k+1.,* - .

(A) The first step involves ‘two integrations by parts.
Replacing n by 0 in (4), we see thagrwe must prove

’
L]
¢

ERI
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1 . N 1 - ’ \
(5) [Of(x) sin 7x dx = £Q1 ;f 0) . ﬂ%— Lf"(x) sin nx dx

,’fﬂ@ formula for integration by parts tell us

1 . 1 1 °
. ' [udv:uv -Lvdu. s
e s .
We can apply this to the left side of (5), using # :
, . b SO
u = f(x) dv = sinnxdx
~ . . -
du = f'(x)dx . v = -% COS TX d)é. ‘
> . ] - .
N We get .. . '
1 1 1 -
(6) [of(x) S1n X F - f—(ﬂi)—cos X %[ f'(x) cos nx dx
» ° _ ° AR | -
. 1 v 1
. ;_i_)__(_lf 1 ;f 9, % [of'(xT cos mx dx.,
< . < ’ : .
.t Applying integration by parts to the integral on
e o
the right, with N ) ..
«  w= f'(x) . dv = Cos mxdx
. " D
du = f"(x)dx . | v = = sinmx
we get i . D . .
o . ’ y 11 1
N , [of'(x) cos nxdx = -flﬂflsin X lo-. ;lr- [of"(x) sin ©mx dx
’ 1 i . > .
~ = = | f"(x) sin nx dx. -
T Joe - T
. . _ ,
Substituting this.result into (6) gives us (5) and
completes the first step in our mathematical induction. .
: 1 . - b
(B) Now we assume (4) ‘holds for n=k. In other words,
' we assume - .
- +
. R .
! ’ . » ! ° 7
- * v
» o
*
f ~ ‘ . .11 : ,

ERIC* | - N
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. =
(n f‘,f(;i sin nx ‘d);) = f(l);f(O) ] f"(lT)T:f'.'(o.) g .

£ 25 (154¢(2K) (4
2k+1 -

] +

. “ . "'Tk_"' Jf(Zk 2)(x) S1Q X dx

N
Equatlon‘ (5), which we have just pro ed, applies to any
differentiable function f. If we apply it to 'f(21‘+2)
(replacing % (x) by “g(2k+2 )(x) throughQut) ; we get .'
f(2k+2)U)+f(21\+2)(0)
m

[

3

L f(2k+2,) (st_in mxdx =

1 . ’ . .
- %‘J f(z}‘“‘)(x) s1n,mx dx.

Multiplying this by * —Z-k—z— gwes us

1
by —2%‘72- of(Zk*'z)(x) sin nx dx

m

A TR Rl
¢ﬁ2k+3 \

. i 1 ' . FA
*—ﬂl(ﬂ- Lf(2k+4)(x) sin nx dx.
m '

[ S . * ,
. Making this substitution on the right side of (7) yields
F(+£(0) | £ +Em(0)”, © -
- s

(8) J;f(x) sin mx dx

. 'n3 -
' L0 200
» B ) +f (0), s
- %15 e
- f(2k+2)_(1)+f(2k+2)(0) ‘s
~ ’ v 7k+3% . .,
-7
1 [’b(zkﬂzi oLt
+ f sin wx d
. _‘;z'm- 0 (X) n Tx dax \
. whi'ch -is precisely {4) with n = k+1. We have complese{
the proof of (4). . . .-
* A v ’ b 4 .
Now let us apply* this ‘result to (1), setting
f(x) = F(J). Since F(x),is a poly'nomial’.of degree 2n,
o § -
&
4 )
@ . . /
‘ . ’ 12 . K
Q Y

ERIC
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. . ‘
F-(2n+2)(x) is identically zero, and the integral on the
right side of (8) drops out. _Therefore

3" ]1?(£; sin mx dx ) (2n) (2')
0 . n n
. . _ F(1)+F(0) ; F"(1)+F"(0) R ‘T F (1.);]}':1*’1 (0).
. T - . 73 tta 'n .

T

. A

. . k
Multiplying by 7 and using the fépt that nZk‘= BF for any k,
’ q

X

AY

. (10) " r F(x) sin.mx dx
: Q.

) KN : . lvv
° F(1)+F(0) - E_Lllgf_iﬂl q

VetV
‘__T__;;_—__—— q
;O ) O ) g
pn q -

Finally, multiplying (10) by pn,

(11) K = pM(E(1)+F(0)) - p" Iq(F (1) +F" (0))

’ v T E () @M gy

This is the expression for K promised in phase two of our
outline.

.

Exercise 3 -
Here is a’way to obtain (9) without using integration by parts
-~
or mathematical «induction. . .
4

-
Consider the function

g(x) = - iF(x) cos Tx + E%F'(xl sin.mx

%3F“(x)cos x - %; FU"(x) sin mx ,

ﬁgF'v(x)cos X+ %ng(x)siq‘yx

i e




.

»

.Y

.

O
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¥ 2n+1
T

where, for ex@mple

F(En)(x) cos Tx +

(Zn)(x) denotes the (Zn)

|
[2 F(2n+])(x) sinmx

2

P

+
.
derivative of F(x).
(The signs change after every odd-numbered term: L++--++-...‘.

The last sign'will be + if n is even and - if n is odd.)

(a) . Show that g'(x) = F(x) sin mx.
» ~ . -

(b) use (a) to deduce qu?tion 9).

Exercise &

Compute the following integrals.

1 .
(a) I x? sin mx dx
. 0

.

(b) . Il x® sin mx dx [Do not multiply all‘the numbers in
0

your answer. ]
Exercise 5 ’ \
Compute the following integrals. 1in each case you will have
to make a cgange of variable (substitution).
(a) fﬂ y? siny dy [0o not ?ultiply all ﬁhe numbers ;n
0

’ your answer.]
(b).

(c) - f; y® sin (ny?) dy.

I3
’ ) »

y sin (ny?) dy

———
O

|
\

—
2.4 Part Three (K is an Integer)

What remains to be done is to show tLat the right !
side of (11) equals a positive integer. It is made up
nf sums and products of p, q, and terms of‘the form

(k)(O)'and F( )(1) for various, integers k‘> 0. Therefore
1t will be more than enough to show that F(x) and all its
derivatives take on integer values at x = 0 and x = 1.
This will show that K is an integer. Thath > 0 follows™

immediately from (1) and (3).

Let us first consider x # 0. We havelalready

remarked that F(x) is really a polynomial of degree

10

’“&

14 \ h
- |
\

Lo




- < “~ ) - ) R
" 2n. Seo fo:rrany k < 2n its kt derlv,atlve is a p‘olynomlal ©
of degree 2n - k (for k & > 2n the Kkt th derivative is of
course identically zéro) Further, the value of any <
. polynomial at x = 0‘equagls its conStant term' - And, f(’
. "since differentiation reduces the exponent of each non-
-:e constant term by one, the constant term of F(k) (“x)) i.s ) f ey

; : determined solely .by "the* "x Kn tefm -of F(x).

s \ With these background facts in ‘mind we can go to
work. To, begin with we can ex‘pand (1 - x)

. ‘ (1 - x)n = Cy + C,x + szz + 00+ Chxn

A
2 where C .e., C

o are irftegers. (It 1s easy to compute N —
them exp11c1t1y [see Exercise 6], but it will not he

. mnecessary for this proof.)_  Then ‘} '
) B A I I L W LRGP,

' C C,.- C C ‘
- 0 2 +2 . 2
FOO = gr xl gt s gt L gkt
v ® .

, If 0.< kf n there is no. "xk" ternm in F(x), ‘and
therefore: ( (0) 0, wh1ch is certalnly an 1ntegér o1 « i

“If n < k< 2n then the nx® term s k DK Its

' successive deriv@tives are , .- '

- » !
’ s '

. y ' »
K, (k-1 RLG L, k-2 KD KDG , k-3

’ n! ’ n ’ .n! '

etc. Each dlaff@rent,latlog introduces another factor in
front of the Ck & By the t1me we differentiate' k t1mes
there are_k’such factors, and SO we have . ‘
. , F(k)(o k(k 1) (k- 2) ..2-1 Ck-n Y .
) Al AT Ck-n -
' -’ » k s
Since -k > n, ET is an jnteger, and so is F( )(0)

To show F( )(1) -is an 1nteger for each k, flrst
. observe that ‘ ¢

° s P ‘

. (12) F(x) <.F(1 - x) . \

" *
E l C ’ ' ) L
A * “
) A T
Ed n.'

0 . (2




T -
for all x. We can differentiate both sides of (12) with
_respect to x, applying the chain rule

[flg(x))]" =f'(g(x))g'(x) ’
to the rlght side with g(x) = 1-x and f = F. We get

o

'

v F*(x) = -F'(1 - x)__ -
* D}fferentiatjng again (and again using the chain rule),
’ F'(x) = F'(1 - x). ’ N
Doing this k times we see - .
. 0 M = e B

2

w1th the sign depé%dlng on whether k is even or odd.

Putting x = I we get

RIS IR =7

~

and since we already know F(k)(O) is an 1nteger we are

.

done. ) '
Exercise 6 V4
Compute the ooefficients. e y aees C if (1-x)" =
b+ C,x + Cx? +...c6xn
% )
° 3. AN EXTENSION OF THE RESULT
s As mentioned .in Section 2, the result that 7 is

irrational is in a sense a negative result. It tells us
what kind of“qg;ber 7 is not. Another way of putting
this is . , 1

of addition, subtraction, multiplication, or division‘

we start with the integers, no amount

s+ can produce 7 exactly. But there are other operations
we can perform on integers; for example, we can take
square roots, cube rdots, etc. Is it pessible that
one of these will produce P exactly? . .

{

)

. ! <

ERIC - | o

T .




‘. . » ¥ . :
; . .! . Ty A
N The answer is "No." This, and much more, follows
‘ .
. from a result first proved by F. Llndemann (1852- 1939)

w in 1882. 1In these concluding sectlodg We shall dlscuss
lendemanp S results briefly. / ' ~

. * /
5.1 Algebraic and Transcepdental Numbers

First we :&Sd a couple of def;ﬁltlons We cald a

number algebraic if it is a root of some polynomlal

R equatfon with rational coeff1c1entsf Otherylse we-call -~
' it transcendental. For example, g/ls algeb?aic“51nc§
it.is a root of §x - 3 = 0, and vZ!is algebraic since
it is a root of x? - 2 = 0. In fact, every rational
number'is algebraic (see Exercise37), and every number -
of the form Ma  is ajgebraic, where m and n are poshtlve
integers (see‘Exercise 8). Further there are lots ‘of
polynomlal equations which we have no adea how to solve.
- Nonetheless we can assert that their roots, whatever

- they may be, are algebraic. For example,.the equation
: - . ;%% x5 - 2§“’+ ;% x? + %g x? - %% x!+ %% =0 -
has at'IZast one real root, ang that root #4s algebraic.

