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= tary school or an adult who has not studied school mathematics (or has

. -
N . -~

o - . Y
CHAPTER 1. "USING.CALCI LATORS IN‘MATHEMAJ[CS-

0 . _ ) s
’ T he :
In this chapter you will become familiar with diﬁ"e rent kinds of
N . = v .

calculating languages and you will learn how to compute with aléebrai'c, .

N «

AH, RPN, -and arithmetic calculator logics‘., Yol will also learn simple
programming and haw to tfanslate a verbal algorithm into calculator,

"microprocessor, or computer steps. ' . .
. i .\

\/ * . ‘ ' .
1.1 Order of Operations

-

™ Communication of ideas is important in matheriic‘s. The reader
. . ' 4

¢ « ¢
' of mathematics mustaunderstand ;vhat the writer of mathematics means.
e
. For this reasan we adopt rules for wr&*and readin‘g that are generally
. . [
accepted. For example, when we write

5+2x3
. 4
we want altreaders to interpret what we have written in the same way.
- <
Of the.two choices -
\

fa) 5+2x3 (b) 542 %3
. 7%3 - R 5+ 6

21 ’ . 11
' [ &

~ " you would-probably choose (b), answer 11, be‘c\a‘uée you recall rules for

) order of opérat,'\oni. Unfortunately a younger brother or sister in elemen-

- L}

-

e : - \
forgotten it) would probably choose-(a). Thus rules designed to improve
1] .(. , . A4 i

r 4

(

t




.

» ™ . N
communication sémetimes fail. We will review those rules and ‘see

» - : .. . - i B ~ : \
‘ how caiculatore force us once agdin ro waich gur siep. ,
v ’ :
ORDER OF OPERATIONS RULE. -Apply operations .
. . ¢
. W - . . .
- in the following order:
. S | (1) within parentheses -
{ ' (2) exponentiation (powers and roots): R
\ (3). multiplication and division® AR )
' (4) addition and subtraction
. . o
Students “sometimés reﬁember this rule by the mnemonic: s s
~ o ‘ . .

A ' N
Please Enter, My Dear Aunt Sally (fqr Barentheses, exponents,
= 3 R 2 = &

a : .
- S R e [ [ R S8R B ] Ol I e |

mult‘iplication, El_iv'\sion,‘ addition, _s_ubtractionl Only in the absence of
- - N \
rule priorities do you calculate left to right.

p EXAMPLE 1. 1-1 Evaluate 2 42 -8 - Jg—+ 5 8
* “ Y « ¢
" Solution: 2 ° 4% - 6 : ‘?«» 5- 8
' . % 3 . -
' ¢ ) 2-16-6:% +5- 8 exponentiation .
. " 3214+ 40 " multiplication and division .
:. 58 ’ addition and subtr/action
T ' ‘ E ) .
. 25443 - 4 .
EXAMPLEF1. 1-2 Evaluate 5. 5 32 /
. T 543 -4 S
Solution: . 10 5 . 3f‘ @
2 >+ 3 4 /r- ’ exponentiation
. 10 2 - 9 P N 3’
] . ‘ . . . ‘-’
- . .
' '
L J
i) .. R . "‘
. * »

In order to avoid rare instances wlNgtq confugsion might'arise, some
authors instst upon multiplication before-division, We do not adopt '

: . that convertion in this tdkt. ° N .
' » - . § ‘




-
<

10 + 12

20.9 - multiplication., Note that the

fraction bar (vinculum) plays

a'xole as parentheses. * - Thus
-numerator and denominator are

sir’pplified bef/ore division.

4

addition and subtraction
‘
2. § (division
, . , : . ‘
* These examples have been worked out in detail. In practice many of
] .

! »
these steps would be, skipped. For example the second solution might

be recorded as ' ) <
2" 5+3- 4 - .

(2) 2(3%

« (3) : (4) (6 +2)3.
¢5) . (6) (7+2)5 .
(7) ' ' (8) * 2(5+7) —

. 2
9 - 16 Some writers use parentheses as "insurance' to guaranteb
~

that readers will cadculate in the desired order. When it is possible

1

in each of the following, write an equivalent expression without
A . *
parentheses.’ ~

-
1)

(9) (ab) + (cd) (10)E,  (a-+ b)(c + d)

a . c . a .(c €
(11) (E a3 d)x (12) b '(d X f)

# ' . ,
" Another example of this usage is in roots like Yx + y. - The root symbol ,
is ¥ and the.bar is a grouping symbol. In Europe Vx + y is often

written V¥ (x +y) .
5 T
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*
. \ : .

(13) a[b+c(d+e)j _ " 4). {[(a+b)+c]- d}
P S ~ e b
, - 16
‘ ) _(1.3.) iuan; +'Cj‘d; + e ‘ {16} _[(cd) el
D . ' S 7 N ;
- 17. For each of the exer‘(}@uﬂ ‘- 16, evaluate (;.)\the original ex- i a
. - . ’ . . ,
] ?ression ar\cL(b) your si‘mplified expression for the values a = 6, T . II
. . ’ : . X :
- b=3, c=4;,d=2,4%=7 fz-1, f l
;o : ™
. 18 - 24. Notice in the followiné exerciseés how order m\a.keé“no difference
" Y ) . .
t in exercises involving addition and subtraction, but seems to in l
’ . .~ .
| . exercises involving multiplication and division. Evaluate: I
l . T(18) 2 -3 +5 (19) 2+5-3 '
| (20) -3 +(5+2) . (21) 2:10 %X 5 " Be careful! I
1 - &4 . . *
) , To(22) 2 ¥%5:10 ‘ (23) 2 : (10 x%5) .

r

|

I M 2

; ‘ F RN i. /
* .

| T

}

.
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1.2 Calculating Logic: Algebraic with Memory

.

- ’
v -

The calculator or computer user must learn how to process numbers_
. . R
on the specific instrument he is using. This i's important bgcause of dif-.
L] - i ° b '
-
ferences among calculating devices. In this'section and the next three, we
!t -

introduce several common calculating ''logics''. st>calculators operate

. ’

by one of them or by a minor variation. A usef fends to become accustorned
to the 1cgic of his machine and to prefer it. Indeed, each has certain ad-

vantages which we will consider. Evea if you will be using a calculatfng

N ) sy -
device with a particular logic system, 1(\15 important to know how, the others

work. '‘Who knows what kind you'il be using next?

ALGEBRAIC LOGIC

Algebraic logic is a common calcu- .
- 0

lator logic: The figure d#splays a keyboard

for a simple algebraic logic calculator. (Do

-

not lock for, a calculator with this exact dis-

play as most have additional keys like | %

L% .
and J that are useful but not ngg =mary

4 ('\
\d

to this discussion.) Some keys are m),

-

with common abbreviations that we willlcontinue
to use in this tekt: CL; - clear; STO - store;

RCL - recall; CHS - change sign. This last key is sor'negimeb marked

4+/-] instead. ~

=




o, : .
S . o2 .2 -
The logic of this machine is called aigebra,ic but it'doesn't follow _

R . e . s 32 -

the order rules of algebrafyou' leanne(c} in Secti-o/n 1.1. Calculations

- 4 . - ;. ‘ > . \‘ -
' .

are fed into the machine much as you would type them on a typewriter

' "N R . . LY
(without spacing). Thus the multiplication 23 X 56 would be keyec‘l )

!
I
!
I
U REEREE -’},’(:
!
I
l

"An instant aﬁ:'sr the =.| is pfes sed the calculator d{splays the R

~—

product
‘ o, 1288 * Y

. 1

s

, " Chains of operatiofs may also Bg kéyed c.lirectly. into the calcu-

lator'under certain conditions. - . . . .

Ps

EXAMPLE 1.2 - L. Calculate 21 ¥ 32X 61 & 24 o :

¢

Solution:- Key:

2 1]’7~J3~2|X‘6J1 ;]2 s =

L—.

Final Display: 1708. - ‘ :

EAMPLEIZ-Z Calcat 3.1-5.7+4.6
, / .’n a

Solution' ‘ Key' ' ] \ : v

We will not attempt to replicate calculator or compute:'r displa'ys in this
text. Machines differ widely;. most, however c}ijplay numbers by lighting,
filling with liquid, or printing some or all of seveh,small bars E.
These may be seen by looking closely.* You mjpht like to determine how

many different displays could be made.with t‘-he e seven bars



:l'

:tlons. InhExample_l.Z-l, for insfance‘ when the .second X is

“the : s keyed theyd’isp}ay changes to Yo .
: ]

- centfal message in all' that follows. )

.

. » -
v
. . . . , "
- . .
3 =
~ M =
’ l ‘ / ;‘
> . . ‘ -
ce % . .
0
)
.

Display: 2 : ‘- . |
“ ' “; ' , .
It is both interesting and useful to rote that interme/dj_a}e results are |
\ - . . -

displayed.on the calculator’at various points in these 'chains of opera-

L

-
4

keyed in the calculatien the display becomes

1 672 ; ) d ' »
' 7

which is the product 21 %X 32, the first¥/ two factors.: Similarly w{mn

' 40992

\. ) ] . .
the result of the calculation to this point (21 X.32 ¥ 61 = 40'992).

4
N

In exactly, the same way in Exarmpple 1.2-2 the intermediate result
a : [} -
"' -2.6 . . '

£

- ~

[ 4

is displayed when the |+ | is keyed. ' ' ;

-
) —

It should be clear that algebraic logic is fine for chained compu-

tations that pr'ocess‘ left to right,” But we hau}'in’Sectiop'l. 1 that many

+

\

' computations do not have thig s'imple order, S\’h comﬁutatibns lead to
. .‘ - "

problems. To detect these problems the/user mh.st be alert; to solve

them ingenuity must be exercised. The user must supply the one thing
. Y hd . .

-

the calculator cannot: thinking! (T}xis last sentence wil)l, in fact, be a -

v -
L

’ -

4

\ Consider the calculation
. :rﬁ
/

bl [\
X [X

EXAMPLE 1.2-3.

4

-




)

. i - [ ¢ * . ]
r - .
A ~ ’ 1.2 - 4
Py ] ’\\‘ - ‘ § '
e "
. ~ -
We khow that the answer tq this calculatipn.is.3£10 or '3, armd we - '

/.

would éxpect the calculatpr to didplay 0.3 “You might attempt to carry

R . o\ : . .
this out by the following sequence. 7 ] ' I
: . \ ’ -
2 |7t | 31 I % L’4 -
1% LRIy |
t rE
The result of this sequence is 4.8, the wrong answer Can you see
. : . : s .
‘what is incorrect in Hre.cd ption? The ei'ror is identified if the I
l . ’ e " ' o . ﬁ . ’ A
fraction §s fepresented differentiy: ' ' ‘\Q l
.o i ., _ .
e x 3 . 1 l. € : ’
= 2 3% = 2% 3 ¥ = — = 2X%X.3:53:4
X T 4 - g x 3 X n X 3. ¥ 5 5( 2 I
. ® . . : < b
Thus, in g'energl, each factor gf the whol_e denominator is a divisor This l

. 3 , .
‘when the dénominater is a sum. See example 1.2-4.)

is a useful calculating techpique to remember (but be'wa,of applying it

-

A cor’rected qaLc\ul'ation is - "
. ; - ] .
alidciniosinE | :

, A - . . >

L

l

|

giving the correct result : L f v l
|

..

o \o./s/);
A more difficult problem is presented by a calc lation like:
: ’

- ,,.’ - , -
1 L3

EXAMPLE 1. 2-4.
49 +‘38." .\ .
85 + 96

~

This time we *have no direct solution technique. Several alternatives are .

available: ) . . .. Mg

[ . , 1 3




] Calgulate 49 1+ 38. Record the answer 8
- ’ . ,Jo
scratch pad. Calculate 85T 96. Record this-'answer, 181

on a

.- | ‘ / '

. T , *
* Calculate 87 3 181, This guotient, 0. 4807 is the answem
. ) , : :

. to the exercise. g

} . - -

There is-nothing 'wrorg with the solution shown here, but such a solution
/ ‘ . .

does- not use the full power oftQa)cat'culator. It is more.than a matter of
t .- .

Al

elegance not to have to write down such intermediate answers. Time may
- . —— 4 ‘
i

[

be lost and additional oppostunities for errdr are accumulated as you copy.
and reenter numbers, ‘Use of calculator storage. (or memory) provides an

alternative. - . . .

Solution (2) ' ) ’ _ . .

8 5 + 9 (|6 = Calculate the denominator, 181. \
STO | ' Store this numbér in calc;xlato.r memory.

F

Calculate the numerator, 87.

L)

LI

IRCL br{ngg back the denominator

a)e

181 from memory.

= . The quotient 0<8’07 is displayed.

-
i

-

’

* ) " .
Results in this text will be given for 4-digit decimal rounding displays.

L

4 »

la 14 . s
’ - \J




Exercise Set 1.2

-

Some of tpese exercises call for a cakcuia,tor with simple algebraic

-

-

o

logic with memory.=(If yourcalculator alse has parentheses keys, do not

»
.

use them.g)

. 1) Name four other keys-that could repla.ce = I in the calculation

of Examples 1 and 2 to give the same answer 'State a reason why
- TN

you would not use these substituyte keys if you were carrying out a

L

L4

s\erie% of calculations. (Try calculating 2X 3%, followed without
- 4 . . .

¥

clearing by. calcylating 3 + 4.)

2) Oneé st;ap in Solution_1I 2;4(2) of the text may be eliminated. Examine
! =1 : e .

the calculdfion care,.fpll‘f in order to find the extra step. Check your

Al

» . more elegant solution on a calculator.

-

' v K .
3) In.Solution 1.2-4(2) we calculated"the denominator first. Try cal- .
culating the numerator first. What happéns?. (Some more sophis-r

ticated calculators have a key that switches the conte'ntv{ store
. 7

’

and the Hisplay registers to avoid this kind of trap.)

4 - 10 Calculate, keeping intermediate record keeping to a minimum.
. \ L

Note which exercises require such records. RECALL THE ORDER RULES \

FROM SECTION 1.1.

[

4) 237 X 42.5 + 38.46 5) 39.42 +861.7 X 6. 03

6). 23.7 ;.06 X 13. 2 ' 7) (78.35 +\91.46)(14. 08 - 27.6:1)

8)‘—— 2. 83' Tx:y to find an elegant way to calculate this, {
( ' ' \ \

| v ' 15




« “% a
- . s l , - 1 ‘é’ . _f
.' "-“". [ -,
. i 1.2 -7~
. & -~ :
- . ' P 4
- q , - 3 i
gy 37.48-16.89 o 10) 64.32 ‘ . ‘
64,32 . 37.48 - 16.89 - T

‘

\J ’ M

v . -
3

11) How should the afn‘s?vérs to exercises 9 and 10 be related? Chéck
. .

