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1. INTRODUCTION

The purpose of this unit is to help you wecognize
oroblems which can be solved by use of the exponential
function, and to show you some of the wide variety of such
problems. You will learn how to actually solve such
problems in Units 85-88,

&
2. THE EQUATION y' = ky .

Problems whose solutions involve the exponential
fu, ction all have one thing in common: the rate of change
of the quantity being measured is proportional to the
quantity itself. Knowing the mathematical language will
enable us to develop the mathematical machinery needed to
solve thengproblems. Let y stand for the quantity being
measured. You are familiar with the concept of rate of
change expressed in mathematical terms; rate of change

is given by the derivative, in this case written v'., The

phrase '"'proportional to" means "is a constant multiple of."

We let k stand for the censtant.

of the quantity

is proportional to
being measured v

1

(The rate of change) (The quantity

y! = k y

being measured)

a

With this translation, we can say now that each problem
whose solution. involves the exponential function
satisfies th( mathematical equation y' = ky.

3. GKAPHICAL PROBLEMS

311 Geometric Meaning of y' = ky

If you are given the graph of a function of x, you
can use.a straight edge to draw lines tangent to the graph
at various points and then find the slope of the tangent
line as you would for any straight line (the change ia y
divided by the change in x). Now recall the geometric
significance of "the derivative: it is the slope of the
tangent line. Thus, the slope of the tangent line is
also the value of y'.

If the curve is the graph of an exponential function,
then it satisfies the equation y' = ky, or if y # 0,
y'/y = k. We may use the method above to check whether
or.not a given curve is the graph of an exponential function
by evaluating y'/y at various places.

3.2 Example of a Graph that Satisfies y' = ky }

{See next page.)
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Lo b ang im: j S ans Choose at least three points on each of the following »

_ by 1 £ L I -: L ; "5 - & 8raphs and draw the tangent 1iné at each of these points.

e —e—’ Use the slope of these lines to estimate y' and fill in

ax=| . Ay =t ; the table accompanying each graph.
Figure 1. Example of a graph that satisfies y' = ky.

We have drawn & line tangent to the graph at (2.5, 3.5)

and computed its slope by extending'the tangent-line down

to the line where y = 0; from this roint we move one unit .
to the right, and then go back up to the tangent line.
The point where we meet the line again has 1.7 as its
y-coordinate. Since we started with y = 0, our change in ~
y is 1.7, which remainé unchanged when divided by our change

in x which is 1; the slcoe of this tangent line is 1.7. The

~

quotient y'/y is 1.7/3.5 or approximately .5. .

8 3. - . 9 4. |
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Is this the graph of an exponential function?

Figure 3.
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a) Are the numbers in the last row approximately the same?

b) Is Figure 2 the gragh of an exponential function?
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Figure 4. Is this the graph of an exponential function?

TABLE 11t

y'/y

a) Are the numbers in the last row approximately the same?

b) Js z;?ure 4 the graph of an exponential function?
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Figure 5. Is this the graph of an exponential function?

TABLE 1V
Y -
yl
y'ly

a) Are the numbers in the last row approximately the same?

b) Is this a graph of an exponential function?
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4. WORD PROBLEMS

4.1 Some Key Phrases

People often have difficulty with "word" or "story"
problems because they do not know how to get started.
This section is to help you get started on some word
problems by being able to recognize key words or phrases
which indicate that the solution of the problem will
involve the exponential function. We saw the general
phrasing of such problems in Section 2 of this unit, and
now we look dt some specific instances.

Sometimes you are lucky enough to see a phrase that
is very close to the general phrase given in Section 2,
such as 'the rate of change of the cost is proportional
to the'cost.” Sometimes the phrase is slightly disguised,
as in "the acceleration is proportional to the velocity";
here you must recognize that acceleration is the rate of

change of the velocity. Another way of saying the rate of

change is proportional to the amount is to express this
proportion as a percentage, as in "increasing at the rate
of six pertent per year." This phrase wouid transliate

to the mathematical equation y'= .06y. It is important
to distinguish between a yrowth rate that is constant,
say $6 por year and, as we have here, a growth rate that
is a constant percentage, six percent per year. In otker
case’, the proportionate rate of growth is not given as a
yearly rate, but in terms of how long it takes the quantity
to increase or decrease by a given factor. You will
recognize this in phrases such as "doubles every eight
years", "increases by a factor of three every two years",
has a half-life of thirty minuies", or "decreases by a
factor of 1/5 every twenty years." The concepts of half-
life and doubling-perioa will be dealt with in greater
detail in Unit 85. For now, try to develop recognition

9

of such phrases; your computational skill will be
ST
developed later.

4.2 Example of Word Froblems that Involve y' = ky

Example |

The Navy is testing a new torpedo, and launches one from a
submarine. Because it contains enough air to offset the weight of
the metal, it is weightless in the water arg therefore stays at a
constant depth. The torpedo misses its target and heads toward
open ocean. Two miles from the launch its motor stops. At :'is
instant it is traveling 80 miles per hour, but the water resistance
slows the torpedo at a rate proportional to its velocity. Three
miles from launch it is traveling at 40 miles per hour. Since the
torpedo is a threat to navigation, it must be recovered. !t can be
picked out of the water it it is going less than one mile per nour.
How soon can che Navy recover the torpedo, and how far down range

should they go to make the recovery?

Discussion of Example 1

-

One of the cdifficulties of word problems is that
there tends to be more infermation given than is really
necessary to solve the problem. Another is that the
information needed to completeiy solve the problem is not
needed to hegin the sclution. The first task in solving
this problem is to write the correct equation governing
the change in velocity of the torpedo. This equation is
giren by the "w- :er resistance slows the torpedo at a rate
proportional to its velocity." This contains one of our key
phrases, and if v is the velocity, we have v' = kv. The
solution of this problem involves the exponential function.

4.3 Another Word Problem

Example 2

A fossil is found in a cave, and taken to a laboratory to be

analyzed. It is found to emit atout seven rays from carbon-14 per

15 "
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gram per hnur A living body radlates at a rate of 916 rays per gram, meter at home, Roger notes that the amount of light at the

& per hour, and radiodctive.carbon-14 has a half-1ife of about 5,600 years. surface of the water is 400. Roger does not have an underwater
Approximately how old is the fossil?

lamp and is dependent on natural light. _He knows from previous

Discussion of Example Z . experience that every 20 feet of water will reduce the amount of

light by one-half. Roger needs a reading of 40 on the bottom to

The word half-1life was given earlier as a term that
see the lobsters. Can Roger plan on lobster for dinner, or

indicated a rate of change proportional to the t
g¢ prop he amount of should he defrost the hamburger?

i a quantity present. The term half-life can be expressed:

as a percentage rate of change. In this case the percentage a) If L(d) represents the amount of light 1t depth d, is
g __ 1= given as 50 percent per 5,600 years, instead of an annual L*(d)/L(d) a constant? C
rate of percentage. If we let C(t) be amount of carbon-14 b) Does the solution to this problem invnlve the exponential

at time t, then the solution to the problem involves the
solution to the equation C'(t) = kC(t). Again, how to
determine k, and how to solve this equation will be dis-
cussed in Unit 85.

function?

7. A rock is dropped from a cliff towards the ocean. The velocity

- at time t is proportional to t, and the constant of proportionality
is 32. If the cliff is 50 feet above the ocean, when does the
. rock hit the water?

L. 4 Exercises

A question is posed in each problem to make the a) 1f p(t) represents the distance the rock has fallen, does
—— ——problem seem more" iike those you will encounter later; p'(t) = kp(t)?

you are not expected ‘to be able to solve these problems
now. You are expected only to answer questions (1) and
(b) following each problem statement.

b) Does the solution to this problem involve the exponential

function?

8. Anne has just spent $5,000 for an automobile. She knows that it

will depreciate at a constant rate of 17 percent per year. For

5. The Security Union Bank advertises that it pays five percent

how much will she be able to sell the car in six years?
interest on saving'accounts, and the interest is compounded

continuously.¢ If you opened a $1,000 savings account with this a) If p(t) is the price for which she can sell the car in t
M . . 1 o
o bank today, how much money would be in the account a year from years, is p'(t)/p(t) a constant?
’ today if you make no withdrawals or deposits? b) Does the solution to this problem involve an exponential function!
a) Is the rate.at which your account is growing a constant 9. A curve in the plane satisties the following geometric condition:
_ percent? the slope of the ljne tangent to the curve at any point is three
b) 1f a(t) is the amount in yoﬁr account at time t, does a(t) times the x-ccordinate of that point. The curve passes through .
, s
3 - H . . M - - - th
satisfy the equation a'(t) = ka(t) for some constant k 7 the point (1, 4). Wkat is the y-coordinate of the point on the

curve whea x = 27

6. Roger wants %o go scuba diving for lobsters. He must be able to
ey i sati ' = ky?
dive to a depth of 100 feet. It is a cloudy day, and on his Jight a) Does this curve satisfy y Y

S—— s 16 S e b) Does the solution to this problem involve the exponential

1 function? 12
R o 17
'ERIC .
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10. A biece of pottery is taken out of a kiln where it his been
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baking.
and it Is placed in a room where the temperature is kept at
75%.
body cools Is proportional to the difference in temperature

{ts temperature when removed from the kiln is 2300°F,
Newton's law of cooling states that the rate at which a
between the body and the surrounding room. (Note that the rate
of coollng is equal to the rate at which the difference in
temperature between the body and the room decreases.) After one

hour, the pottery's temperature ‘is 2000°F. When will it be
safe to touch the pottery with bare hands:

a) Let F(t) be the difference between the temperature of pottery

and the temperature of the room. s F'(t) = kF(t)?

b) Does the solution to this problem involve the exponential

function? .

- A certain factory has been dumping its chemical wastes into 3

river which flows into a lake. The chemical wastes of the
factory caus~ a rash on the skin when their concentration in
the water is 30 parts per million; they ir-itate the eyes at
a concentration of five part§ per million. The factory .topped
dumping its waste into the river a month ago, and the concen-
tration jin the lake was then at 75 parts per million. The clean
water of the river entering the lake mixes with the polluted
water of the lake; then, as the river flows out of the lake, some
The flow of the

river is constant; together with our mixing assumptions, this

of the polluting materials are carried off.
means that the rate at which the waste material is being carried
off is proportional to the amount of waste in the lake. The
chemical waste now invthe lake amounts to 70 parts per million.
How long will it be before people can swim in the water without

getting a rash? Without their eyes burnina?

a) If c(t) is the amount of chemical waste at time t, is c'(t)

proportional to c(t)?

b) Does the solution to this problem involve the exponential

function?
13
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Enough

A drug is injected into the bloodstream of a patient.
of the drué is given so that its concentration in the bloodstream
is three times its effective level. The rate at which the drug

is eliminated is p portional to the amount in the bloodstream. -
After ten minutes, a sample of the patient's blood shows that

the level of the drug is 2.7 times IEs effective level. How long

will the level of the drug remzin above its effective level?

a) 1f a(t) is the amount of drug in the bloodstream at time t,
is a'(t) = ka(t)?

b) Does the solution to this problem In;b4¥5 the exponential

N

5. ANSWERS TO EXERCISES

function?

’

The entries in your first two rows wili depend on the
choices of y you made, but your entries in the last
row should all be about 0.17.

a) yes, b) yes .

~

The entries in the last row should differ considerably.
For instance y' < 0 when ¥y = 4 at one point, and y' > 0
when y = 4 at another point.

a) no, b) no
\
This is harder than No. 2, but again the values in the

third row should differ. y' is near 0 when y = 1 and
is near 2 when y = 12. This makes it more difficult
to answer but the answers are

a) no, b) no

Each entry in the last row should be about -1.0.

a) yes, b) yes

a) yes, b) yves
a) yes, b) yes

a) no; p'(t) = 32t, not 32p(t), b) no




8. a) yes, b) yes
9. a) no; y' = 3x, not y' = 3y, b) no

10. a) yes, b) yes

-

-

11. a) yes, b) yes .
12. a) yes, b) yes

. 6. MODEL EXAM
1. - The Security Union Bank advertises that it pays five percent
interest on saving accounts, and the interest is compounded
continuously. If you opened a $1,000 savings account with
this bank today, how much money would be in the account five
. years from today if you make no withdrawals or deposits?

a) Does solution of this problem involve an
exponential function?

b) Why o} why not?

4 1

2. A jet is :raveliné at 1,300 miles per hour. The jet's engine ,
burns out, and the plane is being slowed by the resistance of
of the air. The deceleration rate is proportional to the square
of the velocity of the airplane. After five minutes, the plane
is traveling at 1,100 miles per hour. How long is it before

the plane is traveling at 800 miles per hour?
a) If v(t) represents velocity of airplane at time
t, is v'(t) = kv(t)? :

- b) Does solution of this problem involve an

exponential function? Why or why not?

A A Full Text Provided by ERIC - h e e e - - N

S S

Y

HH ] i '-_b-Jl
y = £(x) T L

2.0

gt

1—0‘ N -

1.5

Lot

1.o0HH- . - :
.5 s aslix
A 4 x
.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Fill in the following table'for various values of y.
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Is this the graph of an exponential function? Why
or why not?

7. ANSWERS TO MODEL EXAM

Yes, because the bank adds to the account at a ratv
nroportional to the total amount in the account at

any time, i.e. it adds at the rate of five percent
cf the account balance per year.

a) No, the deceleration is propertional to the
square of the veiccity. The rate of change
equation should read

v'(t) = kiv(t)}?

b) No, because the rate of change of velocity is not
proportional simply to the velocity but to the
square of the velocicy.

No, because y'/y is not approximately the same for
all points.
«16
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: UNIT 85

- EXPONENTIAL GROWTH AND DECAY
. by
Raymond J. Cannon .,§
Department of Mathemafics
s Stetson University (
s . Deland, FL 32720
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47 9/6/77 -

1. INTRODUCTION

Y

The words half-Tife and doubling period were
emphasized im*Unit 84 as key words (or concepts) in
recognizing problems solved by exp&nential functions.