X i

A

Exercise 7

Prove that every rational number is algebraic.

Exercise 8 - - >

If m and n are positive integers, pravg that ™/n is algebraics

Exercise 9 . . . .
Some writers replace the word “ratjonal' with "integer" in
. “the definition of algebraic. Prove that the two forms of the

definition are equivalent. That is, prove both of the following: -
A >

(a) «if x is the root of a polynomial equatlon with rational
" coefficients, then it is the root of a .polynonial equatlon with
|nteger coefficients; ' *

N . 3

13
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(b) if x is the root of a polynomial equation with integer
coefficients: then it is the root of a polynomial equation with

rational coefficients.

.

3.2 Lindemann's Result

“*Lindemann proved 1n 1882 that = is trancendental.
So Exercise 8 immedlbteiy tells us that, as already
asserted, we cannot produce m exactly by taking roots of
integers. But 1t also tells us what kind of number 7 1s
not (i.e., m is not algebraic) and extends the list
of prbcedures (i.e., solving polynomial equations) which
can not give us T exactly. Incidentally, the ancient
Greeks could not have conceived of ghis result bhecause

of the strigtly geometrical way in which they worked.

P s .

Exercise 10 . » -

Lambert's original proof that m is irrational. is based on

the following, which he proved: if x is any nonzero rational

K

number, then tan x is irrational.

- .\

ﬁssuming this is true, explain how it follows that T is

irrational.

-

- - .
N
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of this unit.
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Charleston, .Charleston, South Carolina, and revised on the
basis ofs data received from the%e sites. \
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) A [;~ 4: HINTS FOR SELECTED EXERCIg%S
&\ -
L]
. 3. *(b) Use the Fupdamental Theorem of Calculus.
* 4. use (4) with f(x) = (a) X (b) x9. All derivatives of f after
v the (a) secoid (b) ninth are identjcally zero.
. 4 <
* 5, (a).x=y/m. (b) x = YZ_ (c) x = yz. Then in each case use
(4).
' 6. Use the binomial theorem.
10. Consider x = 1.
. ] -
5. ANSWERS TO EXERCISES
- Lo 2.2
. @) 5 x5 =30 ®) 55 x5 =35
| ' 3,1 .28 1,1 16
. {c) Tty =3 ) (d) g * 3 53
. ln%%— '
‘ 2. Any integer qreater than lné . .
° . -1 4 198 9:-8-7-6 . 9-8-7:6-5-4 9!
» hi (e T ‘(b) ™ F+‘n5 S n’ +n°
t_9-8 .-9-8-7-6 _9-8-7-6.5-4 3!,
) 5. (a) ﬂ’°(5-?+ pr -7 + 3
1 ’ " !
(b) F .
1 2
) 75
o aifn) i
R R v
2 i B *
Z. 3 is a solution of x P 0 .
8. ™h is a solution of X" -~ n = 0.

9. (a) Given a polynomial equation with rational coefficients,
.. muitiply it by the least common multigle of the
denominators. The new'equatioq has integer coefficients
and the same roots. ’ .
(b) Any polynomial with' integer, coefficients is a)ready
a polynomial with rational coefficients. * '
10: Take x = ., Ifn were\rational, the} tan x = 0 would be

irrational.
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HISTORICAL BACKGROUND .
; - .

ie

1.1 ~¥ntroduction . ‘

The number 7 is defined as the rat1o of the
circumference to "the diameter of a circle. It is
of central 1mportance in innumeratle mathemat1ga1
and sc1ent)f1c results, 1nc1ud1ng many which do not .

appear to have anyth1ng ;e dd with circles. -
>

For thousands of yearsnmathemat1c1ans and others
have been fascinated by the challenge of~determ1n1ng
the value 0§§ﬂ as precisely’as p0551b1e, and now
computers hdve gotten into the act. In 1967 a com-

puter *in Paris determihed w to 500,000 geGimal places.

It is undeniably true that computers, because
of the phenomenal speed with which they can do arith-
metic, have‘epa?led us to obtain'many more digits |,
of 7 than ever before. 1In 1948 (just before computers)
“the record was 86§‘places. But all the machines can
do_is use formulas suppliedsito them by us slowpoke
humans \who are much more intelligent -- 76 matter
what-you may have heard to the contrary. It has been
said of the computer that "the most 1nte111gent thlng

it is “capable of do1ng without the help of its pro-

grammers is_to éo on strike when reqhired‘té work
* without air Cbnditioning."”

" ﬁell then, where do .these formulas Cbme from” .’
How do mere? humans find the value of 7, even w1th0ut .
the aid of computers? Aftey all, 808 Dlaces isn't

, peanuts. 'Certainly no one could measure the circum-

“ference of any circle, however larZe,-with~that
accurdcy,.

v
<

&

: Beckmann, page 102.
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- 1.2 Early Circle Measurers

- Ahout 4000 years ago the Babylonlans, who knew
“ nothing about % except 1ts definition, probably did
L actually measure circles, They may have, for example,
drawn a large c1rc1e on the ground and marked off its
diameter on a’ rope They could have “then observed
.that laying thas rope segment along the circle three
times almosty but not quite, tpok them around the
circle~ Perhap5 they then measured the excess with
. anotlier rope and determined th;t this shorter segment
went 1nto.£He origimal segment,about eight times (we
, - now know seven would have been moré accurate). At
any rate, they came up with the estimate m > 3%

' ~
173 Archimedes and other Polygon Measurers
< In ahout 240 BQ’the Greek.mathematic1an Archimedes
. -+ (287-212 BC) became 1involved 1n ouyffh}e.. Archimedes

-~

is univefﬁally regarded as one of the two or three
greatest men in the historx oacﬁestern mathematics.
4 He wa apparently the first person who attempted
to estlmate m,1n any way other than 11terally
measurlng the circumference of a circle. Instead

- he said \m effect: "Let mﬁstart with a c1rc1e of
4

‘dlameter one. Its circumference will of tourse be

7. ‘Instead of trying to measure the circumference,
I'11 inscribe a polygon and, circumstribe another
polygon Clearly the c1rcumference m 1S between

the two perimeters: If I choose the polygons wisely,
“1 should be able to use the geometry I know to compute

»~ 2

these perimeters.

" . For an i]‘ustration of Archimedes' thoughts look
at Figure 1, whigch shows a circle of dlameter one
with inscribed and c1m§pmscr;bed regular hexagons.,
Eagh of thé hexagons consists of six equilateral

triangles, so the calculations are straightforward. .

ERIC /
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Figure 1. Archimedes' calculation of 7.
' ’ The circle has diaQeter one.
’ . Fl -~
R FoEsthe inscribed hexagbn AB = QK = %, so the perimeter
\\b =6 x.AB = 6 x % = 3. For the circumscribed hexagon

we can” observe that OF, = 5 , so

. _ 1
. ‘ 0F? = 1. . -

. * But also,

LT e W?: T2 - TF? = T2 - (3 TDY? .
- L= 0T - (3 0O = 3OCE,
. } Sy
: .. Equating these two expressions fog 0F2 we get

3 1
. KDTZ"K)

SO

. .and . i

B = . ,
ERIC , .
DN .
N -
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Then the perimeter

p D=6 x 0C = 2/3 . . .

We could have used trigonometric functions, since,
we know the *value of sin 60°, but they were introdu@bd
long after Archimedge,, and we wanted to show that he *

did not really need them. )

- -

We've shown

3 <7< 2/3

3.00 < 1< 3.47;

-

Thas reéult in 1tself would not be worth the
trouble, but Archimedes used some rather clever
geometry to compute the periméters of inscribed
and circumscribed regular: polygdns with 96 sides,
.He got

~
«

10 - 1
37T < nm< 37
or, 'in modern decimal notation,

- 2 - 3,140 < T < 3,143,

As a modern mathematician would put it, he determined

* 17 to two decimal places

Although ArChlmedeS broke away from direct
\mé%surement of circumfererices, his method of estimating
T was still driectly related to the fact that 7 is
the €ircumference of a circle with diameter one.
Untgl the 17t th century all attempts to compute 7
- were based upon this fact, 6r upon the closely
 related fact that such a circle has area /4. As *
of 1630 the record for digits of 7 was apparently
./ 35, set by an otherwise obscurg Dutch mathematician

ERI
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named Ludolph von Ceulen (1539 - 1610) who 1s supposed
to have based his work on polygons having‘zsz

- (= 4.6 x*10'®) sides and to have devdted most of
his life to this task. . . .

' 1.4 Analytic Attempts

In the 17th century the search for digits of = .
began to take a fundamentally different tack for the
first time 3ince Archimedes. Mathematicians began
to turn away froh circles, polygons, and other geometric
considerations. The mathematical congébx& which were
to become:"Calculus" under Isaac Newton (1642 - 1727)
and Gottfried Wllhelm:Leibniz (1646 -1716) were in

< their infancy then, -and mathematicians were just
beginning to understand the notion of "sequence of
rational numbers.' From the 17th century on, all
attempts to approximate 7, wfth dr without a computer,
have amounted to finding sequences of. rational numbers
whose limit is m. It was, this approach which made it

. possible to extend the regord from 35 digits in- 1630

to 527 digits 1n 1874 (before desk calculators) and
808 digits in 1948 (before computers) .

In this unit we shall derive one of th; earliest -
of these sequences. It was originally discovered by
the English mathema;ic1anQJohn Wallis (1616 - 1703)
in about 1650, ¢

2. 'THE.WALLIS FORHULA

v

2.1 OQutline; Definition of I,1

Our derivation of the Wallis formula is based upon
a study of the definite integral

é ‘ * /2 . g?

n .
sin x dx, .