- - this by cal;ulatiz. _'
\ . ‘
12 - 16 Calculate. WNote intermediate records. S / ‘
N ' .
12)  239.5-67.34. . 13y 74.2)(86.3)
(74.2)(86. 3) ' 239.5 - 67.34
[T * ) . “
' ‘ |
14)  (37.4-.18.4)(15.2 - 83.1)(64.2 + 73.8) Beware: Some algebraic ' |
» ot *
calculators allow the u/ser only to add to or subtract from‘mpmory. - |
— ; i L ! . .
.+ If you are using one of those calculators, be sure to clear memory <
beforestoring a second number. k
15)" (37.6 -18.4)(15.2 - 83.1), 16) 4231(16.8 - 23.4)
64.2 + 73. 8 (83 - 1.3752) 62.43
et . ,. '
» | ‘ ” \ / c
Y p " ‘
- !
. 7
- ) v J AN
5 N *
/w .
4 38 / ' ' - :

,,%‘A‘r’ v
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1.3, 'Calculator Logic: Algebraic with Parentheses*

r

J

i
S ]

-
.

The simple a.ddi_t.ibn of parentheges to ﬂxe algebraic keyboard sim-

-

.

C plifies much computation . The figure diskf 1CLR1 (

. plays a keyboardlfor a calculator operating 711 8 9 %
with this logic which we will call AP. Al- s 5 } 6 \ )
B . — } ) —
- .most all such calculators have additional L by,
. B 2 . 3 © 4 ] .

-t
.

we [stol | [Renl. g —= '
features like STO"- ' RCLJ. x| ” Lo . CHS

% ; wand I/x} , but we restrict our

discussion to the ones shown. o .

A quick comparison of this keyboard with the keyboard of Section \

1.2 shows that only two keys are different: |STO and( RCL| are

1
) ) .

replaced by ’ ( t and ) . Surprisingly this minor modification
| ’
makes theekeying of complex calculations much simpler.. v
: A ‘

—

4

The main point to Jemember: Parentheses on the calculator play

the same role of grouping computations that they do in a-lge'bra. There .is, !

4 . S . .
' however, a difference in usage. The algebraic expression <
3\ \ .

r

a{b+(cd-e)} ‘

-

.
' B R - DR

’ would gppfar as the calculator saguence -

. . ‘
ax(b+(cxd- e) = 3 I
- - T (e
>'  in sections 1.3 ihrough 1.57 we will refer to algé€braic logic with paren-

theses as AP ™n order to differentiate it from the algebraic memory logic .
of section 1.2y : ) ’



Thus braces; bracket.; and other gr‘ouping Symbolls 'areba’ll representeci o

by the same s’y'mbols, parentheses. ) : , .

-
N : BN
.

A
. EXAMPLE 1.3.1, 33

’

v (Recall that this was Example 1.2-4 of the last séctién.) ’ ’ )
. L
‘ Solution: - ’ ¢
4 9 + J 3 8 - Calculate t};e nurherator
. . .
: . 3 . — Divided by...(numerator displayed: 87)
L

& ... the quantity ... (signals a calculation

- to be done out o[‘sequence)

{ 9 j 4[ é Calculate the denominatox; ¢

Completes the calculation in parentheses

' and displays it (181) )

= Dis¥lays the quotient of 87 - 181, 9. 4807

r—

Notice the effect of the righ't parer;thesis,’ L )

L]
i

\/\ (1) It plays the role of the | = key for the calculation since the ,
Eost recent left parenthesis | ( and displays the result.
(2) 1t "backs up" the calculation to where the left parenthesis (
1 ’ -
2 was keyed.” Thus the calculator acts as though you had just entered
. ‘ ” .
. the calcula}ed value of what is in parentheses. N
S - . k N
o WARNING: PRarentheses do NOT represerit multiplication'
N ; E « - -
‘The next example will show this
. ' A
+ 4
L] -~ )




' 1.3 3
. ' .
EXAMPLE 1.3-2 4.9(3.7-809)
> )
Solution:
4 lL_! H a ! !CHS " ! Enter the multiplier, -4 9
1 I _J L—_—} . .
. - X | ) ' / " Multiplied by . . (since the paréntheses
i . ‘ - p

do not carry this meaning}

13

=
B

Calc/ulates. the value of the/expression

-

; in pa®entheses (-5.2)

A . ‘
= | Displays the product of -4. 9 and -5.2,
- J : .
' s the answer 25.48 /
: . . . [ 4
e
A modificd algebrai¢ logic that is closer to the rules of section 1.1
is called ,%4 or AOS logic. Calculators like the TI;58 employ this legic.
These letters represent the words Hierarchical Algeb/rax nd Algebraic
_ . . N
Operating System. With AH logic calculators the calculation A ,
Yo AFS5XKT )
.o 4 ’ . A~
i could be key2d left to right without parenthes€s. N
re . ) < \ ) .
. e L o [ L -
The calculator ''remembers' when the b4 ! is pressed that multipli-

¢ ‘
cation takes precedence o%er addition. ' .

 w
v ! ' ot
AH calculators also require either memory or parentheses to procenl/

e/Bcerc.ise‘s like Example’ 1 3- 1., On ar AH calculator*with parentheses %1/
- " .

-

_calculatien would be:

ERIENEAInnE

saimisuissirsizeinaivn
Eatiitiiia |

s

©

.

.
R SR SEE BN = =

v



e ' ‘
~ ‘ 'S , J_‘
\"- 1.3-4 L
L4 14 . PO : L
| iy
¢ - R . S
v ’ - \ T
- T "Wit;hout the first pair of parehthesps‘ the calculation would be for: Lo '4(
’ - 38 ' I3
49 + = ' y :
: 85 + 96
S \ _ . . ,
R : Without either pair it would be . )\ E
| o . .
I ‘ 38 |
. 3 49 + 22 4+ 96
| ‘ . 85
. i ' \
1 . " . ‘
I All AH calculators have both memory and pirentheses as calculator ’
' i
l functions. : . e
E— , {
. . i
T - '
Exercise Set]. 3 ' P ‘ 1 o *
» ) 4 : ' . LI
) 1 -10 Rewrite each of the following expressions, for AP logic: - . g
. i . L N,
- (a) removing parentheses that will not change the value algebraically,
. (b) removing parentheses that will not change thé value in ctalculgtor

)
T

computation

1 3 + (5-17 * ) 2) 20 ;(,.(1‘0 ; 5) .
Co H) S 4) 20 : (10 X 5)
. 5) (8 (3 +5) 6) (27.3 +41 7)3. 6 '
7)) 2734 (41.7 X 3. 6) ’ 8) (41.7X 3.6)°+27.3 B
9)  41.7'% (D + 27.3) . oy . 28x3)+8 e

(26 + 7) x 4)
p ) 4 )

11 - 14 Compute with an AP calculagto;: )
. ' : r
"11)  37.8 + (.06 X 3L B8) 12)  -1.06% 37 8
7
13) (2.8 % 4.5)%(16 + 39, 23)? 14) ._26.4
PA : 0h31 - 1256k
i
\ L]
A Y t
:v(} A4




P
v

<4

' . ]
/ . 7 -
- R 1.3-5
N ~ ; - -7 .
e » * \‘ / —
15 - 16  .Calculate by aigebraigjmqmcr,‘;', by AP and by AH to
. “ ' ‘" . ’
compare procedures: - - 4 i t :
© . r o :‘AV . ! , [
15) 27 84 16y L (48,3 4 27.9)(T9.4°5 43. TN6T. 1 - 4)
“ . \ - [

264 - 189

17)  In the song "The Twelve Dﬁys.of Christmas’, the lyries begin:

t

'On the first day of Christmas -
- 1f
My true love gave to me -

y+ A partridge in a pear trée
»

A}

3
. . On the second day are given: .
. . , . f

Two turtle'doves and a partridge

— . :

On the third day:
hens, -two turtle doves and a partridge.

Three French

cugh twpive\days until on the twelfth, for exambple,

So it goes thr
.

-

-

she receives: , .

" "Twelve h@»ﬂ( aleaping, elevén ladies waiting, ten...

U ", »
[all the way down to]... @ partridge in a pear tree.'-

» . .t .
Now suppose that on Christmas day the lovers break up and the gifts g

\ »
,are retirned one each day. For example, on the day‘fter Christmas one

' .

of the part'ridgegnight be returned, the next day another, the following day,
- v
another, the foliowing day a French hen, and so on. When will all the gifts
iy S .
have been returned? Y

-

Bl Em s s

N\
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. K ) -

[ d ~—

P

{.4 Calculator Logic: .Reverse" Polish Notation . < - . p_ 4
. \ - 4 . N

The letteré RPN represent Reverse Polish Nntation, the.country
» designated because the Polish logician J. Lukasiewicz develpped the system.

RPN is, in fact, often called Lukasiewicz logic. The reason for the R (Re-

4
'

verse) is that in this notation dperation symbols are applied in order that is

]

) . {
the reverse of what we learn in arithmetic and algebra. Thus

3+4 inRPN is 3 4 +
Think about that notation for a minute. What would happen if you keyed
into any calculator: ) '
A (4
& . Pa 14+ 'I ? . '
L r . e
It wo.’uld record the number 34. Because of this problem an additional key
- ' I M
appears on RPN calculator keyboards, the |ENTER + key. Thus
= : “ ' : ‘

3 4+ 4 'is keyed: > . 4

L 3| |ENTER| |4 ||+ .

- — . ’

On many RPN keyboards the ENTER key is larger beﬁuse it i8 used so
“ <

-

often.
< .

- 2

Why would anyone want to change things around like that? It turns
out that there are good reasons for doing so.- If you exénine Algebraic and

RPN keyboards,' you will see that the RPN ENTER replaces three algebraic

» - 4 - } *
keys: ‘e ' - P R R
co ] : -
|8
- . ]
* T N - : ' .
We will soon see that the arrow ( f) on this key has a role to play as well. M
N ~ e SR N IS .

S




1.4 .2

a*

* ' RPN" Algebraic or AH S

\

. ‘ R ,
. ENTER =] | L)' .

Ay

»

e 1
. ' - ¥ i N
; : &

We will now ex“pfora how this works.

: All calculaflims must retain numbers and ppefatioﬁs in memory
" ) . o { ‘ *

ddring calculations. ' If this were not true, the calculator wQuld "forget"

the 3 when you soyght to add 4 to it in the calculation 3 + 4. To accemplish

: - . ke
- this RPN calculators have what is called a stack,
- - .
, The calculator display is the '"bottorn'' register of*the stack. '"Above"
. h . RN S o . ‘ .
. it are additional registems. Here is the four registgr stack found ona
4 : ’
U typical RPN programmable calculator: - ‘
N ‘ . '
. REGISTER NAME a : >
S /_: T 0 d .
. \ : . .
\" ) z | 0 .
., B i ’ . ‘Y ' o i o’ ]
’ . . .
o X 0 DISPLAY < . 4
4 " = s
. - T *
! . The stack registers dre arbitrarily named X, (the display register),
. ‘Y, Z, and T, as shown. t ‘ < . . X

.
) ' ’ .
As a number is entered in the stack it pushes other numbers up.

When an operation is performed the stack (usually) moves down.
» . / .
v

y s

- ‘ .

. RPN logic with an n-register stack also replaces n-2 algebraic storage
ha

r?gistere. . '

*
[

’

%2 % - - 4
L} ‘ , . ”
In fact all calculators have similar stacks, On algeb::'}l;(nc/calculators,
for exarnhple, the E key or even the key activate’a stack. Because
the stack plays a greater role in RPN, it is'considered here in more detail.

» ' 23 ., . ’

~ ! . ‘ . o




< _ﬁxAMPLE 1.4-1 » -Add 23 and 41

ce e \
KEYS ., STACK

‘

C A

{ 2 RN T 0’ T g

L - Step 1. When 23 is
Z 0 . keyed, it enters

the X-register in

0 " the stack.

‘DISPLAY

/
Step 2. When ENTER
is keyed, the X-register
is copied into the Y- .
reg'tste} (Y and Z re-
gistgrs also move
DISPLAY  up one level.)

£

Y

Y Step_; When 41 is
' keyed, .it REPLACES
the cormtents of the
X-register.

DISPLAY

» .
Step 4. When + is keyed,
it adds the X and Y re-

. gisters. (T and Z_re-
0 gisters also move dowp-
one level.)'

64 DISPLAY

-

\ -
>

5 L

The pbwer of the ENTER key and the stack will be shown through a second

- 'example, a type of calculation that was a problem for us in AH and algcbraic-

. {
memory logics.




! : T 36.2
EXAMPLE 1.4-2 . - Calculate
. 25.8 - 28.3

~

-

KEYS |, STACK

‘0'. ]

Step 1. Key in 36.2.

0 + * Itfappears in the
X-register display.

H

DISPLAY

P Step 2. ENTER copies
' X into Y.

Step 3. The 25.8 re-
places 36.2 in the
X-register display.

DISPLAY <

. Step4. ENTER copies
X and moves Y to Z.
This second ENTER
key allows us to calcu-
late the denomina-

DISPLAY tor separately.

I




STACK

-~ "
ot T 0
2 || 8 36.2
N S 2
Y| 25,8
X| 28.3°
, ,"'r 0
z{' 0
—| ~ .
< ' Y| 36 2
r Al
X 2.5
- ’ ’ '
- 36.2 =36.2 N
25.8-28.3 . .2.5 o
. T 0
% . Z 0
. N Y 0
. X |-14 .48
36:2
25.8 - 28.3 -14 48

F °

/

The following diagra‘m's will show how the registers in a 4 register

Step 5. The 28.3 re-
places 25.8 in the X-
registér display. Now
all numbers are jn the

stack.

>

o A
Step 66 The contents gf
the X-register is subtrac-
ted from the Y-register.
Z moves down to Y. The
- X-register now displays
DISPLAY -2.5=25,8 - 28.3,
’ the walue of the de-. .o
nominator of the fraction
being computed.

DISPLAY ~

Step 7. The Y-register is_
divided by the X-register
and the answer displayed. -

. - s

DISPLAY

e A

stack change when various keys are depressed.
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&

—Y
x (Opx

=

N

5/

N

T—T

Y Y

Dty

b -~

Arithmetic logic. A

-

'

-

L}

RPN légis_,:;xse the EI;ITE'R key (for binary ;)pe rations)
- . (1) after the first number ?n a: calculation

(2) affer the first number in a sub-calgulation (the

"“fdeno;ninator of a fraction or any other calcula-

tion that would be placed in par'ensle.ses. )

A final calculator logig whic
=

.
e’
.

*

-

®

-

o

. oK
Recall that-if a number is keyed next it will replace this.

R}

?

27

h we comment on only briefly is called’
rithmetic logic is like RPN for addition and subtrac-

tion and. like aigebgé logic for multiplication and division. The easie\uf/

’
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1.4 -

7 -

way to identify Arithmetic logic calculators is by the combined function

keys

+/=

and -

7.

'+ ]

.

Many business calculators operate with Arithmetic logic. We will not

‘ [
refer to this logic again in this text.

*Exencise Set 1.4

1-12"

before the

}

~¥ .

€

*

\'.

In each of the.following exercises, the stack is shown as it was

key is depresse§.

N 2)
N
AN
3
4 rd
3>
5) |1 6)
2[5 |
- P BE .
4 | GAREFUL!
9) [1 10)
2 -
.
4 .