‘This unit takes a closer look at these concepts, and

develops formul#s that express the amount ot the
quantity as a function of time.
&
v 2.;~REVIEW OF EXPONENTS

Tt
Since we will have neednof the. expression Zt/k

we
want to review what the exponent means when t and Xk are
integers; what it means when t and k are not integers will
be dealt with later.
an arbitrary positive number. In the expression
called the base, and t/k, the exponent.

.

We will use the letter b to represent

btk b s

If t is a" positive integer, then bt is b multiplied
by itself t times. For example, 2% = (2)(2)(2) = 8. What

—

= ( )t = 176t
—7 Wﬁat is 2732

If t is: a negat1ve 1nteger, t:en b
Thus, 27 5= ( )5 (2)\2)(2)(?) (7)

2" = =

If k is a positive integer, then bl/k is the number a
such that ak = b, and b1 k is called the kth root of b.
Thus; 8173 = 2 since 2 = 8. wWhat is 321/57 321/5 .
What is 641732 ’ What is 642/39

since 2% = 32,

. o 1

3. POPULATION GROWTH AND DOUBLING TIMES

* 3.1 Computation of a Doubling Period Given Annua} Percentage Growth

~Let us suppose that country A has population that

is growing at the rate of three percent per year. Do you
think of this as rapid g;owgh or slow growth? |
If the country had 10,000,000. people in 1975, how long
will it take the population to double and reach the

20,069,000 level?

guess.

Take what you think is a reasonable
We-can -work out the answer and see how

~

good .your guess was. ’

That thé population grows at a rate of three percent
per yvar means the population in a given year is 1.03
times the population of the previous year. Thus, the .
population in 1976 will be 10,300,000 = (1.03)(10,000,000).
The populathion in 1977 will be (1.03)(10,300,000) =
10,609,000. To compare this to the 1975 population, ‘write
10,609,000 as (1.03)(1.03)(10,000,000) which is
(1.03)2(10,000,000). The population in 1978 wjll be
.(1.03)(10,609,000) = (1.03)(1.03)2(10,000,000)\=
(1.03)%(10,000,000). '

This pattern is made cfearer when we look at the data
in the form of a table as in Table I.

Exercise

1. Fill in Table I. Use a calculator to do the multiplications.

(See next page.)
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TABLE 1
Year Population
1975 (1.03)° (10,000,000) = 10,000,000
1976 (1,03)! (10,000,000) = 10,300,000
1977 | (1.03)2 (10,0005000) = 10,509,000
Careful, 1978 (1.03)* (10,000,000) = 10,927,270
watch the
Jump. T 1979 (I.OB)D(IO.QOO,OOO) =
- \> 1980 (|.03)D(lo.ooo.o‘oo) =
1990 (1.03)[](10.000,000) -
2000 (1.03)[:](10.900.000) =

> <

How close was your guess to the value 20,937,779?
In 25 years, the populatian has more than doubled! 1In
fact, the population doubled in less than 23 % years.
(How to compute the actual doubling time will be shown
in a later unit,) What will the population be in the
year 2025? To answer this question, we want to compute °
(1.03)%° + (10,000,000). As a short cut in this computation,
note that (1,03)2%5(10,000,000) = 20,937,779 means that
(1.03)?° = 2.0937779. This means (1.03)5° = [(1.032%(2)) =
[(1.03)25)2 = (2.0937779)2,

In 25 years from 1975 to 2000 the population increased
by a factor of 2,0937779, and in the next 25 years from

2000 to 2025, it increases by the same factor, We may

- express the population in 2025 in the following equivalent

ways:  (1.03)%°(10,000,000) = (2,0937779)2(10,000,000) =
(2.0937779)(20,937,779) = 43,839,059,

- Exercises

*‘.

< 2. Find the doubling period of each quantity from the following
tabies.

- 28 3

Q

™~

~

T
TABLE 111
T INCREASING COST OF AUTOMOBILE

\:
» TABLE 11 T
GROWTH OF BACTERIA

Time 1g?¥:;£: Year c?zgl?srgir
9 a.m. 1,400 1971 2,500 :
— ~—
10 a.m. 1,764 1974 3,149
11 a.m. 2,222 1977 3,967
12 noon 2,800 1980 5,000
1 p.m. 3,528 1983 6,298
2 p.m. b, by 1986 7,934
3 p.m. 5,600 )
a) Doubling period is b) Doubling period is

3. Use the estimate that the population doubles every 24 vears in

country A to complete Table 1V.

TABLE 1V Using the same doubling period, we

see that the population must have gone

Year | Population From 310,000,000) to 10,000,000 n 24

1975 10,000,000 years. Thus, the population in 195]
was . In 1927 the

1999 20,00¢, 000 population was \\"“ﬁ~ If we

2023 know the doubling period, we can say

2047 what did happen, as well as what will
happen. R

3.2 cComputation of Doubling Period from Graph of an Exponential Function

The graph of an exponential growth function is given
in Figure 1 (page 5). Notice the value of the fuuction is

8 when x = 6.

To find the doubling period, we must see
what x is when y = 16; when the graph crosses the line

29 !
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y = 16, -the value of x is 8. The value of y doubled when
X increased by 2. Similarly, when.y = 6, we see that x is
about 5.1, and so we expect that when y = 12, x will be
5.1 + 2 = 7.1. Verify that this is so.

Notice that if x increases by 2, the Valgg of y doubles;
if x decreases by 2, the value of y halves. We can_use
this information to give certain values for the function
that are not plotted. For instance, the graph goes
through the point (1, 1.4) and if we were to extend to
negative numbers, we would see it goes through (-1, .7)
since -1 = 17 2 and .7 = 3(1.4). :

Exercise

h. Fill in the blanks without looking at the graph. Then look at
the graph in Figure 1 to verify answers when possible.
a) The graph passes through (4.6, 5) and (., 0).
b} The graph passes through (1, 1.4) and (3, ).
c) The graph passes through (8, 16), (10, __) and (}2, _ ).
d) The graph passes through (0, 1) and (-2, ).

e} The graph passes through (-1, .7) and (__, .35).

4. FORMULA FOR EXPONENTIAL GROWTH

L.1_ Formula for Growth of a Population

We want to find a formula for the population of country
A so we will know what it is in an arbitrary year.
Remember, we are assuming the population doubles every 24
years. Use this assumption and 1975 as our starting point
in time to fill in Table V.

s L




The last.column in Table VI gives us our formula for

' TABLE V . .
K N the population in any year:
’ A B c
3 P = (10,000,000)2%/%4
e Year® .
Hinus - . where t is the npmber of years measured from 1975.
Year 1975- Population ; .
v Assuming the population doubles every 24 years,
1927 2,500,000 .. . 20/24 v
we can say the population in 1995 will be (10,000,000)2
, 1951 -24 and that the population in 1860 was (10,000,000)2715/24
1975 0 10,000,000 4.2 Formula for Growth of a Bank Account
1999 24 20,000,000 . “Tom's father put $100 in the bank for Tom. The bank
2023 X8 ) «  paid interest on the savings "account so that the amount
doubled every 12 years. In 1960 Tom had $400. When did -
2047 . 80,000,000 -
. Tom's father start the account? You can answer this
- N » question without a formula such as the one we worked out
~ Let t represent the entry in column B and verify in Section 4.1, 'but let's use a formula anyway. Then
L t27§4the corresponding entry in column C is we can use it to answer a question about the amount at a
Vi 2 (10,000,000) by completing Table VI. T time when % is not an integer. 8
. TABLE VI . Since we know how much was in the bank in 1860, we -
i use 1960 as our starting point. The doubling period
) Year ¢ 5 (2/2k) 2(t/28) (14 000, 0¢0) is 12, so we ha\/nlezk = 12 and the amount in the bank is
; 1927 48 S W72 _ 2 1 given by 400(2t ). We want the value of t so that
— 5 (400) (2t/1%) = 100.
1951 - ' t/12 _ 1 1_ (1,1 -2
) §1975 o L — That means 2 =T Now, 7 = HGE =2". Thus, we
: have f% = -2,.s0 t = -24. The account had $100 in
%f«"u. 1992 : (1960 - 24) or in 1936.
%ﬁ 2023 . when did the account have $200 in it?
. 72 .
g 2047 72 212125 . 53 , But how much did Tom have in 1966? There are several

ways to find out. If we continue to use 1960 as our

Is the population:in each year as computed.by you in '
Table VI the same as the population given in Table V? (400)(2(66'60)/12) = (400)(21/2)

It should be. .
v € (400)(1.4142) = $565.68. |

" J2 33 .

starting date, we want to compute




Wq'cohld;have used the actual starting date of the account,
s (2 (66-36)/12 5/2

1936, and computed (100)(2 ) = (1001(2 ). Use

the fact there was $200 in 1948 to do the computation.

From these calculations we see that the amount can
be exp%essed;?s Aozt/lz'where A, is the amount in a given
year, and t is computed starting at that year. We call
the year we start with‘fpitial time, and Ao is the initial

»

13
amount. ¢
f.\*\‘\"‘«
v Exercises
FEN— BN 172 _ »
: - tn_these exercises use 2 /= = 1 4142,
;f : 5. Compute the amount in’Tom's bank account by using a different
inftial time and amount. Fi11 In Table VII by u<ing 1572 as
L the initfal ¢ime. You have already Qomputed Ab to be $8QO.
TABLE VI
‘:u‘ R vear | t I Aozt/lz i
¢ B E 1954 ) ’
1960
1972
1973
I IRTY))
i; > 6. A utility company has discovered that the use of electricity in -
A Central City is doubling every eight years, Fill in Table VilI.
(See next age.)
H -
- \ .

TABLE Vit1I |

Year Kilowatt Hours

1962 -
1966 ' -

. 1970 2,000,200 '
1974
1978

1982 -,

Can you compute the usage in 19717

Hint: 2178 a //—.Ez 1.0905. )

Usage In 1971 was about kilowatt hours.

7. The graph of a function was given by Figure 1 in Sectign 3.2. -—
We saw that the doubling period of that function is 2 and that
the craph passes thfough (6, 8). If we let our inicial time
equal 6, initia]l amount equal 8, and the doubling period k
equal 2, we-have a formula for the function: y r 8(2)(x“6)/%

a) Use the fact that the graph goes through (&, 4} to

obtain another formula for the function.

b) Use the fact that the graph goes through (0, 1) to
obtain another formula for the function.

5. HALF-LIVES

5.1 Half-Life of the Charge in a Capa&ltor

Some quantities, instead of increasing exponentially,
decrease exponentially, and instead of a doubling period we

speak of a halving-period or more commonly a half-lif

Peter walks in on Fred who is conducting an experi
in the Physics Lab. Fred has charged a capacitor wit

=
2]

35
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90 volt battery, and then made a circuit, so the voltaée
. in the capacitor is dropping. Peter is an observant

pevson, and notices the needle on the voltmeter is slowing
o - @

down™a’s the voltage gets smaller. He decides to make the
following table, which he starts with the vcltmeter

s e,

reading 50 volts. *
Seconds Voltage But after Peter had filled in the
Elapsed table_this far, the needle was
0 50 dropping verv slowly, and Peter wanted
to go to supper. He said, "Gosh,
59 45 Fred, you don't have to sit here and
)
126 ) watch that thing any more, I can
201 35 te'll you how to filllin the table."
" 288 30 Ered did not believe him, and
- challenged him to predict the entries,
330 f B Can you do it?
516 [V 20
- Seconds Volt .
678 15 Elapsed oltage
, . 10 10
5 5
Peter had written
g:;::g; Voltage Fred.asked Peter how he was able to
' predict, and Peter told him, *Look,
?06 10 Fred, -it dropped from 50 to 25 in 390
'l.296 5 seconds, from 40 to 20 in 390 seconds,

from 30 to 15 in 390 seconds, so it
will drop from 20 to 10 in 3990 seconds, and from 10 to 5 in

. 390 seconds. The charge has a half-life of 390 seconds."

[ Fred was impressed, but not convinced. Peter said "Fred, if
3 I can tell you how lofig you had been conducting this
experiment before I came in here, will you believe me?"

ERICT - 36
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Fred said he would. Peter gave Fred a time, and they
both went to supper immediately. How many seconds had
Fred been doing the experiment before Peter walked in?

5.2 Half-Life of Radioactive.Carbon

|
|
|
T
| !
One of the most common uses of the term "half-life®
is to describe the rate at which a radioactive element
emits particles and thus changes int. another element.
Anthropologists use the amount of Carbon-14 found in
fossils, together with the knowledge that the half-life
of Carbon-14 is about 5,600 years, to estimate the age

of the fossil.

Another radioactive isctope is Carbon-11, which
decays into boron roughly at the rate of 3 1/2 percent . -
per minute. Table IX contains two entries showing the
amount of Carbon-11 in a given mass of material. Fill
in the missing entries, and then answer the questions.

Exercise
8. TABLE 1X
time | ount of &1 What Is the half-1ife of C''7 . A
Can you tell how much there was at
‘3:00 3:507
3:20 To answer this last questidh, we use
3:40 24,000 3 formula 1lke the one for growth;
however, now we have a halving period and -
4:00 12,000 A(t) = (24,000) - (%Jr/zo where t is
4:20 the number of minutes from 3:40. At
bo4C " 3:50 the amount is

(24,0000 (372 ~ (24,0000 (132 = (24,000) (.707) = 16,968.

- 37




-5.3 Formula for Expressing Exponsntial Decay

When a quantity is doubling in a period of length
k, we saw we could use Zt/k to hélp express how much theve
is at avbitrary times. When a guantity is hal\!ing in a
‘period of length k instead of doubling,‘ we use'%- instead
of 2,

Using the data from Table IX, we can express the amount

of C11 as (24,000)-(%—)”20 where t is the number of minutes
from 3°40.

The amount at 3:30 is (24,000) (1) "1%/2% - (24,000) () 1/2
= (24,900)(21/2) = (24,000) (1.414) = 33,936.