"

~
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where n can be any positive integer, or zero. Since

we will be talking about thif integral quite allot,
let's give 1t a name: &J

I

\

w/2 n
In = J sin” x dx
0

| <
I

We'll proceed in five steps. ‘

1) We'll use integration by parts to obtain
a formula expressing I in terms of I

n-2
for n > 2.
2) We'll wsor this formula to compute In.
N .
3) We'll then compute I /I . It will turn

dut to be % times a certam rational number
r_ which depends on n. - ‘

- 4) We'll go back to the definition of I and
sﬁ‘ow directly from it, without usmg (1)

(2) or (3), that - N
vim 'pe1 )
n+e [ ’
n
S) Combining (3) and (4), we'll observe that .

T X T, 1 and therefore Zrn + . The sequence
{er } = {2rg, 2ry, 2ry, ...} is the Wallis
sequence.

~

2.2 Reduction Formula for In

» We'll begin by attempting to compute In using
integration by parts. Using the formula. ‘

Judv=uv-Jvdu
with

>
sin™ 1x ©dv

o
"

1"

sinx dx

du (n-l)sinngxcosKyﬁx v = -cosx L

L

28
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’ N N N

we get . ¢ .

. ;. n-1 s n-2

jsm xdx = -sin X Ccosx + (n-l)j'sm x cos? x dx.

o

2

Replacing coS2x by 1 - sin?x in the last term:

4 (3

s
(1) j'sinn x dx .

< -

C s -sinn..lgx cos x * '(n-l)}sin'n'2 x dx

- (n-1) Jsirgn x dx. e

Now evaluating from x = 0 to x = % :

. w/2

N | ) } )
I_ = sin” " x cos x ,0 +(n l)ln_2 (n l)In

Vs - -

. I_ = (n-1) In_2 - (n-1) In .

nl-= {n-1) In_2

2
°

(2) I = = Th-2.

Exercise 1. From (1) obtain an iteration formula for fsinnxdx, and .
use it to determine: i
(a) Jfsin® x dx; .+ (b) JSsin* x dx.
. ! v )
) ry : -
2.3 Computation of In .

If you have never seen a derivation like the .one
leading to Equatlor‘f (2) you'may think we have failed
‘in our attempt to compute In using integration by )
parts. After all, we have '"merely" expressed one
unknown ‘integral in terms of another.  But I,
involvzrzs'a} lower power of sinx than does Ih' Formula
(2) is called a reduction formul'a.‘ If we start with

the direct computation i

N (/2 /2 /2 .
I = J sin® x dx =OI 1 dx’= x =
0 : 0 P

o . . :
we can use (2) again and agajin t:os work our way up to
In for any even n: . ) ) '

Q c
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n
and in general
() . In

for any even n. (This is called an
from the verb iterate to repeat).

If we start with

w/2
sin x dx

and in general

(4)

for any odd n.

5 - . )
2.4 Computation of In+{%€n
-

Now we are ‘ready to consider the ratio In+1/1n'
The formula for this ratio depends ‘on whether n is even
or odd. Let us suppose n is even. (It will turn out
that this is the only case we'll have to consider.)

Then (3) gives us the demoninator In. Since n is even,
n+l is odd, and we can obtain, the numerator In+1 from (4)

if w¢ replace n by n+l in that formula:




T

4 = _n_, n-2
- (5) Thet *avT " 071 -

g for any even n.

Dividing (5) by (3):

~jon

.

waw
Lol

. . A~

' . 1 1 . Eﬁ. « . g . 4 . Z <1
n+*l _ n*¥l " n-1 7 a3 3 .

~1 n-1 n-3 .5 3 1T x

. “n n- - 3 2 2

Taking the factors alternately from the ‘numerator and

denominator, and remembering to invert those from the

denominator,

+1

—
=]

for any even n.
in the opposite order: *
L]

I

(6) nt+l = Z- 1 -2—. 2 .
‘ In n 1°3
2.5 The Limit of In+1/In

LY

¢

| &
wjon
~j o

4 .
3

Let's calculate the right side of (6) for the

first'few evenavalues of n

[N I.v
_ . 3_2,.. 2.2 .8
HEL RS el L U G
L - )
L .
s 4. S 2.7.2.2.4.4 = 128
LI T U B il
heet 1_2.i.2.2.8. 4.6 6 4608 .
. T, * = I'3°3°5°5°7° 15757 °
- 6 .
I,.
AY n=8 I_g.:_. ° x
,'8
. ©
11
n = 10: = ~
T
V‘I
13
n=12r = 2
-‘ L]
o . y

It is conventional to write these factors

0.8488

0.9054

0.9313

0.9461

0.9556°

0.9623
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It looks like this sequence may be approaching one.

Can we prove this?

¥ .
We can prove even more. As stated An Section
2.1, we can go right back to the definition of In‘

and show that * . ’
I S—
It n+l1 _ 1 - .
- nso 1 :
n

-~
In other words, the sequence 12/11, IS/IZ’ 14/13,

approaches one.
/1
sequence,

cons1s

1t must

Remermber tha

0 to x

X
0

19| =

< sinx <1,

(7) 0 <

Since si1n x > 0,

Since
ts of
also
t all
For O

Since 0°
0 and I we have

‘ilnn

our sequence I:/1,, 15/14’
every other term 1n this

approach one.
. <~
are integrals from

= we hnow that

1> &3, and y? < y

of the In
Xz

0,

N

< 1.

X > 0 for all 1nfogexs n.

he

Can multiply (7) by &1

. n+2®

n
n

v

X, gotilngo

n+l

0 <

n
< osin "y < sin X < osain X

and the;efore 4

« 0 < 1

<y I < 1

+2 5 tper S 0y i
(If 0 < f(x) < g(x) throughout an interval [a; b],
/thon ,

. Ib
a

since these integrals répresent argas, one of which

2.)

b
£(x) dx < f g(x) dx N
. a

15 contained in the other. See Figure,
’
L] B




. .
Y ’ : R
. F y = g(x)
2B .~ r E
y-= f(x)

Lb f(x) dx

P : %F
T

. b ’
Area of [[IEH - j o(x) dx
a

ERIC

,

3

0 a b X
Figure 2. Graphical proof that be(x) dx < Jbg(x) dx
a a

slncf, I'v> 0 we can divide by it . ' .
ot I + I
2 n+l
0 < n < < 1 .
—_ In —_— In — ¢ ‘ .
or, using (2), with n replaced by n+2;
. ' %
I
n+l o “n+l 1 .
n+Zz = 1 -
n

Now suppose n«e.
The middle expression

s trapped between two expressions

which are near one whent.n arge (one of them

actually equals one), d so 1t too is meare.one when

n 1s large. That isffit approaches one as n approaches
infinity: B
lim n+1 1
D n=>eo = .
n
(This is sometimes~called the squeeze principle,' See
23 \ -
Figure 3.)y ., L
‘ N 11°
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n+1 x
+—x . A4
I .
n
[
n+l 4 @
‘n+2

0

\ ) L - n+l
Figure 3. The squeeze principle for {F:f}’ (In+1/ln}’ and

Y= {1,1,1,...}.

T T T

N

2.6 The Wallis Formula for =

WNe have now proved what we

six terms we calculated there does indeed approach

v 10

(Y
guéssed might be true
earlwin Section 2.5; that the sequence whose first

one. Therefore its terms must eventually be near.one.

A bit more precisely,

2.2 2

(8) T ToF

-~

6.6.,.. n
[ n-1

n

n.
n+l ~

and the left side can be made as near to one as we like

by taking n large enough (and even).

Mulfiplying (8) by m we get

2(2.2.4 .8
1,3°3°%
fg{ large‘even n.. This is the Wallis formula.

S

6

.
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5. 'EXERCIZES

.QhOk that 4.6 an) 2™n1 for any positive
1ntege% n, Q%ere n! denotes 1- 2 3.

Show that et

4.4 .(2n)-(2m) R N
SO D ) [(2n) 112 (2n+1)

for any poxxtlve integer n.

Shotv thd&
li$=—("”2 2
n (2n)! vh

This problem presents a derivation of-another
formula for . The formula is credited to Leibniz.
{a) Show that
o W -
. 2n+2
\]-xz+x"-x6+.__+x2n.—_ 1 +x_'a_
) 1+x? 1+x?
for an) real number x and any even p051t1ve
1nteger n.

kb) From (a) deduce that’

»

1 -

2n+2
s
0

1 1 m
o2+, = - dx.

S 7 Zn+1 } 1+x2

C e
tc) Show that \yp_\gf
. 1 1
R 2n+2

Oin———-—dx<J‘x2"+de=ﬁ'

. 1+x? n_

-

) (d) Finally, deduce that

-

lim Sl .1
“[1 3Y%,°7

n-—>w




,

Integrate the formula 4n 3(a) from 0 to u

;f (where 0 < u < 1) and then, by steﬁs similar
* . to those in problem 3, show that ., °
' 2n+1l
NEES B 3o u"
R e e R

where n 1s a large even positive integer.

(b) What value of u should give 2 on the lefa

. )
si1de of :(9)? <
(£) Use this value of u.to obtain anSther
' formula for . - 4 ! -
)
-, -
[%d
-9
. ¥
.- ’ vt
‘ T : &
- . . - g 1]
o

<

The Project would like to thank Charies Votaw of Fort
Hays State University and Solomon Garfunkel of the University
of Connecticut for their reviews., and all others who assisted
.| in the production of this unit. - - -9

v

This unit was field-tested and/or student reviewed in
prelimindry form at Montgomery College, Rockville, Maryland;
\fyniue4sity of Louisville, Louisville, Kentucky. Lycoming
-[¥College, Williamsport Pennsylvania; Fort Lewis College, N

L Durango, Colorado;, ohd Franklin College, Franklin, Indiana, A

and has been reviséd on the basis of data received from
.

these s‘tes. N [N

—
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. 4. HINTS AND SOLUTIONS TO EXERCISES
[4
>
% N . - . _ 5 N
© 1 (@ [ sinxoux - S X cos Xy Bk [ gne2 gy
< Stal{ing with J' S1n X dX = - COSs \°
= 3. Yy dx = 5 smgx COS X 2
e .n = 3: sin® xdx = ———=="22 - 2 cos x
- in® )
W o= o5 jsmsxdx = in—?Mx*% fsm3xdx
= = -lsm“x COS X - o= san? os
. " = .. T s 1% san’x cosx
T - T§§ Qs x.
af(b) n o= 2: fsmzx dx = w + % J'l ax s
o . 1 N a1 1
, =-7sm>«:ﬁsosx +7 .
. 3 3 -
. , n = 4: [sm“x dx = - Mi + %J'smzxdx *
. . . /
. LA U
) - =...=-3sin’xcos x
.o -% sin x cos x+-‘.§-x.
. . . L
2. (a) 2-4:6---(2n) = (2-13(2-2)(2-3)...(2'n) . .
. &
- = (2:2:2---2)(1-2-3---n) = 2%n1.
o i )
n - o
. ' {(b)” Multiply ‘left side by %——({%‘%%—% . e
Show jthat the' new numerator 1s (2:4-6-..(2n))"
. . . and use part_(a).
z - <
) Yo
15
< e .
. i /
L] * R 2, <
L 37 -,
. \‘1 « N
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- - (c) The Wallis formula together with part (b)
says
T r 2 (nt)® 24“ A ’
, ] [(2n)13%(2n+1) L

/;:,/'2'_("_!)_,1_221_’ \__‘J/
(2n)! n+1)

~

Taking square roots we get;/

¢ &

or

§ o (2 2PNz
n+ (2n)! vZn+1l

=

Multiply by /n/vn and observe that

s R
/Zn = n + 1 as noro
\ /Zn+T 2n+l
6" ~ ol
3. fa) Use the fact that ’

2, 4

2 2
x2n+“ = (l+x2)(l-x +X -x6+.f.+x'n),

©

which can be confirmed by direct multiplication.

