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Preface

e

It would be difficult to overestimate the ,importapce-of stochastic

independence in both the theoretical development d the practical appli-

cations of mathematical probability. The concept is grounded in the idea

that one event doei not "dbhdition" another, in the tense thSt occurrence

of one does not affect the likelihood' of the tecurrerice of the other. This

leads to a formulation of the independence condition'in terms of a simple

"product rule, which is amazingly successful in capturing the essential

ideas of independence,

However, there are many patterns of "conditioning" encountered in
- 4,

practice which give rise to quasi independence conditions. Expliciand

prectse4ncorporation'ibf these into the theory is needed in order td make

111
the Moat effecti4e use of probability as amodel fbr behavioral and

...

physical systems. We examine two concepts of conditional independence.
s, . .

. '.,,
1

The first concept is quite simple, utiAizing very elementary aspects

-t', -1,9

.

of probability theory. Only algebraicoperations are required obtain
.

ti

quite important and useful new results, and to hear up many mabiguities

7
and obscurities in the literature.

The second concept of conditional independence has been employed for
2 . '. 4

aote time in advanced treatients. of,Markov processes. Couched in terms
.

is

of the abstract notion of conditional'expectatidn, given a Sigma field- . .

bf events, -this concept has been available only to thoseconcept th the requisite

'teasuretheoVtic preparation. Since the use of this concept in the
.

theory'of Markov processes not only yields important mathematical results',
.

but Alpo provides conceptual advantages for the modeler,/it should be

made 'available to p wider .class of users. the case 'is made more compelli
/

4
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by the fact that the concept, ance available, has served to provide new

precision and insight into the handling of a number of topics'in probable

inference and decision, not related di7clly to Markov procpsses.

The reader is assumed td have the background provided by a good under-.

cdtraduate course in applied probability (seg Secs Al, A2). Introductory

c6furaes in calculus, linear flgebra, and perhaps some differential equations

should provide the requisite experience and proficiency witH mattlZmaticai

concepts, notation, and argument., In general, the mathematical maturity

of a junior or senior student in mathematical sciences, engtneering, or
a

one of the physical sciences should be adequate, although the reader need

not be a major in any of ,these fields-

Considerable attention is.given Co careful mathematical development.

This serves two types of interests, which may enhance and complement one

another. The lerious practitioner of the art of utilizing mathematics

'needs insight Into the system he is studying. He also needs insight into

theiodel he is usingv He needs to distinguish between pilperties of the

model which are definitive or axiomatic (and hence appear as basic assump:

c

tions) and those which, are logical consequences/4.e., theorems) deducdd

from the axiomatic properties. For ey re, if hih expprience m3es it

reasonable to assume that a dynamic sy tem is characterized *Jack of

nmempiY", so that the future is cond onekonly by the present state and

not past history, then'it is appropriate to consider representing the .

system as a Markov processup,Should the system fail to exhibit certain

consequences of the Markov assumption, then that fundamental assumption

must be reexamined. The distinction between fundamental properties and

derived properties is .anYaidto efficient and intelligent use of mathematics

fas well as insurance against contradictory assumptions).
-1
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The serious ma thematician Ao
.
wishes to enlarge his knowledge and

appreciation of the applicdtions of 'mathematics (and perhaps discover new,

significant problemd) may be deterred by the inadequate articulation of

mathematics in much of the applied literature. This may be a serious

barrier to what should be a cooperative endeavor. Hopefully, the

present treatment will help remove any such barrier to consideration

, of the interesting and iiportant topic of conditional independence.

In order to recast thk theory of conditional independence of random

vectors in more eleMentary terms, it h9 been necessary to extend the

usual introductory treatment. of conditional expectation, given a random

vector. The treatment intends to bridge the gap between the usual intuitive

intsocipc.tory treatment, based on a concept of conditional distribution, and

a more general approach found in advanced, measure-tHboretic treatments,

Because of the importance og conditional expectation as a tool in the study .

of random processei and of decision'theory, the, results should be aisefUl

beyond the scope of the present investigation.
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CONDITIONAL INDEPENDENCE IN APPLIED PROBABILITY

Al -1

A. Preliminaries

In this monograph, we assume the reader has reasonable facility with

elementary probability at the level of such texts as Pfeiffer and Schum

[l973), Ash [19701; Or Cbung [1974). In particular, we suppose the reader

is familiar' with the concept of a random variable, or a random vector, as a

mapAng from the basic space to the real line R, or to Euclidean space
02

On, and with the notion of mathematical expectation acid its basic proper-

'ties tf Pfeiffer and Schum [1971j, Chaps 8, 10, 13). In the following

sections, we summarize varioWfundamental concepts and results in ; form,

terminology, and notation,to be utilized in subsequent developmats. In

some cases, we simply express familiar material-in a form useful for our

purposes; in others, we supplement the usual introductory treatment,

especially with an informal presentation of certain ideas and results from

measure thebry. The reader may wiskto scan this material rapidly, re-
,

turning as needed for later reference.

1. Probability spaces and random vectors

A probability space, or probability system, consists of a triple (0,3,P)

1) 0 is tiie basic space, or sample space, each element of which repre-
ti

sents one of the conceptually possible outcomes of a specified trial,

or experiment. Each elementary outcome w is an element of the basic

space 0.

'2) 3 is a class of subsets of 0. Each of the subsets in this class is

an event. The event A occurs iff the w resulting from the trial

is an element of A. Since it is desirable that the sets formed by
A

eompleMents, countable uptbni, or countable intersections of events

also be events, the class 3 ,must hale the properties of a sigma

13
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Al -2

field (also called a Illorel field or a sigma algebra) of sets.

3) The probability measure E assigns to each even a number -P(A)

in such a manner that three basic axioms (and logical consequences)

hold: i) P(A) > 0, ii) P(0) = 1, and iii) P is countably additive.

We utilize standard notation4kor the empty set (impossible event),

complements, unions, 'and interseetkons. Thut, for example,

0 is the empty set (the impossible event),
co

U A
i

is the union of the infinite class ('Ai: 1 i < co), .

11 4

4*

n . et,

n B
i

is the intersection of the finite'class 1Bi: 1SiSn),
i1
Ac is the compkeient of. the set A4

n
In addition, w:,Tploy the notation, Bi to indicate not only that we

i=1

have taken the union of the class (B,: 1 < i < nj, but-else-that the

class is disjoint (the events are mutually exclusive). Thus, the expression

co

A = d A
1

means the same as the pqir of statements
i=1

i) A = U Al and ii) AiAj = 0 for i # j.

i1

A random vectoreis viewed as a ng from the basic space 0 to

n-dimensional Euclidean space R
n

. For n = 1, we have a real-valued

random variable. A random vector X: 0 Rn may be considered to be, the

joint mapping (X1, X2, Xn):,,0->RXRX X R produced by the

coordinate random variables X1, X2, ..., Xn.

Sind: we want to be able to make probability statements about possible

sets of values to be taken on- by random vectors, we must introduce

measurability considerations. In the real-valued case (n = 1), we should

like to speak of the probability that X takes on a value no greater

than some real number t. Since probability.is assigned to events, the

14 ,
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set {w: X(w) < t),. should be an event for any real number This may

be viewed scheiwitically with the aid of a mapping diagram, as in Figure
A1-1. We are interested in the-set .A pf ttioseelementary.outcomes w

which 'are -mapped into the interval It = (-co, O. Since we also want to _

consider.compleatents, countable unions, and countable intersections of
s

-such events, we rust considei complements, countable unions,' and countable

Al -3

intersections of such intervals on the real line. We are thus led to

consider the minimal sigma field R of subsets of the real line which
4includes all the semi - infinite intervals of the form It .= (- m, t). This

is the class 13 of Borel sets on the real line. A similarconsideration '
- lleads to defining the class 8 of, Borel sets on Rn as the minimal

sigma field which includes 1
. semLfrinfinite intervals of the f%rm

,
A.

I(t1,t2, ..., tn) = ( ms t x (-m, t,).X ... x (-03, tn). We'say that
4

r 1X: n -, Rn is a random v'ecto i f f1(M) = (w: X(w) E M) is an,evenEif

for each Borel'set M in Rn. A standard result of measure theoty,
.44 ... -1which we assume without proof, ,s that X (M) is anmevent for each Borel '

4,set 11 iff X LI(tl' , ..., tn)). itt an eyent for each .n-tuple,
1

.( tl, t , , tn) of resLIIEmbers (i.e., for each element of Rn). Real - '

valued random variables' are included as the special case n = 1.
a .

r5 is an easy consequence of el.dmentary mapping theorems that the

class, aocl, of all inversebimages X",1(M) of Borel sets is a sigma field.4

We refer to this class as the sigma, field determined by X. It must be a
., .

subctass of the Class 3 of !vents in order for X 'to be a random vector.t

We often need to consider functions of random vector(. If X: ( -+ in
and °g: Rn -, Rm, then Z = Iva = g(X) is a function 9 -, km. If g 'has
the property that N = g-1(M) is a Borel set 'in, An for each Borel set...-

14 in its codomain IP, then Z is a random vector:a/nl Z-1
Is

04) =. .
.--,.

0'

. .5 I

"

.4



A1-3a

A . (m: X(w) < t)

X

A

X(w)

.
t,e-1 , t I e,

,
e/ e / / //i/ I/Itl

aIt (- co, tj
ea

Figure Al -1. 'Mapping diagram with inverse image of semi-infinite.

interval I
t

16
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1 -1 -1X. g (4) = X (N) is an, event. Thus, each event dete'rmined by Z is

an event determined by X. This may be expressed btthe relation 3(Z)
. , .is contained in ,.3(X) This condition is oftened indicated by saying that

Z is measurable with respect to X' (gr Z is measurable-X). A function

g with the mapping property described
above is known as eBorel function.

From somewhat advanced arguagnts,
it is known that if Z is measitrable-1,

,then there is a Borel function g such that ,Z = goX = g(X).. We assuTe
4

this important result without proof.

We have introduced the class-of Borel functions in a somewhat abstract

A1-4 '

manner to solve the problem of when a function of a random vector is its f

a random vector. But how do we know whether or not a funcrton encountered

in practice is Borel? It tuilks...out that'almost any function g: Rn gn

which we *may want to consider is Ibrel. For., this reason, many introdnct-

ory treatment' little or nothing is'said about Borel functions.

Borel.futittions constitute a generalization of.,Ahe Blass of continuous

functions. Continuous func &ons have the property-that the inverse image

of any open set is open. It'is known that the class of Borel sets on Rn
4

is the minimal sigma field. which includes all open sets in Rn. From this

facCit may be shown that
any continuous function from S.Rn to Rm .is

Borel. Any piecewisecontinuous real function g: R R is Borel. Linear

:...7Cliabinations, products, and compositions (functions of functions) of Borel

functions are Borel. If (gu: 1 < n) is a sequence of Bdrel functions from

eto e which converge for each t in Rn, the limit functiotfg is a

Borel function.
1

The indicator function I
A Lodset A in 0, defined by (w) = 1

A
for w in A and zero otherwise, is particularly-useful. lIf A is an

event, I
A is a ranXom variable.. Indicator functions; may be defined, as -

17



A1-5 04.

well, on R. If M is a Borel set in Rn,\then IM, is a Borel function

from Rn to R. If c is an element of e, then cIm is a Borel

function from Rn to If If X is a random vector and M is a Borel

set on the codomain of X;\ then IM(X) 0..1 a real-valued random variable,

' Measurable -X. If M 'is a subset of Fla and N' is a suliset of e, then

the cartesian produci M x N t E M, u E N) is a subset of FP X Rn.
.

The indicator function IM X N Rm
x e 4 R satisfies the equation

IMxN M
(t,u) = I

N
(u) V t E Rm , u E 0

"singe (t,u) EMX N iff both .t E 14 and u E N.

The following result is basic in the development of the concept of

conditional eicpectation.

Theorem,A1 -1

ay If Y is a raridt vector with codomain Rm, M is any Borel set in-

Itind C (w: Y(w) E M) Y-1(M), .then lc = Im(Y)..

b) If g is afBorel furktion Rm Rn and Z = g(Y), then for any

Sorel set N in Rn, there is a Bo'rel set M g-1(N) in Rm such

that I
N
(Z) = I

m
(Y).

PROOF

a) 114[Y(w)I m. 1 iff Y(w) E M iff m E C iff I,10' (w) 1" ,

4
b) The relation C = Y-1(1) %. Z-1(21) is an elemntal.proPerty of

composite mappings,. By a), IN(Z) IC = IM(Y)

The indicator function)a useful in representing discrete random
.

' variables, which take on a finite or countably infinite set of values. In- .1
the finite case, the terill simple random variable is cc:mm=1y used.' Suppose

the range (set of possible values) of X is S (tir t2, tm) c 1:

Let Ai fro: X(w) t i). Then the class t< i < N) is a partition,

-
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N
and X = E t,IA%. We refer to this representationAs canonical form

'J=1 '

(if one of,the values is zero, we include a term with zero coefficient).

It is easy to show that any real random variable is the limit of a

. sequence of suet? simple randOmtvariables (the sequence is not,gnique).

If is nonnegative, it is the limit of an increasing sequ npe of

A1-6

nonnegative, simple random variables (cf Pfeiffer and SShum [1973], Sec 8.8).

Similar statements may be made about Borel'functions. A simple Borel

function g: Rm - e has canonical form g = E tI , where ti E n
i =1 i Mi

and each N1 = (u E Rm: g(u) = t
i

) is a Sorel set in Rm.,

A random vector induces a probability distribution on the Borel 'ets

of its codomain. To each Borel set M is assigned the prcliability mass

on the event X
-1

(4). A probability measure P
x

is defined on the Borel

r .1sets by te assignment Px(M) = PIX
-1
(A)) =P(X E M). This is a true

probability measure, with'the Borel sets serving as events. This mass

distribution may also be described by a probability distribution function

Fx or, in suitable'cases, by a anobability density function fx. These

matters are assumed to be familiar.

For many purposes, if a random vector is modified on a set of w

having zero probability, no significant difference is realized in probability

calculations. For example, if X and Y are;two real random'variables

with the property that the set Of w for which X(00 Y(w) has probability

w zero, these random variables have the same mathematical expectation.

DEFINITION. Random vectors X, Y are almost surely equal, denoted

X = Y a.s., ,iff they have the same codomain and die set [w: X(w) A Y(w))

has probability zero.

Mare generally, a relation between random vectors is said to holdalmost

surely (a.s.), or to bold fgr almost every"(a.e.) w, iff the set of

41.



.A1 -7

for whiCh the relation fails, to hold has probability zero:.

We are frequently concerned with functions of random vectors.

41,

Suppose we have random vector X: 0 4
n

and have two Borel functions

g, h; Rn 4 Rm.. If these functions have the property that )3(0 = h(t)

for all t on the, range of then we must have g[X(w)] = h'[X(w)]

for all w. Again, we may not need this equaAlry all w. It may

be sufficient to have equality for almost every w (i.e., for all w

except possibly an exceptional set of probability zero). Suppose

M
0

= (t,g Rn: `go.) A h(t)). Then g[X(9))] A h[X(w)] iff X(w)

.

''one of the values in MO. Hence, g(X) = h(X) a.s. iff the set of w

for which (w) E Mb has probability zero. But this is"just the condition

that the induced probability Px(Mb) = P(X E Mo)-= 0.

The notion of aluost-sure equality for random vectors ca%be extended

to Borel functions when the probability measure is defined on the class

of Borel sets on the domain of the functions. We are, particularly

interested in the case that such measures are probability measures

induced by random vectors.

DEFINITION. If g, h are Borel functions from et to Pm and Px

is a probability measure on the Boribk.sets on Rn, then g and

are said to be
0

almost surely equal [Px] if the set MO =

ft E- g(t) A h(t)) satisfies the condition Px(M0) = 0..

The discussion above provides the justification for the following

Theorem A1-2

g(X) = h(X) a.s. iff g = h a.s. [Px], where Px is the

probability measure induced by the rand#1 vector X. 0

7 In ependence of random vectors is expressed in terms of tjle events

they determine.

20



ALSO

DEFINIT/0.- An arbitrary class (Xi: i E J) of random vectors is.

independent iff for each _class (Mi: iE J) of Borel sees on the respective

caoniains of.the x; the class (X-1(M1):. J) of events is independent.L

This means that thd product rule holds for each finite subclass,of the

classlof events. The following Is known to be consistent with the above..

DEFINITION. Two classes (X': t E T) and (Yu: u 4 11') form an independentt t
family of classes iff for each finite Tn C T. and .Um C U the random

.......vectors (X , X , .i., X ) .and (Y 1 Y , .--1 Y ) form anti .t2 ' n !l u.2
%-

independent pair.'

pie latter definition extends readily to arbitrary families of classes.

i/n the next -secti,on, we state the condition for independence of. a class of

random vectors in terms of mathematical expectation.

If (X,Y) is an ind( pendent pair of random vectors (any finite dimen-

sions) and g, h are Borel functions on the codomains of X, Y, respectively,

then (g(X),h(Y)) is an independent pair. This follows from the fact

' that (g(X) E M) = (X E g -1 (M)) and (h(Y) E N) = (Y E h -1(N)), so that s

g(X) E 11)111 (h(Y) E N) = P((X E 13-1(M)) fl (Y E h--1(N))) =

P X E. el(M)1P(Y E 11-1(N)] = P[g(X) E M]ll[h(Y) E NJ. It should be apparent

this result extends to arbitrary classes. -

°..
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6
2. Mathematical expectation

The concept of mathematical expectation incorribraies the notion of a

probability weighted averagi. Suppose X is a sttnple, real-valued randoig°

variable with range (t1, t2, tn). The mathematicalexpectation of X
n .

is E[X] = E t,P (X ti). 'EachEach possible 'value ti is weighteleby the.
11

probability that value will be realized; these weighted values are summed

to give a probability weighted sum; since the total weight is one, the

gum is the same as the average.

Tovextend the notion, we consider alexe' a nonnegative random variable

X. In this case, there is.a nondecreasing sequence of simple random var- /

iables which converge to X. -We define

%E[x] f X dP = lim E[Xn],
n

A study of the technical details shows that the limit does not depend upon

the particular approlimating sequence selected. To complete the extension

to the general case, e. represent _X as the difference X+ - X- of the

two nonnegative rant m variables defined as follow;:

X +(w) =

0

x 00 f X-0.0) > 0 for X(w) > 0

/5 Then E[X] = /4X - E[X _]: Thus. E[X] is the limit of the prObability

weighted average of the values of the approximating simple functions. As
a

such, mathematical expectation should have properties of surds or averages

which "survive passage to a limit." 'this id, in fact, the case. life

defining procedure defines a very general type of integration (Lebesgue

.integrationj, ;

, I

For convenience:, we list and assign numbers to those properties of

mathematical expectation which are-most useful in investigations such as

those in'subsequent sections.. Since an indicator function for an event

22
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..is a simple random variable whose range Vs. (0; lb. we_hsve .
..!C-

iE&) E[IA] 1.1N-A). ' a ,,
, 0.

.:'?14:llse of.Theoremdii -1 and the fact that IMO (X,Y) - IM(X)IN(Y)(X)I.(Y) 'gives the ,. °,f
.

. ,
following important 'special cases.

s

Ela) E[Im(X)] . P(X E-M) and, E[lx(X)IN4Y)] . P(X E M,, X E N) '(with eaten-
%e

,sion'byMathematical induceiNon to any finite number of randoekrectors).

CI

1'

V
*Y._.

...rm.,' ^
0 1Ct

*,
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Elementary argueents show that the following properties of sums hold also

for mathematical expectation in general.
.-

E2) Linearity. E[aX + bl] = aE[X] + bE[Y] (with extension by maths/)
matical induction to any finite linear combination).

E3) Positivity; monotonicity.

a) X > 0 a.s. implies E[X] > 0, with equality iff X 'k 0 a.s.
--; t

b) Xt4> Y 'a.s. implies E[X].> E[Y] , with equality iff X = Y a.s.

It should be noted that manotonicity follows from linearity and pbsitivity.

/--.--;

-_
_The next property is not ordinarily discuss,e51 in elementary treatments.

r

9

However, it is essential to much of the theory of mathematical expectation.

Suppose to SXn+i a.s. for all n > 1 and X
n

(m) -, X(w) for a.e. w.

By property ,E3),. we must have E[Xn] < E[Xn +1] < E[X]. Since a bounded
.-

monotone sequence of reainumbers always convergee must have
---. \

lint E[X n] = I. < E[X]4. Sophisticated use of, elemeNtar3t ideas establishes
trio)
the fact that the limit L = E[X]. A similar argument holds for monotone

decreasing sequences. Thus, we have a .
E4) Monotone convergence. If ,Xn -, X. monotonically a.s., then

. , Or
. ' E[X ] -' 4t1C] monotonically:. *,n

,..
In many ways, these four propezttiescharacterize.mathematical expectation as

. , --A.,
an integral. A surprising number of other properties stem from these. In

the development of the idea of conditional expectation) we establish its

integrallike character by establishing analogs of El) through' E.49
.

..

By virtue lit the definition and property Ela) we can characterize

independence of random Actors as follows.

t
A,

o

o0



E5) IndgRendence. The pair (X,Y] of random vectors is independent

iff E[Im(X)IN(Y)] = E[111(X)]E[IN(Y)]' for all Borel sets M, N

on the codomains of *X, Y, respectively,

iff Erg(X)MY)] = E[g(X)]E[h(Y)] for'all real-valued Borel

functions g, h such that the expectations exist.

A2-3

For an arbitrary family of random vectors, we have independence iff such a

product rule holds: fo)kevery finite
subclass of two or more members.

The next property plays an essential role in the developmeL of the

'concept9of conditional expectation. We pro e the basic result, whidh

..suffice; for developing the properties of nditional expectation; the

extension, -whose proof reqiiiresilsome advanced ideas fromsmeasure theory,

is used in developing certain equivalent conditions for conditional

independence, given a random vector (Sec D5).

Uniqueness.

li4Nuppose Y is a random vector with codomain el and g; h are. '

real-valued Borel functions,on the range of Y.-. If ElIm(Y)g(Y)]

= E[Im(Y)h(Y)] for all Borel sets M in the codomain of Y,

then g(/) h(Y) a.s.

14)' More generally, if E[IOIN(2)8(Y,Z)] = E[IM(Y)IN(Z)h(Y,Z)] for

4-- all Borel sets M, Ni in the codomains of Y, 2,0 grespectively:

"en--g(Y,Z) = h(Y,Z) a.s.

PROOF OF a).
.

Suppose g(ui > h(u) for IC in the set N. Then IN(Y)g(Y) >IN(Y)h(Y),.

.

.*ith. equality iff Y(w) does not belong to N. By E3), ElI
N
(Y)B(Y)]

.
.

= EfIN(Y)h(Y)]. iff IN(Y)g(Y) = IN(Y)h(Y) a.s. iff P(Y E N) = O.' A
similar argument, holds for the opposite inequality. Thus, the total

41T1obability of t14 event (g(Y) A h(X)) is zero.

i ...-'
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DISCUSSION OF b)

The second pare is more general, since the seas Q = M x N, with

IQ = ImIN, form only a subclass of the Sorel sets on the codomain bf

the combined vector (X,Y). However, a standard type of argument in

measure theory shows that if equality holds for sets ,of this subclass,

it must hold for all Borel sets. Application of part a) gives the desires
40.result.

Several useful properties are based on El through E 4), with monotone .

convergenceplaying a key role. The following are among the most important.

E7) Fatoii's karma. If Xn > 0 a.s., E[lim inf Xn] <IM inf E[Xnl.

E8)- Dominated convergence. /f Xn X, at's,. and lXnI < Y a..s , for each

n, with E[Y] finite, then E[Xn] -4 ,
E9) Countable additivfty. Suppose E[X ists and A = Ai. Then

co =1.1

E[IAX] E E[IA X] .
i=1 i

, The following prOperty iS used as the basis for a general definition

of conditional expectation, given.A random vector. Iti s based on the

celebrated Radon-Nikodym thecirem and the act, noted in the previous

section, that if Z is 'measurable-Y, then there is a BoreL function e

such that Z . We accept this result without proof. It is made

plausible in certain special cases in the developments in Sc t C2.

E10) Existence. E[g(X)] is finite, then there wis a real-valued

Box' ct1.0Z-e, unique -a.s. [Py], such that

E '1y (x }] = E[I (Y)e(Y)] for all Borel sets M in the codomain
M 9

of Y. .

bk TheoiemAlt2, e is unique a.s.,. [Py] iff e(Y) is unique a.s.

A number of standard inequalities are employed repeatedly in probability

theory. Establishment of these depends upon setting up the, appropriate
1

26
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inequalities on random variables, then utilizing monotonipity E3). The

appropriate ineqUalities on the random variables are often expressions

of classical inequalities in ordinary analysis. Some of the more important

inequalities are listed for convenient reference in Appendix I.

Al*

a

6'
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3. Problems -

A-I., For each of the following random variables, describe the sigma field

U(X) determined by X.

i) X =IA

ii) X = tIA + bIB 4-cIB (canonical form)

A-2. If X = -2I
A
4-01

B
+I

C
+ 41

D
(canonical form), describe X -1(M) for

i) M (-4', 0] , ii) M = (-2, j] id (2,4] . iii) M = (-=, 3]

A-3. Suppose X has distribution function with
4

0 for t < 0

F
X
(t) = (1 + 3t) /1 for 0 < t < 1

1 for I.< t.

For which of the following functions, if any, is gi = gk a.s. [Px] ?

g
1
(t) = t + 1 for all t

0 for t < 0

g
2
(t) = + 1 for 0 < t < 1

2 for 1 < t

g3(t) =t+k+1 for k < t < k + 1, all integers k, all t

A-4. If X and Y are real random variables, let

X (w) = 10* X_(w)
for X(w) < 0X(w) for X(w) > 0

oil, for X(W) < 0 10 for X(w) > 0

Show that

a) X and X are Borel functions of X, hence are random variables.

b) XY is a random variable

c) aX by is a random variabl- (a,b are constants).

A -S. Suppose g: le 4 Fe and f: e are Borel functions. Show

that the composition fog: Rq

A-6. Use Theorem A1-1 and propertylE1) for expectation to establish

property Ela).

