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1. INTRODUCTION

Certainly you have met the number 7 frequently in
your study of mathematics. You have learned various

approximations to it. Perhaps the most familiar are
22/7 and 3_14. Through the centuries there have been

many other approximations of 7. In 1967 a computer

program calculated 7to 500,000 decimal places: But no
one has ever found an "exact" value of r, and no one
ever will, for a very good reason. The title of this
unit states that reason, and in this unit we shall

4prove the statemeht

1,N,Rational and Irrational Numbers

Recal'l that,a real number is said to be rational

ifiand only' if it can be expressed in the form p/q

as a ratio) where p and q are integers. A real
number which is not rational is said to be irratidnal.

On the face of it, it is not clear that there gre any,
irrational nfabers. In fact, the ancient Greeks believed

that all numbers were rational. We can- hardly blame the

since the Greeks thogght geometrically, and geometric

"common sense" seems to'co4firm their belief. After all,
we can drag a straightline (in modern terms, think of the
x-axis) and mark off upon it equally spaced points corre-
sponding to the integers. 'Then, by a straightforward tech-
nique of Euclidean geometry, we can divide each unit inter-

.val on thb line into q equal intervals, where q is any
i positive integer we wish. If we, do this, for example, to

the interval froth 0 C6'\ we get points whose distances from

0 are . . If we do this for all pOssiblq,

qand for all unit intervals, it is hard for us (and Was

*Many people, apparently overawed by decimals, assume without calcu-
lation that 3.14 must be the better approximation, presumably because
it-is. in decimal form. But notice that 22/7 = 3.1429, which is 1
closer to n (= 3.141)) than is 3.14.

/
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'hard for the Greeks) to believe that we do not get all

the points on the line (in effect, all real embers).

4 '

But we don't. ft is very e to construct a line

segment ...hose length is 7; for ::;ple, the hypotenuse

'of.an isosceles'right triangle with legs'of unit length.

If we then place this segment on the line of the preceding

paragraph with its 'left end at 0, its right,end will .be

at E> And i7 is irrational, as the Greeksdiscovgred to

their consternation,* anfi as you may.have seen proved

elsewhere, Therefore iris not one of the points marked

off 'in the construction of the preceding paragraph.

(.2 Decimal Representation
. .

Mathe'maticians now know that there are very many'

irrational numbers. In fact, as you may already'inow,

a real number expressed in decimal form is rational if

and only if it eventually becomes repeating. (A term-

inating decimal can be regarded as a decipal that repeats

zeros.4. Some.xampirs are:

0.25000 = N I
o

0.5183000.... 5183
. L0,000

0.3333 ... =
1
7

1.
'0.142851142857

A

1

:

333 0.333,... = 3 15.
f 1 2

.

This is not,the same as saying that the decimal

expansions of irrational numbers never have a pattern.

There aresome patterns which are Tiot repeating. One

example is 0,10110011100011110000.,..

-----\
'The Greek's nsternatjan was based on much more than having the i,re.

"common sense" arred. Some- of their mathematical theory and even of
thei P. phi losophy as based upon the. erroneous belief that the .rat io
of any two l i n e s eg`mnt lengths was rational.

I ,
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Exercise 1 rA

Each o the following decimals can be obtained from the

repeating dec mals listed above by simple algebra. Use this

fact to express each of them in the form li , where p and q are

integers.
.1.

(a) 0.003333...

(b) 0.766666...

(c) 0.892'857142857142857

(d) 0.253968253968y.

2. THE PROOF

. In 1767 JohLIn Heinrich Lambert (1728-1777),-an

Alsatian philosopher, scientist, and mathematician,

proved that y.is irrational (see Exercise 10). It

follows that we can never write down a fraction or

terminating decimal which equals y; we must always

settle for.an approximation.

Since then there have been many different proofs e

that it is irrational. The proof presented in this unit

was originally disco6red,by Ivan Niven in 1947. It has

the virtue that a first -year calculus student can read

it, but-it clods contain, unfortunately, a considerable

amount of 'compdtationel detail. It will be much easier

'td follow if, before getting into that detail, we present

an outline:'

2.1 Outline

It is much easier to work computatipnally with

the notion of rational number than with that of irr

tional number. After all, an, irrational number is

defined by what it is not (not rational) rather,than

what il is. So most proof that any specific number

1

ti
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is irrational are indirect; they begin by assuming it is

rational, and then arrive at a contradiction, Our proof

is no exception.

If'we assume 7 is rational, then so is 72, and we

can write 72 = p/q where'p and q are Integers. The heart

of our proof will consist of an intensive study of the
a

expression

(1) K = 7pn
rt

F(x) sin ax ,dx
0

where

x
n

(1 x)
n

(2) F(x)
n!Age

and' where n is a fixed positive integer. Notice that K,

depends upon n- (but not upon Z).

First, we shall make an estimate of the,size.of the

integrand and, using this estimate, shall show thaifor

very large integers n, K < 1.

'Second, we shall perforM the indicated integration,

obtaining an expression for k-in terms of T(0), F(1),

andhigher erivatives.of F aluated at x = aped x = 1.

third, we ghan derive certain prOperties of

F(x) and its deeivatfves and apply thern,to this exikression

to show that for cal positive integers n, .k is a potitive
0

integer. :

The two italicized statements contradict each

other. Since our 4F11)", assumption along the ways is that
g

IT is Tational, this assumption must be false.

2.2 Part One'(K < 1)

-The function we must integrate in 'computing K is

xn (1
n!

x) sin 7x
We are integrating from x = 0 to

x = 1. In thisintgrval ite numerator is the product
J

8
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of three factors, each'of which is between 0 and 1, and

so it pust also be betweFn 0' and 1.

0'< x
n
(1 - x)

n
sin 7x < 1

x
n
(1 x)

n
sin 7x 1

n! n!
,

J1 /

0 dx < 1 xn(1 - x)n sin 7x - \' 11 1
dx < -- dxn! on!o , ; 0 .

(5)
,

0 <
II xn(1 - x)r.1 sin 7x ,ux < --1

1

0 n! n!

We have introduced Strict inequality signs in the last

line, since the only way we could have equality would

lie for the integrand to be identically 0 or identically
1
-- for 0 < x < 1. Clearly this is not so.n! _ _

Multiplying by 7pn we get
n

.

m.

This part of the proof will be complete if we can

7nn .show that -Pr < 1 for very large n. To show this we

let

r = 2p.
r

1

ihN-e is some positiVe integer m for which

2m > al (See Exercise 2).
r.

1 r!

2 'npr

Then

and we have

r+m r 'm
7 7p p t
r+M)! r!(r1.1)(r+2)...(r+m)

r ..-

' = LE_ _E._ ,..2._.

r_E_
L-

r+1 r+2 +m

< E =-EE oom < 2m
1

= J.
r! r r r!

2m

in times

S

ti



Exercise 2

Assuming p and r are given positive integers, find positive

inte6er m so that 2m > 7: .(Try your answer out for specific'

values of p and r.

2.3 Part Two (Integration)

The second part of our proof consists of performing

the integral on indicated in (1). The most direct way

to go about his requires integration by parts and

mathematical nduction. If you have never studied

these topics you will find an alternate approach in

Exercise 3 at the end of,thiS' section. Although it is

a little awkward it is perfectly correct.

Let f(x) be any differentiable function, and,

for any positive integer k,. let f (k)
(x) denote the k

th

derivative of-f(x). We shall use mathematical induction

on n to prove that, for all non--Regative integers n,

ti f(K) sin nx dx f(1)+f(0) f"(1)14"(0)
o

, n
(4)

f(2n) +-f(.2r1)(0) _ '1 f(2.:1+2)

/T

(x)sin nxdx2n+2 Jo2 n +1
jr

where the uppei signs apply if n is even, and the lower

signs if n is odd. The proof, likeall.preofs involving

--imathematical induction, requires two steps: (A) Proving

b(4) foran initial value of n (in this case, n=0);

(B) Proving that if (4) holds for n=k then it holds

n = k+1.:

(A) The first step involves two integrations by parts.

Replacing n by 0 in (4), We see thalt.we must prove

10
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( 5 ) 1 1 f ( x ) sin ix dx f (1) f (°)
°

f1f-(x) sin nx dx

The formula for integration by parts tell us
1 1 ri

u dv = uv - v du.
6

We can apply this to the left side of (6), using
.c

u = f(x)

du r(x)4
ti

We get

dv = sin nx dx

v = --
1

cos nx dx.

i 1 1

(6) 1
o Tr
1f (x) sin nx =

f ()
cos nx

o

+ f' (x) cos nx dx
_

1

r

1

o
.

1-(1)+ f (0)
1

1
, 1

f ' (x I cos nx dx.
.....*

o
.

Applying integrationky. parts to the integral on

the right, with

i r = f ' (x) dv = cos nx dx

du = f"(x)dx

we get

1
.v = sin nx

1

o

jot" (x) cos nx dx = -

f' (x)
sin

o r
rx f"(x) sin nx dx

1

r

.U(x) sin nx dx.
°-

Substituting this.result into (6) gives us (6) and

completes the first step in our mathematical induction.

(B) Npw we assume (4)tholds for n=k: In other words,

we assume

4

e



f(1)+f(0) f"t1)+f"(04 1,(7) 10 f(x) sin nx dx. + . .

3 .

f(2k)(1)f(2k)(0)

2k+1

1 J1 ,(2k+2)
7 2k+2 0' () sie n dx.

Equation (.5), which we have just pro ed, applies to any
.

- (2k+2)
4 differentiable function f. If we ap ly it to °f

.

f(2k+2),. ,(replacing f(x) by (x)through uf); we get

,

Jo f(21(+2) (x) sin nx dx -'

f(2k +2)

V

F (2k+2)(1)+f (0)

1 ,Ifl(2k+4)(
x) sin,nx dx.

, .

V 2 0

1Multiplying this by 7 2k2 givdssus
Tr

1 Ilf(2k+2),,
+ 2k+2 0

( sin 7x dx

T(2k+2)(1) (2k+2)(0)

..2k+3

10 ,(2k+4)

n2k+4
(x) sin nx dx.