- (b) ,Intcgrate the-equatian in 3(a) from x=0 to x=1:

Al l
T T T T
. ‘1 1 2n+2
= tan’x + J S dx .,
‘ o 5

- {c) Since x2 > 0, 1#»” > 1, and thercfore

<x2n+2 2n+2

— < x - Recall that 1f f(x) < g(x) for
1+x

1

all x bethec; 0" and 1, then [
* 0

1
f(x)dx < L}g(x)dx.

! (d) 2?%3 > 0 as n-o, Thereforg, using the result 1in

3(c) and the squec¢ze principle,

ERIC ~

oo P .
- .
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1 1 1 )
l-3*g-7" "W T
. Fa
=L ;
Y3
._1__- 1 + 1 1 +
/3 03.3/3 5-3*/3 7-3%3
T PR S 1.
/3 '3 5.32 7.3
- 1 1 1
2V3 |1 - g 4 - +
[ 373 537 .7.30
»
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. : 1. INTRODUCTION * ¢

-

1.1 The Experiment .

tertainly you have met the number 7wr(z 3.141592)
very frequently in your study of mathematlcs It is
defined as the ratlo of the c1rcumference of a circle
to its diameter, but it arises in many places which .
appear to have nothing whatever to do with circles. In 4
this unit we shall describe an experiment where 7 )
«does indeed arise unexpectedly. « It provides a "fun and

games'' method qf approximating 7.

You can easily set\up and perform this experiment’

? yourself. /A1l you need is a large flat tabletop, enough
paper td cover it, and some thin object a few inches
long, such as a toothpick. As, the unit title suggests,
Comte de Buffon (French; 1,707-1788) referred to a needle
when he first discussed this experiment. Out of respect
for the Count, we shall refer t& the objec; as a needle
thrbughout this-unit. A toothpick, however, is probably
much more convenient and somewhat less dangerous. )

Cover the tabletop with pape}. On this paper draw
a bunch of parallel lines. Make sure the distance from
each line to the next is exactly equal to the length of
the needle.

Now pick up the needle and toss it onto tﬂe table.
When it comes t® rest it will either cross one of the
lines you have drawn, or it will not. Let us call this
“toss: a "success'!" if the needle crosses a line. “Pic
- up the, needle and toss it again. Continue doing this),
keeping ‘track of the total number S of succeé%es and
the total. number T of tosses.

L] AR

Exercise 1 .

\
>4
: & .
1.2 A Sample Run
Let us consider the ratio S/T; that is, the fraction o

of tosses which are successes. Asrunning calculatien of

S/T might look like this: . -

Rl ‘ i
TABLE 1 . :
T- s S/T T S S/T
[

1 1 1.00000 102 65 0.63725

2 1 0.50000 i 103 66 0.64078

3, 1, 0.33333 . " 104 66 0.63462

4 2 0.50000 105 67 0.63810

5 3 0.60000 ‘

6 4 0.66667 Y T

7 5 0.57143 998" 6368 0.63712 |

8 5 0.62500 9996 6369 0.63715

9997 6370 0.63719

: ot 99938 6370 0.63713

100 €4 0.64000 9999 6370 0.63706

101 - 64 U.63366 10000 6371 0.63710
L4

In practice it would be unreasonable to toss the needle
10,000 times (although in Section 6 we discuss how a
computer could easi;y'simulate‘this, and much more). -
But we want to make a point. .Namely, the values of

S/T at first fluctuate wildly, but after a very large
number of tosses they tend tb settle down. We shall use
calculus to show that in a certain sense they are most
likely to settle down to a value near %. To understand
exactly whatNthat means, We must make a brief digression
1nto probablllty ' '

-

’n M

-

. Perform the experiment described. Toss the needlg 100 times.

2 ‘ -
Then write T%E X T where S is the number of successes you have
recorded, and compute an estimate of 7. Finally, compute the

percentage error in this estimate.

»
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2. PROBABILITY

.
M )

. 2.1 Equally Likely Events

If we toss a coin, it may come down heads or tails.
Assumlng the coin is honest, there is eGery rea§eh in
the world to think these two poss;b111t1es a{e equally
llﬁely. We'say that the probabilikty of heads is 7 and
the probability of tails is %.

. If we throw a die, it may come up 1, 2, 3, 4, §,
“or 6. Again, these posgibilities axe equally likely.
We say- that the probability of eacthE:}hem is %.

Generally, if there are t possible results, of which
exactly one wi

'1 happen, and %f these results are equally

-G likely, we sdy t tach of the results has probability
o1 .

T

Exercise 2

If you pick one card from a wel}dshuffled deck of playing
cards, find the pqagjgillty it will be the Jack of Hearts. »

<

, Exercise 3

Suppose you toss a coin with your left hand while throwing
Aa dle with your right hand, and then record the comhined result;
i for example, Heads - 6 or Tails - 3. Find the probability you’
e willxqéf Heads on the coin and 4 on the die.

3

. Exercise &

* i

Suppose you throw one die with your left hanq while throwihg
anothe{—die with your right hand, and then récord the combined .
result. For example, you may get Left - 3, Right - 5, which you
could abbreviate (3,5). OF Left - 5, Right - 3, abbreviated (5,3).

Find: . b
. 4
Q ‘ Q{; .
ERIC
A — | | —~ :

+
;9

(a)  the probability you will get 4 on the left die and 6
on the right die,
(b) the probability you will get "boxcars" (6 on both

\ ¥

dice).

2.2 "In The Long Run" 3

There is another way of interpreting probability.
Getting back to the die as an example, suppose we were
to throw it 10,089 times.
are equally likely, we would expect that each of them

Since the six possibilities,

would come up about the sdme pumber of times -- about
3 of the 10,000 tosses wouldfglve 1, about % of them
would give 2, etc. We’'can.say that the probability %

is then a prediction of about what fraction of the tosses
will give a certain result.

Sometimes probability is defined in terms of this

. kind of prediction of what will happen "in the long run",

rather than how likely an event*;s on & "one- shot" ba51s
We must be careful, though. This "long run" view of
probabiiity is not, and.cannot bepban assertion of

& of 10,000

is 1666%, which is not an 1nteger3 S6 we certainly

exactly what will happen. For one th1ng,
cannot get exactly that number ofy say, 5's.  But 1t

would also, be wrong to interpret the prohablllty as an
assertion that exaétly 1666 or 1667 tosses will result

in a 5. The d1e has no memory® and can 't keep count.

What it does on “each toss is ne;}determlned by the pres
vious tosses. If 1t comes up 5.-on one toss; it cannot
say, "Well, Ig¢d better lay off S for the next six tosses*w
If it fails to-come up 5 for f1ve or six consecutive
tosses, it cannot say, 'Hey,*I'm overdue. Better make

it a § this time." And so it_may come up S a b1t more g

or less than predicted. It may. even run ? string of ten

° . A .
consecutive 5's, although this is‘ extremely unlikely. .
L3 - 4 4
- > 4
: . 47 > ‘
. ﬂ . -
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To impress this upon your memory, think again of
tossing a cain. The probability of getting heads is %.
in the long run, about % of all tosses will be heads.
But this does not mean ‘that if we toss a coin twice,
exactly one of the tosses must result in heads. The
,most likely number of heads is ong, but we would not
be the least bit surprised‘%ﬂysee it land heads both
If it happened to land heads the first time,
land

a

times.
. we would certaiﬂI?ﬂHbt say it was guaranteed t

tails the next gime. .

2.3 Compound Events

nterested |
(that is,
time, and

Now suppose we toss a die once, and are
An how likely it is to come up greater than
5 or 6)., It 'should come up 5 about % of th
6 about z of/t‘}:rme This adds up to 2 or %, of the
time it comes reater ;@an 4. We say ghe probability
of this occurring is % (or %{. . ”

Generally, if there are t possible equally likely
results, of which exactly one will.occur, and if s of
these satisfy a certain condition, the p&obability that

, this condition will be satisfied is %.
-

Exercise 5 » ' '

‘Hf youdthrow one die, find the proséblllty it will be even.
LExercise’6 ,
, .In the experiment of Exercise 2, find the probability of .
, each of the following events: . ° . *.

(a)  the card Is a Jack
(b) « the card Is a Heart

‘-, " " {c) the card is<a picture.card
: ' (d)  the c#rd is an even-numbered card. ,
.- g ~~
o - . . ‘ .
Y, * } \ - 5

lflijk:‘ FIPRE 41&;. r ' ,

.
o # - :
)

!niaik

R —— 3 ) \
Exercise 7 . -

- -

.In the expequment of Exercise 4, find the probability that:
(a)  the sum bf the two numbers.will equal ten,
(b then mber on the right die will exceed the number
‘on chUle}t die ‘
(c)  the two numbers will have an odd sum and” an odd
product, - ,

”

3. Tﬂf THEORETICAL RESULT OF THE EXPERIMENT

3.1 Statement of The Result "

Now we can get back to that needle’ on the tabletop
and state precisely what we are going to prove, and how
it is helpful in approximating n. We'fl prove that the
probability the ‘needle. will eross a line is %. That is,

in a very layge number of tosses, about % (20.63662) of

them yifl be ”sgccesses." The result is independent of
the length of the needle, . L N
3.2 Applicdtion of the Result B )

. To apply ‘this result, toss the needle ¢ times and
count the nymber s of successes.
’be close to =

The fraction % should
» although our discussion in Section 2.2 s
suggests that you shouldn't be too optimistic about thé

degree of dccu ite 3 '
g racy. Then write T * 57and "solve for" n.