28
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A-7. Use linearity E2) and positivity for expectdtion to establish

monotoaicity.

A-8. a) Suppose X > 0 and E[X] is fiAite. Use the monotone convergence

theorem E4) to establish countable additivity E9) for expectation.

b) Extend the result of part a) to the general case.

A-9. If ,X is real, use the fact that X < IXt and - X < IX' to

establiA the triangle*inequality Ell) fof expectation.

A-10. Establish the mean-value theorem E12) foi expectation.

4

a

4

4
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B. Conditional independence of events

1. The.eoncept

In setting up a probability model for a system under study, the modeler.

utilizes all available p /ior knowledge about the system to 'determine

ability assignments., to appropriateeekkeyts. This knowledge may be obtained

from systematic statistical study, or from mathematical deductions based

on assumptions supported by experience or experiment, or, less formally,

from the judgment of a decision maker. These probability assignments serve

to determine a prior probability measure. The probability P(A) of an
I

provides a measure of the likelihood of the occurrence of this

IP
event A

event.

Further experience or experiment may produce information which makes
1

i5 appropriate to revise the probability assignments to reflect new like-

lihoods of various events. Such revisions amount to the introduction of f

a new probability measure. Typically, the inforsiatioe.received yields

partial knowledge of the character bf the outcome. When properly expressed,

this new information serves to identify an event C which has occurred.

There may be subtletiesAnd difficultLes
in determining exactly what this

5AMionfingelent q is Pfeiffer and Schum [1973], Sec 5-1). The

difficulties center about the question: What information is obtained by

whom? But, in principle at least,'such an,event is determined.

There is nothing in the probability model to require a specific manner

of reassigning probabilities.
However, considerkble experience has shown

that a fruitful way to make the new assignment of probability to event A,

given the occurrence of conditioning event C, is,to utilize the rule

P(AIC) P(AC /P(C), provided, of course, P(C) > 0. 4

We call P(AjC) the conditional probability of A, gam C. For fixed ,

C, P(11C) is a new probability measure, with all the formal properties
a
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of the original, or prior, probability measure P().

It sometimes happens that occurrence of. the event C does not affect

the likelihood that:. A will (or Will not) occur. Thus, we may be able, to

assert that P(AIC) = P(A) or P(A10) - P(A14. As a matter of fact,

straightforward use cook the defining relation for conditional probability

shows that if 0 < P(A) < 1 and 0 < P(C) < 1, then,the following sixteen

relations are equivalent-- that is, if one holds, so do the others.

P(AIC) =,P(A) P(CIA) Iv(C) P(AC) = P(A)P(C)

P(AlCc) = P(A) P(CcIA) = P(Cc) P(AC c) = P(A)P(Cc),

P(AcIC) = P(Ac) P(ClAc) P(C) P(AcC) = P(Ac)P(C)

p(Acicc)
P(Ac) P(CcIAc) P(Cc) P(AcCc)

p(Ac)p(cc)-

P (AI = P (ACc )
p(Acic) p(Acicc)

P(CIA)
p(clAc) p(CciA) p(cciAc).

If any of these holds, we suppose the events A, C form an independent

pair, in a probabilistic sense. It is easy to check that the equivalence

of the four product rules in the right-hand coluion holds for the cases

in which either 1,(A) or P(C) takes one of the extreme valties 0 or 1. .

Al'so, the first product rule is symmetric with respect, to the events A, C.

Thus, it is convenient to make the definition of independence in terms of,

Ats product rule, as follows:

DEFINITION. The pair (A,B) of events is (stochastically') independent

iff the product rule P(AB) = 07)P(D)

An arbitary class of events is independent if a corresponding product

rule holds for every finite subclass of two or more events from the class.

The list of equivalent relations abOve (with C replaced by B) shows that

Ifany one of the pairs (A,B), (A,Bc), (Ac,B), or (Ac,Bc) is

independent, so ari the others.

Although the eroduct rule is the basis of the formal definition, the essential

idea of independence is the lack of conditioning as exhibited in the fact

33
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thlat Independence holds iff P(AIB) = P(AIB`) = P(A) iff P(BLA) =

P(Ble) = P(B). The occurrence or nonoccurrence of B does not affect the ,

Likelihood of the occurrence of A, and the occurrence or nonoccurrence of

A -does not affect the likelihood of the occurrence of B.
I

lxample Bl-a
4

Consider two contractors working on two entirely different' jobs. Let
A = event contractor "a" completes his job on schedule,

B = event contractor "h" completes his job on schedule.

It may well be thA these two contractors work in a way that th& performance

of either has no affect on or relation to the performance of the'other.

ri Thus, ,it may be that P(AIB) = P(Oc),
in which case the common value

a

is P(A). We should thus assume, inocodeling the situation, that (A,B) is

an independentjpair of events.
El

0Suppose

,measur Thi

at -11e#41'

(A,B) form an independent pair under the original probability

ndependence is not an inherent property of the events. (unless

either the impossible event di"the sure event). Stochastic

independentel .a property of the probability assignment,' hence is determined,

by the probability measure P(-):\ Change to a new probability measure PIN

may destroy t 14 tochastic independence.
The following extension of the

contractor le shows how stochastic independence may fail to'hold,even

though the contractors work "chdependentlY".in
an operational sense. It

also leads to the concept of conditional independence.

Example 1-b

Consider again the case of the .two contractors. There rat be some fdctor

i. the work situation which affects the performance of both. Suppose the-
* 4 -jobs are outside, where performance can be affected by,the weather. Let

C = event the weather is "good". It may barreasonable to suppose.that

:34
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P(AIBC) t(,AlBcC). That is, given good weati4i (i.e., the occurrence

of C), the performance of contractor "b" has no effect on the'perform-
s

ance of contractor "a". A similar situation may hold in the case of

bad weather. Since P(Al C) = P +.P(ABe I C) P (BIM (Al BC) +

P (Bel C)P (Al IfC), the equality P(AIBC) P(Aj BeC) implies that the common

value is P(AJC). Under these conditions, the pair (A,B} will usually not

be independent. There is a "probabilistic tie" between these two events

brvirtue of their relationships to the corm= event C. Let us examine
=40

the contractor example further by assigning Akre reasonable numerical

values. Suppose

P(AJC) . 0.95 P(BJC).. 0.96 P(C) = 0.7

P(ArCe),= 0.45' P(BICe) = 0.50 P(Cc) = 0.3.
*

Udder the ccoditionsP(AJBC) = P(AJBeC) and P(AJ Be) P(Alice),I we have

P{AB) i(C)P(BIC)P(AIBC) + P(Cc)P(Ble)P(AIBCc)

= 0.7 X 0.96 x 9.95 + 0.3 X 0*.5 X d.45 . 0.7059

P(A)P(h) [P(AJC)P(C) +,P(AfCc)P (Cc)] [P(BIC)P(C) + P91e)P(Cc)]

. [0.95 x 0.7, 0.45 X 0.3] [046 x 0.7 + 0.5 X 0.3] = 0.6576.

Thus, P(AB) P(A P(B), so (A,B) is not independent. If the Contractors

work "independently , what is the tie between their performances? If A

occurs,.the likeliho d of g,00d weather is high, so that the likelihood.of
go"

the occurrence of Er is high. The numbers turn fit to 'be P(CIA)

P(AIC)P(C)/P(A) ; 0.8 > 0.7 P(d) and P(CIA) = P(AB) /p(A) = 0.882 >

P (B) . If this is the only effec.tive,,tie between events A an*

B, 'then once the weather is determined, there is no further influence

of the performance of one contractor on that of the o er. /I

Let us examine further the assumption that E(Al BC) P (AIBeC). Straight -
0
forward use ofo

at o cofiditional pr bability and. some

elementary properties show that the follo one are equivalent:
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P(AI,BC) = P (Al C) ,P(BIAC) = P (BIC). P (AB1c) = P($IC)P (BIC)

P(AIBcC) = P(AIC) P(BcIAC) = P (Bc I C) P (ABc I 0) = P (AI.C)P (Bc IC)

P(AcIBC) = P(AcI,C) P(BIAcC) = P(BIC) f(AcBIC) = P(AcIC)P(BIC)

P(AcIBcC) =,f(ACIC) P(BclAcC) =
p(Bcio p(AcBcio p(Aclop(Bcio

P(AIBO) = P(AlBcC) P(ACIBC) = P(AclBcC)

P(BIAC) = P(BIA`C) P(BcIAC) = P(BclAcC).

In view of our discu4 ssion above, it seems reasonable to cafi,le coMmon *
,

situation conditional independenCe, given C. Once C occurs, f he occurrence

or nonoccurrence of B does not further affect the likelihood df A, etc.

As in the.cpe of ordinary or total independence, we utilize the product '

0.rule as the basis of the mathematical definition,valthough some of the other

equ6Sient relationships may be more useful in modeling,

bEFINITION. The pair (A,8) of events is conditionally independent,

given C, iff the neduct rule P(ABIC) = P(AIC)P(BIC) holds.

An arbitrauy class of events is conditionait independent, given C, iff4/14

a corresponding product rule holds for every fiAite subclass of two or more

events Rrom the class.

The product rule shows that conditional independence, given IC, Is
3

juseordinary independence for tilt probability measure Pc() = P(IC).

Conditioning by C leads to a new probability measure. In terms of this°

Tew probability measure, the pair (A,B) is stochastically independent.

;As folE,thel.TrtYPIPbbability measu , we can assert that

If any°of the pairs (A,B (A,Bc), (Ac,B), or (Ac..,Bc) is

conditionally independent, given. C, then so are the Otgert.

In le B1 -b, the conditioning event. C is such that we.have

conditignal independence, given C, and also(' given Cc. If the weather
ti
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is goq, the contractors work independently; they also work independenily

' if the weather lirbad. Such is not the case for all conditioning events.

Example Bl=c

Suppose thetWo contractors Of the previous example use some common item.

Let D = event this item is in gdod supply and Dc = event this item is in

short supply. If the supply is good, it is reasonable to suppose that the

Peaormance of one contractor has no effect on that of the other. Hence,

it'is reasonable to As e that P(AIBD) = P(AlBcD), whiCh is equivalent

to assuming (A,B) is conditionally independent, given D. However, if

the supp1' is sbort(i.e., if 'Dc occurs), the contractors may be iecompe-
.

titian for the scarce item. Thus it may be reasonable to suppose P(AIBDc)

<-1.(AlBcPc) If contractor "b" completes his job on time he has probably

obtained th scarce item to the detriment of contractor "a". This clndi-

tion violates one of the equivalent conditions for conditional independe

Q0110. .

of (A,B), given Dc, so that we must assert conditional ncmindemndence.

It is not difficult to show that in this case the pair (A,B) is not

totally independent.

° .

The following development shows that conditional ind endence, given

one or both and C, is unlikely to yield total inde nd nct\.

In the case of conditional independence, given C, and given Cc,cwe'have

P(AB) = P(AIC)P(BIC)P(C) + P(AlCc)POICc)P(Cc). 6

In the case Of conditional,independence, given C, but conditional non-

'independence, given Cc, .we have

P(AB), = P(A1C)P(BIC)P(C) +P(ABIC:)P(C').

. .

, In either case, we have 1

P(i)P(t) = P.(40P(BIC4P2(C),44UICc)P(BICc)P2(Cc)

+ [p(AIC)P(BICc + P(AlCc)P(BIC)]P(C)P(

7

c



.

Only in unusual cases would we have P(AB)'.. P(A)P(B). An example is

provided in Problem B-5.
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2. Some patterns of probable inference

We now consider a commonly encountered pattern of probable inference.

We begin by giving two examples, then lifting out the essential pattern.

When the appropriate conditional independence is identified, we show how

it may help in determining the desired mterior odds.

Example 82-a
. ..

,o,

Associated with a certain disease are. several symptoms. The presence

of the symptoms does not guarantee the presence of the disease, but with

high probability they occur when the disease is experienced and do not oc-

cur when the disease is absent. The symptoms are observed by chemical tests

of blood samples. The tests thgmselves are not conclusive, but have high

probability of detecting the presence or absence of,the symptoms correctly.

Now the chemical tests respond only to appropriate conditions in the blood

and are not influenced by how the patient feeIs or othelkse responds to

his condition. Let H R event the patignt has the disease, D = event the

symptoms occur (in the blood condition)., and R = event the tests indicate

the presence of the symptoms. Since the tea respond to the symptoms and

not directly to the disease, it seems reasonable to suppose POI* =

.P(RIDHc) and P(RIDcH)= P(R1DcHc), so that (R,H) is conditionally inde-

.

pendent, given D, and given Dc.

ExaIp4 82 -b

A firm plans to market a new product nationally. Suppose the market

may be charaCterized reasonably unambiguously as "favorable" or "unfavor-

able". The company executives decide to check market conditions in a test

area. Let H = event the national market is favorable, D = event thetest
4

39,

110
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market is favorable. Past experience allows reasonable estimates

P(DIH) and. P(Dilic). However, direct, completely reliable determination of

the.conditiOn of the test -area market would be time oonsuming, expensive,

and would entgil the risk of a competitor capturing the market. A market

survey of the test area is matte: the reblts of such a survey are not con-
8

clusive; but under the assumed conditions, they are affected only by the

conditions in-the test area and not by existipg conditions in Irnational
0

market, except as the latter conditions'are reflected in the test area.
,

R = event the survey shows the test market is favorable, we suppose that
C

-P(RIDR) = l'(tIDlic) and P(R[DcH) = P(RIDcHc). This means that (11,10 is'.

conditionally independent, given D, and given DC. 0

B2-2

These two examples exhibit features which are typical of a variety

of inference problems.

1) There s an ob ective system about which some inference is to be made.

In e first example, the objective system is the patient; in the ,
40N

'second, it is the national market. The objective system is presumed

to be in one of two objective stares (the patient has the disease or

does not; the market is favorable or is not). If A.= event the

objectives em is, in one of these states, then prior odds

P(H)/P(Hc) . a > 0 are supposed known (or are estimated).

2) The objective system is not directly observable -- at least at the time

of making tile inference. But there is a data system which day be in 'IP

one of several states ,(in each of the examples above, the data system

is in one of two states). Each data state is "inconclusive" as to

the objective state, but there is a "probabilistic linkage" between

the data states and the objective state4, expressed in termeof

appropriate conditional probabilities, as follows. Let D . event the

414
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data system is in state j (in the two-state system, we,use p

and D
c
). We suppose the conditional probabilities P(D 1H) = b > 0

and P(D 1Hc) = c > 0 are known or may be estimated. Use*oftthe

ratio form of Hayes' rule shows the posterier odds to be

01 P(HIDJ ) /P(HcID.) kH)P(D 1H)/P(Hc)P(D 1Hc) _ab*/c .

3) In a typical situation, we do not have perfect information about the

dta state; rather, we have the report of an observer, or sensor.

For simplicity, we discuss a two-state data system and let R event

the observer reports that D has occurred. If such a report is

received, the effective posterior odds are P(H1R)/P(HcIR)
0

aP(RFH)/P(R1Hc). Since the objective System is not obserNable,

P(R111) and P(R10)-ire usually not known. We suppose information
411-.

is available about the reliability of the observer. That is, we

suppose information is available to estimated,P(R1D) d Ind P(RIDc)

t, with 0 < < 1 and 0 < e < 1. Note that "perfect information"

. about the data system requires e 0 (for any positive value of d).

4) If the objective system is not observablatonly the condition of the

datatttem should affect the report. Thus, we should have P(RIDH)

P(R1DHc) and P(R1DcH) =
I DCHC

) This is precisely the condition

that (R,H) is.conditionally independent, given, 1), and gig ven Dc.

This does not imply that (R,H) is independent.

5) Let us see how the assumptioi of conditival independence may'help in

determining the posterior'odds, given the report.

pc/I IR)...P(H) P(RD111) 4.PARDcIH) °

pick) P(Hc) P(RDIlic) 4. P(RDcIHc) Pk

.. a P(DIH )P(RIDH ) + P(Dc1H )P(R1DcH )

i P(D1Hc)P(RIDHc) + P(Dc1Hc)P(R1D4Hc)

.
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Under the assumed conditional independence, this becomes
F(H-W-. .1(D111-)P(RID) +1,(DPIE )P(Rie)

WIR) P(D1Hc)P(RID)+ P(Dcle)P(RIDc)
4

which may be determined from the data. available.

For a more general formulation of this problem,with more than two objective

states and more than two data states, see Schum and Pfeiffer (1973]. To

illustrate the analysis, we return to the previous examples.

Example B2-41 (Ciontinued) (,

The objective system is the patient, selected at random from among those

who present themselves at the clinic, and H = event the patient has the

disease in question. Suppose 10 percent of the patients examined at the

clinic have the dise e. Then prior odds a 04P(H)/P(e) = 1/9. The data

system is the bycondition. Let D event the patient has the symptoms
r

associated with the disease.
Previous clinical experience shows P(D1H) = 0.96

and P(Dcle) 0 0.95. Let R event the symptoms are indicated. The reliability

of the testing procedure
is such that P(RID) 0 0.97 and P(RII)c) = 0.01. The

patient is examined, a blood test made, and the report is found to be posi-

tive (i.e., event R

P(HIR)

occurs).

0.96 x0.97

According to the pattern

+ 0.04 x 0.01 9316

above

1.78.
= (1/9)

P(tellg 0.05 x 0.97 + 0.95 x 0.01 5220

The positive result of the teat changes the prior odds by a factor of

about 16. The conditional probability that the piatient has the disease,

9316/5220 4given the test result is P(HIR% = n100.64.
' 1 + 9318/5220

We extend the second example to a slightly more general situation.

Example B2-b (Continued)

-NO*
Consider the test - market problem described above. Initially, company

executives think the odds for a favorable market are P(H)/P(e) m 3.

42



*.

Past studies indicate- P(DJH) = 0.8 and P(1411 c ) = 0.2. If the test market

found to be favorable (event D occurs), then

P(H ID) P(1411 )P(H) ILEX
l2'

P(HcID) P(Dle)P(e)
0.2

However, direct, completely reliable checking of even the test market condi-

tions would be time consuming, expensive, and would entail the risk of a

competitor capturing the market. Two market-survey firms are employed to

7,
survey the test market. Each makes a survey and reports its conclusioi

about the condition of the market. Let

A = event firm "a" reports the 'test market is favorable

B = event firm "b" reports the test market is favorable

The companies work !'independently" in such a way that the investigation

carried out by one does not affect that carried out by the other, xegardless

of the state of the test market. Because of the nature of the surveys,

the results cannot be completely reliable. Suppose

P(alp) - 0.9, P(AIDc) = 0.3, P(BID) = 0.8, and P(BIDc) = 0.2.

Find the posterior odds P(HIAB)IP(HcIAB) for a favorable market if both

reports are favorable.
4

SOLUTION.

Again, we are faced with the problem of "independent tests." Complete

*independence of (A,B) is not expected, for the outcomes of both tests

as related to the condition of the test market. However, since the

lervey teams work in an operationally' independent manner and neither team

is affected by the national market except as, it influences the test Market,'

it seems reasonable to assume that P(A1BD) = P(AIBcD), P(AIHD) = P(AllicD),

F(BIHD) = P(BIlicD), and P(AB16) = P(ABIllcD). These conditions ii ly
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that (A,B,H) _is conditionally independent, given D. A parallel ar

yields conditional independence, given Dc. We note that

P(0111) P(ABDIB) + P(ABDcIH) = P(DIH)P(ABIDH) + P(DcIH)P(ABIDcH)

,

P(DIH)P(AID)P(BID) P Dc1H)P(Ale)P(BIDc)

and similarly for conditioning eve t Hc. We May, therefore, write

P(11146) P(1i)P(A.B111) .

P(HcIAI) P(Hc)P(ABIHc)

P(H) P D

P(HC) P(DIHc)P(AID)P(B

D + P D

3 0.11X0.9x0.8 + 0.20.30.2
0.24.9X0.8 +-o.axo.ago.2 147cts 9 2

16

The v lue 9.2 is somewhat less than the odds of 12 obtained if perfect
4

in o tion were available about the test market, as might be expected.

If we do not have conditional independence, the problems are still

' meaningfull, but more detailed information is required for solution. Thus, ,

we need P(RIDH), P(RIDcH), P(RIDHc), and P(RIDcHC). However, in this

case it would be simpler to operate with P(RIH)' and P(RIlic), since R

must be treated as a datum directly related to H. The reason for not

doing this is that the objective system is not av able or observation.

But it is precisely in this situation that we sTould assume that P(RID)

P(RIDH), etc., since if the objective system is not available to the

observer, only the, condition of the data syst

(
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. A classification problem

Suppose subjects:are drawn from two groups. Each subject answers a

battery of- questions, or is otherwise tested with regard to a gkt_of

characteristics: The result is a profile of data for each subject tested.

Each individual is to be classified in one of two groups, on the basis of

the test results. The problem may be formulated if probabilistic terms

ps follows (see Schum and Pfeiffer [1977]).

There are n data classes a
i'

= 1, 2, ..., n, one corresponding

'to eacti question or test. Let

D
ij

event the answer to- question i falls into category (i,j)

Then A4 = Dimi). If the list of possible answereor

hi, is a partition ofresulti is exhaustive and mutually exclusive, then

the basic space on which probability is defined.

We suppose the subjects are drawn front exclusive grOups.

We let Gk = event the individual interviewed belongs to the kth group.

In order to make probable inferences,'we must suppose that thwprobabili-
,

ties P(Gk) and P(DijIGk) are positive and known. If we assume that

no datum is conclusive, we must also have 0 < P(GkIDii) < 1 for all

permissible i, j, k. Since each h
i

is a partition, we have

ij
IG

k
) 1 for each permissible i, k.

j

When an individual is interviewed, a profile is determined. A given

profile corresponds to an event E
p

D
1j1 E °212 D . The various

n
possible profiles are mutually exclusive, so that events of the type E

constitute a partition. We ask, "What is the inferential value of the

compotind event cgrresponding to a profile?" The usual answer is formulated

in terms of the likelihood ratio L = P(E
p
IG

1 p
)/P(EdG

2
) or, eqUivalently,

the log-likelihood ratio A log L . We'may take logarithms to any base,
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so long as we are ccsistent..,

The problem, as it stands, would seem to require that we have condi-

tional probabilities for each.profile,jtor each of the groups. This

--'aucadatt is rarely available, nor is it needed in a we -designed experi-

ment. In the usual experimental design, an attempt is m de to formulate

the questions or tests in such er thaerespons or results are

"independent."-*Once more, we have the issue nditional independence.

The prObabilitiesof various answers to a given question should depend
1

upon the basic Character ics of the eTject (hence on his or her group

Jimmbership), but depend upon his or her responses to the other

questions . That is, a given subject's responseAw a particular question

should be the same whether or not the other stions are asked, or regard-

less df the order in which.they are asked. This does not' mean that ehe

responses to the questidns,are totally independent; the answers are .

conditioned by the group to which the subject belong (i.e., by the Char-

acteristics 4Mmon to that group), else the question have no diagnosiic.

value. The desired independence holds within a given group, but the

probability distributions are different in the two groups. Hence we make

the assumption that the family (hi, Eln) is conditionally inde -

ti
pendent:, van Gl, and also given G2. In this aim

P(Dijily

L = npii .iP(DijilG2) and AP Aij =Elog L
i

6

We may carry the formalism further in a useful way by introducing
o,

random variables
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Ti *,E
j

Ai,ID

If E * D

016,,

(has value -A
ij

whenever D
ij

occurs).

occurs, then T * ET
i

has the value

A + A + A = A . Hence we utilize1j, 2 - nin P A

T = E Ti = B 41,E (has value A s'whenever E occurs).
'P p

Use of Styes' theorem gives

P(GlIE ) P(E IGI)P(G1) P(G2)
log -=-1P=- * log T' * T - t

c
4 where t

c
= logP(G

2
E
p
) P(E

p
IG

2
)P(G

2
) P(G )

1
o

Standard practice is to classify the subject in grOup 1 iff T > t
cP(G 1E )

which corresponds-to >

This formulation allows us to deal with the problem of misclassification

probabilities. Ponsidef the con tional distribution functions F
T
(1G

1
)

and FT(1G2), defined by FT( ) = P(T < tIGk), k * 1, 2. In the con:

ditionallyAndependent cat , Ti: 1 < i < ni. is an independent class with

respect to each of robability Measures P(IGT) and P(IG2). The

central limit theorem ensures that for sufficiently large n both FT(1G1)

and FT(1G2) are approximately normal. Examples show that the normal ap-

.pruiiMation may be quite useful for n as small as 4 or 5.

With the Fonditional distributions for T, standard statistical tech-

niques may'be utilized to determine the probabilities of misclassification

errors. Under some conditions, better choices of the decision level tc

may be madeLt For a discussion of these issues, see Sebum and Pfeiffer [1977].

Example B3-a

Subjects are to be classified in one of two groups. They are asked to
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1

respond to a'battery of six questions, each of which is Co be answered in
. ,

one of three ways: yes, no, uncertain. To calibrate the test, a sample

of 100 subjects is interviewed intensively to determine the proper group

clfsification for each. It is found. that 55 belong in group 1 and

45 belong in group 2. If GI = event a subject belongs to group 1

.and G2 = event a subject belongs to group 2, these data are taken to

l----.._

mean that P(G1) = 0.55 and P(02) = 0.45. ihe response a this cont 1

orocalibration group to the questions is tabulated as follows:_
,ploup...1 (55 members) ,Group 2 (45 members)

. Yes

1

2

3

4

'5

0

17

7

8

14

5
9

No

1

Uncertain

2

26 12

30 18

40 - 7
n
ij31 10

25 15

.33 , 13

Yes No Uncertain

i= 0 -1. 2

i = 1

2

;3

4

% 5

6

30

1_27

29

25

14

31 .

10 5

16 C 2

12 -`, 4

18 2

18 137
. 7 7

'tatj

We haye.assignedvarbitrarily,lhumbers 0, 1, 2 to the answers yew, no,

n$ fespective*. Thus, D10 is the event the answer to question 1.

"yea"; D42 is...1:he event the answer t5 Iuestion 4 is "uncertain," etc. a

interpret the data in the tables.to mean that .P(Dioly = n10155.= 17455
We

6

and P(D421G21 = m4105= i/41, etc. . '

A subject is selected at random frnm:the population from which th
.

