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.‘i ' - Preface : ;
. °‘ ) - ) ] .
It vould be difficult to overestimate the importance of stochastic
independence in bo!h the theoretical development énd the practical appli-
cations of mat_nematical probability. The concept is ‘grounded i_n the idea ' }
that one event does not"'c'o'ndition" another, in the sense that occurrex{ce .
of one does not affect the likelihood of the ccurrence of th'e other. This

leads to a formulation of the independence condition in terms of a simple

.

"proauct rule," which is ‘a;zxazingly successful in capturing the esgsential

ideas of independence. - .
. S *
However, th)ere are many patterng of "conditioning” encountered in .

practice yhich give rise to quasi independence conditions. Expliciteand

precise"incorporation'(of these into the theory is needed in order td make .

th?nbst effective use of probability as a wmodel for behavioral and
v e e . - .
physical systems. We examine two concepts of conditional independence. .

' * .

The first concept is quite simple, ut;i.lizing very elementary aspects

14

w
of probability theoty. Only algebraic operations are required to obgain .

-

]
quite importsant and useful new results, and to clear up many ambiguities

¥ and obscurities in the -Iiterature, '
- > ~

. 'i‘he seeond concept of conditional independence has been employed for

at
S . .
soke time in advanced treatments: ofs Markov proceases. Couched in terms
s, ~

. of the abs;ract nor:ion of conditional expectation, given a sigma field

- bf eventa, this concept has been qailable only to those with the requisite

»

© ¢ -measure~theoketic preparation. Since the use of this concept in the

. . - . ~

-t - -
theory ‘of Markov processes not only yields important mathematical results,

but also provides conceptual advanta\ges for the modeler, /it should be

made ‘available to g wider <lass of users. ¥he case is made more compelli

>
.

. L . . ’
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. e ! ) . .
by the fact that the concept, ence available, has. served to provide new

. * 7 ’

"precision and insight into the handling of a number of topics'in. Pprobable

inference and decision, not r.elated di{f::‘ﬂ/y to Markov procgsses, .

The reader is as;;umed, td have the background providefi by a good under-.
g&raduate course in applied probability (see Secs Al, A2). Introductory ,

cén:§es in calculus, linear glgebra, and perhaps some differenti.al equations
* should provide the requisite experience and proficiency with mathematical

concepts, notation, and argument. In general, the mathematical maturity
» - 4

L]
of a junior or senior student in mathematical sciences, engﬂ\eeriélg, or

one of the bhysical scieni:gs should be adequate, aclthough the reader need

not be a major in any of these fields.. . '
«Considerable attention is_given to careful mathematxcal development- !
- . . & , ‘ ~ .

This serves two types of interests, which may enhance and complement one

another. The Yerious practitioner of the art of utilizing matlfematics -+
‘needs insight 'into~ the system he is studying. He also needs insight into )

.

the Jnodel he is ﬁsinév fe needs to distinguish between paperties of the
S . .
model which ;::e definiti‘ve or axiomatic (and hénce appear as t;asic assump—
tiqns) qnd those :rhich,are logi:cal‘consequences/i.e., theo‘rems) deduct_fd
from thé axionﬁtic.properties. Fox: eyafple, if his exp\gri‘enc’e mil.;es it
regsonable to assume that a dynamic syStem is'c\:haracter,ized bys lack of
»"mempry", 8o that thel futu::e is co;xd one.d_only by the present state and
not past history, then it is appropriate to co;xsider representing the . .

system as a Magkov process',.Should the system fail to exhibit certain
. A . R : .

conseque;xces of the Markov assumption, then that fundamental assumption
must be reexamined. The distinction b‘etween fundamental properties and .
derived properti%s is gnyaid 'to efficient and intelligent u'se‘of mathematics
Qas well as insurance agliinst contradictory assumptions).

e t

O ) -t 8 . ’ + . S .-'
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vi-

The s¢rious mathematician who wishes to enlarge his knowledge and
appreciation of the applications of mathematics (and perhaps discover new,
' 3 v
significant problems) may be deberred by the inadequate articulation of <

mathematics in much of the applied literature. This may be & serious

-
[y

barrier to what should be a cooperative endeavor. Hopefully, the
. present treatment will help remove any such barrier to consideration
. < -
» of the interesting and igportant topic of conditional independence.

. ¢ . . ' .
In order to recast th¥ theory of conditional independence of random

vectors in more elementary terms, it hai been necessary to extend the
usual introductory tueatment. of conditional expectation, given a random

vector. "I‘he treatment intends to bridge the gap between the usual intuitive
» 9
int‘;oduc.tory treatment; based on a concept of conditional distribution,, ang

a more general approach found in advanced, measure-tftoretic treatments.

»

- ] .
Because of the importance of conditional expectation as a tool in the study .

of random processes and of decision’theory, the results should be Gsef}'xl -~

»

beyond thle. scoée of the present investigation.
e

v
Ackp‘owledgemencs

. .
- L {

It is\agparent that a work of this sort draws on a variety of sources,
many of which are no longer identifiable. Much of ‘the impetus for writing
. - - N

. . .

came from teaching cemrses in probability, random processes, and operations

research. The response of students and colleagues to various prfesentations
) nt

has been helpful in many ways. The development of ‘theeconceptf of condi tional

independence of events has been stimslated agd qhaped in large part by
L
my collaboration with David A, Schum, Professor of Psycllology, in some

aspects of his work on human inference. He has r&ad critically several ES
- o * .

~ versions of the manuseript. Charles M. Harvey of Di.ck'inson College, while

: -9 .
» On visiting z\\pointlyent in Mathematical Sa{ences’at Rice University, read *
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N « .

critically a preliminary Exanusctipt presented for review. His comments
4

were helpful in p&anning the final, extensively revised manuscript.

Dr. bavid W. icott of Baylor College of, Medicine ané Rice Unfversity used

some pf the results in recent work. Hfs commentd were helpful in ifmproving

exposition at several points, and his work provided an interesting applications

problem. .
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CONDITIONAL INDEPENDENCE IN APPLIED PROBABILITY g

A. Preliminaries
* In this monograph, we assumé the reader has reasonable facility with
elementary probability 'at the level of guch texts as Pfeiffer and Schum
- * ’

[1973], Ash [1970); or Chung [1974]. In particular, we suppose the reader

-

is familiar with the concept of a random variable, or a random vector, ag a
mappﬁ.ng from the basic space to the real line R, or to Euclidean space
¥ .
N Rr; and wit:h the notion of mathematical expectation and its basic proper- =~

‘ties \tf Pfeiffe.r and Schum [1973], Chaps 8, 10, 13). In the falloying
< sections, we summarize various ‘fundamental concepts and rqsults in a fom,
terminology, and notation,to be utilized in dubsequent deveiop\ﬁ&%ts. In

. some cases, we simply express familiar material-in a form uéeful’for our
"> -
\ purposes; in others, we supplement the usual introductory treatment,

especially with an informévl presentation of certain ideas and results from '

measure theory. The readerim‘ay— wish,to scan this material rapidly, re-

v turning as needed for later reference. v !
"1, Probability spaces and random _Vvectors v ’ .

A Mﬁability space, or probability system, consists of a triple ©,3,P).

1) 0 is t}}‘é basic space, or sample space, each element of which repre-  *

L v
* sénts one of the conceptually pgssible outcomes of a specified trial, .
# . or experiment. Each elementary outcome ® 1is an element of the basic
- 4 L3 .
space (1, . ' .

1 P

') 3 is a class of subsets of ). Each of the subsets in this class is

an event., The event A occurs, 1ff the @ resulting from the trial ~
- ~
is an element of A. Since it ias desirable that the gets formed by
.« u PN &
¢ éomplemznts, countable utH.bns', or countable intersections of events
N ,
k]
- also be evénts, the claas 3 muv“ hatve the properties of a sigma ,
. . W .. )
N , ‘7
& . .
LY \)‘ . )Y . " ]
- ERIC S 13- .
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¢ field (also called a harel field or a sigma algebra) of sets.

3) The probability measure P assigns to each event X a number -P(A)
+

. ’
" in such a manner that three basic axioms (and logical consequences)

hold: 1) P(A) >0, i) P@) =1, and iii) P is countably additive.

We utilize standard notation 'for the ‘empty set (impossible event),
L] ~

complements, unions, 4nd intersgéti‘ons. ’mug’, for example,

9 1s the empty set (the impossible event), ., N
© - - Vd
U Ai is the union of the infinite class ('Ai: 1<1i<a}
i=] ‘.
- n . . 4 e"’i ‘{ . !
n Bi is the intersection of the finite class '(Bi: 1<i<n)
i=1 ' . . ~
AS is the complement of. Elilge set A, .

F

n
In addition, w;&wloy the notation, Y B, to indicate not only that we
i
i=1 . R
have taken the union of the class (B’\: 1 <1< n}, but—also—that the

class i{g disjoint (the events are mutuaily exclusive). Thus, the expression
. ]
A= U Ai means the same as the pgir of statements
e i=1
t

-]
.4) A= UA, and ii) A A, =9 for i #j,
. ga1 L i |

A random vectoreis viewed as a mp‘lé:om the basic space {1 to

" n-dimensional Euclidean space Rn. For n =1, we have a real-valued
random variable. A random vector X: Q- R may be considered to be. the
joint mapping (Xl, Xz, vees Xn)'. Q0 >RXRX ... XR produced by the

" . ‘ +

coqr&i\nate random variables X,, X

12 Xpp eees Xn.

Sinc® we want to be able tq make probability statements about possible

sets of values to be taken on by random vectors, we must introduce
.

measurability considerations. In the real-valued case (n = 1), we should
like to speak of the probability that X takes on a value no greater

than some real number t. Since probability.is assigned to events, the

-

Q 14 ! . .
ERIC S
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. : - R .
- set {o: X(w) < t).;{héuld be an event for z‘my real n\;mber - £, This may ’
S . L e
be viewed scheiw?:ically with the aid of a mapping dfagram as in Figure i
Al-1, w’e are interes.ted“in the-set .A of those elementary outco:nes w
which ‘are mapped‘into (the interval .I.t = 2-0, t]. smce we also want to .

. ; s
congider complenfents, countable unions, and countable intersections of

—such events, we myst consider complements, countable unions," and countable
L. ’
° intersections of such intervals on the real une. We are thus Ied to

A M A

consider, the minimal sigma field B8 of subsets of the real line which

includes all the semi-infintte intervals of the form I = (- o, t]. This

"o

is the class B8 of Borel sets on the real line. A similar cohsideration ‘
leads to defining the class B of Borel sets on R as the minimsl

sigma field which 1nc1udes 1 semi}iinfinite intervals of the fclrm

(1,:2,...,t)=(- e x (=, t]x...x(-m t] Wesaythat

0

X:0 - R is a random vecto irf X‘ (M) = {w: X(w) € M} is an evenE

for each Borel-gset M in Rn A standard result of measure theory,,
Y 3
which we assume without proof, {s that X (M) is anBevent for each Borel ’ .
é g

set °M {iff X I[I(tl, Loy +eey t )} ig an exent for each .n- tuple
o -,
(tl,tz, ey t ) of rg:ipmbers (1. e., for each element of Rn). ‘Real-'
LN ¢
valued random variables .are included as the special case n =1. *
- .

'I"t is an easy consequence of, ¢lémentary mapping theorems that the

A -
class 8(Xk of all inverse images .x',l(n) of Borel sets is a sigma field.
. o H] .

We 'refer to this class as the sigma field determined by X. It must be a L4

- subcz:ass of the class JF of évents in order for X to be a random vector,

’ - .o .

We often’ need to consider functions of random vectors. If X: Q= R
and °g: - Rm then 2 = goX = g(X) 1is a f\lmction ﬂ - F{n JIf g has

L]

the property that N=g~ (M) is a Porel set in. R for each Borel set

en - " >

. « -
:M in its codomain Rm, then Z 1is a random vector, since! A I(M) =




A= {w: X(w) <t}

a X-I(It) /

+

A FuiText provided by Eric
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’ X..Ig-l(}i) = X_I(N) is.-an,event. Thus, each event detetmined by Z is

an event determined by X, This may be expressed b’* the relation F(2)

is colftained in»3(X). This condition is oftened indicated by saying“that

o

Z {is measurable with respect to X° (gr Z is measurable-x) A function
e

8 with the mapping property described above is known as a”Borel functibn.
I-‘rom sémewhat advanced arguﬁgnts, it is known that if Z is meas‘rable—x,

then there is a Borel function g such that , 2 = gox g(xv)‘. We assume
+

' this important result without proof. -

We have introduced the class- of Borel functions in a somewhat abstract

manner to solve the problem of when a function of a random vector is its

x

a random vector. Butr how do we know whether or not a func¥ton encountered

, in practice i3 Borel? It tu\out that "almost any function g: R}1 B

Al
wHich we ‘may want to consider is Ihrel. TFor this reason, in many introduct-‘

ory treatment little or nothing is’ said about Borel functions.
Borel_funttions constitute a generalization ofshe olass of continuous

<
functions. Contimuous func&ons have the property “that the inverse image

of any open set is open. It is known that the class of Borel sets on R
&

+is the minimal sigma field.which includes all open gets in R°. I-‘rom this

n

fact it may be shown that any continuous function from R® to R .is

Borel. Any piecewise ‘continuous real function g8: R R 'is Borel. Linear

‘u&’ms:mtions, products, and compositions (functions of functions) of Borel
»

functions are Borel. If [gn 1<n} isa sequence of Borel functions ,from

Rmto mehich converge for each t in Rn, the limit functiod ~ g is a

-

- Borel flnction. r . N '

The indi.cator function IA for’set A in 0, defined by I (w) = 1

.

_+ for w in A and zero otherwise, is particuLarly useful, ij A is an

‘. event, IA .is a ranx)m variable.. Indicator functions mgy bé defined, as -

17




2R Y co -
B Pl
. 7 \ . .
*well, on R®. If M is a Borel set in R, then 1,. is a Borel function

“

.

' 9
fron ' to R If ¢ isan element of K", then cl, is a Borel -
* fanction from Rn to Rm If X 1is a random vector a'nd M is a Borel

set on the codomain of x\then IM(X) is a real-valued random variable,

‘s
‘ heasurable-x.\ If M is a subset of‘ Rm and N- is a suliset of Rn, then

the cartesian prodycf M X N =((t,u): t € M, u € N} 1ig a subset of g x R,
L .
MX N "X R* S R satisfies the\equation ..

(t,u)=I(t)I(u) VtERm,UERn ’ ' .

ihe indicator functfon 1

MXN
‘since (t,u) € MX N {ff both —tEM and u € N. .

\
nd o
The following result is bagic in the development of the concept of
conditional expectation. . N '
0 0 expecta ) ) o
_Theorem Al-1 .
ay If Y is a rand{m vector with codomain R®, M 1is any Borel set in
. B Lnd ce (o ¥ € M) =¥ Loy, then I, = I (¥).. L
b) If g 4is a’Borel furiction Rm - R , and Z = g(Y),. then for any “
. * el .
! Borel set N in R, there is-a Bq'rel set ﬁﬂ{l(ﬂ) in Rm such
that IN(z) = IM(Y).. . ‘ .
PROOF i : . - | )
v =~ ! . N -~ i
a) IM[Y(m)] =1 {ff ¥(w) €M iff w € C iff }rg(m) =1, X
. - - ’ - - . . ’ l\“ .
b) The srelat:ion C=Y I(M) =7 I(N) is an eigmgntél property of e ‘
-~ - .
X - compdsite msppings. By 2), I(2) = I, =T,(Y) il N Ty -
. - " . 1
The indigator functiys useful in representing discrete random A
- ' ~ 1
' _variables, which take on a finite or countably infinite set of values In “h_
c ¢ - -
the finite case, the terst siggle random variable is commnly used.’ Suppose N
the range (set of possible values) of X is8 § = [tr, Eys ees tN) C R’.n 7"
. )
. let A = fw: X@) =t “Then the class (A : 'S SN} is apartition, *
- ' ) R Sy 4" v
. v . v “
. > . Ly
- 18 - , . ) :
. Q o ) { , LJ/ ,(;i,/"
P ‘E MC [ T, ) : l.\\ i .“:J 3
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) and X = Z‘ltiIAi We refer to this repr;se‘ntatiomas’ ¢_:anonica-1 form
(1f one of .the values is zero, we include a term with zero coefficient)
It is easy to show that any real random variable {s the limit of a

» sequence of such simple random\variables (the sequence is not Junique).
If °X is nonnegative, it is the limit of an increasing sequence of

nonnegative, simple random variables (cf Pfeiffer and Shhum [1973], sec 8.8).

Similar statements may be made about Borel' functions. A simple Borel

function g: R® > K has canonical form g = 2 t;Iy » where € e R
- ‘ 1=1 7y '

o

and each Hi = {u ¢ R g(u) = tJ.] 18 a Borel set in R, -

A random vector induces a probability distribution on the Borel sets

of its codomain. To each Borel set M 1is assigned the prdpability mass
A .

on the event x-l(M). A probability measure P, is defined on the Borel

hd .

sets by the assignment P (M) = P[x (M)] 2 P(X € M) This is a true

probability measure, with'the Borel sets serving as events.. This mass
¥ 4

distribution may also be described by a probability distribution function -

F, or, in suitgble ‘cases, by a probability density function fx. These

X
’ . . .
°  matters are agsumed to be familiar. 3
° » M ! ' ’ . -
‘. For many purposes, if a random vector is modified on a set of g ~

having zero probability, no significant difference is realized in probability

-

calculations. For example, if X and Y are;two real random'variables T

with the property that the set of w for which X(uw) # Y(w) has prohability

'

. x zero, these tandom variables have l;he same mathematical expectation.

“

DEFINITION. Random vectors X, Y Aare almost surely equal, denoted

T X = Y a.s., 1ff they have the same codomain and tfle set {w: X(w) # Y(w)]

has jprobability zero. E . B . :
P - 1.7 \

.

More generally, a r_elation between random vectors is gaid to hold almost ,

.

K surely (a.s.), or to hold fqr almost ever'y"(a.e.) w, 4iff the set of
\ . . ¢

ERIC 19D

oo - R ) ", .. C e




~
N
43

. "Al-7 . . s
St s ' LY -
% L.

. . . , . ,
‘o for which the relation fails to hold has probability zero!.
;

. < We are frequently concerned with fupetions of random vectors.
; . @ i : - ’ L Y
Suppose we have random vector X: Q - Rn and have two Bgrel functions

g, h; R - R - If these functiOns have the property that g(t) = h(t)

for all t on the range of %‘ then we must h‘éve g[X(w)] = h[X(w)]

for all w. Again, we may not need this equality f,ov; all w., It may

be sufficient to have equality for almost every w (i. e., for all w

except possibly an exceptional set of probabillty zero).' Suppose .
( s .
My = (£ Rt ‘8(W #gh(t)); Then g[x@)) # h[X@)] 1ff X() 1is-¢
% - M

“+one of the values in;‘Mo. Hen.ce, g(X) = h(X) a.s. iff the set of ®

’

<

, that‘the induced probability P‘X(Mo)'= P(X € MO),=

The notion of almost-sure equaii‘t:y for random vecto¥s can;be extended
*

to Borel functions when the probability measure is defined on the class

v

of Borel sets on the domain of the functions. We arhe, particularly
Al

interested in the case that such measures are protiability measures

. »

induced by random vectors. . .

DEFINITION. If é,‘h are Borel functions from Rn to Rm and P
is a probability measure on the Borbl\sets on Rn, then g and he.

are said to be)almost surely equal [Px] iffg‘ the set M, =

“{t € ' g(t) #h(t)) satisfies the condition P, (M) = O..

The discussion above provides the justification for the following
N ]

- Theorem Al-2 . -

.g(X) = h(X) a.s. iff g=h a.s. [Px], vwhere P, 1is the

probability measure induced by the rando)n vector X. 0

L 4

Independence of random vectors is éxpressed in terms of the events "“
‘lthey determine:' . v o . ‘
’ .
O ‘ T, R . .
ERIC - RN .

S i i
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for which \).C(w) € Mo has probability zero. But this is' just the condition




a
7

» : : ~.\ ‘ W -t \ -

. . . . < ~ . Al(a
. - ‘ . .
N DEFINITION. - An arbitrary classﬁ (Xi.: i € J} of random vectors is.
indegende;xt iff for each class {(M;: 1 € J)} of Borel set's on the respective

codbmiains of'the X!: Ehe* class (X-I(M ) 1.6 J) of events is-independent.

This means that thé product ruie holds for each finite subclass of the

class-of eventd, The fpllowing s known to be consistent with the above.

DEFINITION. Two classes (Xt: t €T) and (Y2 u E‘U'] form an indegendent
+

°

AN = .
. > \
family 6f classes 1ff for each finite Tn < T. and ,Um_c U the random

.
vectors (X , X , .¢., X ) .and (Y , Y_, voey Y ) form an
S <t L) b S B &
. - independent pair. * , : L
’ . \ . ®
: " The latter definiti‘on eernds re'adily to arbttrary families of classes.

- oIn the next -secti,on, we state the copdition for,independence of a class of

. .ot , .

random Vectors in terms of mat}g-:matical expectation.

2

»If (X,Y} is an indéﬁ:endent pair of rdndom vectors (any finite dimen-

sions) and g, h are Borel functions on the codomains of X, Y respectively,
then {g(x) h(Y)} is an independent pair. This foll.‘ows from the fact X
* that {g(X) € M) = (X € g™} ()} and (h(Y) € N} = (Y € h‘l(u)), so _’:ﬁac y
" rgs ey it (h(Y) € N} Srcxeslan)n ve K 0)) =

—

pfx € g7 anlply € h )] = Plg(x) € MPh(v) € Nl. It should be apparent =,

4 - .

this result extends to arbitrary classes. -

- \ .

' v . . - &

Y S .. -
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2. Mathematical expectation

.

»The concept of mathematical expectation incorpbrates the notion of a
—e ¢ = :

probability wefghtet‘! averag8. Suppose X 1is a simple, real-valued random
. A .

variable with range [tl’ t2’ erey € } The mathematical_ expéctation of X

is E[X] = n P(x =t ). 'Each possible v;lue ti is weight*\t?y the.

probabil‘tyitl];at value will be realized; these weighted v§iués are sunm.ed

to gi&:e a probabili:ty weighted sum; s;.nce the total weight is one, the

N

sum is the same as the average. i Ve .

T?extend the notion, we consider mext a nonnegative random varia‘ﬁle
X. In this case‘, there is. a nondecx:easing sequence of simi:le random :iar-
iables which converge to X. * We defin.e ) @ .?
‘*z[)d=j"xdp=umr~:[x], .

A study of the technical details shows that the limit does not depend upon

N .

1 <

the particular appro:*imating sequence selected. To complete the extension

to the general case,iye represent X as the difference X+ -X_ of the’

two nonnegative randdm variables defined as follows: R
. -
X, (@) =
. .

"
then E[X] =elxd - E[x ], Thus. E[X] 1s the limit of the probability
s & -

X(0) " £d% - X(w) > 0 0 for X(a) >0
X (w) = N

o v X(w)<0” - X(w) for X(w) <0.

of the values of the approximating simple functions.

N

which "survive passage to a l1imit." qhis 14, in fact, the case. THe

- ’,
defininé procedure defines a very general type of‘ integrztion (Lebesgue

.

.integration). rT 5, )
For conven,iencé, we list and assigh numbers to those properties of
mathematical expéqtat'ic:n which are most useful in investigations such as

.

those g,n' subsequent sections. _ Since anyindicator function for an event

Aruitoxt provided by Eic:
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. is a simple rmdom variable whose range ¥s (0, 1}, we_have \ “ =
N . N : . ' .
Ed) E[1 ] =PEA). - / . . ,

"‘ U’ae ofc’meorem.Al 1 and the fact that IM(X Y) = IH(x)IN(Y) gives the ﬂ\j
following important special cases. .- . /.
zu) B[, 0] =~ p(x €M) and z[rn(x)ru;v)] =P(X €M, Y€N) “(with exten-

! .8ion’by mathematical 1nduct{?n to any finite numbgr of random‘\'ectors)
. - .
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Elementary arguffents show that ti)e following properties of sums hold also ~

~

for mathematica:{ expectasion in general.

E2) Linearity. E(ax + b¥] = aE[X] + bE[Y] (with extension by mathe2

. matical induction to any finite linear combination),

E3) Positivity; monotonicity.

~ \ .
a) X>0 a.s. ’L\mplies E[X] >0, with equality 1ff X% 0 a.s.

. b) x"gY ~a.s. {mplies E[X].> E[Y], with equality iff X =Y a.s.

It should be noted that monotonicity follows from -linearity and pbsitivity.

. .The next prope?ty is not ordinarily dis::us's‘e;l in elementary treatments.
' .

However, it is essential to much of the theory of mathematical expectation. '

. N
= Suppose anxnﬂ a.s. for all n>1 and xn(w)»x(w) for a.e. w.

. P ¢
By property .E3),. we must have E[xn] < E[xn+1] < E[X]. Since a bounded
- ,

fono tone seq°uence of real. gumbers always converges/,/v;e mst have

-~ \ -

lim E[Xn] =L< E(x}e .Sophisticat)ed use of’el'e"mer\tary ideas establishes

)

the fact that the limit L = E[X]. A si?milar argument holds for monotone

decreasing sequences. Thus, we have .
. ’ Ed

E4) Monotone convergenge. If an - X, monotonically a.s., then
’ ! E[Xn] - E[X,] n.bnotonically; “

In many ways, these four propertiescharacterize mathematical e;:pectation as

o

. < TR
_ an integral. A surprising number of othér properties stem from these. 1In

tlie development of the idea of conditional expectation; we establish its

integral-'like character by establishing analogs of EL) through’ EA).

-~ E]
By virtue'i the definftion and property Ela) we can characterize
,

independencé of random v@ctors as follows. - ..
) ’ \‘ ’ ) s . 2 ® ~
- . '
. - .
’ ;4 , . .
. 24 =
Q a_
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E5) ndsgendence. The pair (X,Y} of random vectors is independent
tff E[1 (x)l )] = z[x.M(x)]zuN(Y)]— for all Borel sets M, N :
on the codomains of * X, Y, respecuvely,
1ff  E{g(Oh(y)] = E[g().()JE[h(Y)] ) for' all real-valued Borel
functions g, h guch that the expectationsg exist.
For an arb/icrary fami 1y 9f~random vectors, we have independence i{ff such :

. . . “
produgt rule holds fo}every finite subclass of tio or more members.
: -

~

4
_
The next property plays an essential role in the dev'elopme(t of the

N -

% * concepto f condittonal expectation. We prje the basic result, which .

usuffices for developing the properties of gonditional expectation; the 5
‘
extension,” whose proof requires,‘.,some advanced ideas from.measure theory,

is used in developing certain equivalent conditions for conditional

independet}ce, gi;ren a random v?ector (Sec D?). N
" “E6) Unia\_x_' eness. ? . B e

Qc\?uppose‘ ¥ 1is a random vector with codomain R° agnd g; h are '\. '

real -valued Borel functions .on the range of Y. If E[IM(Y)g(Y)]

~ E[IM(Y)h(Y)] for all Borel sets M in the codomain of Y, N
. - . M - .

then g(¥) = h(Y) a.s. -

. 4

BY  More generally, 1f E[I Q@D = ElL L @h D] for

" £ all Borel sets M, N’ in the codomains of Y, Z,! tespeccively, *
tbzn\ g(v,2) = h(¥,z) a.s. ' ) - :
hd » ‘ .
« PROOF OF a). .

3

. ¢
¢ . - .
- .

Suppose g(u) > h(u) for u’ in the set N. Then I (Meg(¥) >1 (Y)h.(Y), .

Mth eeuality iff Y(w) does not belong to N. By E3)ﬁ E[IN(Y)g(Y)]

= E‘[IN(Y)h(Y)] iff I (Y)g(Y) = IN(Y)h(Y) a.s. iff P(Y€ N) = 0. I 9
- 4 similar arsument,holds for the opposite 1nequalfty. Thus, the totak
aobabiuty of thé event (g(Y) # h(Y)] is zero. - .
. . i -

ERIC - . = 5
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DISCUSSION OF b) - ’ . .
The second part'is more gerLeral, since the sets Q = Mx N, with . <.

IQ = IMIN’ form only a subclass of ti'le\Borel sets on the codomain df
¢ the combined vector (X,Y). However, a standard type of argument in
me;sure theory shows tha't if equality holds for sets of this subclass,

« it must hold for all Borel sets. Application of part a) gives the desire®
M Al

- ’- B

result. []
’ . ~

/

! Several useful properties are based on El through FA), with monotone” .

-

convergence playing a key role. The following are among the most important.

-~

\d
E?) Fatou's lemma. If Xn >0 a.s., Ellim inf Xn] S"n\m inf E[Xn'].

E8)- Dominated con;rergen;e. If X =X ats. and lxn] < Y, a.’s., for each
" n, with E[Y] finite, then Elx] - Efx. N
. E9) Countable addiuvi‘cy. Suppose E[X ;.sts and & = G{‘i.‘ Then
Elrx] = Tl \x] - ] =

i=] i hd . «

. The following property‘ié used as the basis for a general definition »

K of conditional expectation, given.a ran&om vector. It is b)ased on the

1

celebrated Radon-Nikodym theorem and the fact, noted in the prewious

$ection, that if 2 1is ‘measurable-Y, then there is a Borel function e
- ° \ .

such that Z = e(Y), We accept this result without proof. It is made

L -

JPlausible in certain’ special cases in the developments in Sec C2. .
L3 M

E10) BExistence. Lf ‘E[S(X)] is finite, then there is a real -valued
- . s “.-

ctiofie e, unique -a.s. [PY]’ such that

Y?S(X)'] = E[IM(Y)e(Y)] for all Borel sets M in the codomain .

u

.. of Y. i.