In th: =
s ' example'of'Tgble I, t = 19,000, s = 6371,
" p.-371. This is less than 0.12 off the true
value of e which

» ‘under the circumstances; is pretty » ¢
good. Wrikine 2 . . *
. Titing — = 0.6371 and solvin
m = 3.13922 (again wiﬁhinwi.l%).

-

g for m gives us

) :
. ¥ ’

e
-
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B

L]
Exercise 8 v . .

Show that with t = 10,000 it is impossible to get better
than three“decimal place accuracy in,estimating 7™ with this

-

exper iment. T

L

4. PROOF OF THE RESULT

4.1 Locating the Needle Numerically

Although the application of our result depends upon
the "long run” interiretagion of probability, it is more
convenient to use the "equally likely events" interpreta-
tion in proving che result.

— positions in which the needle may land. To base any cal-.
culations upon the needle's landing place we must first
decide upon a scheme for describing the landing place
numerically. N

-

< ~~ \

AN
] 3
s L.
.
. / )
£
. X 4

Figure 1. <Typical position of ngedle(\\_A\‘\ .
o 50 .
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The events will be the various.

i . Let us assume “the 11?es on t%e paper run east- west&
and that the distance between consecutive lines is L.

"A little thought should-convince you that two numbers
will tell ?nu all you need to know to decide whether or
The|’
of these (cail it y) is the distance of the southern
end of the needle from the nearestf line to the south.
(If the needle's southern end should happen to be on a
"If the needle should happen to lie
think of its western end as the "southern"

not the needle is on a line (see Figure 1). irst

line, set y = 0.
eest-west,
end.)
needle makes with a ray running eastward from its southern

The second number (call it & is the angle the

end. So we have an ordereﬁ pair (y,8) with 0 <y <L

and 0 < 8 < T,

I

Notice that we have simplified Tgtters by restricting

our attention narrowly to what concerns us. The ardered

‘pair doeiT?pt really tell us wheré the needle is (how
}

far east
we have said,
In fact,
happ;ns'if and only if
iy ’ . ’
y + L.sin 6 > L.
-

¥s it? which line is it straddling?) but, as .
it does tell us whether the‘needle is on

a line. you can see from Figure-1 that this’

-

(1)

v
~ .

4.2 Equally Likely Positions:~

A problem arises whenywe attemp% to list the "equally
likely events' -- the possible positions’ of the needle.
There 1s no difficulty finding them; the trouble is that
The southern end of the

needle is just as’llkely go be ,anywhere as anywhere else.

there are too many of them.

The mg¢edle is just as'likely to be oriented in any direc-
‘tion as in any other. In other words, all possible pairs
y,8), with 0 <\y <L and 0< & < m, are equally likely.
‘But there are infinitely many of them,

subset of these satisfy (19. Our definition in Section 2.3

[y

51 | \

and an *infinite

B3

Ry

<
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’ / ’ ) ’
# applies only to finite s1tuag30ns We can make nothing * ¢
¢ of the "ratio ;. .
— 4 .
. Approximate position of needle t f dl (y,0
4.3 A Finite Approximation - 4L T Truepoﬁ"on of needi? (v,0).
- 3
. (Y“»es) = (
Let us replace our problem by one which involves a . '
large but finite number of equally likely events, and %%
whose answer will be a good approximation to that of T
the original problem. Let us pick a large positive — - Ce——
integer n and panﬁiﬁigi_zﬁ? interval 0 < y < L into
n intervals: y 2 ¢ ,
. L . L . iL " _ nlL
(2) y1=ﬁ) y2='n_’ PR yi=}l-l_’ R )'n=-n—=L.
Similarly, we shdll partition the interval 0 <6< ) . -
into‘; equal intervals: ) oy v T
~ T YA _jm = nm _
, (3) "o,= %, 0=, ..{.,ej“t-Jn—,...,en--n—-n. . )
“(n-D)w ’ - ¥
? w/n Zn{n 3n/n T m T .
1 —
1
. n-1)L . Y
O L/m 2L/ n L . L !
| | | | | 3 : —
i i I ' P .
h ere 'are now n? pair§ 4f the form (r;,8; ) wh%re i and ’ - !
j e each integers from 1 to n 1nc1u51ve (it may happen . ) ’ - . -
that = j). . . '\ Figure 2. Typical approximation-of needle position (n = 8).
2 ‘v
. : Now let us imagine that when we throw the needle, ' <
instead of recording its actual position (y,8), we We shall Qeflne p, to be the probability the needle
record (yi’ej)’ where y. and 6. are the smallest numbers crosses a line after it has‘'been moved in this way. This
in (2),and (3) greater than or equal to y and 6 respec- amounts to the prob%ibility that
. tively. This amounts to pretending the needle is slightly (4 y; + L sinlej s s

north of its actual position, and rotated slightly )

Since, for any actual position (y,8) of the needle,
“counterclockwise.

- y; =y and 8. = 6, and since these approximations become
In Figure 2 we have illustrated this for the case better and better as n + =, it follows that P, approaches

n =38, The needle has fallen in the position {y,9) where the true probability which we seek. The result stated in

%% <y< 7T and 7; <9< TF Therefote we replace y Section 3.1 can thus be expressed ; .

by y, = 7; and 8 by 6, TF , recording (y“ue ;) as the lim p_ = 2

approximate position of the needle. ne “now

Q 52 S ‘ Lo 53' 10




N, . -
4.4 Counting Successes in the Finite Case

- Since.the intervals 0 <y < L and 0 < 8 < 7 are
» £ach partitioned into equal subintervals, each of the n
ordered pairs (y 6 ) is equally likely. Therefore, -~
according to Sectlon 2.3, all that is necessary to

(deternmine ﬁn is to count thé number of ordered pair§m e
which satisfy (4). If this number is "o then P, = —% .
n? s -
To determipge m ‘we begln by looklng aguany one ~.

particular 6 here are n parls 1nvolv1ng thid o, .Oﬁ

these, the ones satlsfylng (4) are those for which -,

*
»

" L Y. >L (' 7 sin 8,) -~
'. J i -+ \.
i sL - sin i o
. ' n . . n N ~
(5) * i.>n (1- sin .

[] - il
The right side of (S) is between 0 and n. Let k be the
- integer part' of the right 51de, that 1s, the un1que integer

, such that . .
5] < g s

(6) - kj <n(l- sin jn—")<kj + 1.

.

0 then n(l - sin iﬂ) is between 0 and 1 .and
Se~ (5) is

2, see ny.
If k # 0 then it is a positive integer, and (S) "isy
false for all values of i up .to k, (1 =1, 2, ...,ka)
and true for all values of i aftgr that (i = k.+1,*’
: k +2,% .., n). In “either case k counts the'hymbef of

ordered pairs with this part1cu1ar eJ for which (5) is

,false, and thetefore n - kj counts ‘the number for which

If k- =
therefore less than any p051t1ve 1nteger.

true for all permissible values ¥f'i (i = 1,

it is true. So 3 . v
- . . $ _
° ) )
mn . m = (n - k.) - k: . .
"osE =1 - ¢
. . »
-3
\ .

ERIC ' '

] Figure 3 and Table 2 illustrate the determination
of k, The figure shows clearly
tha% for each j, k: denotes the largest i for which -

the néedle fails to-cross a line. -*

and of m  for n ="7.

2
I
" Exercise 9 -
Find all the kj'sffj 1,2, 3,...,n), m and P,
. (a) for n = 10 s
. (b) for n = 100 (this is easiest if you write a -little
1 b computer program) s L °

*~~ Some of your computations g_ll be helpful in Exercise 10.

_af

4.5 Approximating the Count

~ i

The result in (7) easily pnov1des the value of P,
for any particular n, but not in a form convenlent for
computing the limit. To achieve that end we begin by

-~ noting that (6) tells us. '
. v - kj n (1 - sin ll) -
with an error less than

n

one. This approx1mat10n leads

to an error of less than % in the value of P,» as you

should be able to verify (see Exercise 11). It follgws
that . '
[ § i
n -k, 1 - n(l - siw l—) .
J e I .
- -k, xn sin.-j—1 .
, *) . n -

and “this is approximately the number of ordered pairs,

with this particular ej, for which (5) .is true.

If we make the same approximation for each ej and
then add the results, we obtain .
‘ ' 3 in
m =g1 n sin & . .
- L] ‘.)

-t C

4 .
s - y . .
=




-TABLE 11

Calculation of m, (Section 4.4) and of éhe '
approximation of mn‘tSection 4.5) for n=7

n (1 - sin 4T
n

o

- 3.9628
1.5272
0.1755

0.1755
"1.5272

3.9628

7.0000 ~

3}312\

0.0000

3

{ mn % 30.6990

S

AT sin in
n > n
T .

7 0.4339
2n
7 0.7818
L1 oomg
bn
ST 0.9749
i
67 0.7818
T 9433
7| 0.0000
O ¥
h N
. \

e denotes points
where needle” )

crosses line.,

— &

_—
all
needles cross)

i=1
Figure 3.+ Graphical Lllustration of !(1’ '.‘2’ k

06

>3

fo‘rn-7? T

-
-

13

-
*

..
This computation is illustrated, for n = 7, in the last
column of Table II. . ’
Remembering that there are n? pairs altogether,
we obtain -
\ n .
' . Y n sinZ
j=1 .
(8) , P, = — . o, .
n
‘Exercise 10 e
Compute the approximation of p given in (8
e OMPY né a-given i
, (a) forn =10 - ) ‘
(b} for n = 100.
, .-
Exercise 1Y
© '(a) Show that the error in estimating P by (8) is less ,
i  than ;1- ‘o i
’ (b) Show that the estimated value of P, given by (8) is ,
less than the true value' < ) *
=
/ -
.y .
4.6 Taking the Limit ) )
A\
Let us call the right side of (8) qa,- Ve shall show
that %}g q, = %. Since, as you have shown in Exercise -
- .:.l. i i lim = -2- ; -
11(a), an pn| < %, it will follow that,n*m p, = 7 and ‘

we shall be done._

"We shall begin with a little algebra,
the definition of 9,7

:

o
s

Starting from .