Exercises
9. Use the dita from Tabie IX to answer the following quéstions.

a) How much C” vas there at 3:107
b) How much €' was there at h:l0?

10. Use the/graph ln'Flgure 2 (see page 14) to answer these"questlons.

a) The graph passes through -the point (-3, __) and (0, ).
-
b) If/x Increases by __ , then y decreases by a factor of ;—
N 4

c) THe graph passes through (6, .25). if extended, it
Id pass through (9, ).
—~ _—

d) extended in the other direction, it would pass through
-9, __)- - h
e) Use the facts that the graph passes through (0, §) and that

= 3 to give a formula for the funct}on.
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e 6. ANSWERS TO EXERCISES
' TABLE |
- Year ngulatldn

1979 (1.03)" (10,000,000} = 11,255,088

i 1980 (1.03)% (10,000,000) = 11%592,740
1990 (1.03)*%(10,000,000) = 15,579,674
\ .

. 2000 -| (1.03)23(10,000,000) = 26,937,779

a). Three hours,

b) Nine years.

TABLE IV

Year Population

1975 10,000,000

1999 20,000,000

2023 40,000,000

2047 80,000,000

a) (6.6, 10), b)

(3, 2.8), ¢) (10, 32) and

(12, 64), d) (-2, .5), e) (-3, .35).

40

Section 4.1: TABLE V
A 8 _|—t
Year
Minus
Year 1975 Population )
1927 -48 2,500,000
1951 -24 5,000,000
1975 oo | 10,000,000
1999 24 20,000,000
2023 18 40,000, 000
2047 72 80,00¢, 000
TABLE VI g
Year t 2t/2h 2t/2%(10, 000, 600)
1927 | -us [ 27/ lp2l 1(10,000,000)
DR ERERGE +10,000,000)
1975 o | 2% .20, 1(10,000,000)
1999 2p | 22 L 2(10,000,000)
2023 18 ;258/2“ =22 .y 4(10,000,000)
2047 12 | 0¥ 3. 8(10,000,000)
)
Al
/
/
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Section 4:2:

Account had $200 in 1948,

5. TABLE V1L
Year t A;oztn2
1954 | -18 | (80002712
(800) ()32 = 528284
1960 | -12 | (800)272/72 & (400)
1972 | _o | 800
1978 6 | 1,131.37 ‘
1984 | 12 | 1,600
6. TABLE V111
Tear Kllowatt Hours
1962 1,000,000
1966 1, b4, 214
. 1970 | - 2,000,000
) 1974 2,828,427
1978 4,000,000
. 1982 5,656,865
2,181,000 kilowatt hours in 1971.
7. a) y = 42X gy . x/2

Section 5.1:

Fred had been working 331 seconds.

42

10.

17

TABLE IX

Time Amount of Cll -
_-3:00 " 96,030

3:20 48,000

3:40 24,000

4:00 " 12,000

4:20 6,000

b:40 3,000

Half-1ife of 20 minutes.

a) At 3:10, there was approximately (24, 000)(1)'30/20
(24,000) (2%/%) = 67,882.

b) At 4:10, there was approximately

(24,000)(,)3/z = (24,000) « (.3536) = 8,485 .
2) (-3, 10) and (0, 5), b) 3 <) (9, .625),
) (-9, 40), ) y = 5(h*/3,

7. MODEL EXAM

If the following table gives data for number of bacteria,

and this number is growing exponentially,

a) Fill in the table, and answer the questions that
follow.

43
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Nomber of Tine "b)  The number of bacteria doubles
'““'2' every minutes. 1. a)
1:40 c) A formula for the number of bacteria
1:45 is R(t) = The initial .
time is And t is
1:50 X o,
measured in starting at
1:
53 d) Write a formula for the number of
A,000  2:00 bacteria where the initial time
2:05 is 1:50.
8,000 2:10
2:15 ®
2:20
2. 7he half-life of a radioactive isotope is four minutes.
a) Fill in the following table and answer the )
2. a

questions b and c.

Amount

Time

9:20

9:22

100

9:24

9:26

9:28

9:30

9:32

b)

c)

Write a formula for the amount of
isotope with 9:24 as an initial

time, and use it to compute the amount
at 9:30.

A(t) =
A(9:30) =

Write formula with 9:22 as the
starting time, and use it to
compute the amount at 9:30.

A(t) =
A(9:30) =

8. ANSWERS 10 MODLI. EXAM
Number of (last place accuracy #1)
Bacteria Time
b) Bacteria are doubling every
1,000 ° 1:40 .
ten minutes.
R RS Loy A(e) = 4,00002871%), initial
2,000 1550 time is 2:00 and t is
2.828 1:55 measured in minutes starting
at 2:00 (or <iamilar answer).
4,000 2:00 t/10
d) A(t) = 2,000(2 j.
5,657 2:05
8,000 2:10
11,314 25|
16,000 2:20 .
Amount Time (last place accuracy +2)
- 1.,t/4
200 9:20 b) A(t) = 100(3)
142 9:22 A(9:30) = 100(%)6/4 N
100 9:24 100(’})3/2 = 35.
Y
7 2 | AM) x 12"
‘ 1
50 9:28 JORBHORSE
> 3130 (142) ()2 = 35.
?
25 9:32
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; DEVELOPMENT OF THE FUNCTION y = Ae€¥ . ) We may go through a similar argument to also rewrite
QN (l)t/k in the form b%; this time b is playing the role of
k t by ‘,\ * the constant (1)1/k
Raymond J. Cannon . , t . .
Departmen of Mathematics Thus, functions of the form y = b~ include functions
Stetson University that have a doubling period as well as functions that have

‘DeLand, FL 32720 . " . . . .
a half-life. We will now investigate functions of the

6/12/78 form y = bt where the exponent t is the variable. It is
for this reason that y = bt is called an exponential

1. INTRODUCTION function, and b is called the base.

»

2.2 The Base Must Be Positive

There 4re several physical quantities that have

\\"doubling periods" or "half-lives". Unit 85 of this Because numbers of the form 21/K ana (%)I/k are
dule shows that the amount of such a quantity with a positive, and because we want b® to be defined for all
doubling periud of length k is given by the formula : possible values of t, we make the restriction that in
Aoz k where A, is the amount at a starting time, and t everything that follows b > 0. Note th:t if we allowed Sy
is the time measured from that starting time. The b to be equal to ig for example, then.o would not be
correspo\olng formula for quantities with half-lives is _ defined when t = 5; no real numbe> is the square root of
Ag ( ) These formulas have many applications and it -9.
is worth some time 1earn1ng how to evaluate them for every h
value of t (to give meaning to 272 for example), and how 3. THE DERIVATIVE OF A(t) = b'
to compute their derivatives (to enable us to talk about 3.1 _The Distinction Between x" and b'

instantaneous rate of change ~s well as doubling rate). i L .
‘ Now that we have simplified the notation, we try to

\ te the derivati We hav f'ltht
2. SIMPLIFICATION OF THE EXPONENTIAL FORMULAS compute the derivative. We have no formula that we can

R use because the var1ab1e is in the ezponent. The rule
2.1 Establishment of Formulay = b

that worked for x", where the exponent is constant ana the

n
Before w2 get into the computations involved in variable is in the base, does not apply; x" and b® ar:
finding a formula for the derivative of an exponential completely different kinds of functions:
function, we want to simplify the notation used. The Previous Functions (Polynomials)
first step in the simplification is to assume the initial
amount A is 1; we will remove this assu..cion later. The n < constant
next s1mp11f1cat1on is one of notation only. We rewrite
: Zt/k (llk)t which we'agaln can rewrite, this time as
(2]/k)t. Since k is a constant the number 21/k is also .

< iabl
a constant. If we let b stand for this constant we may variable s

rewrite the expression 2t/k as simply bt. 2
1

S - 30 ) 51
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New Functions (Exponentials)

t «g——— variable

b (._____ constant

" 3.2 Finding the Derivative of bt .

’

oy

We will not prove that an exponential functlon does
have a derivative; we take that as an unproven fact and
seek a formula for the derivative. We will calculate
all the folloving iimits assuming they do indeed exist.

To find the derivative of bt, we must go back to the
definition and deve}Qp a new formula. If A(t) = bt, we
use the three step method (CALC, Module II, Unit D-6).
Remember: .

A'(t) = 1im ALt +42) - A(Y) = 1in T?
h+0 h-+0

1. Find a formula for %é. ’

°

M = A(t + h) - A(t) = bP*P - b%; by definition.

8A _ bth . bt
D i by dividing both sides by h.

2. Simplify algebraically.

s . t+h t .
L 2——15L3L—; from step 1
t. h t *
- E—E—Tflll— ; because bP*P = btph

b ’
BA .yt = 1y; because b'BP - bt = BT - 1)

<

3. Let h apﬁroach zero.

aA'(t) = lin 58 byYdefinition
. h-+0
) ph
A'(t); = lim b (——1T——), from last expression in step 2
h-+0
N . ¢ h
A'(t) = b~ lim (——1;——), because b does not depend
h~+0
on h. ) @

3.3 An Important Property of the Exponential Function

Now we pause and examine what we have. The expression

lim —-17—_
h+0

’,

does not involve t; it is a.number that depends only on
the base b. We have discovered that if '

A(t) = bt

then

: h
. -1
A' t =At 15 .
(v) ()(hTVS R—F—— ) ,

where

.

is a constant. More simply, if A(t) = bt, there is a
constant ¢ such that A'(t). = cbt = cA(t).” That is, an
exponential function is proportional to its own derivative.

This would be a very easy formula, to remember and use if
we could find a base b with ' ,

b~
bh S

c = lim __TT_'
«  h+0 .

53




s, . equal to_ its own derivative.
i:%+ " We can try different bases, and see if we can find one.
FLE L ) .

If we can find such a base, we will have A'(t) = A(t).
That is, A(t) will be an exponential function which is
Is there such a base?

4. . VALUES OF THE FUNCTION L(b) = 11m ——1;——

I
s k.1 lntrodu»tlon to the Functlon L
LER . °
§i<§ Since we are interested in the valuc \
'? ’ h .
r. b" - 1
e, c = lim —
i . h+0
5 —for vario s valggi_gf_b4“ng_areglnoking_at_a,ﬁunctian_ofqi,
ig b. We can give it the name L, and write L(b) = c where
S:Ao. PR
* h
. b -1
< L(b) = lim —— -
- h+0
4.2 Computation of L(b) for Various Valucs of b
5.2.1 b=
This is an easy limit to evaluate since 1h = 1 for
. every value of h. Fill in Table I.
' TABLE |
MEAR AR R IR A AL E
. 2 1 16 | 32 | 8% | 128 | 756
h i
17 -1
| S I P R
::y‘ t
-4 We have just discovered L(1) = This means if A(t) = 1",
Sl then A*(t) = L(1)A(t) = 0 » A(*) = 0. This verifies what

you already knew for-if A(t) = 1t = 1, then A(t) is a
constant function so its derivative is 0.

4.2.2 b=2, 3, 4 é

We try to estimate

2? .

L(2) = 11m

. 54

1

|

i
\
i
\
1

|

~
by evaluating

ZE_;_A

h

for values of h near 0. If we look at

. 1 1 1 1 1
h = 7% % 18 3 etc.,

then 2h can be calculated easily on hand calculators
that have a ,quare root key. Rounding off in the fourth

decimal place, we have:
212 = /7 = 1.4142, and
24 . WD) L AT L 7 o 1802,

.which is obtained by entering 2 and pushing the square
root key twice.

Next,

,1/8 2(1/4)(1/'2) AV //;_2

To calculate this, enter 2 and push the square root key

three times, getting 21/8 = 1.0905. Now to compute

tﬁi
AT U
1/8

first compute 2 » then subtract 1, and finally di;ide by
1

B 0f course, dividing by % is the same as multiplying
ty 8, and it may be easier to.do.,it that way on your cal-

culator. /
Compute
2h .
Th
for h = % Enter 2, push the square root key four times,

subtract 1, and mu1t1p1y by 16.
with the cne in 7able 11?

Does your answer agree
(Do not worry about accuracy in

6
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the last place.)
track of each intermediate value computed.

If not, try it again, this time keeping

>

Exercises

1. Check the next entry in Table 11, and then fill in the missing

entries. .
i
- TABLE 11
Table kor b =2
vl sl s | w e |alm|a
2 ¥ ) i3 32 (13 128 756
h H |
27 -1,

Y

.82tk I .7568 ‘ L7241 | . 7084 | .7007

2. To estimate L(3), check the entries given in Table I}l and fill

in the missing entries using four-place accuracv.

TABLE (11
Table for b = 3

1 1 1

L] & ]
2 13 g % ! 37| & 128 758
h

3-7$-l! I.hGhll |.26h3‘ 1.1776 I I l 1.108l|

3. To estimate L(4), check and complete Table IV.

TABLE 1V
Table for b = 4
h I | l ] | 1 l ]
1 6 .&h 756
A
: 1.6569 | 1.4481

We look now at the compieted tables and use them to
say: L(2) is some number near .69 au.d L(3) is approximately
1.10. What wonld you guess as an approximate value of L(4)?

Actually, L(4) = 1.3863, correct to 4 places.

o6 7

[ -

S. DEFINITION OF THE NUMBER e

5.1 A Graph of the Function L(b)

We haye ' seen the following:
b | 1 | AN ! 3 | 4

L (b) r‘ 0 I about .69 I about 1.10 | about 1.39

It seems that as b gets bigger, L(b) also gets
bigger. We substantiate this impression by estimating
L(b) where b = 1.5, 2.5, and 3.5.
graph of the function c = L(b).

We wi'l then draw a
»

Exercises

b, Use h = E%E to fill in Table V.

TABLE V

b | 1.0
]

Approximation
to L(b)

|
i
0.00 I | 1.10

5. Use the data from Table V¥ to draw a graph of the function
c=1(b), 1<b<h,

(See Figure 1 on the next page.)




