H

DOCUMENT RESUME

ED 212 479 . SE 036 090
AUTHOR Matthews, George E. ~ '

TITLE Verbalizing Mathematics Using APL,

PUB DATE Oct 81 -) . c L
NOTE 15p.; Paper presented at the Annual Meeting of the

American Mathematical Association of Two Year
Colleges (New Orleans, LA, October, 1981).

EDRS PRICE MF01/PCOl Plus Postage.

DESCRIPTORS College Mathematics; *Computer Programs; Computer

) Science; Educational Technology; Higher Education;
*Mathematical Vocabulary; *Mathematics; *Mathematics
Education; Mathematics Instruction; Problem Solving;
*Programing; Proof (Mathematics))

IDENTIFIERS *APL Programing Language; *Computer Uses in
Education ‘ :

ABSTRACT .

The nature of "A Programing Language” (APL) is viewed
as unambiguous, consistent, and powerful. It is based on the notion
of functions as imperative verbs, and is used by a small but growing
number of mathematicians and computer programers. Three areas of
mathematical activity are addressed: calculation of arithmetic
expressions, evaluation of algebraic formulas, and computation of
algebraic processes. The uses of APL in each of these areas is
illustrated by elementary examples. Bacause of its design as a

-language rich in primitive functions, with extensions created by

operators and user-defined functions, APL is seen as a powerful tool
for mathematical expositiun. (MP) .

******************i********i*****************w**************?**********

* Reproductions supplied by EDRS are the best that can be made
* from the original document.

()

Q

U:S. DEPART.MENT OF EDUCATION : ’
NATIONAL INSTITUTE OF EDUCATION “PERMISSION TO REPRODUCE THIS

. EDUCATIONAL RESOURCES INFORMATION MATERIAL HAS BEEN GRANTED BY
. E/ CENTER (ERIC) -
The d has been reproduced ss

wmmmumm

origmating it.
) Mmor chenges have been mede ta improve

reproduction quakity X

© Powts of view or opanions s.ated in this dgc:- TO THE EDUCATIONAL RESOURCES <
ment do not riecessarily represent officiel NIE INFORMATION CENTER (ERIC)."”
postion of policy

VERBALIZING MATHEMATICS USING APL
George E. Matthews
Associate Professor of Mathematlcs
Onondaga Community College
Syracuse, New York

If mathematics 1is something that people do, then math- .
ematical exposition should be rich in verb forms. However,
conventional algebraié¢ notation 1s better suited for des-

cribing static results than for dynamic processes.

APL (an acronym for A Programming Languige) is a modern

_mdthematical notation that is unambiguous, consistent and

powerful. Furthermore, it is based on the notien of functions

as imperative verbs. As such, it is an effective means of
communication for both people anl computers. Created by the
mathematician Kenneth Iverson and putlished in 1962, APL now

is used Ly a small but growing number of mathematicians and

computer programmers.’

This.pqpér addresses three areas of mathematical activity:
calculation of arithmetic expressions, evaluation of algebrailec
fofmulas, and computation of algebrailc procésies. The uses of

APL 1a each of these areas is illustrated oy elementary examples.

”

o

OVERVIEW OF APL

A few comments will suffice to characterize APL for those
who are not familiar ~ith its design. Further details can be
found in works such as (Palkoff and Iverson, 1973), (Gilman and
Rose, 1976), (Iverson, 1972 a‘and b), and (Peelle, 1979):

APL may be viewed as an alternative mathematical notation
that is diré;tlf executable on machines (computers). It is
structured like a "natural" algorithmic language, with functions
serving as verbs, constants as its nouns and variables as its

pronouns.

APL uses arrays of sonstants as basic data, it has a com-
prehensive set of brimitive functions, and uses operators and—
user-defined functions to.+ ‘- the scope of the defined

symbols. There is virtuall - restriction on choices of names

for functions or variables in APL.