Making this substitution on the right side of (7) yields

(8) jl
0

f(1)+f(0) f40,)+f"(0).f(x) sin nx dx =

'

(2k) (1)+T(2k)(0)6

2k+1 .

.T'f(2k+2)(1)+f(2k+2)(0)

Tr
2k+3

.

2k+4 0

1 11111.f (2k+41(x)
sin irx dx

,n

which is precisely (4)- with n = k+1. Vie have completed

the proof of (4) . "

Now let us apply thisi-esult to (1), setting

f(x) = F(4). Since F(x)ris a polynomial...of degree 2n,

8

12
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F.(2n+2)(;)
is identically zero, and the

right side of (8) drops out. Therefore

I ,
(9) f 1 P(x) sin .'irx dx Y

0

F
(2n)

(1)+F
(2n)

(0)F(1)+F(0) F"(1)+F"(0)
. ir

2n+17
7

3

integral on the

.
k

Multiplying by 7 and using the fct that 1T2k
for any k,

(10) 7 j F(x) sin.nx dx

Q

. 1

'F"(1)4F"(0)= F(1)+F(0) q
P

r

i7v(1)4.fiv(0,
j .

p2

r
r(2n)(1)+F(2n),0\°

pn

Finally, multiplying (10) by pn,

(11) K = pn(F(1)+F(0)) pn-lq(F"(1)+F"(0))

7 qn(F(2n)(1)+F(2n)(0)). .

This is the expression fop K promised in phase, two of our

outline.

Exercise 3

Here is away to obtain (9) without using integration by parts

or mathematical induction.

Consider the function

1 1

g(x) = iF(x) cos Trx + TIFI(x) sin.Trx

1

+ --
3
-P1(x) cos Trx -

1

7 F'" (x) s in Trx

1 iv . 1 v .Tr7F (x) cos Trx + 7r-tg.F (x) sun Trx

. 13
(

9



'' 1 (2n) 1

r
(2n+1)----- F (x) cos nx +

+ 2n+1 ° 71,2n+2
(x) sin nx

7

,,where, for ev F(2n)t
mple, denotes the (2n)th derivative of F(x).

I(The signs change after every odd-numbered term: -++--++-.....

The 14st signwill be + if n is even and - if n is odd.)

(a) Show thaegi(x) . F(x) sin nx.

(b) Use (a) to deduce Equation (9),.

Exercise W

Compute the following integrals.

(!) f: x2 sin 7x dx

(b) II x9 sin 7X dx [Do not multiply all

your answer.]

Exercise 5

Compute the following integrals.

the numbers in

In each case you will have

to make a change of variable (substitution).

(a) y9 sin y dy [Do not multiply all the numbers in

your answer.]

y sin (7y2) dy

y9 sin (7y2) dy.

2.4 Part Three (K is an Integer)

What remains to be done is to show that the right

side of (11) equals a positive integer. It is made up

of sums and products of p, q, and terms of the form

%F(k)(0)and F(k)(1) for various, integers k > 0. Therefore

it will be more than enough to show that F x) and all its

derivatives take on integer values at x = q and x = 1.

This will show that K is an integer. That K > 0 follows-r;

immediately from (1) and (3).

Let us first consider x 7 0. We have already

remarked that F(x) is really a polynomial of degree

14
J,.
p.

10

N.0

4.
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2n. So far any k < 2n its kth derivative is a polynomial
of degree 2n - k (for 4( > 2n the kth derDiative is of

course identically zero). Further-, the value of any

polynomial at x = O'ecluls its cOn'giantterin: -And,

since differentiation reduces the exponent of each non-

constant term by one, the constant term of F (k) (x) is

determihed solely.by'the'"xk" tetm-Of F(x).,

With these background facts in-mind we can go to
work. To. begin with we can expand (1 - x)

n
:

(1 - x)n = Co '+ Cix + C2x2 + + C.nx
n

where Co, Cn are integers. (It is easy to compute

them explicitly [see Exercise 6], but it will not he

necessary for this proof.). Then

x
n
(1-x

n
) = Coxn + C x " + X1 ° *11+2 +'... t Cnx

2n
1

C o p
+

C 1 ' h:1 C2 .11 +2
+ +

Cn
2nF(x) = x + xn! n. FT.

If 0.< kt n there is no."xk ." term in F(x), and

therefore,F(k)(0)"C 0, whiCh is certainly an integer.
e .....
k-n 'kIf n < k < 2n then the "x kfl term is x

.

ItsFT
successive deriVtives are :

kIL
k(k -1)C k(k;1)(k-1)(k

k -3k -n k-1 k -nX x ,

k-2
..

n 1
nt. n! x 9 v

etc. Each di.ffAentpia,tion
*

introduces another factor in
front of the Ck.nr. By the time me differentiate' k times

there are Icsuch factors, apd so we ha;.re
-

k(k-1)(k-2)...2-1 Ck,
..

ki
1 I

F
(k)

(0) C
n, ! iii k-n

...*

Since -k >n, KT is anyhteger, and so is F(k)(0).
k!

..,
. To show F(k)(1)-is an integer for each k, firs

observe that
. 4..,

(12) .F(x) =,F(1 - x)
t

Yt
nve

y

11
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4 411.

for all x. We can differentiate both sides of (12) with

respect to x, applying the chain rule

(f(g(x))]' ...f1(g(x).)e(x)

to the right side with g(x) = 1-x and f s F. We get

F'(x) = -F'(1 x)..

Differentiating again (and again using the chain rule),

F"(x) = F"(1 x) .

Doing this k, times we see

F
(k)

(x) = + F 61 x)r
with the sign depAding on whether k is even or odd.

Putting x = 1 we get

F
(k)

(1) = + F
(k)

(0)

and since we already know F (k)
(0) is an integer we are

done.

Exercise 6

Compute the ooefficientsli, ,..,'Cn if (1-x)n

1 + Clx + C2x2 + C'xn .

3. AN EXTENSION OF THE RESULT

As mentioned In Section 2, the result that n is

irrational is in a sense a ne4ative result. It tells us

what kind of-,Rumber n is not. Another way of putting

this isle, isf we start with the integers, no amount

of addition, subtraction, multiplication, or division,

can produce n exactly. But there are other operations

we can perform on ,illigers; for example, we can take

square roots, cube rots, etc. Is istpoLssible that

one of these will produce n exactly?

12

16



The answer is

from a result first

in 1882. In these

I

"No." This, and much more, follows

proved by F. LindeMarin (1852-1939)

concluding sectioltrWe shall discuss

!Lindeman/Cs results briefly.

3.1 Algebraic and Transceoiental Numbers

First we need a couple'of deflitioris. We calk a
number algebraic if it is a root of some polynomial_

equatton with rational coefficients Otherwise we-call
it transcendental. For example, is algeb'raic'since,

it ,is a root of Sx 3 = 0, and /7/is algebraic since

it is a root of x2 = 0. In fa/ct, every rational

number is algebraic (see Exercise,7), and every number
of the Norm ma is adj,gebraic, where m and n are posltive
integers (see Txercise 8). Further, there are lots of

polynomial equations which We haVe no idea how to solve.

Nonetheless, we can assert that their,roots, whatever
they may be, are algeb.Kaic, For example, the equation

s . 73 3 10 2 92 , 4171--s x - 2x + 7T x + 17 x
13

x + 7c = 0

has at least One real root, and thaX root ois algebraic.
IP

Exercise 7

Prove that every rational number is algebraic.

Exercise 8

If m and n are positive integers, pro that is algebraic%

Exercise 9

Some writers' replace the word "rational" with "integer" in

the definition of algebraic. Prove that the two forms of the

definition are equivalent. That is, prove both of the following:

(a)if x is the root of a polynomial equation with rational

coefficients, then it is the root of a,polynomial equation with
oa

integer coefficients;

17
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(b) if x is the root of a polynomial equation with integer

coefficients., then it is the root of A polynomial equation with

rational coefficients.

3.2 Lindemann's Result,

Lindemann proved in 1882 that n is trancendental.

So Exercise 8 immedi'ately tells us that, as already

asserted, we cannot produde 7 exactly by taking roots of

integers. But it alsd tells us what kind of number 7 is

not (i.e., n ,is not algebraic) and extends the list

of pAtedUres (i.e., solving polynomial equations) which

can not give us ir exactly. Incidentally, the ancient

Greeks could not have conceived of tihis result because

of the strictly geometrical way in which they worked.

Exercise 10 . a.

Lambert's original proof that it is irrational. is based on

the following, which heproNied: if x is any, nonzero rational

number, &hen tan x is irrational.

$ssuming this is true, explain how it fo'llOws that Tr is

as

The Project would like to thank Charles Votaw of Fort
Hays State University, Hays, Kansas, and Solomon Garfunkel
of the University of Connecticut, Storrs, Connecticut for
their reviews, and all others who assisted in the production
of this unit.

This unit was field-testedhand/or stdent reviewed in
preliminary form at Northern Arizona University, Flagstaff,
Arizona, Fort Lewis College, Durango, ColOrada, Southern
Oregon Stat,e College, Ashland, Oregon, and College of
CharlestonCharleston, Soutti Carolina, and revised on the
basis of. data received from these sites.
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4: HINTS FOR SELECTED EXERCISES

3, -(h) Use the Fundamental Theorem of Calculus.

4._ Use (4) with f(x) = (a) x2 (b) x9. All derivatives of f after

the (a) second (b) ninth are identically zero.

5 (a). x = yin. (b) x =
y2. y2.

Then in each case use

(4).

6. Use the binomial theorem.

10. Consider x = 7.

1. (a)

(c)

S. ANSWERS TO EXERCISES

1 1 1

100 T 300

3 1 25

7 TF
, 7p

2. Any integer greater than
r!

1n2

1 4
4.1, (a)

(b)

( d )

1 2 23

10 x T 30

1 1 16
3 7 =

ar

(b) 1 -
9.8.7.6

243-
9.8.7.6.5.4 9!