% o
' n . s
= ¥ nsin il n i ’
v 9 R b | n 7 2sin il .
(9) q, = " =54 M n
n? x -
-. = Izl .1. I’. 5111 Jl = Z‘[—(Sln j_“_) E]
jsp T M 7 no g5 n
\ . . . 14 °
. .. . . -

.
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Now 1look again at (3) where we partitioned the interval

|

°

’

<0 < & < m. The right hand endpoints of the sublntervals

% is the length of each subinterval.

(see Figure 4), this is a Riemann sum for the integral

of the function f(e)-; sin 6 at these endpoints.

aré n/n, 2u/n, etc. The numbers % sin %T are the values
And.
In other words

» 4

(R -

.
A .

(a)  What inequality would replace (1)?

(b) Over what values would ¢ rangé?

(¢} what integra; would replace the one in (10)7?
(d) Show that this integral equals %.

5. VARYING THE NEEDLE LENGTH

We have al?eady remarked that our main, res f; is
independent of the lengtK L of the needle. Bqt it is
very much dependent upon the fact that th¢ distance
@atween consecutive lines equals the needle length. N

- Certainly'if we were to switch to a needle, say, half

~
r 4
Fe i Ky B}
f(0)=%sine_
¢ .
} . ’
1. 6mj1 . 7m
v “sm—n—-ﬁsm-n— d
LN
T eI kT -1
o " T M 2 . 3  knm 5w 6x ™ 7u
. . n n w e e " i
! n . . .
Figure 4. Relationship between L [?]r_SinJEE ':‘_r (rectangular areas)
. . -"1 J 1
and —sin 6d9 (n = 10). .
o T
L85 I o,
;r-smede. Thus, i
0 .
Ligind®yr o "1
. %%2 le (sin - ) o I = sind de
From (9) we then get .
. . T
. 10 lim = J ~ sin 6 d®
(10) ,  lima, .o = .
. 2
= = ( cosd)l = .

o LY
Exercise 12:

Suppose in setting up

which the needle makes with the northward direction, instead of 6.

our calculation we measured the angle ¢

ot

3
[

'eqdality. It is very,likely that in setting up this

as long, while continuing to use the 5ame ruled paper, S~
the neeé;e would be less likély cross a line.

.

. Inkpwactice it is unrealistic td insist upon this -
experiment you will have ava%lable some ruled paper whose
lines are a distance D apart, and a needle of "length L,
where L # D. It turns out that, as long as L is less
than D, the probability that the needle will cross a

line is %-x %. In fact, it's not at all hard to modify

" our proof, starting with (1), to get this resg%ﬁ. We'll

leave it to you (see Exercise 13). “

‘ A

Exerc}se 13

’

Suppose the needle has length L bht the parallei lines are D
un}ts apart, where L < D.
(a) What inequality replaces (1)? .
L

(c) Show that this lntegral equals —-X = .

A
/L\ (b) What integral replaces the one ln (10)2
D

.

Exercise 14

The result stated in this section clearly cannot be true if

t > D, since then % X % might be greater than one, and could not

59
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- .&;‘?‘. . . /
. \‘] J“ . //
2 - , - ‘la' - ’ ‘
1 i ) Ja
> "successes," giving 0.63449 as an estimate of -12;, agn‘dg1 .
h Lon i . Exactl , . v .
»possibly be the fraction of tosses which are successes xactly ) thus 3.15214.%as an estimate of 7, an error of about 1 ; . .
. .f N . > e . .
where does our proof break down if we try to modify it as in of one percent. The BASIC program we used contained .
g ed . ,
Exercise 127 . only 10 lir},es. If you know BASIC or any other comp\%’e‘r Q
* . ‘language, you should be able to try this yourself./},’
. 6. GETTING THE COMPUTER TO HELP C / - ~ xS -
Exercise 15 R - * ¢
Whatever the merit of this approach to approximation (a)  If you know a computer language, write,a Compy,}er prgran .
of v, in view of Exercise 8, no one can claim it to be to simulate Buffon's needle experiment for 100,000 * ° ' -
LN - N . - !
a realistic way of getting a good estimate. “Remember, , ’ ""tosses." + s
not only does Exercise 8 show that the accuracy «after (b)  If you have gcess to a computer, run this program \
10,000 tosses cannot be better than three places, but . ) compute the estimate of m resulting from th\is‘run,' vt
’ - ¢
) the discussion in*Section 2.2 says there is ‘no reason ' A} and compute the percentage error in thi,s;es'timate.. .
- * ©
to presume it will even be that good. & .]i . /'
. . - A
It is posgible for a computer, figuratively at least, v . . - . -%L
Ly . . . ~ > e 3
to toss the needle for us. In our proof we described the - : s L, - . ‘e
. s . o ' EA A
approximate position of the needle by an ordered pair < . - e . .
. . 'L . - . .
(y,8) where 0 < y < L and 0 < 6 ,<m. Since the result ; i e ;-\' '
does not depend on L anyway we .can take L = 1 for con- ) ’ Yrple LR VN .
venience. We can ask the computer to pick a number at . G e . o,

'y . . . ¢ . L . /
random between 0 and 1, and call it y; pick another number | o ¢
L - -1 « 7 PR
at random between 0 tand 4 tan™h1 (note that 4 tan "1 = 7), S . . ° )

e N - . [l ' * .
and>call it 6; and then determine if | e a . . ., L .o R A
e 3 TR . . ot 3 . L
y + sin 6 ;\1 "g hd - . . . \
. - . ' . . . The Project would like to thapk Charles Votgw of Fort .
1s true. = ., Hays State University, Hays, Kansas, and. Sotomon” Garfunkel *
. . - " " pf the University of Connecticut, Storrs, Connecticut fAr : !
The machine can easily ¥ount the number of tosses « | their reviews, and all others who assisted in the product i.on Lot
T and of "successes' S& We can program it to perform of this unit. ™ \ & . L0 .
- . . , ¢ . . °e .
any predetermined number of "tosses” ‘and .then to compute N This unit was field-tested”and/or student reviewed in | __ L e
an éstimate of m jyst as in Section 3.2 / preliminary form at Malone College, Canton, Ohio, University «
i ] . / of ' Louisyille, Louisvilde,.Kentucky, Roberts Wesleyan ¢ .
In an actual computer run, we asked the computer’ to College, "Rochester, New York, St. John's University; ,
' . .d 449 v Collegeville, Minnesota, and The Wheat ley Scheol, ol )
"toss the needle" 100,000 times. It reported 63, _// . : Westbury, New York, arid has been revised on the basis of . -
, / data received from these sites. ¢ ,/
/ ry L * ¥ .
- * Computer work for this unit supported by the University of/Mary- ' 61 PN
land Colmputer Center. ; ) ) . ~
. / 17 .

18 .
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10.
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11,
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-

. - * . .
. « t -
. ' ) —ye
i)
.- - .
' & . 'y ’ Su tract‘kJ. from all three qualities in the inequality
» 4 ™ . .
.- ANSWERS TO EXERCISES . 0 < n(l - sin Jnl) . kJ- <1
A . " " Sym from j = 1 to n, and divide by n? -
52 , . . )
1 n - n
= Ep(l-sian—)-E k;
@) & ) : LRIE = S Ll N I
a 36 -33- . n2 . , n
) . . 9
;— plit the sum of the left, and simplify the far right
L 1 3 2 ¥ n n . n
() 3 () (€53 (@ 13 ) : In-Znsindl-g K; A
1 : ' 4 T= i= 1=
(@) 7 B ()0 . / g 21 = =
2 - - nz n
The best ossibleLres It is s = 6366 ivin - = 0.6366_and.__ .. __ . — == - - )
P ¢ s 9 ) Then split the fractioh in the middle this way,
3 ‘l'17 - » / 4 * -
< ' . n
¢, + 2 _ .
() i 2 3 4's 6 7 8 o 10 - . . IN gasdD o
< - <=, s
k.l & 1 0 0 o 1 & o, . o T = n
. , . , .
< Mg = 68; Pip © 0.68. \",’ o ,;‘ to get the inequalit.y you seek: \
‘ 12 3 ...83 By 45 46 ... 5o gy .
®) | = . . / . *Insin Jhl 1
k/,|96 93 90... 2 1 1 0 ..7 0 , 0<p -, <1
J * ’ ! -'n 2 n
. . ’ n - —_—
For 50 < j-< 100, K, = k, - j; k. "= 100; * 1i-
o 6512+ o - -‘0 61':30 . 100 12 (a) y + L'cos ¢ > L. . |
: 100 # Pygp = 0-0812. ; ¢ . ' (b) -;<¢<1ZT., AN
’ - § hd - - , . %
(a) Piofs 0-6314  (b) Pop = 0-6366 ?5 - . . o o i
- . . . £ (c)f 2 7 os ¢ do. -
You are/looking for an inequality of theg‘_‘form . ':"/2 . A .
. . - 13. (@ y+Lsing>p, - .
Znsin & 1 A . 3 (" Y . A *
0<p -~ ‘%n < F . TL e k
= n2 : - - (b) L T sin 6 d6, % . AN . . s
To get it, remember the exact value of P, is ) N . ) - ¢ : -
n 14,  The kJ defined in (6) is not an accurate count of those values
n? - 21 kJ of i from 1 to n for which (5) is falsg. For certain J,
Pn ™ :2 . 1 - sin J— <0, so (5) is true fof all i and false for 0 i.
T . But k < 0
Sfhce the formla for P, lnvoIVQs k » Write down the
defining inequath for k . . ’ P —
’ kj_n(l-sinJ—)<k+| . o
Now take the following steps, ’ . , .
l .
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15. (a) Here is one BASIC program which should work. Depending

100  RANDOMIZE

209 FOR T =170 100000 \

300 Y'= RWD

400 A =4 % RND % ATN(1)

500 IF ¥ + SIN(A) < 1 THEN 700 o

600 S =5+ |

700  NEXT T ) =
U806 R = 57100000 )

900 PRINT 'PI = '; 2/R

, 1000 END ' N

-~

on the computer you are using, it might require minor

modifications.
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- A STRANGE RESULT‘IN VISUAL PERCEPTION v .

oo 1. INTRODUCTION .
. > !