] - ’ .
Recall, by Theorem Al4t2, e is unique a.s.. [PY] iffw e(Y) 1s unique a.s.

“A number of s’t'andard inequalities are employed repeatedly in probability

theory. Establishment of these depends upon setting up the, appropriate

FRIC - . 26 .
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inequalities on random variables, then utilizing monotonicity E3), The
appropriate inequalities on the random variables are often expressions
of classical inequalities in ordinary analysis, Some of the Jore important

inequalitiés are listed for convenient reference in Appendix I,

« -

-

&

v
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A3-1. .
»
3. Problems -
A-1, I;'or each of the following random variables, descrit%e the sigma field
F(X) detetmined by X.
1) X = IA )
i1) X = aIA + bIB + cIc (canonical form) ]
A-2. If X = -2[, # 0L, + I, +4L) (canonical form), describe X' (M) for
1) M= (=, 00, 1) M= (-2, 114 (2,4]. 1i1) M= (=, 3]
A-3, Suppose X has distribution function PX with R '
0 for £t <0
px(t) ={ U+ 30)/4 for 0<t<1 .
1 for M<t s
For which of the following functions, if any, is 8 =8 a.s. [Px]?
gl(t) =t+1 forall ¢t N
¢ s
{ - 0 for t <0
gz(t)- t+1 for 0K<t<1
2 for 1<t
BB(t) =t+k+1 for k<t<k+1, all integers k, all t
A4, If X and Y are real random variables, let .
X(w) for X(w) >0 -X(w) for X(w) <0
x+(w) - {0 - X_(w) =
. o,‘. for Xw) <O " for X(w) >0
Si‘mw that :
a) X, and X_ are Borel functions of X, hence are random variables.
b) XY is a random variable
c) aX +bY is a random variabl (a,b are constants).
A-5. Suppose g: - R and £: B~ are Borel functions. Show
& that the composition fog: K° =+ Rl is
A-6. Use Theorem Al-l and property-®l) for expectation to establish .
property Ela). N
. ~ .
] P 4 .
N o . 28 v "
YERIC . :
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A-7. Use linearity E2) and positivity for expectdtion to establish K .«
' |
monotonicity, T “

¢

a) Suppose X>0 and E[x] is fidite. Use the monotone convergence

. S
theorem E4) <o establish countable additivity E9) for expectation.
b) Extend the result of part a) to the general case.

A9, If X i real, use the fact_ that x < Ixt and - X <|x| to

establish the triangle’ inequality EI1) for expectation, et
) . s
A-10, Establish the mean-value theorem E12) for expectation. -~
4 \_f\'-
. % - ° :
7 -
L
o "" * -
P ot
* « .
~— [y . i »
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! CONDITIONAL INDEPENDENCE OF EVENTS

1. The Concept

2. Some Patterns of Probable Inference
3. A Cjassification Problem

4. Problems
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. '4
B. Conditional independence of events _
1. The-conceépt .

In gsetting up a probability model for a system under study, the‘'modeler-

- : -
utilizes all available péor knowlédge about the system to determine prob-
Y

.

o

ability assignments, to a‘p\l;ropriateee%%nts. This knowledge may be obtained

(S from systematic statistical study, or from mathematical deductions based
BN N

on assumptions supported by experience or experiment, or, less formally,

from the judgment of a decision maker. These probability assigmnents serve :

to determine a prior probability measure, The probability P(A) of an
”
e\gent A provides a measure of the likelihood of the occurrence of this
L) . -

.

., event, . . :

Further experience or experiment may produce information which makes

° 1
ig appropriate to revise the probability assignments to vefle’ct new like-
lihoods of various events. Such revisions amount to the introduction of ¢

.

a new probability measure. 'Iylvpical'ly, the infordation]received yields

partial knowledge of the character bf the outcome. When ;;roperly expres‘sed;‘
'lthis new information serves ’to identify an event ¢ whieh h'as occurred. %
"‘There may be subtleties“nd difficulti.es in. determihing exactly what this
& cdRditioning e eyent G is (cf. Pfetffer and Schum [1973], Sec 5-1). Thq
difficulties center about the question: what information is obtained by
whom? But, in principle at least,”such an event is determined. '
There is nothing in the probability model to xequire a spegcific
4of reassigning probabilities. However, considerable experience has shown
that a fruitful way to make the new assignment of probability to event A,
v given the occurréx}xce of co'nditioning event C, 1is,to utilize the role

4 P(A!C’) =- P{_)/P(C), provided, of course, P(C) >0, ,

We' call P(AIC) the conditional probability of A, given C. Por fixed
\ ‘

C, P( lc) is a new probability measure, with all the formal propertjes

- A v
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of the original or prior, probability measure P(-).
2]

It sometimes happens that occurrence of, the event C does not affect

the likelihood that A will (or will not) occur. 'l‘hus, we may be able. to

assert that I’(A[C) = P(A) or P(Alc) - P(A[c ). As a matter oAf fact,

straightforward use of the defining relation for conditional probabili,.ty

shows that if 0< P@A) <1 and 0< P(C) < 1, then ,the followi.ng sixteen

relations are equivalent-- that is, if one holds, so do the -others.

P(AIC) = P(A) P(cla) =P(C) | P(AC) = P(A)P(C)
P(Alc®) = P(A) P(ctla) = p(c%) P(AC®) = P(A)P(CC),
P(A%|c) = P(A%) P(c|aS) =P P(a%c) = P(AS)P(C)
"p(a%[c®) = p(a%) P(c®|a%) = B(c%) P(A°c%) = PATP(CH)’

"

P(AlCH= P(Alcc) Pa®lo) = Pa°|c%)  p(c|a) = P(c|a®)  B(c®[A) = R(C°[A%).
I1f any of these holds, we suppose the events A, C form an independent

pair, in a probabilistic sense. It is easy to che'c}< that the equivalence
of othe four product rules in the right-hand column holds for tlhe cases
in which either P(A) or P(C) takes one of the extreme valies 0 ‘or '1.
Also, the first product rule is symmetric with respect, to the events A, C.
1!1us, it is convenient to make tl;e definition of independenie in _ten;xs of,
edls product rule, as follows:

DEFINITION. The ‘pair (A,B} of events is (stochastically) independent

1£f the product rule P(AB) = B(A)P (B) Ju;lds. I
An arbi\bcary class of events is independent {ff a corresponding product
r’ule holds for every finite subclass oﬁ two or more evénts from the class.
The list of equivalent relations abdve (with C réplaced by B) shows that
If‘any one of the pairs (A,B), (A,5°), (A%B), or (a%,8°) is

-

independent, so aA the others.. ,
’

\
Although the froduct rule is the basis of the formal definition, the essential

idea of independente is the lack of conditioning as exhibite:d %n the fact

33




{_that ‘independence holds 1ff PA|B) = P(AlB®) = P(A) 1ff P(B[A) =
P(B]Ac) = P(B). The occurrence or nonoccurrence of B does not affec‘t the

ﬁkelihqod of the occurrence of A, and the occurrence or nonoccurrence of

)

A “does not affect the likelihood of the occurrence of B. !
/ .

‘Example Bl-a ) A

Consider two contractors working on two entirely different’ jobs. Let

~

A = event contractor "a" completes his job on schedule, .
» - »

B = event contractor "b" completes his job on schedule,

o
2

It may well be that these two contractors work in a way that thd& perfomance

of eithe:.' has « no affect on or relat:ion to the perfotmance of the’ other.

{ Thus, it may be that P(A|B) = P(AIB ), n which case the common value

~ ig P(A). We should thus assume, in, modeling the situation, that (A,B} is

sy an independent‘)air of events. 0

4 r
Suppose (A,B} form an independent pair under the original probability
measur ndepeﬁdence is not an inherent property of the events (unless

" at h:a ne is/either the impossible event ¢t the sure event). Stochastic

indepkndénce z & property of the probability asgignment, hence is determined
W

by the p;:\ob&bi. ity measure P(-)] Change to a new probability measure P ( )
¥ may destroy ti f}etochastic independence. The following extension of che
contractor le shows how stochastic independence may fail to'héld;' even

though the cgpntractors work "{ndependently"-in an operational gense. It

L

* Consi \er again the case of the .two contractors. There may be some. factor

the worlc situation which affects the performance of both. Suppose the N

Jobs are outside, where petformnnce cah be affected hy, the weather. Let

C = event the veather fs "gqod!. It may De reasomable to suppose, that
. F .

¢

S

-
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Bl-4 - R N S ‘- ' &

P(A|BQ = P(‘A| B.cc). That is, given .good weath;f (L.e., the occurrence

of C), the performance of contractor 'b" has no effect on the perform-
. N A Y

&

ance of contractor "a", A similar situation may hold in the case of

" bad weather. Since P(A|C) = P(AB[C) + P(AB°|C) = P(B[C)P'(A]BC) +

o

P(2°|C)P(A|BSC), the equality P(A|BC) = P(A[B°C) implies thar the common _
value is P(A|C). Under these conditions, the pair {A,B} will usually not
;e independent. There s a "probabilistic tie" between these two events
by’vi:rtue of theirp relati:)nsups to the common event C. Let us examine

the cpntractor example further by assigning e reasonable numerical

values. Suppose
P(A|C) = 0.95 P(B|C) = 0.96 P(C) = 0.7 :
p(alc®).~ 0.45°  P(8|c®) = 0.50 B(C®) = 0. 3. L. . ‘
Utider the capditions P(AIBC) = P(a|B°C) and P(A] ) = P(AIB c ),1 we have '
P(AB) = ?(c)r(nlc)r(A[Bc) +B(C °yp(8|ct )P(A|BC )
=0,7 X0.96 X 9.95 + 0.3 X 0.5 X .45 = 0.7059

JBWE® = [2A]0R©) +2AI IR @ 0PE) + PBlIRE)]

= [0,95 x 0.7. + 0.45 % 0.3][0.96 x 0.7 + 0.5 X 0.3} = 0.6576.

Thus, P(AB) # P(A)P(B), so (A,B} is not indep\endent. 1f the dontractors

L ’
work ''independently?, what is the tie between their performances? If A

0.822' = P(B) If this is the only effecrive tie between eventa A an* -

B, ‘then once the weather is detemmed there is no furthe; influence
]

of the performance of one contractor on that of the other. (] . }
. . . A . . 1
Let us examine further the assumption that B(Al BC) P(AIB C). Straight- ;

’ ~oa ’




‘o . ) Bl-5

. ) .

P(4|c)P (BlC)

P(alc)P (8°|c)

P.(ALBC’? = p(Alc) ,P(Blac) = P(alc) P(aBlc)

P(Achc; = p@alc) P(B lac) = p(B°lc) P(aB®|c)

PAC|BC) = BGClC)  B(B]AC) =peelcy $alc)

P(a°|cr(e/c)

P(a°|8%) = B(&flc)  p(%|a%C) = P(E%|C) P(ABIC) P(A%|c)p (8| C)

- P(AlBC) = P(a[B°c)  P(a%|BC) = P(AS IB c)
N , B
~ P(BlaC) = p(B]A°C) - P(B%|aC) = P(B®|aSC). T :
In view of our dism‘x‘ssign above, it se;ems reasonable to caf/l"’;he conxmn .

N

¢ e N
sitl.xat,ion conditional independenc':e, given C. Once ¢ oceurs, the occurrence

or nonoccurrence of B does not further affece the likelihood f A, etc.

4
As in the cgse of ordinary oy total independence, we utilize the product ‘-

o
rule as the basis of the mathematical definition,r although some of the other

' equi‘ré‘lent relationships may be more useful‘ in modeling. . . -

- .
DEFINITION. The pair {A,B} of events is conditionally iridependent,
< ’

'given 'C, iff the product rule P(AB|C) = P(A[C)P(BIC) holds.

An arbi any class of events is conditionam independent given C, iff*

a corres nding product rule holds for every firrite subclass of two or more

events from the class. . . . ,
The product rule shows that conditional independence, given 5((\2, is

'just ordinary independence for che probability measure P ( ) = P( IC)

Conditionring by C ledds to a new probability measure. In terms of thiso

gew probability measyre, the pair (A,B} is stochastically independent.
t

; < As fa h&fpfl‘df??obability measupe, we can assert that .

If any°of the pairs (A,B},/ (4,8%), (A%,B), or (A%B%} is —
‘conditionally independent, given. C, then so are Eh;z otfer}.

In le Bl-b, the conditioning event, C 15 such that we +have
o 2

conditignal independence, given 'C, and also’, given CS. If the weather
A \ .

»
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.'i‘l good, the contractors work independently; they also work independer&l)‘y
¢ 14

Y OAf the'weathe‘r is*bad. ‘Sv:xch is not the case for all con'ditioning events.

Exsmple Bl-c . .

%VSuppqse the t@o contractors of the previous example use some common item. -

~let D= event this item £s in gdod supply and D% = event this item ig in

short suppl\y. If the supply is good, it is reidsonable to suppose that the
@
pe:.formance of one contractor has no effect on that of the other. Hence,

it s reasonable to dsgfe thar P(A|BD) = B(A|E°D), _which is equivalent

» "to assuming [A B} 1is conditionally 1ndependent, given D. However, if

the suppl¥ is shoK(i.e., if ¢ occurs), the contractors%may be in‘compe-

49
tition for the scaroe item. Thus it may be reasonable to sappose P(AIBD ) .

< P(AlB 5. If contractor "b" coipletes his job on time he has probably \

- <

obtained th¢ scarce item to the detriment of contractor 'a". This céndi-

s

tion violates one of the equivalent conditions for conditional 1ndependeﬁto\’

of [A B}, given ¢ , so that we must assert conditional nonindependence.

It is not difficult to show that in this case the pair ({A,B} is not
’

; . totally independent. 0 ) ¢ 4
The following development sh;w's that conditional indgg‘endence, given
-~ |
. e \
. one or both C and C‘; is unlikely to yield total inde hd ncé .

In the case of conditianal independence, given C, and given ct , we ‘have

-+, 2(B) = PAlORPBIOR(C) + PAICHRBICHRE), & %

s

Bl

independ;nce, given ct » vwe have

P(AB), = P(AIC)P(B[C)P(C) + P (AB]|cS)P(ct ).

l 'In either case, we have ! )

.

Tt p@IP(B) = f(AI‘c)pknlc;pz(c),N+ﬁiﬂ‘(A|c°)?(n|c°)r2(c°)
P + [P(AlcIP (B|cSY '+ B(A|c®)P (B]C)]P(C)R ().




-

Only in unusual cases would we have P(AB)' = P(A)P(B).

An example is
proyvided in Problem B-5.

’
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Some patterns of probable inference

. .

We now consider a commonly encountered pattern of probable inference.
We begin by giving two examples, then lifting out the essential pattern.
When the appropriate conditional independence is identified, we show how

it may help in determining the desired pqsterior odds.
. ’

Example B2-a .

i

. -

Assgciated“ﬁith a cert;iig disex;se are, several symptoms. The presence ~
of the symptoms does not .guarantee ths: pres'ence o_f the disease, but with
high prt;bability they occur when the disease is experienced and do not oc-
cur when the disease is absent. The symptoms are observed by chemical tests
of blooci' samples. The tests themselves are not conclusive, but have high =
probability of detecting the presence or absence of the symptoms cor':rectly.
Now the chemical tests respond only to appropriate condivions in the blood

and are not influenced by how the patient feels or othe ise responds to

1

his{condition. Let H = event the patignt has the disease, D = event the
symptoms occur ({.n the blood condition)-, and R = event the tests<indicate
the presence of the s(ymptoms. Since the te“% respond tO the symptoms and
not directly to the disease, it seems reasonable to suppose P(Rlbffj =

PR|DH®) and P(R|D°H)= P(R|D°H®), so that (R,H) 1is conditionally inde-

‘pendent, given D, and given D°. i

Exampte B2-b

A firm plans to market a new product nationa’lly. Suppose the maryet

)
’ ~

, « .
may be characterized reasonably unambiguously as 'favorable" or "unfavor-

able". 'The company executives decide to check market conditions in a test

.

area. Let H = event th: national market is favorable, D = event the-test

39
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market is favorable. Past experience allows reasonable estimates ( a

- P(D|H) and. P(D!Hc). However, direct, completely reliable determinat.ion of
LY
the-condition of the test-grea market would be time consuming, expensive, “

and would €ntdil the risk of a competxtor capturmg the market. A market

survey of the test area is made. The re%Its of such a survey are hot con~’
o
{ N

&
* clusive; but under the assumed conditions, they are affected only by the \, .

conditions in-the test area and not by exj.stipg conditxons in ¥nationa1

market, excegt as the latter conditions" are reflected in the test area. Lf

R = event the survey shows the test market is favorable, we suppose that
.
“P(R[D}i) = P (R oi®) and p(n[n H) = P(R[D°H®). This means that (R} is

conditionally independent, given D, and given o° (]

These two examples exhibit features which are typical of a variety
[ * v - -
of inference problems. .

1) Thereds an objective system about which some inferehce is to be made.

In the first example, the objective system is the patient; in the .
” N
“second, it ig the national market. 'I‘he objective system is presumed

to be in one of two objective states (the patient has the disease or

does not; the market is favorable or is not). If fi,= event the ‘
«

r

mbjegciﬂv‘e/smem is in one of these states, then prior odds

POD/PH®) = a >0 are supposed known (or are estimated). ' : | N

a

2) The objective system 1s not directly obgervable-~ at least at the time
ki 1 . y .‘
of making tl;le nference. But there is a data system which dlay be 1:3
one of several states (in each of the examples above, the data system

is in one of two states). Each data state is "inconclusive" as to

the objective state, but there is a "probabilistic linkage’ between

the data states and the objective stateg, exyessed’ in terms’ of

appropriate conditional probabilities, as follows. Let DJ = event the

»

e

| El{lC ‘ 40
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data system is in state § (in the two-state system, we,\;se P

and Dc).' We stpose the conditional probabilities P(DjIH) = bj >0

and P(Djlﬂc) = ¢, >0 are known or may be estimated. Use-oftthe

3
4
ratio form of Bayes' rule shows the posterier odds to be .
I3 (4 N 4 (4 C *
P'(H|Dj)/P(H Inj) P(H)P(Djlﬂ)/l’(ﬂ )P(DJ|H ) -_abj/cj.

3) In a typical s‘imation, we do mot have perfect information about the™ )
) .

d-ta state; rather, we have the report of an observer‘, or sensor. .
.

For simplicity, we discuss a two-state data system and let R = event
T

the observer reports that D has occurred. If such a répor; is
~

recéived, the effec‘t.iveo posterior g«:ﬂi‘a;e P(H|R)/P (HclR) =
aP(RIﬁ?/P(R|Hc). Since the objective 3ystem is not otzs‘ewable,
P(Rh{q)‘ and P(-Rlﬁe)'\m.:e usually not known. We suppose informa:ion
is available about the reliability of the observer. That is, we .,
suppose tnformation is available to esti;ate'P(RlD) =d &ld] P(R| o)

=, with 0<d<1l and 0<e<1. Note that "perfect information"

"’

. about the data system requires e = 0 (for any positive value of d).
" 4) 1f the objective system is not observab],e%__gnly the condition of the
o : P
data syftem should affect the report. Thus, we: should have P (R| DH)
- P(RIDHC) and ?iRl DCH) = P(RchHc). This is precisely the condition

-

that (R,H} is.conditionally independent, given D, and g'iven p°.

v . . . 2
L. This does not imply that (R,H} f{s indepet}dent.

= ‘5) Let us see how the 'asaumptioxi of conditiqnal 1n:iependence may ‘help in
- *

.. determining the posterior odds, given the report.-'h/ >
PG [R) PG PROIH) + B(R0°|H) . ° ; a
. ;(acla) @) P(RD{H®) + P(RD°|H®) i s
R ‘ v - RDlH)P@RIDE) + (o [0 )P(RI DM ) -t
: PSRRI + 2@ lHOP®RIH) T T o

. ’

. -~ e
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' ymnz-b (Conttinued)

; Consider the test-market problem described above, Initially, company

lllnder the assumed condltional independence, this becomes .
“REAR) .. POIE)IP®RID) + FO°[H )P RIDS) .
P@°|R) . POO[EOP(R|D) + 2 (0°[C)P(R]D%)

which may be determined from the data. avallable,

For a more general formulation of this problem,with more than two objective

States and more than two data states, see Schum and Pfeiffer [1973]. To

illustrate the analysis » We Teturn to the previous examples,
Example B2-a (Continued) Q
The obijective system 1s the patient, selected at random from among those

who present themselves at the clinic, and H = event the patient has the

diseage in queu:ion. Suppose 10 percent of the patients examined at the

clinic have the diseise. Then prior odds a =<P(H)/P(H®) = 1/9. The data

system 13 the bl conditio;x. Let D = event the Patignt has the symptoms

S ,
associated with the disease. Previous clinical experience shows P(DIH) = 0,96

and P(D°[H®) = 0.95. Let R = event the symptoms are indicated. “The reliability
of the tescing procedure 1s such that P(R|D) = 0.97 and P(R|DS) = 0.01. The
patient is examined a blood test made, and the report is found to be posi-
tive (1.e., event R occurs). According to the pattern above

P@|R) 0.9 X% 0.97 + 0.04 x 0.01 9316
P(°[R) = (9 G5 X 0.7+ 095 %0 or - ek B

The positive result of the test changes the prior odds by a factor of // ’

about 16, The conditional probability that the Patient has the disease, it
9316/5220 e

gtven the test result is P(HIR) - T+ 9318/5230 as 0,64, (1 L)

We extend the second example to & slightly more general situation,

k]

exscutives think the odds for a fevorable market are P(H)/P(HC) = 3.




te

" pa®lp) PoESHREH %2

E;V»reports are fgvorable,

' SOLUTION.

* 1if found t be favorable (event D occurs), then

p@ |p)  POlH)P@) 0.8 4.

However, direct, comple:ely reliable checking of even the test market condi-

tions would be time consuming, expensive, and would entail the risk of a

~a

competi tor capturing the market. Two mrket~survey firms are employed to

survey the test market., Each makes a survey :nd reports its conclusion
. . o -
about the condition of the market. Let

A = event firm "a" reports the test market is favorable

-
-

B = event firm "b" reports the test market is favorable

+

The companies work independently" in such a way that the investigation
carried out by one does not affect that carried out by the other, regardless
of the state of the test market. Because of the nature of the surveys,

_the results canmot be completely reliable.- Suppose

[}

K]
PA|D) = 0.9, P(A|D°) = 0.3, P(B|D) = 0.8, and P(B[D°) =

Find the posterior odds P(K]ABMP(HCIAB) for a favorable market if both

-

-

» Iurvey teams work in an operationllly independent manner and neither team

1; affected by the national mrket except as, it influences the test inarket,

1; seems reasonable to assume that P(AIBD) = p(A|B° D), P(AIHD) ~ P(A|E°D),

r(nlnn) = p(|H°D), and P(AB|HD) = P(ABIH D). 'I‘hese condi tions 17(1}
X . ,




N .

<

3

PRSTP:

yields conditional independence, given bB°. We mote that-

I P(AB[H) = P(ABD|H) + P(ABD®|) = P(D|H)P(AB|DR) + B(°|H)P (AB|DH)

L4
and similarly for conditioning evegt HS, we thay, therefore, write

P@AB) | P(H)P(AB|H)

. - ! . -
S P@°|AB) P(°)P(AB[E®) ’
.. , . \
. - R(H) POHPAD)PND) + un°lu)?(AlD°)P(BID°Y/
. PE") P(D|HC)P(A|D)R(B °1u%)pea) o) o°)
. kY ’ > °

2002 _ 147 o

8+0
8 +70,80,3x0.2 16 «

v

. =3 0.80.9%0.
‘ 0.2¢0, 90,

)

- Th

.

doing this is that the objectiv.e system {8 not av.

v

.

F e .

'

4

B2-6

- B that (A,B,H} is con.ditionally independent, given D. A parallel ar

-

. . A\
vglue 9,2 is somewhat less than the odds of 12 obtained if perfect

e
information were available about the test market, as might be expected.

If we do mot have conditional independence,\ the problems are still

we need P(R|DH), P(R|D°E), PR|DE),  and PR|D°E®). However, in this
N " case it would be simpler to operate with P(R|H')' and P(RIHC), since R

must be treated as a datum directly r'el:ated to H. The reason for not
able ¥or observation.
But it is precise‘lyAin this sj.tuat'iox'x that we should assume that P(R1 D)

= P(RlDH), etc., since if the'object:we system is not available to the

observer, only the; condition of the data systen*g affect the report.

RN

' meaningfull, but wore detailed information is required for solution. Thus, .,\
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~ B3-t , 4
7+ 3. Aclassification problem . .
N Suppose subjects; are Ji;awn from two groups. Each subject answers a

battery of questions, or is otherwise tested with regard to a dﬁ_t‘”of
characteristics: The result is a profile of data for each sybject tested.

Bach individual i{s to be cl’assified in one of two groups, on the basis of

the test results. The prob.lem may be formulated ip probabilistic terms

p8 follows (see Schum and Pfeiffer [1977]).

There are n data classes 91,’1 =1, 2, ..., n, one corresponding

~ .
‘to each question or test. Let o .

Dij = event the answer to. question { falls into category (i,j)

., L
. Then s; = (Du, DiZ’ Ay Dimi}' 1f the list of possible answers or
results is exhaustive and mutually exclusive, then 01( is a partition of

the basic space on which p.r;bébility is defined. - ,
C . o We suppose the subjects are drawn from twg mutually exclusive gr'oups.
ﬁé"let. Gk = evemi the indiv_idual interviewed belongs to thé kth group.
In order to make p.robable ir:ferences,’we u‘ust sup;ose that the‘probabili-

ties P(Gk) and P(Dij[Gk) are positive and known. If we assume that

no datum i{s conclusive, we must also have 0 < P(GkID”) <1 for all

v

> permissible 1, j, k. Since each Qi is a partition, we have

:?P(‘Dijl

When an individual i{s interviewed, a profile is determined. A given

<

Gk) = 1 for each permissible 1, k.

- rofile. corresponds to an event E_ = D. D, . The various
P Po 0 ey P o132, TTTynyy .
possible profiles are mutually exclusive, so that events of the type EP
constitute a partition. We ask, "What is the inferential value of the
compound event cqrresponding to a profile?” The usual answer is fogmlated

o . L
~ in tetms of the likelihood ratio I.p = P(EPIGI)/P(B’%IGZ) or, equivalently,

the log-likelihood ratio Ap = log I‘p' We ‘may take logarithms to any base,

Tt ¢ . 45 . .' ‘ &




:*‘.mcﬂdatt is rirely available, nor is it needed ih a we

(3

tional probabilities for each «profile, for each of the groups. This

-designed ex'peri -

-

LR

the éuessions or tests in such or resilts are

"1ndependent.""0nce more, we have the issue nditional independence.

The probabilities of various answers to a given question should depend
upon the basic £haracter ics of the sﬁ?iject (hence on his or her group .,
‘:Lmbership)‘, 'ta.;t sho 19_‘_&% depend upon his or her responses to the other
questions . That is, a given subject'e responsei.,to‘ a particular question
should be the same whether or not the othe #pdestions are asked, or regard-

-
less df the order in which,théy are asked, This does not’ mean that the

a

. i
responses to the questisng are totally independent; the answers are .

*

conditioned by the group to which the subject belong (i.e., by the char-

acteristics c;mn to that group), else the questiong have no diag'nos.tic_

»

value. The desired independence holds within a given group, but &he
,‘;‘ N

probability distributions are different in the two groups. Hence we make

" the assumption that the family {31, 32, ceey sn] is conditionally inde-

.

pendent, given G, and also given G,- In this cdse

D G
.7 (ijil'l) d A ZA £ I, A
= an = = og v i R
v § P(D ) P ij 1]
ijilcz 1
’ ., We may carry the formalism further in a useful way by introducing fhe ) /

! K

random variables




N~y

b E AijID (has value - whenever D otcurs) .

1] i)

«

If E_ =D, D occurs, then T = 3§ T, has the value
P n . { S
£l ' ',
-Aljl + A2j cee " . Hence we utilize -,

! T=y 'fi =% '{pLE (has value Ap Nchenever Ep occurs).

O \

4
Use of Bayes' theorem gives

-

‘PG E) . P Is, )P(6;) P(G,)

log P—I_L(G £) log —EI—P(E G,)P(G,) =T -t o where = log o5 v P(G y*

Standard practice is to clalasify the subject in group 1 iff T >t
P(G, |IE.)

probabilities, Consi&ef the eonflitional distribution functions FT(' |G1)
b 4
and Fo(- |c2), defined by F(t|G) = P(T < :[ck), k=1, 2, In the con~

ditionally .indépendent ca Ti: 1 <1 <n) is an independent class with

o
respect to each of mabmty fhieasures p(-|c and p(-lc ). The

central 1imit theorem ensures that for sufficiently large n both Fo(- ]G
And FT( ‘G ) are approximately normal. Examples show that the normal ap-
.proximtion may be quite useful for n as small as & or 5. .
. With the ponditional distributions for T, standard statistical tech-
niques may be utilizec} to determine the probabilities of mi:sclusificat:ion
errors. Under some conditions, better choices of the decision level t.
nay be ude\.‘ For a discuuv;fon of these issuea, see Schum and Pfailffer [1977],
Example B3-a
’ Subjects are to be classified in one of two groups. They are asked to

.