719
1T5

9.8.7.6.5.4

4ak

9!)

7'

+-9.8.7.6

Tr7

6. C. = (71)i[7],- i;;.(11n):ir;;

7. 1c)-1 is a solution of x - -a= 0.

8. 94.7 is a solution of x71 - n = 0.

9. (a) Given a polynomial equation with rational coefficients,

multiply it by the least common multiple of the

denomjnatOrs. The new equation, has integer coefficients

and the same roots.

(b) Any polynomial with4integer. coefficients is already

a polynomial with rational coefficients. °

10. Take x = 7. If 7 were` rational, then tan x = 0 would be

irrational.

a

0

A
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1.1 Introduction

,k
1. HISTORICAL BACKGROUND.

)

-

_

t 41..

The number y is defined as the ratio of.the

circumference to.the diameter of a circle. It is

of central importance in innumeraele mathematqal

and scientific results, including many which do not

alvear to have.anything to do with circles.

For thousands,Of years.mathematicians and others

have been Noinated by the challenge of-determining
7

the value ofir as preciselyas possible, and now

computers helve gotten into the act. In 1.967 a com-

puter 'in Parid determilied y,to 509,000 kkiimal places.

It is undeniably true that computers, because

of the phenomenal speed with Whic.h they can do arith-

metic, havesenaVed us to obtainmany more digits ,

of y than ever before. In 1948 Oust before computers)

the record was 808'places. BOt all the machines, can

do is use formulas supplieUto them by us slowpoke

humans,whonre much more intelligent -.- A matter

what you mayhiveeheard'to the contrary. It has been

said of the computer that "the most intelligent thing

it is doing withou't the help of its pro-

grammers isto go on strike when requiredetot work

without air timditioning."'

Well, then, where do .these feu-mulls Ickpme from?

How do "mere" hum'ans,find the yalue of Y, even without

the aid o1 computers? After all, 808 laces isn't

peanuts.''Certainly no one could measure the circum-

'ference of any circle, however large,with-that

accuracy,.

Beckmann, page 102.

tb'
a

1
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1

1.2 Early Circle Measurers

- About 4000 years ago the Babylonians, who knew

nothing about t eAcept its definition, probibly did

actually measure circles. They may have, for example,

drawn a large circle on lte ground and marked off its

diameter on a-rope. They could have-then observed

.,that laying his rope segment along the circle three

times alinostf but not quite, took them around the

circler Perhaps they then measured the excess with

another rope and determined that this shorter segment

went into the original segmentiabovt eight times (we

now know seven would have been more accurate). At

any rate, they came up with the estimate r 3 .

1r3 Archimedes and other Polygon Measurers

In about 240 BC -the Greek mathematician Archibedes

(287-212 BC) became involved in ous/ot'ale.. Archimedes '

is universally regarded as one of the two or three

greatest men in the history. ofeAfstern mathematics.

4 He wa's apparently the first person who attempted

to estimate 1,in any wad other than literal*

measuring the circumferenceof a circle. Instead

he saidAin effect: "Let mlitstart-with a circle of
0

diameter one Its circumference will of course be

r. Instead of tryihg: to measure the circumference,

I'll inscribe a polygon and.circuesCribe another

polygon. dearly the circumference r is between

the two perimeter's-. If I choose the polygons-wisely,

in should be able to use the geometry I know to compute

these perimeters."

For an illustration of Archimedes' thoughts look

at Figure 1, which shows a circle of diameter one

with inscribed and CixcpmscrIbed regular hexagons,

Each of the hexagons consists of six equilateral

triangles, so the calculations are straightforward. °

,

24
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Figure 1.

C .
O

Archimedes' calculation of 7.
The circle has diameter one.

r
' 1

FoAthe inscribedihexagon AB = 7, so the perimeter

7
= 6 x.TIT = 6 x = 32° For the circumscribedibed hexagon

_ .. .
we can observe that OF, = -12: , so

irr 2 1

T

But ?lso,

rirat. 772 TF2 D-C2 Cr) 2'

K2 WC)? 1!)C2

Equating these two expressions for OF2 we gez

Tr2 1

SO

=
1

13-

and

C

?"5



OC
1

=
VT

.

, VT

Then the perimeter

P = 6 x CD = 6 x 0C = 2i3 .

We could have used trigonometric functions, since,

we know theeiralue of sin 60°, but they were introduNd

long after Archimed0and we wanted to show that he

did not really need them. ,

.or

We've shown

3 < n < 2[3.

3.D0 < n < 3.47:

This result in itself would. not be worth the

trouble, but Archimedes used some rather clever

geometry'to compute the perimeters of inscribed

and circumscribed regularpolygons with 96 sides.

,He got

10
.< 3'3

< 'T

or,'in modern decimal notation,
A

3.140 < 7 <' 3.143.

)

As a modern mathematician would put it, he determined

to two decimal places.

Although Archimedes broke away from direct 4e.

tinesurement of circumfenetfres, his method of estimating
7 was still driectly related to the fact that 7 is ,

the Circumference of a circle with diameter one. 4
UnAl the 17th century all attempts to compute 7

were based upon this fact, br upon the closely

related fact that such a circle has area 7/4. As

of 1630 the record for digits of n was apparently

41 35, set by an otherwise obscure Dutch mathematician

26
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named Ludolph von Ceulen (1539 1610) who is supposed

to have based his work on polygons having 262

(z 4.6 x'1018) sides and to have devOted most of

his life to this task.

1.4 Analytic Attempts

. In file. 17th century the search for digits of n

began to take a fundamentally different tack for the

first time gOceArchimedes. Mathematicians began

to turn away froth circles, polygons, and other geometric

considerations. The mathematical concepts, which were

to become."Calculus" under Isaac Newton (1642 1727)

and Gottfried Wilhelm Leibniz (1,646 -1716) were in

their infancy then, -and mathematicians were just

beginning to understand the notion of "sequence of

rational numbers."' From the 17th century on, all

attempts to approximate w, with ax without a computer,

have amounted to finding sequences off.rational numbers
whose limit is n. It was,, this approach which made it

possible to extend the rjopord from 35 digits in1630
to 527 digits in 1874 (before desk calculators) and

808 digits in 1948 (before computers).

In this unit we shall derive one of the earliest
of these sequences. It was originally discovered by

the English mathematician Jobn Wallis (1616 '- 1703)

in'about 1650. .

2. THE WALLIS FORMULA

2.1 Outline; Definition of In

Our derivation of the Wallis formula is. based upon
a study of the definite integral

n/2
. t

1
sin

n
x dx,

0

.

, 27 .
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when n can be any positive integer, or zero. Since

we will be talking about thi& integral quite a lot,

let's give it a name:

n
I
n

= J7/2sin x dx
0

We'll proceed in five steps.

1) We'll use integration by. parts to obtain

a formula expre'ssing In in terms of 111.2

for n > 2.

2) We'll ma this formula to compute In.

3) We'll then compute In+1/In. It will turn

&a to be 4 times a certain rational number

rn which depends on n.

4) We'll go back to the definition of In and

sif directly from it, without using (1),.

(2) or (3), that

lim
I
n+1

1.T--
n

5) Combining (3) and (4), we'll observe that
2

x r
n

4.'11 and therefore 2r
n

7. The sequence7

{2r
n

} = {2r1, 2r
2'

2r3, } is the Wallis

sequence.

2.2 Reduction Formula for In

We'll begin by attempting to compute In using

integration by parts. Using the formula.

with

ju dv = uv iv du

u = sinn-lx

du = (n-1) sinner x coskyfix

28

dv = sin x dx

V = -cos X

6



we get

fsinn x dx = x cos x + (n-l)fsin n-2 x cost x dx.

Replacing cost x by 1 sin2 z in the last term:

(1) s inn x dx

= -sin
n-

.

1
sx cos x (n-l)fsin -n-2 x dx

(n-1) fsinn x dx.
s

Now evaluating from x = 0 to x 7 :

x/2
,

In = -sinn- 1
x cos x I +(n-1)In_2 (n-1)I

0

In = (n-1) In-2 (n-1) In

O

(2)

n I
T1

= (51-1) In-2

n-1 ,
I =

n n-2.

Exercise 1. From (1) obtain an iteration formula for isinn x dx, and
use it to determine:
(a) !sins x dx; < (b) x dx.

A!.3 Computation of In

If you have never seen a deriVition like the ,one

leading to Equatiori (2) you'may think we have failed

sin our attempt to compute In using integration by

parts. After all, we have "Merely" expressed one

unknown integral in terms of another. But In
-2

involves 'a lowei- power of sinx than dOes In. Formula, -

(2) is called a reduction formula. If we start with
. . _

the direct computation "Ilk

r1/2 71/2 7/2
7T

I = I

J

sin° x dx = ,f 1 dx',=,x
O 0

1
=

es

we can use (2) again and again to work our way up to
f.4I

n
r any even n: . s

7

29



n = 2: I = I = 'n
2 7 0 7 7 .

3 1n = 4: 14 = 4 =
2 T 7 7

n = 6:

and in general

16 b /4 b 1-

.*

m-1 n-3 5 3 1 11. (3) In
n n-2 T 4 2 2

for any even n. (This is called an iterative process,
from the verb iterate to repeat).

If we start with

n/2 n/2 ,

11 = f sin x dx = -cos x I = 0 - (-1) = I

we obtain:

n = 3: 13

n= 5: 15

n = 7: 17

and in general

(4) .

s/n

=

=

=

0

23

-§

6

n-1

II

,
13

is

=
2

=
4

=
6

n-3

2
-T

4

6

7

1

2

0

i

4

3'

2 ,

'n -2

for any odd n.

2.4 Computation of In

Now we are'ready to consider the ratio In+1/In.

The formula for this ratio depends 'on whether n is even
or odd. Let us suppose n is even. (It will turn out

that this is the only case we'll have to consider.)

Then (3) gives us the demoninator In. Since u is even,
n+1 is odd, and we can obtain, the numerator

n+1
from (4)

if We replace n by n+1 in that formula:

.30

.8 .



n n-2 6 4(5) n+1 41+1 r-7--f 7 -5

4 for any even n.