.

sample was taken. The subject's. answers to the six quesqons,
b
in orde, ..

16 '

are:fts, yes, no, uncertain, no, yes. How should this subject be

lat6ified?

SOLUTION.
ti

6Thet emenk Ep = D10D2oDs1D42D51D60 has_nccurreti. We."alCulate the value

'9
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r A as follows::

A

A
log = -0.769

10 log P(1)101G )/1P(1) iG "102
.

log -2111 = 11
' A31
, A 10. A2LA1 1.003

27/45 31 12/45
, 090

25/551.1_3(..51

A42
" LO g 2/45

1 409 D A5I = log
18/45

=0.1284

A
60 31/45

= log A1-51 . Summing gives Ap = -1.217.

WS:also find tc = log P(G2)/P(G1) = log 0.45/0.55 = -0.201. Ve thus have

T = A = -1.217 < -0.201 = t
c

; hence we classify the subject in group 2.

To consider classification error probabilities, we could assume the con -

distributionsdistributions for T, given G1 and given G2, to be approxi-

mately normal. By obtiinin onditional means and variances for the various

Ti, we could obtain the itional =pans and variances for T, given GI

and given G2. Standard statistical methods could then be utilized. Ve do

not pursue these matters, since our primary concern is the role of condition-

al indepetidenoe in formulating the problem. fl

' It is not necessary that all the questions be conditionally independent.

There could be some intentional redundancies, leading to conditional

,dependeocies,within each group. Suppose in the numerical' example above

e
that questions '1 and 2 were made to interlock. Then it would be'

necessary to consider this pair of quest1bns as a single composite question
'

with nirne possible answers. Prequeny data would be requiredon each

paie of answers (no,no), (re; yes), (no, uncertain).1 (yes, no), *(yes, yes),

(yes, uncertain), (udcertaim? no), (uncertain, yes), (uncertain, uncertain).

COO would still suppose conditional independence for the set of questions,

p
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Oovided this composite question is dealt with. as one clestia. More

complex groupings could be made, increasing the amount of data needed to

utilize th classification procedure, but there would be no difference in
. -

principle.1

A

a

O

of.

6

5o

i?
0

,
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_4. Problems

8-1 Prove the equivalence of at least four of the sixteen conditions for '

independence Of (A,B).

B-2 Complete chi argument in Exkmple 81-b to show that the equality

PIAIBC) = P(AIBcC) implies that the common value is P(AIC).

8-3 Establish the equivalence of at least fou'of the sixteen conditions

for conditional independence of (A,B), given C.

B-4, Show that the condition i(AIBDc) < P(Alee) in Example Bl-c implies

ie(AIBDc) < P(AIDc).

8-5 A group of sixteen students has bn equal number of.males and females.

One fourth of the females and three fourths of the males like to play,
.

basketball. One half of each likes to play-volleyball. A student is

selected from the group at random, on an equally likely basis. Let

A = event the student likes basketball,

B event the student likes volleyball,

C = event the student ip male.

Suppose (A,B) is conditionally independent, given C, and conditidnally
IP

independentripen C
c

. Show that (.1,B) is independent and --(8,C)

is independent, but (A,B,C) is n011independent.

8-6 In Example 82-b, show that the conditions i) P(AIBD) P(AIBCD),

ii) = P(AllicD); iii) P(BIHD) = P(BleD), .and iv) P(ABIlipr'
,/

C
D) together imply that (A,B,H) is conditionally independent,.

.y

given D.

B-7 In Example B2zb, determine i(HI AB*)/P (RC' the conditional'

odds, given conflicting reports of "favorable" by "a" and "unfavorable"

by "b".

51
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B-8. Consider the following problei, stated in a manner common in the

A\L,literature. A patient is given a test or a type of cancer. The

probability of a false positive is 0.10. The probability of a false
%

negative is 0.20. One percent of the tested population is known to

have the disease. If a patient receives two independent tests, and

both are positive, find the probability the patient has cancer.

a) Let C = event the person selected has the given type of cancer

T
1

= event the first test indicates cancer (is positive),

140T
2
= event the second test indicates cancer.

Diacuss the reasonableness of the assumptions that (T1,T2) is

conditionally independent, given C, and-is conditionally

independent, given Cc,

b) Under these assumptions, determine P(CIT1T2).

c) Under these assumptions, determine P(CIT1T2).

B-9 A student decides to determine the odds on the forthcoming,football

game with State University. The odds depend heavily on whether State's

' star quarterback, recently injured, will play. A couple of phone calls

yield two opinions whether the quarterback will play. 6cItreport

depends only on facts related to the condition of the quarterback and

not on the outcome of the game (which is not knOWn, of course). The

two advisers have operated quite independently in arriving at their

estimates. The student proceed? as follows. He lets

W = event thetome team wins the game,

'Q event the 'ptar quarterback plays for State,

ti
A = event the. first informant is of the opinion he will play,

B = event the second informant is of the opinion he will play.

The student (having studied Example B2-b) decides to,assume W,A,B)

is conditlionilly independent; giVen Q, and conditionally independent,
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given Qc. On the basis of past experience he assesses thereliability

of his advisers and assumes the following probabilities: P(A1Q) =

P(ACW) = 0.8, P(BIQ) = 0.6, and P(BcIQc) = 0.7. Initially, he

could only assume P(Q) = P(Qc) = 1/2. Expert opinion assigns the

odds P(WIQ)/P(WcIQ) = 1/3 and PtWIQc)/P (wci_c,) '0/2. On the basis

of these assumptions, determine the odds P(WI ABc)/P (Wc1ABc ) and the

probability

B-10 A studgnt is picked.at random froM a"large freshmalclass in calculus.

Let

T = event the student had a previous trigonometry course,

A = event the student made

B = event the student made

grade "A" on the first examination,

grade "B" or better in the course.

Data on the class indicate that

P(T) = 0.60 P(AIT) = 0.20 p(AITc) = 0.30

P(BIAT) = P(BIA) = 0.60 P(BIAcTc = P(BIA5) = 0.30.

The student selected, made "B" or better. What is the'probability

1B) that the student kad a previous course in trigonometry?

Show that (T,B) is not an'independent pair.

B-11 EXperidhce shows that 20 percent of the items produced on a production
a

vi
line are defective with respect to surface hardness. An inspection

procedure has probability 0.1 of giving a false positive and probability

0.2 of giving a false negative. Units which fail to pass inspection

are given a corrective treatment which has probability 0.95 of

correcting any defective units and zero probability of producing any

adverse effects 4n the issential properties of the units treated.

.11eiWev:r, with probability 0.3, the retreated unite take on a character-

,
istic color, regardless of whether or not they are defective (initially
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or; finally). Let

B4-4

D
1
= event the unit selected is defective initially

Ic = event the unit failed inspection = event unit is retreated

, D
2
= event the unit is defective after retreatment

C = event the unit is 'discolored ifter retreatment

a) Show that it is reasonable to sunpose that (C,D1) is conditionally

independent, given' IC, and that (C,D2) is conditionally inde-

pendent, given IcD1. [Note that IC = 0 and P(D1D2) =.

b) Determine P(D2IC), the probability that a unit is defective,

. given that it is discolored.

..,. , I d .,

t. 7.. 41;12 In the classification problem, Example B3-a, determine the appropriate

-
.

classificdtion if the answers to the six questions are: yes, no, no, ,

44
uncertain, yes, no, respectively

1'

&,
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C. CONDITIONAL EXPECTATION

1. Conditioning by an Eveni

.
a

C1-1

2. Conditioning by a Random Vseor:Special Cass 0 C2-1

3; Conditioning by a Random Victor-General Case C31

4. Properties of Conditional Expectation

5. Conditional Distributions

8. Conditional Distributions and Baps' Theorem
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7. Proofs of Properties of Conditional Expectation
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C. Conditipnsl expectation

In order to introduce and develop the second concept of cdnditionaI.

independence, we 'need to examine the concept of conditional expectation.
0

The usual introductory treatment of conditional expectation is.intuitive,_

straightforward, but severely limited in scope. More general treatments

tend to assume familiarity with advanced notions of Measurability and

oabstract integration theory, We se k to bffdge the gap and make the.appro-
-

priate aspects of a general treatment mare,readily ea6cessible.

I. Conditioning by an event.

.1 If a conditioning event C occurs, we modify our probabilities by

introducing the conditional probability measure AP(1C). Thus, P(A) is

replaced by P(A(C) = P(AC)/P(C). In making this change; we do two things: 1,
A

1) We limit the possible outcomes to those in event C

d.

"normalize" the probability mass in C to make it the new unit

'of matis

It seems reasonable to make a corresponding dodification of mathematical'

expectation, which we view as a probability weighted average of the

values taken on by a random variable. Two possibilities are apparent.

7 '
a) We could modify ithepriof probability measure 11(- to the conditional

probability,measure. P(IC), -,then take expeCtation "(i.e:, weiglita

average) with redpect to this Aew.probability mass assignment.

,) We could continue touse the original probability measure P-( .and4

modify our averaging process as follows: L.

i) For a real random variables X, ne consider the value X(w) -for

only those w in the event C. We do this by utilizing.the

random variable I
c
X, vIihich has the value X(w) , for w. in C,

,

and has the valuezero,for any w

.1'

outside C. Then Eft XI is '

lo
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the probability weighted sum of the 'Values taken on LI X in

the event C.
4

ii) Wedivide the weighted sum by P(C) to obtain the weighted

average .

As shown by Theorem C1=1; below, these two approaches are equivalent

For reasons which will become more apparent in subsequent developments,
o ...

-wetake the second approach as the basis for definition. For one thing)
4.0.....-

.

wecan the "summing" iu each case with the prior probability measure,

then o twin the average by dividing by P(C) for the particular condition-

. .ing event. This approach facilitates relating the present concept to the

°
more general concept of conditional expectation, given a random vector,

'wh'ich is developed in the next two sections,

DEF/NITNemoif the event'` C Was positive probability and indicator

_function IC, the conditional expectatico of X, given C, is the

quant4y X(XICI = E[le]/P(C),

Several pneties may be established easily,

Theorem Ck-1 1,

a) E[XIC], is expectation with respect to the conditional probability

measure P(C)
4

b) XIIAIC] = P(AIC)

c) If C C (disjoint union), then S[XIC]P(C) = E E[XIC ]P(C ).

PROOF OF a)

-
if X itea simple random variable E t

k
I then

k

E[XIC] = E[IcX] /P(C) = E[fc tk1c144,] /P(C) E tk EftAkci/p(o.

. E tk,pokic, = EC[X]

whereZtlIa'symbol EC[] indicates expectation with respect to the condi-
.

tionul probability measure P(IC).
SO
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If X > 0, then there is a sequence (Xn: 1 < n) of simple random'

varilkl(s increasing to X. This ensures that the sequence (len: 1 < n)

is a 'sequence of simple random variables increasing to Ie._ By definition,.

EfICX] /P (C) lim E[IcXn] /P (C) anti E
C

= lim Ec[Xn]
nn

Since ErIen)P(C) = Ec[Xn] for each n, the Timits must be the same.

vIn- the general case, we consider X = X+ - X., with both X+ > 0 and

'X- >b: By linearity,

E fie) /P (C) E (IA) /P (C) - E[y] /P (C) = EC[X +] - Ec [X) = EcIXI.

uPropositions b) and c), are established easily from properties of

Mathema_apel expectation.

The,following theorem provides a link between the present concept and

\ki the more.,general concept developed in the next two sections.

Theorem:C1:2 .

If event C Y
-1(M) = (Y E M), for any Borel set M, has positive

probability, then Eli (Y)g(X)] E[g(X)IY E 1.111)(Y E M).

PROOF.

By Theorem Al-f, = IC. By definition E[Icg(X)] = Elg(X)1.C]P(C).

Hence, ErIm(Y)g(X)1 = Efg(X)1Y E 11.1P(Y E M). -0

It should be noted that both X and Y can be vector-Veit:V. The function

g must be real-valued, and M is any Borel set on the codomainof Y.
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2. Conditioning, by a random,vector-- special cases

In this section, we consider two simple, but important, cases of

conditional expectation, given a random vector. We make an intuitive

approach, based on the idea of a conditional distribution'. In each case,

the conditional expectation is found to be of the form E[g(X)IY = u] =

e(u), Where e() is a Borel fuhction defined on the range of Y. This

function satisfies, in each case, a fundamental equation which provides

a tiellith the concept of conditional expectation, given an event, and

which shrves as the basis for a number of important properties. This

fundamental equation also provides the basis for,extending.the concept of

conditionai\xpectatn, given a random vector, to the general case.

Case i) X, Ydistriete.X=EtI andY=ZuI , where
1=1

ti IA

j=1
j B

j 4
Ai = (a: X(w) = ti) and Bj = (w: Y(w) = uj). We suppose P(Ai) > 0

and PCB J) > 0 for each permissible i,j. Now

E[g(X)IY = uj]P(Y = uj) = E[g(X)IBj]P(Bj)

= E[g(X)IB ] by def.

(
E[g(X)I (Y)] by Thm A1-1

4i)
g(rdltu i(uk)pxy(ti,uk)

's ik j)

= £ g(t.)pxy(touj)
i

If we consider the conditional probability mass function

p2iy(ti,u ) P(X = ti, Y = uj)
pxly(tilui) =

py(uj) P(Y = uj)

we may write

E[g(X))Y = uj]P(Y uj) F g(tdpxly(tiluj))p;(u.1)

from which we get

E[g(X)1Y = uj] = f g(ti)pxly(tilu

60

since I
(u )

^(u
k
) = 1

iff j = k.

= e(u j) for each u
3

in the range of
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We e(') be any continuous function.which takes on the prescribed

values e(u ) for each uj in the range of Y. Then e(). is a Borel

function. Suppose M is any Borel set on the codomain of Y. Then

E[Im(Y)g(X)] = E g(ti)yuk)pxy(ti,uk)
i,k

= E g(ti)Im(uk)plciy(tilnk)Py(uk)

i,k

= yukgef g(c)plciy(tiluk)]py(uk)

=
k

1
M
(u
k
)e(u

k
)p
Y (w

k
) = E[Im(Y)e(Y)).

Hence, e() must satisfy

E[Im(Y)g(X)] = E[I._m(Y)e(Y)] b Borel set M in the codomain of 'L

The uniqueness property E7) for expectations ensures e(.) is unique

ads. [Py], which in this case means e(.) is mniquely determined on the

range of Y.

Example C2-a

Suppose X, Y produce the joint distribution shown in Fig. C2 -1. De-

termine the function e(.) = E[XlY = 1. .
SOLUTION.

Iraq the joint.distribution, we obtain the quantitiefill

py(1) = py(2) = 3/10 p '(.37= 4/10

Ny(111) =pxly(211) ..plciy(3j1) .
3/10 = 1/3

pxiy(411) = pxr(511) =

Hence e(1) = 1/3(1+ 2.+ 3) = 2.

Simifaily 6(2) = 1/3(2 + 3+ 4) = 3 and e(3) 1/4(2 + 3 + 4 + 5) = 7/2

Graphical interpretation. The conditional probabilities pxly(k)u), for

fixed u, are proportional to the probability masses on the horizontal line



1/10
. .

MID

1/117 f/10 1/1

1/10 1/10 1/10

--
°1/10 1/10

o,

-rigure,C2-1. Joint. distribution for Example C2-a.

frf(t,u) = over triangular region

MEL.
(9,?)

Figu C?-2. :Joint)distribution for Example C2-b.
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corresponding to Y = u. Thus, E[XlY = is the center of masspfor

that part of the joint distribution which correspcinds to Y = u.
El

Cue ii) X, Y are absolutely continuous; with joint density function fxr
.110

Since the event -(Y = u) has zero probability, we cannot begin with

conditional expectation, given the event (Y = u).' We may utilize, the

intuitive notion of a conditional distribution, given Y = u, by employing

the following device. Let

floy(t1u) =
.13c1(t,u)/fy(u) for I (u) > 0

0 otherwise-

- Fos-facedu-zsuch-that-- f {u) -(1.-e.Tibx-the-ramge-br- -the-futiEEMI----

fxiy(. lu) has the properties of a density function: fxl(t lu) > 0 and

fX1Y(titi) dt -1: It is natural to call this the conditional density

function for X, gym Y = u. In part, the terminolg9 is justified by

the following development. Ler M be any Borel set on the codomain of Y.

Then /
E[g(X)Im(Y)] = g(t)Im(1.)fxy(t,u) dtdu

= I IM(u)E$ g(t)fxiy(tlu) fy(u) du
0

= Im(u)e(u)fy(u) du = EtIm(Y)e(Y)k.

w here' e(u) g(t)ixiy(tlu),dt.

Now e() must satisfy

EC/m(Y)8(X)] = E(Im(Y)e(Y)j V' Borel sets M in the codomain of Y.

It seems natural Co call e(u) the conditional expectation of g(X),' given

y u. In the case P(Y e > 0, we-lave by Theorem C1-2

Efim(Y)e(Y)] = J Im(u)e(u)f
Y (u) du-. E[g(X)IY E M]P(Y E M)-. .

If ee.) is Borel, as it will be in any practical case; property E7) for

expectation ensures that e(Y) is a.s. lipique, or e() is unique a.s.- [Py],

which means that it is determined essentially on the range of Y. fl
.1
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fw
Example C2-b

.

Suppose X, Y produce a joint distribution. which is uniform over

the triangular region with vertices (0,0), (1,0), (0,1)', as shown in

Fig. , C2-2. Now
1-u

fy(u) A. 1 fxy(t,u) dt A. 2 lc dt

and 1,

1

u for 0 < t 1 - u, 0 < u < 1 (and zero elsewhere).fXIY(t'u) 1 - , c' . . .
Hence 4 0

, A . 1-u
OA/ .. EfICLY A. u] .. r t /Teruodr le----- ---1---, t dt 7_____

.- - X Y I. u-
1 - u 0 < Lt.< 1

A. 2(1 - u)
,4

0 < u <

Graphical interpretation. The dashed line in Fig.. C2L2 is the graph of ',

e(0) vs. u. This couli have been anticipated by ?he following graphical...
I " I.,c-, .

interpretation. If *f
XY

' i) continuous, we may visualizc . fxly(tlu) as .,

A .

proportional to he mass per unit length ,in a very narrow strip.on'the plane

about the line corresponding" to Y u E[XIY A.u] is the center of mass,
" .

of die portion of the joint distribution lying in that narrat - -

. . 4.
,)

o
t

ry

p
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3. Conditioning by a random vector-- general case

The treatment o the special cases in the previous section begins

with the notion of a conditional distribution. While this approach is

intuitively appealing, and quite adequate'for the simplest cases, 11

quickly becomes unmanageable in mire general cases which involve random

vectors of highei dimensions with mixed distributions. We seek a more

satisfactory approach.

We base our development on a simple property derived in each of the

two special cases considered in the previous section. In each case, the

antity-called the conditional expectationlof g(X), given, Y = u, is

the value e(u) of a Borel function e() which is defined on the range

of Y. The random variable e(Y) °satisfies

A) E[Im(Y)g{X)] = E[Im(Y)e(Y)] V Borel sets M in the codomain of

By the uniquene;s property E6) for'mathematical expectation, e(Y)

53-1

must

be a.s. unique, which is equivalent to the condition e() is uni e,

f as. [Py]. By Theorem C1-2 on conditional expectatio4, given event,

we have

B) If P(Y E M) > 0, then E[IM(Y)e(Y)] = E[g(X)IY E

Motivated by these developmentp, we'make the ,

DEFINITION. Let e() be a real-valued, Borel nction defined on a

(Y E 14)

set which includes the range of random vector Y Then the quantity

e(u) is the conditional expectation of X), given Y = u, denoted

E[g(X)IY = u]' iff

A) E[IM(Y)g(X)] = E[Im(Y)e(Y)] rel sets M in the codomain of Y.

Associated with the Borel functi e() is the random variable e(Y).

e'

Now e.() is unique.a.s. and e(Y) is unique a.s.

651



0

.03-2

t ,r
DEFINITION. The random variable e(Y) is calyild the conditional

" . 1. -.

expectation of g (X) , Ian Y, denoted Erg (X) I Yl .

04

Note that we mist distinguish between the two symboin

a) E[g(X)IY = ] = e(), a Borel function on the range of Y

b) E[g(X)1Y] = e(Y) a randomiariable-- for a given w we write

E[g (X) Y] (w).

dta

Example C3 -a

If the conditioning random vector Y is simple, an explicit representation
m

of e(Y) = E[g(X)1Y]' is obtained easily. Suppose Y= jE, uj l
Bj

(in

.
canonical form-- see Sec Al), so that Bj = (Y = uj ) and I

B
= /(u )(Y).

j i

If e(u) E[g(X)1Y = u], then e() is defined for uj in the range

1 tof. Y by e (uj ) = Erg (X) I Y 7 uj] - Eti(u)(Y)g(X)]/P(Y = uj) (conditional

expecxpectation, given the event (Y7 uj)). Hence,tation,

(X) = Z e(u,)lu = E E[g (X) I Y 11 j]l (u )(Y).
j=1 j=1

Thus, when the conditioning random vector is simple, so that P(Y = uj) > 0,

the concepts of conditional expectation, given the event (Y = uj), and.

'of conditional expectation, given Y = uj, coincide for uj in the range

0

of Y, and the same symbol is used for both. Use of formula B),*%tbove,

gives

E MiP(Y E[Im(Y)e(1)] r
E[g(X) = uj]E[IM(Y)1,(u )(Y)].

The quantity. E[Im(Y)I )(Y)] = P(Y iff uj E M, and is zero

otherwise.
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Exele C3-b

Consider the random variables X, Y in Example C2-b. Let M be the

semi-infinite interval Ct.:0, 0.5], so that (Y E M)-= CY < 0.53. Then
0.5

P(Y E M) = f,(u) du = 3/4 [May be obtained geometrically:]

0.5
ElItia)e(Y)] = e(u)fy(u) du = f°0'5 (1 - u)2 du 9,7/24.

4:Zence

E[XIY< 0.5] = (7/24)/(3/4)
0

In each of the two special cases conSidered'in Sec C2,-wd IN been

able to produce a Borel function e(.) which satisfies the definpg relation
\J44

A) for conditional expectation'. The uniqueness property E6) shows

e() to be unique a.s. [Py]. In .Sec C4, we state a number of properties

of conditional expeCtation which provide the basis for much of its usefulness.

In Sec C7, we provide proofs of these properties based on proposition A)

and properties El) through E6) for expectation. These properties hold

whenever the appropriate Borel function e(.), exists. Thus, they hold

for the two special cases ekamined in Sec C2 and for otter which can be

derived similarly. It would be convenient if we knew theCCnditions under

Which suitable e() exists: As a matter oflact, if we utilize the

powerful existence theorem E10) or mathematical expectation, stated without

proof in Sec A2, we may assert the existence of e(.) for any randorg

vectors X, Y and any real - valued Borel function g(.) such that E[g(X)]

is finite.,, The properties obtained in Sec. C7 then hold in any such case.
,

o )
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4""
Properties of conditional expectation

In t ection, we list -the pirpciParprept4es of conditionll

expectation, gi n a random vector, which are utilized in subsequent

developments. Pr ofs are given'in Sec C7nPlfiese are based on the defining

relation A) and .roperties El) through E6) for mathematical expectation.

, 6

In the f. ,owingt we suppose, withouvrepeated assertion, Chat the

random vectors and Borel function,'" are such that the existence of

ordinary expectations is assured.

st of properties with the defining condition.

E[g(X)1Y] a.s. iff ELIM(Y)e(Y)J = ElIm(Y)g(X)J for all

Sorel sets M in the codomain of Y.

.
As noted in relation B), in Sec C3,

CE1a) If P(Y E M) > 0, then E[Im(Y)e(Y)] = E[g(X)IY M]P(Y E M).

If, in CE1), we let M be the entire codomain of Y, so that IM(Y) has

thertonstant value one for all m, we obtain the important afaecial case

CE1b) E[g(X)] EfEEE(X)IY1).

''The device of first cdhditioning by a random vector Y and then taking

expectations is often useful, both in applications and in theoretical

developments. Asa Ample illustration of the process, we continue an

o earlier example.

Example C4-a (Continuation of Example C2-b)

,Consider, again, the random variables X,Y whichfProduce a joint distri-

bution which is uniform over the triangu,ar region with vertibes (d,0),

(1,0), (0,1). It is shown in Example C2-b that

f;(6 = 2(1 7 u) for < u < 1 '(and zero elsewhere)

C'e(u) E[XlY u] = 1
2

u for 0 < u <

68
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By CE117)

E[X] = E[i(Y)] = S e(u)fy(u) du = So (1 - u)
2

du = 1/3.
,J

The result could, of course, have been obtained by finding f
X
(t) =

.

-'2-(1 -='t) --for- 0 <-t < 1-- and-calculating

1
EE[X] = 1 tfx(t) dt =.,2 Jo (t - t

2
) dt = I/1

)
The choice of approach depends upond the objectives and the information

..) .
.

_at hand.
0

-74
.

The'next three propirties emphasize the integral character of conditional

expectation, since they are, in direct parallel with basic properties of

e XpectatiOna,or integeks7: One'must be aware, of course, that for condi--

.,
.

.
.

. .

'tional expectation the properties'May fail to hold on an exceptional set
I.

.

of'OutComes whose probability is zero. The proofs given in Sec C7 show

how these properties are, in fact, based on corresponding properties of

mathematical expectation.
a

CE2) Linearity.. E[ag(X) + bh(Y)tZ] 3 aE[g(X)12] + bE[h(Y)JZ] a.s. (with

extension by mathematical induction to ony finite linear combination.)

CE3) Positivity; monotonicity.-

g(X) > 0 a.s, implies 'E[grlY] > 0 a.s. .

g(X)>h(Y) a.s...4,itaplies-'E[g(X)1Z] >01,(Y)12] a.s.

Monotone convergence. X
n
-o X a.s. monotonically implies

EIX,I1Y] EEEIA- a.s. monotonically
7r

lnslepenlience of random vectors is associated with a lack of "conditioning"

` in:the following sense.