~ ¢
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. »

respond to a"battery of six questions, e>ach of which is o be ans'wered in
one of three‘ways: yes, .no,.uncertain. To cai‘lbrate the test, a sample
of 100 subjects i;s interviewed intensively to determine the proper‘ group
clgssification for each. It is found that 55 belong in group 1 and

; 1;5 belong in group 2. If Gl = event a subject belongs to group 1

.+ - and G2 = event a subject belongs to group 2, these data are Faken‘to

mean that 'P(Gl) = 0,55 and P(Gz) = 0.45, i?xe response of this contql

or, calibration group to the questions is tabulated as follows:

Graup.l (S5 memhers) +Group 2 (45 members)

No Uncertain No Uncertain
1 2 . L2

% 12 10
30 18 16 Q
40 - 7 12

18
18 13

31 « .7 7

We hlve assigned,z.arbitrarily,iumbers 0, 1, 2 to the answers yes, mno,
cE’rt ng ;’espectively. Thus, DIO is the event the answer to question L
18 'yes N 42 is_\he event the answer td ‘question 4 is "uncertaj.n, " etes

< " Ve intergret the data in the tablesato mean that P(DIOIG ) = n10/55 - 17(55
" and P (D, IG)-m 445'-2;/45 ete, . . P
:2;» A !ubject is selected at tandom from ‘the populatto;l f}‘om which th .

P

‘f‘; sample was taken. The subject's. answers to the six ql:stifns, in ordek,
b

e d arebn, yeo, no, uncertain, no, yes. How should this subject be

_ flasbfied? ‘ g

- _ SOLUTION.

I a

1

, The mn‘t Bp - D10D20D3iD42D51D60 has gccurred, We“caldulate the value

48,




as follows:: b ! - .
. } 3 ™

.15 y - 10o 11455
log P(,,16,) /2 ®,,16,). log -0.769

Mo 30/45 | ,
- - log goat = LSSl . Ay = log 3923 - 1003
. ’ 4 - 165 19523 . 1409 b:°51 /log B 0128 C
* ‘ A60 = log 3—3—‘53 -{5\7 Suming give; Ap = 1,217, ‘

.

Ve.also find t_= log p(cz)/r(cl) = log 0.45/0.55 = ~0.201. We thus have
T=- Al; = -1.217 < -0.201 = t ; hence we classify the subject in group 2.
To consider classification error probabilities, we could assume the con- v

& o N
ditional distributions for T, given Gl and given G2’ to be approxi-
* “

i mately normal. By ob%inilonditional means and variances for the various

Ti’ we could obtain the itional means and variances for T, given Gl ,

and given G,. Standard statistical methods could then be utilized. We do
not pursue these.matters, since our primary concern is the role of condition-

ol independence in formulating the problem. '~ 0

. —

- [
_ It is pot necessary that all the questions be conditionally independent.

»

~

There could be some intentionnl redundancies, Ieading to rconditional

\

" dependepcies.within each group. Suppose in the numerical example above

f
thlt qucctions 1 cnd 2 were made t:o interlock Then it would be

A necesury to consider chis pnir of questl‘bns as a single compogite question

- LY

- with nine poasible angwers. Frcquenéy data would be required on each

- -

pair.‘ of answers (no,no), (ro; yes), (o, uncertain), (yes, m), ‘(ves, yes),
(ycc, uncortcin), (uﬁcertain‘, no), (uncertuin, yes), (uncertain, uncertain).

¥

. Onc muld still suppose conditipncl independence for the set of questions,




-
‘ N 33'6
. “ \ . .
provided this composite question {is dealt with.as one questioh. lore
comglex groupings could be made, increasing the amount of data needed to
\ ) ¢
utilize thxchssificntion procedure, but there would be no difference in
principle, , ’
e . oL
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.4, Problems '

.

“ B-1 Prove the equivalence of at least four of the sixteen conditions for *

- -
¢ A

independence df (A,B).
B-2 Complete the argument in Example Bl-b to show that the equality
. P(A|BC) = P(A|B°C) implies that the common value is P(a|C).

(3

° B-3 Establish the equivalence of at least four of the sixteen conditions

for conditional independence of (A,B}, given C. N

‘s

B~4 , Show that the condition P(A|BD) < P(A|B°D°) in Example Bl-c implies

P(A|BD%) < p(alp%) X

s

%-5 A group of sixteen gstudents has un equal number of males and females.
One fourth of the females and three fourths of the males like to play .
.
basketball. One half of each likes to play"volleyball. A student is

selected from the group at random, on an equally likely basis. Let -

—

A = event the student likes basketball,

. B = event the student likes volleyball,

. ' C = event the student ig male.

Suppose (A,B} is conditionally gxdependet_lt, given C, and conditionally

14

- / independent,~given c®. Show that \(ﬁ,B] is independent and -(B,C}
. is independent, but (A,B,C} is noWindependent.

. B-6 1In Example B2-b, show that the conditions 1) P(A|BD) = P(a|B°D),
-

1) p(alup) = p(alE®D), 111) P(BlHD) = P(B|D),  and iv) P(AB|HD}™

’—;: ‘ » P(AB, HcD) together implykvthat‘ (A,B,H)} 1is conditionally indepéndent,_

given D,

t
3

+ Be7 In Example B23b, determine P’(H,ABQ)/P(}{CIABC), the conditional

° .
“e®

N
b

odds, given conflicting reports of "favorabIe"«by "a" and "unfavorable"

o

N

. " by ™M, ; , : ' o v S

T . / | .h' M




3.8'KConsider the following problem, stated in a mamer common in the
-~ .
literature., A patient is given a tesk&r a type of cancer. The

R probability of a false positive is 0.10.

'-c negative is 0.20. One percent of the tested population is known to

have the disease. If a patient receives two independent tests, and

both are positive, find the probability the patient has cancer.

a) let C = event the person gelected has the given type of cancer

TI = event the first test indfcates cancer (is positive),

Tz = event the second test indicates cancer, -

¥

Digcuss the reasonabler_xes,s of the assumptions that (TI,TZJ is

conditionally independent, given C, and-is conditionally

independent, given Gc. ° .
) b) Under these assumptions, determine P(CIT ‘
e ¢} Under these assumptions, determine P(CIT

@

. B-9 A student decides to determine the odds on the forthcoming football

game with State University.

»

-
star quarterback, recently fnjured, will play.

’

yield two opinions whether the quarterback will play. i‘-:ach'report
: \ .

LY

2

Emc'

Aruitoxt provided by Eic:

W = event the ‘home team wins the game,

. not on the outcome of the game (which is not kno'wn,' of course). The
- two advisers have operated quite independently in arriving at their

estimates. The student proceeds as follows. He lets

.
-

3
'Q = event the }nar rterback plays for State,

[

- .
A = event the. first informant is of the op'inion he will play,

B = event the second informant is of the opinfon he will play.

.

[y -
-

\ .

9%

The probat?‘ility of a false

. The stu&ent (having studied Example B2-b) decides to assume -(W,A,B}

Jhe odds depend heavily on whether State's

A couple of phone calls

depends only on facts related to the condition of the quarterback and

-

is condibionally indepen:fent, given Q, and conditionally independent,




given Qc On the basis of past experience he assesses the\reliability

of his advisers and assumes the following probabilities. P(A|Q) = -
P(°|Q%) = 0.8, P(B|Q) = 0.6, and P(B°|Q%) = 0.7. Initially, he

could only assume P(Q) = P(Q°) = 1/2. Expe:'t opinion assigns the

odds P(HQ)/P(W|Q) = 1/3 and PW|Q®)/P(|Q%) =\8/2. on the basis

. of thesé assumptions, determine I.he odds P(wl ABC)/P(WCIABC) and the

s

probability P(W]ABS).N\"" . ’
B-10 A studgnt i{s picked-at random from a'large fresh class in calculus.

Let 1

T = event the student '_had a previous trigonometry course,

A= e)ent the stu‘dent made grade "A" on the f;.rst examination,

e [
B = event the student made grade "B" or better in the course. \

)

4

Ny

‘ o
Data on the class indicate that'
P(T) = 0.60° P(A|T) =0.90 P(AlT®) = 0.30
. P(B/AT) = P(B|A) = 0.60  P(BJAST®) = P(B]A®) = 0.30.

?)ﬁ student selected made "B" or better. What is the probability

P( IB) that the stude?t }}ad a previous course in trigSnometry?
. ®

b)\ Show that (T,B} is not an “independent pair.

B-11 Experieéhce shows that 20 percent of the f'tems produced on a production
B

1ine are defective with respect to surface hardness. An inspection
procedure has probability 0.1 of giving a false positive and probability

0.2 of giving a false negative. Units which fail to pass inspection
-
= ~are given a corrective treatment which has probability 0.95 of

correcting any defective units and zero probability of producing any
adverse effectern the €ssential properties of the units treated.
.E{o'ﬁeve‘r, with ‘pmbat;ilit:; 0. 3, the retreated unité’ taki(on a character-
M g istic color, reggrdless of whether or not they are defective (initially
‘e

o .3 T ,

LA v 7exc provided oy exic: . [




or' finally). Let °
Dl = event the unit sele;:ted is defective initially ot
1° = event the unit failed inspection = event' unit is retreated
~ D2 = event the unit is defective after retreatment )
C ="event the unit is ﬁiscolore? fter retreatment

.

a) Show that it is reasonable to quépotse that szD]_] is conditionally

dndependent, given" Ic, and that [C,Dz} is conditionaloly inde~

pendent, given ICDI. [Note that IC = § and P(D‘]:'Dz) = 0.]

b) Determine P(DZ!C)’ the probability that a unit is defective,
. ”
« . given that it {s digcolored.

. 1 P ”
W-12 In the classification problem, Example B3-a, determine the appropriate -

classificd#tion if the answers to the six questions are: yes, no, no, -

N -
uncertain, yes, no, reSpectiveLx.
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‘C. Conditipnal expectation \ N

In order to introduce and develop the second concept of conditional-

independence, we meed to examine the concept of conditional expectation.
v ¢ °

" The usual introductory treatment of conditional expectation is_intuitive,m o
straightfoward, but severely limited in scope. More g.eneral treatments .0
. tend to'assume familiarity with advanced notions of meaaurability"an'd :
abstract integration theorys We se k—to bfidge the gap and nfake the-appro'-
~. priate aspects of a general treatment mpre JLeadily @éce;sible. N

-

1. Conditioning by’ an event.

4 If a conditioning eyent C oceurs, we modify our probabilities by

introducing the conditional probability measure vP(-lC). Thus, P(A) is . ‘=

replaced by P(AIC) = P(AC)/P(C) In making this chapse, we do two things: '

i) We limit the possible outcoties to those in event ¢ . -
ii) . We "normalize” the probability mass in C to make it the név unit

- .

4 ' of mas8 . IS L

It seems-reasonable to make a corresponding modification of mathematical
expectation, which we view as a probability weighted average of the Y

values taken on by a random variable. Two possib.ilities are apparent. .
’ ~
a) We could mdify bhe-prior’ probability measure P(- 9 to the conditional

lL probab,ility,measure P(- IC), “sthen take expectation (i.e>, wei@'nteﬁ S
. © oy . .

» average) with redpect to this new~probabi1ity mass assfgnment. !

b) We could continue tor use the original probability measure ?{(-'5 .and ,
& . : - N LN
modify our averaging process as follows: .1, - s

.

1) For a real rardom variabley X, we consider the value X(w) for
. - . - Y

-

in

“« o t
only those w in the event C. We do this by utilizing the
randomuvariable ch, yhich has the value X(w) . for w in cC,

and has the value‘zero for any _outside C. Then F[ch] (s - ¢

;h,. 5 ) ‘e . o . o
. , . .
[N . . e g .
SUEN I . ' '
EMC * ~ - - 57 - ' ’
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the probability weighted sum of the Values taken on by X fn

<. -
. the event C. VO
5 N . +

.~

ii) We* divide the weighted sim by P(C) to obtain the weighted

v average. . N
; 4 . .
- L] v

As shown by Theorem CI-1; below, these two approaches are equivalent.

For reasons which will become more appareént in subse.que’nt developments,
“wet take the second approach as the basis f:>r definition. For one thing,
we- c:nﬁw the "sumi‘ng".in each case with the prior probability measure,
then oJ:in the average by dividing by P(C) for the particular condition-

ing event. This approach facilitates relating the present concept to tile i

P Y

_more general concept of conditfonal expectation, given a random vector,
-";rﬁicﬁ is developed in the next two sections.
’ DEFINIlef the event™ C has positive probability and indicator

__function I . the conditional expectatiap of ' X, given C, 1is the

quantipy z[xlc] =Eel1 xl/p@). .

Several prop rtie's may be established easily. <t
' Al
Theorem CL-1 - s . )
~ 1 N
8) E[Xl C] is expectation with respect to the conditional probabi.lity

. .

3 .

measure P (- ' C)

. . 4
" by gfs,lc) = paalo) '
) If ¢© -u C,' (disjoint union), then Elx|clp(c) = f n[xlcilp(ci).

-

moor OF a), . '

If X is”a simple r,andom variable Zt Ak’ then

“ .z[x[c] = gl1 x]/P(C) - E[Z £ 1oL ]/P(C) = E[IAkc]/P(C)
-»,,— P E t, p(Ak}c) = gc[x] ] ) - ‘
] where. the‘symbol Ec['] indicates expectation with r‘espect to the condi- ,
T tional probability measyre P(-|C). . ' . ’
Q 1. "o 58 ® N -
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‘ . ¢
‘ c1-3
3 .
5 If ¢<X >0, then there is a sequence (Xn: 1<n} of simpie random’
B 7 ; Co ks
-“) varidbles increasing to X, This ensures that the sequence (Ian: 1 <nj}

is a be:;uence of simple random variables increasing to ICX._ By definitton,

g[ch]/P(q) = 1r1‘m z[rcxn] /P(C) and sc[x] = 1§m zc[xn].
Since E[chn]P(C) = Ec[Xn] for each n, the Iimits myst be the same.

. ;ln» the general case, we consider X = X+ - X_, with both X+ >0 and
j .
,/X'_‘_ > 0: By linearity, ‘ .
. : L 4
. ,"’/ = - = - = i
 ElrKl/e©) = Elix ] /e @) - El1 X 1/R(C) Ec[’_‘+] E.(x] = E[X].
bPropositions b) and c¢).  are established easily from properties of

.
v

[~ mathematigal expectation,

()
N 3 ’

. -"'
The* following theorem provides a link between the present concept and

\l the more_general concept developed in the next two sections.
" TheoremC1-2 . ° N S .
, - . - . ° s
If event C=Y 1(M) = (Y € M}, for any Borel set M, has positive

probability, then E[I (V)g(X)] = Elg(X)|Y GQM]P(Y € M), )

PROOF. '
_ By Theorem AL-T, T (0 =1 By definition E[Ig(0)] = elg ) lclr(C).

Hence, B[, (0g00] = ElgelY e Wlp €. oo ’

.

1® sl:lould' be noted that both X and Y can be vect'or-’value‘d. " The function

g must be real-valued, and M is any Borel set on the codomain of Y.
% - ~ ] [N
- - ‘

*

5




A\
2. Conditioning by a random vector-- special cases
. NI X 5
JIn this section, we consider two simple, but important, cases of

.

.

conditional expectation, given a random vector. We x;xake an in‘tu.itiye
‘approach, based on the idea of a conditional distributiorl. In each case,
the conditional expectation is found to be of the form E[g(X)IY =u] =
e(u), where e(-) is a Borel fuhction defined on the range of Y. This
function satisfies, in each case, a fundamental equation which provides

a tie \With the concept of conditional expectation, given an event, and
\ . »

which shrves as the basis for a number of important properties. This

ﬁmdamenéal equation also provides the basis for. -extending the concgpt of

conditional\expectati;l, given a random vector, to the general case.
Case 1) X \Y\dtr/

Tete. X = ZtI ‘and Y = ZuI , where
=1 14 =1 3By .
Ai = {w: X(w) = ti] and Bj = {w: Y(w) = uj]. We suppose P(Ai) >0
and P(Bj) >0 for each permissible 1}j. Now
Elg(x)|y = u P =u = E[g(xmj]r(nj)
M = E[g(X)IB ] * by def.

3
(= Elseox J(71)] . by Thm Al-l

= Ig(e)r

(u, )py (. ,u, )
Yotk st (j]kXYik

= fg(ti)pXY(ti’uj) - - since I(uj.](uk)z.l

N iff § = k,
If we consider the conditignal probability mass function -
. px'Y(ti,uj) P(Xnti, Y-uj)
leY(tilu}) = Pylu)) TRy - )

« We may write , ‘ T "

ElgOY = ule(y = u ¥ [ F 8(eppygy(eiluplpyta)

- from which we get i

. .
E[g(X)[Y' - uj] - fg(ti)pX,Y(tiluj)‘é e(uj) for-each uj in the range of

60
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+

’

« -




Cc2-2
W e(*) be any continuous function which takes on the prescribed
values e(uj) for each uj in the range of Y. Then e(-). is a Borel
function. Suppose M 1is any Borel set on the codomain of ¥. Then
Elr,(Dg)] BTy g0 :
t]
[. =
isz(ti)IM(uk)pXIY(tiluk)pY(uk) )
. t]
r
- 1M<uk>I.§ 8t Ipyy(ey lulpy ()
= E Ly )e@p tu) = E[L (e}, . p
Hence, e(-) must satisfy M
Elry(Ms®)] = E[L (Ye(¥)] ¥ Borel set M in the codomain of ¥ -
'
The uniqueness property E7) for expectations ensures e(-) is unique
3
a:8. [PYJ , which in this case means e(+) 1is.uniquely determined on the
range of Y. 0 *

, Example C2-a ) Y ) ‘.
Suppose X, Y produce the joint distribution shown in Fig. C2-1, De-
termine the function e(-) = E[X]Y = -], . o

SOLUTION,
From the joint .distribution, we obtain the quantitieé‘
B k-4 k] L3 . . et L}

: U
Py(D =p @ =3/10  p G = 4/10

s

Pxfy @D =pyjy2ID) -pleol\n -8 ,
' ple(4|1) -px‘ﬁ(sln =0, )

Hence e(l) = 1/3(1+ 2.+ 3) =2, °
Similarly e(2) = 1/3(2+ 3 +4) =3 and e(3) 3 1/6Q2+3+ 44+5) =7/2
G;aghical interpretation. The conditional probabilitites PX'Y(k'u)’ for ,

fixed uw, are proportional to the probability masses on the horizontal line
- - 1
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S corresponding to Y = u. 'ihus, E[XIY =y is fhe center of massvfor

.
that part of the joint distributi.on which corresponds to Y = u. 0

b . -

' . *
. Cagse 11) X, Y are absolutely continuous, with joint density function fXY'
Since the event [Y = u) has zero probability, we cannot begin with
conditional expectation, given the event (Y =u).” We may utilize the

intuitive notion of a conditional diétribu;ion, given Y = u, by employing

N '
'

the following device. Let

v

£..(t,u)/f,(u) for f (u) >0 ’
fxly(tlu) _{ XY Y Y
0

. A

otherwige. B

Por.fixed —usuch-that — ) >0 et the vange o F Yy, “ERe FuGELSH

th (-]u) has the properties of a ‘density function: (t|u) >0 and

NP
I foY(tlu) dt = 1 It is natural to call this the conditional density

function for X, glven Y =u. In part the terminol\g? is justified by

the following development. Let M be any Borel set on the cpdomain of Y.

Then / . . , o .
‘ . . >
. ElsL (W] = [f 8(E) L () £y () dtdu
L TR & N g(t)fx[Y(tIn) dt] £,(u) du
y \
& = [ Iye@i ) du = E[I.M(Y)e(‘z)]' -
" where " eu) f [ g(t)‘le(du)Jdt.
* Bow e(:) must satisfy
" . - ¥
‘ E[IM(Y)g(X)] = E[IM(Y)e(Y)] ¥’ Borel sets M in the codomain of Y. .

- It seems natural to call e(u) the conditional expectation of g(X),' given .
{ = u. In the cage P(Y EM) >0, we have by Theorem C1-2’ ’

E[fM(Y)e(Y)] = | Lmew@E, ) du-= E[g(X)lY eMP(Yem. ° .

«

If ed) is Borel, as it will be in any practical case, property E7) for

-

expectation ensures that e(Y) {is a.s. ypique, or e(+) 1is unique a.s. [PY]
which mems that it is detennined egsentially on the range of VY. 0 g

e 63
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Example C2-b
* Suppose X, Y produce

.

o the trianfular region with vertices b

Fig., C2-2, DNow

1-u ) .
£,() =f Egy(Esu) dt - zg dt = 2(1 - u)
R

and ) \ .

1
See) = Ty

LY
Hence A

écr- z[xb' *"] = l‘ bt )gY(l'iu) dt‘h

.Graphical interpretation.

’

for 0gt<1 -y,

_*l;r
1 ub

. vt
The dashed line in Flg. C2-2 is the graph of 7,

(0,00, (1,0), (0,1y,

.

0<ux<l1

l-u

0<ug

t dt =

a joint distributiom which is uniform over,

‘as shown in
é 1

st v

-

»

(and zero eISewheré),
¢ - : C'

»
-

]

. .
L-u pcuc,
2 S

°

v < .

'A'

e(u) vs. u. This coulé have been anticipated by fhe following graphical ,w

©

ig.terpretat\ion. If tf '19 cont:inuous, we may visualizg R fX‘Y(tlu) as

la’

proportional to the mass per unit length in a very narrow strip on*the plane

about the line corresponding to

- of the portion of the joint distribution lying in that narrdW strip. i

o . PR
2

A

®

Y = u,,

E[X|Y =]

’e

8, “‘

a

is the center of mass_

iR

Y




3. Conditioning by a random vector-- general case

+
The treatment o\f\t?e Jgpecial cases in the previous section begins

with the notion of a cdnditional distribution, while this approa;h is
intuitively appealing, and quite adequate for the simplest cagses, ft
quickly becomes unmanageable in mfre general cases which involve random

vectors of higher dimensic;ns with mixed distributions. We seek a more

N
satisfactory approach. .

We base our development on a simple property derived in each of the

two ssecial cases consideréd in the previous section. In each case, the

P}

———quantity called the conditional expectation\of 8(X), given, Y = u, is

the value e(u) of a Borel function e(+) which is defined on the range

of Y. The random variable e(Y) -satisfies . K
A) E[IM(Y)_sz)] = E[IM(Y)e(Y)] Y Borel sets M in the codomain of Y
By the uniqueness property E6) for mathematical expectation, e(Y) /;mst
be a.s. unique, which is equivale‘nt to the’ condition e(+) is unigue,

I a.s. [PY] + By Theorem Cl-2 on conditional expectatioh; given

we have - *
.

2
B) If P(Y €M) >0, then B[IM(Y)e(Y)] = Els(x){Y €

Motivated by these developments, we make the , S

T4 ar ¢

DEFINITION. Let e(+) be a real-valued, Borel

e(u) 1is the conditional expectation of given Y =y, denoted

Elg()|Y = u]* iff

b Eln,meE)] = E[T,(Mev)]
. v
Associated with the Borel functi is the random variable e(Y).

4

Now e(*) 1is unique a.s.

.

.
5




£3-2
’, ' ”
Lt * N\
DEFINITION. The random variable e(Y) 1is call the conditional
¥ ’ - Y
expectation of g(X), given Y, denoted E[g(x)lY] .

-

Note that we must distinguish between the two symboﬁ '
a) ’E[g(X)_lY ~ ] = e(+), a Borel function on the range of Y

b) B[g(x)lY] = e(Y) a random?ariable--_ for a given w we write

+

Elg )] ¥) (),

Example C3-a ) ' . .-

LS - L

If the conditioning random vector Y {is simple, an explicit representation
m

of e(Y) = E[g(X).IY]‘ is obtained.easily. Suppose Y = it (in

" j=1 3

canonical form-- see Sec Al), so that BJ = (Y= uj] and IB

If Ie(u) = E[g(x)lY = u], then e(-)- is defined for u, in the range

J
bf. Y’ by e(uj) = Elg(x)|Y = u ] = E[I[u ](Y)g(X)]/P(Y = uj) (conditional

sicpectation, given the evant [Y = u . Hence,

m

e(¥) = Tew)I = ‘T z[g(X)lY =401, 4o,
3Ry g 4y

Thus, when the conditioning random vector is simple, so that P(Y = uj) >0,

the concepts of conditional expectation, given the event (Y = uj], and.
5 coincide for uJ in the range
- o

of Y, and the same symbol is used for both. Use of formula B),“above,

“of conditional expectation, given Y = u

gives
E[g@"{ e Mp(Y € M) - E[I (Y)e(‘Y)] . T
. \ - Z?E[g(X)|Y =u ]E[I (Y)L( )(Y)]
3=l
The quantity E[IM(Y)I[u ](Y)] = P(Y = ua) iff u, €M, and is zero
- ]

]
otherwise, 0 ’ * .

ERI
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* Example C3-b .
Consider the random variables X, Y in Example C2-b. Let M be the
P

sexd -infinite interval (3=, 0.5], so that (Y € M}-= (¥ < 0.5). Then
0.5 MY

P(YEM) = :f fY(u) du = 3/4 [May be obtained geometrically.]
F - ’
> O.S
BIIM(Y)e(Y)] = _i e(u)fy(u) du = ‘rgs (1} - u)2 du =57/24.
Qence
E[X]|Y < 0.5] = (7/24)/(3/4) v?/k. 1 .

”

In each of the two special cases considered "in Sec C2, we haye been

able to produce a Borel function“'e(-) whia; gsatisfies the defining relation
- . \-/ﬁ .
A) for conditional expectation. The uniqueness property E6) shows
EHl
e(*) to be unique a.s. [PY] - In Sec C4, we state a number of properties

of conditional expégtation which provide the basis for much of its usefulness.

f -

In Sec C7, we provide proofs of these properties based on proposition A)
P 5

and properties E1) through E6) for expectation, These properties hold .

whenever the appropriate Borel function e(:), exists.ﬁThus,' they hold
»

" )
for the two special cases ekamined in Sec C2 and for ot\)ie‘rs which can be

I

PR A v Provided by R

t <y o
derived similarly. It would be convenien.gif we knew the énditions under

which suitable e(*) exists. As a matter oﬂgact, if we utilize the

~

powerful existence theorem E10) «for macl;ematicgl expectation, stated without

proof in Sec A2, we may assert the existence of e(-) fo; ar'xy randor

vectors X, Y and any i-ex;l-valued Borel function g(-) such that .E[g(x)]

D

is finite.~ The properties obtained 4n Sec C7 then hold in any such case.

<. Ly
s Y .
N - ® . VAR -4
’ - - »n ~ .
- v .
- ’ e
x .
“ J
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© Ch-1 g .

*
N Properties of conditional expectation ,

In th ection, we 1ist -the pi:fpcii)a}’ prggleg;\i,es of conditionil -

e

expectation, giden a random vectdr, which are utilized in subsequent

‘ -

developments. Prdofs are given in Sec C7.w’l'hese are based on the defining

relation A) and properties El) through E6) for mathematical expectation.

S ) . - ’
In the fp#lowing; we suppose, without'repeated assertion, that the

random vectors énd Bor;-el functiong, are such that. the existence of

ox'di;iary expectations is assured.

W st of properties with the defining condition.

“

~ CE1) e(Y) = Elg(D Y] a.s. iff"_ElIM(Y)e(Y)J = E[IM(Y)S(X)] for all

Borel sets M in the codomain of Y. .

As noted in relation B), in Sec C3,
CEla) If P(Y € M) >0, then E[L (Ve(D)] = ElgX)|Y)¢ MR(Y € M),
- -
If, in CEl), we let M be the entire codomain of Y, so that IM(Y) has
]

the%constant value one for all w, we obtain the important special case

CE1b) Ejs(xi] ey .

“The device of first conditioning by a random vector Y and then taking
expectations is often useful, both in applications and in theoretical

R .
developments. As a s’.mple i{1lustration 3_f the process, we continue an .

v

s e’;:lier example. '

. Example Ch-a (Continuation of Example C2-b)

o

4
‘Consider, again, the random variables X,Y which'produce a joint distri-

bution which is uniform over the t'riangu‘lar region with vertites (({,0),

{1,0), (0,1). It is shown in.Example C2-b that .

& fy(ﬁ‘) =2(1 ;u) for '0 <u <1’ (and zero elsewhere) .
< - . .
e(\l)'B[XIY-u]'lzu for 0 <u<l.

’

e % R

et N
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"

m o “

[ . '~
. ¢ “ ) o Chr2
, A (: * ¥ N ¢ -
By CElb) . \
Bl mElé@] = [ ety @ @ = o @ -wid s 0

The result could, of course, have been obtained by finding ‘fx(t) =

i L

TZ(1=t) for- 0 <-t < 1- and.calculating .