Dividing (5) by (3):
..---

n n-2 6 4 2In+1
r7.1.-4- n-1 7 -,,-5- 3-

9 1

.-- In n-1 n-3 5 3 1 1
n ri=7 T T 7 7

Taking the factors alternately from the 'numerator and
denominator, and remembering to invert those from the
denominator,'

I n+1 n n n -2 n-2 6 6 4 4 2 2 1.2
In n+1 n-1 n-1 n-3 7 5 3 3 T

for any even n. It is conventional to write these factors
in the opposite order: °

1n+1(6) I n+ , 2 2 4 4 6 6 n nT 3 3 3 3- '7- r771- n

2.5 The Limit of I n+1 /In

Let's calculate the right side of (6) for the
first 'few even values of

°-
3 2' 2 2 8n = 2: = 1

a 2
1 3

4:

n = 6:

n = 8:

n = 10:
.

n =

Is
I

4

z 0.8488

2, 2 2 4 4 128
1T .1 1, 3 3 5

= z 0.9054
451

7 2 2 2 4 4 6 6 4608TT 333 3 7- 1373T
6

T

I 11

10

0.9313

0.9461

z 0.9556'

z 0.9623



No*

It looks like this sequence may be approaching one.

Can we prove this?

We can prove even more. As stated in Section

2.1, he can go right back to the definition of In,

and shqh t44

Ilan
I

n+1
1.

4 I

n

In other words, the sequence 1,/I1,
.)

1./I 2 , I4 /13, ...

approaches one. Since our sequence l.i/17, Is/I4,

I,/I0, .., consists of eery other term in this

sequence, it must also approach one.

RemeMber that all of the In are integrals from

x = 0 to x = ;. For 0 < x < he know that
0 < sin x < I. Since 02 = 0, 12 al 1, and y2 < y

all y betueen 0 and I he hate

111 (7) 0 < sin` x < sin x < 1.

Since sin x > 0, sinn x > 0 for all integers n. he

can multiply (7) by inn x, getting -

n+'°
0 < sin -x < sin

n+I
< sinnx

and therefore

0 < < 1 < In.

(If 0 < f(x) < g(x) throughout an interval [a,, b],

,then

J

f(x) dx < j g(x) dx

a a

4

since these integrals represent arqps, one of which

is contained in the other. See Figure 2.)

4.
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0 a

Figure 2.
brr

Graphical proof that fbf (x) dx < ( ) dg x x when 0 < f (x) E g (x).
a a

.

Since
n

> 0 we can divide by it'!

=
a

f (x) ch.('

g(x) dx
a

n+2 n+1
T 'n 1

or, using (2), with n replaced by n+2;...

n+1
I
n+1

< 1.n2 I
n

+1Now suppose !rt..% nly
n

- 1.

The middle expression .etween two expressions

which are near one whe arge (one of them

actually equals one)', d sq it too is nearone when

n is large. That is it approaches one as n approaches

infinity:

lim
In+1

T-- 1'
n

(This is sometimes.called the squeeze principle, See

Figure 3.4,

11'

r
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1

In+

1

x
x x

.

x x : x

,...

I:

- s

:

,

X

.

.

-- V- 1

I
n

n+1
n+2

x

;

,

5 10

Figure 3. The squeeze principle for {n +2), (In+1/1n), and
=

15

2.6 The Wallis Formula for

,We have now proved what we guessed might be true

earlIrkin Section 2.5; that the sequence whose first

six terms we calculated there does indeed ap'proach

one. Therefore its terms must eventuarly be near. one.

A bit more precisely,

2 2 2 -4 4 6 6 n n(8i Tr n-1 'FITT
1

'

and the left side can be made as near to one as we like
by taking n large enough (and even).

-

Mul,fiplying (8) by 7 we get

'f2 2 4 4 6 6

frr large even This is the Wallis formula.

34

12

4.



3. EXERCISES

2. (a) Shots that 2.4.61.(2n) = 2nn! for any positive

integei. n, Aere n! denotes

(b) Show that

2.2.4.4...(2n)(2n) (111)
4

2
4n

1.3S57.(2n-1)C2n+17
((2n)!]2(2n+1)

for any positive integer n.

(c) Shore that

lim (n!) 2 2
2n

(2n)! rn

.40

3. This problem presents a derivation of.another

formula fbr 7. The formula is credited to Leibnii-.

(a) Show that

1 x2 xe 2n 1 x2 +2

1+x2 1+x2

for any real number x and any even positive

integer n.

(b) From (a) deduce that

1 1

171-47

1 = +

1
2n+2

1 - T + -T dx

(c) Show that - ,..40.- ')ir"

1 12n+2
0 < 1 1----:dx < f x2n+Z dx

2n+3
0 1"(2 0

. (d) Finally, deduce that

lim 111 1
+ TT.411 - T 31- 7 ...-

+

This is the Leibni'z fprmula for 11.

35
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(a) Integrate the formula ln 3(a) from 0 to u

1

.1 (where 0 < u < 1) and then, by step's similar

to those in problem 3, show that

(9) tan
.., u 3 US

.. ,

7 u
2n+1

an u u 7 + iT - + ... + -2-F-4717-

where n is a large even posiIve integer.

-(b) What value of u should give - on the left
,

,

side of,(9)?
.

(1c) Use this value of u.to obtain ai6Vier

formula for

The Project would like to thank Charles Votaw of Fort
Hays State University and Solomon Garfunkel of the University
of Connecticut for their reviews., and all others who assisted
in the production of this unit.

-

This unit was field-tested and/or student reviewed in
preliminary form at Montgomery College, Rockville, Maryland;

ty of Louisville, Louisville, Kentucky, Lycoming
'Coy llege, Williamsport Pennsylvania; Fort Lewis College,
Durango, Colorado;, d Franklin College, Franklin, Indiana,
and has been revi d on the basis of data received from
these sites.
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4. HINTS AND SOLUTIONS TO EXERCISES

1. (a) f sin n x dx sin
n 1

x cos x n-1 f
sinn2x dx.n n

Sta ting with f sin x dx = - cos \-

,n = 3:
1

sin3 xdx = sinlx cos x 2

m

3
cos x

x cos x 4
1 = 5: Iss x dx =

sin'5
sin' x dx

... = -1sin'x cos x -.45 san2x cos x

8
, cos x.

.L

x cos x 1cf(b) n =. 2: fsin2xdx sin
2

+
2

fl dx
.

If
1 ' 1

=
2

s 1 n xcsts o s x +
-2-

c 3n = 4: fsin'xdx sin'x
4

os x T Jsin2x dx.

a
1

= ...=
4
stn3x,cos x

3 3-T sin x cos x +1-3-x.

.

,

2. (a) 2.4-6...(2n) = (2.1)(2.2)(2.3)...(2n)
e

= (2.2.2...2)(1.2.3...n) = 2Lnn!.
,.....4.,__.....

1

n

(b).' Multiply left side by 2.2.4.4..(2n)(2n) .0.04"

; 2.2.4.41...(2n)(2n)

Shol.ithat thnew numerator is (2.4.6...(2n))"

and use pArt_(a).

. 37
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J
(c) The Wallis formula together with part (b)

says

24n

[(2n)!]2(2n+1)

Taking square roots we get*/

22n

(2n)! 2n+1)

or

lim (n!)2
22n7

/T.
n-c= (2n)!

Multiply by /F/ii and observe that

27 _/ 2n
2n+1 2n+1

-+ 1 as n-,==.

3. (a) Use the fact that
.

x
2n+2

which can he confirmed by diriCt multiplication.

( h) ,Integrate the-equation in 3(a) from x = 0 to x=1:

(
x

3 X5 X7 x

1

3 5 -ir 2n+1
0

= tan 'x
1 x2n+2

dx .

0 0 1"2

(c) Since x2 > 0, 1+x.2 > 1, and therefore

(x 2n+ 22 x
2n+2

. Recall that If f(x) <-g(x) for
1+x

J1

1

all x betv.een Wand 1, then f(x)dx < g(x)dx.
0 ,0

(d) -2-17731 0 as n y u. Therefore, using the result in

3(c) and the squeeze principle,
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x
2n+2

---2-dx O.

0 1+x

Applying this to the equation in 3(b) we get

1 1 1 1

1 4' 7 4' 12-7-77

-4. Taking u =
1
- :

I

or

IT 1 1

6 I 33/

v

!"

1 1
+ + 1

532I" 7.33/3 ok(2n+1)3n3

1 1 1
+

1 ]
IT

5.32 7.33 (2n+1)3n

23 [1 1 1 +
1

771. 5.32 .733 (2n+1)3n

A

A

b

/P L
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1

1. INTRODUCTION '

1.1 The Experiment,

certainly you have met the number Tr'(: 3.141592)

very frequently in your study of mathematics. It is

defined as the2ratio of the circumference of a circle

to its diameter, but it arises in many places which

appear to have nothing whatever to do with circles. In 46-

this unit we shall describe an experiment where it

does indeed arise unexpectedly. provides a "fun and

games" method of approximating TT.

1.2 A Sample Run

Let us consider the ratio S/T; that is, the fraction

of tosses which are Successes. A.running calculation of

S/T might look like this:

T S S/T

1

2

3

4'

5

6

7

1 1.00000
1 0.50000

1 , 0.33333
2 0.50000

3 0.60000
4 0.66667

5 0.57143

TABLE I

102

103

104

105

You can easily set p and perform this experiment' 8 5 0.62500

!yourself. 411 you need is a large flat tabletop, enough

paper td cover ,it, and some thin object a few inches

long, such as a toothpick. As the unit title suggests,

Comte de Buffon (French; 1.707=1788) referred to a needle

when he first discussed this experiment. Out of respect

for the Count, we shall refer td the object as a needle

thrbughout this-unit. A toothpick, however, is probably

much more convenient and somewhat less dangerous.

Cover the tabletop with papel". On this paper draw

a bunch of parallel lines. Make sure the distance from

each line to the next is exactly equal to the length of

the needle.