PR

%

7

Ve

" 3)
2 ||
3
4
(1 7)
2| lcLx
3
4
~
0O . 11)
2 N 3
3| WHAT bO
0] . YyOu THINK
2 )

-

is depressed. Show what the stack will be after the given

8 4) |1
0 \X' 2 ||IENTER
2 | — 3
2 [
1] 8 [ .
2 clear W 1 CHS .
3 I ISTK . 1
4 | 1
0 12) 135
of |ENTE 0 ENTER
0 ’ 0
35 - 0

.

13 - 18. In the following exercises, show what the stack will be after eaeh

key is depressed.

13) [cLr|[5 |[ENTER] [3 ][ + 14)
15) |CLR| |5 | [X 16)
L4 v l

CLR| {5 |[ENTER| {x |
— ]
CLR|| 3 ENTEq

ENTER| [ +




, - L\
17y [cLr [z] 3 ENTEﬂ . S_J'.E . o
18) @ 5] [4] \ENTER} 0]
‘ /

19) Express in algebraic form the calculaht’lon carried ou'gin exercises

-' “

14 - 18. .(For example, exercise 13 is 5 + 3=8.)"
*

- -

20 - 26 Give the RPN keystrokes for the following computations. Then

Al

. calculate.
20) (2 +3)4 _ 21) % + 4 A
2 rrioe. '
22) 4+ % (Hint: :;\ ENTER [_2] EDD )
23) (2 +3)(4 +5) 24) %— + % ’
\y . . .
25y 243 ‘ : 26) (2 +3)4 +5)(6+T)
4 +5 / i

- L3

27) Show a second way to calculate exercise 26.

28) Give a keystroke sequence that will fill the stacksin the following ~__

————

» way T 6 ¢
2| 7 |
v| 8 |
x| 8 DISPLAY k

. ‘ﬂ —3.

29) Recalculate exercises 16 and 18 with the stack at the beginning of

1}4 ‘ the calculation in the form of cxerc ise 28 and omlttmg the L
\

key. This exercise should show you that IT IS NOT NECESSARY o~

TO CLEAR THE STACK IN ORDER TO CARRY OUT MOST CALCU-

= e LATIONS.

30) Use an RPN calculator to compute une answer to exercise 17 of

-

Ipction 1.3 (on page 1.3 - 5). . - p;

C




o

- -

and RPN legics. Moyt of these differg{mes apply to binary operations,
that is operat‘ion“.hat '"'combine'' two elements into one:* Addition, sub-

traction, miultiplicgtion and division are the common bina.;’y:.operations
‘ 9

of/%iﬁvm-tif:. We met in section 1.4 one other, yx, which we will
p 4

+

_cons ider shortly.

Rovemomd

The foliowing opérations are unafy operatﬁ‘s, that is operations

. that need only one element to process.

Ux. . ' sine CHS Py
2 % . £
x cosine-. INT
. 1/x ; tangent FRACT"_E ’
R 10 ABS
(We will introduce other unary operai:ions such as log x, lnx, and e*, .
-’
. later, ) : , ; . .

All c,a:icplators process unary operat{ons by RPN' The x-value is

* , \
- keyed into the calculator and the function key is pressed.
EXAMPLE 1.5-1 Calculate V51’ . -~
» — .
- " Keystroke sequence 5 bjlyx _ . N
’ Answer: 7.1414 T il

C 3, 30




EXAMPLE 1.5-2 ‘Calculate sin-30° - -

Keystrgke: sequence¥ '3 0.! |SIN

Answer: .5
EXAMPLE 1.5-3  Find the reciprocal of 10

" 4 2
X

Keyboard sequence 1: 1

0.
Keyboard sequence 2: N ry {Ox 1/x
]

Answer: - . 0’1
v

‘ ‘ 4
In all cases these function keys operate on the number in the display or

X register. Note that it is not necessary to depress-the ENTER key on '
. \,. N

“ an RPN-calculator before using. them. For any unary {fhction {f the

stack diagram is: f

g T—>T

Z —— 2
Y —Y

X f(x)—X

-

[}

‘The unary functions INT, FRACT and ABS will be considered in the ex-

— L. 1 - N
ercises. ‘ ’ /\

One important function that does differ between AH and RPN cal-

culators is exponentiation (raising to a power). This is a binary opera-

i ‘ ) LR
tion becduse ° q .

- requires the two input elements p and q.

-

3
. ,

Most calculators assume input to trigonometric functions'to be in
degrees. We will also unless otherwise mentioned See Chapter 7.

{ ' -
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L WY

. - . 1.5-.3

ce

-

" EXAMPLE 1.5-%  Compute 7°

AH keystroke sequence: | 7 w 4 =

* RPN keystroke sequence: 7 | |[ENTER| | 4 y

‘Answer: . 2401

ty

‘When using this |y*| key, you wil] meet for the first time the fact

/
that calculators sometimé{prod\me enly approximatg.answers. In the

calculation of 74, for example,f a calculator might display. the answer
/ A . : °

2400. 9993. Now we know that 7% is an integer and we can find it exactly
by multiplying 7% 7 X 7 %7 toget 2401. The error (of .0007 in
. . ‘

‘this case) is introduced by the logarithmic processing usecf by the calcu-

*® N \

lator |y*| key. We will study this later. For npw it is usually enough to

round off such answers to the nearest integer.

»

S

——

Exercise Set 1.5, . . .

- ' .
4 .
.

1 - 37 Without using a oal{ulbtor give the display pi'oduced by the fol-

'

- . . V _ .
}'owing keysiroke sequences. Chel& your results by calculator.

>1)' 5 | |x « , 2 |9l &) 3 (4] Wy
4 [3] oY T 5) [&] lcus 6) ~ |o.| R/x
W, . ~
7 * |s] [ENTER, x2|  What does the stack look like after thts
. sequence? .
. - * . %
™ .
8 |5 | |ENTER] |x*] [+] . L 109 (& |
. | (S )
- ‘ - N
t
* . . ' ’ 7
Note that'the keys will tell which logic is used. A\r\f:H calculator has
no ENTER key. . ' R

: 32




1.5‘-4 L

\ . ’
. v . )
.l

EmE e EH @ wE e
EE waEmBE
0 p[oDin ] RN
Alnlals T .

10)

w5
15) D
o 5]

dete rrg'mc what the

N

>

18 - 20 ?y applying the functions to various values,

folloewing keys do. Be sure to include value\k\i‘k/e 7.65, -3, -9 T2.

18)  INT. 19) FRACT 20) ABS

-y . R .
.
4
-

’ é
’ ,your result against the

Calculate eich of the ‘following Check

~

21 - 26

A
| g
. MR Summ Sume fSEmR G

answer given. \
.

EXAMPLE: . s U7 o ' ~N
. ‘ . . AH keystroke#: E ‘ + l ‘ 7 ‘ ' ‘- ‘
' 3
RPN keystroke: | 5| [ENTER ‘@/*\

@@

\ ’ ¢ Answerl: 7.6458 'Y v
21) 8% Ans. 32768 22) 1.23>  Ans. 1.8609
1 1 ; S 1 - Y,
23) 16 ¢ 3 Ans, 0.2054 > 24) 16+ 7 Ans. 0. 0435
¢ [
25) 10° . 57~ Ans. - 218745 , (On some algebraic calculatdn you may’
» ‘ .
. ' 7
( find it necessary to use pa.rentheses around 5 .)
! * . . N ) 1y
; ) - 26 - 28 Now try your haéat the idllowit_ig monsters: ) _
. . /
\ .
| 35 sin 45° - . .
26) E_;Tr;__‘i_._ Note; the numerator is a product. Ans. 0.0001
T .y o
37y INT (107 607, - Ans. 53 :
* 1
On them it must

s will not accept this cilcu}ation
or it must be calculated as 5 + (ﬁ).

Some AH calculator
¢ : be reor‘dered to ﬁ + 5,
A .




~

§3.7 + cos 10°

28) ; -~ Ans. -83.4771
3 1
137 - —
27

The following two exercises provide useful short-cuts fox:rcomputa.tion:
B ( . n
29) Sometimes the wrong fumber appears in the djsplay. For example,

when you wish to calculat‘e a - 'b, b may already be _éisplayed.
» * - .

How. cotild you complete the calculation without stnj\in: all over? |
P

20) How can you calculate % start{ng with b in the display?
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S ~ "1.6-1
R
N ) | )
I P Problem Solving with a Calculator
- . ’ / L . ;
0 With the power your calculator ive\s ou, you may now attack with'
. g you, y

.

confidence and solve some complicated problems. You will qee';l paper

and pencil only to reco;i notes and answers. As you will see, however,
the calculator does not substitute for thinking. You are still in charge.

You will need to

2

° or:ganizé‘calc%ations so that you can carry them out on

~ your calculator
and if your prohlem is one related to measurement
T e determine units for the answer and

’ e * determine accuracy . i
% . ' -
»
In this section we will not deal with the latter two important questions. -~
[ . 4 ’ .
We will continue to Teport answers to four digit (rounded) accuraey*.
=

[ . EXAMPLE 1. 6-1 A simplified formiila for artillery range is -

. * 2
. . Vo“ sin Acos A .
R = 9. 8 (

*

Find the numerical value. (with-ut units} of R when

. Vo =31 and A=Bd°.

- J

Some c‘alculators truncate answers rather than round answers. Truncated
means that the rest of the Answer is cut n".. Thus 683.29587 truncated to
six digits is 683.295, the ,00087 mierely dropped. This is often called
-""rounding down". You should test your calculator to see how it rounds. Use
quotients like 2/3, 5/33, and 50/33. .

'




y S / 1.6 -2 )
SOLUTION: sybstituting ‘ .
[ . 312 sin 30° cos 30° ' .
R = 9.8 : .
/ « - : y .
Calculation yields 42.4618

" Such a calcuiation ‘is import‘:lnt but stx:aightforward. Others require an
experimental approach. ;

EXAM?LE 1.6-2 In EXAMPLE 1| we might wonder

what an{gle A makes R-largest. (What angle of elevation {

yields longest range?)

SOLUTION. We need only. consider th$ product

b 4 s ) . |
‘ sin A cos A (Why?) . |
. . |
. “Trying values yields : L
¢ . L o ‘
A sin A cos A | .
-30° 0.4330
. ‘ «40° 0.4924 '
» . 50° 0. 4924
60° 0.4330 -
s, . This suégests trying A = 45° (Why? )
. .
45° .5 .

Trying other values suggests tdat this
is the best we can get in the range 0° to 90°.

) .'Ofte'm it ;implifies computation to use storage capacity of your calcula'or'
- -
to evaluate expressions in which letters appear more than once. In the

e
following example, we assume a calculator that has at least two storage

L]
.

4 L3

registers Rl and R2. To store 5 inRl and 6.3 in R2 ’'the following .

keystroke sequence could be used: \

36 .

e




{ 5'9T01L6_]ﬂ3s'ro[i

- / R
- This sequence of keys is appropriate for most algew RPN cal-

*
. . culators.

To recall the number in Rl,‘ you need only press ~—

1 |

. | |
- ' ) RCL: L}—}

_and in this case the 5 will seappear in'the display.

1
-

EXAMPLE 1. 6-3. _ Evaluate x? ’ 3xzy + 3xyz + y3 for

-
?

x=3.7 andy = 8,6. .~
' SOLUTIOI;I. ’ If you attack this p;'oblem directly,
you will be keying 3.7 and 8.6 each several t;mes.
You can save some of these keystrol;es by first storing
xandy. Follow the pr&grar;m for\the kind of cgiculator

you use.

On some calculators each reg‘i's.ter may have ai‘ two-digit designation.
In that case to store 5 in ROl would be keyed

- PpEEE

37




elal=InlolsinlzEn

. . or ' \ N
Asenm‘ /
AH x> RPN -~

= ¥ - deak
rRcL| |1 y"} 3 ReL| [1] [3] [y
o ' 7~ v
+ r‘ ' / Vo
, -
| ' .
= X 2~ ¥ t 2

(g (1] ] [2] =%  [red [1)[2] [7] [Rew
xl) lreyf (2] [x] |5 2] [x][] ]

)] [+]

L _

+ 1.
( | Rer] 2] [¥¥] [z Ixy’ re] |2|f2] [y*] [rcL
x| [RoL|.|1| x| |3 < | IE x]
| +
+ ¢

1] '."3 ‘ . ‘ . . *
ey [2] [ 3] & RCY |2 3] "
& . - )
/[ 4
L)
'»/ You should reach the value 1860.867
ES M >ﬁ-ﬁ\-.

At each of th::;\"pqints the |ENTER| key is omitted because the unary
operation key substitutes for it,

*x .
Beware! Do not confuge the X apd Y registers with the x and y in

the polynomial. The key operates on numbe‘lrs in the appropriate

calculator registers.

.

N




I ' . 1.6-5'

3.

‘ ¢ . ' N -
™\ * \
L) .

In solviné con:lplex‘proplems like these you will need to be very

careful. Here are,some suggestions which may help:

N

(1) Think through you;‘computation before you start to key numbers
v . \’

- . [}

into the calculatofr.
(2) Try to orgamze your computatlon in parts such as terms of a poly-
. LN
nomial or the numerator and denommator of a fraction. ‘
(3) If you’ feel you ‘;i}l be lost-computing the ans.wer' to a complex problem
o in ‘one series o;',keystro,kgs, take it part by part, Fbrecprdin'g partial
* answers.. You may then combine these irito a final solution.

i4) Sometimes (a.s- you will see in the exercises) ajgebraic simplification

of an expression to be evaluated will also s‘i'mplify ,computafion.

i

. Exercise Set 1.6 . )

1 . 4 Evaluate'the formula R = Vozs9i.n8A cos A _ for R/xiéing the -
;iven values o} Vo and A. ) ///

1)  Vo=1200, A= 46‘? ) 2) Vo= 1;16, A = 40°

3) © Vo=100, A-=50° ~4)  Vor£375, A= 90V .

(You may wish to think about the 1coults S&f exercises’']l - 4 as they re-

late to the physics of projectile range.) - R

-

5 - 9 Using one of the two conversion formulas for Celsius and Fahren-

heit temperatures, P '

' C=,%'(F-32')'"' F =

39




T v
" answer the, following: - i : -
.. 5 €=100° “find F ." 6) - -Convert 32°F . to C.
) ’ ~ "' ~‘ ‘ - . . ' ’ ‘ ' * . . .
. 7)_ Change 68°F to C - "~ 8) Change 98. 6°F to C.

_ 9) . Find by experimenting wherr F and € are the same.. 3 R \

10) | - Now check your answer to exercise 9 by algebra. (Sét F and.
* w - }a', . . -
.. C each equal to x in"one of the two formulas and solve for x.)
) L 4
II'-14. A formula.for tr’ia.ngle' area that y".ou 'will be-able to derive

later is : . Co
' ' A= d -3 22
PR I L
Find A, given the Yollowing values: " :
. Y - - O . =710 T - o
o 11) 31-2, 53-5, AZ 50° , 12) s 10, 5, 8, AZ - 60
L ~ o . - o
l?) 8 = 3.72, 8y = 5.8, AZ._ 38 14) 8, = 147.3, 83 = 62.1, AZ = 12
h . . e N .
. ~15-19. If an object is h meters above the ground, the timg, t, in seconds,
3 ' 2h
that it takes to fall to the ground is given by the formula t= 9“8
Find t when: - . & .
. A ‘ [ 4 ) . 0
15) h = 147.2 . . 16) h = 3472.13
17) h =1.23 18) h = 43.278 -
lé-) Solve the formula for h and use your new formula to find h when
- ” .
t=10 - : - ..
7 2e-23. In-a right triangle whose legs are a and b and whose hypotenuse
. ' : 2 2
is ¢, you know that ¢ = Va“ +b )
N . * * L "~ ¥ . . (—';‘”\
L ,, _— . N . | “,
' Averagé human body tempetature. . S v K
. . . A ' "
\) . L4 /LJ . . ) . N . .