Elx] = Joegg(e) de =vzj‘é (t - ¢2) de = 173, -

The choice of approach depends upond the objectives and the information -
> ' ; .

at hand. - . °
- - [] o »

>
- b h N - - 9
The next three pgrties emphasize the integral character of conditional

A R ‘
expectation, since they are in direct parallel with basic properties of
éipectatiolns or integﬁﬂ 0ne°must be aware, of course, that for condi-*

L)

tionalv expectation the properties* tugy faj‘l to hold on an exceptional set

of outcomes whose probability is zero. The proofs given i{n Sec C7 show
A

how these properties are, in fact, based on corresponding properties of

.
Ll

mathematical expéctation. .
%

7

CE2) Linearity.. Elag(X) + bh(D[z] 5 sE[g()]2] + bE[h(V)|2] a.s. (with

-
extension by mathematical induction to Any finite linear combination,)

’ -

[ ) N .
" CE3) Positivity; momotonicity.- - . ,

v

g(X) >0 a.s, imﬁlies.‘E[g %) Y] So a.s. .

s(X) > h(Y) a.s dmplies ‘Elgt0)|z] >E[h(Y)lz] a.s. o
.c)al.) }Snotone convergence. X - X a.s. notonically implies ' .
B . . 4 )
D BIx 11 - B[le]— a.s. sonotonically ) ’ A
+ 7’ -

“Indepentence of random victora is associated with a lack of’ "conditioning"
- N
in.the following sense. )

_‘ CES) Indegendence. The pair ({X,Y] is independent {ffi
Elg)]y] = Elg®)] a.s. for all Borel‘ functions (g such that

~ ‘

Elg (0] is finite, 18331 . K .

B[IN(X)I;!] - E[IN(X')] a.s. for ail Borel sets N on the codomain of X.

. L«

n




- I
.

Py

*Note that { not’sufficient *&t : E[g(X)lY] = E[g(X))- a.s. for oney,

specific Borel function g. It is relatively easy to establish counter-
,exmnp].es (see Problem C-5).

Use of linearity, monotone convergence, and appréximanion of Borel
functions by step .functions (simple functions) yields an &xtension of CEl).
CE6) e(Y) = z[g(x)ly] 8.8, LEf r.[h(Y)g(X)] = z[h(&)e(y)] for all orel

functions h such that the expectations exist.

The next three properties exhibit distingtive features of conditional

expectation which are the basis of mch, of their utility. Proofs rest on

¢

pre¢viously established properties of mathematical exptctation, especially

2 . . . . .
part a) of E6).9He employ these properties repeatedly id subsequent

’
' .

developments. =~ N

»

CB7) If x = h(Y), ‘then B[g(X)IY] = g(X) a.s.

-

CES) E[h(Y)g(X)IY] - h(y)z[g(xm] a.s. o+
CE9) If yom h(W), then E(E[e(0)]¥]]f) = E(E[g(X)IW]IY] = Elg(x)]¥] a.s.

It occurs frequently that Y is a random vector whosescootrdinates form a
- - K_’

subset of the coordinates of W. 'I.hus we may consider W = (Y,Z), which

P

-, implies .Y is-a Borel funttion of W, so that o

cE9a) E(Elg(x)vl[¥,2) = E(Ele(0)]v,2]]¥) = Elg®)|¥] a.s.

If the function h in CE9) has a Borel inverse, then W = h-l(Y), 80

.

that the roles of* Y and W are interchangeable. Thus, we may assert

“

< Cl’.9b) € Y -\h(w), where h. is Borel with a Borel inverse,

. then E[ggx)lY] - E[g(X)(IW] a.s. :
We note two special cases of - CE9b). If thé®Coordinates of Y are obtained

tﬁ 8 permutation of the coordipates of W, then Y = h(w), where h 1is’

one-one, onto, and continuous, hence Borel with Borel inyerse Thus, * .

-

conditioning by a random vector does vot depend upon the particular ordering

of the coordinates. 1If we have a pair of random vectors {X,Y} which do

%, \; | -
‘ERIC - : 70
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no't share any coordinates, then condjtioning by the pair is understood as

g conditioni,ng by th endom vezI:tor (X,Y) whose cdordinates consist of

¢

the combined set ‘0f coordinates of the two random vectors (in any order).
o 4

In g similar manner, we can consider two rindom vectors which may have

.

some coordinates in commom. Conditioning by such a pair is understood as
. e . . . o
conditioning by a random vector whose coordinates consist of the combined

set of distinct coordinates. For example, .suppose X = (X X 14 ) and *

Y= (x , 3,X ). Then conditioning by X,Y is condxtioning by W =,

(xl‘,)gz,xyx ). It is apparent how these ideas extend to larger combinations
of vectors. . -, * . M

The next result is .80 plausible that it is frequently taken to be self

2

: . L N
evident. Although it is easily estdblished in certair simple cases, it is

somewhat difficult to establish in the general case, s noted in Sec C7.

<
It is extremely 'useful in ‘the Borel functior form, as follows.

CE10) Suppose € ipa Borel function such that E[g(X v)] is finite for _

- .

L4

call v in the range of " and Elg®,v)]  is finite. Thén 7

.

. E[s(X,Y).Y = y] = z[g(x,u)‘fw =u] a.s. [pY].

’ .- In the in&ependent case, CEl0) takes a useful- fbr'xn.

L

CEll) 1f the pair Y} in CEID) is -independent'., then

[ o* Bl .0t = - u] 4  Blg(x, Wl s, .

Almng the_ ttfequalities for expectations which can be extended to

co:nditl.onal expectations, the foldowing are useful in many applications.

.' CE12) Triangle inequalicy, [E[g(X)|¥]] < z[lg(X)l Y] a.s.

s

.

CE13) Jenden's inequality. If g is-a“ponvex function on ad interval L

;which l;:ontains the range of real random variable ‘X, the

I
. g(z(x[x]><z[g(x)|y] ‘a¥s. .4 .

v »

st e S . L u o S 2

‘&lttblistmént of inequalitiés for conditional expecfation (as for«expec.tation)
hd ‘\ K

1 e




o

> ‘
depends upon setti.ng up the appropriate .m'equalj.;:ies .for random variables,
then utilizing monotonicity CES)v. The inequaii'ties on the random variables
are ofcen\expressions of classical inequélities‘ in ordinary ana1~ysis. As
in tile case of expectations, monotone convergence plays a key role {n

establishing analogs of Fatou's lemma, dominated convergence, and countable
- k) .

s - »
additivity,
N
/ o ) .
.
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. %5, Conditional distribitions, ¢ »

. The introductory treatment of the special case; of conditional expecta-
tion in Sec C2 utilifes tl.le notién ot conditional distribution. In Sec c3,
however, we disregard t‘his notion 1n developing the generai concept of condi-~
tional expectation, given a random vector. In the present section, we sflow

< that conditional probability and conditional distributions can be treated
I )
as special cases of conditional expectation.

.
-

By properties 'CEIb) and Ela),

E(I,(DE[1 (x)|¥]) = J‘Mz[:N(x)]Y = u) dF (u) .
- = B[ @Ol Y € WP(Y € ) = P(X € N|Y € wR(Y € W),
This ‘leads‘ naturally to the - L, ‘ ———
s DEFINITION. P(X € NlY - u‘) = E[?N(x [YT49) as. L
1f X 'is rea'l-valued and N, = (-, t], then we set N

P
x,Y(tlu) =P(X < tltg=u) ~ “E[1, (X)IY =u] a.s,

. For each fixed t, this defines a Borel function of u with ptoperties

°

‘(hich ‘auggest that for each fixed u in the range of Y the® function

Fx’Y(-l‘f) should be a distribution func,tj.on. One property of i.nter:esl:;’*i
is the following. P » . N\

2 \ - .

P(X<t,YE H) = z[:N ()1, (Y)] = E[IH(Y)E[IN x)]Y)) .

. v

. . f}fFXIY(tlu) dF (u)
», from which {t follows as a special case thalt ) - . ey
N Fy (t) -‘z[zhh ®l¥]) eT Fy|y(clu) dfy(u).
~ .

This last equality is often known as the law of total pr oha\)llity, since

‘ ! i; lppears as a generalization of a r.ule knqwn by that name, .
. r(A) = {;P(Alni)r(ni),, where Ac:. ?Bi:.. . .
\_; : 2 ! !

* The matetul in this section is ot needéd in the subsequem: ‘sedtions
N

m’h may be omitted without loss of continuity.

MC i ’ ' g .. 7’3 . .
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. There are sqme technical difficulties in dealing with - xjp( o) as
a distribution fungtion. These arise because for -each Kreal t there
18 an exceptional set of u ofVP measure zero. That is x“(tlu)

=P(X < tIY = yu) a.s. [PY] . Since there is an pncountable infinity of

13

real numbers t, certain problems *can arise with which we aie not equipped

to deal. 1In the case of joint density fynctions.or of jointiy discrete -
Lo h

A\ random variables, the mtivatir'xg treantmeqtz.of Sec Cz 1ndicfates 't\hg:;rbplem
may be solved. For a realrandom yar;able_ }E, a distri:b,utio'n. fu;ction ’
is determined by its values on the rationals, which involves only a
countable infinity of values. Thus, it i{s known that for real random' °

variable X and any random vector Y there is a regular conditional .

distribution function, given Y, with the properties

1) FXIY('!U) s a di\tribution function for a.e. u [PY] ,

»
*2) For each real t, (tlu) = P(X < tIY = u) for a.e, u [PY] ,‘

. Y
. 3) Elg)]Y =4 =f g(t) dI-‘le(tlu) for a.e. u [PY]
In some cases, for a.e. fixed u, le( |u) 19 differentiable and

the function f ’Y( Iu) defined by
h —_—

) . X]Y(tlu) = a-g le(tl @

” is a conditional density . function for :g, given :{ -’u. This agrees
with the conditional dénsity functiqn introduced in Sec C2.

" As an 1mportant example of the use of these ideas, consider the

£,

prob!em of deternﬂ.ning the distribut?on for the sum Z = X + Y of two .

.

" random variables XY, I we Iet Q = {(tyu): t +u<v) (see Fig, C5-1),

¢

thcn . , ’ ‘

[ - e e

Fp(v) = P{X +¥ <) = Plx,Y) € Q] = 3[1 &, 0] = z[z[x (x M1l

.

. - 3[1 (x,u)lv = u] dI-‘Y(u) - 'by CE10) .

1{fc I I R

_
FalTo: Poiod b EHG . . .. P
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Q for Z=X+7Y,
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. For each fixed v, (t,u) € QuAff t+ugv iff t<v -u iff I
. . S
N o > .
P £ €N . He’nce,‘ IQ(X,u)'- Iy (), so that .
. Veu -
E[T (K0 |Y =u] = By (veulu) : .
Qs u x|y v-uju), . i .
If F 1s a regular conditional distribution, then LS e
.XIY N v oM
Fz(v) -J‘ F IY(V - uju) dI-‘Y(u). 3
I% (X,Y) is an independent péir, then F x|y v -uju) = I-‘x(v - u) a,s. [PY]:
so that, . Vo 9
P(v)ﬁ'?(v-u) dFy (u). . °
This last combination is known as the convolution of F with , FY . T
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. C6-1

.
.

6. Conditional distributions and Bayes' theorem

We suppose a regular conditional distribution has been determined.

‘It frequently is necessary to reverse the conditioning, as in Bayes theorem
for events, 1In the following we treat X, Y as realsvalued, Extensions

to the vector-valued cages are immediate. °
.

a) If both X,Y. are discrete, there is no problem. If we let
» - 5
pXIY(ti‘uj) =P(X = tilY = uj), and similarly for the other cases, then

Pyly(tylup) Pytuy)

Py|xyfe,) = , '
LB Lt Py (t,) : ’ ., .
b) If there is a joint dengity function, then by definition -~
£yl £, @)
Moy o XIY Y :
lex(ult) E(D) for f.(t) >0,
£l .
c) Suppose X 1ig discrete and Y 1is absolutely continuous.
: Fle(ulti) =P SufX=rt) ~
= X
BLINu(Y)I{t;_]( )]/B[I{ti](x)]
B(g, (DET, 0l¥]} " C °
a:"én (zgm . wa
* i ( P (Ei')

- Kl
. v

J‘: P(X = tilY = v)fY(v) dv

fP(X = tilY = v)fY(v) dv Co

Differentiation by u gives -

L
P(X =t |Y = u)f,(u) .
£ (u|t )v' 1 Y \
Y|x' 1 T MY =t)) .
Simple algebraic manipulation gives® ' 2
fy] @]t )PX = ¢, )/
yixitg Y i
PR =t ]Y=u) = W for £,(u) >0,
. o
4 1)
b -
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7. Proofs of the properties of conditional expectation

In this section, we show that if e(-) is a Borel function which
satisfies the defining relatfion A) E[IM(Y)e(Y)] = E[IM(Y)g(X)] for
any Borel set M on the co;iomain <;f ‘;, then properties ‘CE'Z) througflm
CE13) hold for e(Y) = E[g(X)]Y]. Note that when we write e(Y) = E{g (O],

We are asserting that e(-) satisfies the defining relation (A) and must

therefore be unique a.s. [PY].

In the proofs, we employ the propefties El) through. E6) of
mat‘hematical expectation. Actually, we need only th;. pimpler part .ﬂ)
of property E6). Note that the proofs do not involve the complexities
of conditional distributions. The reader who‘wishes to go through t};e N
proofs c.arefullx may wish to use the summary of prxoperties of mathematical '
expectatio.n in Appendix I.‘ A tally of r.he' use of these properties might

becinstructive. To simplify writing, we drop the "als.' in many places. —
] 4
At sSeveral places, the arguments require an acquaintance with

measure-~theoretic ideas beyond thagt assumed of most rea@ers. In these

instances, we sketch the ideas of the proofs, in order to indicate to

the interested reader what to look for in ,seeking a more complete treat-

ment. -The goal is insight into the mathematical structure as_an aid to

interpretatipn and application. . . )

M ’

CE2) Linearity. ' °
1

Let e, (2) = E[gx)]2], e,(z) = E[h()]z], . e(z) = Elag(X) + bh(V)|z].

For any forel set M in the codomain of 2, we have, ’ ——
E(IM(Z)[ng(X!)i-O- bh()] ) = E[IM(Z)e‘(z;] v by CE1).
-~ Also - )
E(1),(2) [ag(X) + bb(1)] ) ~ aE[1(2)8(0)] + bE[1y(2)h(V)] by E2)

= aE[1,(2)e;(2)] + bE[1 (2)e,(2)] by CE1)

-'E(IM(Z)[aeI(Z) +be,(2)]) . by E2). .

. -
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&

By E6), we have e(2) = ael(Z) f‘ﬁez(z) 8.8.,, 1]

It CB3). ‘Positivity; momotonicity.

g(X) >0 a.s. dimplies E[I (Y)g(X)] >0 \ " .by E3)
implies Elx (Y)e(Y)] >0 by CEL),
Suppose e(¥) < 0 for @ € A. Then there is a Borel set Mo with
= Y (Mo) Thus, Mo(Y)e(!{) = IAe(Y) <G0. ‘By E3), we have
--,ggz%(g)e(Y)] <o, with equality {ff I e(‘;) =0 ajs.. But this requires
- P(A) = 0, which {4 €qulvalent to the condition e(Y) >0 a.s,
Monotonicity follows from positivity and linearity.- (]

E]

CE4) Monotone convergence .

‘Consider the nondecregsing case X tx a.s. Put e (Y) = E[xnlY] and

. e(¥Y) = E[x|Y]. Then by CE3), e, Se (V) <e® aws., all n>1,
The almost-sure rezbcmon means that we' can neg‘lect-an event (s'et Jf w)
of zero probability and f\age the indicated relationship for all other w.
By ordinary rules of limits, for any w other than the exceptional set,
we have e*(Y) = lim e (Y) < e(Y), which means the indjualities hold a.s.
For any Borel set M, IM(Y)xn t IM(Y)x a,s., and IM(Y)en(Y) t' IM(Y)e*(Y) a.s.
so ‘that by monotone convergence for expectation, )

Ty ElL e @] = £t WO ]t E[L,(Dx] = El1 (y)e(y)l and

BlL,(Ne (0] t E[1,(Ye*(D)].  Hence, !
E[IM(Y)e*(Y)] = g[IM(Y)e(Y)] for a;. Borel sets M on the codomain of

fhf»y This ensures e*(Y) = efY) a.s., by E6). 0

CP.S) Independence, ) {X,Y} 1is independent - iff b) Ef N(X)IY] =

:' E[IN(X)] as. for all Borel N 1ff c) E[g)]Y] = E[g(X)] a.s. »

for all Borel functfons g,
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a) ®¢c) (g(X), IH(Y)] is independent; hence ,

[z[IH(Y)s(x)] = e[, (" ]Elz(x)] \ by B5)
8 ° -

= E(E[s0)]1,(1)) (E[g(X)] a ¢onstant) by E2)

z[x,}g)sm] - Eln, (e )] \ . by CED).

Since the constant E[g(X)] 1is a Borel function of Y, we cénclude'by E6)

that e(Y) = E[g(x)] .a.s. ) 4

c) = bJ, since V¥ 1is a special case o%\) 7 .

b) ® a) PFor any Borel sets M, N on the codomains of X, Y, respectively, Q‘el
. v 2

»

E[1, ()1 (1)] = z(IN(‘{)BIIH(x)]] ) ol by hyp. and CE)
- ~ E{1,(O]E[1 (D] . by E2) .
which ensures independence of {X,Y} by ES). "[] . N
. CE6) Extensi}lgﬁ CEl) to general Borgl functions.. 7 D
First we suppose g > 0. By positivity CE3), we have e(Y) >0 a.s. @ ‘
s ’

1) By CEl), the proposition is true for h = IM'

2) By linearity CEZ), the proposition is true for 'any simple function |
. - L4

- f a

h = >: t I \ - > . .
e M . . B .
3) For h >0, thereis a sequence of simple\functions h, This
implies h (Y)g(x) H h(Y)g(X) and h (Y)e(Y) t h(Y) s. Hence,

by mnotone convergence E4), for expectations,
Elh (18] t Efh(¥)g(X)] and zf'nn(Y)e(Y)]‘ t Elh(De(n)],

Since for each n, El[hn(Y)g(x)] E[hn(Y)e(Y)] , the limits must be

the same.
"4) For general Borel h, we have h = h, -h_, vhere both h, and h_
are nonnegative Borel functions. By linearity and 3§, we have
Elh(0g 0] = Elh, (Dg0)) -/gfh_(Yis(X)] N

- - z[zh+(Y?)e(Y)] - z[h_(Y)e(g)}' = E[h(¥)e(¥)],

v
L]
.

fRc 80 s

Aruitoxt provided by Eic:
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5) For general Borel g, .%e have g = g;-'- g_, where both 8, and 8_

are nonnegative Borel functions By linearity and 4), we have
.
Elh(V)g0)] = z[h(v)s+(x)l - elh(v)g_0)]

= Elh(We ] - Elh(De_(D] = Elh(Dew)],
.where e+(Y) = 'E[g+(X)IY], e (Y) = E[g_(X)lY], and
e(Y) = e+(Y) - e:(Y) a.s., by 922). 1]

.
»

CE?7) If X =h(Y), thed E[g(X)|Y] = g(X) “a.s.

-

W gX) = glh(V)] ;hf(Y), with h* Borel. For any Borel\set M,
e[, (Mg )] = zfxu(;)h*(v)l = El,Mem] . by CE1),
But this ensures .
T hr(Y) - e¥) a3 : ' by B6). [

ce8) E[h(Y)gO{Y] = h(DE[g) Y] a.s.
¢ For any Borel set M, IM(Y)h(Y) is a Borel function of Y. Set

“e) = Elg)[Y] and ex(v) = Elh (V)0 |Y].

Moy E[1, (MR )] <ElL, (Dh(De)] by CE6)
and  E[L, (Dh(g 0] = EIIM(Y)e\*m’f by CEL).
Hence, h(Y)e(Y) = e*(Y) ~ ‘by EG). §i

CE9) I'f. Y = h(W), then E{E[g(X)'Y]IW) = E(E[et®) W] |Y) = Elg(X)|¥] &.s.

Set e(y) & z[g(x)m = e[h(w)] = h*(W) and p*(W) = Elg(X)|H].

Then, E{E[g(X)|Y]|W) = E[h*(W) W] = h*(w) = e( by CE7),

For any Borel set M on the codomain of Y, let\ N = h'x(M). By Thegrem
Al-l, I(Y) =1I.(W). Repeated use of CEl) gives )

“E[1, (Vg X)] = E[IM(Y)e(Y)]

) ) = Eln (We] = Elry(ex)] ~ El1, (Dexw)]
Va E(1,(DR[e*) Y] ),
Hence e(Y) = Ele*(W)|Y] a.s. by E6), 0

- 81 !
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‘~

Proof of CE10) rhqulres some results of measure theory be)‘ond the *

scope of the present work We establish the" proposition Sirst for the
special case that X, Y are real-valued, with joint density function f
" then we sketch the ideas of a ;\eral proeof ° .
CEL0) Elg(X,V)|Y = u] = E[g(X,u)\i: =u] [PYJ

*PROOF FOR SPECIAL CASE.A X,Y have Yoint density fxy \ “

Let fx1y be defined as in Sec C2.’ Put e(u,v) = Elg(x v)!Y = y] and | v tﬁ
e*(u) = E[g(X, Y)h' =u]. ﬁzen Bl (v)g(x, y)] «.z[xn(v)e*(v)] Y Borel .-

set M. This 1s eqoivalent to -~ . . .

ez

ﬁ‘ fj‘ IM(U)S(t,u)fxy(t,u) dedu = [ Iﬁ(u)&*(u)'du. ‘,:

The left-hand integral may be written N
.

f’ﬂ“(-u)[j' 8(t,u)E M:Iu) dt]f (w) du.F{ I (e, u)f A )

Sa

{

J‘I (u)e(u u)f (u) du E J‘ I (u)e*(u)f (g’) da or, equivale‘?tly,

Thus, . 7

- a

+

Elr (Ve(y, Y)] = Ef1, (Y)e*(Y)] Y Borar se; M.

, We \conclude e(Y Y) = e*(Y) a.s. &.\ ~ ] by Eb6)

IDEA OF A GENERAL PROOF — - ' x .
’ )

If th% thwrim can be establjished for g(t,u) = IQ(t,u)°, where Q,'is "
any Borel set on the codomain of x,Y), then a "standard\ argument"

: such as :xs‘egd in the proof of CE6) extends the theore’m to any Borel
sfunction g;,such that E'[g(x,Y)] is finite. ' .
We first consider Borel sets of the form Q =M XN, where M, N ‘ar:e‘b

rel sets in the codomains of X, Y, respectively Then IQ('t,u) =
)I (v , - ’
Let e(u, v') - E[g(x v) Ly = u] ~El1 (x)t (v)]¥ =y] =1 (v)E[I (x)lv = y)

and e*(ui - z[g(x niy = W) = Eh« 1 gD =],

Qr e(u u) o= e¥(u) a.s. [PY]'

Now e(Y,Y) -1, (v)z[:(/x)lvl and e*(Y) = I ME[1,®]Y] a.s. by cE8),

Hence, 7‘1) e*(Y
E lC

Aruiext provided by enc nau:
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. . N v . . . oL
. . - ) ) 3 . } . .
.i L4 - . e . .
. - . ' . Ci-¢
4g‘ - . * . " . . “ .
& boet i ’
::‘ By unearity, the equality holds .for :ny Borel set Q thi X Ni’ since
n :
. ‘'in‘this case I\ ZI1,1 Hence equality holds for the class
. o Q =] M N B

cot!sisting of all finite, disjoint ;unions of sets of the form
number of arguments may be used to show that equallty holds for -all Borel-

sets Q. We sketchaone proof. It is knowh- that the class 80' is a £feld
" and that the ,uzinimal sigma field whichscontains it is the c;.ass f of
Borel sets;. Let “B% be the cl;ss o~.€ sets for whfchg equality holds. Ef
> ¥ .
(Q 1< i) is a mnptone class of sets io ﬁ* ﬂthe sequence [I .<i
is aomonotbne sequence of Borel f\mctxons. U3 of monotone conve;:gence
. - (e . *

Elo) fdr expecEationarshobs that equality holds for IQ where Q, is _

" .

: the lim.t of the sequence Q .—"I'hus, 8* is a monotone class. By a*

. O - B . - -

*well known theorem, 8* must include B. This means that equality holds,
* - SO

for every Borel set Q. 0 ¢
- " 1}

L CE‘II)mIf;'{}%Y] is\ independent, E[g(X;Y)lY =y] = E[g(x,u)]. e.sr [PYI !
By CES), independence of (X%, Y} ensufes * e(u,v) = E[g E WY =u) =
/ E[s(X,V)] a.s. [PY], so e*(u) = e(u,u) = E[g(X w)  a.s. [PY]

> a®

R cmz) Triangle imequality. .
o

~

- oStnce g@) < [g®)], " we.have E[g(x)|¥] <EU @Y as. by ce3).

HBnce, IEIB(X)iY”K E[ls(x)HY] as. ) .

e 02.13) Jensen's ingl_xaliti. o=t <L T
o Convex f\mction B satisfies 8(t) > g(¥y) +A(y)(t - v)s, where As is’

. o
. & nondecreasing function. s Set e(¥Y) = E{X[Y]. Then &° N

~ . .8

X R 14 3) > gle] # A lem][x - e(Y)] "If 'we take conditional expectation,
E[g(X)IY] > E(gle(V)) +A[e(Y)] [x -e]ly) a.s.

-

by CE3)

L . -E(g[e(Y)”Y] + E(A[e(v)jxm - E(A[e(Y/],e(Y)lYI by cE2)

-

et , x (-‘,.’o\ - - . .

y

4Since -8(X) < ls(X)l we have -Efg(X)]Y) < E“g(X)”Y] a.s. by CE3), CE2),

- sle] +A[e<v)1e<v> “Aemle T v by can), ceg)

Q -sA(BIXIv]; a.s. 0 .
) V:. ’ “.' . ,l" ‘, 83~ el ‘».

~
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8. Problems

C-1 Prove pargs. ‘b), and c¢) of Theorem Ci-l.

« C~2 Su;xpos‘e X h&';e Joint c_iensiéy function f, Use Theorem Cl-2

v
. and propertx Ela) for lexpectation to show that
o

’ - 4

a) If P(YEM)>0 ten

PR Efs(XHY € = [ e g e el du £ 0F £ e aed au,
- 1;)_ 'If P €M) >0, cthen | T
N8 (E)EL(E) de /j'N £,(t) de Ny

G-3 Show Elg(®)tal = Elg(x)| an]p(Bla) + z[s(x)lu‘*)un [a).

E[é(i)'lx €N] =

.

¢~4 If X {is discrete .and Y is abSolutely/:ontinuous, then the joint
¥

distril':ution can be described by a hybrid mass-densit'y function 'f Xy’
’ .

%
y such that "P(X ="y, y e M) = fM -XY(ti’u) du.b De\?elop an expression .
for e(@) = B[g(X)]Y = u] in thid cage. . .° ;. :
v A ' ‘ 0 .
C-5, let X =0, +2I, +31, and Y=1_, +3I_ (canonical form),
’ oA T T T TR T T,

t with joint probabflity d(stribution such that nglB )(\/l(6 ” .

P(AB,) = {/z, and P(A3B )= 1/3s Show thac E{x|Y 5 1] = Rlx|y = 3)

i

@ 9 . N -

= a[x] but tha.x: (x Y} is not mdependenc. . -
o <. v
>_C-6 Sﬂow that for X real, the triangle 1nequality is a special case
"o,
o of Jensen 8 inequality. .. . .

..

-7 Suppose <+ {X,Y} {is-independent, and e%fh random variable is uniform

»
- W' N
-t

i . _ on [ 1, 1]. Let z = 8(X, Y) be giyen by. S ) .
L E l. X for X2+Y2_<_1 . e '
. . g= 7 ‘ , ’ -, :
N . c for Xz + Yz, > ). 3 ' - .
! . -
- . o« M ~ . N ~ . o
T ¢_ pecerntne Elz[x? + Y2 <] and Elz]x? + ¥2 > 1]. %Use these resulrs .
- . 4
T, to determine Efz]. . ’ . ) .
L . A )
"." 0
S, 'C-8 X,Y have Joint densuy function f (t‘,u) - 8— tu for F<egu<g2 .
R (and rzerq elsewhere). Determine ¢ e G » . s
" O R+ x ] 6) mlxvlx=g] o) Elxix< Tea ), -
- “ . ' . L[4 » - " - v
\)‘ ° . ’ ‘o LN . ) M K

CERIC-T gg
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I3

\

< 0y b . . . .

- i) N £s a nonxiegati've, integer-valued randomﬁlariable with ‘
E[Nz] fil‘ (number of” customers) < -
144y [N, xk. 1< k) is an independent class. ’ N
. . 4 ' ’ .
/ . . g . f%l' W=0 H : f
! . D= n o, . [ (composite demand). *
v - Z-X.kﬁ_Y for N=n>0
» > k=l n . ® ©
‘. If A Tu (w: N@) = n}, ,then D= LI, Y = (MY .
q [N -~ [ » n'o An n ‘h.O (n] e . :
. ‘ -3
-, a)” Show z[nln-n] ~ mz[x] a!a Var[n]N -n] = nVar[x] C e
. v « - - R -
, Kore. Efp|N n] E[I( )(N)n]/p(N)‘, etee. T .
L . ¢ , . '
.: . hd a N e L
[Mc S © .85 e it
v ' P * ‘80 ., YT . b € o

)

B

EReN

. . < 2 w2

, / c8-2
C-9 The pair {X,Y}'i® independent, with £,(t) = £,(t) = 1/2 for

T -1<t<0, = e-t for 0<t (and.zero elgewhere).' Determine

N

< a) ElX¥+x?x=t] b)) E[XY|X =t .