Now pick up the needle and toss it onto the table.

When it comes to rest it will either cross one of the

lines you have drawn, or it will not. Let us call t is

`toss.a "success!' if the needle crosses a lire. "PT Z l

up the,needle and toss it again. Continue doing this,'

keeping track of the total numbeLS of successes and

the total. number T of tosses.

44 1

100 64 0.64000
101 s 64

5

65

'66

66

67

9995-°' 6368

9996 6369

9997 6370

9993 6370

9999 6370
10000 6371

0.63725
0.64078
0.63462
0.64810

0.63712 ,

0.6)7f5

0.63719
0.63713
0.63706
0.63710

In practice it would be unreasonable to toss the needle

10,000 times (although in Section 6 we discuss how a

computer could easily.simulate"this, and much more).

But we want to make a point. Namely, the values of

S/T at first fluctuate wildly, but after a very large

number of tosses they tend tb settle down. We shall use

calculus to show that in a certain sense they are most
2likely to settle down to a value near T. To understand

exactly what'that means, We must make a brief digression

into probability. ,

Exercise 1

Perform the experiment described. Toss the needle 100 times.
S

Then write where S is the number of successes you have
100 7

2

'
recorded, and compute an estimate of 7. Finally, compute the

percentage error in this estimate.

45 2
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2. PROBABILITY

2.1 Equally Likely Events

(a) the probability you will get It on the left die and 6

on the right die,

(b) the probability you will get "boxcars" (6 on both

dice).

Lf we toss a coin, it may come down heads or tails.

Assuming the coin is honest, there is every reason in

= the world to think these two possibilities ax'e equally
1

We'say that the probability of heads is y and

the probability of tails is I.

If we throw a die, it may come up 1, 2, 3, 4, S,

'or 6. Again, these possibilities arse equally likely.
1

We sarthat the probability of each ithem is 6

Generally, if there are t possible results, of which

exactly one w' 'I happen, and if these results are equally
4 1

likely, we say t bath of the,results has probability
1

Y.

Exercise 2

If you pick one card from a wel?..,shuffled deck of playing

cards, find the Pr1001111 ity it will be the Jack
211

of Hearts.

Exercise 3

Suppose you toss a coin with your left hand while throwing
t the probabilityinterprettbe wronglwould also, ng ? epre

i.
ability as an

a die with your right hand, and then record the combined result;
wou

1$ 0
fttth exactly 1666 or 1667 tosses will. resultassertion a

for example, Heads - 6 or Tails - 3 Find the probability you'
asser

. -

in a S. The die has no memory' and Can't keep count.
will get Heads on the coin and 4 on the die. ..

What it does on each toss is not determined by the pre,.
.,,i

Exercise 4
vious tosses. If it comes up Son one toss, it, cannot

4
say, "Well, Lid better lay off 5 for the next. six tosses:"'';

Suppose you throw one die with your left hand while throwing
\. v

If it fails to- come up S for five or six consecutive
anoth die with your right hand, and then record the combined tosses, it cannot say,ylliey, I'm overdue. Better make

it a S this time." And so it,may"come up S a bit 1Dore ,

or less than predicted. It may even run a string of ton
0

,
consecutive S's, although this is,extremelyr,unlikely. .

2.2 "In The Long Run"

There is another way of interpreting probability.

Getting back to the die as an example, suppose we were

to throw it loos° times. Since the six possibilities,

are equally likely, we would expect that each of them

would come up about the same umber of times -- about

b
1

of the 10,000 tosses would; give 1, about 6. of them
1

would give 2, etc. We'can.say that the probability 6

is then a prediction of about what fraction of the tosses

will give a certain result.

Sometimes probability is defined in terms of this

kind of prediction of what will happen. "in the long run'',

rather than how likely an eventA],ison a "one-shot" bdsis,

We must be careful, though. This "long run" view of

probability is not, and.cannot beoon assertion of

exactly what will happen. For one
3
thing, of 10,000

,

2

'

wis 1666-
3

which is not an integer/ So we certainly

cannot get exactly that number o± say, S's. But it

result. For example, you may get Left - 3, Right - 5, which you

could abbreviate (3,5). Crt. Left.- 5, Right -3, abbreviated (5,3)..

Find:

47
-Ps



To impress this upon your memory, think again of
1tossing a cin. The, rbability of getting heads is 7.

In the long run, aboA -17 of all tosses will be'heads.

But this does not mean that if we toss a coin twice,

exactly one of the tosses must result in heads. The

,most likely number of heads is ono, but we would not

be the least bit surprised'ele)See it land heads both

times. If it happened to land heads the first time,

we would certaidlcot say it was guaranteed t land

tails the next time.

2.3 Compound Events

Now suppose we toss a die once, and are

4ni.how likely it is to come by greater than

5 or 6). It 'should come up 5 about r of th

6 about of the 'me. This adds up o
2

nterested

(that is,

time, and

or
-1, of the

time it comes u reater;than 4. We say the probability

of this occurring is 6 or T)..

Generally, if there are t possible equally likely

results, of which exactly one will. occur, and if s of

these satisfy a certain Condition, the }probability that
sthis condition will be satisfied is I,

2

Exercise 5

' If you4throw one die, find the probability it will be

pExercise6

In the experiment of EAercipe

each of the following events:

(a) the card is a Jack

(b) % the, card is a Heart -

(c) the card is'a picture,card

(d) the cSrd is an even-numbered

.

2, find the probability

48
ti>

card.

I

even.

of

5

A

Exercise 7

.
In the experiment of Exercise 4, find the probability that:

(a) the bf the two numbers, will equal ten,
(b). the n mber on the right die will exceed the number

4.

`on th 'left die

(c) the t o numbers will have an odd sum anan odd
prody ct.

3. TH THEORETICAL RESULT OF THE EXPERIMENT

3.1 Statemen of The Result'
%

Now we c n get back to that needle on the tabletop
and state pr cisely what we are going to prove, and how
it is helpfu in approximating n. We'll prove that the

heneedle,will cross a line is 2. That is,
2in a very la ge number of tosses, about F (0.63662) of

them will be "successes." The result is independent of
the length of the needle.

3.2 A lic tion of the Result

To app ythis result, toss the needle t times andcount the n mber s of successes.
The frAction is- should2be close to 7, although our discussion

in Section 2.2 t
suggests that you shouldn't be too optimistic about thedegree of ccuracy. Then write y z 7 and "solve for" v.

-.s 2

In th example of Table I, t = 10,000, s = 6371,
t

and = 0. 371. This is less than 0.1f gff the true2value of F whic2 h,'under the circumstances: is pretty. '
.egood. Wri ing F z 0.6571 and solving

for n gives us
Tr z 3.139 2 (again withiu,d.1%).
.

*IP

7
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Exercise 8
-

Show that with t 10,000 it is impossible to get better

than three decimal place accuracy in,gstimating n with this

experiment.

4. PROOF OF THE RESULT

4.1 Locating the Needle Numerically

Although the application of our result depends upon
o

the "long run" interpretation of probability, it is more

convenient to use the "equally likely events" interpreta-

tion in proving the result. The events will be the various.

positions in which the needle may land. To base any cal-

culations upon the needle's landing place we must first

decide upon a scheme for describing the landing place

numerically.

Figure 1. Typical position of n edle.

50

Let us assume-the livs on flip paper run east-west,,
..

and that the distance between consecutive lines is L.

'A little tholight should - convince you that two numbers

will tell vu all you need to know to decide whe her 9r

not the needle is on a line (see Figure 1). The rst

of these (call it y) is the distance of the southern

end of the needle from the nearest line to the south.

(If the needle's southern end should happen to be on a

line, set y = 0. If the needle should happen to lie

east-west, think' of its western end as the "southern"

end.) The second number (call it 0 is the angle the

needle makes with a ray running eastward from its southern

end. So we have an ordered pair (y,6) with 0 < y < L

and 0 < 6 <

Notice that we have simplified matters by restricting

our attention narrowly to what concerns us. The ordered

pair does Ft really tell us whe4the needle is (how

far easrlis it? which line is it straddling?) but, as

we have said, it does tell us whether the'needle is on

a line. In fact, you can see from Figure-1 that this

happens if and only if

(1) y + L.sin 6 > L.

4.2 Equally Likely Positions:-

A problem arises whencwe attempt to list the "equally

likely events" -- the possible positions, of the needle.

There is no difficulty finding them; the trouble is that

there are.too many of them. The southern end of the

needle is just as-likely to be,anywhere as anywhere else.

The n'edle is just as'likely to be oriented in any direc-

tion as in any other. In other words, all possible pairs

y,6), with 0\< y < L and 0 < 6 < n, are equally likely.

'But there are infinitely many, of them, and an 'infinite . .

subset of these satisfy (11. Our definition in Section 2.3

51
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A applies only to finite situations: We can make nothing

, of the ratio

4.3 A Finite Approximation

Let us replace our problem by one which involVes a

large but finite number of equally likely events, and

whose answer will be a good approximation to that of

the original problem. Let us pick a large positive

integer n and pa tition the interval 0 y < L into

n intervals:

iL nL
(2) = Y2

2L
= ;.., Yi = IT , Yn = IT

Similarly, we shi,11 partition the interval 0 < 6 < n

into n equal intervals:

)
EL. v.

(3) el' 62'
2n
n ' ' ' 0P=nir L ' ' n n

0 -(n-l)n
n/n 2n/n 3n/n n

I I I
1

0
1 (n-1)L

LL/n 2L/n

I

n

I

1

here are now n2 pairs 6f the form (yi ;6.) ) where i and

e each integers from 1 to n inclusive (it may happen

= L.

Now let us imagine that when we throw the needle,

instead of recording its actual position (y,0), we

record(y.,6.3 ),wherey.and0.are the smallest numbers

in (2)wand (3) greater than or equal to y and 0 respec-
tively. This amounts to pretending the needle is slightly

north of its actual position, and rotated slightly

counterclockwise.