"All functions in APL are treated alike, in a right-to-left,
arithmetic syntax; parentheses a;e needed only for expressions
used as left-hand inputs. Statements in APL result in either
assignment of~values to named sctorage, Sranching to anﬁther

numbered-statement, or display 9f computed results.

APL uses many familiar symbols from conventional algebra
but regularizes their syntax and assigns special meaninge for
both familiar and new symbols. The consistent form of all
function usage in APL results in concise expressions that are
easy to comprehend once 1nitial familiarity is achieved. The
poinﬁs mentioned above can best be seen throuzh specific

examples. -

.

ARTTHMETIC CALCULATIONS

-~

The basic operations of arithmetic (addition, subtraction,

gmultiplicatibn,'divisiqn, and expongntia;ion) Are viewed as

functions with two inputs. Any expression containing such
arithmetic symbois is viewed as a directive to calculate a value.

Thus 2 + 3 18 5, 3 x 4 13 12, and 2 « 5 is 32.

If an expression appears on the right side of a function

symel, it is evaluated before the left input (1f any). As
usual, parentheses can be used to slter this built-in-order of
Lo :

operations. Hence 2 + 3.x 4 is 14 and (2 + 3) x & 1s 20

i
i

-

and % x 2 + 3 is also 20. -

APL adopts this simple and uniform order of operations so

that the great number of functions defined in APL can be used

’ qgsily, without regard to complicated rules of precedence or .

heavy use of parentheses. The symbois for the basic operations
are also used for related single-input functions; additional
uﬁerﬁl arithmep;c functiogsfare also defined, as shown ln figure 1.
The singlefinput gqnctions are called monadic and the funiyions X

with two arguments are called dyadic. ' i

ARITHMEIIC SYMBOLS IN APL

]

., + Identity, Addition [Ceiling, Maximum
- Négat{bn, Subtraction L Floor, ‘{nimum
x Signum, Multiplication ! Tactorial, . 'Binomial
s+ Reciprocal, -Division - | Magnitude, Residue
« Power nf e, Exponentiation o Pi times, ‘Circulat, etc.
e Naturél log, Logarithmic @ Matrix inverse, Matrix divide

L

, Migure 1. Monadic and dyadic arithmetic functions.

t

f

‘ . ?

For example, if the subtraction sign is also used for
hegation, then obviously the division sign may be used for
reciprocals. Thus - 1 1s "1 and ¢ & 1s 0.25. The vertical =+

line 1s used for absolute value as in |°5 which is 5 and

¢ . . .
for division remainder as in 3 | 14 which is 2. Factorial -

three is written ! 3 and two pi is written o0 2. The square '
root of three may be represented as 3 » # 2, in a manner

which easily extends to any desired root.

With thzzrull complement of propositional (logical and
relational) functions useable in APL, it is possible to make
arithmetik statements without using adiitional notatidns out-
side APL. For example, 0 = 3|14 means tha® 3 1is not an exact
divisor of 14. Conditional valuations can also be expressed
directly as in 3 + 2 x 4 < X, which 1s 3 + 2 if 4 is less than
X, otherwise it is just 3 . More examples of this scrt -will be
1llustrated in the sequel. . .

By far the greatest attribute of APL is|its handling of
arrays (lists, tables, etc.). All of the elementary functions
extend to arrays on an elemént-by-element basis. Thus + 1 2 4
18 1 0.5 0.25, 2x134 is 26,8, 32+ 4618 7 8. Note

that single numbers are extended as needed to match the array.

*

Special array-based functions are defined in APL to provide

ease in generatirng, manipulating, and restructuring arrays; such

- ‘ ,
functions are called mixed functions. Additionally, the use of

operators, whichcextend %he scope of the arithmetie and propo-

sitional functions, allows concise expression.of simple ideas.

’) \

]

- The arithmetic mean provides ar example: If X is ; 1ist of
numbers, then ¢/ X is the sum of these numbers and pX 1is the
count of theée numbers. The former expression'uses the réduction “
operator and the latter uses the mixed, function shape. Thu;

(+/ X) . p X is the simple arithmetic mean. 3ee figure 2 for
specific cases of the simple mean, weighted meén, and mean of

"~

selected scores.