-*if)

4

CE5) Independence. The pair (X,Y) is i ndependent iffi

E[g(X)IY] = E[g(*)] a.s. for all Sorel functions (g such that

E[g(X)] is finite, iffi

E[IN(X)] a.s. for all B6rel sets N on the codbmain of X.
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Note that i not sufficient ;)tt E[g(X)1Y] = E(g(X)].a.s. for one,"

specific Borel function g. It is relatively easy to establish counter-

examples (see Problem C-5),

Use of linearity, monotone convergence, and approximation of Borel

functions by step .functions (simple functions) yields an extension of CE1).

CE6) e(Y) = E[g(X)IY) a.s. iff E[h(Y)g(X)] = E[h(t)e(Y)) for all Borel

functions h such that the expectations exist.

.6
The next three properties exhibit distinctive features of conditional

IV
,

\
expectation which are the basis of much, of their utility. Proofs rest on

pr viously established properties of mathematical expbctation, especially

part a) ,f E6).We employ these properties repfatedly in' subsequent
/

developments. ,

CE7) If X =,h(Y), 'then 'ifg(XIIY] = g(X) a.s.

CE8) g[h(Y)g(X)Iy] = h(Y)E[g(X)LY] H.S.

CE9) If' Y'= h(6, then E(Efr(X)1Y]lQ) = E(E(g(X)IWIY) = E[g(X)1Y] a.s.
. 1

It occurs frequently that Y Is a random vector whose.coor,..u....21111dil ford a

subset of the coordinates of W. Thus, we may consider W = (Y,Z), which,

implies ;Y is-a Borel function of W, so that 0

CE9a) k(E(g(X)14Y]tY,Z4 = i(E[g(X)[Y,Z1IY) = E[g(X)IY] a.s.

If the function h

that,the roles of'

CE9b) If 'Y 101(W)

then E[OX)

in CE9) has a Torel inverse, then W = h
-1

(Y), so

Y and W are interchangeable. Thus, we may assert

, Where h. is Borel wits ac.Borel inverse,
t

- E[g(X))14) a.s.

We note two special cases of CE9b). If thetbordinates of Y are obtained

its a permutation of the eoordiaates of W, then Y = h(W), where h is

one-one-, onto, and continuous, hence Borel erith.Boiel inverse. Thus,- .

conditioning by a random vector doe'S not depend upon the particular ordering

of_the coordinates. If we have a pair of random vectors (X,Y) which do 4.
.

,,
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not share any coordinates, 'then conditioning by the ;air is understood as

'conditioning by th andom vector (X,Y) whose coordinates consist of

0

the combined set of coordinates of the two random vectors (in any order).

In a similar manner, we can consider two Vandom vectors whichmayhave

some coordinates in common. Conditioning by such a pair is understood as

.
conditioning by a random vector whose coordinates consist of the combined

set of distinct coordinates. For example, suppose X = (X1,X2,X3) and
.

Y = (X
1' 3!

X
4
). Then conditioning by X,Y is conditioning by W =

(tidie*X3,X4)* It is apparent how these ideas extend to larger combinations

of vectors.

The next result is so plausible that it is frequently taken to be
4

evident.
0

Although it is easily established in certain simple cases, it is

self

solme4hat difficult to establish in the general case, 46 noted in Sec C7.

It is extremelYuieful in the Borel function form, as follows.
tt

CE10) Suppose 4 is a Borel function,such that E[g(X,v)] is finiteifor__..

all v in the range of Y' and E[g(X,Y)].,_ is' finite. Than

E[g(X,Y):Y = u] = E[g(X,01Y':: u] a.s. [Pv]'

.-InAte independent case, CE10) takes a useful-form.

CE11) If the pair C, Y) in CE10) isindependent., then,

= u] = S[C(X.0] a.s.

Among the idequalities for expectations which can be extended to

condittonal expectations, the following are useful in many applications.

CE12) Triangle inelvality.
.

.< E[IE(X)IIY] a.s.

CE13) Jenien's inequality. If g is- a'- convex function on an interval L

!Which contains the rsnee of
e n

';eal random variable ,X, the

. g(E(X1Y1)<E[g(X)IY] aTs.
',. 4

ilotablishIlii# of inequalities for conditional expecpation (as forexpectation)
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Q;*

depends upon setting up the appropriate inequalities.for random variables,

then utilizing monotonicity CE3). The inequalities on the random variables

are often expressions of classical inequalities in ordinary analysis. As

in the case of expectations, monotone convergence plays a key role in

establishing analogs of Fatou's lemma, dominated convergence, and countable

additivity.

,

F

0
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C5-1

The introductory treatment of the special cases of conditional expecta-

tion in Sec C2 utilizes the notion of conditional distribution. In Sec C3,

however, we disregard this notion in developing the general concept of condi-

tional expectation, given a random vector. In the present section, we show

that conditional probability and conditional distributions can be treated

as special cases of conditional expectation.

By properties CE1b) and Ela),

Eam(Y)E[Iti(X).1Y] ) 111FLIII(X)1Y = u] dFy(u )

EEIN(4)1Y E M)P(Y E M) = P(X E NIY E 14)P(i CM).

This leads naturally to the
............../....

,

. ---

DEFINITION. P(X E NI Y u) E[IN(XIY ...! u] a.s. ,

If X is real-valued and N = (-, t], then we set
i

t
00,

Fvfy(tiu) . P(X < tly14= u) =.E[INt(X)IY = u] a.s.
. "

.

For each fixed t, this defines a Sorel function of u with properties.., s.. . .

wAlcOsuggest that for each fixed 'u in the range of Y the' function
.. .

;Floy(14) should be a distribution func4on. One property of interesC

it the following. ./ '''

.N

.. .1 .
. ,P(X < t,Y E M) Efts (X)Im(Y)J Eali(Y)E[IN (X) I Y] )

. t t
...

= Teiy(tlu). clFy(u)

from which it follows as a special case arat

Fx(t) 'E(Ellk, 001Y)) 11" Fxly(tiu)-dFy(u)
t .1

'This last equality is often known as the law of total probability, since

4 appears as a generalization of a rule knqvat by .that name,
.

P (A) F. P (Ai )P(Bi ), where Ac

* The material in this section is not needed in the subsequent "sections
al, 4

to4 may be omitted without loss of continuity.
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There are some technical difficulties in dealing with Fziy(lu) as

a distribution function. These arise because for each real t there

IS an exceptional set of u of 913y. measure zero. That is Fziy(t

P(X < u) a.s. [Py] . Since there is an uncountable infinity of

real numbers t, certain problems can arise with which we are not equipped

to deal. In the case of joint density funttions.or of Jointly discrete

random variables, the motivating treatmeqEof Sec C2 indidates the problem

may be solved. For a real random yarlable X, a distrikutioh. function

is determined by its values on the rationals, which involves only a

countable infinity of values. Thus, it is known that for real random.

variable X and any random vector Y there is a regular conditional

distribution function, Elm Y, with the properties

1) Fziy( lu) is a di tribution function for a.e. u ,

2) For each real t, iy(tiu) = P(X < tIY = u) for a.e. u [Py]

. 3) E[g(X)IY = ul =1 g(t) dFziy(tIu) for a.e. u [Psi].

In some cases, for a.e. fixed u, Fxly( lu) is differentiable and
.

the function fziy(lu) defined by
Ak,

fziy(t1u) h.Fxiy(tiur-
is a conditional density,function for X, aka% Y = u. This

with the conditional dinsity function introduced in Sec C2.

agrees

As an important example of the use of these ideas, consider the

problem of determining the distribution for the sum Z = X tY of two

random variables X,Y. I.f tie let Q = ((t,u): t u < v) (see Fig,. C5-I),

then

Fz(v) = P.(X + < v) = P[(X,Y) E Q1 = ErIg(k,Y)1 = E(EfIq(X,Y)4Y1)

= EfIn(X,u)IY = u1 dFy(u) by CE16).

'r
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/
For each fixed v, (t,u) E Qviff t + u < v iff t < v - u iff.
t E vim. Renee, IQ(X,u)= IN (X), so, that

v-u
EEIQ(X,u) = Fzly(v-ulu). a

b

If FIly Is a regular conditional distribution, then
. . /4

Fz(v) Fziy(v - uju) dFy(u). 1
7

°

If. (X,Y) is an independent pair, then Fziy(v - ulu) Fz(v - u) a.a. [Py]:
ao that. ,

Fz(v)* Fz(v - u) dFy(u).

This last combination is known as 'qhe convolution of Fz with , FY.

N

4

Was,
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6. Conditional distributions and Bayes' theorem

We suppose a regular conditional distribution has been determined.

'It frequently is necessary to reverse the conditioning, as in Bayes theorem

for events, In the following we treat X, Y as real=yalued. Extensions

to the vector-valued cases are immediate.

a) If both X,Y, are discrete, there is no problem. If we let
4

Pxly(tily = P(X = tilY = uj), and similarly for the other cases, then

px1,(tiluj) pi(uj)
pylx(ujIti) =

p
X
(t )

b) If there is a joint density function, then by definition

fxly(tlu)fy(u)
f
YIX

0110 =
f (t) for f

x
(t) > 0,

' c) Suppose X is discrete and Y is absolutely continuous.

Fyi(ulti) = P(Y ulx = ti)

EL/N (Y)Ift 1(X)]/E[Irt ,(X)]
u

EU, (Y)E[I(to(X)IY])
5"u

EcELI(t )(X)IYI

u
P(X = tilY = v)fy(v) dv

SP(X = tilY = v)f (v) dv

Differentiation by u gives

11.(X = tilY = u)fy(u)
fyix(uiti) =

Simple algebraic manipulation gives,

fyix(ulti)P(X = ti>)
P(X = t IY u)

f (u) for fy(u) > 0.

by CE1)

s.

A

04.
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7. Proofs of the properties of conditional expectation

In this section, we show that if e(.) is a Borel function which

satisfies the defining relation A) E[IM(Y)e(Y)] = E[Im(Y)g(X)] for

any Borel set M on the codomain of Y, then properties CE2) through

CE13) hold for e(Y) = E[g(X)1Y]. Note that when we write e(Y) = E(g(0),

we are asserting that e() satisfies the defining relation (A) and must

the'refote be unique a.s. (Py).

In the proofs, we employ the propefties El) through, E6) of

mathematical expectation. Actually, we need only the 'Ampler part a)

of property E6). Note that the proofs do not involve the complexities

of conditional distributions. The reader whowishes to go through the

proofs carefully, may wish to use the summary of properties of mathematical

expectation in Appendix I. tally of the:use of these properties might

be instructive. To simplify writing, we drop the "a:s." in many places.

At several places, the arguments require an acquaintance with

measure-theoretic ideas beyond that assumed of most readers. In these

instances, we sketch the ideas of the proofs, in order to indicate to

the interested reader what to look for in,seeking a more complete treat-

ment. The goal is insight into the mathematical 'structure as, an aid to

interpretation and application.

CE2) Linearity.

It el(Z) = E(g(X)12], e2(Z) = E[h(Y)1Z]I e(Z) = Efag(X) +'bh(Y)IZ].

For any Borel set M in the codomain of Z, we have.
A

E(Im(2)(ag(i)-+ bh(Y)]) = E[Im(Z)e(2)]

Also

E(Im(2)(ag(X) + bh(Y)]) = aE(Im(Z)g(X)] + bE(Im(Z)h(Y)]

= aE(Im(Z)el(Z)] + bE(Im(Z)e2(Z))

='Eam(2)(ael(Z) + be2(2)]) .

by CEO.

by E2)

by CE1)

by E2).
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By E6), we have e(Z) = ael(Z) +11e2(Z)

e83) 'Positivity; monotonicity.

g(X) > 0 a.s. implies EfIm(Y)g(X)] > 0 . by E3)

implies EN(Y)e(Y)] > 0 by CE1).

Suppose 'e(X) < 0 for a) E A. Then there is a Borel set M.. with
A = Y -1

(14...0 ). Thus, Imo(Y)e(Y) IAe(Y) < C. By E3), we have

Efi(Y)e(Y)) < 0, with equality iff IAe(Y) = 0 But this requires
P(A) = 0, iihiCh re-iqurvalent to the condition e(Y) > 0 a.s.
Manotonicity follows from positivity and linearity.-

CE4 ) Monotone convergence.

Consider the nondecretsing case Xn t X a.s. Put en(Y) s E[XnlY] and

e(Y) = E[X1Y]. Thekby tE3), en(Y) < en.fi(Y) < e(Y) a.s., all n >41.

The almost -sure restr c on means that we can neglect an event (set If w)
vg*p of zero probability and have the indicated relationship for all other a).

By ordinary rules of limits, for any a) other than the exceptional set, we
we have e*(Y) = lira e (Y) < e(Y), which means the inellualities hold sa.a.n n '
For any Borel set M,, IM(Y)Xn t IH(Y)X and I (Y)en (Y) t I

M
(Y)e*(Y) a.s.

so that by monotone convergence for expectation,

ErIm(T)en(T)/ = E[Im(Y)Xn], E[Im(Y)X] = EfIm(Y)e(Y)] and

El/m(Y)en(Y)) t E[IM(Y)e *(Y)]. Hence,

Eilli(Y);*(Y)] = Efim(Y)e(Y)) for all Borel sets /1 on the codOmain of .

Y. This ensures e*(Y) = e(Y) a.s., by E6). ri

CES) Indeperxtence. a) (X,Y) is independent iff. b) EfIx(E)1Y1

E[lii(X)] a.s. for all Borel N "iff c) E[g(X)1Y] E[g(X)] a.s.
for all Borel functions g.

)
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a) c) (g(X), IM(Y)) is independent; hence

1
E[I

m

(Y)g(X)) E[Im(Y)]E[8(X)) by B5)

E(E[g(X)JIm(Y)) (E[g(X)] a Constant) by E2)

E[4y)g(X)] E[Im(Y)e(Y)/ by CE1).

Since the constant E(g(X)1 is a Borel function of Y, we conclude by E6)

that e(Y) E[g(X)] a.s.

c) m IA, since b is a special case of/C) )
b) a) For any Borel sets 14,N on the codomains of X, Y, respectively, .

*

E[Im(X)IN(Y)] . E(IN(Y)E[Im(X)] )
_.

. by hyp. and CE1)

E[Im(X)]?(IN(Y)J by E2) ,
..which ensures independence of (X,Y) by E5).

El.
<

. CE6) Extensiy st£ CE1) to general Bo
/

a] functions..
r '' *

First we suppose g > 0: By positivity CE3),' we have e(') > 0 a.s.
...-1) By CE1), the proposition is true; for h - IM.

2) By linearity CE2), the proposition is true for"any simple function
m

...h £ t I . \i liMi
3) For h > 0, there is a sequence of simple\functions, hn t h. This

implies hm(Y)g(X) t h(Y)g(X) and "hn(Y)e(Y) t h(Y) a.s. Hence,

by monotone convergence E4), for expectations,

Eihn(Y)g(X)) I E {h(Y)g(X)] and E[hn(Y)e(Y)r t E[h(Y)e(Y)].

Since for each n, EIhnlY)8(X)1C EIhn(Y)e(Y)), the limits must be
4

the same.°

4) For teneral Borel h, we have h h+ - h., where both h,, and h-

are nonnegative Borel functions. By linearity and 3), we have

E[h(Y)g(X)) Elh+(Y)800) -,[h.(Y)g(X)]

E[h+(Y)e(Y)) - E[h.(Y)e(iX)k E[h(Y)e(Y)]

80
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5) For general Borel g; stire have g = g;.- g., where both and g_

are nonnegative Borel functions. By linearity and 4), we have

E[h(Y)800).. E[h(Y)8+(X)/ - E[h(Y)8.(X))

= E[h(Y)ei.(Y)) E[h(Y)e.(1)] = E[h(pe(Y)),

where e+(Y) = e-(Y) = E[8- (X)1Y], and

e(Y) = e +(Y) - e:(Y) a.s., by 5E2).

CE7) If X . h(Y), theA E[g(X)IY/ = g(X) a.s.

g(X) = g[h(Y)] = h*(Y), with h* Borel. For any Borel set M,

E[Im(Y)8(X)] = EtIm(Y)h*(Y)] ' EIIm(Y)e(Y).1 by CE1).

But this ensures 4

h*(Y) = e(Y) a.s.

CE8) E[h(Y)g(X)IY] = h(Y)E[g(X)IY] a.s.

by E6).

For any Borel set M, IM(Y)h(Y) is a Borel function of Y. Set

e(Y) = E[g(X)1Y] and e*(Y)'.= EN(Y)8(X)1Y].

Nois Eftm(Y)h(Y)g(X)) "-'E[Im(Y)h(Y)e(Y)) by CE6)

and E[Im(Y)h(Y)8(X)1 = E[Im(Y)ezrd by CE1).

.

Hence, h(Y)e(Y) . e*(Y) / by E(). 0

CE9) If Y = h(W), then EfE[g(X)IY]IW) = E(E E[g(X)IY] a.s.

Set e(Y) %.-E[g(X)1Y] = e[h(W)] = h*(W) and *(w) E[g(X)1W].

Then, E(E[g(X)IYI1W) = EN*(W)1141 = h*(W) = e( by CE7)

For any Borel set M on the codomain of Y, let N = r'i(M). By Theorem,

A1-1, IM(Y) = IN(W). Repeated use of CE1) giv s

'E[Im(Y)g(X)] = E(IM(Y)e(Y)]

E[L(W)g(X)] = E[IN(W)e*(W)]. E[Im(Y)e*(4)1

E(I
M,
(Y)R[e*(W)1Y4

Hence e(Y) = E[e*(W)1Y] a.s. by E6).

0 81 I
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Proof of CE10) rIsquires some results of measure theory beyond the '

scope of the present work. We establish the proposition Sirst for the
special case that X, Y are real-valued: with joint density function f ;XY
then we sketch the ideas of a )11eral proof. ' .

S

q10) EI.g(X,Y))Y = u] = E[g(X,ukt = u) a.s. [Py).
,

VROOF FOR SPECIAL CASE. X,Y have joint density fxy. '
Let fiiy be defined as in Sec C2.":ut e(u,v) u) and,

e*(u) = E[g(X,Y)jY = u). Then E[Im(Y/g(X,i)) NEJIm(Y)e*(Y)) Borh
set N. This is cgrrivalent to ,

55 Im(u)g(t,u)fxy(t,u) dtdu IM(u) *(u) du,

The left-hand integral may be written

511(o)(5 g(t,u)fxiyit lu) dt) fy(u)

us,
. '

,

5 Im(u)e(u,u)fy(u) du k 5 Im(u)e*(u)fy(u\t? de or, equivale tly,
EIIM(Y)e(Y,Y)) = ElIm(Y)e*(Y)) Y For ;r se.t M .

.,We conclude e(Y,Y) = e*(Y) a.s.

IDEA OF. A GENERAL PROOF

11$If the theorem can be estalllished for g(t,u) = I
Q(t,u); where Q, is

,0

E6X .

any Borel set on the codomein of (X,Y), then a 1;standard,argument"

such as used in the proof of CE6) extends the theorem to inyPorel
lunction g.",such that Eig(X,Y)) is finite.

,*
ye first consider Borel sets. of the form Q = M X.N, where M, N

in the codomains of X, Y, respectively. Then /14(t,u) =

N

E[g(X,v)ko.. u) = E[IM(X)IN(v)IY = u) = IN(v)E[Im(X)) Y = u)

Eig(X,Y) {Y =.u) = EN(X)IN(Y)1Y = u).

IN(Y)E[yX;IY) and e*(Y) a IN(Y)E[IM(X)IY) a.s. by CE8).

a.s. or e(u,u) e*(u) a.s. [Py1.

are

Thus,

Let e(ti3O, f.

and e*(Ui

Now e(Y,Y)
I

Hence, F,,( e*(Y

A
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By linearity, the equality holds .for auy Borel set Q =4:414.f X N, since
n ' ...'in'this case I = E I I . HenCe, equality holds for the class

% A i*1 Ni Ni '
A'consisting of ail finite, disjoiAt,unions of sets of the form

number of arguments may be used to show that equality, holds for all, Borel-
-sets Q. We sketchsone proof.

.
It is know that the class Bo' is a field

)and that the ,minimal sigma _field which contains it is the class 8 of
0

%.Borel sets. Let
6

I 3 *. be the class of 'sets for whfch equality holds. ,If. .' ,(Qit' 1 < i) ,is a monotone class of sets Le fj*, rtttie sequence (In: l.< i) \
'41.is'admonotbne'seqiierice_of Borel functions. USTe'of monotone convergence

,,,,, t :,i
.4 0.7E4) VII- expectationalshoWs that equality 11oIds for I where Q, is

Q
Nthe limit of the sequence I2 '.--zihus, 8* is a monotone clads. By a

-well known theorem, 8* must include E. This means amp equifity holds,

for every BOrel set Q.

CE11) /f,'-13i.,Y) is independent, E[g(X;Y) IY = u) = Efg(X,u)).a.s. fryi
BP cE5), independence of (X,Y) ensu =es e(u,v) = E[g(X,v)1Y =1:]'
E[g(X,v)] ,a.s. 1,P,d, so e*(u) e(u,u) E[g(X,u)] a.s. [Py]t .,
cE12> Triangle inequality.

4-.*Since g(X) < I g (X)-1 , ' we , have E [g (X) I Y] < E[fg (X) i 1 Y] a. s . by CE3).
Aince -g(X) < Ig()I, we have -E[g(X)1Y] < Efig(X)11Y1 a.s. by CE3), CE2).
Fence, IE[g(11)1Y]Ilm<E[Ig(X)11Y) a.s. 0
CE13) Jensen!s ins:guanaco . - , , . i

.
Convex function g satisfies g(t) > s (y) + A (y) (t - yyt. where J1. is

, a ncindecreasing function. or Set , e (Y1 = EIXiy, . Then *
.a

g(X) 1?., re (Y)/ 4. X [e'(Y)] EX - e(Y)] ' If -we take conditional expectatio'n,
E[g(X) I Y] > i(gle(Y)1 + [e(Y)] [X - e (Y)] I Y) a. s . by CE3)

.1f,,
. E(g[e(Y)]lY) E(X[(Y)1XtY) - E{X[e(Vre(Y)1`11 by CE2)

A P
,= g[i(Y)] + Xle(Y)]e(Y) - X[e(Y)]e(r) by CE7), CEB)

g(E[X1Y]) a.s.
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8. Problems

C -1 Prove pad's. 'b). and c) of Theorem C1-1.

. C-2 Suppose X, Y hive joint density function txy. Use Theorem C1-2

and property Ela) for xpectation to show that
a) If P(Y E 1.1)> 0, t en

..E[EGOIY EN] = f y(t,u),odti du / faf fxy(t,u) dt] du.
.

b) 'If -P(X E N) > 0,

E[g(X) 'IX E (t) dt / fN fx(t) dtN

C.:3 Show E[g(X)1Al = E[E(X)IAB]P(BIA) + E[E(X)IABc]P(ScIA).

.

Ai

9-4 If X is discrete .and Y is absolutely;tontinuous, then the joint
ciistritution can be described by a hybrid mass-di... nsity.function

H.

such that 'f(X =-ti, Y 14) - fm du. Develop an expression

C-5 Let

tor e E [g (X).1Y = 'in ,this case. , ,

C -i

X = OI + 21 + 31 and Y = I + 3IB (canonical form) ,
Al

A2 A3 - Ba
2

with joint probabrlitr'distribution such that,. VAT.131)1=]-46,

P(A2B2 f/23... and P(A3B1) 1/3.' Shpw that E[XIY ;1] P RIX IY
.

, but that (X,Y) is not independent.
G

_Sfiow that for X ,real, the triangle inequality is a special cage
of Jensen's, inequality. , ,

r

Suppose .1 (X,Y_.) is-independent, and elp random variable is uniforM

on [ -1, 11. Let Z = g(X,Y) be given by. .

'''' r- +3.for X2 Y2 < 1 ' .
2( '

c for X2 + Yli >J.. 3

Determine EIZIx2 y2 <-6
and E[ZIX2 + Y2 >1.]. °Use these results

. , ,

to 'determine E[Z]. ,.

C-8 X,Y have joint density function fxy(t',9 8 to,
(and zero elsewhere). Determine

a) i[x2,+ y2lx -t]

0

ti) ENYIX -,1]
.

84

for 1 -< t <u <

c) 4 1ENIX 5.10 1)].,,
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C-9 The pair (X,Y) independent, with f (t) = f (t) = 1/2 for

,

X Y
1-1 < t < 0, =4 e

-t
for 0 < t (and .zero elsewhere).- Determine

a) E[X2'+.Y21X = t] b) E[XYJX = t]

C-10 Use the fact that g(X,Y) = g*(X,Y,Z), With g* Eorel if g is,

to establish the following extension of CE1Q).

'E[g(X,Y)IY = u, v] = E[g(X,u)1Y = u, Z =,v] a.s. [En]4
C-I1 Use CE9a) and the-result of problem C-10 to show that if Fylz is

a ;egular conditional distribution function, then

E[giX,Y)12 = v] = f E[g(X,u)IY = u, Z = v] dFylz(ulv) a.s. [Ps].

C-12 Suppose X is a real random variable with E[X2] let

e (Y) E[X1Y] and ,y(Y) =Var [XI Y] = EaX e(Y)]?1Y). Show that

a) v E[X2i'd - E2(XIY] = E[X2IY14 - e2(Y)

b) Var[e(Y)] = E[e3(Y)] E2[X]..=.E(E2(k - E[X/IY))

Var [X] = E [V(f)] Vat-[e (Y)] = E(Vaf [XI Y] ) + Var(E[XIY] )

C-13 The following, is a model for the demand of a random number of

"customers ", who bqk independently but with the same individual

demand probabi:gti:es.,Iulpose

I

f .

i ) (Xk ; 1 < kJ is iid iindependent, idenlieally .distributed),

with E[Xlicf finire (individual demands).

...

N is a nonnegative, integer - valued random67ariable with

1,' J
E [111 fie (number .ol' customers) .

ill) (N,' Xk: 1 < k)

4
is an independent class.

4

D . n 6 ',' 6r. li'' ° (composite demand).

- E-Xic.= Y for N = n > 0{
' k=1

n = =
If A 4= (w: N(m) . n), , then D = £ I Y = rii (N)Y .'