In Figure 2 we have illustrated this for the case

n = 8. The needle has fallen in the position (y,0) where
3L 4L 4 2n 3yir<y< ir and -g- < 6 < . Therefore we replace y

by y4 m ir4L 3nand 6 by 03 = - , recording (y4,03) as the 2lim p
n n

=
approximate potition of the needle. n+.=

8L

-8-

7L

6L.

5L

4L

-8-

3L

-8-

2L

L

Approximate position of needle

3n
(Y,se,) =

4L
True positLon of needle (y,0).

(

0 =3n
3

40'
Y4

Figure 2. Typical approximation-of needle position (n 8).

We shall define pn to be the probability the eedle

crosses a line after it has-been moved in this way. This

amounts to the probability that

(4) yi + L sin 6, >,.4.
J

Since, for any actual position (y,0) of the needle,

yi y and 0. 6, and since these approximations become

better and better as n 0., it follows that pn approaches

the true probability which we seek. The resu]t stated in

Section 3.1 can thus he expressed

9
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4.4 Counting Successes in the Finite Case

- Since the intervals 0 < y < L and 0 < 6 < n are

k ,each partitioned into equal subintervals, each of the n2,

ordered pairs (y.,tij ) is equally likely. Therefore,

according to Section 2.3, all that is necessary to

determine P
n is to count the numbef of ordered pairg

)-' m
nwhich satisfy (4). If this number is mn, then p = -- .

n

To Mn we begin by, lookiqg a4,. any one ...

particular et here are n paris involving thi4 6.. OP 4
these, the ones satisfying (4) are those for which '

computer program) .

4
Some of your computations V.11 be helpful in Exercise 10.

y. > L (IT:- sin 6.)

Figure 3 and Table 2 illustrate the determination

of k . and of m
n

for n =.7. The figure shows clerly

that-, for each j, k denotes the largest'i for which

the needle fails to-cross a line.

Exercise 9 '

Find all the kilsrtj F 1", 2, 3,t mn, and pn:

(a) for n = 10

(b) for n = 100 (this easiest if you write a little

.
i 3, ,

n
il > L (1 -.sin ill)

n 4.5 Approximating the Count

(5) i .> n (1 - sin The result in (7) easily ptovides the value of pn

for anyparticular ni but not in a form convenient forThe right side of (5) is between 0 and n. Let ki be the
computing the limit. To achieve that end, we begin byinteger pare of the right side; that is, the unique integer
noting that (6) tells us_such that

(6) k. < n(1 - sin -) <k + 1.n 3 *

If k = 0 then n(1 sin III is between 0 and 1.and

therefore less than any positive integer., St-(5) is

true for all permissible values bf'i (i = 1, 2, ..., nY.

If kJ . 0 then it is a positive integer, and (5)

false for all values of i up ,to k. (i ='1, 2,
& 3

andtrueforalluesofiaftUrthat(i=k.+1,-
3

k.+2,4...,n),Ineithercase k counts the impbef of
3

ordered'pairs- with this particular 6 for which (S) is

:fracte,andtilereforen- k .counts the number for which

it ,'is true. ,So

(7) .

lik

mn = (n ) = k. .

j=1 . j=1 3

Z4

p.
k z n (1 - sin 11')

with an error less thanone. This approximation leads
' 1to an error of less than in the value of p

n'
as you

should be able to verify (see Exercise 11). It follqws

that

.

anethis is approximately the number of ordered pairs,

with this particular 6j, for which (5).is true.

Ifwemake-thesameapproximationforeach 6 .and
then add the results, we obtain

n z A n(1 - iI)
n

A - k. z n sin 121-
.3 n

m
n

n sin .

-711 _

.!

12



.TABLE II This computation is illustrated, for n in the last

Calculation of m
n (Section 4.4) and of the column of Table II.

approximation of mntSection 4.5) for n=7

j -12-T
n

sin LT
n

n (1 - sift 12)
n

kk. k. .n -
j- n ein.

n

1

2

.3

4

5

6

7

3-
7

27-
7

3vT
v
--
7

I L

6v-
7

y

..

0.4339

0.7818

0.9749

0.9749

0.7818

q.4339

0.0090

'

__

3.9628

1.5272

0.1755
_____

04 755

'1.5272

3.9628

7.0000

6

.

. N

-

'.3

, 1

0
.

0

.1

.3

.7

.

.6

.._
7

7

6

'4

, 0

3.0372

5.4728

.

6.8245

6.8245

5.4728

3.

//)W\\

0.0000

mn= 314 i Mn =30.6990

.

denotes points
where needle'
crosses line.

07

I

J - 1

Figure 3. Graphical

56
Lllustration

(k3m'0 all ---1
needles cross)

j -2
of k k

2'
k
3
for

,

Jw 3
n 7e

`'

Remembering that there are n 2 pairs altogether,
we obtain

(8)

Exercise 10

n sin,12
j=1

pn
112

4,

_ approximationCompute the i of p
n

given in (8):

(a) for n = 10

(b) for n = 100.

Exercise 1N

.(a) Show that the error in estimating p
n
-by (8) is less

1

than --.

(b) Show that the estima ted value of p
n

given by (8) is

less than the true value%

4.6 Taking the Limit

Let us call the right side of (8) qn. We shall show
that lim q = i. Since, as you have shown in Exercise

114-co n
11(a), )qn - pn1 < it will follow that lim p

n
2

'

= - and
v

We shall be dope.

We shall begin with a little algebra, Starting from

the definition of qn;

n sin
j=1

qn 2
n.

n

j=1

1 v
n

1- sin
n
#.1

sin =
n) 113n v

j=1-
n

57
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Now look again at (3) where we'partitioned the interval

,0 < 8 < v. The right hind endpoints of the subintervals
in

are Trin, .2v/n, etc. The numbers 1
sin are-the values

of '.the function f(8) =1 sine at these endpoints. And

is the length of each subinterval. In other words

(see Figure 4), this is a Riemann sum for the integr'al

n

Relationship

and f

Tr -1
s i n 8d8

o

17 sin 8 de. Thus,

ji
lim (sin )

j=1

1

n n n

n

be twee
j

E
1 n
FLsinj21 7

= n

(n = 10).

n n n

(rectangular areas)

sne d8;f:
i

.

'From (9) we then get
rn

(10) lim q = 2- sin 8 dO
n+co n

"o
R

or

= IT (-cos()) 10 = R.

Exercise 1:

Suppose in setting up our calculation we measured the angle

which the needle makes with the northward direction, instead of O.

15

What inequality would repleCe (1)?

Over what values would 4' range?

What integral would replace the one in (10)?
2

Show that this integral equals T.

1

5. VARYING THE NEEDLE LENGTH

We have already remarked that our main.repillt is

independent of the length L of the needle. 136ut it is

very .much dependent dpon the fact that th/distance

between consecutive lines equals the needle length.

Certainly if we were to switch to a needle, say, half

as long; while continuing to use the game ruled paper,

the needle would be less likelyr.tp cross a line.

Inpcactice it is unrealistic to insist upon this

equality. It is very,likely that in setting up this

experiment you will have available some ruled paper whose

lines are a distance D apart, and a needle of length L,

where L / D. It turns out that, as long as L is less

than D, the probability .that the needle will cross a
2- L

17c
line is

Tr
x In fact, it's not at all hard to modify

our proof, starting with (1), to get this result.

leave i,t to you (see Exercise 13).

We'll

. Exercise 13

Suppose the needle has length L but the parallel lines are D

units apart, where L < D.

(a) What inequality replaces (1)?

(b) What integral replaces the one in (10)3

(c) Show that this integral equals ,727- x .

Exercise 14

The result stated in this section clearly cannot be true if
2 L

> D, since then Tx Fmight be greater than one, and could not

59
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,possibly be the fraction of tosses which are successes. Exactly

where does our proof break down if we try to modify it as in

Exercise 12?

6. GETTING THE COMPUTER TO HELP

Whatevei the merit of this approach to approximation
of u, in view of Exercise 8, no one can claim it to be, -

a realistic way of getting a good estimate. 'Remember,

not only does Exercise 8 show that the accuracy .after

10,000 tosses cannot be better than three places, but_
the discussion iiSection .2 says there is'no reason

to presume it will even be that good.

It is possible for a computer, figuratively at least,

to toss the needle for us. In our proof we described the
approximate position of the needle by an ordered pair
(y,6) where 0 < y < L and 0 < 6.< 7. Sirice the result

does not depend on L anyway we .can .take L = 1 for con-

venience. We can ask the computer to pick a number at
random between 0 and 1, and call it y; pick another number.

at random between 0 and 4 tan-11 (note that 4 tan-11 = 7),

and,call it 6; and then determine if

y+ sin 0

is true.

The machine can easily Count the number of "tosses"
T and of "successes" So We can program it to pe,rform

any predetermined number of "tosses".and.then V° compute

an estimate of u just as in Section 3.2

Inanactualcomputerrun,weaskedthertocompute/

"toss the needle" 100,000 times. It reported 63,449/

* Computer work for this unlit supported by the University of/Mary-
land Cohputer Center.

60
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"successes," giving 0.63449 as an estimate of 2

7'
and

thus 3.15214,*as an estimate of u, an error of about 3
of one percent. The BASIC program we used contained

, .

only 10 lin ,ps. If you know BASIC or any other compqyer
language, you should be able to try this yourself. .w.

Exercise 15

(a) If you know a computer language, write,a compuMr pcograo

to simulate Buffon's needle experiment for 100,000

"tosses."

(b) If you have cess to a computer, run this program,

compute the estimate of n resulting from tfiis4
T un,

and compute the percentage error in thies'timate...

a. e
J

.17

4

. ,
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their reviews, and all others who assisted in the production(
of this unit.
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7. ANSWERS TO EXERCISES

/2. 1

52

3 1

IT
4. (a) 36 (b)

1

5.
2

6. (a) 11 (b) (c),* (d)
13. (a) (b)-1-57. (c) 012

'V

.8. The best_possibleyesult is s = 6366, giving 3- = 0.6364 40_
3.141.7.