L) . .ARITHMETIC MEANS IN APL

~

X 78 90 83 75 79

+/X
405 .
eX ¢
s AN
. (+/X) = X !
81

- D D i > o ——

L) ~ SIMPLE MEAN

SCURES « 34 78 90 83 79
+ WIS ¢ 21111
" ", WTS x SCORES
168 78 90 83 79
£4/WTS x SCORES) <+ +/UTS ' -
83
| ") . WEIGHTED MEAN

X « 78 90 83 75 79
HIGHESTY « 4 t XC9X3]
84 , HIGHESTH
B4 90 83 79 78) -
(+/WTS x 84 , HIGHEST4) < +/UTS :
83 «
’ L) <« ADJUSTED MEAN

a FIGURE 2. EXAMPLES OF OPERATORS AND MIXED FUNéTIUNS

The expression for the adjusted mean shown in figure 2 could

be read as "SUM WEIGHTS TIMES 84 WITH 4 HIGHEST X all OVER SUM WEIGHTS."

]

The underlined words represent the dynamic-parts af the expression - °
: : - ’

and correspond to operators (SUM), APL primitives (TIMES, WITH, ‘
OVER), and a user-defined funetion (HIGHEST). Appropriate defi- -
nitipns of APL programs for these verbs_are shown in Appennix two ‘

and explained later. Also illustrated in the above expressions

are the pronouns (variables) WEIGHTS and X, the nouns (qanqtants)

gy and 4, and the use of "all" to denote the required parentheses.

e

ALGEBRAIC EVALUATIONS ' ‘

In the arithmetic calculations Just cited, the variables were

merely convenient names for specific constants. More generally,

variables are used to represent indeterminates (parametérS'or ‘3

unknowns) i. algebraic formulas.

In a sense, such formulas represent hypothetical statements
that have meaning (value) only when certain other information is
given. APL has a convenient way to represent 'such formulas as

cnaracter strings which can be evaluated later using the built-

]

in Execute function.

The statistical variance of a list of data, defined as the
mean squared deviations from the mean, can be represented by
various formulas. A literal translation of the definition into

APL is easy but not very readable. Note the triply-nested

o

~

parentheses shown in the first formula in figure 3, with division

being the final function performed.

A simpler computational formula expresses variance as the
mean of the squares minus the square of the mean. This formula

has only doubly-nested parentheses, with subtraction being the

.- final function performed:

. . "

g =
e - - R ¢ m—— - e ‘e a= - . eae -

.-
- oammd 20 aqean -

Ll

N " EVALUATING STATISTICAL VARIANCE . R

FL e ° (47 (X = (+/%X) +pX) # 2) + pX * |
F2 & * C(+/X % 2) + pX) = ((+/X) + pX) % 2 °' .
X ¢24 4810 12 14

+ A1 .
16)
. s F2
16 ot .
Xe79688
s F1
1.04 . ¢
. a2 F2 >

’ k]
-a FIGURE 3. EXAMPLES UF FORMULAS' AS APL STRINGS .
g -

-

The forﬁu;a in any case is gncloéed in quotes, which mean -
that the symbols therein are characters”without°intrinsfc , S
meaning’or value. The Execute function, denoted by ¢ , has the
etfecp‘of Atripping off the quotés and interpreting the string kzl///’J
as i1f 1t were a statement diréc}ly entered by the user. This
system allows several formulas to be stored as namad‘cha:acter
strings for later “recall and evaluation. Such strings may
contain functions, cqnstants and variables as desired. After)
. appropriate values. have.been specified rbr the variables, the

formulas can be 2valuated.