,... 4
8 `ii=0 An n 11=0 (n) n

.',n
.

a) Show EIDIN = II] ='dE[X] and Var[Dix . n] = nVar[X]
.

.

10

7 Note.- ELDIN n] E [I (N)DVP (11,1111% etc

.0
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,b)

c)

r
Show ELDJ, = E(N]E

Use the iesult o problem C-12 to show

Var[D] = E[N]Var[X] + VatNlE2[X].

d).. Suppose. N is Poisson (X) and X- is

C-14 The

'

Calculate E[D],and Var[D]:

characteristic function (lax

1

for a real

uniform on [(1;]-74".''

random variable X is
cpx(u).= Ere 3, defined for all real u (i k the complex imaginary

' iuX

Aunit, i2 = -1). The generating function gh for a nonnegati*,
co

integer - valued random variable N is gN(s) = E(sN] = 2' sk P(/N k),
k=0

defined at least for < 1, although possibly for a much larger

domain. It is readily shown that addition of a finite number of

members of an independent" glass of 'random yaridialea/corresponds to.

multiplying their characteristic fundtions (or their generating

functions, if they exist). Consider the corapsite random variable

D in problem' C-13.

a" Show that cp'D'(u) = gN[te(u)], where gN is the generating

nction for N and is the common characteristic function

for the Xk. [Suggestion: tontlition by N, *then take expec-,

cltir: E[eluDis . .1 - eei°Yni 1.

,Show
i e JO " .

b) Show that if the X,, are nonnegative, integer-valued with common

generating function gx, then. gp(s) . gli[gx(s)]. .
c) Suppose N is Pdisson 03., shoN!...1h1,t gx(10)! exP[X(s - 1)] f

_80;) that 'coto(u). rpiX[cox(u) - 1]).

-NO k).- e4 xi-zr

_86.1
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C415 The correlation ritid\nf X with respect to Y (see Renyi'[1970],

'

0

2775-ff) ia K(XIY) = a[e(Y)]/0[X] (see Problem C-1'2). Show
. ,

that the following properties hold:

a)- 0 < K[XIY] <1

-
b) If (X,Y) is independent., then t(XIY] = 0,

A

c). idx1y1 iff there is a Borel function g = g,(Y).

d) K2[XIY) = sup p LA, g(Y)), where g ranges gver the'set of Borel

41- functioniyuch° that, E(g2(Y)) is finite and

coefficient for X and g(Y).

e) 82(XITI m p2[X, iff there exist

that ,g(Y) = ae(Y)

p is the correlation

18,

Ca' 0) such

. .

Sj.igestion. For 4), e), use alb) and Schwarz' inequality.
o- -

with standardized randomyariakles obtainedby sOtraciing the Tean

WOrk

and dividing by the standard deviatipn:

are
,

' C-16 Suppose. i and 'is are Borel functions such that E[f(X)I 4.. ..Eig(Y)1 .. 0,
. ,

.

Var[f(A)] ; Vart8(Y)) = 1, and E[f(X)IM) = .sup 4(X)t(Y)) =:X.. -.

Silos/ that ,'

a) df(X)IY3 .a.s. and E[g(Y)14 Xf(X)-

BiEtf.(X)lY1 IX) 1: X 2,f (X) sits. and i(E (g (Y) I X.1 I Y). ;)c-2g-. (Y) a.a

C) t(f(X)I8(Y)) 1=X$(Y) Efg(Y)Ie(X)) =.Xf(X) a.a.

Suggestivi. Uae aIbaneSchwarzi'inequality.

4

87
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D1-1

D: Conditional independence,,given a random vector

The concept of conditional' independence of randouf7ectors which we

consider in the following sections has been utilized widely in advanced

treat4 mmnts of Markov processes, In such treatments, the concept is usually

expressed in terms of conditional expectation, given a sigma field of events.

Our immediate goal is to reformulate-the essential features of such treat-
.

ments in terms of the more readily accessible conditiOnal

a random vector, developed in the preceding sections. We

'^the.usefwlness of the conditional independence concept by

appears naturally in certain problems in decision theory.

following, we apply the concept to Markov processes.

1. The concept add some basic propositions

Althoufh historically there seems to be no connecion, it

dye to consider how the concept of conditional independence,

te

an extension of the simpler concept of

expectation, given

then illustrate
=-

showing how it

In Sec El and

vector, may 6e-seen as

independenceo given an

given C, with .A = X;

P(ABI5) = P(AIC)P(B1C)

may be instruc -

given a random

conditional

event. Suppose (A,BL is conditionally independent,

1(fM) and B = Y
-1

(N). Then the prodlIct rule

may 6e expressed EfIm(X)IN(Y)1C] = E(IN(X)[C]EfIN(Y)10.

If this rule hold4 for all Sorel sets M, N on the codomiins of X, Y,

ripectively, we should be inclined to say (X,Y) is conditionally independent,

given C. Suppose Z is a pimpl random variable, with C = (Z = z,).

Then, in these teimsp we would say (X,Y) is conditionally independent,

given. Z = zk. If the product rule hole fbr allBorel sets M, N in

the codomains of X, Y, respectively, and for all .z, in the range of Z,

0

we should then be inclIned to say the pair X,Y) is,condf;ionaily-/ndepen-

danb, given °Z. With th&'aid of the, result of example C3-a, we may give

:this se onditivs a'simpleformUlation which poirits 'to a general

\9 0
5
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definition. We have4,
6.

EfIti(X)Im(Y)1Z/ ° E EfINCOIN(Y)12 zkihk k ...
with similar expressions for E[Im(X)14' an E EIN(Y) I Z.I :,

.7 ° '
that I i = 0' foi 1 A k andc12 =-I , we obtainIC clr ck

E[i_m(X)1z)E[IN(Y)1z1 = E E[IM(X)IZ = zidEfIN(Y)12 = zidIc
Mt- ,k k.

a

Using the ,facts

We thus have

E(Im(E)IN(Y)1Z] = Eft;(X).1Z1E[IN(Y)1.2]

11) EfIN(X)IN(Y)12 = zkr.= EfI.,(X)12.= zk)EIIN,(Y)1Z =.zkl for all. k.
1%

6 - ..
We have seen above that the set of conditions ii) is a reasonable basil

. ..
for the notion that (X,Y) is conditionally independent, given simple

,-----.. - - }
random vector Z. This development suggests the simpler equiv lent owes=

sion i) may be the rite useful way to characterize the co tion: Further
. 46evidence is provided by°the following set of equivalent conditions-

Sec D5 for proofs).* .

For any random Vector Z, thI follow1g conditions are equivalent::

at)
-C12)

1

EjimMIN. (Y) I Z) = EN. (X) E[iti(Y) I Z) a.s. V Sorel sets N
. .

E[ImiX)IZ ,Y) = Eftm(X) 1 V Sorel sets 21

C13) Eft
M

(X)Iq .
4Z)12,Y1 .; Eft

m
(X)I

q'(Z)1Z1 a.s. Borel sets H, Q

CI4) Eft M(X)IQ(Z)IX =,E(8[I
m

(X)I (Z)12)1Y) ,a.s V Sorel sets 14, Q

CI5)

CI6)

CI7)

CI8)

,

Efg(X)h(Y)14 = E[g(X)1Z]Elh(Y)121 a.s. V Sorel functions g, h-

Els(X)izY1 E[X)I ZJ a.s. V Sorel functions g

ENIX,Z)IZ,Y) = EES(E,Z)1Z/

EIg(X,Z)IY),;E(Efg(X,/)1Z/1

91

V Sorel functions g

a.s. V Borer functions g.
.

60,
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_ -

Several faCts should be noted. For one thing, properties CIS) through

- CIS) are generalizations of CI1) through CI4), respectively, in that the

indicator functions are relhaced.by.real-valued Borel functions, subject

' only to the restriction that the resultant random Veriables_g(X),.h(Y),
.

and g(X,Y) should halie linite'expectationi. It is desirable to have

' the properties CI1) through CI4) included in the list of to

-show that it is sufficient.to establisff ong of these simpler conditions

in order to be able to assert the apgarently more general counterparts

C15) through,C/8), 1respe ,edvely.
.

ExPressions Cl2) and CI6) show that if X is conditioned by Zx

further conditioning by Y has no apriveciallle effect. We thus have an

analogy to the idea that the event paii (A,B) 'is conditionally independent,
6

given event e, if once A is c nditioned by C, then further condition-
.

ing by hashas no effect on the elihood of the oocurrence of A. Express-

ions C13) and CIZ) generalize this to say that if (X,2) is conditioned -

by --2, further conditioning by Y
A
has no afpriAatle effect. It is clear

that tiht role of X and Y, could be in.ftrchhnged in these statements.

Conditions CI4) and CI8) have t10 counterpart in the theory of conditional
.

independefice of events. They do, hosieVee,.play an important role in the

1 , .
:theory of the new concept; and they include as4a specialObase the

r

Chapman-Kolmogorov equation which plays a prominent role in the theory

of Markov processes (cf See' E45.

'C

.

.*

These considerations indicate that we have identified a potentially

useful concept which is properly naad,conditionaCindependence. We can, It'

- use any of the eight equivalent as the basis for definition.

Ai in the case of independence of events and of random variables, we use

the product rule CI1).

92



D1-*

DEFINITION. The pair of random vectors (X,Y) is conditionally

independent, given 2, iff the prndudt rule CI1) holds,

in arbitrary class of random vectors is Conditionally independent, given

2, .iff an analogous product rule holds for each finite subclass of two

or more members of the class.

IT the pair (X,Y) is conditionally independent, given Z, we should

expect that any Borel functions of these twn.variables should be conditionally

independent. This is the casen

C19) If (X,Y) is conditionally independent, given 2, U = h(X), and

V = k(Y), with h, k Borel, then (U,V) is conditionally Jude-
*

A.pendent, given 2. -Ove. 4

For convenience of reference, we.list several additional properties of
4

conditional independence utilized'in various subsequent developments.
-

CI10) If the pok (X,Y) is conditionally independent, given Z, then

a) E[g(x)hco] = E(Efi001 ZlE(h(Y)12] ) = E[ef(2)e2(2)], and

« 40111.

b) E[g(X)IY 611)(X E N) = E(E[IN(Y)IZIEN(X)1Z))

CV) If (Y, (X,Z)) 'it independent, _then (X,Y) is conditiOnalli

independent, given )1.

.

CI12) If (X,Y) isondition;lly independent, given Z, then

Erg (X,Y) IY = u, Z vj 4- Erg (X,012 = vr. a:s . fPrzl

Proofs of these propositions are g?ovided in Sec D5. .

. --.. ,. .

9

a
°
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2. Some elemen4ts of Bayesian analysis

Classical stat dtics postulates a population distribution to be deter-

mined by samplingio some other appropriate form of experimentation. Typ

o ically, the distribution is supposed to belong to a specified class (e.g.,_

normal, exponential, binomial, Poisson, etc.) which is characterized by
,

certain parameters. A finite set of parameters can be viewed as a set of
0 .

4121ft

coordinates for a'single vector-valued par er. The value 8 of the

'parameter is assumed fixed, gut'is unkno .. Hence, there is uncertainty le

about its value.

0-
An alternative formulation results from modeling the uncertainty in .

a probabilistic manner. The Uncertafn valut of the parameter'is viewed as
.

the value of a random vector; i.e., 8 = H(uf). The value H(w) of the-
#1.'

parameter random vector H reflects the state of nature. If X is a

random variable, retenting the population, then the distribution for X
4,

1
is determined by the value 8 = H(w) of the parameten random vector. To

carry out statistical apalysis, we must characterize appropriately the__

loint,distribution for thZ pair (X,H). This is usually done by assuming

a conditional_ distribution for X, give H, Ippresented by conditional

distribution function F20 (or an appropriate alternative); and by

utilizing any information about the probable values of the parameter to
. o

determine a priordistributiglitor H, represented 4i a distribution,

function FH (or some,appropriate alternative).

A central notion of classical statistics is a random sample of size ,n.0

4Sbre sampling act, or survey, or experiment 1,s done repeatedly, in

such away that the outcome of one sanplihg act does not affectooperation-

ally the outcome of any other. This is modeled as i class (X1,X2, ...; X;)

Of independent random variables, each having the population distkibuiion.

4W . *
o
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Each sampling act corresponds to the observation of one of the random

variables in the, sample. A random sample is a finite Case of an arbitrary

iid (independent, identicalky distributed) class (Xi: i EJ).

Under the new point of view, the appropriate assumption seems

%that the class (Xi: i E J) ,is conditionally independent, given

all random variables having the same conditional distributio

H, Uridera given state of nature, the result pf taking an observation of

Xil does not affect and is not affected by the results of observing any

Combination of.the other random variables. We find it convenient to adopt

the folloWing terminology:

DEFINITION. A class (Xi: i E J) 'isciid, given H, iff the class is

conditionally independent, and each random varliable Xi ha; the same

conditidnal distribution, given H. A random sample°(of size n), given H,

is a finite class (Xi: 1 < i < n) which is ciid, given. H.

Let us see what this means for the conditional distribution functions.

To simplify writing, put W - (X1,X2, ., Xn) and let It - IN , where

N
t

- (- 03, t] ._ Then ' (

t

:

'FNIN(ti,t2, ..., tniu) =11(X1 < tl, X2 < t2, ..., Xn < tnIH -

= Eft
t

n

(X
1
)I

t2
(X

2
r''... It oc

n
)1n - u]

4. i

- n E[Tt (x 4hi)In - u] by conditional independence
11 i

in2iFx1H(tilu).

Thus, the conditional distribution function obeys the product rule. ,Partial

differentiatiOn by the ti shows that the conditiontl density, when it exists,

also satisfies the product rule

fNIN(ti,t2, ..inifx1N(tilu),
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Bernoulli trials, given H. We illatstrate these ideaq by considerfini the

'irigirtant special case df Bernoulli 'trials. A sequence of "identicalttikis

fs performed in air operationally independent manner. Let Ei event'of a4.4

."-success" on the 1th 'trial it the sequence, and set X. 7 I , so thatEi
Xi has thob property thdt it takes on the value 1 if Ei occurs and

res on the value 0 if Ei fails to occur (Hi occurs). On a given

sequence of trials, the probability p of success on a trial doers not

vary with i. Now p is a parameter, representing a state of nature. We

model it as the value A a parameter random variable H with the interval
40,11 as its rAles. Torsi given v'alul of H, the results of the various

crials are conditionally independent. Thus,.we assume (Xi: 1 < 4.) is
ciid, given H. Let I(p) be the indicator function for the set (0)

and _similarly for We We suppose

P(EiIH = u) 7 P(Xi 7 11H 7 u) .. E[I(1)(Xi)1H = u] 7 u 0 < u V-1

P(Eic1H = u) 7 P(Xi 7 01H F u)=E[I(0)(Xi)1H = ul = 1 - u.

These assumptions ensure

E[Xi1H $$ ul 7 e$1.1) $$ u a.s.IEPHI .

It is cony(1dient in this case to say the sequence is Bernoulli, given

H = u. Td see how analysis of such sequences relates to analysis of Ordinary

Bernoulli sequences, suppose, for example, we observe the sequence ElE2EG3.:

I, 4'
Then ' \a

P (ElEc2E; 1 H.7 u) 7 E [I (X2)I (X3 ) 111 7 1.12

E[I (I) (X1)1 7 u1E[I (0) (X 2)1H = u1EEI (0)(X 3)1H1.7 u)

7 u(1 - u)(1 - u) . '.
St

The product after the second. equality sign is a result of conditional inde-

pendence. The pattern here is obviously the same as in the analysis of

ordinary Bernoulli trials, except that we write u for p. To obtain the %

conditional probability of any such sequence, gi4n H 7 u,* include a

$11 .

. 9 6'
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factor u for each uncomplemente4 Ei and a factor 1 - u for each

complemented El.

The random variable Sp = X1 + X2 + + X
n

counts the number of

"successes" in the first trials Of.a sequence. In the ordinary case, .

S
n has the binomial distribution with pirametqrs (p, n). As the discussion.

above indicates, if the sequencb is Bernoulli, given H.= u, we simply

replace p by u in the analysis of the ordinary case to obtiin

P(Sn = kIH = u) = C(n,k)u
k
(1 - u)n-k 0 < u < 1.

We still have the problem of determining the distribution of H (i.e.,&

the prior distribution &Sith which'to begin anaLysis).. Partly because ef

ayel 1 -knewn integral .formgla

pl r kb '

(r +
s:

1)
J u (1 - u) du

+S
1/(r + s + 1)C(r+s,r).

F. commonly employed class of distributions is the class of

Beta distributions
,

randoln variable H has the Beta distribution with parameters

(4+1, b+1)% (a b, nonnegative integers). iff it has the .denslty function

(a + b + 1): tao. t)b
a! b! 0 < t < 1

fH(t)

` 0 , othetwisa

Note that Af a = b 0, the diftFibution is uniform on [0,1].
:'

4 ,' , ,,
.

Straightfdrward culcularions show th,tit fH has a maximum at -t = a/(a + b), and
$'

.

a + 1 ,

Vat [H] . (a + 1)(b + 1)E[4.1 =
1;.--+ 2 1 2

. , Vet + b + 2) (a + b 3).a -

E[H2) (a + 1)(a + 2) C.
f''i (a + b + 2)(a + b + 3) ..

--

E[Hicl =.
(a + 1) (a + 2) ... (a + k) ...

(a + b + 2)(a + b + 3) ... (a + b + k + I) ; ,D,, , '''
If prior knowledge indicates that the valuezfe_)H lies In a certain part

of the unit interval, with a degree of certainty reflected in the size of
/

e, /%4 9 7
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the variance, the pdrameters a, b May be adjusted 4to reflect these condi-

tions.. If there is no prior knowledge favoring any set of probable values,

the complete ignorance may be ekpreased by taking the uniform case (a = b = 0).
Example D2-a

A quantity of n items from one run of a production line is selected
at random for testing. There is probability p that any device in the

willimeet specifications. The guantity p is constant Over any one run;

its value depends on how well the manufacturing process, including selection
or preparation of raw materials 14 controlled. We wish to estimate the
parameter p from tests and prior 'knowledge.

SOLUTION.

'Welidopt the point of view that p is the value of a parameter random
variable H. Past experience indicates a reasonable prior distribution
is Beta, with parameters (3,2) -- i.e.-, a = 2, b = 1. Thus f(t).

12 t2(1 t), 0,5 t 5:1x (maximum at t = 2/3). Then

P (Ei ) E[Xi] = E(ErXi I 11] ) Efe(H)] = E(H) = +ab+12 = 3/5

Suppose X1 = 1. Then

.P(E21X1 = 1) =t.P(EIE2)/P(E1) E(XIX21/E(X1] = E(e(H)e"(11)1/Er9t1l by C19)

E(112) /E(I) + 1)(a + 2) + b +
(a + b + 2)(a + b + 3)

a (a+ir

a + b + 3 =4/6 =.2/3.

Note that (E1,E2) is not an independent pair: since P(E21E1) # P(E2)
'

Suppose prior distribution for lit is assumed. / A sequence of n

trials is performed. It is desired to update the distribution fo; H on
the basis of the results of this experiment. Suppose -k sucFesses occur
(i.e., Sn = k); we want to determine the conditional 'distribution for

H, given Sa k. Now

98
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J

favdrabla outcomes) if costs f failure are high, or to be much more venture-

some ifTswards for success are great. To r/tbvide an analytical basis for
'

decifioh, one must include some Measure or criterion of gain or loss, in

order that a "best" course of action may be determined, To illustrate,

A
we consider one of the moat. commonly used criteria: the mean-squaredrelror

criterion.

F HIS(urk) = P(H < uIS
n

= k) = Eli N(H)I(k) (S n))/E[I
(k)

(S
n
)1

n u

= E(IN (H);II(k)(Sn);11) )/E[EII(tk)(Sn)!H] ) , where
u i

4

E(I(k)(Sn)IH = 44] = P(S
n
= 01 = u) = C(n,k)u

k
(1 -,u)n-k 0 < u < 1.

Suppose H has the Beta distrlbution with parameters (a+1, b+1). Then
ru a+k b+n-k

A j
0

t (1 - t) dt
(a + b + 1)!

FH I Sn (n I k ) 1 a+k b+n-k
, where A = C(n,k)

a! b!A So t (1 - t) dt

(a + k)!(n + b - k)! souLta+k
(1 - t) d[ dt 0 < u < 1.

I (n +,a + b + 1):

Thus, the conditional distribution is Beta, with parameters (' + k + 1,

b + n - k +,1.). From the formula fOr expectation, We have

EtHISn = k] = a 1
a + b+ n+ 2' s 1/4

It should be noted that since the common factor C(n,k) in the numerator

and denominator of the expression for Fo cancel out, the distribution,

given Sn = k, ins the same ,as, that given,any specific sequence having

k successes and n - k failures.
,

The previous d4velopment illustrates how conditional independence in

a random sample, rather than total independence, may be utilized to modify

estimates of p?obabilities or other parameters whichlcontrol population

probabilities.. But decisions are lased both on estimates of.Probabilities

Vhd on costs or rewards associated with actions and outcomes. One is apt

to proceed much.more cautiously ('i.e., to require higher probabilities for
'

99
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-' Suppose (X,H) has joiat distribution and it is desired to obtain a

"best" ses,timate of the value of H from an experimentally determined

'value of X. That is, we wish to determine' a function or decisio4le d

0 such that d[X(w)] s the best estimate of H(w). AZcording110 the mean-

squared-error criterion, we seees function d for which E([H - dp())

' ' is a minimum. The following argument shows that the best decision function

d is given by

d(u) = EtHIX = u) = e(u), `if 'u in he range of X.

We note that X may be vector valued, in w4ich case u is a vector.

Consider

'0 < E([H - d(X))2) = E([H - e(X) + e(X) - d(X))2)

. = E([H e(X)) 2) le(X) - d(X))2) + 2E(fH - e(X))(e(X)- d(X))j.*
Suppose we put h(X) = e(X) - d(X). By CE6), E(Hh(X)) = E[e(X)h(X)) ,

so that the last tetm above is zero. The first term is fixed. The

second term is positive, unless d(X) = e(X) a.s., which is, equivalent

(by Theorem Al-2) 10 d(u) = e(u)' a.s. (Px]. Hence, this choice of d

minimizes the mgan-squared error.

The argument above solves, the regression problem, in whicb it is

dssired to determine the 'sand= variable d(X) which is"nearest"to H

in the mean-squared sense. The central role of conditional expectation is

well known. In fact, some authors begin the study of conditional expects-
.

tion by designating the conditional expectation of X, given Y, as the

random variable e(Y) for which thd mean-squared error E([X - e(Y)) 2)

is a minimum. ,Starting from this point, it is possible to show that e(Y)
..

.

has all the properties of the concept as we have introduced its
4

Example D2-b

Returning to the situation presented in Example D2-a, 04 suppose n items

ars, selected at random from the production lot and tested. Of these, k

100
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meet specifications. 'What is the best estimate, in the mean-squared sense,

of the probability that any item selected will meet specifications?

SOLUTION AND DISCUSSION.

By the development above, if the prior distribution for H is Beta

(a+1, b+1), the best estimaeor for H, given Sn, is
a + S -+ 1

'E[HIS = as compared with E[H]
a + 1

ni a + b
n

+ n + 2 a + b + 2

tie rule is: count the number of successes in the n units tested, add

a + 1, and divide by a + b + n + 2.

Suppose no prior information about f is
t
available; we should use a = b = O.

Suppoie, further, that in a test of 10 items, 8/meet specifications. Then

E[HISio = 8] = 4+1 - 9/12 = 3/4 as compared with E[H] = 1/2.

If the prior distribution were Beta with a e2, b = 1, 'then

8 +
E[HIS

28, -10 4.
'- 11/15 a 0.7333 as compared with E[ii] = 3/5.10 7

The conditional distribution for H, given ,Sn = k, is Beta (a+k+1,b+n-k+1).

The conditional variances is

Vat[ff!S = k]
(a + k + 1)(b + n - k + 1)

+ n +2)2(a + b + n + 3).

For a Alt= 0, n = 10, k = 8,

siar[HISio = 8] = (9 X 3)/(122 X 13) 3/208 gb 0.0144.

For 'a = 2, b = 1 n = 10, k =.8,

Var [81S10 8] = (11 X 4)/(152X 167 = 11/900 94 0.0122.

The prior information, with its approximate location and indication of

/?$ariance, gives rise to a somewhat smaller variance on the conditional-
&

distribution $1-

For a more general discussion,of the problem of Bayesian estimeion,

as this procedure is called, see,Eod, Graybiltl, and Boes [1974], chap

Sec 7. Although they do not employ the'term conditional independence,

they assume it by virtue of assuming the product rule for conditional

'
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densities.. They consider other'measures of distance or "loss", and

relate the results t he results of other estimation procedures commonly

employed in modernstat stics,

I-

""%

dr
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3. A one -stage Baye)ian decision model .

The transition from inference (i.e., determining the most likely

alternative) 0 decision (determining the course of action to be selected)

leads to the notion of gain 2r loss. In order to move beyonda purely .

mathematical criterion such as mean squared error,4,,:e introduce the

notion of a loss function. The loss function is usually expressed in terms

of some symbol of value, such as monetary units. But its specification

may require quite subtle and subjective judgments of "utility" or worth.

In ordeeto be objective, the decision analyst must obtain frpm the decision

maker enough information to determine a loss function whose value depends

upon the course of action chosen and the resultant outcome'of this action,
or

To set up a model of a typical decision process, we suppose: ,

10, There is a set of,possible actions available to the decision maker.

Action a is a member of the set A of possible actions.

P it) There is a set of pOssible outcomeswhich may risuAt frOm the

action. Becaupe there is uncertainty about which consequence will

materialize, We represent the outcome as he value of an outcome random

variable (or random vector): y = Y(w).

iii)' The distribution of the outcome random variable Y is determined

. 'by a state of nature. This is often expressed as a parameter

..(possibly vector-valued). Since there isuncertainty about the state
21A *

caJnature, thesparameteiritself is modeled as the value of a

parameter random variable: u = H(w).

iv) IT may Ue possible to experiient in order to obtairfsome information

about the state of nature. The result of the experiment is the

value of a test randomvariable: x = X(w). Both Y and X' are

jointly distributed with the parameter random variable' H.