9 (a)
J 1 2 3 4 5 6 7 8 9 10. ;-k.164 1 0 0 0 1 4 6 10.J.

m
10 = 68; p10 =

1 2 3 . 43 14 45 46 ... 60(b) J.

k/
J

96 93 90 ... 2 1 1 0 0 '

j; k
100.

2= 100;

10. (0 Pio - 0.6314 (b) p100 z 0.6366

1. You are looking for an inequality of the/form

En sin 21' 1 6
0 < p

n n
-

2 < n .

To get it, remember the exact value of pn is
n

n2 - E k.
j=1

Pn 2n

Sitce the formula for pn involves k., write down the

For 50 < j< 100, k1 a kioo

m1 0O
6412; p

100
= 0.6412.

defining inequality for.k.;

k < n (1 - sin < k. + 1.

Now take the following steps.

62

Su tract 'k. from all, three qualities in the inequality

0 < n(1 - sin - k. < 1.
from j 1 to n, and divide by n2 -

n

E n(1 - sin ir-r) - E k.
n

0 < 1=1

n 2

?
plit the sum of the left, and simplify the far right

n n n

En-En sin -E k ,

n

<
j=1 j=1 j=1 1

n2

Then split the fractioh in the middle this way,
n

0 <

n2 -
1

k
. J En,sin12-Tn 1=

n
2

n2 n '

to get the inequality you seek:

A Z n-s in 12-1
10 < pr, ,

h <n
n2

.e.

12. (a) y + cos (0 > L.
(b) < ep < 2 . N

co
f1172 I cos dcp.

/2 1T

13. (a) y + L sin 0 > D.
Ng

t(b) \-4 .It sin 0 de. qp-
k

0

14. The k. defined in (6) is not an accurate count of those values
of i from 1 to n for which (5) is falw. For certain j,
1 - sin 12-T < 0, so (5) is true for all i and false for 0 i.
But1(.<0.

>>
1
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15, (a) Here is one BASIC program which should work. Depending

on the computer you are using, it might require minor

modifications.

0

100 RANDOMIZE

29 FOR Tio7 1 TO 100000

300 Y.= RND

400 A = 4 * RND * ATN(1)

500 IF Y + SIN(A) < I THEN 700

600 S = S + 1

700 NEXT T.

ZOO R = S/100000

900 PRINT 'PI = '; 2/R

1000 END

4:w
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A STRANGE RESULT IN VISUAL, PERCEPTION

1. INIRODUCTION

1.1 The Modeling Problem

In 1962 Tom N. Cornsweet reported on the

experimental verifeation of some seemingly paradoxical

results.* He (and others) ll'ad predicted these results

by co tructing a remarkably simple mathematical model

of the ocess by which the eye "sees" bright light,

based in turn on some !yy simple physio.logical assump-

tions. Weshall describe the experiment and then present

his model.

1.2 The Experiment

Essentially, subjects whose eyes had had a chanch-

to adapt to darkness' fixated upon a point in a brightly

lighted region, across which was a non-opaque bar which

filtered out a fixed amount of the light. At a certain

time t 'the bar rather abruptly appeared much brighter

than the background even though- it was less brightly,

illuminated! Then, the apparent brightnesses gradually

became equal, and finallyAat time t+ the background

became and remained slightly brighter than the bar. The

sublects were asked to press buttons at the times t and
. o

t as accurately as possible. This experiment was rerun

for different background brightnesses. TIr details of

the experiment can.be found in Cornsweet's article (pages

261-263), In figure 1average empirical values of t

(lower curve) and (upper curve) are plotted against a

measure of background brightness.

*Tom N. Cornsweet, "Changes in the Appearance of Stimuli of Very
HighLuminance," Peyehologibal Review 69(1962): 257-273.
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t

20 30 40 50 60

Brightness (trolands x 106)

70

Figure 1. Times at which apparent brightnisses of bar and
background were equal, plotted against background brightness.

. (Source: Cornsweet, p. 261)

2. PHYSIOLOGICAL BACKGROUND
I

80

Before constructing a mathematical model, we must

have some idea what we are modeling. In this section we

shall describe briefly what we need to know about the

physioldgical process by which the eye "sees."

2.1 Activation.

35

In the ret a of one's eye there are certain cells,

call "receptor" cells. 4ch of these contains molecules

which are capable of being "activated" by light. This

acIlyation results in the discharge of a certain chemical.'

Accumulation of a certain minimal amount of this chemical

triggers a nerve impulse which results in one "seeing".

the light.

For various reasons; the chemical tends to be

destroyed very quickly after its discharge. This means

that, if there is to be any hqpe that the required

69
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4

minimal amount accumulates beforeit.is destroyed, this

hope will depend upon very many molecules being activated

in a shordperiod pf time., That I's, it wall depend on a

high ra of activation.

2.2 Regeneration

When one atf these molecules has just been activated

it is not capable of "immediately" responding to further

stimulation. It must take a small, but not negligible,

amount of time to recover, or be "regenerated:" So at

any moment ponly a certain fraction of the moleculps are

in this regenerated state-
_

. THE MODEL

3.1 Assumptions of the Model

There are. four mathematical assumptidns we must make

in order to construct our model. We hope each of these

assumptions wIlj seem reasonable to you. As for whether

they are "true," we cannot say for sure, but we remind

you that a very, striking and'seemingly paradoxiCal result

predicted by the model has been confirmed experimentally.

(1) How much light one "sees" (one's pe'rception) is

. directly proportionAl to the rate of activation.

(2) The rate of activation is directly proportional

to the amount of light (brightness) fallih upon

the receptor cells.

(3) At any time e, the rate of activation is also

directly proportional to the fraction of the

,molecules which are in the regenerated atate at

that time.,

(4) At any ;aime t, activated molecules ar4 'being
a

regenerated at a rateidtrectly,proport,i.onal to
.

the fraytion of the molecule whicfi are

activated at that time.

0
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3.2 The Assumptions Rewritten Mathematically

Let x = x(t) stand for the fraction of molecules

which are regenerated at time t. Then the number of

regenerated molecules is mx, where m is the total number

of molecules. Assumptions (2) End (3) together say that

an amount of light q shining,on,the retina activates

molecules (decreasing mx) at the rate cqx, where c is a

positive constant of proportionality. Assumption (4) says

that at' the Samq time other molecules a.cd'being

regenerated (incTeas1ng mx) at the rate k(1-x), where k

is another positive proportionality constantt. Notice

that while the rate of activation of regenerated molecules

depends upon q, the rate of regeneration of active

molecules does not. r

All told, then:

(1) (mx)' = - cqx.

Finally:assumption (1) says that our perception.of

light is proportional to cqx. Since we are studying *

perception, it is this quantity we,are interested in.

4

3.3 Summary of the Nota n

A lot of notation is 'nning to pile up, and

there will be more. There is, rio need to remember all

the notational details. Just ke'ep in mind:

-q (the amount of light entering the eye) is a posi-

tive cdtstant controlled bb the experimenter.

c, k, and m are positive constants determined by
-

the physiology of the eye: and are not controllable.

x is a function of the time t.

cqx is proportional to perception, and is what we are

interested in.

S

71



a

38

4. A FORMULA FOR PERCEPTION

. 4.1 Solving the Equation of the Model

- (2)

4 is a constant, Equation (1) can be written

mx' = k(1-x) cqx

mX' ;7 (-k-cq)x + k

x' = :-Lsa x + k

We are getting buried by notation. At the price of

introducing still more letters, let's simplify it. In -

effect, Equation (2) just says x' is a linear function

of x:

(3) x' = rx + s

i where r and s are constants.

Here N a very useful trick for solving any equaiipt

like Equation (S). You may want to remembe? it. Just

make the substitution

z TX S

Then z' = rx' = r(x+s)'= rz. And of course the solution,

of z' = rz is z 4 Cert. Goihg back to the x- notation,

this is rx + s = Cert; or

0 .rt s
(4) x = C*e -

wherse C* =

.

'4.2 Determining the Constant

To determine C* we must:know the value of x for any

one particular t. Remember, in the experiment the sub-.

ject's eye was alloweito adapt to darkness before being

exposed to a bright light.- 'In other wordi, almost all

- the molecules in the rece4tor cells were in the regenerated

state just before the initial exposure, so at that moment

r.

:
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x = f. If we label the moment of first exposure t = 0,

then x(0) = 1.

Putting t = 0 ancfx= 1 in Equation (4) yields

c*=1.1.s=r+s
r r

and so

) r + s rt s
(S) x = e - 7

4.3 Determining the Activation Rate

To interpret Equation (5) we must return to our

original notation. Comparing Equation (3) with

Equation (2) we seethat

r = -k-cq
m

k

'

and s =
F so

x k
cq

e
-(k+cq)t/m k

, q

and the rate of activation is

(6) cqx.=
' 2 2

u

..
ix

4.041timc q _

Jo

The right side, of Equation (6) tells us, if our model

has any validity, how bright a light will appear to one

as a function of time t, assuming it is turned on at time

t = 0, 'and thAt one's eye4ras in darkness before then.

Let's give this function a name: f(t), and let's

investigate-its properties.

5. ANALYSIS OF THE FORMULA

5.1 Simplifying the Notation

Again, let's simplify the notation to avoid heing

buiied by it. Let's write
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M c
2
q
2

k + cq'

Then we have

N _.h_L_sa
m

(7)
me-Nt

P
cqk

k + cq'

There is no point in trying to interpret M, N, and

P physiologically. What we should remember is the

material in the box in Section 3.3, from which it follows'

that M, N, and P are positive constants :1W

S.2 The Shape of the PerceptioneGraph

It is eay to confirm (Exercise 1) that f(0) = M + P,

lim f(t) = P, f'(t) < 0 for all t, and f"(t) >, 0 for all t.

Therefore the graph of f(t) for positive t looks like

Figure 2. The horizontal asymptote at P represents an

equilibrium position. It corresponds to that value of x

(the fraction of molecules which are regenerated) for

which regenerated molecules are being activated and

activated moleculps are being regenerated at the same rate.

e+ P

P

Figure 2. A typiefl graph of the activation rate as
function of time,

74 ,
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/ `e
5.3 The Effec -of Ch4nging the Brightness

.
..,

.