C-10 Use the fact that g(X,Y) = g*(X,Y,2), zrith g* . Borel 1f g is,

to establish the following' extension bf CE1Q).

*

. 'ElgX,0|Y =u, 2= v] =ElsXw]Y =y, 2= as. [p,],
C-Il Use CE9a) and the result of problem C-10 to show that if FY[Z is
a pegular condit,ianal distribution function, then

Elg(x, 0}z = v] =I Elg(X,u)|Y = u, Z =v] dF (ulv) a.s. [P ]

Y{z

‘variable with s[x] figite. ‘et

e(\{)z E[le] and y(Y) = Var[XlY] = E([x': e(Y)] 2|y},  Show that

C-12 Suppose X is a real random

a) v{v) = elx4y - zzgxlvl I T
. b) varle()] =ele?(m] - E?[x}.= EEX(X - E[x}lv])
£) var[x]

., &) . s E[V(Y)] + Var[e(Y)] = E(Vaf[xl Y]} + Var(E[X]Y]]

C-13 The follov}ing, is a model for the demand of a random number of

Yeustomers”, who byy independently but with the same individual .

id ~ N - . o ! ~

demand probabi}iti'es. Suppose

. ,

i) (X.k., 1< k) is 1id ‘(independent identically .distributed),
¢ .

kVith E{X.k] finite (individual demands)

B . e . . - - . .

.




»
- c) Use the ;esult: o problem c- 12 to show

e D) Shov} Eln] -z[u?x] ", , . :
: ®

. var[p] = z[N]Var[x] +v3r[n]a [x]. 3 -
d). Supposen N is Po{sson Q) and X- is uniform on [g\ \

+

Calculate E[D] and var[D}: . ¢

C-14 The characteristic function e for 5 real ran&om variable X 1is

- .
q&(u) = B[emx], defined for all real u (¢ i\s the complex imaginary .

»\

unit, 12 = -1). 7The generating function q‘ for a nonnegatiﬁa,

fﬁtéger-valued random variable N is gN(s)- = E[s"] = 2’3 PN = k),
¢ . k=0 -
defined at least for fs'l <1, although possibly for a much larger

domain. - It is readily shown that addition of a finite number of .
- - - 7 .
‘members of an independent’ glass of ‘random ,varieﬁ:les/orresponds to, L
P £

mltip?ymg their characteriktic functions (;.n: their generat'ing

t‘unctions, if they exist) ‘Consider the composite random variable

f . >

- D in problem‘c 13.

a‘)‘ Show that o (u) = g, [o, ()], where g, 18 the generating
D N N

r

%function for N and 'gpx ‘is ge common characteristic f\mction

for the &'k' [Suggestion: ‘Cpn’dition by N, gthen take ex'pec-ﬁ &

- I} . - N - -
tatign. E[e*P|N =n] =z[emYﬂI 1. ‘ ’:V -
!4 'b) Show that if the xk are nqnnegative, in?éger-\talued with common ' T \;h.
genetating function gx, then. g (s) = 3N['8X(s)] ' oL ’

1)]_;~‘
c e sp that @D(u) - @Kp[l[cx.(u) - 1] }. i ' . .
’[P(N-k)-e)‘ L~ - R ,’:

c) Suppose ° N 1is Poissonm 0., Shou:hqt 8N(3)~' exp[A(s




a ¢ . < . [ . i
% A} . . <7, . ]
R . ‘. 4 &
Rl ~ : i Lo . 7
D - N N o A ; ¢ .
Y RN I = ‘¢ - c8-4

.

C415 The correlation ratid of X withr eszect to Y (see Rényi’ [1970]

R P 27 "££) is x[xly] - a[e(Y)] /olx] (see Problem C-12). Show
N T ¢
- *" that the following properties hol‘d. ‘
. ) ,
‘.;: - _a). 0<K[X|Y]<1. . s . « 7
T b) If (X¥) s independent,, then k[X|¥] = 0, S
) . . o .
S . " e)* KIX|¥} ~ 1 1ff there is a Borel function g with-X = g(Y). Lt
< a k¥xly] - stp p2[)f, g(Y)], where g ranges Sver the'get of Borel -
. o g, ' ‘s . p .
= * * functions such® that, B[gz(Y)] is fimite and p jis the 'correlation'
f coefficient for X and g(Y) ‘ . -
,.xg.z» T e - 3 o 1
. e) X [le] - pz[X g(Y-)] iff there exist a,-b (& % 0) such PR v 1
5 % ) i that ,g(Y) = gefY) + b a s T~
. b ..1 l ‘\ ~ -~
S Spggestion For d), e), use CBlb) and Schwarz ineq'uality Work -
2 i, ~9
i : with standardized random variables obtained by suptracting the mean
and dividing by the stmdard deviatipn. ‘ N »
i"' c-16 Suppos& f and’ g are Borel functions such that B[f(x)] mB[.g(Y)] =0,
B » "
FO v.r[f(x)] = var[g(y)] = 1, and x[f(x)g(u)] = sup B[e;(x)v(v)] ="\.. .
. " y o ¢ . s N
* : Show that ’ ; » . ) .o
. . i \ . .- ’ L
# a) ele@ |y =g .as. -and Blg(IX] = A{®)~ a.s.” 7,
. .
b) x(z[f(X)IY]IX] -A f(x) a,5. and EElg(m[xl]t)y = >< g(Y) a.s.
F¢) 'B[f(X)Ig(Y)] = Ag(‘f) a.s. ~and* Elg(M]£X)] = AE(X) a.s.
I =
Suggestign Use CEIb)’ and” Schvarz inequauty. v ¢
P - N B . ) ) vz
" % b . * . -~ ~ s
B . - . ( . % B \ ) -
: . N N L . s, .
o . ¢ . . - b
N " . : - - . . . - o3
’ e ' . - . ‘ i .
o - 4 e~ 3 :
R "Q . e, -4, s ., ; ~p
‘ P ‘ ',/ o 3 “ Y ).*—/ s
.o . ‘ 87" . ’
S h . - ’ - v
; . - ' s * TN N‘
- n . . v . R - o
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D. CONDITIONAL INDEPENDENCE, GIVEN A RANDOM VECTOR

1. The (;gneopt and Some Basic Properties
2. Some‘i‘ilomem: of Bayos.iu% Analysis
3. A One-Stage Bayesian De::isional Model
4, .A Dynsmic-Programming Example
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- __ we should then be fnclMned to say the pair

Qe

’

D! Conditional independence, given a random vector

The co'ncept of conditional ‘independence of randonf®vectors which we

. t »
consider in the following sections has been utilized widely in advanced
h , .

In such treatments, the concept is usually

.

expressed in terms of conditional ex'pectation, given a sigma field of ?vents.
t

treatments of Markov processes.,

Our immediate goal is to reformulate the essential features of such treat-
. X \
ments in terms of the more readily accéssible conditidnal expectation, given

.

a random vector, developed in the precedlng sections. We then illustrate

"

“ “the usefv,ylness of the conditional 1ndependence concept by showing how it

- 1.

*

dm;b, given “z.

~

given c,

“this seron‘tonditiQns a simple fonm.lation which points ‘to a general

appears naturally in certain problems in decision theory. .In Sec El and

.

following, we apply the concept to Markov processes. -

— s

The concept arnd some basic propositions
D

S -

Althou&h historically there seems to be no connec'gion, it may be instruc-

. .

tive to consider how the concept of conditional independence, given a random
;. . ) s - .
vector, may be seen 8 an extension of the simpler concept sf conditional

independence, given an event. Suppose (A,Bl’ is conditionally independent,
~ g
!

with - A = X1 (1) and B = Y''(N). Then the prodict sule
) -

P(Aslg) = P(A|C)P(B|C) may be expressed n[zM(an(v)]c] = E[IN(X)[C]E[IN(Y)ICj.

If this rule hqlds for all Borel sets M, N on the codpma'ins of X, ¥,

rgectively, we should be inclined to say (X,Y} is conditionally independent,

given C. . Suppose 2 1is a gimple rahdom variable, with C = {Z = z

k)'
Then, in these térms, we would say {X,Y} 1is conditionally inde{)endent,

,

- .
given. Z = z If the product rule hold_\for all Borel sets M, N }.n

K
the codomains of X, Y, respectively, and for all Lk

P

(X, Y} is condfsionally*!ndepen- -

in thé range of 2z, \

.

With the aid of the result of exanq;,le C3-a, we may give

-~
. P

o ? . -




“Tpi-2.

”thatI l

", for the notion that

CE

4

*definition. We have“

Y

Blr, @I mlz) =z L Bln, 1 mlz = 21,
with similar expressions for E[I (X)Iﬁ and~ E[I (Y)lz]

2 “Ick’,

Cx

e

= 0" fot j;‘-k and, 1. weobtaln

Sy,

E[IM(X)IZ],E[IN(Y?IZ] -'E Elr, |z = zl;]EIIN(Y)[; = zk-],Ick

-
- B ~

We thus have
1) elr, 01,2} = ez, u®)2]elr, (y)[z] L£f .
11) zfxu(m Wiz =z ] ==C.[I u®lz =2 ]z[: gDIZ =2 o

’

We have seen above that the set of condltlons ii) is a reasonable basls

~

" random vector Z.

-

sion l) may be the myre useful way to characterize the conilon

? ae

evidence is provided byethe followmg aet of equivelent condltlons

. o
[}
L)
~ -

?

Sec D5 for proofs)

4
. For any rafdom vectors Z,
. . -

N 'y .
~ C1I) zjrn(xzxt'l(y)lz] - Efxg(x)lz]zfrx(y)lz.] a.s.
i[IMIX) I.Z,Y] = E[IM(X)lﬂ ‘d.s. ¥ Borel gets M-

¢@lz.4

z[:n(x)lq(z)lﬂ

‘er2)

€I3) z[:n(x)x

.:E{B[}H(X)IQ(Z)IZ“Y} a.8. Y Borel

.
..... . <

B . ﬁa}'
ElgXh(¥)]z] = e[g®)|z]E[h(Y)|2Z] a.s.

the following conditiens a't;e ;qulvalentg .’ i

= E[IH(X.)IQ'(Z)IZ] a.s. ‘,V Borel sets 1:1, Q

Y Borel functions g, h-

Using the .facts

for ,all. k.
" "

-

X,Y} 1is condltlonall inde: endent ven st le
(X,Y) y P si mp’

This development suggests the simpler equlv lent expres =

.

.

>,

Y Borel sets sM',. N

. .

-
-sets M, Q

.
TR -

C16) l'E[B(X)!Z,Y] = E[g(X)lZ] a.s. Y Borel functions :g &:’-

.

Jaan Elg(x,2)|z,%] = Elg(x,2)|z] n‘.s. Y quel functions

) c18) z[s(x z)|v] = E{E[g(x’Z)IZHY} a.s.

A .

r -

Q
RIC
- . oI

&

y

. Y Borel functions
Y

g.
8- .

.-
Y

Purther ".,

<,ge .
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*Several facts should be noted. For one thing, properties CIS) through

»

- CIS) are generalizations of CIl) thrqugh Cl4), respectively, in that the .
indicator functions are replaced by real-valued Borel functionms, subject

. ,

' only to thé restrr.ction that the resultant random variables, .g(X),.h(Y),

. and g(x,‘i) should have -finite 'éxpectatiorLs. It is desirable’ to have
r

the properties Cil) through CL4) included in the list of equivalgnces to

~
show that it is sufficient to establisfr one of these simpler conditions

in order to be able to assert the apparently more general counterparts

«

CIS) through,CIS) ’;:espey{;ively. . A

..

N Expre,ssions CIZ) and CI6) show that £f X is conditioned by‘ Z}
* -
further conditioning b;' Y has no appgecialle effect. We thus have an

analogy to the idéa that the event pail (A,B) " is conditionally imdependent,

‘ 3

given event C, if once A is cdnditioned by C, then further condition-

. £ h L4
“ing by. B has no effect on the elihood of the oocurrence of A. Express-
fons cI3) and"CIZ) generalize this to say that if '(X Z) 1is conditioned - )
by ,'Z, further conditioning by Y has no appraciaﬂe effect. It is clear
1,

that she role of X and ¥, could be in:garchanged in these statemenfls.

-

- .,

Condftions CI&) and CI8) have fo copnterpart in the theory of conditional

independeﬁce ‘of events. They do, howevel’,vplay an important role in the

~theory of the new concept; and they inclnéde as a specialﬂ:as‘e the
f v L3 ’

‘éhapman-!colmogoro\; equationr which plays a prominent role in the theory

, of Harkov'processes (cf Sec E&4). > ..
'y N .
These considerations indicate that we have ident{fied a potentially -

useful concept 'which i.; properly namtd\,conditional 'independence. We can h S
use any of the eight equivalent propositions as the basis for defi:xition.

AB in the case of independe.nce of eventd and of random variables, we use

’t‘:he ?rodi:ct rule CIl). '




Dl-dy :

. . ‘

DEFINITION. The pair of random vectors (x Y} is conditionallz

)‘
independent, given 2, iff the produét r\ule CI1) holds.

in arbitrary class of random vectors is COnditionall'y' independeht, gfven
’ Al ’
Z, .iff an analogous product rulq l::olds for eacl’ finite subclass of two

ar more members of the class.

If the pair ({X,Y} is conditi_ona;lly independent, given Z, we should

expect that any Borel functions of these twoevariables should be conditionally

.
.

independent. ~This is the case. *
. L]

C19) If (X,Y} is condino:i#}y independent, given 2, U = h(X), and °

.

’ V = k(Y), with h, k Borel, then (U,V} is conditionally inde-
° L] > - [N
pendent, given 2. ’ LY 3« -

For convenienge of referer';’ce, we.list several additional properties of

conditional independence ytilized' in various subsequent developments.

1 ’

CIIO) If the pais (x Y] is conditionally independent, given 2, then
) E[g®h)] = E(E[s(x)lZ]E{h(Y)IZ]] = Eleg@)e, @), and
>
' b) E[s(X)IY € Nlp(y € N) - s(s[z (Y)lzJE[s(x).zll

independent, given ,8. LV ) . . - N '
A -

Ci12) 1f ({X,Y} Ls‘conditionally inde}fendent, given z then

CElgX,v|Y=u, 2 = v] Felg®ullz « vl als. [p,) - .,
Proofs of these propositions are Q?ovided in Sec DS. .
% -~ . . . . P L
A . ) A !
. a 'n . - .




» 4 - . s s
. L‘\
. . p2-1
Al » ‘ 3
2. Some elements of Bayesian analysis -

C»lassi;:,al stat\k{tics postulates a population distribution to be deter-

mined by sampling,o some other appropriate form of efperimentation. Typ--

ically, the distribution is supposed to belong to a specified clags (e.8.,

normal, exponential, binomial, Poisson, etc.) which is characterized by

certain parameéers. A finite set of parameters can be viewed 88(98 set of
coordinates for a‘single vector-valued pyer. The value © of the

. . * .
parameter is asgsumed fixed, but* is unknowh. Hence, there is uncertainty &

Y

- about ite value. M -

> .
JAn alternative formulation results $rom modeling the unceftaihty in

- 3 4

a probabilistic manner. The uncertafn valu®: of the parameter ‘is viewed ag®

the value of a random vector; 1.;'.,: = H(d). The value H(w) of th‘e )

garameter random vector H reflects the state of nature. if x is a

random variable ref§enting the population, then the distribution for X
ﬂ -

is determined by the value © = H(w) of the parameter, random vectar. To -

carry out statistical 9&1}'318, we must clfaracterize appropriately the—-.
- A M .
Joint.digtribution for the pair {X,H]. This is usually done by assuming

- L
a conditional distribution for X, glven H, gepresented by conditional .,

. v

digtribution function F IH (or an appropriate alt‘ernative); and by -

utilizing any information about the probable values of the parameter to

determine & prior distributi&or H re‘presented by.a distribution‘

function FH (or some appropriate alternativé). v

. . . <
A cen®ril notion of classical statistics is a random gample of size ‘'n.

P Sope sampling act, or survey, or experiment is done repeatedly, in - .
o i . . i

such a way that the outcome of one samplihg act does riot affect woperation- -

. ally the outcome of any ogher:.o This is modeled as ‘a class (xl,xz, ...,"X;)
. [ y.
of independent’ random variables, each having the population disgiibution.
” » - ’Q v, -

RC . 54 o

.
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» éach s(amplir;g act corresponds to the observgtion of one of the ra(ndom

i) \_rar\iables in the sample. A random sample %s a finite case of an ar:-bitrary
iid (independent, identically di;tribuFed) class (xi EE SN B - e

‘ Under the new point of view, the appropriate assumption seems jo
. A .

Lthat the class (Xiz 1 € J}) is conditionally independent, given

. <

all random variables X

’

. having the same conditional distributio\,

H’, Ux}der.a given state of nature, the r_esu];t »f taking an_observar.ion of

i
combination of _the other random \fa‘riables. We find it convenient to adopt

X,? does not affect and is not gffected by the results of observing any
> Y

.

X .

.

the following teminology: . s L. . .

DEFINITION. A class (X,: L € J} “is ciid, given H, iff the class is

i:

conditionally independent, and each random vat’iab.le X, has the same

1
conditional distribution, given H. A random sm’ le*(of size n), given H,

is a finite class (Xiz 1< i< n} which is ciid, given. H, ' '

L] v

Let us see what this means for the conditional distribution fut'lctions\.

To simplify writing, put W = (XI,X y +eey X ) and let I =1, where .
. ¢ 2 n t Nt
N_ = ('.”’ t] .. Then > .

‘FWIH(r'I’tZ’ vees tnlu) =P St X, Sty ey X< tan =u)

=B[I (X)I_ (X,)%.. I (X)|H =u]
ti 1 t2 2 td n

= I E[}’t (xi)lu = u] by conditiona]_. independehce »
i=] i :

8 @ o, . <
= N r,.(lu : . )
gmpr XL - .

Thus; the conditional distribution function obeys the product rule. .Partial
v v

shows that the conditiongl density, when it \exists,

’

differentiation by the ty
also satisfies the pn;duct rule !

. ! ‘ n w
fwlu(t1jf2’ ';"tnlu) '-igifxlﬁ(‘i‘“)- -

N
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Bernoulli trials, given H We illgstrate these ideag by conside;ﬁng' the ™

. [

. AN ¢

%ortant special case of Bernoulli trials. A sequence of "identical" trials

£s performed in amoperational,ly independent manner. Let E = event of a
b

“success" on the ith trial 1,\ the sequence, and set X = IE s So that

xi has the property thdt it ‘takes on the value 1 if Ei occurs and

-‘E?es on the value 0 if Ei fails to occur (E: occurs). Or: a given' i .
sequence: of trials, the probability p of suécess on a trial does not

vary with * i. Now p is a parameter., representing a state of nature. We
model it as the value of a parameter random variable H wih the interval

[0 1] as its r%ﬁe\ Forsa: given valui of H, the results of the various

grials are conditionally independent. Thus,.we assume (xi. 1 _<__~i) is

0)
and .similarly for I(l) We suppose ' \

"cifd, given H. Let I be the indicator function for the set (0}

y(ailu=u)fp(x = 1/H = u) =z[1m(x MH =y} =y 0<ukl

P(E;[H = u) = PR, = OH = u) = zlr(oj(x YK = ul =1 -u,
These assumptions ensure -

Elxgln=ul = e =u as.ilp],

It 1s convfiient in this case to say theysequence is Bernodlli, given
. I

. rd
H =u. Td see how analysis of Suchasequences relates to analysis of brdinary g
Bernoulli sequences, suppose, for example, we observe the sequence E 2223_

<

‘Then ) . ‘ > { ,
P(E, x Iu = u) zlrm(x ), )(x LTE yin = u]
= E[I 3% Y & u]E[I(O) 2)|H u]z[rm )lﬂ'l- u)

uk' . -u(l-u)(l - u), BT . .
- = °
The product after the second equality sign ts a result of conditional inde-

pendence. The pattern here is obviously the same as in the analysis of
153 ) .

ordinary Bernoulli trials, exce;;t that we write u for p. Jo obtain the *

conditional probability of any such sequence, given H = u, include a

.
» ‘ . -
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factor u for ewch uncomplemented Ei and a factor 1 - u for each '

comp lemented E. RN : .
The random variable Sn = xl + x2 + .00+ xn counts the number of "

"successes” in the first N trials ¢f a sequel:xce. In the ordinary case, .

.

Sn has the binomial distribution with parameters (p, n). .As the discussion
above indicates, if the sequen::é is Bernoulli, gi\;en H.= u, we sitply

replace p by u in the analysis of the ordinary case to obtdin

"

P(s_ = k|H = =) = Cn, kb (l-u) 0<u<t, -~

L 4
We still have the probleg: of determining the distribution of H (i.e.,

-

the prior dxstribution with whichto begin anaLysis) Partly because of +
5 ! " - >

a:yel l-known integral formyla

o

. » &, ¢ ; 4 .
Je ok - w® du = TrerDr = V& + 5+ De@ess, 0,

A commonly employed class of distribut&ons is the class of
¢

.

Beta distributions oo .o L .
%}l random variable H has the Beta distribution with parameters
- * < ‘ -

(a+l, b+17), (a, b, nonnegative integers).iff it has the'densi,ty function
. ' » 3

- 1 - ’ ’
: far241) i . ® o0<ic<i .

by al
fH(t) = ¢ ) * . .
. ¢ “0 T otherwise. ,,\
& : .
“Note that if a=b =0, the detribution is umform on [0, 1]

-

d .
Straightforward culcul&&ons show tl@t fH has a maximum at “t = a/(a + b), and

-

. E[ﬁ],‘— ca+ 1l VSE[H] - (a + 1)(b + 1) L.

- ,‘—a+b”+\2. e \(a’+b+2) (a + byt 3),

LN (a + 1)(a + 2) o '
! E[H]-(a+b+2)(a+b+3) o ./f \ Y
N g[uk] o (a+1)(a+2) ... (a +k) fr/ - %‘

(@+b+2)(a+b+3) ... (a+b+k+1)‘.,/ &,

"N
If prior knowledge indicates that che value of \H lies 1n a certain part

AN RN

of the unit interval, witha degree of certainty reflecﬁed in the size of

Aruitoxt provided by Eic:
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LA

the variance, the parameters a, b may be adjusted "to reflect.these condi-

tions.. If there is no prior knowledge favoring any set ‘of probable values,
4

1

the complete ignorance may be expressed by taking the uniform case (a=b = 0),

>

Example D2-a A

A quantity of n items from one run of a Production line is selected

at random for testing. There is probability p that any device in the

‘¥t will meet specifications., The gquantity p 1is constant over any one run;

- r

its value ‘depends on how well ttge manifacturing process, including selection
or preparat;.on of raw materials ig coﬁltrolled. We yish' to estimate the
parameter p from tdsts and prior ‘knowledge.

’
SOLUTION.
'Ve}dopt the point of view that p 1is the value of a parameter random

variable H. Past experience indicates a reasonable pri'or distribution

. N
is Beta, with parametérs (3,2) -- {.e.; a=2,b = 1. Thus ffi(t)
, .
=12 t2(1 - t), OIS t S’l\(r'naximum at t = 2/3). Then
) a+1l °

PN P(E) = E[x] = F[n[‘xilnl)l Ele()] = E[H] = T3bF2 " 3/5 )

Suppase }.(1 = 1. Then

T ORGE,[X) = 1? S P(EE)/P(E) = n[xlle/z[xll = E[e(H)e(H)]/E[xll by CI9)

- 2 . Xa + 1)(a + 2) (a+b+ 9
< E[17] /E () @+b+ D@ +b+3  @FD

a+ 2

2T 4

‘a+b +3

Note that [EI,EZ) is not an independenxt pair‘, since P('EZIEI) # P(EZ). (-

~ \ »

=1t/6=2/‘3. , " .

.

. . -
Suppose & prior distribution for H, is-assumed. - A sequence of n

~ trials is performed. It is desired to update the distribution for, H on
4 D ‘
the basis of the results of this experiment. Suppose "k successgs occur

(i.e., 5, * k)i we want to determine the conditional 'distribution for

Ed

H, given Sn-k. Now .

-

ERIC . =
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Fulsn‘“'k) =PH< s =k = Ef1 (H)I(k}(s )]/1—:[1 1Ga >]
\
= | ' |
(I, (H)%Ix{k}(sn),.ul ]/E{s[z{k}(snm]) , where ‘
P < k N 7k l
1 LPICAILER =P(s =klH=uw =c,ku'(l -w"™ o0<u<1,
\
Suppose H has the Beta distribution with parameters (a+l, b+1). Then
Afu ta|+¥<(1 - t)b-4>4r'1-l< de -~ . N ‘
Faps, @100 = —7—% bk , vhere 4 = Cin,k) LB L)
n afy e @ -0 ae 2. b
(a+k)(n+b-k) u | atk b4n-k .
K (n+,a+b +1)! Iok‘ - " 7de, 0<u<l.
'I'hus‘, the conditional distribution is Beta, with parameters ¢4 + k + 1, ‘:

I3

b+n -k +)). From the formula for expectation, we have
L3 . .

a+R+1 . .
EleSn K a+b+n+2" o <

- It should be, noted that since the common factor C(n,k) ir the numerator

cancel out, the distribution,
His, - , ‘
r given Sn =k, 1% the same as’ that given,any s%ecific sequence having -
- ) !

k successes and n - k failures. §]

and denominator of the expression for F

<

The previous dévelopment illustrates ht?w conditional independence' in
a rz;ndqm sample, rather than total independence, may be utilized to modify
estimates of p{r‘obabilities or other parameter; whichfcontrol populat(on . .
probz;bil..itfes. . But' decisions are !aased both on estimates of‘p'robabiliti_es
Wi on costs or rewards a'ssociat'e{ ;rich actions and outcc;ines. One is apt
3

to proceed much more Eautiously (i.e., to require higher probabilities for

J ‘ ‘ ' s
fivo‘rablg outcomes) if cost}df/failure are high, or to be much more venture-

~ ’
some if zswards for success are great. To ﬁ?ovide an analytical basis for
.t . 4+ N -
deciiioh, one must include some measure or criterion of gain or loss, in
3 . K

-

order that a "bEst" course of action may be determined. To illustrate, -

. v

. x ) A\
ve consider one of the ms'r: commonly used’ criteria: the mean-sguareb-g&

»

criterion. _ * 4 . ¢

\ |
| - ' 39 - :

-
.

. - -




« ' Suppose ({X,H) has joint distribution and it is desired to obtain a

« "best” ‘eatimate of the value of H from an experimentally determined '

.

value of X. That is, we wish to determine’ a function or decisioAle d
. »such that d[x(w)] is the best estimate of H(uw). According-¥o the mean-

¢ . squared-error criterion, we seek®a function d for which E{[H - g&x)]z}

B . .
is a minimum. /The following argument shows that the best decision function

.

v d is given by
. d(u) = E[H|X = u] = etu), VY ‘u in the range of X.
. We note that X may be vector valued, in wl)Lch case u is a vector. *

Consider

"o <E{[H - d(X)]2) = E{[H - e(X) + e(x) - d(x)]z}

LY

; E(lH - e®)]?) + E(le®) - a®)]?) + 2E([H - e®)] [e(x)- 4], .

o0

)
Suppose we put h(X) = e(X) - d(X). By CE6), E[#h(X)] = E[le(X)h(X)],

so that the last tetm above is zero. The first term is fixed. 'The

- .
second term is positive, unless 'a(x) = e(X) a.s., which is: equivalent .

(by Theorem AI-Z.).}o d(u) = e(u) a.s. [PX] . Hence, this choice of d
minimizes the m#an-squared error. d
The argument above solves the regression problem, in which it is,
dg.sired to determne the sandom variable d(X) which is"nearest"to H
. in the mean-squared sense. The central role of condit;onal e!pectat;on is
#

well known. In fact, some authors begin the study of conditional ex.pecta~
- . . » -

+ tion by degignating the co,ndi&o;xal expectation of , X, given Y, gs’\ff\e
’ b ’
random variable e(Y) for which thé meq’n-squared error E[[X -'e(Y)]z)

is a minimum. Starting from this point it is possible to show that e(Y)

-~ has all the properties of the concept as we have introduced ic, -
mu D2-b . . ]

Returning to the situation presented in Example D2-a, w§ suppose n items

are selected at random fram the production lot and tested. Of these, k
r -
O . R N . A

FRIC~ . . . * 100
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meet specificationg. "What is the best estimate, in the mean-squared sense,

of the probabilicy.v that any item selected will meet specifications?

Y

SOLUTION AND DISCUSSION.
B); the developmenc above,. if the prior distribution for H 1s Bera .