103
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_.-v) A loss functiah L is determined. L(a,y) is the loss when action
1,

a is,taken and outcome 3, is experietced (a gain is a negatkve

loss). 111e-usual objective is to minimize the expected loss.

vi) If experimentation is utilized, a decision rule (or strategy) is

determined, to indite ehe action to be taken for each possible

obseryed value of the test random variable. In practice, the

value of the decision rule may be determined for only the specific

experimental result observed.

ke consider two cases.

a) Without expAkentation.

Assume (Y,H) have joint distribution. Let L(a,u) = E[1,(a,Y)1H = u].'
. .

This fs sometimes knoWn as the risk function. The objective is to

select action a to minimize R(a) = E[I.(a,Y)] = ECE[L
t516

Y)114)

In'sone problems, Y = 11:so that L(a,u In
B[4(a

1
11)].

.

the case; of no experimentation, no conditional
independence assumptions

are needed.

Example D3 -a

A.merchant plans to stock an item. The demand over a sic -week period

is assumed to bea'random quantity having the Poisson diaZ4uhnn, with

parameter X. The pai.andeter value is not know', but on the basis of past
.6

-
experience the merchflt assumes X to be the value'of a *random variable

H with possible vg1ues (15, lb, 25) taken on with probabilities

'(1/4, 1/2, 1/4, respectively. The merchandise may be ordered in lots of

10. The merchant contemplates ordering either 10, 20, or 30 units. He

can buy at ;cc:1st of f . $7 per unit; he can sell at a'pi.ice u = $10

per unit`. At the end of six weeks, he can return the unsold items for a

104



D3-3

net recovery of r= $3 per unit; so that he loses c - r = $4' per

unsold unit. He considers that tie )as lost ,(u,- c)/2 = $1.50 per

missed sale. From a Bayesian point of view3 how many units should he order?

AtiLUTION

The set of possiblp actions is A = (10, 20, 30). Let Y be the random

variable whose value is the demand in the six -week period (the outcome

random variable). The onditional distribution of Y, given H = k, is

aasumed to be Poisson' (k . The loss funcdion L is.giv b5 y

- (u -c)y + (c - r)(a - y) =_y for y < a
L(a,y) =

(u - c)a +-- "11=-----°=(Y - a) = -4.5a + 1 for y > a.

If we set B = (y < a),lwe may then write

L(a,Y) = IB(4a.- 7Y) + (1 - IB)(1.5Y - 4.5a) = 1.5Y - 4.5a - 8.5I
B
(1 -'a).

Now t(a,X) = E[L(a,Y)1H =

= X] - 4.5a + 8.5aP(Y < afH = X) - 6.5EEI
B
YIH = xl,

We may express

,a ,k a-1 le"e

E[I
B
YIH = X] Ek;i-r e"' .1E e-x =13(Y < a-ltH = X)

k=0 k=0 '

Hence .

t(a,X) = X[1.5 - 8.5P(Y < a-11H = X)] - a[4.5 - 8.5P(Y < a1H = X)]

Using a table of cumulative or summed Poisson distribution for appropriate

values of X, we May establish the following 'able of values for t(a,X).

a = 10 20 30

= 15 - 21.3 - 23.1' + 15.0 g

20 - 14.9 - 44.9 - 19.i t(a,x)

25 - 7.4 -,49.5 - 51.3
I

Now 'R(a) = E[L(a,Y)]'= E[t(a,H)] has values: `'

ri R(10) = k [ -21.3 - 14.9 x 2- 7.4] = - 14.6; R(2Q) = - 40.6; and

R(30) = (V8.9. , .

4

The optimum aetion, corresponding to the minimum expected Inas, is a 20.

.

[]
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b) With experimentation

Assume (X,Y,H) has a joint distribution. A decision is made on the

- basis of the experimental data (i.e., on the basis of the observed value

of X). The problem is to dete ne the optimum decision function'd* which

designates the optimum action d*(x) when the test random variable X has

.... value x: Thus,, d* is the decision function 14hich minimizes the

risk B(d) = E[L(d(X),Y)).

The problem m y be formulated in ..,,, useful way as follows. By CE1b),

14R(d) = ECE[L(d(X); 0:]). If we set R(a,x) = E[L(a,Y)tX = x], then by CE10),

R(d(x),x) = E[L(d( ,Y)IX = x) = E[L(d(X),Y)1X e x]. Thus, R(d(X),X) =

EfL(d(X),Y)IX), so that B(d) = E[R(d(X),X)). For each x In the range of

X, let d*(xl be the action for which R(d*(x),x), is a minimum. Then..

B(d*) = E[R(d*(X),X)] < EfF(d(X),X)).= B(d), fdr all possible decision

functions d.

In the usual situation, the result of experimentation does not affect

operationally the outcome following the action.' The experimental evidence

may be in the form of previously available data. The result of a given
ti

action.is not influenced by whether or not the decision maker obtains the

experimental data. What does affect the outcome following an action is

the value of thenstate of nature" parameter. Thus, it is 4prOpriate to

assume the'pair (X,Y) is conditionally indepefidezItygizn H. We utilize

this as folloWs..

1)
If is is discrete, we may use dIl0b) to assert

R(a,x) = E[L(a,Y)IX = xi". E(EfI( x)(X)IHIE[L(a,Y)1H])/ECE[I(x)(i)1141),

where E[I(i)(X)111 = u] =,P(X = xIH = u) Px1H(x1u) and

E[L(a,Y)IH]

'Hence,
--\

R(a,x) = t(a,u) px1plu) dFH(u) /P(X x).

)
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2) ,If IC is absolutely continuous, .

R(a,x) r. E[L(a,Y)IX = xl = E(E(1.(a,V)IHJIX =

= E[4(a,H)17 = xl = S t(a,u) dFHIx(ulx).

by CIS)

He may use Hayes' theorem for the-conditional distribution (see Sec. C6)

to determine F 1

H1X'

'' Example D3-b-

Suppose in Example D3, the merchant- recalls that he made a similar,

order for a corresponding period the'previous yr. If x fs the random

variable whose value rapKesents the demand f that period, an observation '4
,/ 410

of the value for that period should prov de so indication of the state

of the market for the period. If the a is-reason to believe -that the state

of the market has not changed appreciably, this information should be use-
- )

ful for'the present decision. Enough tiAe.has elapsed that sales in the

previous period should not influence directly sales in the current period.

Therefore, it seems reasonable to assume th (X,Y) is conditionally

independent, given H (the value of which indicates the general state of

the market). A check of the previous sales records shows that demand was

for 24 units. Under these Assumptions and with these data,. the task is

'to select a = d*(24) to minimize R(a,24) = 4(a 24).4X)P01(2410PH(X)/P(X =

Values of 4(41,X) are tabulated in the solution of Example D3-a. Under

the assumed conditions, we may reasonably suppose poi = poi. From

,i
tables of the Poisson distribution, we obtain vaFties of pxiii<241X), from

which we determine

px(24) = pxiii(24115)pH(15,) + px1024120)pH(20) + pot(24125)pH(25)

1
=

4
[0.0083 + 0.0557 x 2 + 0.0795) = 0.050

and

i(10,24) 21.3 x 0.0083 - 14.9 x 2 X 0.0557 - 7.4 x 0.0745=
4 X 0.050

= -12.13

A
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The values R(20,f4) - 45.8 and R(30,24) = - 30.9 may be calculated

in similar fashion. Once more, the indicated optimum action is to order

20 units. In spite of the fact that the previous demand went beyond 20

e
units, the best bet is to order 20 units and risk the loss of some sales.

t
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r

4. A dynamic programming. example

The following example of a multistage decision process id presented in

Geyer and Thompson 11973), p. 392 ff. Our discussion displays the role of a

conditional independence assumption, which seemsbto be both appropriate and

necessary.

Example D4-a

4

A company is offered two investment
opportunities, which we designate

"risk" and "safe".

1) Risk.' Either make gain g in a given period or earn' nothing.

Probability of success is unknown, but constant, over the total

time considered.

2) Safe. Certain to make gain s in the given period.

Gains in successive periods are independent, given a fixed probability of

success. A choice is made at the beginning of each time period, with neg-

ligible cost for switching from one'investment to the"other. The objective'

is to maximize expected gain over N time periods.

SOLUTION.

uccess is unknown; we suppose that it is the value of a

state-of-naiurinrandom variable H. A prior density fH (or distribution

function FH) is assumed To obtain further information, the company must

experiment by making the risky investment. Suppose Ik is the indicator

function for success in the kth risk period(i.e., Ik(w) = 1 iff t,he,risk

Rays off on the kth trial). The gain during that period is gIk. We assume

the class (Ik: 1 < k < N) is idedtically distributed, conditionally inde-

pendent, given H, with = t) = P[Ik 0 11H = t) = t. Suppose n

risks have been taken; let Sn be the random variable which counts the
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number of successes-- i.e., Sn = I1 + 12 + + I
n
. 'The succession

of.choices to take the risky alternative constitutes a Bernoulli sequence,

with conditional independence, given the parameter random variable H. =ft

In Sec D-2, we establish an expression for

p(n,k) = E(In4.11Sn = k] = E(HISn = k], when H has the Beta distribution
c.A-

If there is no basis for assigning a given prior distribution for H,

we assign the uniform distribution. According to the results in Example

D2-b, we have

-p(n,k) =
k +
n + 2

To develop a strategy based on optimum expected gain,.we utilize the IC\

backward induction procedure of dynamic programing,. Consider the beginning

of the jth period. If n risks have been taken before stage j, then

there is an "optimum-path"-gain random variable Gn,j = fn,j0n;
Intl'

I
N
). At most N risks will be taken, but not necessarily this many. It

is convenient to use a decision tree to keep account of the alternatives

(see Fig. D4-I).

Suppose Sn = k.--Te decision ru),,e is riskiff

Gn+1,j+11Sn > EfGn,j+11Sn

1 We wish to obtain an .6xpression for Gn,j. Consider the set

M = (k: E[gIn+1
Gn+1,j+11Sn > s + E[G n,j+11Sn = k]).
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Then

Gn.,) = 11(Sn)(gIn+2
Gn+1,1+1) [1 - 114(Sn)1(s + Gno+2) and

E[Gn,jrSn =k] = max (E[gIn+2 + Gn+144.21Sn = k], s,+ E[Gn,j+21Sn.= k]) . .

Since E[X1A1'= E[X1A111,(BIA) + ElX1AelP(BcIA), E[gI+21Sn.= k, In+, =1] = g,

and' P(I1 = 11Sn = k) = p(n,k), we obtain'

1110

E[gIn+2 + Gn+2,j+21Sn = k]

='(g + El
+

IGU+1,t+1 IS tr
= lc+ 10p(n,k) + E[G

n1,j+11
S
n
= k][1 - p(n,k)]

= (8 + 914.1(n+1,k+1)]p(n,k) + 9j4.1(n+1,k)(1 - p(n,k),],

where 9
.1

(n,k) = E[G
n,)

IS
n
= k]., We may formulate the decision rule as fq1-

lows:

.

9.1(n,k) = max ((8 + 9.)+2(m+1:k+1)]p(n,k),+ 9.14.1(n+1,k)(1 - p(n,k)r, s + pit.2(n,k))
.

witb 9i42(n,k) = 0.

To see how the proOtdure goes:11 g = 5/.2, s = 1, N = 2, fH(t) = 1 on

1[0,1],* so that gn,k) = wi.z. Refer to Figure D4-2 for situations at de-

cision nodes.

At the final,decision node, j =1.1 = 2, and (n,k) = (0,0), (1,0), or (1,1)

Determine 92(0,0),=c2(1,0), 92(1,1) andthe optimum action in each case.

P(0,0) = 1/2, F(1,0) - 1/3, P(1,1) m 2/3

92(0,0) 7 max (14 + 0,

92(1,0) . max (ig, + =

q, 1] = 5/4 (risk)

max'0-
'

1)
.
= 1- , (safe)6
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a

' a) At the final decision node

Safe
s + w2(0,0)

a

b) At the initial decision node

Figure D4-2. Decision nodes for Example D4-a.

113
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(92(1,1)% max (ig + 0, s) = max (3, J) = 5/3 (risk).

At the initial decision node, j = 1 and (n,k) = (0,0)

Ti(0,0) = max ([g + cp2(1,1))1,+ cp2(1,0)1; s + cp2(0 0 )

= max ([5/2 + 5/3]t÷ 1/2, 1 + 5/4)

max (31/12, 27/12) =.31/12 (risk).

The indicated is:

First decision: Risk", cp1(0,0) = 31/12

Second decision: If first risk is successful", cp2(1,1) Risk.

If first risk unsuccessful ", c2(1,0) = Safe.

The expected gain from this strategy is cp/(0,0-) X31/12 ik 2.58.
[]
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5. Proofs of the basic properties

To eipablish the equivalence of Properties CI1) through CI4), we

show CI1,)t: Cl2) CI3) CI4) Cl2). To. simplify writing, we drop

the "a s " yin the step-by-step arguments.

CI1) Cl2)

E(IN(Y)E[Im(X)12] 12 ) = E[Im(X)12]E[IN(Y)12] by CE8)

E[Im(X)IN(Y)1Z] by CI1)

= E(E[Im(X)IN(Y)12,Yi 12) by CE9)

= E(IN(Y)E(INGX)12,Y] ) by CE8).

Now

E(IQ(Z)E(IN(Y)E[IM(X) I Z] )),

EN(Z)IN(y)E[Im(X)1Z]) Borel Q by CE1).

A similar expression holds for all Borel Q with E[Im(X)12] replaced.

by E[Im(X)I 2,Y] We thus have
/

E(IQ(Z)IN(Y)E[Im(X)id = E(IQ(Z)IN(Y)E[Im(X)12,Y] ) for all Borel sets

N, Q on the codomains of Y, 2, respectively. By E6b), we may assert

E[Im(X)12] = ei(2,Y) = e2(Z,Y) = E[Im(X)12,Y] a.s.

CU) CI1)

E[IWX)IN(Y)12] = E(ELIm(X)IN(Y)12,Y] 12 ) tojr CE9)

=,E(IN(Y)E4m(X)12,Y112) by CE8)

= E(I
N

(Y)E[I
m

(X)I2] 12)

=E[Im(X)12]E[IN(Y)12]

115
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1.-CU) .r*- CI3)
r

Eft COI WI Z ,Y] m I (Z)E(I (i)1Z,Y]
_ //by CE8)M Q Q m .

.

- 1
Q
(z)Eli

m
(x)lz] by Cl2)

= Efilipc)I(1(z) I El., by Ca).
. 114 c 4 ,

CI3) . CI4) - 1%, .

EfimopiQ(z)IYr E(E[Im(x)IQ(z)l2,YJIY3

-E(Efim(x)IQ(zylzIly.)

CI4) Cl2)
"."

E(E[Im(X)IQ(Z)141Y) = E[IM(X)IQ(Z)IYJ

E(E[Im(X)IQ(Z)1Z )

This ensures that for alrEorel N on the aodomain of Y

E N(Y)i[l m(X)1Q(Z)I 2] ) = F.41 N(Y)E[1 m(X) Q(Z)12 ,Y1

But this, in turn, ensures that

E(IN(Y)IQ(Z)E[IN(X)12j ) E(IN(Y)IQ(Z)E[Im(X)1E-,Y1)

By E6b), we.mist have

E[I (X)IZ) = E[I (X)IZ,Y) a.s., which is ,Cl2).

(1

by CE9)

by CI3).

We wish to establish next the equivalence of CI5) through CI7) to
I
the propositions above. It is apparent by the special-case relationship

that CI:5) 0 CI1), CI7) m CI6) m Cl2), and CI8) 0 CI4).. -Fxtension of

C11) to CI5) may be done by a ustandard,argumeht" based on lidearity,

monotoniciti, monotone convergence, and approximation by step function's.

Extension of CI3) to CI7) may be achieved by an argument similar to

that sketched in the discussion of the proof 'CE10), plus a "standard

ment," A similar approacC serves to extend CI4) to CI8).
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Befoi.e proyilg CI9), we obtain a len= useful here and elsewhere.

Lemma D5F1

If E[g(W)1V,,U1= E[g(10]lii a.b. and Z =`-h(U), with h Bo

then [g(W)IV,Z1 = E[g(W)11/1 a. s .

PROOF

The:randlani3;ector (V,Z) (V,h(U)) is a Borel function of (V,U). Hence,

,E[g(40 1V,Z) = E(E[g(W)1V,U1IV,Z) a.s. by CE9)

= .E(E[g(W)lid IV,i) a.s. by hypothesis\,

E[;(W) I V] a.s. by CE9a)..

PROOF OF CI9)

For any Borel function .s;

E[g (X) I Z1 [13(X) I Z,Y) a.s. by CI6)

= Eg(X)1Z,V) a. s : by Lemma D5-l.

Hence, jX,V) is conditionally independent,'given Z by CI6).

For any Borel function r,

E[r(V)1ZitE[r(V)1Z,Xr .a.s. by CI6)

E[r(V)IZ,UJ by Lemma D5-l 7:

Hence, (11 ,V) is conditionally independent, given Z by CI6). [I

"V

41C



PROOF OF CI10)

A). E[g()611(Y)) = EfE[g(X)h(Y)1Zi)

t
= E(Elg(X) IZIE[b CO! Z] )

= E[el(Z)e2(Z)]

b) E[g(X)1Y E N]P(Y E N) = E[IN(Y)g(X)]

= E(E[IN(y)14E[g(X)1Z))

D5-4

by CE1b)

`S.
b

by CI5)

(notational change),
e

by CE1a)

PROOF'OF CII1) '
Gi 4n that (Y, (X,Z)) is independent

P(X E,M, Y E N, .Z E Q) = E[IWX),IN(Y)IQ(Z)]

= E(E[Im(X)IN(Y)IQ(Z)0

= Eli
Q

(Z)E[I
M

(X)IN(Y)1 }

Also,

P(X E M, Y S N, Z E Q) = P(Y E N)P(X E M, Z-E Q) by independence

= E[I14,(Y))E[Im(X)IQ(Z)] Ela)

E[IN(Y)]E(I (Z)E[I
M
(X)!Z] by CE1);

= -E (I
Q
(Z)E[I

N
(Y)] E[I

m
(X) I ) by E2)

= t(IQ(Z)E[IN(Y)1Z] E.[Im(X) IZ] ) by CE5).

e Equating the last expressions, n each s4ries of inequalities, by E6)

we conclude that E[ImOOIN(Y)1Z] = E [Im(X) I Z] EIIN(Y) Zi a.s.
(1

by pArt a).

by Ela)/

by CE1b)

by CE8).

a
PROOF OF CI12)

As in the proof of CE10), it is sufficient to show the proposition holds

e

F
for g

E[Im(X)IN(Y)IY = u, Z 4 IN(u)E[Im(X)IY = u, Z = " bf CE8)

= I.(u)E[Im(X)fz v] by C16)

[imOoill(U ) 1Z a.s. [Pyzr by CE2). n
" .

El
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. a.

6, Problems
.

D-1 Stow that if (X,(Y,Z)) is.independent, then .

.J1.-

E[g(x)t;w)0 = E[s(x)]E[h(y)lz] 4e.s.
, a'

D-2.01.e (Xi:.1 < 1 '.i.'n) be a random sample, given H. beterimine the

best mean-square estimate for H, given W =4(X1,1{2, 4'44, Xn) for . )

each of the fAlowing cases:
. t.; 7

i) X is delayedekponens01: fo(tiu) = e. (t. : u) for t S u, and

.
zrs

H is exponential (li: A- i(u) = eu. for u > 0

u
k

-ii) X is Poissq)((u): PXIH(klu) =e
-u

ir k m 0, 1, 2, 4.4, and

Xu
' H is gAma'(m,X):. fh(u) = X

m
u,
m-1

e
-

/(m-1): u > 0, mil> 0, X > 0

iii) X is geometric'(u): pxlii(k114).= u(1-u)k k M'00, 1, 2, ..., and

H issuntform

D-3 In Example D2-b, suppose a = 7, b = 3. Compare the prior density

\
for H and the quantit ies WIS10 = 81 ' and Var[MIS10 = 8] with

those for the case- a'= 2,' b = 1, as in the example- '

43
,Dr4 Consider the demand random variable of problem C-13: a

N W .
D =EXi =E/ (N)Y , where ,Y

0
= 0, Yn =sX

1
+X2 + 444 + X

n , n>
2"10-

1n
,

.

Suppose (N,(11',X1,X2, 444, Xn)) is independent florr-each n > 1, ane

E(X111 = 411 = e(n), invariant with i. Show that E[D14] = ENN(H).

D-5 4 isadesired to study the waiting time for the arrival of an ambu-
...

lance aftef reporting an accident (see Scptt, et al; Pf078)). Di;ect

statistical data are difficult to obtain. Suppose we consijer the

tandom variables

N = number of ambulances inservice (integet-valued)_

D = distance traveled by dispatched ambulance

-V = average velocity ot the ambulance for the trip,

By considering the geometry of the. deployment scheme, it is possible

° to make reasonable assdhptions about P(D < t1N = n).' Also, it is'
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possible to make reasonable assumptions, on the basis of statistical

data,..for the distribution of V and the distribut on of N. We

have W = D/V, where N is the random variable whose value is thy)

waiting time. Then p(W < = E[Ig(D,V)), where Q = ((u,v): u < vt).,

a) Show that if (V,(D,N)) isli.ndependent, thdh

-P(W < t!N = n) = P(D < vtiN = n) dPv(v)

Suggestion. fig CElb), CI11), CI12).

b) Under the conditions for part a) and the assumptions
1

i) = n) = as, 0 < s < ,where a
2
= nm/A

ii) V is uniform [15,25)

where A isthe area served, in square miles, D is instance in
e

7

miles, and V is velocity, in miles per hour!

1-
c) Repeat part b) with i) replaced by

i') p(r<. sly= n) = 1 -e-s, s> 0, a2 = nn /A.

p

, % , A
D-6 In Example D3-b, suppose the previous demand was 26 units. What is

the optiMum action?

D-7 Anelectronic game is played as follows. A probability of success in

a sequence of 5drnoulli trials is Oklected at random. A player is
- -

',allowed to observe the result of of trials. He is then to guess the

the numbervfsuccesses in the next n trita§. If he guesses within

one of the actual number of successes, he gainiMone dollar (loses -1);

if his guess misses by two or More, he loses one dollai. Suppose

.L

m = t, n = 10; on the trial run there are NWo out of three successes.

What number should v then guess to minimize his expected loss? Let

X = number of successes in m on the trial run

Y = number of successes in 'n on ere pay run

H =Parameter random variable.

A 1 2 0



D6-3

,

0
0

.
.,Then X -s,binomial (m,u), given H u

Y is binomial (n,u), given H a u

H is uniform on (0,1]

( -1 for la - yj - 1
and L(1,y),= ,

1 for la - yl > 1
D-8 In Example D4-d, determine the optimum strategy for, g - 5/2, s b 1

4
N .q3,," uniform m oh (0,1].

..

i

t

N

`ri

1

_ . )

... ,
.ew

: i
.
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E. Markov processes and conditional independence

1. Discrete-Parameter Markov processes

The notion of conditional independence has been utilized extensively

in advanced treatments of Markov processes, Such procesbes appear as

models of processes without "Tory." The "future" is conditioned only

by the"present" and not by the manner in which the present state is reached.'

The past thus affects the future only as it influences the present. We

wish to make the connection between the uscal introductory/treatment and

the more advanced point of view, which is not only mathematically powerful

but intuitively helpful in displaying the essential character of Markov

processes. For a recent introductory treatment utilizing conditional

independence, see cinlar [1975).

Many elementary textbooks include a treatment of Markov processes with

discrete parameter and finite, or at most countably infinite, state space.

Suppose we have a sequence (Xn: 0 < n) of random variable's, each with

range (0, 1, 2, ..., N). Thus, the parameter set is T . (0, 1, 2, ...)

andythe state space is S . (0, 1, 2, ..., N).1be Markov property is

expressed by the condition

M) P(Xt.o. jiXt = ..., X0 . 10)

= P(Xt+1= jlXt = i) = pij(t)

for all t > 1, all (id) E S
2

, all (i0, it_i) E St.

The quantities pij(t) are called the transition probabilities. In the

important case of stationary (or homogeneous) transition prObabilities,

we have pij(t) = pij, invariant with t. In this case, analysis is

largely algebraic, with the transition matrix P [pij) playing a

central role.

The fundamental notion of the Markov property_ -II) is that the past

does not condition the future, except as it influences the present. We can
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give the Markov property M) hn alternativeformulation which emphasizes

the conditional independence of past and future, given the present, without

0
restriction to discrete state space or to stationary transition probabilities.

To aid in formulating this condition, we.introducethe following notation.

If S is the state space, then

Sk . set of aill-tuples of elements of state space S

(X0, Xi',
Xs)

Vs,t (Xs, Xs+1, Xt)

Wtou Xt+1, ..., Xu)

9+1,
Us : 0 4 S '

V` 0 -,
St -s +1

s < t.
Sot* /

W
tou

: 0 S
u-t+1

t < u.

We indicate by U: a random vector whose coordinates consist of a subset

°
(in natural order) of the coordinatestif U

s
, and similarly for Vs

t
* and

W Them U*, V* and W* are continuous, hence Borel, functions
t,u

.

s sot' t,u

of
-
U
s
, V soe and W

t,u
, respectively. When we write a function g(U

s
),

h(Vst), etc., we suppose g, h, etc. are real-valued"Borel functions

such that E[g(Us)], ,E[h(Vst)], etc. are all'finite.

If t represents the "present", then Ut_1 represents the"past

behavior" of th procesS and represents the behavior of the

pro6ss for # "finite future." We sometimes consider an "extended present",

A
represented by Vs t, s < t.

4

In this notation, the Markov
o

property M) is.e4'quivalent to

P(Xt+1 E MIXt = u, Ut..1 v)
P(Xt+1 E MIXt u)

Vt >1, YBorel sets MC S, Y u E So_ v E St

which is equivalent to

M) EfIM(Xt+1)1Xts Wt-11
E[Im(Xt+1) I Xt] a. s . Y t >1, Y Borel M c S

Reference to CI21 shows property 14), is equivAlent to

le) (Xt4.1, Ut..11 is conditionally independent, given. Xt, .Y t > 1.
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DEFINITION. The process t E T) is Mariov iff M') holds.