...,

'fide di ngeq, then we also change M, N and P. But

they are still positiveconstants. So Ke get a new f(t)-.

whose graph has the same shape as that in Figure 2, but

with a different intercept and a different horizontal : .

asymptote. /
. .

f4

o <

6. RELATION OF THE FORMULA TO THE EXPERIMENT

. ,
6.1 Explaining the Experimental Result

,_
Now let's look at the experiment. What happened

was that the subject's eye received two amounts`of lighti

ql from the background, and q2 < qi through the bar. So

there were two graphs like the one in Figure 2:

fl(t) = Mie-N1 + P1

O
With intercept MI + PI and asymptote at P1, representing

the subject's perception of the background, and

f2(t) = M2e -N 2 t

P2

with intercept M2 + P2 and asymptote at.P2, representing

the subject's perception Of the bar.

In Figure 3 we have drawn two curves of the right

shape on tie same pair of coordinate axes. We have not

considered the specific values of the constants. We

just want to show that it is at least believable that

the two curves might intersect twice in the region t >
t. in which-case there would be two reversals as to which

curve was the higher of the two. If this actually hap -p

pens; then for t < t < t+ the subject Will perceive the,

less brightly illuminated bar to be brighter thSn the

,background, and there will be, two reversals of apparent

relative brightness of bar and background. Further,

''Figure 3 suggests that' the first reversal (at t = t ) will

be rather abrupt,'While the second (at t = t+) will -be

ro

4
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much more gradual. This is just what happened in the
experiment!

f(t)

+ P

+ P2

P1

P
2

;

t

Figure 3. Two typical graphs of the activation rate (same
subject, different brightnesses).

6.2 Predi?ting the. Experimental Result

: Now fol: that all-important -"If." Could we have
actually calculated that fl(t) and f2(t) intersect.(and
thus have predicted the experimental result), rather
than settle for "it is at least believable . . .".and
(after ;he fact) "This is . . . what happene&W

'This.amounts to solving fl(t) = fi(t), or

(8)
Mle

N
1

t

P1'=M2e
-N

2

t

+ P2

for t. =There is usually no easy way to do this. But
for certain carefully selected values of ql and q2 it
can be done. (Remember, q is the only thing We can
control). Let's select ql and q2 so that qv, = 2N2,
(This can be done. In Exercise 7 you are asked to show
that ql =11(1 will do it, where

1

ter 76
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k,+ 2cq2
R + 2.)cq2 cq2

Then Equation (8) becomes

M
1
e -2N 2t + P

1
= M2e

-N
2
t

+ P
2

(9) Mie -2N
2
t

- M2e
N
2
t

+ (P1 - P2) = 0.

Putting y = e N
2
t
we get

(10) M
1
y
2

- M2y + (P
1

P
2

) = 0

which is a plain old quadratic equation. (This is fhe

payoff for making Ni = 2N2.) Its solutions are of course

y = e-N t M2 ± 422(11) 4M1(P1 P2)
2
M1

There will be two positive value of.t satisfying

Equation (9) if there are two values of y'between 0 and

1 satisfying Equation (10). So we must show that the

right side of Equation (11) is (a) real, (b) greater than ,

zero, and (c) less than one.

The sticky part of this is (a). Some fairly messy

algebra is required, which we have put in the Appendix.

It turns out that the right-side of Equation°(11) is

real if q2 is large enough compared with k/c. After,

that, (b) and (c) are relatively easy, and we'll leave

them as exercises (see Exercises 5 and 6).

So if q2 is sufficiently large (see the Appendix),

and if ql is sufficiently'larger than q2 (Exercise 7),

then fl(t) and f2(t),will intersect at two positive

values of t, producing the paradoxical effect confirmed

by the experiment.
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APPENDIX

This appendix is devoted to showing that the

solutions to Equation (10) are real provided q2 is large

enough. As stated in Section 6.2, these solutions are

M2 t '4122 4M1(P1 -P2)
Y

2M1

They will be real (and distinct) if:

M
2

2
- 4M

1
(P

1
-P

2
) > 0.

In working with this inequality, we shall use

(a) the definitions:

c
2
(II

2
c
2
q2

cqlk cq,k
M1 M = P.. = ;1 k+cql 2 k±cq2 % L rEqT P

2 TiEcTi

(bi° the faCt that ql = Rq2 where

k+2cq
2 k

R + 2;
cq2 cq2

(c) the.fact that k + cRq2 = 2(k+cq2), which you are

asked,to prove as an exercise (see Exercise 4).

We have

*(by (a))

(by (b))

Yec
(by (c))

M
2

2
4M1 (P

1 1 2

c
4
q2 4c

2
411

2

(k+cq2)
2 k+cql k+cq2

c

4

q2
4 -

4c
2
R
2
q2

2

(k+cq2) 2 k+cRq2 k+cRq2 k+cq2

c
4
q2

4
. 2c

2
R
2
q2

2

7.

cRq2k(k+cq2)2 k+cq2 ) 2(k+cq2) 712-

4e 7 11
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c
4
q
2

4
- ,c

3
R
3
q2

3
k + 2c

3
R 412 3 IC

(k+cq2)2

c
3
q2

3

cq2 R3k + 2R2 k).

(k+cq2)

,O$

For this expression to be positive, the payt in

parentheses/Must be positive. ling tAe definition of R

in (b):

cq2 - R3k + 2R2k

.=

k+2 C e k+2cq

C2
E

cq2
k(+ 21

cI cq
2

2

2 "

i
,:0+6k3cq,+12k 2c2(122 +8kc3q2,3 2k3+8k2cq2+8kc2q22

cq2
c
3
q2

3
+

c
2
cl,

2
.6

L

, L 6, J
c
4
q2

4
-k

4
-6k

3
cq2-12k

2
c
2
q2

2
-8kc

3
q2

3
+2k

3
cq2+8k

2
c
2
q2

2
+8kc

3
c1

-3
.

c3 2
3 0

c
4
q2

4
-k

4
-4k

3
cq2-4k

2
c
2
q2 2

c
3
q2

For this fraction to be positive, the numerator must be

positive. That is,

4
q2

4 .4
4k

3
cq

2
- 4k

2 2
q
2

2
> 0.

Sinte it is q2 which we can control, let's rearrange

terms:

c
4
q2

4
4k

2
c

2
q2

2
4k

3
cq2 > k

4

The left side of this inequalityfis a fourth degreespoly-

nomial in q4. Since th.e leading coefficient c 4 .is

positive, the left side approaches +0. as q2 approaches

ItN,
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+02. And so the. left side must be greater than k 4 for

q2 large enough.

Actually, you can easily check that if q2.= 3k/c,

then the left side equals 33k4, which is certainly greater
than k4.

EXERCISES

1. Starting with Equation (7): t

(a) compute f'(t) and f"(t);

(b) show that f'(t) < 0 for all t;

(c) show that f"(t) > 0 for all t; 4

(d) ,show that f(0) M + P;

(e) show that lim f(t) = P.

1

2. Find the time t between t and t
+

on Figure 3 at which the

second light is perceived to exceed the first light In brightness

by the greatest amount.

3. In Equrition (2), find the value of x for which we have equilibrium,

and show that this is consistent with the remarks in Section 5.2'

about the equilibrium position.

4. Show that if

then

R =
k 2"2 k

= +2,
"2 "2

k + cRq2 - 2(k + cq2).

5. Show that the right side of Equation (11) is positive,. assuming

it is realt

6. Show that the right side of Equation (11) is less than one,

assuming it is real.
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ANSWERS TO EXERCISES

1. (a) f'(t) = -NNe Nt
; f"(t) = MN

2
e
-Nt

.

(b) eZ > 0 for all real z, M > 0, and N > 0.

(c) same as (b). -

,(d) (0) = 1,1:e0 + P = M

(e) lim
twe-Nt

= Maim e-Nt) + P = 0
t-40. t-4.0

N4C

since e
-Nt 1=

N
-0 O.

e

log MINI - log M2N2
t =

N
1
-N

2
.t

(Maximizethe funpAon g(t).'= f2(t) - fi(t) by setting

g'(t) = 0 and solving for t.)
'<

1

x k + cq (Set x'= 0 and 'Sofve for x.).

r

'

P-

'For this x, the rate of activa tion woutd be

cqx = =
k cq P,.

as stated in Section 54.

+ 2cq2

k cRq
2

k
c q-21 cq2

k + cq2 k + cq2

00

k +elk + 2cq21

k + cq2
2.

.

410P

5. The solution with the plus sign is certainly positive. The

other will be positive'if

' M2 - - telyPI - P2).> 0,

1

M2 >
A 2

2
- /0. (Pi - P

2
),

; 4.

M2

2

>, M22 41(P1 P2). 2



to.

1.

4

. *

For thisirobe true we require P
1
- P

2
> 0. To see that this

is so, we write

P -P =
1 2 k+cq, k+cq2 1

cqlk cq2k

. ,

.1(
2eye2

qlq2k-k
2
-cq2-c

2
qlq2K,

(k+cql)(k+cq2) ,

k
2
c

(k+cq
1
)(k+cq

2

(q
) 1

-(1

2
),

,

.which is positive since (11 > q2.

t

Weikust show

4
M2 + .-

4141(P17P2) < 2141'

X42 4 ,11(P1 -132). 2141 142

2 2

J 142 414-i (P -P " 4141 '4 " 21 2
4M.-.2 M22,

. "4. . .

. I'l P2, M2 141'

141 + t'l > M2'4. P2'

To show this, note that

2 2
1: q +cq kto+ 1 1

1 k+cql "11'

and similar4alt,

M2 4-.P2

Remembpy
that ql >

4,

N
1

k+cq
1

i.k+cRq
2

= 2 (u:f41111hercise 4i.
42 '-k*"12

k+cq
2.

1..

.11

-
fa

A

.

4