Thus, e is the base such that A¢+) = et implies that

2.00 p——— — T 1 A'(t) = A(t). (Of course, this result doesn't depend on
- B TN S A I - what letters we use for the variables; for example, if N
T ] y = e, then y' = e* = y.) '
o IR SUESVI :
oot 7 ! Exercise
* ™~ - o : i - " - : 6. Optional
NRUHY R T Write a computer program tnat enables you to fill in Table VI.
4 .. - ¢ ey P oeers 3 e . H ‘
R S IR R "LZ"_'I . 'I TABLE VI
1.00 - —— = I -
= . I e
: - ‘e . N e -4 o - . .. . . . b Approximate
SR sonse SN SSS0E SO T 2 D S o | - | —valueofL(b)— - — - -
= g —— .
«‘ 0.50 — — S 2.50
i SN N I - B :
! LT FI.“';“" R R T i 2.55
a1 faks Kl SRERS EEN N 2.60
. ooplli b = [ Sty DOl DA Bt L. - 2.65
1.0 2.0 3.0 4.0
2.70
Figure 1. ’
s 2.75
, 2.80
5.2 The Value of b for Which L{b) = | 3
~ 2.85
We see from Exercises 4 and 5 that there is a number
b between 2.5 and 3.0 for which L(b) = 1. This number is 2.30
denoted by the letter e following the notation used by the 2.95
Swiss mathematician Leonhard Euler (pronounced "oiler") 3.00
(1707-1783). Thus, L{e) = 1 where e is a number between

2.5 and 3.0. Using this notation, we can write A(t) = et
and we have the formula

6. DEVELOPMENT OF THE FUNCTION y = eSX

A At(e) = Alt)-L(e) 6.1 Writing y = b* As y = eSX

and since L(e) = 1 we have

The function y = eX is very special because of the nice
A'(t) = A(Y).

formula for its derivative, but what about a1l the other
\ 9 o , 10
O
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e bases and their exponential functions y = bX? In this

section we will see that if b is any positive base, then
there is-a number c with b = e, and the function y = bX

. . X
can be written as y = (ec)x = ecX: . y =é€

When an exponential function is written in the form y =b

y = e“® the derivative is easy to compute. First we show, ' ‘
cx J
e . c

\

given b, how to find c so that b* =

6.2 Solving the Equation et = b

Given a number b > 0, we want to find a number c so
that e = b. We divide the search for such a number into
three cases depending on the value of b: b >1, b =1 or 1
b < 1.

X——————— -

|

i

i

i

|

|

|

f

6.2.1 b>1 |

s e

We know e is somewhere between 2 and 3 and so we can

write e > 2. Now given b > 1, fiad some number n’so Figure 2.
that 2" > b. Because e > 2 it follows that e > 2.

Combining the statements e" > 2" and 2" > b, we can say

e™ > b. Now look at the section of the graph y = eX that

The graph starts at the point (0, 1) on the left
and goes up as it moves to the right, ending at the point
(n, e"). Since e > b > 1, the graph begins at h~ight 1
below the line y = b and ends at height el
y = b. Somewhere, the graph must have crossed the line

lies above the interval (0, n) on the x-axis.
above the line

(See graph on next page.)
- . y = b.
What are the coordinates of that point of intersection?
Let ¢ denote the x-coordinate. Since the point is on the
graph y = ex, the y-coordinate must be e€. But the point ’
is also on the line y = b. so its y-coordinate must be b.
. ' But the point can only have one y-coordinate, and we

must have b = e“. The x-coordinate of the point on botl
the graphs y = e* and y = b is the value c we were looking
for.

11 12
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Exercises

7.. Use Fiqure 3 (page 14), the qraph of y = e*.* to solve the eauation
€€ = b for different values of b. Remember, what you want is the

first coordinate of the point where the graph y = e” crosses the

line y = b. Figure 3 shows how to estimate the value.of ¢ when

b= 1,5, and when b = 3,0. Now complete Table VIli.

TABLE VIil )
blro]1.s]20]25]3.0}3.5]40

el ol W] | o] |

8. __Compare the values_of_c_you computedAin#Exencise_J_wizhﬁthevvalues«&
Can you guess what the relationship

of L{b) computed in Exercise 4.
is between ¢ and L(b) = L(c®)? (We return te this relationship in

Section 7 of this unit.)

6.2.2 b =1

If b = 1, then we want the value
But e0 = 1 (in fact any

So here we have

This case is easy.
of ¢ such that e° = b =1.
number 7aised to the power 0 equals 1).

c = 0.
6.2.3 b <1

We could go through the same kind of argume.t.as in
Section 6.2.1, using this time % < %, finding a number n
with Sh <,£ﬁ <*b, and drawing the graph and solving for c.
Instead of presenting this argument in detail, we use the
result of Section 6.2.1. If 0 < b <1, then % > 1, and we
know from Section 6.2.1 that there is a number, wbich we
Taking reciprocals of both

1 d

call d this time, with ed = %.
3 D . -
sides we have‘b = 5a> We may rewrite Sgase

and we have

*How these values of ec were computed will be explained’in
Unit 87 of this module. ;
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C fiow the equation b = e 9. The number we are searching 7.1.1 First proof that L{e®) = ¢
4,: » . » . - c -
> for is -d; if we write c = -d, we have b = ¢ .. This pro s a bit sneaky; it uses one algebraic
. For example, we let b = % and“solve for ¢ in the and two notational tricks. We star* with the definition
o equation e = %. If b = %, then 5 = 2; we know e- 7. 2, of L(e€): ) .
o so ()71 22"l grae 7w 271 = %. The value of c is L(eS) = 1im e -1
< . ﬁ .
= -.7. h-+0 |
- ' - We now perform our algebraic trick, which is to
- Exercises N | . multiply numerator and denominator )y c:
9. What is the value of ¢ so e = -7 e =23)¢= . c c(eCh - 1) ech -1
3 el L - L(e ) = lim T—- = lim C(C-—h).
10. What 1s the value of ¢ so e = .47 ¢ = . h-0 h-0
A ' 2 M —_—— e - —— N e . : t . 1 . .
TT-Use Figure 3 to sketch the curve y = ¢* For 2 < x <. ' ext, we-performour first notational trick and write
- = . c'h as d:
] - c ed -1
7. FORMULA FOR DERIVATIVE of y = bX = ¢SX L(e™) = jim c(=g—)- -
o c The next step is not tricky, buz uses a prope 'ty of
h 7.1 tle) =c limits: we factor the constant c out of the limit to
7 In Section 4 we defined a new function, which we get
R called L. This function presented itself when we were FCy _ . ed -1
s, t L{e~) = c lim -
?ﬁ' computing the derivative of A(t) b~ and we discovered h-+0
ﬁa that A'(t) = ht. ‘L(b). If we substitute e for b in the This is "legal" because ¢ dod§“ﬁ3?‘ﬂepen¢,on h. Next, we
? expressions for both the 'function and its derivative we use a second notational trick: since c 1s fixed, then as
) have A(t) = (ec)t = Y and At(t) = eCtL(ec). The purpose h + 0, it is also true that ch -~ 0. But ch = d, so we
7 of this section is to establish that L(e®) = c, a fact have d + 0 as h » 0. This means we can replace h = 0 by
/ that you may have guessed at when you did Exercise 8. We d »~ 0, and write ///
. give two proofs that L(e®) = c¢. The first proef uses the L(eS) = ¢ lim _S ‘/
definition of the function L and properties of derivatives. d=+0 d
: . The second proof is easier but uses the chain rule for Lastly, e was chosen precisely so this limit 1s 1: that
- derivatives. If you are not famjliar with the chain rule is, e is that number with
s you may skip Section 7.1.2. If you have worked with el . 1
- . . lim T =1,
exponentials and logarithms before you may recognize that d-0

the formula L(ec) = ¢ means that the function we have

We put 1 in for the limit and have
called L is the same as the.natural logarithm; you may have

Cy . -
seen L(b) written as 1n(b) or log b. Please see the L(e”) = c-1 =c : c
appropriate unit on logarithms for further discussion of and have established the fundamental relationship L(e€) = c.
this function 'and its derivative. i (;E;
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- . Ex les:
7.1.2 “Second proof that L(e®) = ¢ . =xamp:es 5 3
i ot i. Ify=e”®, then y' = 3e°%,
We start with A(t) = e“", and let u(t) = c-t. Recall . /2 1 x/2
N .. X .
that in Section 5 e was defined so that if w = e" then ii. Ify=e™"%, theny B A
dw du < u ct d dw du -
b i e, Now Jr " csoif w=e" =e"", then H% = E%' T - iii. Ify = ex/4, then y' = %ex/4.
_eu¢ o= et : : In other notation, with w = A(t) we iv. Ifys= e-Zx' then y' = _ZC-?X.
have A'(t) = e“"“. ¢, We also know from the definition of - - -
( ? ct, . ¢ . £ on o v. Ify=e x' then y' = (-1)e ™ = -¢°X,

the function L that A'(t) = e“‘L(e ). Equating these two
expressions for A'(t) gives us e“t.c = eCtL(ec); divide Exercise ,

both sides by the (non-zero) quantity et and obtain 12. Find the

c kL(ec).

following derivatives:

10x
e

i. Ifys , then y*' = f
c
1.2_The Derivative of y = e~ is y' = ce®* ) CHE. 1fy ex/7' Then yT P ® -
In Section 3“we discovered the following formula: . -3x
¢ fii. If y=e 77, then y' =
if A(t) = b -
. () ¢ bh 1 iv. Ify=e X/Z, then y! =
. then A'(t) = b" linm (——El——o. - :
() h-+0 . . v. Ify=e BX/S, then y' =
In Section 4 we let L(b) stand for this 1limit so we could
write A'(t) = th(b), and then calculuted some values of 7.3 Other Forms of the Derivative

L(b). In Section 5 we defined e to be the number with 7.3.1
L(e) = 1, so that if A(t) = e®, then A'(t) = et. 1In
Section 6 we rewrote b as ec, and we were able to say that p

Review of the derivative y = b

Recall that in Section 3 we found that if y = b¥,

' = -pX. i i t d
if A(t) = e°Y, then A'(t) = e“PL(eS,. 1In Section 7.1 we t:e" ’f' ) L(blhb ] Letf“s use this }f”:"l‘f direc 1"' a'l‘
established the formula L(e‘) = ¢, and we are now able to then find another form for writing the derivative formula.
say: Examples:
if A(t) = eCt, . a) Ify-= Zx, then y' = L(Z)Zx. In Section 4 we used
then A (L) = ceEt, Table II to see thai L(2) = .69: we use that information

again to write the derivative of y = 2% 35 y' = (.69)2%.
Changing the notation we may write:

' F If y = 5%, then y' = L(5)5%. We did not approximate
if y = %, L(5) in Section 4, but we may use h = 7%3 to do so now.
then y' = e“XL(e) = e“*(c). L(5) = §i4;;§3;_l = 256 (51/256 - 1)

If we put the c factor in front we have ) . ~ 1.61.
y = efX >yt 2 ceSX, . This gnable. us to say the derivative oi y = §¥ is

y' = (1.61)5%,

17 - . 67 18
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Exercise
- 13. Use either the information tabulated in Section 4, or h = 7%3
.i to complete these problems.
o a) If'y = 3%, then y' = L( )3* = 3%,
+ ’ Q .
7 , T b) 1f v = 4% then y' = =

(14

c) Ify =65, then y' =

A et S

7.3.2 &) = b b >0

e ‘ This is the fundamental ;Elationship we will be using
to convert an arbitrary exponential function to one whose
base is e. This equation says that the number c with

e€ = b is the .same as the number L(b). Beciuse this is so
important we state it again. The number c that we found
in Section 6 with e = b is the same number as .the number
L(b) we encountered in Section 4; ¢ = Lgb!.

To establish this relationship we let b > ¢ and c be
the number so that

o (*) e = b,
Apply the function L to both sides of °(*) ‘to obtain
equation (**)L(ec) = L(b). Use the result of Section

N 71, L(e) = c, to rewrite the left hand side of (**)
and obtain

(***)c = L(b).

We can substitute this expression for ¢ into equation (*)

to arrive at the result el(®) = p. ; yd
v quamples:. \ :
a) If y = Zx, we can rewrite y = eL(Z)x and now use
formula from Section 7.2 to.write y' = eL(Z)x°L(i3.
b) If y = 5%, theny = eL(S)°x, and y' = L(S)eL(S)x.
’ 19
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Exercise

13.1 Rewrite answers to Exercise 13 using base e.

kx

7.4 _The Derivativi of y = b
' kx

u

If you are given a function in the form y = b7,
you may think of this as y = (bk)x, so that y' = L(bk)pkx.
For example, if y ='23x, we may.rewrite this as y = (2)*
= 8% and y' = L(8)8% = L(2°)2%%,

. As an alterhative, you can rewrite y = b* as y =
eL(b)Fx. Now y' = L(b)k eL(b)'kxsince L(b)-k is a constant.

53X L(2)3x

ror example, if y = , then y = e and y' =

L(2)-3 el (ZI3% o 5102yl (23X o 5p1,(2)25%,

Exercise

14. Write each of che following in three ways:

a) y=3F==yr = ()3 =L )3 s L )e—.
b) y = 5=y = - -

0 y= s i=>y - - -

d) y= (=27 = 2Dy = =

8. FORMULA FOR DERIVATIVE OF y = Ae®*

We now rewove the assumption we made in Section 2 that

A, 1. Let A be any constant and remember that
(Ay)' = A - y'. Then if y = Aecx, we have y' = (Aecx)' =

A(ecx)' = Afcecx) = Ace®¥.

Examples
i. Ify-= Zesx, then y' = 2 - 303% o ge X
ii. Ify = -2’3 then y' = -2 - keX/3 o jZX/3
iii. If y = 7%, then y' = () - 4™ = &%

69 .