Use of CI1) through C18) provides a number of alternative formulations

af the basic condition M). It is sometimes desirable to remove the

restriction to the immediate future. This can be done (and more),as the

.following theorem shows.

Theorem E1-1

A process (X*t: t E T), T = (0, 1, 2, ... ) is Markov iff

M ") (1+1,t+n'11-1) is conditionally independent, given any finite

extended present Vst , 1 < s < t, any n > 1, any w*
t+1,t+n'

A proof is given in Sec E5.

To see how-the idea of conditional independence is an aid to modeling,

we consider several examples. v

Example El-a One- dimensional random walk

A number oikphysical and behavioral situations can be represented schemati-

cally as "random walks." A particle is positioned on a line. At discrete

-instants of time tl, t2, ..., the partkeie moves an amount represented
0

by the values of the random variables Y1, Y2, , respectively.

Positive values indicate movements in one direction and negative values

indicate movements in the opposite direction. The position after the nth

move is Xn = Y1 +Y2 + + Yn (we take X0 = 0). If we,can assume

the class.. (Yi: 1 -< i) is independent, then Xn.o. r Xn
Yn+1'

(Yn+1' (Un-l'Xn)) independent for all n > 0. Since the position at time

t
n+1 is affected by the past behavior only as that behavior affects the

present position Xn (at time t
n
), it seems reasonable to suppose that

the Markov condition holds. T
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Example El-b A class of branching processes

Cons4der a population consisting of "individuals" able to produce n w

individuals of the same kind. We suppose the production of new in vi'd-

uals occurs at specific instants for a whOle "genefation." To avoid
.

.

the complication g: a possibly infinite population in some generation,

we suppose a mechanism operates to limit the total population to M

individuals at any time. Let X0 be the original population and suppose

the number of individuals produced by each individual in a given geheration

is.a random variable. Let Zin be the random variable whose value is

the number of individuals produced by the ith member of the nth genera-

tion. If Zin = 9, that individual does not survive; if Zin = 1, either

that individual survives and produces no offspring or does not survive and

roducesone offspring. If Xn is the number of individuals in the nth

generation, then

Xn+1 = min ( M, iE
1

Z.n) a a(
Yn+1)' where Yni.. (Z

ln'
Z
2n' zMr1).=

If (Z
in

< i < M, 0 < n < co) is an independent class, then

(Yn+1,(11111_1,Xn)) is an independent pair for any n > 0. Again we have a

situation in which past behavior affects the future only as it affects the

present. It seems reasonable to suppos the process (Xn: 0 < n) is

Markov.
() .

Example El-c An inventory problem

A store uses an (m,M) inventory policy for a certain item. This means:

If the stock at the end of a period is less than m, "order up" to M

If.the stock at the end of the period is as much as m, do not order.
t.

Suppose Phe merchant begins the first period with a stock of M units.

Let Xn be the stock at the end of the nth period (X0 = M). If the

\&
demand during the nth period it; D then

c /27



(

X =
n+1,

VAX ((Xn - Dn+1),0)
if m< Xn < M

max ((M - Dn4.1), 0) if

1

0 < < m

4 = g(X
n
,D
n+1

)

If we suppose (D
n

: 1 /<,n) is an independent class, then we have
,

(D
n+1,

(U
n-1'

X
n
)) is an independent pair for each n > 0. Once more

.-..

.

it seems the past and future should be conditionally independent, given

the present.

Each of these examples provides a special case of the following

Theorem E1-2

El -a

Sooppose (Yn: 1 < n) is an independent class of random vectors. Set

X0 = c (a constant) and for n > 0 let X .. m
n*i -n+1(.-XnrYn Then

the process (Xn: 0 < n) is Markov and

P(Xn+1 E:(11Xn u) P[gn+1(urYn+1) E Q] V n > 0, V u E 5, V Sorel -set-r .

PROOF

Uk = (X0, XI, Xk) = hk(Yl, Y2, ..., Yk), 1 < k < n. Thus,

(Yn+1,(Un_I,Xn)) is independentt. By property CI11) (Y
n+1' Un-11 is

conditionally independent, given X. Hence, we have for any n, any Borel

set Q,

E[I
Q
(X
n+1

)1X
n Un -1] = E(IQ

[g
n+1

(X
n
,Y
n+1 n

U
0-1

)

= E(IQ[gn+I(XeYn+l)]IXn)

= E[1
Q
(X
n
1)IX

n
]

which establishes the Markov property. How

,

P(Xn+1 E (11Xn = u) = E[I (X
n+1

)IX
n

4
= u]

E(Icl
[gn+1 (Xn PYn+1)1 n u)

= E(I
Q [g

n+i
..(uiYn+1)])

=cPign+1(ur Yn+1) E Q]
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0!

If gn+1 g'
invariant with n, and if (Ye: 1 < n) is independent,

identically distributed, then P(Xn4.1 E glICe = u) = P[g(u,
Yn+1) E Q]

isInvaltiant with n. To illustrate, we consider the inventory problem

above (c.f. Hillier and Lieberman [1974], Secs 8.17, 13.18)..

Example El-c (continued)

Suppose m = 1, M = 3, and D
n has the Poisson tlis 'tribution with A = 1.

Then-the state space S = (0, 1, 2, 3) and P(Xn4.1 = j1Xn = i) =

P[g(i, in+1) )] g(0, n +1) FIjc ((3 13)

0 iff Dn+1 3'
Since g(0,Dn+-1 )

P(Xe.1.1 = 01Xn = 0)
P (Dn+1 > 3) = 0.0803 m,(fro table).

Since 8(0, Dn+1) = 1 iff De+1 = 2,

P(Xn+1 11Xn = 0) = P(D6+1 = 2) = 0.1839 (from table).

Continuing in this way, we determine each transition probability and hence

the transition probability matrix

0.0803 0.1839 D.3679 0.3679

0.6321 0.3679 0 0 4

0.2642 0.3679 0.3679 0

0.0803 0.1839 0.3679 0.3679 .

11

The calculation procedure based on the equation P(Xn+1= jIXn = i) =

P [gn+1 (I Yn+1) = j] can be justified in elementary terms for many special

cases. The general result in Th orem E. -2 shows how the desired conditional

independence of the past and uture, given the present, arises out of the

independence of the
fl

sequence (Yn: 1 < n) and establishes the validity of

the calculation procedure in any situation (including continuous stats

space).
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111

2, Markov chains with costs and rewards

In a variety of sequential decision making situations, the progression

of states of the system in successive time periods can be represented in a

useful way by a Markov process. The Markov character arises from the "mem-
I.,

oryless" nature of the process. Often such sequential systems have a reward
. .

structure. Associated with each possible transition from one state to another

is a "reward" (,which may be negative). Consider the following classical ex-

ample,utilized by Howard [1960] in his pioneering work in the area:.

Example E2-a

The manufacturer of a certain item finds the market either "favorable" or

"unfavorable" to his product in a given sales period. These conditions may be "

represented as state 0 or state 1, respectively, If the market is favorable

in one period and is again favorable in the next period (transition from state

0 to state 0), the,manufacturer's earnings are r00. If the market is favorable

in one period and unfavorable in the next (transition from state 0 to state 1),

the earnings for the period are a smaller amount r01. Similarly, the other

possibilities have associated rewards. If the succession of states can be

modeled by)11%Markov chain with stationary transition*probabilities, then the

system is characterized by two entities: the transition probability matrix P

and the reward matrix R, given by

[POO P01] r00 r0/1

P10 Pll
Lrl° 1.11 1.

We may exaress a general model for such a system as follows:

Let (X
n

: 0 < n) by a discrete-parapeter Markov process with finite state
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space S. The.reward structure is expressed Wthe sequence (Rn: 1 < n)

of random variables

A)
Rn44

r(Xn, Xni4),, where r(i,j) = rij. -I

We are assuming that neither the reward'structure nor the transitioi

probabilities change with time. While more general situations could be

modeled, we use the time-invariant case in subsequent developments.

Bet qi= EtRni.11Xn i]..= expected reward in the next period, given the
present state is i.

Then qi = E[r(Xn,X11+1)1Xn = i]

n+1 )
'= E[r(i: XXn by CE10)

= E r(i,j)pi

Put R(m) = R R + ..! + Rim total reward in the next m periddsRn m)
n n+m

r

Now

Al) E[11 1Xn i] = E(E[RirscX41]1Xn CI8)

= E IX *.J113
j n+k n+1

From this it folloWs that

E[R,(1111)In = 1] = E[It
n+1

I X
n j

= E+ E[R(m-1)IX
n+1

= J]Pijn+1

If we put

v(m) ,E[R(m)*IX
n

= 1.] (invariant with n in the stationary case)n

we have ,

.

(n)
(m-1) (1) 0.. \I-

q. 1A2) v = + E p v , with v = '
i ij j i

q
i .

A second type of reward structure is exhibited in the following

class of processe;, which inclUde inventory models of the type illustrated
'

in Example El-c. es

Let (Xn: 0 < n) be a constant Markov chain with fini e state space, and

lei ,(81.0.1: 1 < n) be in independent:ide ically distr buted class such

Ghat for each n > 0,
1' (X0w 1'

)) is an

131



c. E2-3

independent pair. Tfie, associated reward structure is expressed by the

process (Rn : 1<m), with

B) Rn.1.1 = r(Xn,Dni.j).

Property CEll) shows that

q = E[Rn
4-1

IX
n

= i] = E[r(i' D
n+1

)] (invariant with n).

The hypothesis (Dn,Uni4(4), is independent and property CI11) ensure 11/
ti

that (D Xi) is conditionally independent, given

0 5. 1,j < j. Foi fixed n, k,

e(Xi) = E[r(Xn.fic'

Then by .,C18)

e(Xn) = E[e(Xi) Xi) a. s .

flenc ,

B1) E[Rn.f.k1Xn = X:44] I

o
E Eritn+k IXn+1

Dn401xil

1 ee
`2P for

for any i < n + k - 1.

n<i<n+k - 1.,

Applying this formula for k = 2,3 ,
m-1;

B2) v() q+ E vj withi i j Pij
The identity of form of Al), B1) and

Xn = 1)

APij.

m, we ?btain

vi(1)- qi.

A2). 132) ,shows

analysis holds for either type of reward structure.

that the following
(.

periods.Consider the average expected reward per period for m

1- (m) 1

E[mn = E[Rma].
m 1=E1

1 E E(E(E[Rn
1=1

Now E fitnil IX
n41-1

j] so that

» by CE1b) and CI8),

E(Efit IXn+i-1I Xn-1 k) E pkj (i)qj'
where .pkj ) is thd-,- i -step transition probability

E14-1t(m)] E tP(X E p(i) q E [P(X
m n m n-1 kj j k n-1

132

from k Lb j. Hence, .
m

k) E q (1 E P")].
ra 1=1°1°

.0*
0
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If the Markov chain is constant, irreducible, aperiodic, as is usually

the case, it is known that
m .

1 (iE p
kj

)
ST
j

as m 0:$ (invariant in
7-

k).
1=1

Here nj fs the long-run probability that the process is in state j.

Since the jimit is invariant with k, we may sum out the P(Xn_j = k)

to obtain .

t 3) lim E[1- R(n m/1 = "
qinJ

g.
m-P,

'A similar arguments s that for each state i ,.

' ----,

4) Urn Efit- R(m) IX' = i] = lira l v(m) .. E q n a. g.n n m i j i inrico , arico

r- 4
Here g is.theayerage gain or reward per period, in the long run. We

_illustrate-by considering numerical values in the introductory examples.

Example (continued) ,

1/2 1/2 5 5

.*Ppose P = =

2/5 3/5

1,
10

[5 5

and
k..0, [

3 -7

To find the long-run distribution, we solve the set of equations

5 n + 4 n
1
= 10 n

0 0

5 no + 6 n, = 10 ni to obtain the valu no = 4/9 and ni = 5/9

"0 "1 1.

7

Then

1 1

2
a
0 j
.pOj r

Oj 2
9 + 3 . 6

c11. jr1 j 1 3 + (-7) -3
E

1 4 5g lim 17; vi
(m)

= 1 qjnj =.6 §- 3 §- 1.

(1
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Example El-c (continued)

Suppose m 1 and M 3, as below.
If k units are ordered, the cost is 10 + 25k, 0 < k <'M.

If k = 0,. the cost oft*.clering-is Zito-

For each unit of unsatisfied demand, a penalt of4$50 is assessed

We suppose the deniand Dn in period n has Poisson distribution, with

X . 1. We may then calculate the cost function (negative of reward)'

10 + 25(M - Xn) + 50 max ((Dn+, - /4), 0) for, 0 < Xn < m
c(Xnon+1) I(

po max ((Diva - ,Xn), 0) for ni< Xn < M.

E2-5

Thus,

C(0, D n+1) J. 85 + 50 max((D
n+1 - 3), 0)

C(i, Dnit) 50 max ((D - i), 0) for i = 1, 2, 3.
Now '4.

q0 E[C(0, Dni4)] . 85 + 50 E[I(D 3)(D - 3)]

85 + 50
kE

(k - 3)pk (term for k . 3 '<is zero);4.
CO

For the Pdisson distribution E kpk E pk . Hence,

co CO

85.+ 50[ E pk - 3 E pk] 86.2 (Using table for Poisson distribution).
k,o3 k4

CO . CO

E[C(1, Dn+1)1 50 E (k - 1)p 50[ Ep Ep] 50p
k.2 k k-1,k k

Similarly, we obtain .
CO

E[C(2, Dn+i)] = 50 E (k - 2)Rk 5.2
k-3

and
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/ q3 = E[C(3,Dn4.1)] = 50 (k - 3)pk = 1.2 .

To obtain the long-run prbbabilities, we utilize the fact that the

convergence is rapid and consider P
2
, P

4
, ... until results stabilize.

Direct calculationsof matrix products shows that

0.286 0.285, 0.264 0.166

0.286 0.285 0.264 0.166p8

0.286 0.285 ,0.264 0.166

N, 4.0.286 0.285 0.264 0.166

from vthich we conclude n
0
= 0.286, n

1
= 0.285, n

2
= 0k264, and

r3 w Q.166. These add to 1.001, indicating a small roundoff error.

Utilizing these values,'we obtain

m)
E qg = l

1
im

i
== .

m j r 315 [Inrice

The treatment, once equations Al), A2) or B1), B2) and 3), 4) are

obtained,is standard. As a matte; of fact, we have used examples taken

from published texts. In most standard'Worka,the derilktions are

intuitive, and incomplete. We have provided a development based on
err

fundamental assumptions of independence and conditional independence

Or Markov conditions). Such a development should both sharpen intuition

and provide a sound mathematical basis for utilizing the models.i---
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3. Continuous-parameter Markov processes

There are certain technical difficulties in the theory of%rontinuous-
e,

parameter processes. ,Bewever, advanced methods show that a process can be

determined essentially for applications if all finite-dimensional distri

butions are determined (i.e.,.if the joint distribution- for any finite/

4
0subclass of the random variablessis determined).

Consider a real proms (Xt: t > 0) (i.e., T = [0, r Let U, V,

W be finite subsets of T: U ''(ul, u2,
um), V (v1, v2, vn),

and W = (w1, w2, wq). We suppose ui < vj < vi+1, and

wk
+l

for all indicated i, j, k. We say U precedes V, denoted

U < V, iff every element of Utis less than every element of V. We

put Xu = (X , X , ..., X ), = (X , X , ..., X ), and
ul u2

u
m v vi v2 qn

X = (X , X ..., X ).

W wl w2 w q

DEFINITION. The process (Xt:t > 0) is a Markov process iff for

Any

M)

U < (v) < (w) we have

ON
E[im(Xw)IXv, XU] E[Im(Xw)lXv] a.s. for all Borel Sets M on

the codomain of its (i.e., in the state space 4S).

It is clear that condition M) is equivalent to

M') For any finite U < (v) < (w), (X , X.) is conditional ly independent,w

given Xv.

As in the discrete-parameter case, we have the equivalent condition (see

Theorem El.-1)

M") For any finite U < V < W in T, (X., XU) is conditionally

independent, given Xv.

These and other equivalent expressions for the conditional independenCe

condLtldh provide major tools for the study of Markov processes.
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Many of the Markov prilcesses encountered in practice may be recognized

by virtue of the folk:Ting property. F $ ?

DEFINITION. A random process (Xtt t E T) has independent increments

iff for each finite subset Tn = (t0, tl, t
n

) of the'Pal'ameter

set T, with, t0 < t1 < < tn, the class

'(X Xt - Xt ) of randomcaiables is, to t1 to t2 t1
n n-1

independent.

Two of the moft widely studied and utilized random processes have this

property.

Poisson process.

The parameter sit is T = [0, m). The'process counts the.number of
.1

occurrences of some phenomenon in given time intervals.' The random

variable Xt counts the number of occurrences in time interval (0,t].

We set X
0

= O. Then Xt - XS , for s < t, is the number of occurrences

in the time interval (s,t). The property of independent increments

models the fact ;hat the numbers of occurrences ,in nonoverlapping time

intervals are independent. What happens'in one interval is not affected
.

by and,has no effect on what happens in oth'ir'intervals.

Wiener process (Brownian motion),

The parameter set is T = (0, m). X0 = O. The process is A model of

the movement along.a line of a "particle" under "random disturbances."

X
t

is the net movement along a coordinate axis in the time interval

(0, t]. In many situations, the disturbances are offtuch a character that

the distances moved in disjoint time intervals m4 be assumed independent.

Heppe, the independent-increment assumption is appropriaeh.

/



In the discrete-parameter case, the class of random walks (see

Example El-a) possess the independent-increment property. We have

Xn Y1 + Y2 +:.. + Y
n

and Xmik - Xm Y.1 + Ym1.2 + + Y. The

assumed independence of the class (Yi: 1 < i) .ensures independence of

the increments.

We wish to show that a process with independent increments is a

Markov process. To facilitate exposition, we adopt the following tet(mi-

nology notation.

1) We say T (t0, tn) c T As a strictly ordered, finite

. asubset o T ifg/ t0 < t1 < .;. < tn.

2) For any strictly ordered, finite subset of T, we define the random:

variables Ye. Xt and Yk . Xt - Xt for 1 < k < n,
0 k k-1

and the random vectors U
k

. (X , X '..., X ) and
,t

0
t '
1

Xt

2k . (Yo, Y1, ..., Yk) for each k, 1 < k < n.

We note that if we have the values of the coordinates of any one of the

vectors Un, 2n, ' (211-1, Xt ), or (U
n-1'

Y
n
) the values of the

coordinates of the others are obtained by linear transformations, which

are continuous, hence Borel. Thus, we may assert

A) Any one of the random vectors Un, Zn, (Zr, Xt ), or Nn
-l'

Yft)

'is a Borel function of any one of the others.

By virtue of property CET?), we have

B) ENIzn] - E[wlun] E[WIUn_1,Xt ] E[WIZn_1,Xt ] E[WIUnt.1,Yn] a.s.

Also, by virtue of independence Of Borel functions of independent random

vectors, Imo

C) If any of the pairs fY
n+14 Un1' (Yn+1' Zn1' (Yn+1' (Zn-1, Xt ))'

n
is independent, so are the others.
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With these facts, w can now establish the fundamental result

Thel;rem-E3-1 r

If the process (Xt: t E T) has independent increments:then it is

a Markov process.

6
PROOF

.

. He show that for any strictly ordered, finite Tn c T, the condition M')

holds for X_
Un-1'

XXv = Xt , and ,Xt .
u

n w n+1
.

-y g(Xt ) g(Xt 1. YU+1) h(Xt ' Yn+1), with h Sorel and
n+1 n n

E[g(X.
n+1

)IUn-1 , X
tn

) E[h(Xt
n
,Yni.1)12n_i, Xt

n
) a.s. by proposition B)

'

By proposition C) and
' 'Yn+1' Zn-1)

CI11) I is conditionally independent,

given Xt . _Hence,
n

E[h(Xt Yn.1.1)12n_1, Xt) E[h(Xt Y+1)1Xt ) a.s.
n n n

We may therefore assert

E[g(Xt )1U,1,Xt ) E[g(Xt )IXt ) a.s.
n n n+1 n

which is the desired property.

The following alternate critericin for independent increments is frequently

useful as an assumption in modeling.

Tporem E3-2

A proCess (Xt: t E T) has independent increments iff for every strictly

o,Otdered, finite Tn c T, the pair (Yn, Un_i) is independent.

PROOF

a) If the process has independent increments, the pair (Yn, Zn_i) is

independent. By proposition C), above, so is (Yn, Un_i) an independeA

pair.

by CI7)
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1

b) Suppose (Yn, Un.i) is independent for al) Tn. Let Tn be arbi-

trarily selected, but fixed. For each k, 0 < k < n, set

Tk = (t0, tk). By hypothesis, '(ik, 0k.:1) is independpnt,

1 < k< n.

1 < k < n.

By proposition'C), the pair (Yk, Zk_i) is independent,

In particular, \(Y 1 , Z0) = 4{Y
1 , Y0) is independent.

Suppose for some k > 2, (Yo, Y1, Yk.i) is Independent. Then

by the independence
k

have P(n Yi E Hi)
i=0

Thus, (Yo, yl,

the class (Y0, Yi,

of
(Yk' Z1-1) (Y10 (Y0, Y1, "" Yk-14), we

k-1 . k-1
= P(Yk E Mk)P( n Yi E Hi) = P(Y

k K
E M.) n P(Yi E Hi).

i=0 ,

1.1

; Yk) is independent. By mathematical induction,

..., Yn) is independent. Sinde T
n

is arbitrary,

the desired proposition follows.

ao,

o,

0
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The Chapman-Kolmoiorov e uation

,a Markov procesi ( : 0 < t), let 0 < s < t < u. Then the ...**,

-----...1,
pair (Xs, Xuj is conditionally independent, given As As a special

case of a8)., we have

CK) Efg(Xu)1Xs) = E(Eig(Xu ) Xt) 1Xs ) a.s.

This is the Chapman:KADlmogorov equation, which plays a significant°role
in the study of Markov processes.

For a chairr with finite state space S, the equation takes a simple

form which is usually determined from the first form of the Markov property

in Sec El and elementary probability patterns. Imo.. (s,t)
P(X.t. = k IXs = 3 th'Nehapman-Kolmogorov equat

CKI) pik(s,u) = E p,.(s,t)p.,(t,u) < sj 13

To see that this is a special form of CK), note that

P(X
u = k Xs i) = E[I (k) (Xu )1X

s
ij

= E(EfI (k) (X
u )IXt ) IX

s
= ij ,

=Es Efl,(k)(Xu)1X; = jiP(Xt J1Xs

= p (s,t)pjk(t,u),

In the case of stationary transition probabilities, let pile) be the

niltep transition probability from state i to state k. `CK') becomes

p(m+n) P.
(m)

P
(n)

ik j ij jk

which'is the form comp onl ntered in elementary treatments. In such

treatments, the transition probability matrix P plays a central role. If
P (m) is the matrix of m-step transition probabilities then P (m) Pm

ually written

P PP. ..P (m factors). The Chapmari-Kolmogorov equation CK") may be

expressed compactly as c.

CK") 'p(m+n) = P(m)P(n).
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If the random variables are absolutely continuous, the Chapman-Kolmogorov

equation is often expressed in terms ofconditional density functions.

CK") fx ix (z Ix) = fx
X (zIY)fX IX (Y1z) crY"-su s t s

's

lin this case CK) may be written

(zix) dz = j[jg(z)fx ix (zIy) dz]fx ix (yIx) dy
g(z)fX IX

u s t t' s
,

Sg(z)[Sfx IX (z1Y)fX IX
u t t s

(yIx) dy] dz.

In order for this equation to hold for all Borel fu ctions g, by an

analog to property E7 or integrals on the real 1 ne, we must have

CK / ") for each x.

In spite of the Importance of the Chapman-KolmAOrov equation in many

-aspects of Markov process theory, it is t true that the validity of this

equation implies the process is Markov.' Stated another way, it is not

true that the condition C17) may be replaced by the condition

E[g(X)IZ,Y] = E[g(X)[1] a.s. for any Borel function g. The latter* 4.

not sufficient for the conditional independence of

given Z. W. Feller has given counterexamples. The following is take

from Parzen [1962], p 203, but it is due essentially to Feller.

Example E4-a

Consider a sequence of containers, each with four balls, numbered one.

.through four. Select a ball independently, on an equally likely basis,

fromreach container. Let
I \

A
m
(1) = event ball 1 or 4 is drawn from the mth container

A
m
(2) = event ball 2 or 4 is drawn from the mth container

A
m
(3) = event ball 3 or 4 is dawn from the mth container.

Under the usual assumptions, P[Ath(A)] = 1/2 for any m > 1, any 1

= 1, 2, or 3. For any m (i.e., any APtainer), we have a classical
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example of a class (A
m (j): j = 1, 2, 3)

f
of events which Is pairwise

*

independent, but not independent. ence selections from various containers,

are independent, we assume (Am(jm): 1 < m) is an independent class for

any sequence (jm: 1 < m) of elements of the set (1,2, 3). Thus we

may assert that (Am(j): 1 < m, j =1, 2, 3) is a pairwise independent

classl with PEAM(J)) = 1/2 for any permissible m, j. We now form

the process (Xn: 1 < n) by setting

X" = IA wo. 1, 2, 3, m 1.

This process has state space S = (0, 1), and the members are pairwise

independent, with P(Xn = 0) = P(Xn = 1) = 1/2. We also have

P(X
n
4T= jIX

n = i) = P(X
n = j) = 1/2 for any j, k E (0, 1), any

n > 1, any r

Thus, the m-step transition proob ility matrix is

=
[11 1

P for any m > 1.
(m) 1

Easy matrix calculations show

9

(m) (n) 1
1 1

P P = ..
z

1 1 -2' 1 1

.1

p(M+
=

A 0

so the Chapman-Kolmogorov equation holds. However, the process is not

.Mittkoir, as the following argument shows. Since Am4
1
(1)Amt

1
(2) is a

fir

subset of A
m4.1 '

(3) we have

P(X3m43 =11X3m42 =1, X3m41 = 1) = P(Am41(3)IAm41(2)Am41(1)) = 1

, P(X
3 3

1IX
3 2

= 1) = 1/2.
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5. Proof of a basic theorem on Markov processes

We. utilize the notational scheme introduced in'Sec El. To prove

Theorem E1-1, we first obtain an intermediate result.