-
v

A common algebraic activity 1s:graphing functions. Figure 4
shows a manner of graphing the function (X - 3)(X - s) on the
domain of 1,2,3,4,5,6,7 - The technique involves character
strings, the Execute function, the outer product operator, and
indexing. The details ne?d not concern us here, for.the example 1s . o

1tended merelé to illustrate the scope of algebraic evaluations in_
4 i T

- hd < . i
i g o w oe -~ . 7 Ry
’

" - GRAPHING, ALGEERAIC FUNCTIONS * -
‘ d I

F & * (X=3) x X-5 °)
° X ¢1234567 ,)

B¢YesF
830 1038 . :
o (0= 2 F) / X ; \
3s . '
' 0'¢ RANGE ¢ 9 - 110
876543210 "1 , -

‘ (10 2 p tRANGE)," #' [1 + RANGE «.=.Y] *

8 » » s
k¢ . d 3
6 _ .
5 -
Y ‘
3 ® - .
2
1 . .
0 * % . ,
1

[
EY

a FIGURE 4. USING OUTER PRODUCT TO INDEX A SYMEOL STRING

Inasmuch as aigebraic identities constitute a major interest in
mathematics, it 1s appropriate to illustrate the use o} APL in alge-
braic proofs. Figure 5 sﬁows a proof that the sum of n integers o
starting from 1 equals half the product of n with n + 1 . Each state-
ment on the left {s equivalent to the preceding statemént for the
reason stated on 1its right, ' Theorems such a@s this can be "checked" by

executing the statements rortséedifie choioces of n. - As a result, an

APL proof can be more convincing than.a mere ‘abstract érgument.

r i . EN \
" . - PROVING IDENTITIES IN APL ’
[¢/ AN - DEFINEDIl FOR FINITE N
) +/ ® N ., + IS ASSOC & COMM
(] ((#/\N) + (+/0N)) + 2 X & (X + X)) + 2
] (+/ (\N) ¢ (OD\N)) = 2 + IS ASSOC & COMM
" (+/ N p N+1):+ 2 . LEMMA
(] ((N+1) x N) + 2 DEF OF x . *

~<

s FIGURE S. EXAMPLE OF AN APL PROOF ‘

. %ﬁ

ALGORITHMIC COh‘U”AmIOVS

-

° The uses o; APL 1lIustrated in the foregoing are all for
immediate execution on the computer. Nevertheless, most APL
users see it as orimarily 2 programming, language, useful for
writing stored programs. -Much of mathematics involves algorithmic”‘ ’ .

processes, APL can be invaluable for defining and exploring such

;

procedures.)) ' -

An example of an interactive program is shown in figure 6.

This program illustrates the structure and use of APL programs,

" specifically a monadic user-defined function with explicit’ result..

' Lines, 4-6 constitute a loop. where the successive iterations are

performed. Computer progranrimers will note tne use of leading

deoision.ih line 4 and unconditional brahching‘in line 6. -Although

-~

APL is sometimes criticized for lacking built-in logic control
structures they .an be simulated as needed or obviated by approp-
riate orimitives and operators.) - , s
() S NEWTON'S ﬁEfHOD FOR SQUARE ROOT®

Y ANS « FINDROOT N ;G. ;EPS
C1J EPS ¢« 0.0001. . . -
€23 ‘Guess: ')
€31 '6 ¢ O)
C4] TST: = (EPS =z I'N - G»2) / DUN .
€51 G ¢ 0.5 x G + N + G,
C61 =+ T1ST ¢
C?7] DUN: ANS ¢ G - *
(el v .

FINDROOT 72.25
GUESS
0: : °
- 8
8.5

A FIGURE 6. COMPUTING SQUARE ROOT BY ITEBATION

win - " B

o I 10 ’ h

- The,earlier.reference to a procedure for finding a welghted

'+ mean can now be more fully explained. - (See figure 2). The
» . a‘u .~l' . »
ST procesp_of g&din@ numbers is represented in APL by the plus

réducti&n df~§ list forzexample, +/ 78 90 83 75 79 is the same
as 78+90+p3+75+3§ hhicﬁ is 405. An alternative to using the
gsmbéls +/ 1s usipgea~familiar verb suéh’as SUM, after Having
"defined its meaning in ‘APL. (See Appendix two)., .