: Exercise ‘ TF\\

15. Compute the following\derivatives:

i, Ifym= -Se‘x, then y\ =

-

» e Afy = e, thenyt e
- i, 16y = 55 then = . ‘
' ive Ifym= %ezx, then y' =
v. Ifym= -%e-3x, then y' =

9. ANTIDERIVATIVES OF EXPONENTIAL rUNCTIOAS

9.1 Formula for Antiderivative of y = e X

We have seen that the derivative of y = Ae¥ is
is ¥

CX

of ¥ is %ecx. Thus,
ANTIDER [eS¥) = %ecx + Kk
or fecxdx = %ecx + k

where k is an arbitrary constant.
notice that
cx

(2e + kv = (deXp g
. % (ecx), + 0
. % (ceX)
o EX
Q ’7()

F

To check this result

21

’

y' = Ace®; if we want to find a function whose derivative
, we should start with one of form Ae®X where A-c
From this we get A = % which means that an antiderivative

1.

Examples:

i. The antiderivative of ' is %e7x + L.
ii. ANTIDER [el/3%) - T}E X3 4 k= 3eX3 L i
iii. fe Xdx = -% e SX L |

iv. fe'x/zdx = 207X g

Exercise

16. Compute the following antiderivatives, and check your work by

taking the derivative of your answer.
. s s . Lx .
i. The antiderivative of e is

ii. ANTIDER [e 2¥] =

iit. fe*5ux =
iv. feX/sdx =
v. fe-zxdx = J

-

9.2 Formula for Antiderivative of y = Ae"®

As with derivatives, the constant A causes little

trouble, since fAydx = Afydx. This gives us the formula

fAe®Xdx = Aéecx + k.
i foean = LeP* bk = 203 4k
i1, fzefax = Llefv k. e X ek
il foe Pax = o(-hye v k= i3I, g

iv. [-5e®/3ax - -5)(gppe™® v k= 15eX/3 4

1

v. f4e'X/6dx = (4)(:T73)e'x/6 ‘o= _240-x/6 .

vie [o3eMax = @) (et vk = ST 4y

22




Exercise

17. Find the following an}iderivatives.

. I~3e6*dx »

i, [8eM%dx =

i, [he 6%ax =

tv. I-ZeX/de »
x/6

v. f—%e- dx =

vi. IZe-6xdx -

.
B —— ma)

9.4 rormula for Antiderivative of v = Ap™

9.3 Formula for Antlderivative cfy = Ab*

L{b)x

Simply rewrite y = Ab® as y = A e and anplyso

the formula fron Section 9.2.

[Ab%dx = [Ael(®)Xax = A -

L1 eL(b)x + k

A X
= Ty b" + k.
Examples :
i. [2%ax = E%?T X 4k

s Xy, w 5 X
1. IS'S dx st + k.

Exercise

18. Find the following antiderlvatives.
i [347dx =
. (-205%x = _

iit. IS(%)xdx =

72

With ¢ = L(b) we have

[Ab™Xdx = fAe“™dx = g} eS™ + k

from Section 9.2; translating back to a form that does not
involve ¢ we have

A - cmx _ A mx
:aﬁe *k-mb + k.

Examp! =:
i, [se3%%ax = [5(3%)Ndx = [5.81%dx = ET%TTSIX .k

i, [5e3%%ax = el ) Max o R MBI K
5 34x

T)-2 + k.

Exercise

19. Find the following antiderivatives.

i [23%dx =
i, fue3Pax =
Pii. [305 Xx =
10. SUMMARY
We have found a number e so that .
h
.e -1
lim 5 = 1.
h~+0

We have calculated 2.5 < e< 3.0.

Given a number b we were able to find a number c¢
such that e = b and to identify c as L(b). If y = b*
we have y = e[‘(b)x and y' = L(b)b%. Finally, we found
Jeax = (2)e* + k and that {b¥dx = [P = b))
eL®IX 4 ks Lw))v* + k.

7’23 24




« . We were able to find c two ways:
1. ¢ = lim Efﬁi-l = L(b)
h=+0

X : X
2. c is the x-coordinate of the point on graph y = e

(Figure 4) whose y-coordinate is b.

11. ANSWERS FOR UNIT 86

TABLE |
Tabie for b = |

| %5 | 3 | & | x| 2

28 | 256
"o |
. I 0 l 0 l 0 | 0 ! 0 l 0 l 0 l 0
TABLE 11
Exercise 1 Table for b = 2
s Tk
z | 7 | 5 | wlw| &« | ms | o%
h
2 -1 esu I 7568 , L7241 ’ 7084 I .7007 I .6969 l .6950 | .6941
I

Exercise 2
TABLE {11

Table for b = 3

Exercise 5

h I 1 I 1 , 1 | I N l [ I N B
z 13 |:§ 6 | 32 8h | 128 | 756
R
3-15-1 1.46k1 l 1.2643 ’ 11776 , 1.1372 ‘ 1.177 l 1.1081 1 1.1033 | 1.1010
Exercise 3
TABLE IV

Table for b = 4

NENREEEE
¥ 16 13 758
o | | |

= | 1.6569 l 1.448) | 1.4014 | 1.3901

Exercise 4

TABLE V

1.50

0.50

0.00

Exercise 6

(Using BASIC)

*
* List
~ 0010 FOR B=2.5 TC 3 STEP .05
" 0020 LET Y=256*(B+(1/256-1)
>~ 0030 PRINT B,Y
0040 NEXT B

0050 END

* RUN

2.5 .917969
2.55 .937744
2.6 .957275
2.65 .976318
2.7 .995117
2.75 1.01367
2.8 1.03174
2.85 1.04956
2.9 1.06689
2.95 1.08398
3.0 1.10097

END AT 0050
*

75

4.0

26




Exercise 10

c=-.9(e% ~2.5and 4= ;e

Exercise 11

Exercise 7
TABLE V11§
b ||.o II.S |2.o lz.s |3.o |3.5| k.o
el o [ awl ] whialislia
Exercise 8
L(ec) = ¢
Exercise 9
c = -11} “

| i
=T EEE :
T T
LorT——
L
il !
[ f |
! il y, ‘
! ‘ AN i
T 7 ]
/(,
-l ]
o 'y 3 9
-3 -2 . (-1 |
-x _ 1
e = 35X 3
Exer..se 12
i. y' = 10el0%
i,y = 3e/7
iii. y' = -3¢ %
iv. )’" = -%e-;\/z
V. y' = -ge'ax/g :7(;

27

Exercise 13

a) y' = L(3)3% = 1.10 3%

b) y' = L(4)4% = 1.39 4%

c) y' = L(6)6° = 1.80 6%

Q) v = LT = 6T
Exercise 13.1

a) y' = L(3) eX(3)X = 1,10e1-10%
b) y' = L(4) el{H)¥ « 1 39e1-39%
¢) y' ="L(6) el(6)X . 1 goel-30%
d) y' = L(%) eL(%)x « -.69¢ +09%

Exercise 14

a) y' = 2L(3) 3%X

b) y' = 3L(5) 5°X

(three of each of the following)

L(9)32% = 21(3) e2L(3)X - (o) 2103

3°L(5)x

L(125)5°% = 3L(5) e = L(125)e

1 1 1
¢y vyt =35 s 2 L(m)sDX = JL(5)e P

= L(v3) el(3)

d) y' = -L(2)27% =

Exercise 15

i, y' = -30e%%
ii. y' = 2¢8%
iii. y' = /5
iv. y' = er
v, y' = e 3X
Exercise 16
i. %eAx + k

1. -z %% 4 k

- (p)x
1
L B* = L@ye M - el (D

28

77
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3L(S)x




iii. -5eX/5 4k . ,

iv. 6ex/6 + k

' w
v, RISR2 SN °
2 '

Exercise 17 .

. Lebx Ly

i. -ge -,
ii. 26 ek 1
iii. -fy e % 4k *

iv., -12e80 4 x ’ |

v. 3eX/6 .y

vi. -%e'G% + k ”

Exercise 18 ' :
i. Ff%T 4% + X

i, ey SNt K )

iii.’ ET%;?T(%)X + k or Tt%ff(%)x + k

Exercise 19

. 1 ,3x 1 3x
1. mj-z + k or ng + k
ii. E—ég)- 32X + k or Zﬁg 32X + k

\

iii. ey 2% 4k or pPmys N ¢ koor
3 -2x
TrEys Ktk
-
fa ‘

29
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7.
8.
9.

v

10.

11.

12.

13.
14,

12. MODEL EXAM

M -y

1
Use h = to estimate lim
256 h-0

Define the number e.

Use the following table to give an interval of b of length

.2 that contains e. )

b | 2.0 | 2.2 'L 2.4 ] 2.6

| 2.8 I - 3.0

lim b - |

h+0 — =.69

If ys= esx, then y' =

If y= 7e-2x then y"=
Ifys= 3e-X/8, then y' =

IeBde =
f%ezxdx =

%e-“xdx -

1.6

If e = 5, then for what x does e"

| f e2°3 =~ 10, then e.z'3 =

= .27

X

1.03 l =1.10

)s*.

L4

Since e"6 =5, ify=5% then y' = (
Since e"6 = 5, then R —
Since e"6 = 5, then fodx =

A

7

30
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13. ANSWERS TO MODEL EXAM /
¢

.. 1.61
h_ Y/

e .
h 1.

2. 1. e is the number such that 1im

o0 ' [
it. els the‘number such that if y = ex, then y' = &%, /I
2.6<e< 2.8,
y' = e

y' = -Mezx

, 6. y,“__ge--x/8

fe3xdx - -;-e3x + K

H;ezxdx - _ger + K
’ 1 - 1 =lx
/ 9. fge dx 5 + K

. x = =17

\‘ 1)

Emc .
b .

PR -
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1. INTRODUCTION

We have seen that exponential functions have many
applications; that an exponential function with base b,
y = b%, can be written as y = e“® for the right choice
of ¢, and that this way of writing the function gives us
simple differentiation and integration formulas. In
working a problem involving an exponential function, we
may want an answer expressed in decimal form rather than,
for example, in the form e® - /e. The purpose of this
unit is to show several methods for computing decimal
approximations to e* for any value of x with particular
emphasis on the value x = 1,

It is not necessary to cover all of these methods
at one time. You may prefer to save Section 4 for a
more general discussion of differential equations.
Similarly, Section 6 may be used as a specific appli-
cation in a morve general discussion of polynomial
approximations.

2. METHOD 1: APPROXIMATION OF e

USING ITS DEFINITION

N

The number e can be defined as the number that makes

h
e -1 $

lim = p—
h+0
equal to one. More generally, the function L(b) is

defined by the equation

bl - 1.
L(b) = llmT— N

and we can compute approximate values of L{b) for various
values of b. We find that L(b) increases as b increases,
and we can use this property tc¢ approximate e 1.. Table i

. 1

85 °

below. From the approximations of L(b) in the talle we
conclude that 2.5 < e < 3.0 because 0.92 < 1 < 1.10.

We can then take the midpoint of the interval from 2.5

to 3.0 to be our approximation to e, and say e = 2.75.

TABLE 1
Approximations to L(b) for Assorted Values of b from b=1 to b=3.5

b , 1.0 | 1.5 I 2.0 I 2.5 I I 3.0 ' 3.5

L(b) ‘ 0.00 l 0.4 l 0.69 ‘ 0.92 l 1 l 1.10 l 1.25

To refine our approximation for e, we can make
another set of a,proximations tn L(b) for values of b
near 2.75 (Table II). 1We conclude from these that
2.70 < e < 2.75. If we again take the midpoint of the
interval to be our approximation of e, we conclude that
e = 2.725. We could continue in this vein by using
smaller values of h, but this method is somewhat indirect
and yields only an approximation for e rather than a
general formula for eX A slight modification of this
idea, however, results in a direct method for approximating
e€ for any value of c.

TABLE 11
Approximations to L{b) for Assorted Values of b from b=2.55 to b=2.80

b ‘ 2.60 ’ 2.65 I 2.70 l ) | 2.75 I 2.80

L(b) 0.96 b.97

0.99 I 1 l 1.01 l 1.03

19
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n
3. METHOD 2: e = (1 + 3

3.1 Deve.opment of the Formula

Since
eCh .

c _oqs 1
c=L(e)—11m—h—,

it follows that

when h is nerr 0.

This approximation is our starting point for Method
2 which, step-by-step, goes as follows:

Multiplying both sides by h gives ch « eCh - 1.

Adding 1 to both sides results in ch + 1 = ech,

Letting h be of the form % gives c% +1 = ec(l/n).

th
n

Raising both sides to the n power Yyields

1 n c(1/n;
(cf + 1) = (M)
Rewriting this last expression, we have the formyla

e€ = (1 + %) //

In particular, for ¢ = 1 we have e = 1 +;%§h.
The closer h = % is to 0, the better the approxi-
mation. Put another way, the larger the value of n,

the better the approximation.

We will do some computations to test this method.

3.2 Calculator Hints

1/ 256

We can compute numbers like 3 on a hand cal-

rulator by entering 3 and then pressing the square root

xey cight times since éﬂ = 7%3. Similarly, we can
Q -
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compute x?%¢ by entering x and then pressing the squaring:

key eight times. This makes it particularly easy to

compute (1 + %) when 1 is a powe' f two. This compﬁ;a-

tion is made even easier by noting that 1 + % = E—%-S

Using n = 16, and ¢ = 1, we can‘approximate e by entering

16 + 1 = 17, dividing by 16, and squaring four times:
2.2 2

0" - (3HHHH = 2.esm.

Exercises
1. Use the method just described TABLE |1
to completc Table 111, rounding + 1.0
| (Y =
off to four decimal places. n
2. Construct a table similar to 2 2.25
Table 111 for higher powers of 4
2 and fill it in. The entries
you obtain should obey the fol- 8
lowing two rules: (1) The numbers 16 2.6379
n + 130
(——;—-) are all smaller than e, 32
and (2) they increase as n
64

increases. Does your extended
table follow this pattern? If " 128 2.7077

not, the reason may be a round-

256
off error in your calculator.
The more accurate your calculator, 512 2.7156
the higher value of n you can 1,024 =

enter but eventually, because of
the repeated multiplications, round-off error wi1! begin creating
trouble. For what power of 2 does your calculator start to

*
show round-off error?