Theorem E5-1

For a Markov process (Xt: t E T), with T = (;), 1, 2, ... ), the pair

(Xt+1, Us-1) is conditionally independent, given any Vs t, 1 < s < t.

PROOF

We note that U
t-1 = (Us -1,

Vs,t.1) and V
s,t

= (V
s,t-1' Xt)*

Borel function g,1 any -S, t, 1 < s < t,

E[g(Xt.1.1)1Xt] = E[g(Xt+1)1Ut.1,Xt] a.s.

= E[g(X0.1)1118.1, V9,t].

By Lemma D5-1, with V= X
t'
'U=U

t-1'
Z= V = h(11

:1
),

E[8(X
t+1

)11(
t
] = E[g(X

t+1
)1Nr

s,t-1' Xt]

For any

by M') and CIO

= EIB(Xt+1)1Vs,t].
//

The theorem follows by CI6). I]

V

',TheoYem E1/1

Aepiocess (Xt:t E T), T = (0,. 1, 2, is Markov iff

( /1.1,t4ni U:71) is conditionally independent, given any;finite

E5-1

extended present Vs,t, 1 < s°<:t, any n > 1, any W*
b t+1,t+n' U:-1,'

'
PROOF " ." `,

M") implies M') as a special case.
.

. Suppose M') holds. We need only establish M*) LW , U ) is
460, r t4116t+n 8-1 .

conditionally independent, given %,t, 1 t, any. n > 1. The

442more general condition follows from C19), with

and U*
1

= k(U
8-1

). We construct a
to.

Theorem E5-1.

t+I. = h(W
t+1,t '

matical induction on
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i) Since X
t+1

Wt+1,t+1 , .14*) holds for n . 1, by Theorem E5-1.

ii) Suppose M*) holds fo n k.

-By Theorem E5-1 (Xt+k+1' Ut) is conditionally independent, given

Wt+1,t Berke, for any Borel function

E[13(W t+1,t+k+1)IUs-l'Vs,t1

/ 4

Efg(Wt+1,t+W Xt+k+l)k/*

Xt140.1)1Wt+1,t+killjt)

0

fg(Wt+1 t
M E(E by CI8)

." Efe(Wt+1,)-1-k)11/8-1211s,t1

E[e(Wt+1,t+k)IVs,t] by inductive hypothesis and CIO

- E(118(Wt+lpt+k' Xt+k+1)1Wt+1,t+killis,ti

Efg(Wt+1,t+k+1)111s,t1
a.s. by CI8)

M*) holds for n k + 1.

iii) By mathematical induction, M*) holds for Boy n > 1..

,

I
.7

and CI9).

fl
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\6. Problems

E-1 Stopping times. In dealing with a random process (Xnf 0 < n) it

is sometimes desirable to consider a randomly selected member of

the process. Suppose, for example, we wish to stop the process when

a certain result (or pattern of results) is observed. This means

we select X
n

as the last variable iff the observed sequence

n+1
(s0,s1, an) E S.m..of.resulteexhibits a prescObed pattern,

hence belongs to a'certain subset Mn of S
n+1

. We use this to

formalize the notion as follows:,

DEFINITION. A non4gative, integer-valued random variable T is

called a stopping time for the process (XI:: 0 < n) iff the event

Ak = (w: T.(w) = k) is determined by Uk = (X0,X1, Xk). Thus,

Ak = Uk
1
040, with AkAi = 0 for k j. We assume k£01,(Ak) = 1,

which means that with probability one T finite.

It is apparent that T = E k IA = E k I (uk),as
k=0 -k k=0 -k

a) Suppose X
n

is the value of a critical dimension of the nth

item from a production line. The desired valuelis a. The

piocess is stopped for readjustment whenever _ 1Xn a] > b. Show

that if T is the random variable which designates the number of

the item at which Ohe lirfE is stopped, then T in a stopping
-, ,-

time for the process.

b)

c)

`!--

Suggestion. Expiess ter+of4e cooftdnate sets ,M =

[a-h, a+b]. ,4 14

Show that if.the X
n

are irteger-yalued, the randgmvatt al4I,

defined by T1(w) = min(h > 0: Xn(w) = if is a stopping time" cf :6

k°Sh6w that if T1 is a stopping time for an integer-valued process,

so is T2 defined by T2(w) = Minfn >T1(w): Xn(w) = i).

o
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*

E-2 Suppose T is a stopping time for, the process (X : 0 < n). Let
n

U T46 nEUI (V ) The expressions g(U ) and I
Q
CU
T

)k Ak, k Mk k -T
must be interpreted, since the dimension of random vector UT changes

with Q E Sw and Q(k) is the projection'onto Sk44, then

We set I
Q
(U
T k

E) = I
Q(k)

(U
k
)I ok f). Similarly 8(1.!

T
) = E g

k
(U
k
)I (U

k
).Mk kMk

Show that E[g(Y)1E1./ ' E[N(Y)1Ek]Imk(Uk) a.s.

E-3 Strong Markov property. Suppose (Xn: 0 < n) is a Markov process and

T is a stopping time for the process.

A) Show tjat E[
E[8(WT,T+n)15I]

E E[8(Wk,k4h)I Xk] Imk(Uk) a. s .

b) If the process is homogeneous, show that

Eig(W/,1411)1XI) Ei8(WO,n)IX03
-a.s.

E-4 Martingales. The following class of random processes has many

connections with the class of Markov processes (cf Karlin and Taylor

,[1975], Chap 6).

DEFINITION, Let (Xn: 0 < n) be,a sequence of real random variables

and (Yn: 0 < n) be a sequence of random vectors. Then (Xn: 0 <

is a martingale with respect to (Y.2"`0 < n) iff i) E[IXnIY is

finite for each n > and ii) ITXr0.11Y0,Y1, Yhl = Xn a.s.

for each n > O.

Note that conditions i) and ii) imply iii) Xh = en(Y0,Y1, Yn)

a.s., with en a Sorel function for any n > O. If Yk A Xk, all k,

we say (Xn: 0 < n) is a martingale, without qualifying expressio

a) Show that`for a martingale E[Xn] = E[Xo] for all n:

b) Show that if (Xn: 0 < n) has independent increments (hence is

Markov) and
/

E[Xn] = E[X0 ] all ti > 0, the process is'a
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APPENDIX I. ,Ptorrties of Mathematical Expectation

El) B[IA] P(A),

AI-1

Ela) E[IM(X)] P(X E M); E[IM(X)IN(Y)] P(X E M, Y E N) (with extensiod

by mathematical induction to any finite number of factors).

E2) Iinearity. E[aX + bY] aE[X] + bE[Y] (with extension by mathematical

induction to any finite linear combination). ig

E3) Positivity; monotonicity.

a) X > 0 a.s. implies E[X] > 0, with equality iff X'. 0 a.s.

b) X > Y a.s. implies E[X] > E[Y], with equality iff X Y a.s.

E4) Monotone convergence. If Xn X monotonically" a.s., thEn

sE[Xn] E[X]. monotonic)24Y..

E5) Independence. The pair (X,Y) of random vectors is independent

iff E[I
M
(X)I

N
(Y)] Eft

m (X)lE[IN (Y)] for all Borel sets

-w
on the codomains of X, Y, respectively,

iff E[B(X)h(Y)] - ENOCAE[h(Y)] for all real-valued Borel functions

g, h such that the expectations exist.

E6) Uniqueness.

a) Suppose Y is a random vectdr with codemain ie and g, h are

real-valued Borel functions on the range of Y. If Eftm(Y)B(Y)]

Eft (Y)h(Y)] for all Borel sets M on the codomain of Y,

then g(Y) h(Y) a.s.

b) More generally, if EfIm(Y)IN(Z)g(Y,Z)] Eftm(Y)IN(Z)h(Y,Z)] for

all Bore]: sets M, N in'the codomains respectively,

then g(Y,Z) h(Y,Z) a.s.

E7) Fatou's lemma. If Xn > 0 a.s., then E[lim inf Xn] < lim inf E[Xn],

E8) Dominated convergence. If Xn X a.s. and 1Xn1 < Y a.s., for

each 11, with E[Y] finite, then -EfXn] -s

Lirzo
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E9) Countable additivity. Suppoie E[X] exists and A l4 Ai.

i=1
E[IAX] = VE[/, X] .

i=1

.14

Then'

E10) Existence. If E[g(X)] is finite, then there is a real-valued Borpl,

function e; unique a.s. [Py], 13;0 that E[/m(y)g(X)] p EN(Y)e(Y)]

for all Bofel sets M in the codomain of

Eli) Triangle inequality. 1E[g(X)]1 <[113001].

E12) Mean-value theorem. if a < X < b a.3 on A,' the aP(A) < E[IAX] <lbP(A).
4

.' .E13) Let g be a nonnegative Hotel function,defined on the range of X. Let '

0 .
I

.

A - (a: g[X(w)] > a). Then E[g(X)] > aP(A).', N

E14) Markov's inequa'l'ity. If g > 0 and nondecreasing for e> 0 and a >0,,
t . .

then g(a)P(1X1 > a) < E[S(IXI)].

.

E15) Jensen's ine ity. If g is a convex

11

function on an interIM1 I whith
.

?Includes the Inge of real random variable X, then g(E[X]) < E[g(X)].

g16) Schwarz' inequality. If X, Y are real or complex random variables with

E[1X12] and .E[IY12], finite, then IE[XY] 12 < EffX121E[lY12]., with

se,'
equality'iff there is a constant c such that X - cY a.s.

1 'E17) H31der's inequality. Let 1 < p, q < = with - 4,- = 1. /f-X,Y are
.

'
. P q

real or complex random variablesOlth E[IX1P] and ErlYfq) finite,

then E[IXY1] < EfIXIIII/PE[IY1q]1/q;
'11$

V"'

E18) Minkowsii's inequality. Let. 1 < p < 0. If X, Y are real oficomplex

random variables with E[IX1P] and 'ErlY1P1 finite, then

EfIX tuYIP114 <EfIX11114 E[IY1414.

151
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APPENDIX II. Properties of Conditional Expectation, given a Random Vector

We suppose, without repeated assertiOn, ..that the random vectors and

Sorel functions in the expressions below ate such that ordinary expectations

exist.

CE1) e(Y) = E[g(X)IY) a.s. iff E[Im(Y)g(X)) E[Im(Y)e(X)) for all
Sorel sets M on the codomain of Y.

CE1a) If P(Y E M) > 0, then E[Im(Y)e(Y)) = E[g(7C)1.Y E M]P(Y E 14).

CE1b) E[g(X)) = E(E[g(X)1Y1).

CE2) Linearity. E[ag(X) + bh(Y)12) = aE[g(X)12) + bE[h(Y)1 a.s. (with

--7-65ifensionl?y mathematical induction to any finite linear combination):
CE3) Positivity; monotonicity.

g(X) >'O a.s. implies E[g(X)IY) > 0 a.s.

g(X) > h(Y) a.s., implies E[g(X)12) > E[h(Y)12) a.s. _

CE4) Monotone convergence. Xn X a.s. monotonically implies

E[XnlY] -, E[XIY] a.s. monotonically. $

CE5) Independence. a) (X,Y), is an independent pair iff
b) :E[IN(X)1Y) 'E[IN(X)] a.s. for all Sorel sets N iff
c) ,E[g(X)IY) = E[g(X)] a.s. for all Sorel functions

CE6) e(Y) = E[g(X)IY) iff E[h(Y)g(X)) = E[h(i)e(Y)) for all Sorel h.

CE7) If X = h(Y), then E[g(X)IY) = g(X] a.s. for all Sorel g.

CE8) E[h(Y)g(X)1Y) = t(Y)E[g(X)IYI a.s.

CO) If Y =,h(W), then EjE[g(X)1Y] 1W) = E[E[g(X)1W) 1Y) = E[g(X)IY) a.s.

CE9a) E(E[g(X)1YJIY,Z) =,ECE[g(X)1Y,Z1IY) = E[g(X)IY) a.s.

CE9b) If Y = h(W), where h is Sorel with a Sorel inverse, then

E[g(X)IY) = E[g(X)1W) a.s.

g.
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CE10)'If- g is Borel such that E[g(X,v)) is finite for all v on the
: . ... -

1

the range of Y and E[g(X,Y)] is finite, then

E[g(X,Y)IY ..,u] - E[g(X,u)IY .. u] a.s. [Py).

. . .
CE14) In CE10), if (X,Y) is an independent pair, then

E[g(X,Y)IY - u) - E[g(X,u)] a.s. 1Py).

CE12) Triangle inequality. lE[g(X)1A1 < Eng(X)11Y) a.s'. OP

0

.:,

. ..

CE13) Jensen's inequality. If fp -ks a convgato function on_an interval I .

which contains the range of real random variable r, then ..- ../
g(E[X1Y]) < E[g(X)1Y] a.s. .

I

o

6 ..

0 .

r ,
4

.

t

. AO

c. :

., .

.-

..

0

.

r

C 4.
' r

.-

\\
,
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APPENDIX III. Properties. of Cbnditional Independence, given a Random Vegtor

The following conditions are equivalent:

CI1) E[Im(X)IN(Y)121 E[Im(X)12]E[I0(Y)12] a.s. V Sorel sets M, N.

C12) E[I
M
(X)12,Y] = ELI

M
(X)12) a.s. V Sorel sets M.

CI3) E[Im(X)1
Q
(2)1Z,Y1 =

Q
WIZ] a.s. ,Y Sorel sets M, Q.

C/9, E[Im(X)I(1(2)1Y) = E(E[Im(X)/(1(2),,WIY) a.s. Sorel sets M, Q.

CI5)- E[g(X)h(Y)IZ) * E[g(X)IZ]E[h(Y 12] a.s. V Sorel functions .g, h.

CI6) Efg(X)12.,A1 ' 8(800121 a.s. Bortl functions g.

CI7) E[g(X,2)12,Y] = EfeX,2)121

CI8) E[g(X,2)1Y]

-

DEFINITION. Th

given Z, iff

vectors is cOndi

. V Sorel functions g.

= E(E[g(X,2)12]1Y) a.s. V Sorel functions, g.

pair of random vectors (X,Y) is conditionally independent,

e product rule C11) holds. An arbitrary class of random

onally independent, given Z, if an analogous product

rule holds for each f nite subclass of two or more members of the class.

1110

CI9) If (X,Y) is conditionally independent, given' Z, U = h(X), and

V = k(Y), with h, k - Sorel, then (U,V) is conditionally inde-

pendent, given Z. s'

MO) If the pair (X,Y) is condit onally independent, given Z, then
e

a) E[g(X)h(Y)] = E(E[8(X)12 (Y) 12] 1,= E[e1(2)e2(2)I

b) Efg(X)IY E N]P(Y E N) " E(E[IN(Y)12]EWX)IZ1),-

CTIQ If (Y, (X,2)) is independent, then (X,Y) fs conditionally

independerit, given Z.

C/12) If (X,Y) is condition'ally,jndependent, given- Z, 'then

E [13 (X Y) IY = u, Z " E [g(X,u) = a.i. IP 3.
, Y2
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4 Sele-Cted Answers, Hints, and Key.Steps

.A-1°41) (X) (0,A,Ac,?1) if) 3(X) = (0,A,B,C,AUB,A1X,BUC,D) /
A-2 i) AW B iii) X-1((-c),3)) AelBeC DC

A-3 gui g3 a.s. (PA, but g3 g2 a.s. fPx)

AT4 a) g is cont. (draw graph), hence Borel, all t
oo

SA-1

,A -8 a) 4`>. 0. A,.. ld Ai implies /A , .. lim E IA implies. iml n 1,..1 Ai
...n ° .

E I X increases to I X. Use linearity, monotone convergence....- .- . 1..1 Ai ,,, % A.9. .0

B-6 i) implies i(ABI4D) P (AI D)P (Bib) lies P (AHI 0) = P(AID)P(HID)I 6

PfB111),t(HID) iv) imp 14 et-R(ABH10),.-P-(A13-10).P-(iffEr)iii) lies P BH

I37 '576/228 - ,
B-8 vb) P(CITIT,)/E(CcITIT2) 64/99 c) P(CITITc)/P(CciTiTe) 16/4891`
B-9 PXWIQVP(VIQ) = 1/3, implies, P(Wk) =.*-114 P(Q) = 1/2

7(41Qc)/p(weiQc,
) 3/2° implies P(W1Qc) = 3/5

P (41 A Bc ) P(Q)P(W 12)P (A14)P.(B`1Q) + P (Qc)P (4 IQc)P(AIQc)P(BcIQc) 41
.

mei.. ptop(iflop(Aimpoci4) 7.4,

B-10 [r.,13) is conditionally independent, given A,,' and given Ac

f(T) = 0.54 P(ATc) ..t 0.12 P(AcT4 - P(T) -,P(AT) .. 0.b6 P(AcTc) - 0.28

E(TLB) ..IP(AT) P(BIA) + P(AcT) P(B(e) 342
P (T9 B) P (ATc)P(B1 A) -P1 ace )P (HIA4 ) 156

B-11b) P(04)... 0.2 (4 P(IcIDC) 0.2 44,462Iiely = 0.96
'F(D2II`Dci) 0 implies P(Dci/c02) = 0. IC .102 "

Hence,. ,P(0102), P(07/02) + P(DciIcb2) = 0
. _

P(01)P(IellyP(021/c01)P(CIIeD02) 9'PO IC) ac lc) (Ddomc (ci lc)2 340

.Y$ -1z E - D 0.°D D D D -'X 3.29D > - 0.201 Classify in group 1p 10 21 31 42 50 61
..

6

N.,
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SA-2

C-3 E[t
A
g(X)] =E[i

ABg(4)] +'E[I
AB

cg(X)] = E[g(i)1AB]P(AB) + E[g(r) AB1 c] ABC

C-7 A = (X2 + Y2 < 1) = ((X,Y) E Q) Since Z = X on A, we have

E[ZIA]P(A) = ElIg(X,Y)X] = 0 (by evaluation of integral). Also

E[ZIAc]P(Ac) = E [TAcc] = cP(Ac). Hence E[Z] = 0 + cP(Ac) = c(1

C-8 a) E[X2 + Y2IX = t] = t2 + E[Y21X = t] = (3t2 + 4)/2 1 < t < 2

b5 E[XY1X = t] = i t (t2 + 2t + 4)/(t + 2) 1 < t < 2
1 93 108 279 .....c) E[XI X < - (Y + 1)] z. E[xIQ(X,Y)] /E[I (X,Y)] =
2 180 47 235

._ . %.7 1.19
Q

E[X2 + 121X = t] -I,< t < co
.
C-9 a) t2 E[y2] t2

b) NE[XYLX = t] = tE[Y] = t/4 ,r1 < t < co. .
C-10 E[g(X,Y)11 = u, Z . v] = E[g*(X,i,Z)1Y = u, Z = v] .

= Erg*(X,u,v)IY = u, e= v] by CE10)

E[g(X,u)1Y = u, Z

C-11 E[eX,Y)12 = v] 7 E[e(Y,2)rECv] = E[e(Y,v)1Z

= e(u,v) dFyiz(ulv) = 5 E[E(X,Y)IY = u, Z = v] dPyz(ulv)

= E[g(X,u)1Y = u, = v] dFyiz(u1v) <'by Prob C-10

C -12 a) v(Y) = E[X2 - 2e(Y)X +,e2(Y)IY] = E[X214 - 2e(Y)E[XIY] + e2(Y)

c) EN(Y)j- +Var[e(Y)1 = E(E[X21Y] -

E[X2] - E2[X]

E[e2(Y)] + E[e2(Y)) - E2[X]

. -

C-13 a) E[IN n]P(N = n) = E[I(n)(N)D1 = E[I (n) (N)Y n] since D Yn on

(n). This implies E[DIN = n] = = nE[X]

trar[DIN = n] E[D2IN =,n] - e2(n) = E[Yn2] - E2[Yn]

c) Var [D] = E[v(N)] + Var [e(N)) = E(NVar [X] ) + Var(NE[X] ).

Var[X] and E[X] are constants.

C-44 a) cp
D

(u ) E(E[eiuDIN] ).

e, "E[eiuDIN nlP(N =ErT(m)(N)eluDi = E[I(n)(N)eiuYn)

P(N cDn) (u) P(N = n)41(u)

coD(u) = E P(N = n) Q4c1(u) gN[cDx(u)]
n
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SA-3

C-15 a) 0 < Var [e (Y)] /Var [X] .. Var[e(Y)] /(yar [e (Y)] + E[v(b] ) < 1

since' v(Y) > 0 a.s.
,

1

d) Sett.;_,X* = (X - E[X])/trz and Ts. =,(g(y) E[g(Y)])/d[g(Y)]

p2[X,g(Y)] ='82[X*Y*] = E2(E[X*Y*IY]) = E2(Y*E[X*IY])k. by CE8) '

1< ERY*) 2JE(E2 [X*1Y] ) by E 16).

h E(E2(X -.E[X]JY))/Var[74 = Var [e (Y)] /Var [X] = K2

D -1 By.CI11), (X,Y) is condj.tionally independent, given Z. Hence

E[g(X)h (Y)12] " 601Z] (Y)12] = E[8 (X)] E [h(Y) 1Z] by CE5)

D-2 i) filiw(uitr, ...,th) = e(n-1)u/ ipt° e(n=1)u du, to = rain(ti,,..., tn.)

81H1W = ti,...,tn] toe(n-1)to/le(n-1)to .z..,
1J 1/(n - 1) ' ,h? 2

.
. ii) E[HfW 7 ki, ..., kn] = (in + k)/(), + n) ,k = k1 +.k2,+ ';5

. 1 ' 4
iid.) E[HIW = k1,...., kn] =3" (n + 1)/(n + k + 2) 4

D-3 E[H] = 2/3 ' E[HIS?0 = 8] 3= 8/11. Var[H] = 2/117 : Var[-H1Sto:= 81 = 242783

D-4 E[I (H)D] 3= £ E[I (H)Y ] y E P(N = n)i(I (H)S[Yn4H]

(V,D) is con4ttionally j,ndep4dent, given N.

N = n) = E[Io(D,V)I(n)(N)] = E(I(n)N)ETIo(D,V)tV,N])

E[I
Q '

(D V)1V = v, N = n] = El;
Q(D'v)114=;]

P(D, < N*= n)

(n) M n
m

, D:5 a) By CI11),

P(W <

BY CI12)

P(W < t, N = n) = I(n)(k)P(D < vtIN = k) dFv(v)P(N k)

P(N = n) SP(D < vt1N = n) dFv(v)°

b) P(W < tIN = n) = 20 at, 0 < t G 1/20a a2 = nrrIA

c) P(W < t1N = n) 1 + -
101st (e

-15at
e

-25at) 0 < t, a2 = nrr/A

px(26.)111k.0370' R(10:26) = - 11.15 R(20,26) = - 46.40

R(30,26) - 35.35 Optimum a = 20.

D-7 .1.(a,u) 1 - 2p(a,u), where

*p(a,u) = P(Y = a-11H = u) O+ P(Y q a +1IH =11)\.., - 7

C(n, a-1)11'1-1(1 - u)n,-e4:1 + C(n,a)ua(l. w)n-a

+ C(n,a+1)ua44(1 - U)n-a4



SA-4

R(a,x) s Eft.(a,H)P(X = xiH)]/P(X = If) P(X = x) 1/(6)+1)
2 mi_LILuLL 1.1x

K(a,x)n + m + 1 '
To minimise R(a,x), maximize with respect to a the function-
K(a,x) = C r__04_1-11._ C(n,a) C(n,ii+1)

C(n+m,a-1)-1) C(iim,a+x) C(nim,a+x+1)
For n = 10, m = 3, x = 2, K(5,2) m, 0.4324 K(6,2) - 0.4779
K(7,2) = 0.4883 K(8,2) - 0.4534 K(9,2) - 0.3625

2°Optimum R(7,2) = 1 - T K(7,2) = 0.1628

D-8 Strategy: 1st stage-- risk cp1(0,0) = 47/12 = expected gain for strategy
2nd stage-- If successful ^ 6)2(1,1), then risk

If unsuccessful"-, 6)2(1,0), then play safe,
3rd stage-- 6)3(2,2) indicates risk i

cp3(2,1) indicates risk
Oh

,..- 6)3 ( 1 , 0 ) indicates safe

E-1 b) (T1 = k) = (Du E Mc X Mc X ... X Mc X M = Mk c Sk+1) = Ak, M = ft)k-1'
/ c) (T2 = k) ni (T1 = j)(W E 1.12 ) = (t: E t:i M X11.' = Qk)j=0 ' j+1 k x-j

? k 1 j
p . k-1

/ 1=0

E-2 Erg (Y)I44(UT)] - Ef8(Y) i IMk (Uk)Ick) alkyl ,e-I

. E g(Erg(Y)1UklImk(Uk)Icgo(Uk))
k

= E(E g3(41)1UklImk(17k)VT))
k

0 a) Fiom problem E -2
,--

Eig(WT,T+n)IUTi E Efg(Wk,k+diUkliMkajk)
II --_,

. E Ell; (Wk, Hid IXklifik (ilk) by Markov property

Ef8(WT,T+n)IM(ET)) E(Efg(Wkool)im(Xk)1Uk]Imk(Uk))

i E(Erg(Wk,k+T)IXIPM(XidiMk(Uk))
. - E(i Eli(Wk,k+n)1XklImk(Uk)Im(XT))

Hence
Efg(WT,T+TdIXTI

k Eig(Wk,k+n)1XkliMk(Uk) a.s.



E-4 a) E[Xn.4.1]
EIE(Xn+11Y0'si1' Y.1.!))

b) E[Xn+11Unr) = E[Xn+1 - Xn1Urd E(Xn1Urt]

SA-5

= E[Xn+1 - Xn3 + Xn a.s. by Thm E3 -2, CE5), and CE7)
ow

0 +X
n

C
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