» "
w . - ‘ M .
- ..
ERIC . )
PRt povansn e . ! . .
g ' . 3 -,




Find c vien

26) a=5 andb= 4 21) a=10.35 and b=15.72 O

22) a=10.3 and b=11/7 s 23) a=2.3 and b= 18.9

24-30. Evaluate when x =3.7 and y = 8, 6.» Store these values for x an@y(
v W i

. , ‘ , ,
24) x% 4+ 2xy +y 23y, (x+y)

26) "xz +”'yz - 1 - . 27) (x;y)ay ' Gl’ .

-

a

What identity to your answers in e:;excises 24 and 25 support?

What do your answers in 24, 25 and 26 suggest?

What identity does your answer to exercise 27 a‘x{‘d the answer to .

¢
e

. . M ’ w o Y
example 3 “on pages 1. 6-3 and 4 ‘suggest? \




1.7 Programming Functions: 1

e - 5 . '

In working the exercises of Sedtion 1. 6 you should have
v - . . '

. found the calculations repetitious. You were following similar routines >~

over and over, with only the numbers different. In thissection we will
develop a short-cut to reduce such work..

- . EXAMPLE 1. Give a keystroke routine that will

start with a given value of h and calculate t

by the formula> B )
, ' 9.8 |
I ' SOLUTION A
- & ¥
AH ] RPN

B ke?'\n h, then . key in h, then , ‘
| |12 ' ENTER .

sitolt-(18il= fz g | X

L f . .

0% P CRIERIE:
T E |

~ '

Notice that orice the key%r?ote/s have been'worked out it requires
- ‘

.

no knowledge of the function t follow them. With these instructions you

could give your homework exercises to'an elementary school aged sister

. . T . [ /
"y or brother to calculate for you.» For example, given the h value 1\0.

I

N they would key ™ | 1 [OJ and then the keystrokes for your calculator,¢
'E-A - . e v -

giving the resulfing t value, l;~;1286.

-

. 2 - &




Still better, you can assign this routine to your programmable

7 Vca'tlculatvor. Here are the general steps you can. use to &ccomplish
this: ‘
‘ . } (1) Set y:)ur calculator or ;:omputer to record a program,
’ (2) Key into your calculator ':)r computer e cal'cula.tion steps -
' ‘Yalong wit\h any instruction steps necessary 'tos):dur partic.ular
- calculator. ) _ , 7
(3) Set your calculator or computer back to} calculating mode.‘ |
(4) If necesgary reset your calculator or computer to tl:e begin-
'E ‘ ning of your program. S, . . |
oo (5) - Enter your given data. ' d ‘
(6) Run the program. . _ . : )
- .
g ‘ - For —acflditional exercises of the same type, you then merely repeat steps -
4, 5 and 6 o T

Each of the many calculator or computer models operates differently

8o it is not possible to lisaall the special instructions required to carry out

- -

- ~

the six step routine we have just giveu "Because they suggest the kinds of

-

- Y
special differences you will meet on calculators and computers, we offer

. three examples here. You should study them to see their form, ‘ but you
. ) . . ‘

should concentrate on the specific routines for the calculator or computer

-—

you will be using. Recall that we are programming the calculation

. -

2o Yo .
- 9'8

-

2 L4 >

%




'g# .

¢ -

TI-58 (a typical AH programmable -calculator)
—_ : LN

]

-

1., OFF - ON This clears the calculator of previous prograi’na.,‘=

LP:N f’ r\

LRN sets t}us caltulator to record the program
+ The dtsplay is 000 00

“° 2, X 2 I These are the 'calculatibn steps. (See th;a
o "o SOLUTION to EXAMPLE 1 on page 1.7 - 1.

T 2 9 -1 8 - As you depress each key the calculator display
| : - will move to a new step number
' o . L _ 001 00 upto 008 00.

s (0

[} f
. R/S| |RST R/S is required to stop the program and dis-
» . play the result of the calculation. RST will

return the program to 00. )
‘. ™~

-

3. |LRN ‘ ' This key now retyrns'ﬂ'l‘e calculator to normal
: operation. The display is 0 .

RST sets the calculator to run from step 00Q.

v

5. Ke)‘rﬁr’-_hi.\f//;,

6. " R/SE % ? Q R/S then activates the program. When the cal-
. culater stops, e display will give the t value.

% s

. . .p ‘e v

., ¢ Tofind additlona.l pa.trs (hk, t), repeat steps 5 and 6. By inserting the RST .
-, )

A

N after the R/S at the end of step 2, .we don't need to repeat step 4 each time

Note: On this. calculator RST plays a d}'fferent role within a program

‘ o s .‘
(as i‘g step 2) and outside- (as in step 4). Within a program RST returns the'
e ’ .

calculator to 00 and contines to run. Outside a pra%ram RST returns the -

; calculator to 00 and stops-there. . . o .o \

o ¢ ’ -~ . ‘ .

[ ) " i ¢ \ . .

* Some calculators, usually with aC designation - as TI-58C - have’ .
continucus memory and must be cleared by other means. See the owner's

A ‘ manual §° ' ‘

B

' : we rur' the program.
.

' .




HP-33E "(a typical RPN programmable calculator)

p . 1. OFF - ON " - This Slears the calculator of previous pro- s
, * * grams. . . ‘ T 7
- - . . N ' - J .
PRGM . PRGM. sets the calculator-to récord ydur - '

program steps. The displfy is 00.

A .

Z/ ’EN.TERH & ' Thepe are the calculatiop steps. . As you de- -

— ’ press each key the display records the step - .
2 ||¥ - - number and, the location (row - column) of + I

’ N 2 9 the key(s) depressed. or exzmple, after
 t9|l*118{]:]" ENTER is pressed -31 is displayed: .

3 j . Dl is the step number, 31 the location

f x (row 3, key 1) of ENTER on the keyboard.

Note how the last two keys are merged into s

one step 98- 14 02. This saves program - l

. " steps. - N, -
. \‘ \ , ! . 01‘ 4 . » L] P

3. RUN . _ The calculator is now returned to normal’
perahqn, the dxspla.y is 0.00/

: 4. |g| IRTN ' The RTN key sets the program back to step
' . . e
00. »

v’

. Key in h (.- .

) [ N .
6. . /sl . . Thxs actwates' the progra,m On this calcu-
lator we did not have to key gnother R/S
' . into the program because all unused program

. B _steps are-pre- loa.dedL with'steps that return

“the program to step 00 and stop it there.

To find additional pairs (h, t) repeat s.teps/sl and 6. On this calculator it

~

is not necessary to repeat step 4 because the calculator itself resets to

- . 4 . . .
step 00 at the end of a program run. . '~ )
[ L
1 -
; K — - ' . ‘ . ,
| ; * ’
| On this calculator, as on many others, many keys have two or even three

s. Here the yellow, key assigns ﬂrme second role & to the
key. The blue. key would have assigned x2 to the same key.

45 \' ’ ' ‘




.

.
.
. .
.Q , ’ - /
. B - . , & ‘
. .

TRS-80 (a ":y'pic‘al c;omputer prograrﬁming -;n BASIC) : .

1. . OFF - ON A prompt_& is displayed.

2 - ENTER . Thfn,?x;epareg your computer for ) '
¥ . - ' ' -, further instructions. You must press i
‘ [ T "« <+ ENTER at the beginning of your program {
P R T and after each step. |
-3 AUTO - L - This SIaces you in automatic and mumbers
e \ e T »ths steps in your pmgr‘@.rﬁ. It first prints
; . . 10,‘ ready for your program. : ﬁ
" . "4, 10 INPUT H " _These are the calculation steps.
o, ’ e Eazh time you finish a line and - ..
’ 20 T.= SQR (2%H/9.8) press ENTER the computer . . B
. ST . . » goes to the next line and prints
3\ 30 PRINT T ihe next number. )
5. BREAK . — This takes y,éu out of q.ugorria'tic and puts you .
i ) in run mode. v -
. N . 5 4
6.  Type in alue of "HAJ -~ . .
' ' ypge the value of 'Hy/ - .
/ 7. Type RUN This activates the program. '
3 - . - ‘ 4 . . ‘
- To find additional pairs (h,t) repeat steps 6 and 7.
- ‘Q -
i You should familiarize yourself.with the p\rocedures for entering

4 s - -
| and running programs, but the more important task is developing programs.

r -
[

. - r . .
! Here are some suggestions about hbw to doethis: .

-

. -
(1) Remember that the program merely records what you would
. » ~ ‘
)

* have done in a calculation that is"hot programmed

- s a2
_ that change in the computatioﬁ.(ln the example this was h.)

’

|
' (2) Think of yaur calculation as always starting from the value(s) :




- . * (3) Key into the program the steps following (and not in- .
R
cludifig) the step that keys your starting value (see auggestyn

-

’ - 2) inte-the display. (On an RPN calculator doﬁ't forget ENTER

when it is necesgary.)

(4) Be sure, if your ¢alculator or computer requires it, to

M~ complete your program with |R/S| so your calculator or ‘computer .

*

-

“ will stop to display the results. @® .

Exercise Set 1.7

-

1 - 6.Key inté.'youn calculator or computer a program to find t, given 1
. .

h, -by the formula 2h - !
1 . . . t = b .
; ‘ ‘ '&9:8
_Then ¢alculate t for the follewing h  values- . B .
1y 15 //’//z) 100 o .
" 3) 1000 ) 4) 10, 000 ;o - .
5) 8840 (m inht. of Mt.”. * 6) 1609 (m ina mile)  °

- : Everest) o

7) Deve\lop a keystroke seqﬁencé't"o 'cha:ng'e any Fahrenheit tempera-

ture into Celsius by the formula

Y * ! ( -
.

K]

(F-32)

o|uwn -

. ' (Don't forget to start your calculation from F.) -

’ l
3
- ~

8-12. Program the calculation of exercise 7 and use it to convert the fol-

lowing temperatures to Celsius: -

e

8) O0°F 9)  90°F




Pid

— | A CLT-1

10) 50° F 11) -40°F

’ , . e . e
12) By experimenting, find when F = 2C, that is when Fahrenheit

»

temperature is twige Celsius tempeiaiure.
. . .
13) . The sales tax in Erie County, New York is 7%. Develop a keystroke
‘sequence that will calculate the amount of this siles tax. (Do not

bother with rourtding your answer. )

- i

14-18. Program the calculation of exercise 13 and use it to determine sales

tax on the f\éllowi'ng purchases: ’ ”

14) $500 15) $45.3
- 16) $299.95 - - i 17) $2.79

<

'18) By experimenting, find a pyrchase price that will give a sales

v tax of $1.00.

P —_— -

P2l




P.r%ummiiq Functions: 2

L §
/ In section 1.7 you learned to programxyour calculator or computer

that section you were restricted to single imput-single outp&t rou'tjnes,

. » s
Now in this section you will learn how to handle more than one input or

output.

On a calculator the key to this problemn and the key to press is:

-

R/

*

-

This powerful key plays the following important roles:

-

a program if the calculator is idle or stops 2 running progr'am.

_*

¥

-

——

to receive information dr to give information.

We will consider how this works by means of examples.

A

4

¢ for entered values of a and b,

the formula

t

=

Wi

1, When-th{ calculator is.in operating mode, it'eithe;' starts

- so that it would carry out computation routines by a single keystroke. In

2. When it is keyed intoa program it stops the program either
R

v

E'XAMPLE; 1.8 -1, Develop and run a program to evaluate

.



-
-

by TISS8 : by HP 33E
OFF - ON _ . OFF - ON
LRN; . a would be keyed PRGM
i before the >
S Ix | + program started g x "
*. IR/S; Here the calculator - _* |R/S§] - ‘
-~ - is<stopped to re-
ceive b. L
x2 ! : g x2 i
- ' Lo
= | + /
__J g
0 ‘ f||0x
R/S| - L .
LRN ZRUNZ
. ) d - ——
Here is how these progni:ns would be run for '3._ =5, E = 12 \
RST Resetting the program 1 g RT '
to 0. ’
5 | |R/S © . Enter 5 and start the 5 | [R/s
’ program
The first part of the program runs until it'reaches / B
R/S at the stE marked * in the program. It stops with . i
,the display reading - 25. ' )
P ﬁ - -~ . . \,/j

~ 1 11]21 |R/S| Enter 12 and restart Lyl 2] |rss

4 .

' : o :
Either calculator will now cemplete its prog¥am and display the c value 13,

2
6

:;(} - \




1.8-3

-

You will develop other ways of carryin t this kind of multiple

.

input program in the exercises. We now consider & problem involving

multiple output. . . 5

EXAMPLE 1.8-2 Develop a program that will calculate

and display sales tax (at 7%) and then total cost for given
v . T -

purchase prices. ] ' «

TI 58

OFF - ON*

STO 0 . Stores purchase price

e
e

Calculates sales tax
»
Stops to display tax

Adds on purchase price to give
total cost. - .

.
-

LEN

\

Running the program for a $92 purchase

- ¢ IRST .9 2. R/S

. o

The calculator runs to the first |R/S|, and stops there

A

to display the sales tax $6.44. o ‘ s -
; ‘ "

R/S The calculator completes the program and displays the total .

~

.cost $98. 44,

[

*

* . - ., NG .

On this&alculator there are other ways to cléa.i;{progra.ms and reset the
prograsi to 0, but we adopt this simple prﬁcg ure. In fact, new programs
may be keyed right '"over' old ones. for the new steps replacg the old.

H
2




1.8 - 4

— .

HP 33E .
§ ) \ v
Storage could be used as in the TI-58 solution but instead we utilize

. v
L4 \/ e 4

the operating stack to solve this problem. ' 4

- OFF - ON*, PRGM

|
! ’ ’ i ‘

ENTER ENTER, : Now the purchase price is in -
— > Y, and Z registers. . X . |

0| |7 X (or )
. . Now sales tax is in X, pur-
. chase price in Y.

. '——j . . . —
c. R/S, Stop to display sales tax
: L
+ . : Adds sales tax and purchase
— price.
.
Running the program for a $92 purchase . ' A

g } RTN Resets to 00

3 .

a

| 9 2 R/S

. Now the calculator displays the sales tax $6.44

R/S The calculator completes the program and displays the
— total cost $98. 44,

.
.

On this calculator als¢ there are other ways to clear,programs and reset

the program to 00, t we adopt this simple procedure. In fact, again -
new programs may be keyed right ""over" old ones for the new steps re-
place the old. . |

Q 52 !




your program.