* -
.f that number is small, such as 2™ = 16,384, Section 3.3 will be of
special interest to you, but be sure ‘. do Exercise 3 rirsr.
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-~ -3, Here we approximate l. e_1

c_ [nte]"

using our formula e = —
n

If we set ¢ = =1, we have e~} = (221} Fi11 in Table tV

rounding of f to four decimal places.

TARLE 1V

n 16 = 2% 16k =28 | 256 = 2% | 1,024 = 210

3.3 Various Uses'of the Formula to Obtain Better
Approximatsions

Your last entry in Table v should have been 0.3677.
Since this is ap
mately e. Comput 5—3377 to four places: 73677 =
Using n = 1.024 in Exercise 1, e = 2.7170. If we average
these two approximations, e,£’7(2.7196 + 2.717G6) =
This, in fact, is the correct value of ¢, rounded off to
the fourth place. One approximation is too big, the
other is too small, and when we average them,
tend to cancel each other.

the errors
Of course, we are not getting
an exact answver, only a generally better approximation.

The computdtion here involves a "sneaky trick," but
sometimes one has to be devious to avoid round-off error.
-1 n - 1

Since e N » by taking reciprocnls we have

] We already have the formula
=[n+1 »
n
and using ezch formula once, we have
n n
2 - . = n n+1=£+—1
et mees P2 Y- (2

Now take the square root of both sides:

e = (e e)x/z [[n'fl ]vz?[H]"/z

,~\;" TN

oxlmately —, its rec1procal is approxi- ’

which is another approximate formula for e.
e = n+1\n/2
n - IJ :

Exercises
4. Use this formula to complete Table V.
\

TABLE ¥

(For n = 256, divide 257 by 255 and square 7 times.)

no 256 = 2°
[n + I] nf2

512 = 2% | 1,024 = 219 | 2,048 = 21

n=-1

If your answers agree with those on the answer sheet, page 24,
then the last entry is the correct vaiue of ¢, to six places.
Even if your calculator has round-off error and your answers
did not agree to six places, compare your answers to four
places against #he best approximation you were able to get

in Exercise 1. This formula gives much better accuracy than

did the previous one.

5. In the beginning of Section 3.3 we wrote e as I/ , and later
in Saction 3.3 we wrote e as /F;

way to write e and use your way to approximate e.

Think of another devious

4. METHOD 3: THE EULER METHOD

4.1 Description of the Method

This method uses a set of straight line segments to
approximate the graph of y = eX. Ve can improve the
approximation by changing the length of the straight
line segments: the shorter the segments, the better

0

Keep six-place accuracy.

"




the approximation. The method which produces such a

2.5 \ I the line, then Ay = @(Ax).
curve is called the Euler Mcthod. Y p ne use this to compute
The property of the curve y = e we use depends Y the y-coordinate of this
upon the special nature of e: y = e* is the function [ segment when x = 1: we
for which y' = y. Geometrically this means at each 2.0 : ] have Ax = 0.5 and m = 1.5
point of the curve y = e*, the slope of the tangent ¥ oy =  which gives Ay = 0.75.
line (which is y') is equal to the distance of the 2#, 0.75  The final height is the
point from the x-axis (which is y). ' A height we’itarted at
1.5
We will use the Euler Method to approximate y = e* 1.5 — :’! F h)-p;us the cgagie
only on the interval 0 < x<1, producing curves which x = 0.5 1nd ili t 5635- é 2;’
.5+ 0.75 = 2.25.
will have different "left-hand" and "right-hand" slope-= an .
L. : Thus, the 'curve" in
at a finite number of special points. However, the N Fi 1. which .
)] [+4
"right-hand" slope, at each such point will be the same 1.0 1A ;v:re 13 waLe co:s1sts
. . . ~ o o
as the y-coordizate of that point. These ideas will be - WO jine Segments,
has the value ".2» ar
clearer after an example. - ‘ .
x =1 and thus yields
th roximatio
4.2 First Approximation 0.5 : ¢ ap mmagion
N e = 2,25,
Our first curve will have two special points,
corresponding to x = 0, and x = 0.5. Ve know the
X
curve y = e~ goes through the point (0,1) since o o oS — -

e® > 1. Because the second coordinate of this point
is 1, tr: caungent line to the turve also has slope 1
(remember y' = y). We draw this tangent line-from

¥ =0 to x=0.5.

Figure 1.

The y coordinate at the right end of this line
segment, (that is, at x = 0.5) is y = 1.5. At the
point (0.5, 1.5) we start a new line segment whose
slope is equal to the y-coordinate, namely 1.5; this
new line Segment will extend from x = 0.5 to x = 1.
We want tc know the value of y when x = 1. Recall
a property of straight lines: if m is the slope of

3
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4.3 Second Approximation ] ’

. Exercises
i 5 3.0 ~ " For our next 6.  Compiute Table VI and then sketch the graph, usihg Figure 2.
i ) e approximating function,
. - 1 we chop the interval TABLE VI
B from x = 0 to x = 1
‘- 2.5 i?t? five equal -sub- x-coordinate y-coordinate Sl?z; 2:e|;2?nlcal-
1 divisions so that :
Ax = 0.2 for each. As 0.0 1 ' 1.0
before, the graph will 0.2 1+ (1)(0.2) = 1.2 1.2
2.0 start with slope equal 0.4 1.2 + (1.2)(9.2) = 1.44 1.44 .
to 1, but will change 0.6 1.45 + (1.44)(0.2) = 1.728
slope at x = 0.2, 0.4, 5 0.8  }1.728 + (1.728)(0.2) = 2.48832
U 0.6, and 0.8. 1.0
\ 1.5 ; x o
' ’ﬂ. The graph y = e” always lies above our approximation. As these
- " ’ approximations approacﬁ the exponential curve from below, the a
\ y-coordinate corresponding to x = | will approach y =e! =e.
1o ; Thus, our first approximation to e using Ax = 0.5 was 2.25.
- Our second approxiration using Ax = 0.2 was 2.48832.
7. Instead of making all the computations involved'in Exercise 6,
' - you can sketch the graph quickly using the following method:
?-5 A straight line through (§,y) with siope y mustfalso pass
—”:: g through the point (x~1, 0). Hold a ruler so that its edge .
- I goes through the point (x,y); now rotate it [kéeéing (x,y) -
-4- 4 - \ on its edge] so that it a.s0 goes through the point (x-1, 0).
0 0. 0.5 1.0 | in this Eosition, the ruler s edge gives a stréight line

Figure 2 ) passing through (x,y)} with slope y. Use thic< method to
draw the approximate yraph of y = e* on Figure 3 for the five

segment case (4x = 0.2) and compare it with tbe numerical

X computation in Exercise 6. (The first three segments have
! B . been done.) What approximate value for e do you obtain by
X this graphical procedure?

. ~ | 94
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. 3.0 TABLE VI| :
x y Bx y
- 0.0 1.0 0.1
2.5 0.1 1.1 0.1 o
i 0.2 1.21 0.121
0.3 1.331 | 0.1331
0.4
. . 2.0 \« 0.5
. - 0.6
0.7 o
7/ 0.8
1.5 0.9
. 1.0
4 What approximate value for e do you obtain in this case?
1.0 . ‘ j ;
’2 4 9. Use the method of Exercise 7 to sketch on Figure 4 the |
. 4 y approximating curve, with Ax = 0.1. Use the results in
471, Table VIl to plot points and sketch curve in Figure 5. |
|
31 /] 1'0.5 Compare the approximations. |
l/ / |
V17
L.
71/
Ty
- _M. oo
-1.0 1-0.5 0 0.5 1.0
x .
(x-1)
Figure 3. -

8. Approximate e by completing Table VIl using Ax = 0.1. Notice

the constant ratio property: Each y value is LN of the

10
previous y value. New y = 0ld y + (Ax)(old y) = (1+4x){old y). -\
Keep four places of accuracy for your value of y. 9b
N v _ 12
N . 11
\
sy . q:'
J)
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3.0 3.0
) ,
L... 2.0 2.0
A3
1.5 1.5
i
1.0 ! 1.0
- 2
7
-
> 0.5 0.5
NV
0
-1.0 -0.5 0 0.5 1.0 0 0.5
Figure &4, Figure 5.

COMPARISON OF METHOD 3 WITH METHOD 2

The approximations in Method 3 are not very accurate,
although we do get some feel for the shape of the curve
y = eX by sketching the graphs of the approximations.
In fact, Methods 2 and 3 yield the same approximation
for e when the n in Method 2.and the 4x in Method 3 are

‘related by the equation ax = =.

1
n

Exercises

10. a)

b)

c)

11.  a)

b)

c)

. %

Compare the estimate of e with 84x = .5 obtained in
Section 4.2 with the estimate in Exercise 1 with n = 2.
Compute (1 + 0.2)° and compare with the estimate
Ax = 0.2 in Exerfgse 6.
Compute |1 + T%' and compare with the estimate for
e obtained in Exercise 8.

1° 1)! 1)? 1)°?

Compute [1 + §J , [1 + 3] , [1 + g] , [1 + EJ ,

1+ T ~' and |1 + 3 5. Compare these values to the

values of the y-coordinates in Figure 2.
Compute (1.1)°, 11.1)‘, (1.2, a3, ..., (1)
and compare with y-coordinates computed in Exercise 8
and plotted in Figure 5.

Letting Ax = %, can you find a pattern that enables you
to fill in Table Vill with the same values you would
get if you used the Euler Method?

TABLE Vil

LI

0 3
n

o+

a|Ix




- 6. METHOD 4: TAYLOR POLYNOMIALS

6.1 Description of Tayior Polynomials

Here is another way to produce functions approximating
eX. The approximating functions are polynomials and the
higher the degree of the polynomial, the better the approxi-

—mation. -This method is named after the English mathe-
matician Brook Taylor (1685 -1731), although it was dis-
covered by James Gregory and published in 1688 when
Taylor was three years old. It is the most powerful

of the four methods in this unit.

The only value of the function y = eX which we are
able to write in exact decimal form at this stage in our
work corresponds to x = 0; that is

e =1,

The first derivative has the same value as the function
because y' = y. Consequently, we also know that

y'(0) = 1.
But we can get even more information about this function
by taking derivatives of both sides of the equation y' = y.
gThis gives y" = ?' so that

y"(0) = y'(0) = 1. .
1f we continue this process, we discover, letting y(n)
stand for the nth derivitive of y, that y(n)(O) = 1 for
every n. The polynomial of degree n that we are about
to construct (using this information) is called the
Taylor polynomial of degree n for y = e centered at
x =0,

We know that we can get a straight line approximation
toy = eX by looking at the line tangent to curve at (0,1).
The equation of this straight line is y = X + 1. x+3
is a polynomial of degree 1, and for reasons that will
15

O

. Now

Exercises

L o | '

»

be obvious later, we write Pl(x) =X = 1. We will always
mean y = ei whenever we use y. Pl(x) has two essential
features: Pl(O) = y(0) 1 and Px'(0)= y'(0) = 1. We
should get a better approximation if we ask for a poly-

nomial which has the same value as y = ex, the same

first derivative, and the same second derivative at

x = 0. We look for the polynomial of lowest degree

that satisfies these three conditions. Therefore let -
us write the general form of a polynomial of degree two

Pz(X)

a + bx + cx?. ;

n
Iy
i

Pz(O) = 1 since y(0) must = 1.

Also

n
o
+

P,'(x) 2cx,

SO

u
o

Pz'(O) = 1, since y'(0) must = 1.

Finally

Pz'Tx) 2¢c,

SO

P," (0) 2c = 1, since y"(0) must = 1.
This gives us ¢ = %. Thus our second order polynomial

approximation to y = e® is A4

2 R
y =P, (x) = 1+x+3

12. Using Figure 6, graph the poiynomial P (x) for -2 < x < 2,
and show that P, (1) = 2.5. We call this the second degree
approximation of e.

16
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FI11 in the following computations which will give us the
third degree approximation of e. We start with an arbitrary

\-
polynomial of degree three and then solve for the coefficients

' 17

L]
tr
. g
by evaluating, at x = 0, successive derivatives of the

arbitrary polynomials and equating each of them to 1.

We start with

°

2

Pa(x) =3+ bx + cx? +dx3; 1 = P3(0) = é, soa=1.

P(x)=b + 2cx + 3dx®; 1 =P'(0)=Db, sob=

P, (x) = 3 1=P"(0) =2, soc=
P (x) = ; 1=pP"(0)=_,s0d=
9 —_
P, (x) = + X + x? + x3.
Now you know what Pa(x) is. What is P,(!)? This is
the third degree approximatian to e. -
14.  Compute P“(x) and P (1). .
6.2 Factorial Notation \
b

The symbol ! has special meaning to mathematicians
when it follows a positive whole number: n! 1s read
"n factorial™ and it is defined to be the product of
all positive integers less than or equal to n. In
synbols nf =,1+2-3,....(n-1)-n.
31 =.1.2-3 = 6; 4! = 1-2-3-4
6! =

As examples,

Using this notation, P,(x) = 1 + x + %,xz and
P.(x) =1+ x+ %!xz + %!xa Use this notatior %o

express P“(x). P:(x) =

243 51 = 1-2-3-4.5 =

b rd

Exercises

15.  Can you guess what P (x) is? Py(x) =

Verify your guess by taking the first 5 derivatives of your
y'ess and checking that they all equal 1 when x = 0. ise

¢ this guess to estimate e: v

e = PS(I) =

102
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6.3 Discussion of Accuracy ‘of These Approximations

A proof of how accurate thesé approximationg are
will have to wait, but P,(1) is within .00162 of e,
#. and is too small. Next,

= - 3 1 Y 1 [ 1 6 1 ? 1 s
Py(x) = 1ex s gyxt e xd o qxt o gx® e gyxteqyx v gix
and P (1) = 2.7182788 which again is too small, but is
within .0000031 of e. /

. NopeP,(1) = Py(1) + §;. What is P,(1)?