(a+l, b+1), the best escimaE‘or for H, given § 0 .is

a+S + 1 a+ 1

. +

’E[HISn] m as compared with E[H] = TSR
'Qe rule is: count che number of successes in the n units tested, add
a+1, and divide by a+ b +n + 2. .. ’
. -~ .
Suppose no prior information about fR 1s.avai1ab1e; we should use a =b = 0,
Suppode, further, that in a test of 10 items, 8/ meet specifications. Then
Blals , = 8] = 18 = 9/12 = 3/4 as compared with E[H] = 1/2. -
. n s - El
If the prior distribution were Beta with a =2, b = 1, ©€hen
15[11[3}0 = 8] =-18—:§ '= 11/15 ~ 07333 as cofpared with E[H] = 3/5. °
The condicional dis:ribuc:.on for H, given S =k, 1is Beta (a+k+l,btn-k+l).
F S
The conditional variance is - . . » .
Varluls =) = —p(a kLB rR k2D ' ' \
(af+d +n+2)(a+b+n+3) ~ . N
For a=\b=0,n=10,k=8, - ’ o
. - 2 v ; .
Var [H|s o = 8] = (9 x 3)/(12° x 13) & 3/208 ~ 0.0144 .
For a = 2, b=1\, n=10,ﬁk='8, T ' ,
var [ws,, = 8] = (11 x 6)/(152 X 16Y = 11/900 ~ 0.0122.
\ 4
\
The prior 1nformanon with its approximate locacion and 1nd1cacxon of
. . t
- #,variance, gives rise to a somewhac smaller variance on the conditional -
[ R .
discribuﬂon. ’ 0 . /\ - 4 . \\
For a more general discussion of the problem of Bayesian esci.mgc‘ion,
as this procedure is called, see )_'god, Graybil'l, and Boes [1974], Cifap ViI,
I'd ) ’ [ B . M
Sec 7. Although they do not employ the’ term conditional independence, .
. they assume it by virtue of assuming the product rule for conditional )
L] . l~
v \‘1 : 1 D’ “ . ) .
ERIC i . . p
e = RN C EAN
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M ~

densities.. They consider other 'measures of distance or "loss", and

relate the results t

he results of other estimation procedures commonly

employed in modern stathistics. !
. -;‘ . \ .
’ /
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3. A one-stage Bayedian decision model . *- .
- . ‘

" The transition from inference (i.e., determining the most likely

alternative) to decision (determining the course of action to be selected)

.
*

leads to the notion of gain gr “loss. In order to move béyond-.a purely .
mathematical criterion Such as mean-sc{uared error, \ue introduce the .
notion of a loss function. The loss func_:tion is usually expressed in terms

- .

of some symbgl o¢f value, such as monetary units. But 'i.ts specification
may require quite subtle and subjective judgments of "urility" or worth.

. -~ - .
In order®to be objective, the decigion analyst must obtain frem the decision
- “ ﬁ\
maker enough information to determine a loss function whosg value depends

[y

upon the course of action chosen and the resultant outcome 'of this action.

To set up a model of a typical decision process, we suppose: :, .
'{ 'I'he're is a set of possible actions ;vailablq to the decision maker. ~
! *-'Action a8 1is a member of the set A of possibl'e actions.

11) There 1?:; set of pc;s'sible outcomes which may rgsult from the

.
-

action- Becauge there is uncertainty about which conseq_uence will

materialize, we represent the outcome as the value of an outconge random

- .
variable (or random vector): y = Y(w). ,

111)7 The distribution of the ouicome random variable Y is determined

of

*+ 'by a state of natyre. This is often expressed as a parameter

L

> ’ Apossibly vecﬁor-vaiued) ince there is uncertainty about the state

-

:bnature, the- pnramece' itself is modeled as the value of a

- parameter random variable: gq = H(w). .
iv) It may'b‘e possible to experigent in order to obtaim some 1nformat1<3n o
al;o\t the state of nature. The result of the experiment 1;: the L
- .
value of a test random variable: x = Xw). Both Y and X are
jointly distributed with the par.'ameter random variable' H. '

" ’ ’ 103 . . ’ ' '
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Y o
A loss functidh 1L is determined. L(a,y) is the loss when action

.

a 1is.taken and outcome ¥ is experié?xced (a gain {s a negative

loss). The nsual objective is to minimize the expected loss.

K

If experimentation is utilized, a decision rule (or strateg}’) is -

determined, to indigate the action to be takerr for each possible
obseryed valye of the test ;andom‘variable. In.practice, the

value of the decision rule xm;y be determined for only the specific
experimental result observed. )

we consider two cases.

aj Withoit expetMhentation. .
1

Assume {Y,H} have joint distribution. Let 4(a,u) = E{L(a,Y)[H = u].
. : -~ Ty *

This f's sometimes knoim as the risk function. The objective is to

select action a to minimize R(a) = E[L(a Y)] = E[E[?_Y)IH}]

- L(a,u). In

the case of no experimentation, no conditional 'independen'ce assumptions
” ¢

= E[L‘(a;l{')]. In some problems, Y = H, so thats 4(a,u

"

¢ dre needed. . .

Example D3-a. .
" Av‘me'rchant ;lans to stock an‘it‘em. The demané ov‘er a six-'week period
is assumed to be a' random quantity having the Poisson dia_;r}but’(’on with
;afarameter A. The paranbter value is not known but on the basis of past
experience the merchant assumes A to beith‘e value of a tandom variable

H with possible vaiues {15, ®, 35} caken on with probabilities
’
-

1/6, 1/2, 1/'413, respectively. The merchandise may be ordered in lots of

10. The merchant contemplates ordering either 10, 20, or 30 units. He

can buy at a cost of ¢ = $7 per unit; he can sell at a‘price u = $10
1

per unit. At the end of six weeks, he can return the unsold items for a

3

ERI
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D3-3 ‘ . B
4 . . .

net recovery of r =$3 per uni.t‘, 8o that he loses c -r = $4° per

6

unsold unit. - He considers that he })as lost  (u,- ¢)/2 = §1.50 per
missed sale. From a Bayesian point of view, how many unis should he ordgr?

SOLUTION N, . ) '

The set of possible actions is A = (10, 20, 30). Let Y be the random

variable whose value is the demand in the ic,i.x-week period (the outcome
’

'random varfable). ‘The gonditional distribution of Y, given H =\, is
assumed to be Poisson (\H. The loss functfion L 1is. giv l{‘r—/‘

- (u -;:)y + ('c - r)(a - y)»=)n/7y/ for y<a

L(a,y) =" { P
® “{u -cla¥F

e
> (y - a) = -4.5a + 1.5 for, y > a,

‘If we set B = (Y < a),'twe may then write s

5] -

.

L(a,¥) = Ip(a.- 7¥) + (1 - 1)(L.5Y - 4.5a) = 1.5Y - 4.5a - 8.51 (Y - a).
- ,

ElL(a,Y) |0 =] > . .

1 .

Now L(a,))

1.SE[Y[H = A] - 4.5a + 8.5aP(Y < a[H = 1) - s.sahaylu\a Al

We may express ; -
, e es ~ . -
' 2K A a-1 )\k" a " .
kfl'e =) L ire _=7\P(YSS-1}H=)\), ‘ X

0 " © k=0 °° )

Hence - : ¢ - g

/@
E[IBY|H =\ = ¢
k=

L@)) =A[L5 - 8.5P(Y < a-1]H = V)] - al4.5 - 8.5P(¥ < afn = 1)),

Usi.’ng a table of cumulative or summed Poisson distribution for appropriate

values of )\, we x;iéy establish the following‘?able of values for L(a,)).

>

a= 10 20 30 . ) 4 :
A=150 -21.3 . 232 +15.0 L '

" 20§ - 14,9 -44.9 -19.3 4(a,))
o 25 - 7.4 -49.5 -5L.3 e /\

.

. {
Now ‘R(a) = E[L(;,Y)]'= E[t(a,H)] has values: ) ) .

1 R(10) } [ -21.3 - 14.9 x 2{- 7.4] = - 14.6; R(20) = - 40.6; and

R(30) = AI8.9,, . : L :

The optimum’ action, corresponding to t'he minimum expected lqss, is a = 20.
optim ’ Xp =
.’ LI ) ' ' . ;
Q - .
' < A ~ H
- . -
s EMC . . 1. 00" '
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b) wWith experimentation

Assume {X,Y,H) has a joint distribution. A decision is made on the

4 .

- basis oE the experimental data :Z;e., on'the basis of the observed value

of X). The problem is to determine the optimum decision functiow™d* which

designates the optimum action d*(x) when the test random variable X has

~ Vvalue x. Thus,, d* {s the decision function which minimi‘zes the%

risk B(d) = E[L(d(X),Y)]. .
The problem may be (Eormdlal:ed in a useful way as follows. By CElb),
B(d) = E(E[L(t\i(x): )IX] J. 1f we set R(a,x) = E[L(a, Y)tx = x] then by CEIO),’

R(d(x),x) = E[L(d(MN, VX = x] = E[L@X),V)]x = x]. Thus, R(d(X),X) = ¢

E[L(d(x),Y) IX], so that B(d) = E[R(d(x),x)]. For each x 1in the r‘ange of
*
X, let d*(x) be the action for which R(d*(x),x)* is a minimum, Then,

- B(d*) = E[R(d*(X),X)] < E[R(dX),x)] = B(d), fdr all possible decision

-~
functions d. N

- \ , .
In the usual situation, the result of experimentation does not affect

A

operationally the outcome following the actfon. The experimental evidence

may be in the fdrm of previously available data. The result of a given -
- Y p

action 'is not influenced by whether or not the decision maker obtafns the

experimental data. What does affect the outcome followin'g an action {is
the value of the''state of nature" parameter. Thus, it is Jpprapriate to
assume the'pai'r {X,Y] 1is concfitionally in'depeﬁdegt)_:y.{en Ho We utilize

, this as follows. - . .

}) If % is discrete, we may use CI10b) to assert )

“R(a,x) = E[L(a X = x] = E(E[I( ](X)|H]E[L(a ) |H) )/s(a[: (x)ln] ) .

vhere E[I ](x)h{ =y} =.P(X = x,H xy) = pxlﬂ(x!u) and

v o

z[Lga,Y)lnl =~ L(a,H)." .

Hence, . o . ™

”

" R(a,x) ={ ta,u) pXIHv(xlu) dF};(U) /P(X = %), -
\ Q .‘ ‘ y o . ) , '
ERIC - « !
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N

2) ,If X is absolutely continuous, -

R(a,X) = E.[L(a )X = x] = E{E[L(a, Y)lu][x =x}

. ElamK =« = < [ a,u) dF,. (u]x).

. Hlx
We may use Bayes' theorem for the conditional distribution (see Sec. C(:))

’ . . . €
to determtn‘e' me

i

Example D3-b -
Suppose in Example D3-4 the merchant recalls that he made 4 similar,
A .

3

’

\ - . .
order for a corresponding period the'previous ygr. If X 1is the random

variable whose value rapresents the demand Yor that period, an observation
£y
-
r

of the value for that period sho-u;f;i prov{de sopfe indication of the state

of the market for the period. If thewk is reason to believe -that the state

'of the market has not changed appreciably, this information should be, use-

] Al -
ful for* the present decision. Enough time.has elapsed that sales in the
’ 4
previous period should not influence direectly sales in the current peri'od.

Therefore, it seems reasonable to assume th {X,Y} 1is conditionally

independent, g'tven H (the value of which indicatés the general state of

S . - ’
the market). A check of the previous sales records shows that demand was
& .

*for 24 units. Under _thesé ;ssumpttons and with these data,. the "t,ask is
“to select a = d*(Zlo) to mtntmtze R(a,24) = Z 4(a, )\)pxm(zlo])\)p“()\)/l’(x

Values of 4(a,\) are‘:abula:ed in the solu:ton of Example D3-a. Under
L)

'

the assumed conditions, we may reasonably suppose pxl“ pY]H' From

. . i
tables of the Poisson distribution, we obtain values of pxlﬂ<2a[x), from

.

which we determine . . '

= ple(Zlo[IS)pH(IS) + ple(Zlo]zO)pH(ZO) * Py 1y (261250, (25)

[o 0083 + 6.0557 x 2 + 0.0795) = 0.050

R’(IO,ZA) o - 21.3 %X 0.0083 - 1[1:. >(; (2);(; 0.0557 - 7.4 x 0.0795 - _12'13"

»
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The values ' R(20,04)

Al . ’
in simflar fashion.

~ a
o D3-6
R
= - 45.8 and R(30,24) = - 30.9 may be calculated .
. - ] t
Once more, the indicated optimum action is to order .

20 units. 1In spite of the fact that the previous demand went beyond 20
; . 7 -4
units, the best bet is to order 20 units and risk the loss of some sales. 0
& .
N 4 [ ¢
/\ L]
N &4
L 4
- -
- — . ]
. N "y
J U
. ’ oL .-
) N . .
ts - ~
-
’ .
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4. A dynamic programming example . .

The followiné example of a muliistage decision process is presented in

/paver and Thompson [1973), p. 392 ff. Our discussion displays the role of a
3

conditional independence assumption, which seems'to be both appropriate and

necessary. ) .

Example D4-a ) . v,

A company ig offered two investment opportunities, which we designate -

P Yrigk" and "safe".

1) Risk.’ Either make gain g8 in a given period or earr nthing.

. Probability of success is unknown, but constant, over the total

+
time considered.

2) Safe. Certain to make gain s in the given period,

Oains in successive periods are independent, given a fixed probability of

success, A choice is made at the beginning of each time period, with neg-

ligible cost for switching from one°investment to the’ other. The objective'’

.

is to maximize expected gain over N time periods. -

.
~

SOLUTION. . " . o

——Fhe—probabitityof success is unknown; we suippose that it is the value of a

’

state-of-nature~ random variable H. A prior density fH (or distribution
function FH) is 855umed1 To obtain further information, the company must

, L]
.experiment by making the risky investment, Suppose Ik is the indicator

~ function for Success in the kth risk period.(i.e., Ik(w) =1 {ff qhetrisk

. Pays off on the k%ﬁ trial), The gain during that period is 81, - We agsume
‘the class (Ik: 1<k é N} is idedtically distributed, conditionally inde-
pendent, given H, with E[Ik,H =t] = P[I =1JH = t) =t. Suppose n

4

+xisks have been taken; 1let Sn be the rangom variable which counts the '

“ERIC 109 -
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number of successes-- {.e., Sn - Il + I2 + oe + In. * The succession

of ‘«choices to take the risky alternative constitutes a Bernoulli sequerice, -

with conditional indep-endence, given the parameter random variable N. -

In Sec D-2, we establish an expression for , .
. p(n,k) = E[T +1|s = k] = z[uls = kJ, vhen H has the Beta distribution

If there is no basis for assigning a given prior distribution for H,

we gssign'the uniform distribution. According to the results in Example
’ D2-b, we have . ) ) .

Pk = B S '
To develop a 'strategy \based on optimum expected gai\n,\'we utilize the 7,‘\ " "
backward induction procedure of dynamic progranming‘. Consider the begznning

of the jth perfod. If n risks have been taken before stage j, then

" o i, ‘= -
there is im optimum-path'-gain random variable Gn . fn j( H In+1’ ooy

IN)' At most N risks will be taken, but not necessarily this many. It

1
is convenient to use a decision tree to keep account of the alternatives

¢

(see Fig. D4-1). ) .

Suppose S = k.—The decision rule is _risk iff
. Y ’ -

Ell , +G - j+1|s .- >s+E[G j+1|s = k],

b We wish to obtain an. expression for G Consider the set

i
M= (ks I-:"‘81n+1 n+1,j+1|sn = k] 28+ E'I[Gn,;|+1|sn = k]J'

G" 110 . .
ERIC ..
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L hd N
.

a . N . |
Then . . .

Gy = TS (8101 #7600 ) + [1 - 6 )1(e + Cayger)  and

ELG, I8, = K] = max (Ela1 ) + Cor1, 1S = K1, s+ Elo, L 15 = k1), .

’

Since E[X|A]’= E{X|AB]R(B]A) + EIX]ABC IR M), BlgT , |, = K, 1, =1 =g,

-

3

and  P(I,; = 1S =k = p(n,k), we obtain-

. »
- 1
BI8T oy * O, Sy =61 . .

. . >
B E(G,, S e ld-l]}p(n,k). *EC; 4lSy = KIL - p(n,0)]

) = [g + wj*_lsn*'l’k:"l)]l’(n’k) + @j.*.l(n"]:’k)[l - p(n,k)],

where q;j (n,k) = E[Gn j|S\n= k]. We may formulate the decision rule as fql-
’ -
lows: ’ ’

o N .- .

O3k = max (lg + oy (91D (0,10, Gy, (L I[L - p(n,k) Iy 8 + 0y (n,00)

n 3

-

with B (1,0 = 0.

. f e 5
To see how the prodedure goes, l?t 8 =5/2,8=1,N=2, fﬂ(t) =1 on
< .

[0,1], * 80 that f(n,k) = 1—‘+—1. Refer to Figure D4-2 for situations at de-
« o2

Y

cision nodes.

At the §inal decision node, §.=N = 2, and (n,k) = (0,0), (1,0), or (1,1)
k)

Determine cpz(0,0) ,wpz(l,O), q;z(l,l) andethe optimum action in each case.

&
- . ,

p(0,0) = 1/2, p(1,0) = 1/3, p(1,1) = 2/3 . )

.

i

9,(0,0) = max [%g +0,s max fzs-, 1} = 5/4 (risk)
i N ; \\-
'i 9(1,0) = max [%g +0,8) = nuxs[%, 1) =1, (safe) ° -

. * A
L Y
. [} &

) ( ¢ : |
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s + 032(0;0)

b) At the tnitial decision node

Figure D4-2. Decision nodes for Example D4-a.
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. D44
(LD "= max Gz +0,8) =max 3, 1) =53 (risk) .
At the inftial decision node, j =1 and (n,k) = (0,0)
S 9100,0) = max {5+ 0, (1,1 12+ 0, (1L,0%; 5 + 0, (05)) .
Lo ommax (57245810 12, 1454y -
L] A -
’ = max (31/12, 27/12)} = 31/12 (risk),
V‘ N ’ -
~. The indicated strategy is:

First decisfon: Risk ~ cp1(0,0) = 31/12
Second decision: 1f firsg risk is successful ~ cpz(l,f) = Risk.
If first risk unsuccessful ~ 9,(1,0) = Safe. *

The expected gain from this 'strategy is @1(0,0m1/12 ~ 2.58. [}

»

N~ - [ ~
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. 5. Proofs of the basic properties

.

~ To establish the equivalence of Properties 0115 through CI4), we

. . .
show CIl)*® CI2) = CI3) = CI4) = CI2). To simplify writing, we drop

the "a.s." din the step-by-step arguments,

" c11) = c12) -

’

4+
(I ME[r, ]zl iz) = Elf @ lzlelr 2] by CE8)
. , = Bl orgmlz] | e - by CI1)
. = E(E[1 (O1(D)]z,¥] ]2} by CE9)
= E(IyME[L,olz,v]jz} by CE8).

<
-

Now

E(IQ(Z)E[IN(Y)E[IMg() 2]z »

. . = E(o@IDE[T X)[2]) ¥ borel @ by CcED).

A similgr expression holds for all Borel Q with E[IM(X)]Z] replaced,
by E[IM(X)IZ,Y]. We thus have )

' E(IQ(Z,)IN(Y)E[IM(XNZJ T =E(1 (Z)IN(Y)E[IM(X)Ié,YJ'} for all Borel sets

Q
N, Q@ on the codomains of Y, Z, respectivelyt By E6b), we may assert
' ’ i

T

El1,0l2) = &2, = e,(2,0) - Elr,(0lz,¥] a.s.

C12) = CI1) .
E[Ib'i(x)IN(Y)lz] = E(ELIM(x)IN(Y)[z;Y][z} - by CE9)
= E(1 (NElL, (0]2,1][2) " by cE8)
= E(Iy(E[1, 02 |2} ¢ ,by cI2)
- Efr izl (0 ]z] : by «CE8).’

ERIC . ‘
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- cI2) = CI3) T / ) )
El1,®1,@z,4 = 1,@E[1,m|2,v] E - /by
¢ . = IQ(z)EgIM(x)lz] - ’ o by
" L= E[rﬂ;mq(z)lﬂ}; ) | by
‘ ' R ‘:‘ -1 ] d
CI3) = CI4) - = v, -
E[IM(X_){Q(Z)IY]‘ - E(E[IM(x)IQ(z)lz,YHY} by
= E(g[zn(x)IQ(zg’lz]]zJ by
CI#) = cI2) 4 L , . &
E(E[L,(0)1,(2) Jz] Iy} = E[IHZX)Iq_(z)IY] . by
= E(E[IM(X)IQ(Z)IZ,Y”Y] , " by
This ensures that for all’ Bokel- N on the codomain of Y '
. . <
. &
E(IyMELMI1,@)]2] ) = E{IN(Y)EIIM(x)fQ(z)lz,YJ ) - by
But this, in turn, ensures that
By @EL @ 2] ) = B (D1 @[, (02,1 ) . by

.
By E6b), we.must have ’

E[IM(x)lz] = E[1,)[2,Y] a.s., which s .cI2), )

(1

We wish to establish next the equivalence of CI5) through CI7) to

s

the propositions above. It is apparent by the special-case relationship
. 7 s .

EA g
that CI§) = CI1), CI7) = CI6) = CI2), and CI8) = CI4). Extension of

.

-~
CIl1) to CIS5) may be dome by a "standard-argumeht” based on lin'earity:
mnotonicit)", mono tone convergence, and apprc;ximation by step function‘s.
Extension o'f CI3) to CI7) may be achieved by an argument simflar to *
that gketched in the di.scu'ssion of the propf of ° CE10), plus a "standard

Argument," A similar approacl serves to extend CI4) to CI8).

e L




D5-3 . " ’

. ’ . .

. 'Lenma nsfl . : .

then Elg(w)|v,z] = E[gw)|v] a.s.
PROOF
The ‘randedh vector (V,2) - W) s a
Elgn|v,2z] = EElg|v,0l|v,z) as.
- ='E{E[s(iJ)IV]|v,:z'} a.s.

- Elgw)|V] \a.s.

- -

PROOF OF CI9) )
: , .

For any Borel function .g;

‘Elg) |zl =~Elg®)|z,1] a.s.

= Elg)|z,v] a.s:

For any Borel function r, ' .
Elr)|z] %Elr() 2,3 a.s.

.
a.s.

= E[r(v)|z,u]

¢

Hence,
- 1
o~ *
. .&Q .
- e
e )
- ' - .
A
PRI
i
N .
.
v ! .
.
\1‘1\
: i/
Q . \
-ERIC
' .

A Y .

Before proyix}é.cm), we obtain a’ lemma useful here and elsewhere.
i) .

°

.

1f E[g(|v,u]l + E[g®]V]_ a». and z =h@), with h Borgl,

-

Borel function of (V,U). ) Hence,

-
rflyNG,

R 4

Hence, ({X,V} 1is conditi‘onally independent, ‘given 2

(U,v} is cénditionally independent,‘ given 2

by CE9)

- by hypothesis\,

bj CE9a). 0

by C16)

by Lemma D5-1.

by CI6)-

-

) by 016)

by Lemma DS-1. “Z

by CI6).

-

; ’
N
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' ¢, o D5-4
* .
PROOF OF CI10) « ) N : ‘~
a)-. a[g(XSh‘(Y)] = E(E[g(X)h(¥)] 2] } "0 - * by CElb)
R erEloldehwld) . \ by c1s)-
, =Ele,@e,@] . (otational change).
b) Elg(x)|Y € NJP(Y ¢ ;«) = E[1y(1)g(X)] ) . " . * by CEla) .
t = E(E[INk},)EZ]E[g(x)Iz]} . T . by part a), .
PROOF.OF CIll) “ " ) ..
Giugn that (Y, (X,2)} is independentX C
P(XEM, YEN, ZE€Q) = E[IMEXMN(Y)IQ(Z)] . by Ela?’ .
= EEln O mI @) Pry )
A = E{Ty@E[1, (1, (V2] ) by CEB).
Also, ) -
P(XEM, YEN, Z€Q) = P(Y € NP®E € ¥, € Q) by independence,
) = E[IN(Y)]E[IM(X)IQ(Z)]‘ © by, Ela)
= ElLy(W]E(T,@)El1, 00 2] ) o by D
= E{Ty@E[LM]Elr, 0 ]2] ) by E2)
N = %(IQ(Z)E[IN(Y)lz]E[IM(x)lz]} by CES). ,

Equating the last expressions in each sdries of inequalities, by E6)

we coficlude that E[1, Q)1 (V)|2] = E!:IMSX)IZ]E[?NEY)lZ]. a.s. 0

PROOF OF CI12)

-~

As in the*proof of CE10), it is sufficient to show the proposition holds

”

for g = Iy =TI g -
‘ E[L, (01, (DY =y, 2 2] = I @E[L ()Y =u, z2=v] “~ by cEs)
\ =-1N(u)z[1M(x)fz = v] by cI6)
' A =E[1‘M(x)1N(u)|z =v] a.s. [PY'Z]' by CE2). [ .
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D6~1 - . . 4
J PP N ) ~
6.. Problems . (. . .
D-1 show that if (X,(Y,Z)) is.independént, then . . . *
b en .
) E[s(x)yv)Jz‘) = Els]elh (2] * a's. . ‘ :

’ . < v i

D-2,, Let X;:1¢< t <'n} bea random sample, given H. Determine the

‘best mean-square estimate for H, given w xc(xl,x s veey X ) for

-2
each of the fo\llowing cases' . . ' -
‘1) X is dilay?d' exponems(al: fle(tlu) = e (EW) fo’r‘ t Su, and

H is exponential (1): ) = e for u >0

- k-
1) X 1s PoissoR (u): pxIH(klu) =™ o k=0,1,2, ..., and
-

T s pagme@te £,@) =A% e M@y w30, abo, 1 >0
, *
111) X is geometric (u): py (k)= u@-w)¥ k B0y 1, 2, ..., and
4 H 1id' uniform °[0,1], ) N :

D-3 In Example D2-b, suppose a = 7, b = 3, E:om'pare the prior dengity

. for H and the quax;ti\ttes ECH!SIO = 8] ' and Var[H|Sm = 8] with

those for the case- a’'= ;,\ b =1, as in the example. v - )
Dré ' 'Conskiqder the@demand random yariable of problem C- 1; 2

D’§1x1 5“0{ }(N)Y ). ::here Yy =0, Y =X X + X, n31'

Tk ’ 1 'Z .
Suppose (N (), XI,XZ» ceey X )] is independent for each n>1, ami/_f-

D=5 1t 1;, desired to study the waiting ttme&;r the arrival of an ambu-

[ N -
lance after reporting an accidgnt (see Scott, et alj; [1978]).« Dizect
. . . t . R
statistical data are difficujt to obtain. Suppose we consider the
. ’ . LI
trandom variables i
t

. N = number of ambulances in: service (1ntegef—va}ued).v

.
»

D= distdncg traveled by dis;;atched ambulance

"V = average velocity o¥ the ambulance for the trip.
By considering the geometry of the deployment scheme, it is possible
®* to make reasonable ass\fﬁptiol’}g about P(D < t|N = n).” Also, it is'

A e )

. L]

C
p
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a[xilu = u] = e(#), invariant with 1. Show that ElD|g] = E[Meq).

@
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v
-possible to make reasonablekvp_tions, on the besis of statistical
-

data,.for the distribution of V and the distributfon of N. We

have W = D/¥, whe.rg ¥ is the random variable whose value is th})
-~ . .

waiting time. Then PG/ t) = E[1,(,v)], where Q = ((u,v): u < vt)..

a) Show that if (V,(D,N)} 1sdindependent, then

< PW<tN=n)="p(D<vtiN=n) dF, (v)

"
i
o

Sugkes tion. ng CElb), cru), CI12).
Under the conditxons for part a) and the assumptions

i) P(D SJ]N =n) = as, 0<s<J/a, where a2 = nn/A
« ° o
ii) V is uniform [15,25]
. ¥

where_ A is ‘the area served, in square miles, D 1s Wistance in
1

mxles, and V 1is velocity, in miles per hours” t

Repeaz: part b) with 1) replaced by / °

\

i) P(D<‘Sl‘{—n) ,e-?s, s> 0, a2=nn/A.
- \ N

<

D6 In Example D3-b, suppose the previous demand was 26 units. What is

. /
the optimum action?

An-electronic game is played as fo.llows A probability of success in

a sequence of Bernoulll trials is klected at random. A player is |

allowed to observe,the result of nf trials. He is then to guess the

]

the number\of successes in the next n trigl8, If he guesses within

one of the actual number of successes, he gain®one dollay (loses -1);

v

L if his guess misses by t:wo or more, he loses one dollaxf‘ Suppose

P

m=3,n=10; on the trial run there are two out of threé successes.

ew}‘\)at: number should he then guess to minimize his expected loss? Let
4 s ? .
X = number of successes in m on the trial run

- N
< ¥ L3

Y = number of successes in ‘n on the pay run

H =’paramet:er random variable. .

ERI
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D6-3 \ . b '
Then X -{s binomial (m,u), given H=y ’ N
. ‘Y s bipomial (n,u), given Huy : .
J H is uniformon [0,1] . s
N ]
. -1 for la - yl <1 \
and L(d,y) = - - ,
1 for la.-y{>1 . N

-8 In Example D4-a, determine the optimum strategy for g =5/2, s= 1)

N =a3,/ H unifomo‘n fo,1]. g

. « N ¢
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El-l

E. Markov processes and conditional irndependence

[
1. Discrete-parameter Markov processes .