1.1 The Modeling Problem . I .

)/ In 1962 Tom N. Cornsweét reported on the . .
experimental verification of some seemingly paradoxical

- results.* He (and others) had predicted these results
by co ructing a remarkably simple mathematiéql model
of chii)ocess by which the eye "sees" bright light, '

based inm turn on some !/;y simple physiological assump-

J

tions. We: shall describe the experiment and then present . LN

his model. .

1.2 The Experiment

Essentially, subjects whose eyes had had a chancé

to adapt to darkness® fixated upon a point in a brightly .

llghted reglon, across which was a non-opaque bar wthh

fxltered out a flxed amount of the light. At a certain

time t” ‘the bar rather abruptly appeared much brigheer

than the background even though it was less brightly, :

Lo * illuminated! Then, the apparent brlghtnesses gradually
became equal, and flnally‘at time t* the background
became and ;emalnedwsllghtly brighter than the bar. The
subjects were askeé to press buttons at the times t  and
t* as accyrately as possiblé. This experiment was rerun

“for different background brightnesses. The details of
the experiment can.be found in Cornsweet's article (pages
261-263), In_Fighre 1-average empirical values of t~ ’ '
(loﬁer curve) and t' (upper curve) are plotted against a

measure of background brightness. ) L
. L3 ¢ #
¢
M 4
*Tom N. qPrnsweet "Changes in the Appearance of Stimuli of Very
. High Luminance," Psychologival Review 69(1962): 257-273. .

-
. o
b . .

Eﬂsz: - o :
v r©
s . y
. .
A [




Time (seconds)

i Brightness (trolands x 106)
» Figure l. Times at which apparent brightne'sses of bar and
background weré equal, plo:ted against background brjghtness.
(Source Cornsweet, p. 261) -

<

! \

' . PHYSIOLOGICAL BACKGROUND

= « s s A

Before constructing a mathepatical model, we must
have some 1dea what we are modeling. In this section we
shall descr1be briefly what we need to know about the
physlologlcal process by which the eye "sees.

-

P

"2.1 Activation .

v

In the rgniéz.of one's eye there are certain cells,
call "receptor™ cells. Egch of'these contains molecules
which arge capable of being "activated" by light. This
actiVation results in the dischaxge of a certain chemical., '
Accumulation of a certain minimal amount of this chemical
triggers a nerve imp®lse which results in one ''seeing'.
the light. . . N °

.

For various reasons} the chemical tends to be
destroyed very quickly after its discharge. This means
that, if there is to be any hqpe that the required

Ve

y El{lC

s e R




+

b \

O

ERIC

Aruitoxt provided by Eic:

4

t - (b) ,At any t?me t, activatéd molecules aré€ 'being

36 .

minimal amount accumulates before it.1s destroyed, this
hope will depend upon véry many molecules being activated
in a sho period pf time. That 15, it wall depend on a
ﬁl'gh. ranZ)f activation,

2.2 Regeneration . - .

When one 4f thesec molecules has just been actlvated
1t 15 not capable of ”1mmedlatcly“ responding to further
stimulation. It must take a small, but not negligible,
amount of time to recover, or be "regenerated," So at

. any moment ,oniy a certain fraction of the moleculges are

.»1n this regenerated state.
A .

3. THE MODEL

y

3.1 ‘Assumptions of the Model

.

. There ares four mathematical assumptidns we must make
in order to construct our model. We hope each of these
assumpt’ions wil]l seem reasonable to you. As for whether
they are "true," we cannot say for sure, but we remgnd
you that a very- striking and seemingly paradoxihal result
predicfcd by the model has bee¢n confirmed experimentally.

. . .
s N

(1) How much light one "sees" (one's perception) ig

directly proportion2l to the rate of activation.
(2) The rate of activation is directly proport*onal
< * to the amdunt of light (brightness) fallifig upon
' the receptor cells. !
- 3) &é any time t%, the rate of activation is also
directly proportional to the fraction of the
. molecules which are in the fegenerated state at
e that time.
! regenerated at a ratq dLrectly,proportional to
the fraftion of the moleculed whicﬁ aré ~

4

activated 3t that time. - PR SN A I
4 ©
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3.2 The Assumptions Rewritten Mathematically

. Let x = x(t) stand for the fraction of molecules
which are regenerated at time t. Then the number of
. regenerated molecules is mx, where m is the total numger.
of molecules. Assumptions (2) &nd (3) together say that
an amount of light q shining on,the retina activates
molecules (decreasing mx) at the rate cqx, where c is a
positlJe constant of pToporflonality. Assumption (4) says
+ that at’ the Samé timesother molecules ap€” being
' regenerated (increasfng mx) at the rate k(1-x), where k
. * 1s another positive proportionality constant, Notice
that while the rate of activation of regenerated molecules
depends upon q, the rate of regeneration of active . !
molecules does not. ‘ o :

.

' All told, then: ’ 3
(1) (mx)' = k(I'-x)" - cqx. )

Finally, “assumption (1) says that our perception of
light is proportional to cqx. Since we are studying ¢
perception, it is this quantity we,are interes;ed in.

o

[y

3.3 Summary of the Notaljon «

e oy .

. A lot of notation is inning to pile up, and
there will be more. There is r¢ need to remember all.
the notational details. Just kéép in mind:

>

3

.

-q (the dmount of light entering the eye) is a posi-

tive co«stanc controlled by the experimenter.
: ’r

3

~ ;

1 ¢, k, and m are positive constants determined by

R the physiology of the eye; and are not controllable. b

X isa function of the time t.
[N .
cqx is proportional to perception, and is what we are ]

* . interested in.
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4. A FORMULA FOR PERCEPTION

4.1 Solving the Equation of the Model .

4

‘SIHCG'% is a constant, Equation (1) can be written

mx' = k(1-x) - cqx
mx' = (-k-cq)x + k ,
- v - -k-c k .
(2) X = —m-jx + E .

We are getting buried by notation. At the price of
introducing still more letters, let's simplify it. In -

-effect, Equation (2) just says x' 15 a linear function

g
.of x: . !
s (3) x' = rx +s \ '
. o
4 ‘ where r and s aré constants. .
« Here 1\5 a very useful trick for solving any equa:'h
Jdike Equation (3). You may want to remembet it. Just 1
. make the substitution s ,
LN ' v
24 Z = r1Xx *+s, e °
. Then z' = rx' = r(fx+s)'= rz. And of course the solution ™
7 of z' =tz is z 2 CeTt.  Goihg back to the x-notation, .
+ this 1s rx + s = CeTl; or ‘
‘%
v - .
(4) x = crgTt . 3
) . r -
' X = .c.
where C T; -
! "4.2 Determining the Constant '
- N 3 * K <
. ' To determine C* we must.know the value of x for any :
) one particular t. Remember, in the experiment the sub-, ° !
. ject's eye was allowed to adapf to darkness before being
exposed to a bright light,- 'In other wordg, almost all
R the molecules in the receptor cells were in the regenerated
state just before the initial exposure, so at that moment
- . s -
" |
r (¥4 .
. o N - Voo .) .
QO ' 72 -
- . L4
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= 1. If we label the moment of first exposure t = 0,
then x(g) = 1,

-~ -

Putting t 1 in Equation (4) yields

S
T

4.3 Determining the Activation Rate

To interpret Equation (5) we must return to our
origina) notation. Comparing Equation (3) with
Equation (2) we see -.that

-k-¢

e-(k+cq)t/m k

. +" K7 cq

‘

and the rate of activation is

I )
Y 22
cqx = H—ﬂ < e-(k+ﬁt/m + k—ﬁ—i kcq .

The right side_of Equation (6) tells us, if our model

. has any validity, how bri%hi a light will appear to one
as a function of time t, assuming it is turned on at time
t = 0, and that one's eye9was in darkness before then.
Let's give this function a name: £(t), and let's
investigate-its broperties.

v Al

ANALYSIS OF THE FORMULA

5.1 Simplifying the NoEation

I N .
Again, let's simplify the Dhotation to avoid being
buried by it. Let's write -

»

Ea o




- _C _k + ¢ _cqk
Mgy NSRS P e S
Then we have ‘ ’

) £(t) = Me Nt 4 p.

There \is no point in trying to interpret’ M, N, and
P physiologically. What we should remember is the
material in the box in Section 3,3, from which it follows:
that M, N, and P are positive constants.@®

5.2 The Shape of the Perception #raph

It is eaby to confirm (Exercise 1) that f(0) = M + P,
lim £(t) = P, f'(t) < 0 for all t, and f"(t) > 0 for all t.

Lt

Therefore the graph of f(t)’for positive t looks like
Figure 2. The horizontal asymptote at P represents an
equilibrium position. It corresponds to that value of x
(the fraction of molecules which are regenerated) for
which regenerated molecules are being activated and
activated moleculgs are being regenerated at the same rate.

£(t) '

3

Figure 2. A typical graph of the activation rate as a
function of time.,

' 2

) .

ERIC . . '

s . . . .
.




gﬁ)..,—ns» sart % » . - .
; . ce e
. 4 s ‘
3 w . ‘Q’
. 5.3 The Effec/of Changmg the Brxghtness <
M -t e

If’we éﬂgzge q, then we also change M, N and P. But °
they are st111 positive constants. So we get a new f(t? -

whose graph has the same shape és that in Figure Z, but .
with' a different iptexcept an? a different horizontal . . <
- . . 4
asymptote. .
ymp . ‘ [ !
' ' 3
o 6. RELATION OF THE FORMULA TO THE EXPERIMENT . * $
(e

6.1 Explaining the Experimenta] Result

Now let's look at\zhé experiment. What happened’
was that the subject's éye received two amounts’ of light; -
a from %he(backgrouna, and q, < q; through the bar. So "
there were two graphs like the one in Figure 2:

. .
- -Nit .
. fl(t) = Mle 1+ P1 .

. with intércept Ml + Pl and asymptote at Pl’ reprégenting
the subject's perception of the background, and - °

2 .
: 5
with intercept My + P2 and asymptote at'P,, representing .

e_NZt}P . g

fz(t)

the subject's perception Y the bar.

In Figure 3 we have drawn two curves of the rfght T
shape on the same pair of coordinate axes. We have not
considered the specific values of the -constants. We
just want to show that it is at least believable that
the two curves might intersect twice in thé‘region t > 0, |
in which- case there would be two reversals as to which
cusve was the higher of the two. If this actually hap-°
pens’, then for t~ < t < t+ the subject will perceive the,
less brightly 1lluminated bar to be brighter thdn the

4 . background, and there will bg two reversals of apparent _

relative brightness of bar and’background.' Further,
" *Figure 3 suggests that the first reyersa] (at t = t ) will

be rather abrupt,'ﬁhile the second (at t = t+) will be

ERIC . P
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. -

much more.gradual. This is just what happened in the
experiment! . : )

s 0 o) . :

s

M+ P
UNE

-

-+

Figure 3. Two typical graphs of the activation rate (same
subject, different brightnesses).