-

We do not have to restrict our evaluations to the
case X = 1, but can use these polvnomials to approximate
e for every x. Again, however, we must postpone a rigor-

ous discussion of how good the approximation is.

5 - .

P

s

Exercises ¢

. This is approximately

1
16. Compute Pu[i]

2
el/? = /&, so square the approximatiop. [P~[%]] =
Compare this to P (1).

2
1
what is a better approximation to e, P~(|) or [Pu[i]] ?
s (Use the vaiue of e given in Section 6.3 above.)

17. Compute Ph[%]

1

to e/%. what is [Pb g] ] ?

SO P, (1), and to [Pz[zl ? .4-.@ Which of the three

is the best approximation to e?

This is an approximation

Compare this to

-

6.4 General Behavior of These Polynomials ’ -

_The approximating polynomials were picked to behave
like e* for x = 0. It would seem therefore that we can
draw a conclusion about the behavior of these polynomials:
the closer x is to 0, the better the approximation. )

This behavior is showit by the results of Exercises 16

¥

and 17 where we found that P, % 5s closer to e!/® than

) . P 19
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P“[%] is to e!/% and that Pb[%] is closer to e!/? than
P (1) is to e’ = e. We can make a further test of this
behaviér.by computing P, (2). Compute P, (2): P,(2) =

We know 2.718 <'g¢ < 2.719;
consequently (2.718)% < e? < (2.719)%, or ~°

5 7.387524 < e? < 7.392961.

Your computatlo;§¥shou1d show that P (2) is not a very
good approximation to e?.

.

Exerctse

18. Compute the following numbers:
p,(2)
Ps(2)
P,{(2)
P,(2)

T

From the results of Exercise 18 as well as previous
exercises, we can draw another conclusion about these
polynomials: the higher the degree of the polynomial,
the better the approximation. This goes with our previous
conclusion: the closer x is to zero, the better the
approximation. Writing these more formally, we have:

1. If x is fixed, and n > Kk, Pn(x) is closer to
e* than is Pk(x).

2. 1f n is fixed, and 0 < a < b, then Pn(a) is
closer to e? than Pn(b) is to eb.
B

Exercise

19. Use Figure 7 to graph P, (x) on the interval -2 < x < 2.
Compare this with the graph in Exercise 12 and then compare
each to the graph of e® drawn in Figure 8. See how these

graphs support the two conclusions given above.

20
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X § R S
- T 7 SUMMARY AN ¢ Questions in Section 3.3: ﬁ7—7 = 2.7196; e = 2.7183. .
,‘ i r— i:l A
_ Of ghe four methods, the last is by far the most ) TABLE V. .
N efficient. In fact, by computing P, (1) we have
. e = 2,718281828 and this approximation is accurate : (For n = 256, divide 257 by zmquare 1 times.)
. , to the ninth decimal place. We should note that in n 256 = 2° ‘512/‘/29 1,024 = 2! | 2,048 = 21
spite of appearances, the decimal expansion of e does /2
not have a repeating block. The number e is irrational. = [—:—f-%) 2,718296 .718285 | 2.718283 2.718282
« ‘; 8. ANSWERS TO EXERCISES k
1. TABLE 111 6.
TABLE VI
n_+ l]"
" Py -
8 x-coordinate y=coordinate Slofe of Line
2 2.25 eaving
the point
- - 4 2.4414 0.0 i 1.0
8 2.5658 0.2 1+ (1)(6.2) = 1.2 1.2
- 0.4 1.2+ (1.2)(0.2) = 1.44 1.44
16 2.6379 0.6 1.44 + (1.44) (0.2) = 1.728 1.728
32 2.6770 0.8 1.728 + (1.728)(0.2) = 2.0736 2.0736
64 2.6973 1.0 2.0736 + (2.0736) (0.2) = 2.48832 2.48832
a 128 2.7077
256 2.7130 ’
512 2.7156
1,024 2.7170 ' i
‘ —— — |
- . TABLE IV . |
n 16 = 2% | 64 = 25 | 256 = 2° | 1,024 = 2%°
I _fn-1 n 6 6 6
Pl 0.3561 0.36%0 0.3672 0.3677
] 23
r o, 24
M’ 108 ;
s . . o } B _ . .
™ = o
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10.

1.

TABLE VII
x y Ax y
0.0 1 0.1
0.1 1.1 0.11
0.2 1.21 0.121
0.3 1.331 0.1331
0.4 1.4641 0. 14641
0.5 1.6105 0.16105
- 0.6 1.7716 0.17716
6.7 1.9487 0.19487
0.8 2.1436 0.21436
0.9 223579 0.23579
1.0 2.5937 0.25937

See page 27 for graph for Exercise 9.

a)
b)
c)
a)
b)
c)

They are
They are
They are

They are
They are

the
the
the

the
the

same, 2.2%.
same, 2.48832.
same, 2.5937.

same.

same.

TABLE VI
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Answer from previou§ page.

1
3.0
ex2,6.-}-~
X 2.5 #_
2.0
1.5 !
. A
'y
§ 'REBN/UY
/2 44/
l.!Oh,//// .
AN,
AN
ANV
l" ///0
il 74 ,// ,/
rd 4 717 I 4
| 1/’ A4 /L
NN VIUILE |
= LA ) 7 4
| vl AdA 2, 1
L& d 3—& 1
-1.0 -0.5 0.5 1.0

.

12,

27

§
{
5
e
1
1
H
(1] 2 T
1 t+x+ % /.
11 . 2- i
¥ I
3
A
2
A
4
4
y
i ARYE
1
-1 0 1 2

112

)

28




13. Pl(x) =b+2cx+3dx*; T =Pf(0) =b, sob=1.
P"(x)=2c+6dx°I-P"(O)-Zc, soc =z
P"'(x) = 6d; !-P"'(O) -6,sod=%
P(x)-l+x-t-x +zx

1
P,(l) = 1 +l+-2-+g-2—-26666

- 12 13 1 4
14, P.(x) 14x 4+ x +zx *op X

1,1
Pl w141 45+ b om 2l = 270833

N =

Examples in Section 6.2
51 = 120; 61 = 720
P(x) -I+x+2|v +—x -i'-,;-l

15. E(x)-l+x¥21x +-lx +-Elx +-§l
1 1 1 1

86 .
5(])-]+I+—-+3-+-2-5-+-‘-E 2-— = 2.71666....

2 120

Example in Section 6.3
P’(I) = 2,7182816 or 2.7182815.

1), .1, 1) 11]3 1[1_]"~
16. P (‘ij 1 +'i'+ Z[E-] +3-[2 + % 2 = 1.6485475

[ [—]]2 = 2.717346

p,(1) = 2.708333...

[~H
P~E’]' L S MCRREELC

[ {5']] z.n 82768

[ [5” is the best approximation to e.

z
is the better approximation.

Example in Sectlon 6.4
P(x)-l+x+-x +3-x —I?‘

P“(z) =1 +2+ i(") +3-(8) + -2-,,-(16) =7,

~

o

{

113

18,

19.

= 5 -
Ps(z) 7+ l20(2) 7.2666..
= ‘ 6 =
P (2) = P (2) +555(2)® = 7.35555. ...
) = ‘ ? =
P,(2) = P (2) + go5(2) 7 = 7.3809524

Pa(z) P.(2) + 7;0_3'2'6(2) 7.3873016.
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9. MODEL EXAM

l:] 100

100

Part |
1. Complete this expression: e2 = (l

B 2, Use a hand calculator with a squaring key to compute

- 1025) 1024
5 102K ’
. 1024 *
N 3. The number %%%%] is an approximationato e[::].

4. |If may be difficuit to get a good approximation to e,
y n+ 1jn

, because of

ne )3
n-1 e

us]ng the formula
in the calculator. being used.

5. What Is the missing exponent?

Part 1!

1. Use the Euler Method to sketch a curve that approximates
y = e for 0 < x < 1 with Ax = 0.25.

Use the Euler Method to fill In the following table which
- gives an approxlmation toy = e* .0<x< 2 with Ax = 0.4,
x| o | ok | 08 | 1.2 ] 1.6 2.0
Y 1] 1
Part 111

Let Pn(x) denote the Taylor polynomial of degree n centered at
. x = 0 that approximates y = e~.

1. What is Pz(x)?

2. ls 1 +x+ %-xz + %-x3 the same as P3(x)? To answer, either

show that it satisfies the defining properties of P3(x), or
that it dces not.
3. Use P“(x)ﬂto approximate e.
If we hold the value of x flxed,‘then how does Pn(x)'change
as n changes? 10
5. The general reason E%(%ﬁl] is a better approximation to e

N " than is {PG(Z)] is that

3 o . ].].ES
e o ow N -

[y

10. ANSWEKRS TO MODEL EXAM
Part |
1. e? =b 1+ 7%5}10)
2: H%%f; 0% 7m0 ‘
3. [:_82215‘_]10210: el
k. round-off error .
5. [:f}]"/z e )
Pare 11
1. See answer graph on next page.
2. )
X ] 0.4 0.8 1.2 1.6 2.0
y 1 1.t 1.96 | 2.744 | 3.8416 |5.37824
Part Il1

I.P(ﬁ-l+x+%ﬂ
2

2. 1 +x+ %-xz + %-x3 P3(x), by looking at its third
If F(x) =1+ x +;~x2 + -];x3, then f'"{x) = 2,

derivative.
while, by definition, P"(x) = 1.
- (x) = lz’a‘u -

3. F“(x) 1+ x+=x%+ gx> g xt, soes gi(l) 2.708333...

4. As n gets larger, P (x) gets closer to e*.
5. The smaller the value of x, the closer P (x) is to e*.

116 ‘
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Answer to houel Exam Part {1, Question 1.

2.50
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HOW TO SOLVE PROBLEMS INVOLVING
EXPONENTIAL FUNCTIONS

by
Raymond J. Cannon
Department of Mathematics

Stetson University
DeLand, FL 32720

6/12/78

1. INTRODUCTION

Thﬁ general form of an exponential function is
b'e
y = Aje

Aouand k.
function, therefore, two pieces of information will be

required. A given problem will generally provide the

informatior by either 1) giving a point on the g}qph of
the function and the slope of the graph at that point, or

2) giving two points on the graph. Our choice of e as

the base makes the first case particularly easy, -and we

show how to solve both types of problems in this unit.

Before presenting these techniques in detail, however,
we pause to present you with the following as indicative

of the fype of problems you will be able to solve.-

1.1 Challenge Problem

A warm body cools at a rate proportional'to the
difference between it and the surrounding medium.

you are in the cafeteria and you must leave in ten minutes

for your next class.
small container of cold milk.
your coffee in five minutes.

if you pour the milk in now, or wait five minutes before

adding the milk?

‘ 122

4

; this formula contains two arbitrary constants:.'
In order to specify a particular exponential

Suppose

You have a cup of hot coffee and a
You should begin drinking
Will your coffee be colder

2. HOW TO SOLVE FOR y GIVEN A POINT
AND SLOPE AT THAT POINT

\

ExamEI;\I?\\\\\\

An exponent;;I\?ﬁnetigP passes through the point
x =2,y =4 with slope 3.

Solution to Example 1:

What is the value of y at x

1?

To answer this question, we want to know the particular

exponential function whose general form is y = Aoekx.

We

must use the information we are given to solve for Ao and

k. Because (2,4) is on its graph, we know that when x
Y k
y = Age X we get our first equation:

’ . _ k-2
4 = Aoe

4 and substituting these values in the expression

The slope is also given; this is information about

the derivative. If y = Aoekx, then y' = k(Aoekx), and

1

y' = ky; we can solve for k immediately: k = %7.

point (2,4) the graph has slope 3 so we use the values

1

y =4 and y' = 3 to obtain k = %7 = %.

value of ¥ in Equation 1 to produce the equation 4 =

(3/4)2 _ 3/2, .

Age = Aje ; solving for A, we have
A = 4732,

o
We now have A = 4e”3/2 3

iny = Aoekx to obtain
‘ y = de”3/2¢3x/4
- 4e3X/4 - 3/2

- 4o (3x-6)/4

At the

As an alterqative way of writing this function, we could

A, = 4e-3/2. Jf we use e = 2.72, then e =

(1.65); (1.65) ° = 1/(1.63)° = 1/4.49 = .2z,

123

-

z,

We substitute this

and k = ‘r+ substitute these values

. use‘one of the methods developed in Unit 87 to approximate



and 4(.22) = .88. We could say A = .88 and 3. HOW TO SOLVE FOR y GIVEN TWO
: ' " POINTS ON THE GRAPH
, y = .88e>%/4, - -
e - 3.1 A Typical Problem and Its Solution

Here is another example using this method. I i )
We have to work a little harder in this case, since
» Example 2:

- ¥ the value of k isn't so easy to find. Wha® we must do is
- What exponential function goes through the point to solve two simultaneous equations involving k and Ao.
(3, 4) with slope 3. _ S e
Solution to Bxample 2: Find the exponential function that passes through
Set y = Aoe'kx. Since k = 7?'- , we have k = 1—/41 = %- (0, 4) and (2, 6). .
kx

Now let x = 3 and ¥y = 4 in the equation y = Aoe and Solutior-to Example 3:

obtain 4 = Aoeks; sugjgitute k = % in this last equatior_l3 g Let y = Aoekx. Using x = 0, y = 4 we have 4 = Aoek-o
. ?nd you have & = Aqe 3 solving for Ao Wwe have Ao = de Aoe0 = Ao-l = Ao., (In general notice that Ao is the value
We may now use values k = %, Ao = 4e'3/8 in the of y when x equals 0.) Using x = 2, y = 6, we have
equation y = Aoekx to write our answer as 6 = A € '2. Since the first equation gives us Ao = 4,
L -3/8 x/8 (x-3)/8 we subgtitute this value in the second equation and get
y = de e = de : 6 = 4e“k, or ek = %. The solution of this equation
Alternatively, we may approximate Ao = 4e'3/8 involves a function introduced in Unit 86 of this module,
— = 4(.69) = 2.76 and write where it was called simply L. We pause 1in our solution of
n y = 2.76ex/8. Example 3 for a brief review of this function. (The
— , ) module on the logarithm function gives a more detailed

—— [

treatment of this function, and different ways to

Exercises evaluate it.) ’

.

i 8) with
1. Find the exponential function that goes through (0, 8) wi 5.1.1 How to Solve for k

slope 4.
K = DA = . y= . The function L(b) is defined by the equation
o k : .
2. Find the exponential function that goes through (2, 12) with . bh -1
L(b) = 1lim —
slope 3. h+0
. i) K = . A = . Y= . . . . .
—_— "o - and this equation can be used to obtain a decimal
1) Use some approximation techniques to write A in decimal form. approximation to L(b). There are two important properties
A= .Yy = that we will use in solving these problems. We label them

for future reference:

LY
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*) L(ec) = ¢, and

£e %) e“(0) 2y,

CH These formulas were developed in Unit 86.