-

. :
: . .- 1,8 -5
| «
. .
ENTER; AUTO . You are now ready to yvrite ] .-

INPUT P

.
'

AR 20 T=.07% P . Computes tax l
30 C=T+P %ﬂds tax to purchase..
. 40 PRINT P, T, C . ) Prints purchase price, sales . l
tax and final cost.
BREAK : I | . I
!

. - R'uxming the program for a $v92. purchase Cen
92 e . ~
- RUN |

! The microprocessor prints

-~ .
92, b.44, 98.44 . : L/

b

Exercise Set 1.8 : . )

l.- 4 Program EXAMPLE 1. 8-1 into your calculator and use this
program to find c for the following: T ' .
. . . . .
1) a =23 b= 264 "Z) a =45 b= 24
3) _9_._=45,.E = 336 4) a =17 b = 24
’ ’ | >
5-9 For a =.45, there are five othe;' values of b that result in

Pytingorea.n triples, that is regults for a, b, angd ¢ ait in integers.
R b - =

L]




%

H
o -

Find the b and c¢ that completes the (a = 45) triple‘ for E in

each of the foilowing ranges:

-
. P

"5) 25 < b < 30. ' 6) 60< b< 65
. - - 1
7) 105 < b < 110 . -+ B) 195°< b < 200° .
-— — - . o — -— ) . . $ .

9) 1010 < b < 1015 N .

10 - 15 Pr.égrarr; EXAMPLE 1.8-2 into your calculator or computer

L]

and use this program to find sales tax and total cost for the following

. #
purchase prices.

. 3
10)  $34.95 ' 11) - $1.67
12)  $2995 _ 13) 9632, 50
©14)  $99.95 15) $100
16) - How could you modify the program of EXAMPLE 2 if sales_tax
went up to 8%? Clearly you can start over and reenter the entire
‘ . M ' /~l
program, but you may wish to experiment with calculator keys. -
: . " in LRN or PRGM mode to ma}kebtllxe necessary key éhh’n‘ée.
. You will need to determine how the follofing keys work op your
calculator: o ' ' ' . SRR
' - L X .
. ~
- . -~ J ' ) ’
#e . ‘ )
. On calculators that display four decimal digits (like the HP 33E) you
~ need to exercise care here. Such calculators probably do not round
up but either round down (truncate) or. round to the nearest “value.
Ygur best procedure is to reset such cdlculators to display more deci-
mal digits. On the HP 33E, for example, to set three decimal places |, -

..
~ in tl', display press |'f | |FIX 5. -

a2

" \(o “ L 54 . .




“s ingle stip

back. step

'éand on t}‘xe TI 58 . .- /

d ’ .
Zn. j \ insert

| 2

Bl

an R |DEL4 . delete , . \

. Q

(for algebf-aio %talculators or domputers only\)\}n‘EXAMPLE

}.8-2 you had to store the purchase price because it&lost‘
A :
wh‘you caIculate sa%es tax. Show how you gan avmd storage

by calctﬂahng total cost from the saleg tax. | : If"purchase

,

price is p, sales taxis .O7p and tojl cost is Y 07p. -Deter-’

, mine' the number you must multi'ply yb?p by to get 1. 07p\)

:

.c

-

18)/_Jﬁppose you were a householder in an area where dxfferent com-

. e

.

-4
\ - munities in whlch you'shopped charg'e\d\dlfferent‘sales taxes.

gThls is fa;riy common near state or even county boundaries. )
&’

' ;Develop a sales tax - total gst program so that you can enter list

v

prtce and then{is/dax rate to produce sales tax and total cost.

\ .
(Hint: an@asy way to do this is to use program storage ). 'Use

P -
-

’ “your progMm toﬁcomplete the followmg table:

-~

\) L.i\ s [ d




.\_\.—*,/ -
hY « 4 '
, .
. 2
. 1.8-8
ot ) Y -
.. list prise/ tax rate tax cost
; T ; , ; =
suit .8 $137.95 6% ‘ ) N
' |
overcoat . 84. 50 8% ~—
) i / *
shoes - 31.45 % -
hat . 18.50%7. e . .
= T =
TOTALS PR , ,
. - k4
‘\
—~—— . v T
<
- ~ v\ ’
. ‘ )
-/ " _
b #
]
- ‘ ' “r‘ )
a ; ’ -




14

1.9 - Programming Algorithms 1.

.
¥ -
. -

In sections 1.2't0 1. 8 we utilizethparticular calculators to solve

problems. In those sections we introduced some ideas that are‘quite

generi.ﬂ and apply to programmable ca.lcufators and computers bf many

types. The method of entering and running a program to evaluate an

.

often-repeated calculation is, for example, common to all progpe’rﬂmblq

calculators and computers. Al the same time many“of the ideas were
" > a2 P , Nandl

-

specific to the particular calcu}la(ting device we used, In this categor'y are,

-

, for example, the different operational ms - AH and RPN - the speci-

fic means of switching into program mode - PRGM or LRN - and the key

for 're_s.e.tting the calculato;' to run through a program agai'n - RS.T,_qr RTN.
' From now on we wish to provide more general- instructions vc?hic}:
will apply to any calculator or computer.- It is then usually quite easy to
translat; the given procedure or algorithm int; a keystx;oke routine for your
+ particular calculator, microprocessor, or computer.: We will work tlirough
a‘n examl;le to show ho.wrr an algSrithry\is arrived at and then hc;w it may be
translated into specific routines. In the examplé and in subseuquent%o:"k

ou will be led to develop algorithms.. Transl'a.ting them into keystroke
you > . Yy ,

sequences will be done with the guidance of your teacher.

-

b O 3

EXAMPLE 1.9.1 Find the real and imaginary coef-
ficients of the product- ‘3 + 2i)(5 + 7i)
SOLUTION: By standard algebraic techniques

we have _ ’ - . y

57




e 4 - . s DR
- -

. ‘ " C \l-9-2 -

. ) [}
a . . —
~ - : ‘ )
. - : ' »

(3 +2i)(5 + Ti) = 15 + 31 + 14

-

s L .. and, ‘since ‘iz_é -1 . .
, . ' P ETYELT .18 = 1 +31}
' ] - . ¢
N . Rpal coefficient: 1 _ *,
. » .- —~—
- v - - \
~ , Imaginary coefficient: 31 - . 7

.
—EXAMPLE 1.9-2 : Find the real and imaginary coeff
ficients of the product (a + bi)(c + di)

SOLUTION: (a +bi)tc # di) = ac +adi'+ bci + bdi2

oL = a.zj-(a.d +be)i - 'bd = (ac - bd) + (ad + be)i *
Real coefficient: ac'- bd ) .
7?\(: " Imaginary coefficient: ad + bc ' ’

_ Notice how ‘the second example generalizes the first. It alsp suggests an

- -

algorithm for ca.lcula.ttin'g the real and imaginary coefficients of the product

of any two complex numbers, a + bi and ¢ + di:»

o

~ EXAMPLE 1.9-3 ) Multiply‘two cbmplgx numbers:
éfve‘n a, b, ¢, and d. Finding e and f where

e +.fi = '(a. + bi)(c + di):

. ' Solution: Notice that each of the numbers a:, b, ¢, and
. & -
" # d is used twice: o ‘
' s : first use of d
. e = ac - bd‘/.
_ ’ \a_a/second use of d
* f = a be B

v

. Therefore we need to store these numbers in memory.

e




. =Y
MULTIPLYING TWO COMPLEX NUMBERS

1. Remember a, b, ¢, and d. (In a computer, this could be done

< - .
with LET commands, in a calculator with keys such as STO.))

2. e «— ac - bd; d{spl;y the resnlt*_ I
-
3, f J;-- ad + bc; display the result
4. STOP ! | . ‘
A good algorithm hz;’s certain features: .
. ~

-
® variables are initialized (or introduced)
e . ' .

° kalculations are made or decisions aresreached, based on

the vglues .of the variables;

1

° all Essibilities are accounted for

o information is displayed or printed

o the process has a way to stop.

v

A verbal algorithm is just an abbreviated statement of the steps
we use’to solve a probleni. For us it will play a role between a complex
problem and a keysfroke sequence for our particular calculating device.

For the algorithm MULJIPLYING TWO COMPLEX NUMBERS, consider

now how the steps could be translated intq program keystrokes.

- Pl

s

[

-—

k-1
the arrow notation means ''replace the value of ... with the value of

nf ac - bd.

>

’

4

" . Thus, e4ac - bd means replace the value of e with the value




\ \ ’
...: - 1.9 -.4
1. Remember a, b,'c, andd. ~ .
. “.‘ L 4 .
TI 58 HP 33E TRS-80 / Con
. ke ‘
ST6 00. (Ro=2a) STO 0 INPUT A, B, C, D
R/S ' R7S .
) . ) .
_ STI'O Oglj (Rl = b) \STON‘ 1 E |
' " R/S ” R/8 S <
’ ) 3TO 062 ( 2‘=c) : STO 2 ‘ ”/\ - i
R/S R/S
STO 03 (R3 =d) - STO 3
- o~ . > e re PR | - - s -
H » ‘_" . { - -~ 3
2. Compute ac - bd; display the result.
:
RCL 00 . RCL 0 _ R = A*C-B*D
sn - | ]
' - % RCL 2 ¢ PRINT R .
- *s ! -4 [
. RCL 02 . X .
- : . RCL 1 )
. '~ N . !
RCL 01 . . Ra’L 3 _
x . E . > ‘ . x~ * R L4
RCL 03 — . ‘
« . »
’ . - ~*
. = R/S
L 4 ‘ 5
R/S . - h v ,
[
% . .
We will use the - notation Rn to denote storage register n
- € LN

w . K (’;(/




4 [

.- 3. Compute ad + bc; display the result.

-- TI-58 . ' HP33E ~ TRS-80
RCL 00 RCL 0 I= A*D + B*C

-~

'RCL 3 " PRINT 1

X END °

. Stop

Last commangd in 3 Calculator automatic- * Last command in 3

* ally resets to 00 and
(RST). stops

Exercise Set 1.9 -

} -4 What do each of the following verbal algorithms calculate ?
/' ’
1) | (1) Enter a, b
, 2 2 . !
(2) Compute Ja“ +b"; display the result
(3) Stop ‘ , :
"2) (1) Enter F
(2) Compute % (F-32); display the result

(3) Stop

"—I.-r:———
By including RST in your program, you will not have to key this before
each run; however, you will still have to key RST before your first run.

Q s | 61




"

1.9-6

/ ‘3) (1) Remember p
N Note: We will use the
(2) t & .07p; display t ) notation x<— to mean
. e " compute x from what
(3) s «— p +t; display s is to the right of the
arrow.
(4) stop
4) (1) Remember a, b
' 2 - ’ Hint: How is ¢ + di
(2) c e a? - b% ‘display c . related to a + bi?

(3) d-<— 2ab; display d

(4) stop *

5) ' What is usually the last step in a2 verbal algorithm? (We will

.. -

L

see exceptiohs to this later.)

-

. 6 - 9 - Often we wish to replace dne variable by some function of that

s .

same variable. Thus we might use x <«— x+ 1 to mean '"replace x
» by x + 1" or "make x one larger.” Translate each of the following
. into statements beginning "Bleplace. o
—
) xe—2x 7 xe—1/x 4

8) X <— E;. 9) Xe—x -1

10 - 127 Each of the following verbal algorithms lacks one of the features

of a good algorithm (listed on page 1 9-3). Tell what that feature is and

give a atép~to make the program complete
10) (1) Enter x ¥
A{2) X 4«—x+1

{3) Stop

62 .




‘ ) - l._9 " 7 * )
11) (1) c 4+—a+b, displayc .
{2) stop

12) (1) Enter x, y - < . /‘
| B ‘ .

b ¢ e —— b — ~ ’
- (2) z e x +y, display ¢ )
. , . o
W3 .18 Make up a verbal algorithm that will:
1}) Find the area of a rectangle given sides £ and w. ‘ ‘ -
©14) Find the perimeterf and area of an equilateral triangle‘'given side s
15) Find the slope of the line between (a, b) and K, d). ’ {*. 2
16) Find the sum of two rational numbers a/bB and c/d.
e 17) Find the distance betwee‘two points (a, b) and (c, d). =
’ . . . X+ : A
18) Find the arithmetic mean (—zx) and geometfic mean (V xy) of
: - 4
.two positive real numbers x and y. - /4

'19) Using your algorithm from 17, write a program that will display

the distance_between any 2 pointriﬁ—t:heﬁz/oprdin?te plane’

. o

. 3 \( -
20) Find thg distance between (-4’: 5) and (17, -13)using your algorithm

. .
! from (18), write a program that will display the arithmetic apd

— . ~

geometricfnéan for any twu ~ositive real numbers. By copiparing

£

-

determine a relation between the geometric and arithmetid mean

L4

of two positive real numbers.

f

. 3 - p! ¢
* ‘ LT .

Save these algorithms for further work in section 1.13. -
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" 1.0  Programming: »Loops;)xd Traces
‘ ~ )

3
-

Many algorithms cont2ia loops; that is repeated series of steps.

4

The long division algorithm you llearned in fourth or fifth gra;ie is an al==
) .

" . 4 . ‘ N °

gorithm with a loop. You will récali that this (non-computer) algorithm

goei something like this:

2 .
1. Divide 23; 4876
- 2
2. Multiply . 23; 4876
.o ) 46

. .2
Subtract . 23) 4876
46
- 2
: 2
Bring down (the next digit) 23) 4876 .
‘ 46
i 27

T ’ '\j 21
(same as 1) Divide  23) 4876

3 46..
. ) 27

. 7(sa'fne as 2) Multiply

\
7. (same as 3) Subtract

)

and so on. Rather than repeat the same steps over and over'this algorithm

&
is expressed easily by a loop.

Divide
Multiply
Subtract
Bring down
Goto 1.

4




In a similar way many computer-calculator algorithms and pro-
- v : ' .

grams have loops to repeat steps or keystrokes. In the process \ksual_ly

-

the value(s) of one or more variables are change;! and the steps are re.

peated. .
- [ . '
EXAMPLE 1.10-1 Develop a verbal algorithm to generate

[ .
successive powers of a + bi, 'fof givena and b. Thus we

' IS g A2 a3 4
want to calculate: (a + bi)", (a + bi)", (a +bi), (a +bi),
R e{, each answer in the form e + fi.

SOLUTION: . We can develop this algorithm by'r;'lodifying'th,%

t y . b

-

algorithm of example 1.9-3. We "initialize'' by setting

c +di (of examp}e 1.9-3»=1+ 01

1. Remember a and b. -

2. c¢-1 and d 4'-—0
~»3. e ¢ ac - bd; ;:li‘s”piay e Recall these steps ' - -
d " from exercise 1 9.3 '
1 4. f 4 ad + bc; display ) '

5. 1If the power is high enough, stop

6. c¢+e and d ¢

- . . 7. Go back to step 3. '

.

Te-see how this algorithm operates, we develop what is called a
R ; .

trace, a record of the calculation through successive ste‘;;s.
ﬂ.

. )
EXAMPLE 1.10-2 Develop a trace for example 1. 10-1,

when a = -2.and b= 3. I'his/\w‘ill generate successive

powers of -2 + 3i.