The notion of conditional independence has been utilized extensively

.

in advanced treatments of Markov processes. Such processes appear as
« 4

models of processes without "mixmry." The "future” is conditioned only

- by the"present” and not by the manner in vhich the present state is reached.®

The past thus affects the future only as it influences the present. We
wish to make the connection between the usual irftroductory treatment and
the more ;dvmc?a point of view, which is not only mathematically powerful
but intuitively h;lpful in displaying the essenti;;tl character of Markov
processes. For a recent introductory treatment utilizing conditional

p
independence, see Ginlar [1975].

Many elementary textbooks i;xclude a treatment of Markov processes with
discr‘ete p:raxﬁeter and finite, or at most couptably infinite, state space.
Suppose we have a sequence [Xn: 0 <n} of random varfables, each with
range ((1, 1,2, ..., N}. Thus, the parameter set is T = (0, 1, 2, |
and,the state space 1S = {0, 1, 2, ..., NJ. The Markov property is
expressed by the condition*

M) Py = 31X 4, R = A g, eees Xp = i) -
=P(X, = X, = 1) = Pyy(0)
forall £>1, all (1,3) €55 all' (15 1), +ve 1, € st

The guantities pij(t) are called the transition probabilities. In the

important case of stationary (or homogeneous) transition pr?)babilities,
we have p”(t) - pij’ invariant with t. In this case, analysis is

largely algebraic, with the transition matrix P = [pij] playing a

central role. *

‘

The fundamental notion of the Markov property -M) is that the past

does not condition the future, excgt as it influences the present. We can




ae

El-2 .

give the Markov property M) %4n alternative’formulation which emphasizes

~

the conditional independence of past and future, given the present, without
. °
restriction to discrete state space or to stationary transition probabilities.

To aid in formulating tl’}{S condition, we,intrgoduce th.e' following notation. 3

If S is the state space, then

e

s* = set of all k-tuples of elements of state space §

8+1,

' th (Xgs Xps wery xs) R 08

1’ .
v (x x 1: ceey x ) -’SE.S-H. 8
’

8,t ,
u-t+l
u = (§t’ xt+1’ ey xu) wt’u. Q-8 t<u,

We indicate by U: a random vector whose coordinates consist of a subset
L)

. ‘o -
(in natural ovder) of the coordinates ©of Us’ and similarly for V: ¢ and
. - ~ ’

t

Wk . Them U*, V* , and W¥ are continuous, hence Borel, functions
t,u o 8 s,t - tyu ..

of, Us, Vs e and wt ;, rg:spectively. wtl_en we write a function g(Us),

°

h(v_ ), etc., we suppose g, h, ete. are real-valued Borel functions

8,t
such that E[g(Us)]: ,E[h(V t)], etc. are all‘finite.
’ .

represents the''past

.

Y1f ¢ represents the "present", then Ut 1

behavior" of th process and W Eepresents the behavior of the

t+l,u

.

pro‘)cess for g "finite futuye.” We sometimes consider an "extended present”,
* o

s<t.

A .
represented by Vs ,t? .

°

In this notdtion, the Markéov property M) is',';équiva:lent to

.

P(Xt+1 € M‘Xt = u, Ut-l =v) = P(X € Hlxt = u)

t+1
Yt>1, VYBorel sets MC S8, VuES,_VVESt
1

which is equivalent to ¢

LAY "
W elnx plx, v 0 = elna oIx] ase Yex1, ¥ Borel Mo,
Reference to CI2) shows property M) is eqtiivdlent to

M') (xt-}-l’ ut-l'] is conditionally indeperndent, given. Xt, ‘V t>1.

Aruitoxt provided by Eic:
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DEFINLTION. The process (X!; t €T) 1is Markov i1ff M') holds.

< Y

Use of CIl) through CI8) provides a number of alternative formulations
of the basic condition M). It is gsometimes desirable to remove the
restriction to the immediate future. This can be done (énd more),as the

. following theorem shows. ’ -

. .
Theorem El-1 -

A process [X;: t€T), T=(0,1, 2, ... ) is Markov iff

\ v
M") ("’?ﬂ,cm'":-ﬂ is conditionally independent, given any finite -

4

extended present vs,t’ 1<s<t, any n>1, any w:+1,.t+n’ 1 R

v

A proof is given in Sec ES. 0

*

-To see how-the idea of conditional independence is an aid to modeling,

. we consider several examples. \ ' . h -

Example El-a One-dimensional random walk

A number oé physical and behavioral situations can be represented schematf-

-

cally as "random walks." A particle is positioned on a line. At discrete
*instants of time tys t2, ...y the partirele moves an amount re'presented
7 by the valueg of the random variables Yl, Y2, ... , respectively.

r( Positive values indicate movements in one direction and negative values

. @

indicate movements in the opposite direction. The position after the nth

move is Xn = YI +Y2 + ... + Yn (we take Xo = 0). _If we -can assume N

the c,}ass. (Yi: 1< 1} is independent, then Xn+1 » Xn + Yn+1’ with -

7
tYn+1’ (Un-l’xn)} independent for all n > 0. Since the position at time
1)

tn+1 is affected by the past behavior only as that behavior affects the P
I

present position Xn (at time tn), it seems reasonable to suppose that

the Markov condition holds. ‘0
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El-4 '

Example El-b A class of btanching processes
Cons‘der a population consisting of "individuals" able to produceqw

~ ]
" individuals of the same kind. We suppose the production of new fndivid-

.

ua.ls occurs at specific instants for a whole "genefation." To avoid
the complication of a possibly infinite populatioﬁ in some generation,

we suppose a mechanism ope;ates to limit the tot.al population to M
individuals at any time., Let Xo be the original population and suppose
the number of individuals produced by each individual in a given geheration

in
the number of individuals produced by the ith member of the nth genera-

is a ggndom variable. Let 2 be the random variable whose value is

tion. If Zi =0, that i:ndividual does not survive; if Zi = 1, either

that individual survives and produces no offspring or does not survive and

sproducesone offspring. If Xn is the number of individuals in the nth

generation, then e .
. n .
X = m!.n { M, ZIZ } = g(X , n+1)’ where Y = (Zl s 2
i=

n+1 3 ey ZMn)'

If (Z g 1 < 1 <M, 0<n<=} is an independent class, then

2n

{ n_'_]_,(Iln_]_,)("l)] is an oindepeqr’xdent pait for any n >0, Aga%n we l.lave a

situation in which past Behavior affects the future only as it affects the
\ .

present. It smems reasonable to supl;:i the process (Xn: 0<n} is

Markov., U h .

*

Example El-c An inventory problem

-

A store uses an (m,M) {inventory policy for a certain ftem. This means: /
1f the stock at the end of a period is less than m, '"order up" to M |
If the stock at the end of the period is as xmch as m, do not order.

Suppose &£he merchant begins the first period with a stock of M units. \\

Let X be the stock at the end of the nth period (Xo =M). If the ° \

demand during the nth perfod is. Dn’ then

”

ERIC o
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) ma.x((M-D+1),0) if Oixn<m,
K]
xnd-lt- . S(X n+1)

max((x - n+1) 0} if m<x <M . :,

*

If we suppose (D :1<,n} is an independent class, then we have -

{ n+1,(un R )) is an independent pair for each n 20, Once more

it seems the past and future should be conditionally independent, given

- vt
the present . 3} ,i? '
- Ll

Each of these examples provides a special case of the following

L}
Theo Theorem E1-2 '

Seppose (Yn: 1)5 n} 1is an independent class of random vectors. Set

x’0 =c (la constant) and for n 20 let xn+1 n+1(x ,Y . Then

the process (Xn: 0 < n} is Markov and .

v P, €l =) = Plg, g @Y, ) € Q]\ ¥Yn'20, Yu€s, VY borel.set q.

™

PROOF . o .

l)k = (Xo, xl, ey xk) = h (YI, YZ’ ‘iey Yk),’ 1 <k <n. Thus,

(Y 1’(Un I,X )} is independent By proPerty CIII) (Yn+1’ Un-ll }8

conditionally independent, given Xn. Hence, we have for any n, any Borel
i 4

set Q,

o Bl DI, v, ) =Byl & ’Yn+1)] %, v,p)

= E(Tglany ¥l X ) . by CI7)
N = z[rq(xm_ )x )
which estublishes the Markov property. Now ( ‘

: 4 .
P(X ., € len =u) = E[; K pIx =]
= E(IQ[sn+1(x ’ n+1)] lxn -:u)
= E'(IQ[snﬂ(u,- )] R by CE11)
. =P 8n+1(u; Yn+1) € Q] by Ela). [] .
\ ' .
Qo o 128 : ) )

Aruitoxt provided by Eic:




El-6 . . - .- .

’

If 8,4 = 8 invariant with .n, and {f (Yn: 1 <n} {is independent,

identically distributed, then I’(X“_'_1 € Ql'xn = v:x) = Plgtu, Yn+1) € q)

is ¢nvasiant with n. To illustrate, we consider the invéntory roblem
s Y prblen

above (c.f. Hillier and Lieberman [1974], Secs B.17, B.18). ‘

Examplé El-c (cont.linued) .

¥

Suppose m =1, M =3, and D, has the Poisson distribution with A = 1,

Then“the state space § = {0, 1, 2, 3} and I’(X“_'_1 = j,Xn =i) =

Plect, B,p) =3l. 80,0 ) =mix (3 --p ), 0). ‘

Since g(O,Dn+1-) = 0 {ff D“_'_1 >3, ‘

TR, =0lX = 0) =P >3)=0.0803 (from table),

Sil\'xce g(0, D“_'_1

,

) =1 iff Dn+ = 2,

1
P(X ) =~ 1{X = 0) = P(D ) =2) =0.1839 (from table),

Continuing in this way, we determine each transition probability and hence °

the, transition probability matrix ¢ o
5 0.0803 0.1839 0.3679 0.3679
P 0.6321  0.3679 0 0 ’ . )
" 0.2642 0.3679 0.3679 0 . ‘
0.0803  0.1839 0.3679 0.3679]. . (] '
The calculation procedure based on the equation P(Xn+1= j,Xn =) = -

= I’[gn_'_1 [¢¥ Yn+1) = j] can be ju;tified in elementary terms for many special
cases. The general result in Theorem E]l-2 shows how the desired conditional
independence of the past and E(tzre, given th-e present, arises out of the .
independence of th':. sequence (Yn: 1 < n) and establishes the valddity of

the calculation procedure in any situation (1nciuding continuous staté .

space). .
\ - ] ,
»
L] ' l
- ‘ . .
-8
. Q . .
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2, Markov chains with costs and rewards

-In a variety of sequential decision making situations, the progression
P
of states of the system in successive time periods can be représented in a
useful way by a Markov process. The Markov character arises from the "mem~ o
oryless" nature of the prbcess. Often such sequential syste?s have a reward
structure, Associated with each possible transition from one state to another
-

is a "reward" (which may be negative).' Consider th; following classical ex-
amplé,util{zed by Howard [1960) in his pioneering work in the {rei.

Example E2-a . .

v

The manufacturer of a certain item finds the market either "favorable" or

"unfavorable" to his product in a given sales period. These conditions rnay be *
represented as state 0 or state 1, respectively. If the market 13 favorablé
in one period and is again favorable in the next period (transitioﬁ from state

0 to state 0), the .manufacturer's earnings are r If the market is favorable

00°
3 N
in one period and unfavorable in the next (transition from state O to state 1), '

the earnings for the period are a smalier amount Tor Similarly, the other
b
possibilitigs have associated rewards. If the succeséfon of states can be

modeled by d4'Markov chain with stationary transition,probabilities, then the

system is characterized by two entities: the transitdon p;pbability matrix P

and the reward matrix R, given by

. . e - . o ?
p - [F00 Po1 R [0 ToI
y ‘ '
. . P10 P11 10 T11f, 3 : _

We nay express a seneral model for such a system as follows:

let (Xn 0<n} bya diserete-parlgeter Markov process with finite state

- {
' <

. a . ’
Q Ty .
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Space S. The reward structure is expressed by~ the sequence (Rn: 1<n)

of random variabbes . /

4) R = r(xn, X wh‘ere r(i,j} = r

n+l n+1) ’ 1j° . .

We are assuming that neither the reward®structure nor the transitior?
4
probabilities change with time. while more general situations could be
; .

modeled, we use the time-invariant case in subsequent developments.

ket 9. = BtRn+1,xn = 1] = expected reward in the next period, given the
I ) . p:esent state is {.

Yx, = 1] <

= Blr(i, xm)lxn =] ) - ] by CE10)

',..)\

Then 9 = B[r(X »X Ko+l

= Sr(,ipy,. .
3 e
. (m) | - : .
Put R ™ = Rt Rn+20+ ces PR total reward in ths next 1: periods

Raw ‘ ‘

”

Al E[R: lx = 1] = B(E[Rnﬂlxﬁﬂllxn - 1) . by CI8)

- B ElRix, =)

4
From this it follows that

! .
(m) (m 1) A
E[Rn l:;n = 1] = E[R lx = 1] + 2 B[R, Ix = j]pij.

.
.

If we put ’ ‘
vj(.m) = ,E[Rr(lm)'lxn = 1] (invarfant with n in the stationary case)

we have ' ) .

"(m) (m n’ (1) - N .
A2) v E g +2 ijj ,with A =q1." x .

A second type of reward struGture is extibited in the following

v . - .
class of processes, which include inventory models of the type illustrated
'id Example El-c. - N .

t )
- lLet (an 0< n} be a constant Markov chaln with finite state space, and

€ .{D . 1<n) be an independent,"'ide ically distributed olass such

that for each n >0,

KA .1 70x provided by ERiC
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indep’endent pair. The, associated reward §tructure is expressed by the
process [R 1<‘n], wit{\ .

B) -r(X,D

R nt1)”

Property CEll) shows that ,

q = E[Rx;_HIXn = i] = B[rd, D, 1)] (ir;variant with n).

The hypothesis (D +k’Un+k 1} i3 independent and property CIll) ensure

that [Dn-l-k’ xi}4 is conditionally independent, given 2!37 " for ” N
0 € i, Snmtkel, £ # 4. Fof fixed n, k, let’ . . :
Al

e(x,) = E[Rm_klxi] =E[r(X ;> D +k)lx]ﬂ for any £ <n+k -1, ,
‘ﬁlen by . CE8) . L2

e(x)) = Ele(x)|X ] a.s. n<i<n+k -1, -
}i'effce, .
. BL) l"[Rn+klxn =i} = E{E[Rnﬂclxn+1”xn =1) :

. '

oD

= ?E[Rn-l-k!xn+1 = j]pij‘

Applying this formula for k = 2,3, ...’;m, we obtain

2) v® =q +2p v wen vDig

i 3 Pi3Yy i . .
The identity of form of Al), Bl) and A2), B2) ,shows that the followlng .
o
analysis holds for either type of reward structure. e
- . ¢ ] /"‘}

Consider the average expected reward per period for m periods.

E[22™) =,1.7 zg[a ol D

,\\_)’_-,,}E\z EEER (X, TI% D By CEIb) and CI8),
hat i=1 .

-

No‘w EfR |Xn+}-1 = 3] = 'j’ 80 tl;a; N . Pan
. EElR lxn-H. ¥y =k = zpkj 9> ) .
where pkj is thé i-Step transition probability fromk ® j }lence, .
@y . L - () - - 2 O
fig ] 2}[P(x - k)§ Py oyt L [i(x““ k) ?qj pkj ).

.
1] @ . ES
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If the Markov chain is constant, irreducible, aperiodic, as is usually

¢
the -case, it is known that

N -
..

as m =« (invariant in k),

Here 1'1J {s the long-run i:robability that the process is in state j.

.Since the limit is invariant with k, we may sum out the P(X ;=K
to obtain > ' )
) 1 _(md .
*3) HmE[zRT] = mo=g,
R g,

s

VA similar argument\s s that for each state 1§

- N ~

-~ -
) un ez 2™ |x: < 1] = 11n L g =g
mox n . 2 M0 j 33
L4 v € < * 7
Here g 1is the average gain or reward per period, in the long run. We

.1llustrate. by considering numerical values 1:1 the introductory examples. .

Exa_mgleﬁ (continued) T /
/2 1/2 [ 5 fo 3

"S,uppose P = and Rosm,
2/5 3/5 5 5

3 -1y
To find the long-run distribution, we solve the set of equations

’
.

5n0+4n1-10n0 v

5 no + 6 n o= 10 ™ to obtain thé valuti:oh “and nl = 5/9
'no + nl = 1. N
7

~ e .

Then “«

1,.1 2,3 o0y o
% ™ L PosTog Tz 0tz 36 U R S TLs TRl A Ol
(1 m .
57-11m;v§)-§:q 1
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Example El-¢ (continued) , e
Suppose m =1 gnd M = 3, as beﬂ;‘:‘}' o
i ’ rg’ : i
If k units are ordered, the cost is 10 + 25k, DX k <'M,
LA .
I -
If k =0,- the cost ofydrdering-is zéro. |
For each unit of unsatisfied demand, a pm?’sso is assedgsed -

We suppose the demand Dn in period n has Poisson distribution, with
o) *»

=

A =1,

0+ 25(M - X ) + 50 max ((D,,

We may ‘then calculate the cost function (negative of reward)

- M), 0} for, osxn<m

1
C(X n+1) =

0 max [(Dn+1 -’xn), 0} for m'< xn <M.
Thus,
C(O D 1) = 85 4+ 50 max[(D - 3), 0}
C(t, D)) =50 max (B, - 1), 0) for L=1,2, 3,
.. .
Now 'y' ate

9 = Elc(o, b )] = 85 + 50 Ef1

m23® -

L3 ¢ e
~ 85 + sokz (k - 3)p,
L J

© For the Pdigson distribution E kpk =A Ip

<
9o = 85+ 50[ £

k=n

L]
Py - 3 ipk] = 86.2

k-n-l

(Using table for Poisson distribution).

»
Hence, N

I
f}

(tem for k =3 d4s zero),:

-

"ke3 y
q, = Elcqt, D)) = 50 22(k - Lp, = so[ 2 Z oy - 2 pk] = 50p, ='18.4. .
Similarly, we obtain - .
q, = Elc(2, D ] =50 z k - 2)py = 5.2 . o
% <7 ka3 i " .
and < ’
f
/ - .
/ S
/! N
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. intuitive and incompfete. We have provided a development based on

-]
q = E[C(3,Dn+1)] = 50 Ri(k - 3p, = L2.

To obtain the long-run probabilities, we utilize the fact that the

convergence is rapid and consider Pz, P[‘, ... until results stabilize.

>
Direct calculz'acions.of matrix products shows that
0.286  0.285, 0.264  0.166 /
. 8 0.286 0,285 0.264 , 0.166 .
P" = <.

0.286 0.285 0.264 0.166

\ |o0.286 * 0.285 0.264  0.166

from <hich we conclude o ™ 0.286, o= 0.285, mw

2 = 0,264, and
ﬂ3 = 0.166. These add to 1.001, inaicating a small roundoff error.
Utilizing these values,’we obtain

= §J q]n] = 31:5 . [
The treatment, once equations Al), A2) or Bl), B2) and 3), 4) are
obtained,is standard. As a matteg of fact, we have used examples taken

. ) "y «
from pdblished texts. In most standard works,the deri¥itions are

- hd 4 .
fundamental assumptions of independence and conditio-n/a.l independgnce
(or Markov conditions). Such a deve lopment, should both sharpen intuition

<
and provide a sound mathematical basis for utilizing the models.\— >
A\ ] .

- .
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3. Continuous-parameter Markov processes

There are certain technical difficulties in the theory of{ontinuous-

parameter processes., However, advanced methods show that a process can be
4

<

determined essentiall;' for a'ppli:cations 1_f all finite-dimensional distri-
butions are determined (1.e.,,1'f the Joint digtribution for any fim’.te/
subclass of the Fandom variables¢is determined). '

Consi:dex" a real pmc!’ss/ (X,: €20} (.e., T= [0, v‘l.et v, V,\J
W be finite subsets of T: ‘U ="(ull, Uys veey um), V= (vl, Vos -y vn},

- w
and W = (wl, Yy e wq}. We suppose ug <uH_1, vj < vj+1, and

.wls <. L for all mdi‘cated i, j, k. We say U precedes V, denoted

U<V, iff every element of Ui\is less than every element of V. We

v

put vaa (Xul, Xuz, . Xum), )ev = (x"]_" Xz, . XYn), and

X, =& ,X , ..., Xw ).
q ~
DEFINITION. The process (Xt:. t >0} is a Markm{ process iff for

.

‘ dny U< (v}'< {(w} we have .
-~ M Elr, &)lx ] =~ El1 (X )X ) a.s. for all Borel Sets M on
MW T xU MW Ty T
the codomain of 'Xw (1.e., in the state space « S), T
It is clear that condition M) is equivalent to - .

M') For any finite U < (v} < (v}, (x,, XU} 1slcond1tionai1y independent
— v 'Y
- 1y

given Xv. .

As in the discrete-parmxgeter case, we l;ave the equivalent condition (see
'Iheorefn EL-1) ) M \
' - .
M") For any finite U<V <y “n T, (X", XU} is condi'tionally
independent, given xv <
These and other equivalent expressions for the conditional independence

condltish provide major tools for the study of Markov processes.
~

-
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Many of the Markov pr&cesses encountered in practice may be recognized

~

by virtué of the following properf:tir. ! s Yy

DEFINITION. A random process {Xt! t € T} has independent increment$

L£f for each finite subset T = (r), t;, ..., t } of the‘pa;meter

set T, with. to < tl < cvr < tn’ the class

» X - X, .., X =X "} of random Variables is
t t t t
0 2 1 n n-1 .

£l

X, » xtl‘ Xe

0
independent.

.

Two of the most widely studied and utilized random processes have this

\

property. ¢

i

Poisson process. .
» The parameter set is' T = [0, »). The'process counts tha number of
) .
occurrences of some phenomenon in given time intervals.® The randop

variable Xt counts the number of occurrences in time interval (O,t] .

We set Xo = 0, Then Xt - Xs, for s <t, 1is the number of occurrences

in the time interval (s,t]. The property of fndependent increments

models the fact ghat the numbers of occurrences in Tonoverlapping time

" intervals are independent. What happens'in one interval is not affected

- N .

by and has no effect on what happens in othé¥ intervals. ) ~
% te

Wiener grocesé (Brownian motion),

.

The parameter set fs T = [.0, ®), Xg = 0. The process is 4 model of

“ P
the movement along.a line of a '"particle"” under "random disturbances."

}(t is the net movement glong a coordinate axis in the time interval

o, t]. 1In many situations, the disturbances are of¥such a character that

the distancas moved in disjoint time intervals ma$ be assumed independent. _"j
\

Henoe, the independent-increment assumption is appropriate. .




o B3-3
.In the discrete-paran'zeter case, the class of random walks (see

Example El-a) possess the independent-increment property. We have

°

X =Y +Y,+...+Y and X The

1 2 o m-i‘k-xm-Ym:+1+Ym+2+'”+Ym+k'

assumed independence of the class {Yiz 1 <1} ,ensures independence of

the increments,

H
We wish to show that a process with independent increments is a .

Markov process. To facilitate exposition, we adopt the following tet/'\mi-

'nology notation. .

1) We say T} = (to, tl, crey tn}c T 1is a strictly ordered, finite

JSubset off T 1ffg to <t, <., < tn.

1
2) For any strictly ordered, finite subset of T, we define the random’

" variables Y.=X and Y, =X - X for 1<k <n,
0 to |3 tk tk-l
and the random vectors Uk = ()(t » X st X ) and |
. 0 1 k
Zk = (YO, Yl’ crey Yk) for each k, 1<k<n,

- [y

We note that if we have the values of the coordinates of any one of the
vectors U n? Z y (Z -1’ X ), or (U -1’ Y) the values of the
coordinates of the others are obtained by linear transformations, which
are continuous, hence Borel. Thus, we may assert i

A) Any one of the random vectors U n? Z , (2 -1’ X ), or (Un-l’ Yh)

'is & Borel function of any one of the others.
.

By virtue of property CE9b), we have ¢

L ]
B) z[wlz] - B[wlu] - z[wlu 1%, ] = Elwlz,_ X, ] - z[wlu 1,Y] 2.8,

Also, by virtue of independence of Borel functions of independent random

vectors, e
C) 1If any of the pairs (Yn+1‘ Un), (Yn+1’ zn}, (Y a1 ? (Z 10 X )],

is independent, so are the others,

ERIC 138
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With these facts, ye can now establish the fundamental result
-]

3

Theorem E3-1 / .

If the process (X,t: t € T) has fndependent increments, then it is

a Markov process.
0 ) !
*  PROOF . s

« We show that for any strictly ordered, finite '1‘n C T, the condition M')

holds for xU = Un-l’ X, = th, and Xw nvxtn.u.
.
Yn+1)’ with h Borel and

3

W (X, ) =g(X +Y.,)=hEx ,
tn+1 tn nt+l tn +

g E[s(xt )'Un-l’ X, ] = E'[h(xt ,yhﬂ)lzn_l, X, ] a.s. by proposition B)
n+l n n n

By proposition C) and CIll), (Yn-i-l’ zn-l] is conditionally independent,

given Xt . . Hence,
n -

E[h(xtn, ytH_l)lzn‘_l, xtn] = n[h(xtn, le)lxcn] a.s. Py CI7)

We may therefore assert
Elg(x, )Iun_l,xtn] = elg(x, 1)lx‘n] a.s.

* ntl n+

which {8 the desired property. (]

v

The following alternate criterion for fndependent increments 1is frequently
*

useful ag an assumption.in modgling.

Eﬂ_ rem E3-2

A process [Xt: t € T} has independent increments iff for every strictly

suwe, Ordered, finite T, € T, the pair (Yn, Un-l) is independent.

 TRoor 6 - .

. — e

a) 1f the process has independent increments, the pair (Yn, Zn_ll is
independent. By proposition C), above, so is {Yn, Un-I} an independen‘t

[N

pair.

o 139 L
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. v 3 - <
Suppose {Yn, "{1-1) is independent forball T,. Let T, be arbi-

trarily selected, but ffxed. For each k, 0<k <n, set

’1‘k = [to, tl" ceoy tk]. By hypothesis,

1<k'<n.

'{Yk, U, ;) is independent, o

By proposition®C), the pair {Y zZ,_ l) is independent,

1< K < n. In particular, {Yl, zZ .} = (Yl, ¥, } is independent.

.
4

Suppose for some k > 2, [Yo, Yy eens Yk;l] is Independent. Then
by the inldependeuce of {Yk, Z 1] = [Yk, (Yo, Yl’ ceey 1;), we s
have r(ny EM)=P(Y EMk)P(ﬂY EM)-P(Y EMk)HP(Y EM)'
1-0
'I.‘hus, (Y., _1, cees Y ]} is independent. By mathematical induction,
the class {Yo, YI' cesy ¥ ) is independent. Since '1‘ is arbitrary,
the desired proposition follows. 0 . ' . j'
. el . v .
- ’ ’ ¢
[ = =
. e :
. [
L]

»e

9
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The Chapman-Kolmogorov equation .

a Markov process (X’;: 0<t}, let O < s<t<u. Then the \
\\:“ \ -
pair {XS, Xu] is conditionally independent, given Xt., As a special

case of CI8)', we have ¢

1 CK) ﬂg‘(xu):xs] =E(E[;g(xu)!x]]xs} a.s.

.

This is the Chapman-Kolmogorav equation, which plays a significant role

¢, in the study of Markov processes. h

For a chain'with finite state space S, the equation takes a simple
form which is usually determined from the ﬁrst;form of the Markov property

¥

in Sec El and elementary probability patterns. I
»P(X, = ]xs = 3), thfchapmn-xolmgorov equat
ck') pk(s u)—Zpll(s t)p,(t ) 0<s

To see that this is a special form of CK), note that
. B = R
o PO = KIXE g) E[I{k}(xu)}xs 1]

ra

= E(E[I{k}(xul)gxt] [xs =i) .,
§ E[I,{k)(xu)lxt = j]P(xt = jIXS a i

z Pij(s,t)pjk(t,u).

In the case of statxonary transition probabilities, let pi:) be the

m-gtep transition probabihty from-state i to state k. “CK') becomes

(min)

n
CK™) Py

which'is the form commonl: ntered in elementary treatments. In such

treatments, the transition probability matrix P plays a central role. 1If

p (@)

ig the matrix of m-step transition probabilities, then p(™ p"

=PPP...P (m factors). The Chapmari-Kolmogorov equation CK") may be
.

. ©
expressed compactly ag ! <«

ckmy p@M) | p(m)p(n).
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1f the random variables are absol&tely continuous, the Chapman-Kolmogorov

El - -

equation is often expresséd in terms of conditional demsity functions.

CK"Y) £, Ix (zlx} = £ I (zy)£, Ix (¥1%) dy g S
. u'’s Jultt t'%s Y . :
. q:{ this case CK) may be written . .

J s@iy |y G0 dz = [lfay |y ly) ddy [y sl dy
u''s u' 't t''s

=I8(2)[ffx Ix (z'ly)fx Ix (y|x) dy] dz. " ,)
\ u''t t''s

In order for this equation to hold for all Borel fupctions g, by an

& analog to property E7 or integrals on the real line, we must have

¢K"') for each x. . o e

In spite of the importance of the Chapman-Kolnﬁ%rov eguation in many
\ +
-aspects of Markov process theory, it is pot true that the validity of this

equation implies the process is Markov.® Stated another way, it is not

» .
true that the condition CI7) may be replaced by ‘the condition

o

. ; i’ LY
E[g(X)lZ,Y] =E[g(x)tﬂ] a.s, for any Borel function g. The lattert .