. B

6.2 Predigtlng the -Experimental Result

. s+ Now for that all- -important +'If." Could we have
actually calculated that f (t) and f o(t) intersect’ (and
" thus have predicted the experlmental result), rather
. than settle for "it is at least believable . . .".and
(after the fact) "This is . . . what happened%?

*This.amounts to solving fl(t) = fi(t), or

1‘=.M2e'N2t + P
v/

(®  meMt.p ) -

for t. :There is usuélly no easy way to do this. But

< for certain carefully selected values of q; and . it

can be done. (Remember, q is the only thing we can i

’ control). Let's select q; and q; so that -N; = 2N,., s .
(Th1s ean be done, 1In Exercise 7 you are asked to show

that q; = Rq{ will do it, wheére

[x 4

o . ‘ A ”
ERIC ¢+ : =
o .




k+ Zcq2 k )
= N S
cq, cq, )

Then Equation (8) becomes

(9)

-N

Putting y = e 2t we get

(10) Mlyz - My + (P, - P,) =0

which is a plain old quadratic equation. (This is fthe

payoff for making Nl = ZNZ.) Its solutions are of course
Al

M, £ M5 - M (P) - P
(11) :
. 2 2N

1

There will be two positive valued of.t satisfying
Equation (9) if there are two values of y'between 0 and
1 satisfying Equation (iO). So we must show that tbe
right side of Equation (11) is (a) real, (b) greater than .
zero, and (c¢) less than one.

The'sticky part of this is (a). Some fairly messy
algebra is required, which we havé put ih the Appendix.
It turns out that the right- side of Equation®(11) is ° *

real if qQ, is large enough compared with k/c. Afterz
that, (b) and (c)} are relatively easy, and we'll leave
them as exercises (see Exercises 5 and 6). T

So if q, is sufficiently large (see the Appendix),
and if qp is sufficiently larger than q, (Exercise 7),
then fl(t) and fz(t),will intersect at two positive
values of t, producing the paradoxical effect confirmed
by the experiment.
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- APPENDIX
. This appendix is devoted to showing that the

solutions to Equation (10) are real provided q, 1s large
enough. As stated in Section 6.2, these solutions are

_ 2
y o= M

. o 2
» My ¢ AL - aM (P -P))
1

»

They will be real (and distinct) if

s

.
M2 - 4M1(P1-P2) > 0.

\ \
In working with this 1inequality, we shall use
A

(a) the definitions: )
. ¢ ®
2 2 2 2 .
¢ q, c’q, cqlk : > T cqzk .
SIS T B T T O S 2 " Teeqy
’ (bgd the fact that q). = Rq, where o
k+2cq :
- R = 2 = __k_ + 2 N .
cq, cq, .
(c) the.fact that k + CRq, = Z(k+cq,), wh1c1.1 you are :
asked, to prove as an exercise (see Exercise 4).
\ We have )
2 T ’ R/
MyT Ay (P - B
. ‘(‘b (‘)) cdqzu 4c2312 cqlk cqzk
y (a = - - ,
(k+cq,)?  Kreap f(kreqy  kicq,
Y 3 \: . - :
- cdqz4 ’ 4c2R2q22 cRg,k cq,k » .
(by (b)) = - -
» (k+cq2)2 k+cRq, k+cRq, k+cq,
/’\ c4q24,, 2C2R2q22 chzk s c92k
‘ (by (c)) = (k+cq;z - k+cq, )|Z(keedy) ~ Kreq,
) s \ ° s ' /
] » Y ’

P LY
‘ -
. .
Q -
wiéﬁma . e e

. °
- . s
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C4q24 ) ’Csquzsk . 2c3R2\q23k
’ (k+cq2)2 -
= 9" (cq - Rk + 2R2k]
2 2 . . ) '
(k+Cq2)
For this expression to be positive, the part in .
parentheses”must be positive. sing the definition of R
in (b): 'Y
ca, - Rk + 2r% ' P
k+2Eq2 3e k+2cq, 2, )
= ¢ - |—=} k + 2| —=1 k .
. LY cq, ¢ cq,
3 22 2.3 3 3,002 o1 2 2
» Tﬁ+6k cq,*12k"c q, +8kc q,. 2k +8k cqz+8kc q,
T cap - 33 * Z_ 2
€9 € 9 :
: CY )
c4q24-k4-6k3cq2-12k2c2q22-8kc3q23+2k3cq2+8k2c2q22+8kc3‘%3 .
B i T3 .
z C qz . . ’
c4q24—k4-4k3cq2-4k2c2q22‘
‘quzs P :
For this fraction to be positive, the numerator must be
positive. That is, k\ .

. 4 4 4

o Clqy - k' - 4k3cq2 - 4k2c2q22 > 0.

~

" Sinte it is which we can control, let's rearrange
q, 'g

terms:
) 3

c4q24‘- 4k2c2q22 - 4k3cq£ > k4. S

fhe left side of this inequalityfis a fourth degree poly-
nomial 1in ay,: Since the leading coefficient cdlis
positive, the left side approaches += as qa, approachés

~ .

N

: “r 9

-~

*
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T

*, And so the.left side -must be greater than k* for

q, large enough. - .
* Actually, you can easily check that if q,'= 3k/c, .
then the left side equals 33k?, which is certainly greater ,
than k?. : . .
L
EXERCISES
» -
1. Starting with Equation (7): ¢ \ .

(a) compute f'(t) and f"(t);
(b) “show th;t £'(t) < 0 for all t;
(c) show that f'"(t) > 0 for all t; ¢
(d) . show that £(0) =M+ P;

+ "
(e) show that 1lim f(t) = P.

o0
. . ’ Y- +
2. Find the time t between t and t on Figure 3 at which the
second light is perceived to exceed the first light ‘in brightness : ¢
by the greatest amount. . ’
3. In Equation (2), find the value of x for which we have equilibrium,
and show that this is consistent with the remarks in Section 5.27 .
. about the equilibrium position. .
4. Show that if h
. " . ,
k + 2¢cq
R = — Z.k 4y,
. 92 €4 .
. then - '
. k + cRq, = 2(k + cqz)-
A} ‘-‘ '] -
5. XShow that the right side of Equation (11) is positive,. assuming
it is real? ’
’
s 6. Show that the right side of Equation (11) is less than one,
assuming it is real.
. ‘ © fm : '
. - ' / .
¢ < A I
. "80 * . ’
L 4 : :
Q L A * *
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7. Show that if &1 - Rq'z, where
b k + 2c”q2 X X
- R= -2, '
€q, €q,
\ o “
the - ) . '
h \(N N N . . T
» - .
. b= 3, s, .
% : L )
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! . ' - 3 ‘
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ANSWERS TO EXERCISES

a . vt o
v .
UL @ £ 2 e ™ i) moaZeNE, R
~ (B e >0 for all real z, M > 0, and N > 0.
¢ (c) same as (b). T -
. . - 4
d)  £(0) = yeo +P =M+'P, . . "
. » . . ;
N - - @ ‘
(e) 1lim W™ +p) = M(lim e™) +p = 0 .
L0 tr e
& . [ , . I
. . -Nt
Since e = == = (,
V.4 eNt ' .
] ’
-~ & A -
" log MlNl - log MZNZ
2. t = . e
- - Nl—N2 ‘.
A .
(Maximize che fun_cﬁon g(t). = f (c) - f (c) by setcing T 2
g "(t) = 0 and solving for t.) .
TN i:/ ve T ,,1 .
3‘.x=m. (5ecx=Oandsoveforx) . . ) .
.- r » - Co
' - ~ e .
*For this x, the rate of activdgion would be ,, .
! cax k + cq P" ‘ . -,
) as stated in Section 542. * -
. k + . 2cq2 . - 3
: k + cq, |~——— -
k + cRq » 2 cq k+:k+2cq}‘,
2 _ 2 |, 2) o, .
N N < bt = . '
k + ¢q, k + cq, k + cq, P
[ b N
5. The solution with the plus sign is certainly pogitive. The
other will be positive if \ .
. - . ]
o, A . s
. % 'éz - AP - P> 0, , :
N ¥ . *
. 2 ~ ‘s, - ] ‘
. Mz > A’Z - QMI'(PI - Pz), ., . JOR ] . [N -
) ) . H @ .
z N . ’ .
; MyT o M - ey -y 16
P ‘ PO Rt
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[ ' ' ‘ ) ’
. For this'ﬁ)'be true we ret}uire Pl - P2 > 0. To see that this
. - is so, we write - ‘
: e Wl o
- . 172 k+cq1 ktcq, 3 . . )
' 2 2 2 2 )
g ’ =. k cq1+c qlqzk—k Tq,y=C qquk- ,
> - (ktcq)) (k+eqy) .
2
> k¢
. s —=C¢ . - /
- ;, e (kra,) (kreqy) (9)-95)» '
which 1s positive since qliqz. 3 ' °
. \ .

. /? We flust show ’
¥

. ’ I ' -
~— " me Ay comy,

Sl 2 T A (BRy) < 2 - My,

.

- . 2 : 2 2 .
, coom M TRy AT - Ay 4N,
’ * [y .
T ~ ' Y . - . A
S /" S Pl - R My - My,
. . . . .
) Co T MR > MRy ‘
3 ~" L) ) - . ! N
To show this, note that - . « . -
. ¢ 9 2 .2 .2 N .. ¢
* « Ttq +cq1k ¥ A
+ P = - ‘cq N
. 1 ke 1 .
b y . .o L . . .
, and similarly that L .
’ g o - .
. My +-Py 2,09, o
. M
i . ] - , v .
q . . .Remembgf thaa q, > qf . S ‘ L
. LT RS ’
c 1o N, kb k+cR < Coe e
i Cq LK+CRq * ». .
: v Al 1., 2 ; >
“2 A k'*cqz k+cq2 ,2 .(usmercise 4). . .
. . . & . * - -
.0 -” - \ . .
, - > . . . S
' -~ . , ' 2
\ - ' . S @ . . .
* ’ - e N . - ,
- r [
p O (" . . N . . '
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