%“ . Example 4:

N

T~ Solve for k if ef = 5.4.

s Solution to Example 4:

since eX = 5.4, it follows that L(eX) = L(5.4).
Now use (%) to write L(eX) = k, and we have k = L(5.4).
‘We can leave the answer in this exact form, or use a
method developed in Un1t 86 td obtain a decimal approxima-
tion. If we let h = T_UTT (a "small" number), we have
2 L(5.4) = 1,024(5.41/1’024 - 1) = 1.69,
and so
k = L(5.4) = 1.69.

Exercises

B In each of the following exercises, solve for.k using the function L

oo

L and then obtain a decimal approximation using h 756"

- 3. 1f ek = 3.3, then k = .

[’::‘ L, If 33k = 1.8, then k = =

| k

11}

5. If = .5, then k =

Ef'< We return to the solution of Example 3 which we left
y when confronted by the equation e“" = 1.5. We.can solve
‘ this now using the L function. Thus using (*), L(i.5) =
L(e?®; = 2k and so K = 1L(1.5). We already have A, = 4,
and so our function is

y = 4oIL(1-5)/21x

We can use (*%*) to rewrite this as y = 4(1.S)x/z.

.
3

Example 5:

This is the most difficult example. Neither A0 nor
kX i$ readily apparent. Find the exponential function
that nasses through the points (2, 15) and (6, 135).

Solution to Example 5:

Set y = Aoek‘x. Use x = 2, y = 15 to get

" ko2
1) 15 = Ae
Use x = 6, y =,135 to get
(2) 135 = Aoek°6.

We get one equation involving only k by dividing Equation 2
by -Equation 1. (More specifically by dividing the left-
hand side of Equation 2 by the left-hand side of Equation 1,
and also by dividing the right-hand side of Equation Z by

the right-hand side of Equation 1.) Yoo
k-6 '
135 _ Ape
T kT
oe

The result is

(3) " g = Ok - 2k _ 4k

Thus using (*)

L(9) = L(e**) = 4k,

M

We substitute this value of k in Equation 1 to solve for

AO:

we find

RAC)
15 = Ae 4 - Ao(eL(9))1/2;

yid




by (*%)

eI.(9) =9
and we have,
15 = A 91/2 2 34
[o] (o]

and so ‘\

A = 5. -
‘ Y . .
| s

Thus, cur’function is y = Se

[L(9)/4)x

which we can rewrite

Divide.Equatioa 2 by Equation 1, getting

9 Aoe4k
2T AerE
or
1. e ake2k 2k
3' = = e = e .
e

Applying the function L to both sides we have

L = LeZK

2k

as . so that
o . 1, .1
y = 5). 9)(/4. K= '2'1-(3-).
3.1.2 How te Solve for A. Given k Now substitute this value of k back into either (1) or
- (2) and solve for A_. Using (1). ve have
In the above example we used (**) to write eL(g) =0, . °
We emphazize use of this formula with an example and some 27 = Aer(l/Z)L(:/S) & AoeL(l/S)
exercises. 1
’ = A x and A_ = 8l.
Example 6: o o
: Solve for A if Ael(16)/4 _ 15 . . o
- Exercises .
‘ Solution to Example 6: p ) 6. Solve for A if aet@®73 _ 10, x=
- L(16)/4" _ L(16),1/4 .. . ;
e ' 12 = Ae ( )/1/; A(e ( )) which by using (**) 7. Solve for A if
we can say = A(16) = A+ 2. Thus, 12 = 2A and A = 6. .
L(1/8}
‘ Example 7: pe > = 10. \\ﬁ%
d _Find the exponential fuuction whose graph goes A= ‘\
through the points (2,27) and (4,9). " 8. What exponentiat function goes through the points (3, 19) and )
Solution to Example 7: (6, 50)7 ‘ B l\\
Let y = Aoekx. Set x = 2 and y = 27 to obtain ' )
1) 27 = A ek, . 4. WORD PROBLEMS
o

Let x = 4 and y = 9 to obtain You learned in Unit 84 how to recognize word

- Aft
(2) 9= Aoe4k. er

recognizing such a problem, you must then analyze the

problems solved by using exponential functions.

way the data are given in the problem. Are two points

given, or one point and the slope?
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Example 8 :

The Surety Savings and Loan Company pays 5.25
percent interest compounded continuously. If a savings
accoupt contains 3700, right now, how much will be there
in six months?

e M ’
Solution to Example 8: '
\ '

Let y(t) be the amount in account at/time t.
Obviously only one point is. given: right now the account
has $700. Let t = 0 correspond to now, so Ao = 700 and
our function is y = 700eXt. The rate of 5.25 percent is a
yearly rate, so t is in units of years. The percent
increase of 5.25 means A 5.25 percent = .0525, and so
k = .0525. Our function is thus y = (700)e'0525t, where
t is peasured in years. Since six months is one-half of
a year,  the amount in six months will be (700)e'0525/2.
Using a calcu}ator anq P4(x), X = Lgézi = l02625, we have
P4(.02625)-= 1.0266. Thus, the amount in the bank will
be (700)(1.0266) = $718.62.

Example 9: .

A biologist is studying a certain species of bac-

" terium. At 1 p.m. she starts with 1000 bacteria. ' The
. température is kept constant and when she returns at
3 p.m. there are 8000 bacteria. , What formula gives the

number of bacteria under these conditions?

Solution to Example 9:

Discussion:

We will measure time in minutes witl. ' p.m. as our
starting point. Let A(t) be the number of bacteria t
minutes after 1 p.m.; we know that the function has the

form A(t) = Aoekt. Since 1 p.m. corresponds to t = 0 and

. there were 1000 at that time, we know the point (0,1000)

is on the graph. Furthermore 3 p.m. corresponds to

”
[

7]

130

t = 120 and the point (120,8000) is on the graph. We now
proceed as in Example 7 arnd find the exponential curve
through the points (0,1000) and (120,8000). °

_ Solution: T

Let A(0) = 1000 and t = 0 to find /
{ Ca ko0 _
(1) 11000 = A0 = A
Next let A(120) =-8000 and t = 120 to find

(2) 8000 = A X120 - Aoe120k. .

Note 'that (1) gives us Ao directly and we substitute
the value A = 1000 *nto Equation (2) to obtain 8000 =
1000120k or-

| .

g = el20k

| . -
Apply the function L to both sides and we have

120k

L(8) = L(e'%%%) = 120k.

Solving, k = L(8)/120 thus A? = 1000 and k = L(8)/120;
our function is A(t) = 1000e L(8)/120)t _ 1000-8t/120.

Remark on Example 9:

If we wish to find the doubling period for this
species we would want to know for which t is A(t) = Z-Ao;
this gives us the equation

(L(8)/120)t

1000e = 2000

or i
¢(L(8)/120)t = 2.

Applying the L function to both sides we have
(L(8)/120)-t = L(2).

Multiply both sides by 120, L(8):t = 120-L(2) and"

¢ = 120°L(2)

If you are familiar with logarithmic function you
know we can write L(8) = L(23) = 3L(2). (This was also
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derived in Unit 86, Section 7.4.)
for the species (at this temperature) is found to be

120 ngl = l%g = 40 ainutes.

The doubling period

Exercise

9. A country is growing at a rate of three percent per year. If

it had 10,000,000 people in 1975, what will the population be
in the year 20007 .

Example 10:

We solve Exercise 11 of Unit 84 which is repeated
here:
A certain factory has been dumping its chemical wastes
into a river which flows into a lake. The chemical wastes
of the factory cause a rash on the skin when their’
concentration in the water is 30 parts per million; they
irritate the eyes at a concentration of five parts per
milli n.§$The factory stopped dumping its waste iqxo the
river a mqg&h ago, and the concentration in the lake was
then[at 75 parts per million. The clean water of the
river entering the lake mixes with the polluted water of
the /lake; then, as the river flows out of the lake, some
of the polluting The flow

of the river is constant; together with our miXking

aterials are carried off.

as

mptions,  this means that the rate at which the waste
matlerial is being carried off is proportional to the

amguht of waste in the lake.
lake amounts to 70 parts per million.

The chemical waste now in
How long will
it| be before people can swim: in the water without getting
ash? Without their eyes burning?

Sdlution to Example 10:

ERIC

Aruitoxt provided by Eic:

Let c(t) be chemical cofcentration at time t, with
t measured in months.

132

Take the time when the factory 11

T

o

stoooed dumping as initial time (t = 0) so we have

c(0) = 75. A month later correspoﬂds to t = 1, and

c(1) = 70. So the curve passes through (0, 75) and (1, 70).
Using (0, 75) we see Ao = 7S.k.Ihus C(E) =735ekt. Now 70
using {1, 70) we get 70 = 75e , SO e = o= and k = L(7§ .

7SeL(70/7S)-t

The function is c(t) = or

c(t) = 75(%§)t.

-

We want to know when c(t) < 30; we have to solve for t in

the inequality
7SeL(70/75)t < 30,
which is equivalent to /
L(70/75)t _ 30.
e < 7—5-

By (*), this is the same as L(;%)t < L(;%)'

Since ;% <1, L(%%) is negative and dividing by a

negative number reverses the ineaualitv.

¢ > [}(%%) e”L(;%i].
1 .

Using h = 3550 We

50 we want

have

L(%%) = -.915
L(;g) s -.069.

Thus, L(%%) : L(%%) £ 13.3.

It will take over 13 months from the.time the company
stops dumping its waste into the river for the pollutant
1evel to drop below 30 parts per~million.
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Exercises ,

L(70/75) 5.

10. Use this method to solve 75e
" Answer: t> —*
11. Use (#*) to wrife L70/75) T2
Now take succesSive values of t = 2, 3, &, .
when c{t) < 30. Fur what t is c(t) < 57 Compare these
results with previous ‘answers. )

12. If a bank pays fivé\percent interest compounded centinuously,
how long doeq it for a saving's account to double in

gize?

- 759t
te c(t) 75(75) .
. ., and see

. 13. Go back to Unit 84 and find the exponential function that
solves Exercises 1, 4, 6, 8, and 12.

10.

21
k = T AO

i) k=g
ii) Ao = 7
k = L{(3.3)

L(1.8)
3

k= L(.5) =
A= 5
A =20

y = 2e

y 10,000,
10,000,000
e= 2,718,
population

t > 39

5. ANSWERS TO EXERCISES

8,y = 8ex/2
A, = 12e7H/2 g = 1pe(x7)/8
.28, y = 7.28¢%/%
= 1.197
= .196
- 6922
‘ or y = 2(5&:/3 . *

000e° 93t ¢ = 0 in 1975 so population is
. e-03)25 2 (10,000,000) e 75, Using
4 o (%3 - (1.282)3 = 2.117 and

= 21,170,000.
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70
65.3333
60.9778
56.9126
53.1184
49.5772
46.272
43.1872
40.3081
37.6209
35.1128
32.772
30.5872
28.548
26.6448
24.8685
23.2106
21.6632
20.219
18.8711
17.613
16.4388
15.3429
14.32
13.3654
12.4743
11.6427
10.8665
10.1421
9.46595
8.83489
8.2459
7.69617
7.18309
6.70422
6.25727

- 5.88012

5.45078
5.08739
4.74823
4.43168
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12.

13.

To solve for t in e'%5t > 2 or .05 > L(2),
t > 20L(2):
t > 13.88 years, or about 14 years.

Using h = sig, L(2) = .694, so

Repeat of the following: A

Exercise 1: k = .17, and goes through (0, 1),
. 17x
e

-x/2

R

Exercise 4: k -.5, Ao = 5,y =*5e

Exercise 6: L(d) = (400)(%)d/20'

L(100) = (400)(,})5 = 30 = 12,5 and

Rog er should start defrosting.
-.17¢t

Exercise 8: P(t) $5,000e

P(6) -1.02

]

$5,000e = $1,803

Exercise 12: The curve goes through (0, 3) and

(10, 2.7); the problem is asking for
01X gey =1
and solve for x; x = 110 minutes.

t wheyy = 1. y = 3e°

16
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6.. MODEL EXAM 7. ANSWERS TO MODEL EXAM

t. Given.an \e;ponen‘tlal function that passes through the | T . y= (3e-]“6)ex“6 = 7.5e"/]6 . o
point v(‘!'w,’B’T;i”tf;sk;pe %, write th? exponential function - ’ . ) 1/2- L(3/2) i 7 0.,.._;.:
_in the form . 2, y= "(3') 8—3-2——1. ;
A , /:
X - . ‘ 3. The fossil is between 39,000 and 40,000 years old. -
2. Given an exponential function that passes through (1,4)
"'- " and (3,16), virite the function in the form M
: y = Aekx. . . . o -
i S . . .
# © 3. .A fossil is found In a cave, and taken to a laboratory to
g“’; - $ analyzed. It is fc:tund to emit about seven rays from- ]
?y . carbon-14 per gram per hour. A living body radiates at a , R
R rate of 918 rays per gram, and radicactive carbon-14 has a
i : ) half=1ife of about 5,600 years. Approxllmately how old is -
P the fossii? . : o '
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