! [\
condition is not sufficient for the conditio\nal independence of (X,Y}, .

Y £
given Z. W. Feller has given counterexamples. The following is taked"

from Parzen [1962], p 203, but it is due essentially to Felle’r.

.

Example E4-a
Consider a sequence of containers, each with four balls, numbered one.
.through four. Select a ball independently, on an equally likely basis,

from each container. Let

® .
.

Am(l) = event ball 1 or 4 1is drawn from the mth conttainer 4

Am(Z) = evént ball 2 or & 1is drawm fr:'om the mth l’con:tainer

Am(~3) = event ball 3 or 4 1is dr.aw’n from the mth container. , i
Under the usual assumptions, P[Am(j_)] = 1/2 for any m >1, any i

j=1, 2, or 3. For any m (i.e., any c?ifcainer), we have a classical

3

Q ; '142 ) d
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hY

example of a class (Am(j): J =1, 2, 3} of events which is pain{ise.

independent, bv;xt not indépendent. mce selections from various contain‘ers'
are independent, we assume (Am(jn;): 1<m} is an indepen'dent class for
any sequence (jm: 1 <m} of elements of the set (.1,~2, 3]. 'I“l}us we
'my assert that (A,()):1<m, J=1,2,3) tsa pa'mdselmde;;endehc
class,‘ with P[Am(j)] = 1/2 for any permissible\ m, j. We now form

»

the process (Xn: 1 < n} by setting

¢
By T Iy gy I 23 w21 -

This prosess has state space S = (0, 1}, and the members are pairwise ’
independent, with 1’()(n = 0) = 1’()(n = 1) = 1/2. We also have

P~ X =) = P(X ., =3 =1/2 for any j, k € (0, 1}, any .

n>1, any r>J. o QA

‘ 9
- Thus, the m-step transition pro %lity matrix is .

11 e
3 for any m>1, i
1 1 . 4

p@

Easy matrix calculations show

»
p@p() _ 1|1 Noits YL e
21 1 - & 1

so the Chapman-Kolmogorov equation holds. However, the process is not
, ok
. Hggkov, as the following argument shows. Since AMI(I)AMI(Z) is a

' subset of 'AM1(3), we have Lo ' . .

v By Xy =l Xy 2 D =BG )AL D4, (1)) = 1

o #r(x3m3-1lx3m+2-1) = 1/2. 0

o

y ', 4 . /
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Proof of a basic theorem on Markov processes

We,utilize the notational scheme intro'duced in ‘Sec El.

5.

To prove
Theorem El-1, we first obtain an intermediate result.

Theorem E5-1 - >

For a Markov process [Xt: t €T}, with T = {b, 1

[Xc+1’ Us-l) is conditio‘nally 1ndepe‘ndent, given any vs,t’
PROOF ‘ .

We note that Ut-l = (Us-l’ vs,t-l) and vs,t = (vs,t-l’ Xt)' For any
Borel function 8, any 8, t, 1<s<t, . .

©oElex DX = Elax lu, x] as. by M') and CI6)

= EIS(X&I)IUS-I’ vs,t]'
* By Lema DS-1, with V = X,"U=U ., z= v h(uﬁl)’
Elsx, )iz ] = E[s(xt+1)lv BUR N WS .
= EIS(Xtﬂ)lvs t . //
3 The theorem follows by CI6). . -[] > !
o K v <.
"y Theotem Ell g

As pfocess [X:‘ t€T), T= (0, 1, 2, ... }, is Markov iff

Y (W T+l, t4n? U 1) ie conditionally independent, given any ; finite

extended present Vs e 1< s S t, ,any n>1, any Wk
-3 b4 ’

A Y . > .
PROOF . s ..
. . R
M") implies M') as a special case. ' P * ?
E a. . s " -
) <
‘- Supposg .P.i ) holds. We need onIY esta‘lish M;)‘ Wtﬂr,t-m’ Us-l). is
aa conditfonally independent, given V £ 1<s'<t,anye n>1. The -
. l».

ere general condition follows from C19), with Wtﬂ

and U* k(Us 1) We construct a prao

. %n,*utilizing 'I‘heot'}em E5-1.

] ~ "
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t+l,t+n’ Us-

» 2, «.. }, the pair

1<s<t.
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.,

1) Since X a W M*) holds for o= 1, by Theorem ES5-1,

t+1 t+l, ¥l
i) Suppose M*) holds fof¥ n = k. ’

. . . 3
4 ‘By Theorem E5-1, (xt+k+1.’ Ut] is conditionally independent, given
wt+1,t+k' Hence, f(ir any Borel function g, R

o, v ]
s-1’"s,t /*

AEICU

’ = Ele e Rene) 10 ‘

= Ew[sm&l,t 2 xt+k+1)lwt+1,t~H<”Ut] by C18)
= Ele Vg0V, ‘
by fnductive hypothesis and CI6)

Ele("cﬂ,u-k)lvs,c]

= E(Bts ("t+1 reH? xt-l-k+1) Iw:+1 , t+k] ]vs ,t J

= E[g(w by CI8) and CI9),

t+1,t+k+1)lvs,t] a-8.
;,Bx. CI6), M*) holds for n =k + 1,

i1ii) By mathematical/induction, M*) holds for Zny n > l.a 0

& .




\6. Problems ‘
E-1 Stopping times. In dealing with a random procegs (Xn;{ 0<nj} it

is sometimes desirable to congider a randoﬂ:ly selected member of
3

the process. Suppoée, for example, we wish to stop the process when

a certain result (or pattern of results) is observed. This means

we select Xn as the last variable {ff the observed sequence

(so,sl, ooy sn) € S':];» of results‘exhibits a presc;it:ed pattern,
hence belongs to a'certain subseF Mn of Sn+1. We use this to
formalize the notion as follows: .
DEFINITION. A nonnAgative, intege!:-valued random variable T is\

N
cdlled a stopping time for the process {Xn': 0 <n} 4iff the event .
Ak = {w: T(w) = k} 1is determined by Uk = (XO'XI' veey xk). Thus,
A = u;lmﬁ), vith AA =9 for k # j. We assume k'éor(Ak) =1,

which means that with probability one T {s finite.
-]

It is apparent that T = 'EkI, = TkI (Uk)‘a-s-

k=0 % k=0

a) Suppose X -1s the value of a critical dimension of the nth

*

item from a production line. The desired value‘ig a. The
process is stopped for readjustment whenever . lx=n - al >b. Show

<+
that if T 4s the random \;ariab’le whicl;ddesignates the n'umber of
5 n >
the item at which the 11:&’ is stopped then Tis a stopping
- o s
time for the process. .y D ‘e
D
Suggestion. Express .Mh,\in teﬂ;%f Qj‘e c&tcdfnate sets M=
! . ,'J%! 7 {g‘""
[a-b, a+b]. .0'5@.. * 4“" i~
4 ' & ,"-f' *@
Show that ifsthe X are infeger-valued, the randqm-vétrp.bl;g}'r

defined by T, (w) = min(h > 0: X (w) = 1) is a stoppmg tixpe‘,
A
Shéw that if 'rl is a stopping time for an integer-valued proc‘éas, °

s0 is T, defined by, T,(w) = min{n > T, (): X () = 1).

’ Q N
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E-2

Suppose T is a SCopping time for the process (Xn: 0<nj}. Let
k H N .

U, = E UI, = E U I, (§.). The expressions g(U ) and I (U )
T kw0 KA gap KM K T

must be 1ncarpreCed, since the dimension of random vector U changes

- T
onto k+1

W1Ch T.’\I)f QES and Q(k) is chaprojeccion

then

Mk(U

we set Q(u) )(Uk)IMk(Uk)' Simlarly s(U) Egk(Uk)I

Q(k
Show that E[g(y)luT} = E E[g(Y)|Uk]I U) a.s.

Strong Markov property. Suppose (Xn: 0 < n} 1is a Markov process and

-

T is a stopping time for the process. L

2 show that Elg(iy 5, )lug = Elg (w1 01%]
.= L Elg k-m)'xkhnk(”k) a.s.
b) If the process is homogeneous, show that
Elg (4 1,0 1%) = Elg @iy DI%g) “aus.
t les. The foll 1 f
Martingales e following class of random processes has many \

—

conne¢tions with the class of Markov processes (cf Karlin and Taylor

-[1975], chap 6). :

.

DEFINITION. Let (Xn: 0 < n} be.a sequence of real random variables

and {Yn: 0< n} be a sequence of random vectors. Then (Xn: 0<n}
-

is a martinggde with respect to (yn\:"‘og_ nj 1ff- i) E”xn” is ¢

fin}ce for each n >0, and if) H)Sn-f-llyo’yl’ ceey Yn] =X as.

for each n > 0.

-
Not:e that condiuons i) and 1ii) imply iii) X = e (YO,YI, . Y)

a.s., with e, a Borel .funccion,for any n > 0. If Yk * xk’ all k, /<
we say (X :0<n} isa ma}-cingale without qualifying expressio

a) Show that “for a marcingale E[X] = E[XOJ for all n. .

.

b) Show that if (Xn: 0 <n} has 1ndependenc increments (hence is
. R

Markov) and , E[X ] = E[x] all 4> 0, the process is’a martingile.
/ n 0 - " iy

Aruitoxt provided by Eic:







APPENDICES _
Appendix 1. Properties of Mathematical Expectation Al-1

Appendix §l. Properties of Conditional Expactation,
- Given a Random Vector - . Alt-1

Appendix {11, Properties of Conditional Indopendonee

\wdom Vector Alll-1

\ ERN -
»
.
»
-
1 N
-
v .
-
rL 2
/
lad . 2
]
w !
Ve
\
-
L
C 2
149 -
, {

ERIC -~

Aruitoxt provided by Eic:




. ¥
APPENDIX I. « Properties of Mathematical Expectation

-oE) El] =R ‘

Ela) E[1,(0] = P(X € 1); E[I (X)I (¥)] = P(x €M, Y € N) (with extensiod
'by mathematical induction to any finite number of factors).

E2) [Linearity. E[aX + bY] = aB[X] { bE[Y] (with extension by mathematical
incfuction.to gny finite linear combination). ‘

E3) Positivity; monotonicity.

a) X>0 a.s. implies E[X] > 0, with equality iff X=0 a.s.
b) X>Y a.s. implies E[X] > E[Y], with equality iff X =Y a.s.

* E4) Monotone convergence, If X - X monotonically’ a.s., thén
n

-

1 E[X ] > B[X]. monotonicWA1y. o
n — ~ .
B5) Independence. The pair (X,Y) of random vectors is independent

R EOnm] = el @IElL®] for all forel sets u, ¥

~
on the codomains of X, Y, respectively, )

o

T iff Elg@Oh )] = E[g(X)JE[h(Y)] for all real-valued Borel functions

8, h such that the expectations exist.

£6) Uniqueness.
a) Suppose Y {8 a random vectdr with codemain R° and g, h are -

-~

real-valued Borel functions on the range of Y. If E[l (Y)g(Y)]

. = E[IH(Y)h(Y)] for all Borel sets M on the codomain of Y,

.

then g(Y) = h(Y) a.s. - )
b) More gemerally, if r;[r "1 (Z)g(Y,Z)] - E[IH(Y)I (Z)h(Y,2)] for
all Borel sets M, N in‘the todomains of Yi+z, reSpectively,

then g(¥,2) = h(Y,2) a.s. ’

A »

E7) Fatou's lemma. If X >0 a.s., then E[lim inf xJ < lm inf E[X ],

.

_E8) Dominated convergence, If X, >X a.s. and lxnl <Y a.s., for

each n,\ with E[Y] finite, then ‘E[Xn] > elx]. . -
Q . = i ‘
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39)‘ Countable additivity. Suppofe E[X] exists and A- UA Then'

. ixl
E(I xl = 22[1 1. )
. t=l M : . 4

310) Existence. If E[g(X)] is finite, then there is a real-valued Borgl’

function e, unique a.s. [PY]’ such that E[IM(“I)g(X)] rE[IM(Y)e(Y)Jj

for all Borel sets M in the codomain of - Y. : : s ¥

[

El1) Triangle inequality. |E[g(X)]| gktlg(x)ll. “ .

1

E12) Mean-value theorem. Tf °a <X<bason A, then gP(A) <kl x] <~bP(A) *

LY

-

El3) Let g be a nonnegative Borel function, defined on the range of X. let j\

A = (w: g[x(m)] >a). Then E[gX)] > aP(A) ~ ‘ :

v

El4) Hm:kov s inequﬂty 1f g>0 and nondecreasing for t >0 and a > 0, '7

-

»
-

“* then g(@er(/x| > a) < elg(lx])].
* .
E15) Jensén's ine ity. If 8 1is a convex function on an interval I whith
,includes the !'ange of real random variable X, then g(E{X]) £ E[g(X)].

E16) Schwarz' inequality. If X, Y are real or complex random variables with

ellx|¥ and Ell¥|3, finite, then lz[xyll2<z[lx|2]zllvlzl, with

1

equality {ff there is a constant c such that X = cY a.s.

. &
E17) H3lder's inequality. Let 1 <p, g<® with i‘-+§ =1. If*'X, Y are
- F * _
real or complex random variables with E[|x|?) and E[]¥][9 finite,
- 0 ‘ > - . 3
then E[|x¥]) gznxlpl”l’zuquﬂ/g. :

q .

E18) Minkowski's inequality. let.1<p<®, If X, Y are reai ofcomplex
S € mp

/., random variables with E[|X|?) dnd -Ef|¢|?) finite, then
Bllx £ ¥IP1M® < el|x|P) VP 4 e[ v|?)P/2. -
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APPENDIX II. Prog‘grties of Conditional Expectation, given a Random Vector
: ]

4 . 't N
We suppose, without repedted assertion, that the random vectors and
>

Bc‘n:el fu;xc.tions in the expressions below afe such that ordinary expectations
Lexist. ’
cel) e = Elg®ly] a.s. 1£f El1 (Ng(®)] = ElL (Me)] for all
Borel sets M on the codomain of Y. ‘
CEla) If P(Y€M) >0, then E[r (Ve()] = Ela) |y € Me(¥ ¢ m),
celb) Elg(x)] = E(E[g(0)[Y]).
CE2) Linearity. B[ag(X) + bh(¥)|z] = aB[g(X)|z] + bE[h(¥)|2) a.s. (with
[~ T Téxténsion by mit;ématical induction to any finite linear combination).

°

CE3) Positivity; monotonicity.

gX) >0 a.s, implies E[s&;'Y] >0 a.s,
g(X) > h(¥) a.s. implies Elg(X)|z] > E[h(¥)|z] aws.

CE4) Monotone convergence. xn—ax a.s. monotonically implies

E[x [Y] » E[X]¥] a.s. monotonically. |
CE5) Independence. a) (X,Y), is an independent pair iff :
b) El1g)|y] = E[I ()] a.s. for all Borel sets N iff
c) ‘Blg®)[¥] =E[g®X)] a.s. for all Borel functions g.
CE6) e(¥) = E[g()[¥] aus: 1£f E[(V)g(0] = E[h(Y)e(¥)] for all Borel h.
CE7) If X =h(Y), then E[g(X.)iYJ = g(X) a.s. for all Borel g. .
« ce8) Elhg)|Y] = n(D)Elgx)|Y] a.s. .
CE9) If Y =h(W), then E(E[g(X)|Y]|wW} =E(Elsx)|w]]y) - Eig(x)lﬂ a.s.

Ce9a) E(E[g(X)|¥]|¥,2) = E(E[g(X)]¥,2)|¥) = E[g(X)|¥] a.s.

CE9b) If Y = h(W), where h s Borel with a Borel inverse, then
. " Elg) Y] = Elgx) W] a.s. ’
~ " . ’ . . -
A ;7 B
ERIC ~ o : o
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C_BIO)‘"’If— g 1is Borel such that E[g(X,v)] is finite for all v on the

. .the range of Y and z[g(x,{r)] is finite,' then‘ : )
Elg®, DY = u] = Elg@,w)]¥ = u] a8 [p].

CEL1) In CE10), if (X.Y] is an independent pair, then e
ElgX, )Y = u] = E[g(X,u)] as. [

CE12) Triangle inequality. |E[g(x)|¥]] < E{lg)|[¥]) as. ' - °

0’ » ~
CE13) Jensen's inequality. If gs {8 a convex.function on_an interval I .
. N . a L

v '

which contains the range of reai_random varigb‘lq X, then
. s

g&lx|¥]) < Elg@)|¥] a.s. . . . .

\
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° . .
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APPENDIX III. Properties, of_ Conditional Independence, given a Random Vector
Y . .
The following conditions are equivalent:

cl) elr, or iz = B[IM(X)lZ]B[IN(Y)lZ] a.s. Y Borel sets M, N,

. R
cr2) E[1,(x)|z,] =EIIM(X)IZ] a.s. Y Borel seti M, -
C13) E[IM(X)IQ(Z)IZ,Y] = z[xv(x)xQ(z)lz] a.s. .V’Borel sets M, Q.
c1y). Elr, O (2)[¥] = E(E[T, ()T _(2)42] |¥) a.s. ¥ Borel sets M, Q.
SN LA P
. . C1%)- Elg)h(y) 2] = B[g(X)IZ]B[h(Y |z] a.s. V Borel functions -g, h. ) e

c16) Elg(0)lz;1] -z[g(X)lz] a.s. [V Bortl functions g. RN
c17) Elg(x,2)|z,¥] = el[gx,2)|z) a.s. Y Borel functions g.

= B(E[g(X,2)|2] |Y) a.s. V¥ Borel functions: g o

.

" c8) Elgx,2)|v]

'/gMDBFINITION. The pair of random vectors (X,Y} is conditionally independent,

glven 2z, 1ff the product 'r:ule CIl) holds.' An arbitrary class of random
’

vectors is condf

°

rule holds for each

[ Y

onally independent, given Z, if an analogous product

-

nite subclass of two or more members of the class.

.

C19) If (X,Y] is conditionally independent, given 'z, U= h(X), and

V = k(Y), with h, k ~ Borel, then {U;V] is cénditionally inde-

-
¢
- -, . e

° pendent, given Z. vt

:

oy ’ CIIOG) 1f the pair (X,Y) ’is conditionally in'depend-ent, given Z, then
a) Elg@n(m] = E(zfg(X)Izﬁ}h(v)m - Ele; (2)e, (z)]' |
L b) ‘Elge0] ¥ € N]m € N) = E(E[X (Y)Iz]z[;.(x)lz] bo-

crlr; 1f (Y, (x 2)) is independent, then (X,Y} {s conditionally

independent, given z.

CI12) If ({X,Y) is conditionally independent, given- Z, ' then
’ . ..

o

 CEBE DY =y, 2 vl = elgX,u)|Z =v] a.s. [P
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* 4 Selected Answers, Hint.s, and Key Steps

g Al 1) .',’(X)-(oAA,m u) 3(X)-(DABCAUBAUCBUCQ}/

Y

L A-z'i) X" ((-s0])=-AUs 114) x° ((-m,sl)-AHBUC-D )

” A-3 51@'\ 8y a.s. l but By "82 a.s. [ij -
» A4 a) g 1is cont. (draw graph), hence Borel, all t
- - . n . »
A-8 a) Xg20. A= B 4 implies I, = lim L 1 implies
v “

1=l n a4 . '
n
- ZI, X increases to I X. Use linearity, monotone convergerce.
g e 1=14 - A -

r ) ‘
" B6 1) ‘implies P(aB|D) = P(AID)P(B[D)  {1) y(u/es P(aH|D) = P(A|D)P(H|D)
3 . .
141) i%plies P(BH|D) = P(B|D)P(HID)  iv) mplies P (ABH|D)—=—P(AB{DYPci D)

B%? 1 576/228 . | ) . R . R

. B8 vd) PCEITT)/RCTT,) = 64799 o) BeclTyTH/P(C|TTS) = 167891

*

B-9 r*(le)/r(w Q) = 1/3, implies P(W|Q) ="1/4 P(Q) =1/2

¢
~
2

PWIQE)/P(WEIQ%) = 3/2° tmplies P(W|QS) = 3/5

. Treilas®) | pp(w [Q)pcale)r(s®|o) + PS)p (i [QSIP(alQ)P (8% [QS) ‘7;
PF[a8%). PP (S| QP (Al QP (%) + ()P (W lo®ypcalo®rrsSle®y T

B-10 rl‘ B) is conditionally independent, given A, and given A -
. &

. P(rAT) = 0. 54 P(AT ) =0.12 P(A T) = P(T) - P(AT) = 0.06 P(Ac:l‘c) = 0,28

B(™[B) LPAT) R(BlA) + P(A°T) P(B[A%) _ 342 _
- 28 B) | P(ATS)P(BA) +*f;’(A°T°)p(ﬁtA‘) BREI

B-11 b) P(DL)-OZ r(xln)-o.,l P(L |D)=ozw2|1:>)=096 R

?(DIID‘)=0 1mpuesp(DID)=o IC = ID, = §- 6 -
o ’ Hence,, vP(Dl D,) = P(DIIDZ) + P(Dllcbz) -0
. . IR P, 1% )P (C|1%DD,) -
.o P(D ]C) = * T
2 3%
) " /(D Orat lD )E(c|1® )+ P(D P(L Io )P(ClI )

102 21 D3 42 50 D1

v . v < -

= p-1% B, ) A, = 3.290 > - 0.201 Classify tn group 1
' ] -

‘,’ - e s °

« .
AE MC ¢ ” *
-
g . .
. S <

M 5o . . v ~ I
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c-3 E[1,800] = E[1,380)] +E1,;ca0] = Elg(x)|aB]R(AB) + E[g(0)|AB]R(AS%) °.

c-7 A= (x> +Y*<1)= ((X,¥) €Q} Since Z =X on A, we have
E[ZIAjP(A) - E,[IQ(X,Y).X] = 0 (by evaluation of integral). Also
Elz]A°)(A°) = Ell,cc] = cP(A®). Hemce E[z] = 0 + cP(A") = c(l - 'z:-)

c8 a) El’ +¥|x=t] = +E[Y?x=tc] = 3l 44)/2 1<e<2 -

by E[xY|X = ] -Zt(t2+2c+'4‘)/(c+z) 1<t<2
¢) E[X|X<E(Y+1)] = B0, (%, D] /E[1 @, ] = —536&78=§;—§~1 19
c-9 a) E[X’ + ¥|x = ¢] = ¢? +z[y2]=c +7/6 1<t<w
b) ~E[XY|X = ¢] = eely] = ¢/ << )
z[g(x Y)I\T-T,"‘i’- v] = Efg*,Y,2)|Y =u, 2 = V] <. .
= E[g*(u,v)|Y =u, 2°=v] . b;' CE10)
fo- = Elg®,0)|Y = u, z = v] . -

C-11 E[g0X,1)[z = v] = Ele(¥,2)[2 = v] = Ele(¥,v)]z =%}

. =[ e@,v) dFleiulv) = [ ElgX, DY = u"'z = v] dFYIZ(u|v) \
/ = E[g(X,u)|Y = u, Z = v] dFYIZ
g-12.a) v(¥) = E[X? - 2e ()X + e2(V)]Y] = Elx?|Y] - 2e(E[X]Y] + e2(¥) ’,

(u]v) ¢ < by Prob €-10

&) ER} +varle} = B[V T - Ele2(0)] + Ele2(v)] - EX[X]
=l -efg T~
e C-13 a) E[f|N = n]Pb(N =n) = E[I(n)(N)D] = E[I(n)(N)Yn] since D = Y.n on
N"'(n). This implies E[D|N =n] = E[Y ] = nE(X]
var[p|¥ = n] = E[p?|N =] - eZ(n) = E[¥]] - E*[¥]
¢) var[p] =Elv)] + var[e)] = E(NVar(x]) + Var(Ne[x] ). . *
Var[x] and E[X] are constants. ,
C-16 8) oy@ = E(E[™P|N]).

~E[eiuD'N = n']P(N - n) "E{I (N)eiuD] - E[I(n)’(N)e"“Yn] .

() .
=~ PN = = P(N = n)gl .
( n)oyn(tx) ( . Py (W) . ,

QD(U) = IZ‘J P(N = n) 0;‘{(0) = SN[ox(U)] . *




"c15 @) 0 < Varle(]/Var[x] = Varle(0]/(varle)] + Elv(®]) < 1
since’ v(Y) >0 a.s. .
d) Sety Xt = (X - E[X]) /oy, and ¥ =lA(s(Y) v Elg (0] J/olz(v)]
p2[X,8(0)] ='E[x%vx] = E2(Elx*y*|Y] ) = E2(v+E[x*|Y] Jo by CE8)'
< eleen) A e(E2[x*]¥] ) by E 16).
. h E(E3(x - E[x]]¥})/var(x] -_Va}fe(v)]/Var[)d - k2
By.CIl1), (X,Y} is conditionally independent, given Z. Hence
Elg(X)h(v)|z] = E[s(X)IZIEIh(Y)IZ] = e{g)]Em ) |2] by c&-:s)

1) %Iw(u‘ltl’ ety ) = e(n_ Dy, j‘to (a<1)u du, t,= mi.n(tl,‘..., )

€M = tp,6] = ege® DR[OV )1 - e
11) E[ufw = 131 s k] = @+ R)/O +n) k=g +k2+ . 3.'&
P ,k]w(n+1)/(n+k+2) - z@j‘;
E[H] = 2/3 E[ulsl)0 = 8] = 8/11 varlw] = 2/117 ° . Varli|s, o« 8] = 25/2783
3[1 (H)D] = z E[I (N)I MY ] = z P(N = n)E(I (u)s[y.]u]]

iid) E[H[W = k

a) By CIII), (V D] is condttionally j,ndepggdent, given N,

P(W<t, N=n) = E[I CAJLIN ](N)] (I ]pm:h (0, v, N]]

BY CI12) 5[1 (o, v)]v =v, N=nq] = zfz (0,v)|¥ = B A p(o< “;|N.= n)
P(W < :-, N= n) = EI‘I(n]‘(k)P(DSvtIN = k) dFv(v)P(N = k)

. = P(N = n) fP(D Svtltf = n) dFv(\{)“ .

g
b) P(W< th =n) =20 at, 0<t<1/20a az = nm/A f
y 1 -15at -25 t
.o P(w<clu-n)-1+mat(e - a
" D6 px(zse)% 0370" R(10,26) = - 1115 R(20,26) = - 46.40

Rt 9 P

R(30,26) = - 35.35 Optimum a = 20,

) 0<, az=m'r/A

’

D-7 4(a,u) = 1 - 2p(a,u), where

& p(a,u) = P(Y = a- IIH - u) + P(Y - aIH - u) + P(Y = a+1|H = u)\ -

-a+1

= ¢, a-u®la u) +Cman’@ - w'?

+ C(n, a+1)u8+1( - gyr-a-l

+
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R(a,x) & E[L(a,H)P(X = x|H)]/P(X = %) P(X = x) = 1/ (mtl)

zgmlgcgm,xg
n+m+1

To minimize R(a,x), maximize with respect to a the function’

C(n,a-1) C(n,a) . _C(n, M)
C(ntm,atx-1) C(rgm,ai-x) C(nim, a4x+1) ' i b

For n =10, m=3,. x « 2, K{(5,2) = 0.432% K(,2) = 0,4779

\ , K(7,2) = 0,4883 K(8 2) = 0 4534 K(9,2) = 0.3625 _

Optimum R(7,2) =1 - -7— K(7,2) = 0,1628 .

.

=] . K(a,x)

K(a,x) = +

D-8 §trategy: st stage-- risk P (0,0) = 47/12 = expected gain for strategy ..
2nd stage - I'f successful ~ mz(l:l), then risk _
I unsuccessful ~ 0,2(1,0), then play safe
3rd stage-- mj(Z,Z) indicates risk

94(2,1) 1indicates risk ' LY

- ) 03(1,0) indicates\safe .

E-l b) (T, = k) = (u eM* x M x ... x M xM-MkCS ]-Ak, M= (1)

9 (1, =1 Jt_foiT N €)= 0, W ERRLERY

7 . '
¢ ,.J
B2 Els(1y(up] = Elg(n) £ Ty, Vi Tg ey G
r " FEEOILIT, 00T @)
v = E(f l;fg(Y)"Uk]Iw((Uk)IQ(UT)]

.4 .
/P/-_B a) From problem E- 2

. Elg(w, .M)IUT} = LEle 0y, I, n

- E Elgw, k k-m)lxkh (Uk) by Markov property
ElgGiy 1) &) = z E(els( m)x x|, ]Iuk“’k”
.o 2 EElg  ix ]I, Ty, ©)
‘ .- E{z Ble(h 1) %] Ty, ©OT,C))

" Hence E[g(wT’M)IXT] = EE[g(wk k-m)'xk]IMk(Uk) a.s.




. . SA-5
. s

.2 .
Elx ] = z(s[xnﬂlyo,yl, s Y]) = Elx ]

A
E[xn+1,un‘} = E[xn+1 - xn'un] + E[.xn'un]

- rz[xn+1 - xn] + X, a.s. by Thm E3-2, CES5), and CE7)

L3
, b 0 + Xn -
4
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Y . * .
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