The verbs TIMES, WITH, OVER are actually the APL primitive

- funections Multiply, Join, and.Dig}de. " As shown in Appendix two,
they can be‘gtvén arbitrary names by means of apbropriate programs.
Incidentallé, the underlining used for these verbs is a stylistic

.- device and is nét required.

. Finally, the function HIGHEST is a dyadic user-defined funcﬂeon
, i - »
with .explicit rgéult: It uses three APL primitives Grade down,

Indexing, and Take. It 1is the first function to be.executed in the
. expression within parentheses.

. L3 .
.

The expression (SUM WEIGHTS TIMES 84 WITH'4 HIGHEST X) OVER

SUM WEIGHTS will produce fhe results as shown in Appendix’two, if
.') the verbs and pronouns have' beén»given meanings as shown. Further .

dstaiL on programming uses of APL can be found in (Gilman and Rose,

1976), (Harms and Zabinski, 1977), and (Le'age, 1978). R

]
s 9

CONCLUSION

fhe thrust 6} this paper has been illustrating the :
dynamic aspeot of mathematioal expressions. Appendix three
contains a comprehensive 1list of verb forms associated with !
APL primitives. Because of its design as a language rich in
primitive £unctions, with extensions created by operators and ' ;{
uoer-defined functions, APL 1s a powerful tool for math-

ematical exposition.

et

-

A =AP?(NDIX ONE---References

- Falkoff, A.D. and K.E. Iverson. "The Design of APL," IEM Journal of ~
Research and Develcpment. 17, No. 4, July 1973, 324-334. '

LY

‘Gilnan, L.. and A.J: Rose,” APL--An Interactive Approach,2nd ed.,Revised,
"-Wiley, .New York, 1976.
- ® ']
" Barms, 'E. and M.P. Zabinski, Introduction to APL ard Computer Pro-
g 1ng, Wiley, Now York, 1977. .

Ivoflbn. K.E.,Algebra: An 1gorithmic Tregtment, Adaison-Wesley,
Menlo Park. 7al.,1972. ¢

Iverson, K.Z., APL in Exposition, IBM Corporation, TR320-3010, Jan. 1972.

4

Lorugo, -R.; Apoliod APL Programming, Prentice-Hall, Englewood Cliffs,
N. #371v78. ~

Peelle. H.A., "Tnaohing Mathematics Via APL (A Programming Languagae),"
athematics Teacher, 72 (1979). 97-116.

A<A. PENDIX TWuO---SOME APL PROGRAMS

+ €13

€21

1l
€21

+ £1]
€21
11l
- 2]

0

83

o
dTdgd 9Qt1g 41494 4149 49t q

¢

R ¢ SUM LIST

xX

b -]
*+
»
Q
<
m
s
-

-
-t
z
I
—-
Q
X
m
72}
s
e

WEIGHTS ¢« 2 1.1 1 1
X « 78 90 83 75 79

- o -
3

-

- - -

14 .

(3

(]

APPENDIX THREE---APL PRIMITIVES (Basic verbs)

P <> ¢

v

i
4
\j

.o
*
?

-

is less than
is not greater than
is equal to

logically or

logically and

identity, add

signum, muléiply

power of e, exponentiate
ceiling, take maximum
factorial, binomial

pi times, take sine, etc.

specity

take'from array ‘

locate first. incex, count up
expand avray

shape cf, reshape

o
‘.

decode

execute

grade down

£flip, spin

transpose. section
roll once, deal vector

% VvV NV

B —r— e *

o o 4 -

is not less than
is greater than o
is not equal to
logically negate
logically nor
logically nand

opposite, subtract

reciprocal, divide
natural log, logarithm
£loorf, v
magnitude, take residue
matrix inverse, matrix divide

take minimum

is a member of
drop from array
index array
compress array
ravel. join arrays

s

encode

grade up

. raverse, rotate

15

‘format characters, format precision

L4

H