. - -

e First, set up a table with all letters represented in the al-
. ‘ . ‘ / .

gorithm:

,_: la | b | ¢ ] a | e £ ’ .
e |1 ’1l-¢| | L

. Now %e,enter values of the program and follow the algorithm

steps:

1. Remember a and b.

s | b | e | a] e ¢

B I I A
2| 3 . :
2. V\c-e—l,a‘nd de 0 | | .
= ‘ | | a [ b I c | d | e l f l .
LT T
‘ 3. e« ac- bd display e ‘
St a | b | ¢ d e | f| Note:ﬁe(—-(-z')(3) - (3)(0) .
SRR l sl o lal | |
4, f«~ ad + bc; 'display‘f
. la § b | d | e | fl " Note: f<;(-2)(0)+(3)(1)
o |213 “1 o | -2 l 3l‘ I ' o
! ’ ‘. o * . E
v 5. if power is high encugh, stop
6. c(——e.and d<——’f | S - N
) - Ja b c d | e £l ° "
' -2</§\\{ g | -2 3|
2 3 | : - v
» ~ .
' 66




Ga back to step 3.

e «— ac -.bd; .display e=

e ¢— (-2)(-2)-(3)(3) = -5

! \\ Y L 213 -5

>

‘\‘\ - / -
\ 4. *. f «— ad + bc; display f’ )
! ’ “‘\ ’ \ /\ - ‘ |
- aw | b | ¢ | & |1 £ | Note:fem(-2)3)+ (3)(-2) = -12 l

. v 5 . :
2l || | 2|

7 | 23| -5 -12 . I
. We have now calculated (-2 + 3i)2.'= -5 -12i \
5. If the power is high enough, stop -
] . - . ¢ .
6. ce—e and def — . - -
a | b |l al ¢l %
2 |3 |x| o| 2| x| €. : :
K - . . ¢
2 & | -5 | -12{
L P "e, ?-5 -lez Y l )
-
Of course in developing 2 tr:ace, the table would only be drawn once. ’
Through (-2++ 3'1)4 , the complete trace would appear as:
- 1 i /
}‘ a b c d. e f =
) 3 1 0 4 ﬁ 3 —> (-2 4+ 3i)l = -2 + 31
; . . 2
_ -2 3 5 12 = (s2 +3i) =-5+12i
| CLoe s |12 ] 46| 9| ==> (-2+30)°=464+9i ]
| . N o . B ' . 4 ,
: 46 |- 9 |-119) 120} =—  (:2+3i) =-119 + 120i
‘\ N v * - ,
| . .
|




-

Quite often a 'iragé step like é‘tem/made subject to automatic

control. r e
.
*

EXAMPLE 1.10-3 Develop an algorithm that calculates

-

.y 1
@ +bi) a5 bﬁ'f'i for given a, b, and n.

\ 1. Remember a, b, and n. ' '

.
>}

2.'c &1, de—0o, kes n-I'

.
o ‘ -
3. e+ ac - bd i
4. f e+ ad + be ' . \
" 5. If k ="0:display e and f and stop .

6. ce—e, de-f, and ke—tk-1

[

7} Go back to step 3.
p »

You will be asked to develop a trace for ithis example in the exercises.

-

-

. o N

Exercise Set 1,10

-

- .3 .
1) Develop a complete trace for {1 - i) sing the verbal algorithm « /

»

of Example 1-10-3, Note that initial valles are a=1, b = -1,
: .

n = 3. Thug, after step 2 your trace will be:
)

la| b n] k) c|dalel] ¢

T T
2) ’ From yout trace in Exercisé’“'l, give the valu of\(l)i}:s/; ,
3) Check your answer in Exercise 2 By‘ multiplicatio

B I

i
1
i

p
o

Develop a complete trace for (2i)4.; Hint: a = b, b
: . L .

= 1
v

65
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el \ﬂ‘ Lin-e

-~ .
. )
. - ’ - 3 o ¢
po 5) . Develo? a‘compléte trace for (-1) . Hint b : .
! a . 1 ot

- v" P
6-10. In these exércises you are asked to translate E}ample 1.10-3
- .

ve?lal algorithm steps into calculator ‘or computer steps for the

]

" dev1ce yqu have avallable Exercise 6 is worked out as an examiple.
. : -6) Remeinber a, b, andg (Algorlthm step 1) ’ -
. .
. HP 333: STO. 0, R/S, STO 1, m STO 2 (Rj=a, R;= b,R2= n)
Al L [y B
. 4 & . N
T1 58: ' STO 00,R/S, STA 01, R/S,-STO .02 (R = a, Rl b; Rz= n)
. , 'TRS-80: INPUT A,B, N . ( . T " Y
" 7). c &1l de 0, ke—n-1 (Algorithm step 2) e
- - " N
C . - \ .
. . For calculators use R3)= c, .Rq: d, R5 = k. To calculate and store -
T, . . ' ¢ ) 'S l‘ . %
. ' k use the ,s‘ienge: o ) N S
- ] § '. { e . : '
o . ‘HP33E: }1 2, (why?), 1, -, STO =5 : ’5
L" TI 58 KCL;z(hF%:\;'x sto 05 ‘ ’
- ) B . : Wy o), ’ r Sy ! - .
X A . o ) ) : ' T .
E . TRS-80: K=N-1 .
% e - o o
i ‘ 8) e «— ac - bd (Algorithm step 3) ) N
L . " - 4 P
| « o For calculators use R, =e S o
\’ ’ .‘ [ X :‘ “
9) f «— ad + bc (Algorithm step 4) \ N ;.‘,
- _ v - . ) \ ﬂ o !
- - For calculators use I%?-.: £ o L -
. 10 ce e def, andke k-1 (Algorithm step 6) :
N L / b3 b
b‘% 1Y Go back to step 3. /(Algorlthm step 7) Co
. . q + ', Beware: Algorithm step 3 is probably not progfam step 3. .
e e ' .; v . (qu calr,ul;tors use |GTO| the appropriate step nimber,. For mxcro-

. ) proceuors us? GO TO the approp)-latc line number: ) J

M i -
) . &a . »
1]
) .
.
A [
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1.11 -1
- t -
. 2 1 ‘
1.'11 Decisions, decisions, decisions - ) \

A}
’

.« .
In the eéxercises of section 1. 10, you translated several verbal

)
”

) algorithm stel;s into program st'ep_s or key-strokes. In doing so we

. T A
' ) carefully-avoided the program step for looping and the program step for-

making a decision. You will be asked in sec}io\n\‘. 12 to refer to the,

- ) * ’ . ) .
operator's manual for your particular device to see how you
- : / Y

r

would program

. l.oops. In this section we address the problem of miking decisions..

-

!

l Computers and now calculators are ofteé referred to as "thinl;é:g
machines. " You may already have been imp;essed, at the ability of your

+~ device to "think'" its way through complex calculations. In fa2#you must
L3 . .

-

N L4 .
things you cannot do on your own, For example, your calculator can cal-

; g admit already that {rour calculater is ''ahead" of you: that is, it cando
| ' culate {n am instant °the'sin.e of 37° to many §(gits of acquraty. At this

l ) " f point‘i our education you pr'gﬂa_ably cahnot ¢alculate that value at all!

most in’i}ressive thing your calculator can do is make de-
¢ .. <

| : ‘éision In doing this it comes closest to mirrorifig (if not truly duplica-
an thinking. Ofgouyrse the decisions yourrcalculator can make
. ' - ) e 4

!
K -

I Y- Lare "simple' ones. Still many psychologists claim that all decisions, even .
the n@t'complex ones, may be reduced to similaf simple decigions.

)
)

P -

L
S . ,~'k \'/"J.. S
You will bw in the exercises to review“yotur operator's guide %‘o‘dé-

f termine how your bwn works. sHere we delscril.)e two rﬁéthods, the first

\
'.
N .
[y
-

Q ! ' 7(’): .
o v

~ L . Ny L,
. . FPEach computing dexlce has its own special way of processing dggisions.

W




»eo

’ s g e

111 -2 -
7z
) common to many calculators, the szcond to many ;niéroprocessors
. and computers. ; oy
‘ , : \
. ° . DECISIONMETHODI SKIPONFALSE - .
AN | (This is a common calculator decision method. ) ‘
) The calculator has one or more decision keys. - The commonest
one is_ |x =0 ? , .often labeled without the question mark. Other de- \
. " cision keys are: T x=y? x=t?
\x¥07?° x$y?’ x#t?
©x>0? x>y ? x>t ? '
x 207 x »vy.? x=2t ?
: The latter keys save calculator arithmetic but two such keys would be
' sufficient. » - g
In a program the way these keys operate is amazingly simple:
(1) If the answer to the question is TRUE, the calculator continues on to
. [ ’ : “ -
the next program step
‘- (2) If the answer to the question is FALSE, the calculator skips the next
program stop. . L s *
“ E:XAMPLE. 1.11-1 In the prog-am dequence .
N 09 x>0°7? , : '
. _ 10 R/S ¢
2 R 11 1 /){- - '
12 R/S ,
/ . . ]

\

-

‘ ’ -
What would happen if,,tlje x-register (the display) after step 8 was (a) 5,

(b) -2, or (c) 0.

v
*

(R




SOLUTION:'

(a) x= 5, x>0 is TRUE so the calculator would stop and

- .
display 5, ’ -

(b) x=-2, x>0 is I-:ALSE so the 'calculat;r would s‘kip to
step 11, caI_Cu'late the ree#psocal, -0.5 and (in step 12)
stop to display that iesuft. .

(c) x=0, x »®0'is FALSE so the calculator would skip to
step 11, try to calculate the reciproca! and fail, haléing -
the calculator to display an error message.

[

. > )
DECISION METHOD II - CONTINUE ON FALSE

(This is a common com;;\iter decision method.)
&
The more sophisticated computer languages usually’have IF ...

»

THEN statements (as well as more complex decision statements.) Here
again the processing is very simple:
(1) . If the answer is TRUE, carry out the instruction follpwing THEN

* {2) + If the answer is FALSE, go on to the next program step.
\, EXAMPLE 1.11-2 "In the p'rbgrarrll sequence ' ’
) "
09 IF x > 0, THEN (GO TO) 12
107 " x = 1/x" _ =
11 PRINT x | -
12 STOP* ’

«

{

‘What wpuld happen if the X-register at steﬁ 8 WY (a) 5, (b) -2, or (™ O.

.
+

%*
In maty computers x = 1/x is machine language for x <"l /x, thatis
replace x by 1/x. This is a different (and algebraically incorrect) use
of the = sign, - ~72 )




SOLUTION:

(a)

1.11 - 4

. ¢
X= 5, the computer would stop.

d go on to step 10, calculate

(b) X = -2, the computer
o : —
1/%=-0.5, print this ¥alie in step 11 and stop at step 12.
(c) X =0, - the calculator would go on to step 10 and at that
point stop to give amerror message.’ <

t ~

Exercise Set 1,11

i
1 - 6 Determine what the caleculator would stop and display in each case

proceeding through these program steps when the value at step 5 is as

given: o6~

x =20 *
07 GTO 10
08 ° x*
’ 09 R/S
10 1/x
11 R/S |
1) x=-2 2)
) &
4) #Fx=_1 . 5)
7-12

value at step 5 is as given:
. 06

| 08
| -~ 09
/’ 10

~ . \

Determine what the ca,lculatl?)r
’1‘ o

07 .

| '

FS
n

5 \ 3y x=2,
100

[
w\buld stop and display when the

=

x 20

GZTO 09 Hint: The results
are not all the

I/x same as exercises

R/S 1- 6.

14

By th{ instruction we mean'here for tl‘ﬁt calculator to jump to the step

num

/;;{ﬁf; -
/

#r given (not to the label given).

73 | - ’



13 . 18

step 5 is

Determine what the ¢

as given:
06
07
08
09
10
11

omputer would print when the value at

IF X 2 0 THEN (GO TO) 10
X = X+1
PRINT X
STOP

PRINT -X
STOP

14) X=5

15) X =2

17)

X =100

18)

X=0

19 - 24

step 5 is as given:

19) X

22) X

[y

06

07
08
09
20)

23)

Determine what the computer would print when the value at

IF X 2 0 THEN (GO TO) 08
X=X+1 )

PRINT -X

STOP

X=5

I

-

X 24)
.

21) X=2
X

~ 0

. * *
25 - 26 The following is a verbal algorithm for a pocket calculator.

-

10

20

30

40

Empty all your pockets »

).

Ae 0
Take a piece of paper and ‘number it A

If you have no empty pockets then (GO TO) 80

50 Place paper numbered -A in an empty pocket'

Py
. ’ he

* i .
This algorithm was submitted by David Lloyd in the September, 1978

issue of a British journal called %athematics Teaching.




1.11 - 6

-

60 A <+ A+
?
70 GO TO 30
= 7
80 Read thia\piece of paper .
o N ' i
. 90 STOP
25) What is. the decision that is made? )
26) What does the algorithm do? 7
~
/
;/
T
N — .
»
. ¢
E 3
L 4
, .‘ <~ i # -
75 .
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1.12.-1

1,12 Your Own Calculating Device

~

[N

For any programming you wish to do' it is extremely important
tl?‘at you know the qx‘xirks and idiosyncrasies of the calc’ula.tor, micro-
processor, or computer you are using. To familiarize yourself with
your particular dev_ice, your best recourse is the operator's manual
or programming guidé for that device. ,Even i} you feel very familiar

<

with the calculating device yo{x are using, you will wish to consult such

A

. LY
a guide in answering some of the following questions.
*

Exercise Set 1.12 . . N

Answer the following ;:;uestions for the specific calgulating 'device
{or devices) you will be using as you study this text. ‘ R
1) Is your device a programmable calculator, a microprocessor" br

a computer terminal? ‘ '
. 2 Does your device calculate in AH or RPN oL a third operating
. )

- -t
order ?

3)  What switch turns your device on and ‘off ?

4) Are programs "lost' when you turn your device off?

5) { .If your answer to exercise 4 was '"yes', how can you retain a pro-

L
gram so that you don't have to work out the details the next time you

need it? \

6) Does your device have printing capability? If so, how do you signal .

it to print?

\ -




&

7)

8)

9)

10)

11)

12¥.

13)

14)

1.12 - 2

How many storaée locations does your device have? How are they
named?

What happens if you have a number (say 5) stored in a register and
then store a new number (say 7) in that same register?

Does your g€vie have register arithmetic or-storage arithmetic?

ou modify what,is in a storage register without re-

[

e, operating on it, and restoring it. If your device

has reg:lst r arithmetic, describg how you would use it to

-

(a) add 3 to R5 -

(b) subtract 2 frem R5

(c) multiply the numbers in R, and R2 and store the product in Rz.

(d) divide the mumber in R4 by the number in R3 and store the guo-
. - 4

» L
tient in both R, and R .
3 4
(e) multiply R by zero. How else could you éécomplish this ?
. ’ - N /
How do you instruct your device to accept a program?

*

How do you change from proéram to calcx_ﬂat%ng mode if it is neces-

sary to do this? -

Does your device have a way of labeling programs so that you can

enter more than one at a time?
' ‘/ P} . . ,
How do you set your device at the beginning of a program/iready to

process that progr&ém? B

How does your device loop? What is its basic instruction to accomplish

) 1
this ?

, 7y '~»



15)

16)

17)

18)

19)

20)

——

Do you loop to a program step or a label?
Which keys on your device do not enter program steps (whén in

programming mwgde)?

How can you review the speps in a program that are keyed into

. you; device? .
Does your device allow replacement of a program step? . If so,
how do you accomplish this? ‘ L
Does your device allow you tc; delete a program step? If so, how
do you accompiish this?

Does your device allow you to inser?a new program step in the

middle of a program? If so, how do you accomplish this?

<

g
S

<y
/

O]




1.13 - 1

1.13 ' Usjing Your Own Calculating Device’
1

. : Lol
s R P

‘The very best way for you to become familiar with your calculator,
microprocessor oncomputer is to use it., The most interesting way to
use your Fquipment is to solve problems. Throughout this chapter we have

presented verbal algoritﬁms and programs that have solved specific prob-

A

lems, like multiplying two complex numbers.

Exercise set 1.13 contains motre problems that you can use to help
L . '
‘you understand the operation of your calculating device. *Each of these

= e

“ roblems can be solved in many ways with sblutions that range from ver
P g y

5 4
“simple to extremely sophisticated. We suggest that you start with a verbal

. aléorithm and a s'imple solution. As your familiarity with you.r equipment

[

increases you can broaden the fodus of your attention beAyond the solution
of the problem to solving the problem in the fewest steps or displaying ad-
ditional information. Make sure that you test each program with several

‘trials whose answers you know (or are willing fo compute by hand.)

Exercise Set 1.13 - .

.
Y 3

1- 4(’Refer back to y.our solutions for exercises (13 - 16) from section 1.9. /

' . Write a program fo find:

L

.

1) The area and perimeter of a rectangle given sides L and w.

2) The area and peri?néter of an equilate- ai triangle given side .

3) The slope of the line between (a; b) and -(c, d). | .

“’, ‘ T~ -

‘ ~79




N

4) The sum of two rational numbers a/b and c/d.

.5-10 These probléms refer to\mathemaf:icalvi_de\as that you have seen,

but have perhaps f9rgot;en. You may 'want to look back at your old notes
(if they still exist) or another m‘ath book.
5) Given the hypotenuse and one acute angle' of a right triangle find
(a) the measure of: the other gcute angle.
(b) the length of <'aach leg. ¢
(c) the perimeter of the triangle,
(d) 'the‘ area of the triangle.
Given the equation of a parabola, f(x)= ax2 +bx +¢c find

(a) the vertex (t'urning point)
s e

(b) the equation ofh‘ the axis of symmetry
(c) the sum-pf the roots
{(d) the product of the roots
For (c) and (d) do not Gompute the roots.
Find the area of a trlangle given two sides and the included angle

Fmd the area of a tnangle given three sides. You might want to
{ N

. use (or find) Hero's formula. .
r—-

<.
Given two points in the plane, determine the et(txation of the line

L

through the tWOCints.

Find all the primes less than 100,

Find the sum of the squares of N consecutive positive integers,
-~

Given any integer less than 100, find ’

(a) its smallest prime factor

(b) all its prime factors
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1.14 Chapter 1 Test - . °* °~ . o .-

.
- R © i

(1 - 4) Give a keystroke sequence.that you could use on your calculator

#

2

to evaluate each of the following aexpres'éions. - ' /

1) 5+6/7 2) (‘3 +.4)(5\Z)(\

s ¥ . - -

3) J6 sin 37° 4y 243

5+7 ° 5

(5 - 6) Evaluate each of the following.

5) 2+4+5:5+7 - 6) 2:5+45%X 7

(7 -9) Determine what the calculator would stop and display in each

~

case proceeding through these program steps when the value at step 5

is as given. . 06 x>0 .

07 - GTO 11 ¢

08 = CHS (gr +/-)

09 X

10 R/S : .

11 E3 -7

" 12 R/S

7 %= -4 _ 8) x= 2 9) x=0

1
s -

(10 - 12) Determine what the computer would print when the value at.

step 5 is as given. aPpo Ifx<0 then(go to) 10

. . 07 x =x 42
- 08 PRINT x

09 * STOP ’ ) ;

- 10 x =X '
11 ° - PRINT x
‘ 12 STOP
"10) =-.6 11) x=0 12y x=3 (\

(13 - 14) Evaluate each of the followiag expres'sion{. Round your answer

to the nearest hundredth.

rd . - 81
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i

Y8.7 + sin 48, 6°

> 1 ‘ _ The area of a triangle- with
(1.5)" - 57 sides a, bandc is given by

Hero's Formula:

Az Vs(s-a)(s-b)(s-c)
where s = 1/2{a+b+c). —
Find the area of a triangle
- whose sides are 6.2, 3.6, and 5.1

13)

i, . : ‘ . t o, w -
(15) The time- needed to comp'le-temone period. of 2 pendulum-is -
given by the formula t =1 \l 4 . where L represents the
9.8 . s

length of the pendulum. Find the value of «l, &c:o'.rrect to the nearest

wndredth, that makes t closest-to 3.7 seconds.

(16) Using the formula F = g— C +32: .

oY -

a) Write a.verbal algorithm to convert a Centigrade temperature

[

to a Fahrenheit temperature.

/

Write a program for your calculating device that uses your a?-
. ) .

e

" gorithm from a).
-~

Set your calculating device to exhibit answers rounded to the

nearest integer. Using your prog‘ram‘from ‘b) find a tempera-

E]

ture where the digits of the Fahrfyeit temperature are reversed
\ n 3.

. ) Ce \
to represent the Centigrade temﬁerature. Example:

,Y'A

? % ‘
v .45°C= 54°F_ or 68°C 2 86° F

(l'f - 18) Choose one of the following two questions. . ;0
One v | . e

- -

) 17) We wish to calcllate the real and imaginary coefficients of the "
\ .

.

reciprocal of a complex number.

Algebraically determine the real and ima‘ginary“doefficients.of

_1'_
a+13i

-
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1 - . » - t ””{- 3 Tt < ‘

) ¢ b) Write a verb;}}lﬁb’fi?:h’rg to calculate the real and imagiharflf

v . B . . , . \ o, - ‘ - B '
T S coefficients of the réctprocal of a complex number.
e ‘ .¢) . Write your algorithﬁx:sfrpm b) as a program for your calculating .
: . ) - . ~ 4 . Q
v < device. o - . - . > ) -
. . 4 : : : : , . L '
e o ‘(c,l - g) Using c), rewrite each of these complex numbers in stand-
E - ” - ' A = . ‘og‘y
| ard form (that is as c + di). ’
. ) e ' g
| 1 | 1 . 1
| ad),o,?. +3i ) TT+i. f) g 8 T 3
E 7 . & g A : 1. ‘ “\
t (18) As already mengioned in qugstion (14) that area-of a triangle with
s sides a, b and ¢ "is given by thle' formmula ‘ .3
| - . - A _ A = \s(s=a)(s-b)(s-c) where s = 1 (a+b+c),
} t ‘ w s . T . 2 .
| L - T « ﬂ = ~
a)’ Write a verbal algorithm 'to’determine the area of a triangle ‘ '
s . S - e ' ‘ . ’
. . ‘ +° - given three sides, using Hero's Formula. S~
' ]

b) Write a program that will find the area of a triangle ysind®your
* * . T ) ) . .

o e
r\ '

I A " Lo :
Lo v o sthm fri a).” .. : '
. _ g opitpm from 2) ‘ 2 ‘ oo
c 7 (¢ - d) “Load your program into your 'calcﬁlating/device and find ’
‘; Y ae N M . i = .
= » the area of each of the fci'owing triangles to the nearest Iinteger.
N K - - , ‘, ‘ \ . * -
I e . 7 . ¥\ a=88, b=712, ¢=108 d) a=2,b=3,c¢c=5
» " . 'S A - . . ] N 4
v N e) 'Explain your answer to d).” ‘e . 4
i ’ N .
L3 - ’
S ’ . - v
1 “ " P




. . . - Y , -
- “CHAPTER: 2, SEQUENCES, SERIES, AND LIMITS
P ' S ) il
. . . »- N *
" » . “ ’ '\/ * \ ’ N
In this chapter.you will have thelopportunity to use your new-found

programming power t’oge#ier V\Tithiyour more fox:;nal mathematical T~

Bkills to gain ins i%hts into some important new ideas. .

Ever since yoix Hearnea'to count ygh have dealt with the kinds of pat-

«

berns’tha't lead to sgquences.s We ‘will now examine these and more complex

. .

6equences. You will:-find that they lead us to some important applications

c . .

*

L
£} ~/

9
A sequence, S, is a function whose domain is the natural numbers. '

—d L : hd
R

Let us examine what this formal definition means. Weé know what a function
™ . - . .

~ C ‘ . :
is. It is a ''mathematical machine" tﬂat accépts certaift input numberg and
)

. * . .
produces from them output numbers as in the diagram.

Ea T .

4
L ]

. T -

We'also kno‘?whatthe natural (or counting) numbers are. They are the
. el , : ‘ ' S

\

$Shumpbers 1, 2, 3, 4,,@0 on. Our definition of a sequence then js

B » »
v d \
LI P4

. b

)

L4 %

or .other mathematical elements ' v
e— § ' ' - [ \ - P
. SLI > -

\

) ' ~ L} - : . N
- as diverse as compound interest and the length of the path of a'-bouizc'\ng : \‘J

‘ ball. - . _ ‘ \./'
. . ' ) i : v N -
2.1 Sequences ‘ - T - S
:

£ B | K T o MU o ’ )’ ’
L INPUT‘Cb FUNCTION JOUTPUT & I :
= | MACHINE <> : \ - ‘»




\

L]

"a function whose input numbers are restrictedto 1, 2, 3, 4, 5 and
- . * . ’

-~

so on, no negative or fractional or irrational numbers allowed.

EXAMPLE 2.1-1 What is the difference between the

squ&wfunction and the/equence of squares ?
~ .

Solution: The squaring function f(x) = xz or _
A Y
f: x s x2 has as its domain all real numbers

V 4
. Thus a table of values could include the following:.

-

-

13.69

/

\\x

The sequence table would be 11’43 restncted

X

1
2
3
4

e




’

=

£(x) - o
4. ¢ (3,9) . 2.1-3

T e (2;4)

-

RITOR

M

-> X -
v "

In the example our sequence of squares, S, could be listed as the set

of grbder%d‘ pairs: ) . L ’ N

s= {(L D, @2 4, 06 9, @16, ...}

fhe% dots rrieaning "and so on'pfollowing the same'gitte rn. -
Snn:etimes the general term is also named explicitly: ‘
s ={ b @ e 6090 00, ] e

You,will be pleased to know that this compiex notation is usually abbreizi-

ated*by listing only the 'ouimuts' in’ order:

i 2 . B
S - {l! 4! 9! ’ n ’ e } & \
or even : 2
2, * ‘ . '
S = (n ) o - - ! °
. - . , . £y

5 i '
In these notations n is assumegd to yepresent a natural number.
. .

. « )

When we wish to speak of aiparticular term of a2 sequence, again

several not‘a'tions are possible. The third term of the sequence S may
be referred to as ‘ S(3) .

. or S3 .
- - -

The use of pare'hthes‘es instead of brackets here is comrhon sequence
notation.. B ) .
(g

; T . K o - ' )
IS . .,,",Sf) ’ ) ] £

\

¥




¥
L]

' . ) 2.1-"4
. -~ £
i ’
i W (\) . ) _
In the sequence of squares, :83 = §. We could specify this sequence

by designating the P term: -

4

A sequence is called finite if 5t has a finite number of terms: more

simply, it stops. A sequence is called infinite if it is not finite, that is

P
it "goes on forever. "
EXA_M_PLE 2.1-2 For the sequence defined by ‘
. | . Sn = Ven + 1
give the first five ferms.’ BT
. Solution: Substitute 1, 2, 3, 4, and 5 in/the defining _
. '
function to obtain t?
- JT. v V7, 3, V1T

Notice in example 261-2 that while inputs must be natural numbers, out- ¢
& . .
puts are not“so’restricted.

‘

Exercise Set 2.1

[ . . ) B )
1 -9 For each sequence as defined, give the first six terms:

1) Sp=2n-1 . "2) @-w 3)  (i/n)
4 2M : 5) Sp=n 6) (Yn)
. \ v
n . - n 3
7) ‘Sn = (-l) . ) . -8) . (—FT) ‘ 9) Sn = To—il



10 - 18 For each sequence, give the required term:

10)
13)

16)

) 2 T
Snp=2n-1, Sy, ¢ 11) (n“-n), S100 012) (;1-). Sco
2", s(20) - 14) Sp = n°, S(40) 15) (). Sy "
qn -y n_ 3 £\
S, = (-1, S§(100) g (=) Soq 18) Sn= s(40)*

19 - 22 A verbal algorithm for generating successive values of a se-

\ |
quence is:
‘ . .
1. Set n=1, . _ . e
. s
2. Evalulte S, . . ~ - |
.3  Displayn, S - N— S

4. Ixi you have enough values, stop.

5., ne-n+1,

6. Go to step 2. ‘ h ' i J\ :

Program your calculating device for the sequence

19)

2.0)

21)

22)

\
5n'+ 1 ) ‘

S _ ,

n n

-~

’d
N 1

“Run your program to give the first five terms of S,.

Continue to run y;our pro’gr,ag'n until you can predict a' number leOO

I3

) N »
- will be close to. .
N :
5n + 1
Does @ C 5 f‘erl.k? ‘\ . b
» * .
How does your answer in exercise 21 help to justify your answer, «

v

in exercise 207




\

23 - 26 Program your cal¢ulating device to generate successive terms

"of the sequence defined by
' ‘.~ 3

- 23) Give the first six terms.
24) Which term is iargest? Give n and S..

}5) Run your program until you can predict 2 number S1000 will be /

Y.
close' to. v

Ed

26) Use the follawing representation for the first seven terms of this

- . r— ‘
- sequence to explain your answer in exercise 25:
- - - - s —e I -
1-1-1 222 3-3-3 444 5-5°5 6-6°6 777
, { D2 ;2 )22z ' 2222 22 222" 2222 2222222
A _
| o . T
- P - ' «




o 2.2-1

~— ‘ . B

2.2  Arithmetic Sequences T~

In section 2.1 you met a variety of sequences. In order to s’ort

”
LN

these sequences into categories mathematicians assign several names
to types. Some examples are:.

’
Defining.function' First terms

Type -~

S,=7 7, 7,17, 1, £ Constant sequgnc.’e

.
wn
e
]]
o
Y
~
=]
'
-
-
'
\‘:—o
Y
'
Y

Alternating sequences

92}
=}
!

0

o~

= 1,°-2, 4, -8, 16, ... (alternating signs)

9
A more important type of sequence because it has a rumb¥r of in-

Leresting applications is—an arithmetic segquence.

An arithmetic sequence

[

o —

is also known as a linear sequence or an g,g'thmetic progression.

-
\
e
»

An arithmetic sequence is a sequence’ in which the difference

-t

. . *
between successive terms, d, is constant.

Here are several arithmetic sequences:

-

Defining function Firsﬁ terms ‘Common difference

s : = - 5 4‘, 5, . e . 1
_,/ DS Sn n , 1; 2! 3!'
. S, * 10-2n 8, 6, 4,20, -2 . -2
‘. (‘ : ‘. ‘ '
* .(2n - 1) . 1, 3,5, 7, ... "2
N 7
. It iJ not enough for“some differences to be the same; all‘must be alike.
. . . .

Although we have not stated it explicitly in our definition, order

ant. By the difference between'successive terms we meag Sn:l

isimport-
- S,-

LY
3

Q . , ‘ Y » S R

\

T

‘ N

JRE—




2.2 -2

v EXAMPLE 2.2-1 1Is (n3 - 6n° + 12n) an arithmetic sequence?
N ) T .
- Solut_iqn: S1 = 7T o -
- g S. = 8 .
2 - . -
S3 = 9 a
. : v
These three values siggest an arithmetic sequence
with d=1. But =S, = 16
s = 35 ’
5
. _ S = 72 ..
6 *
Clearly the difference is no'longer constant and this
is not an arithmetic sequence.
o ~———-Since we have defined an arithmetic sequence as having a common
' <
' " difference, d, we can represent successive terms as follows:
= + -
S2 S, +d .
‘83 = S, +d = (5 +d')+d=S1 + 2d
-S4:S3+@'=(Sl+2d)+d=sl+3d s ]
. : a , -
In the same way: , L
) S. = S, +4d ‘ " .
5 1 . -
86 = Sy +54 . < . .
A o
In general we can write: ' _ ]
"Sn = S, ¢+ (n-l)dl
. T 2 - [
.. ‘ This formula would be of little importance if we always had the defining

)

function for Sn' We oftén do not have that fur;ction stated. Instead wé m‘

. Qﬁ

'




T 2.2-3

be given the first several.terms as in the following examples: ’
. '

o
4

EXAM“PL_E 2.2-2 Find the zoth term (SZO) for the arith-
Py

- {
metic sequence whg;e first few terms are:
* l Zo l ’ 5! 61 LI
2’ 2 2
M L Solution: We identify S, = X , n=20, and d=1 1 .
» 1,2 .2

Substituting in our formula we have -

520=1 so-11l =1 s ply= 1 + 281 = 29.
2 2 2 2. 2 2
>

———— S——

EXAMPLE 2.2-3  If I purchase a bicycle for a $50 down payment

4 ’

and $10 per’ month for a year, how much will T have paid at the

end ‘of the ye.a.r‘.5 ,
" . . " ,
-~ - Solution: We translate the total paid so far into a sequence
‘ 18t month 60 ) )
2nd month 70 . » SN
o 3rd month- 80 : :
) ’ We have an arithmetic sequence with S, = 60,
vi N " L
d =10, n=12 ) ¢
- ‘ S« S, =60+11110 = 170 o
' .. The total cost of the bike is $170.
(5




4 1-6 Which of the following sequences are arithmetic? For arith-

* Exercise Set 2.2 -

metic sequences find d.

1y . 27,25, 23,21, ... . 2) Sy =n®

3)  (Bn.5) o 4) 4,4, 4, 4,4, ...

A}

1 1 1 1 " s AT
5) 1, T FTrogr o 6) 1.6, 0.7, -0.2, -1.1, ...

-

7 - 10 Give the first five terms:’

7)) s, =3, d=4 8) 5 =5 d=-1

H

! 6, d =2 Be-careful!
AY .

I
|
11 - 14 Use the formula S, = Sl + (n-1)d - to find the indicated term .

99 S =p-2q,d=q 1 Sy
v

for each arithmetic sequence:

g 8

11) 1,3,5 ...; 8 ] 12) 10, AL L Sy

13) 1, 2, 3, ‘4, R §20 : a 14) 50, 52.50, 55,‘..‘\.;; 59 -

15) In'terms of-d the difference between S, and 59 is 3d.- Why?
F'y z ) AN :

16 - 17 Express in terms of d the difference between

’
€

e

}6) : S1 and JS5 ~OY M) Sy4 and 550
18) The arithmetic mean bgtween two numbers is the term that wonld. [ ’\
. céme between the two numbers if they were in arithmetic progression.'

Thus finding the arithmetic mean betmeen 12 and 37 means letting

8 = 12, S, =37 and finding S,. Use what you found in exercises
15 - 17 to find d and then S,. -

93 -




“-19) ™ Find the arithmetic mean between 10 and 25,

2.2-5

20) " Find the arithmetic mean between a and b.

21) Use your answer in 20 to justify the use of the synonym avex.'age

\ .
for the arithmetic mean, %
22 - 23 To insert ,n terms between two~given terms of an arithmetic

sequenc'e is often (misleadingly) called finding n arithmetic means be-
tween the two numbers. Generalize your method in exe rcise 18 to fir}d,i

the following:

L4

22) Th;'ee arithmetic sequence terms between. 5 and 13.
23) Five arithmetic means between 37 and 19.

»

24) Joewaves $2000 for college spending money. He plans to spend

$50 per week of this. Use the arithmetic sequence formula to

determine how much he has left after 26 weeks. (Be careful. Note
at S =1950!

th 1 9 )

25) Find a formula‘ fPr the amount Joe has left after +w weeks (in exer-

.

cise 24).

~ ]
/7

26) In an arithmetic sequence Sy = 40 and S,, ="12; find S...

10 17
Hint: first find d.

PR, N -

¢ ~

27 - 30 An ari@‘metic sequence is also called a linear sequence because
its)defining function is linear; that is, of the form .
.mx + b,

’ 4




- Thus the defisiing function a linear or

takes the foﬁn ]
' {(mn +b) or Sp=mn+b
A i

Find S asa function of m and b.

»

Find d = 5, - s'l as a function of m and b.
Use what you found in exercises 27 and 28 to determine the deq

fining function for the sequence: 5, 7, 9, 11, ..

Find the defining function for the sequence

S

1
4




. ' . 7
2.3 Geometric Sequences . . - ¢

Geodmetric sequences are also called geometric progressions or
- ; : - . & )

\

exponential sequences.

-

)

g - 13 . ¢ 3 :
. - | A geometric s‘equence is a sequence in which there

~ . - . ) -~ 3 *
. is a constant ratio, r ¥'0, between successive terms.

»

. x N\
Here are some geometric sequences: ,

4

Defining funcxon. First terms Common ratio

s =21 1, 2, 4, 8, 16, ... .2

(0.5™) -

0.5, 0.25, 0.125, 0.0625, ... 0.5 .
N 59-1).' N y '

/ 1 1 1525125 5
100 |’ i 10020 " 44" 4 4 ' 77
(3) 3,3,3,3,3,3, ... SRS )

SSTS U0 T TR T S |

Notice that the 13st (constaht) sequence also has a corrvmon difference,

-

d = 0, soitis both a geornetric and an arithmetic seﬁ%enée. .
) . - <. .
From the defining relationship for a geometric sequence

N
Y -

-

S/V

e . . - ’ .o, .
n +°1 ="r .. ] . \/ -
-~ S . - M - \
n -

we may obtain . '
Sn+1 = T 5,

; . - . . ' ’ ”
£ : 4 |
- . * - * 7 ‘ . \
* . p ' \ y T by B -
As in the case of the ‘arithmetic seque
thus r = (Snfl) /SY} -

nce, order is important here;

..

-

. .. b 4

N 4
B L




, = ‘ S ) Co, : 2.3.2
. . .
‘..‘ i Applying this to the first few terms, we have .
‘ S, =18, : :
“ ' 2 \,‘ 1 ¢ s L . .
S3 =,§‘:Sz = r('rSl) =r S*1 . "
N bt - :‘, - 2 ' .3
84‘- tS3 - r(r Sl) = r.Sl . F » .
. . a .
) Similarly: !
- 4 P »
3
¥ S o SS 3 l\
e .
" This pattern teads td-the -general formula for Sp: A -
l .\\ “ ¢ ’ N
P _ .n-=1 . 1
s\n =T Sl v - - !
- '

3 -

‘EXA.‘MPLE 2.3-1 - "Find the ninth term of the sequence whose

first terms are 3, 12, 48, 192, ... .

..‘ . v - . .
Solution:  We identify. S; =3, r = 1?2- =4, andn = 7,
i 7-1 o J
S;=4 - 3=4°3-12 288

a4

To calculate products like these, a calculator is very useful. In the next

Lo -. -~
" example it’is even more important. s N
r : . ,
'EXAMPLE 2.3-2°, Ina geofnetric sequegce 83 =4.056 and
 §,=11.5843416, find S, and Sg. . S
Solution: S3.= rZSI so (1) z'ZS1 = 4.056 y , ~
te N . 6 6 :
S7=1_' S1 so (2) r Sl‘= 11, 5843416
P T Dividing (2) by (1) we have: 4 7
. o 4 R
¢ " r* - 2.8561 and r=\JZ.8%61
o And by calculator‘(using the yx key or | v i) -
. ' ) .
. e T . . r = 1.3 y , /
- ‘ ‘ .97




. 2.3 .3
~ )
'f‘ . .
- To find Sl' “s'ub‘stitute this value of r into (1): ]
¢ ' ' . .
2 . ‘ -
(1.3) Sl = 4. 056
~ . d Sl = 2.4 ¥ |
. 4 S . .
To find SS: S5 = {1.3) - 2.4 = 6.85464 : 4

. . -
- ° '

Exercise Set 2.3

4

[ 4

Ve . . .
1 -6 Identify which of the'. following aye geometric sequences. For , )
B _J rd
. those t}fa(E are geometric,, find r. . - . ’ ]
" ) - l l' \
1y 1,5, 25, 125, ... 2) 8,2, -, =, ... ¥
. - 2 8 A
3) 2,6, 18, 72,0, 4) 144, 120, 100, 83% '
5) 0, 0,00, ... 6) 1, -3, 9, .27, 81, ...

!

.7 -10 Give the first five terms of each geometric sequence

7) Sl=3, r=2 ’ . 8) S;=1, r= 0.6

_9) Sl ) 2 . 10) 53 =a, r=b
. \

!
11 - 14 Find the required term of each geometric sequence:

n
L
wn
L]
n
og

12 2.4, 1.92,...:5.
) 3, 2.4, 1.92 S6

13) S =72, S, =8; Sg 14) s, ='18,')§7=9l.125; s2

e 11) 1024, 512; 256, ...’;S12

1 3

15 - 18 The geometric mean between two numbers is the number that

“ would fall between them in a geometric sequence. Thus to find the geo-

. . , P
metric'fne\an between 2 and 32, let Sl =2 and S3 = 32, and find SZ'

Use this procedure to find the geometric mean between each of the .

i

@uowing: o
i < ' /




Find the -mean proportional between a and b That is, solve

the proportion

= &
. b

for g.

-

What do your results in exercises 19 and 20 tell you about the
. ) . k‘ .
mean proportional and the geometric mean? ~

!
e

Inserting more than one geometric mean between two numbers- i8

c” . . ¢

" like the proc-ess for arithmetic méans. To insert threé means be-
. s

tween 7 anchw?, for example, set Sl =1, SS‘= 67, and find Sz.

S3, and S4.
Insert three geometric mtans between 7 and 567.

Insert two geometric means between 567 and 168.

-

o

A golfball dropped on a cement floor bounces 80% as high. I the

Bball is dropped from a height of 2 meters, give the he{'ghts to which

it boundes for the first 5 bounces. Is this a geometric sequence ?

If so what is r? -~

V.

s A 'nest" of squares may be constructed

by joining midpoints of sides. Show that

tgxe areas of the squares form a geome'tric

2

sequence; that is, that S l:\r Spn- (Find

.

r.) If the area S, is 96, find S,,'. ; .

99 ' /
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2.4 Finite Series ) ) .
‘ - B -~

y

We found in sections' 2.1 to 2.3 how to calculate specific terms

of many sequences. We now turn our attention to finding the sum of ..

’-

the terms of sequences.

Clearly there is a direct way of doing this. ‘

4

EXAMPLE 2.4-1" F.ind the sum of the first seven terms-of the
.aritl ‘ etic sgquence (2 + 3n)
Solutién: Generate the first seven terms: 5, 8 11, 14, 17,
" éo,zé..Addihenxtoget 98. -

'/ ‘ . .
EXAMPLE 2.4-2 Find the sum of the first tight terms of the

-~

P . geometric sequence 3, 6, 12, ...

\ ‘ sent the sum of ‘i:ermg;.;?to S,

-
L]

,Solutio‘n: r = 2, so'the eight terms are: 3, 6, ‘12, 24, 48, 96,

‘192, 384. Add to.get T765.
- Vo EA ¢ .

We now introduce the symbol §/n (using the regular dollar sign) to repre- .

s .

' NS Co.
Thus: ' . , s . X
: = 5y, - ‘ '

$1 =
\ $2 = 5 +s2
3 ‘ . ‘
= ‘. .
-$3 s1 +SZ+S3
$4 = -sl+sz+s3+s4‘ . } 2
and in general , ’ ) )
= 'S, +S, +S, #... + .
4
~ OUO~ ~

. \ “ ”
We have used the notation dn or S(n) for the 'nth term of a.sequence.
” ’ "




Applying this ‘notation to the examp‘les,\‘ in example 2. 4-1 we found

< * _
‘$7 = 98 and in example 2. 4# we found $8 = 765 ,
It is important to recognize that $,, $'2/,;$3. @$4, .. itself forms
‘ ~7 ! . 5 b »

) - .
a sequence. This sequence of sums is called a series.

Whene\}er we are given the defini'r;g function for a sequence (the
N
formula for Sn)' we can use a simple algor m to calculate $b This
, A . \ N, WA
- verbal algorithm is a minor modlflcatlon of the program of section 2.1

(see exercise 2.1 --7.) used to caldulate uquepce terms. We wﬂl dls-

play both S, ahd §$,.

4

TO CALCULATE Sp, and $‘n, forn=1, 2, 3,

s
3

Set n «1, $.=0 .
Salculate Sp : . AN
Display n, Sp y .

$ «—~ $+8Sp . .
Display $ ' \
I n is large enough, stop

nen+1 ) ’ . /\'

Go to step 2. .
'} 1
1 * ) ‘ \

- ’ i
This verbal algorithm has several problems associated with it.” First, it .

0O 2O W P WIN

does not work for sequences for which the g‘enéral term is not available.
I 4

You will be asked to modify the program to take care of this for arithmaétic

and geometric sequences. Another problern is that the process is ineffi-

cient. For cxa\..p‘e, if we want to calculate $100, we must firet calcu-
. . / *
. [~

late $1 to $99. Q

In the case of many series, particviarly the arithmetic and geometric

4

series, we can calculate $n directly. We now turn to the development of

101,



-/ .

- “those formulas. In éach case we start from the basic r'elationship
4

—={1) $,} = S!4+ s, +\s—3 te. 4S8 ,*S -.fsn
» }

and émploy a trick. -

foe Arithmetic Series )
v .. « 7
« We re‘z:a.l'l the role of d: Sn+l = Sn +d for all n in an arithmetic
. . ‘ . . . [ »
sequé€nce. Fhus we may substitpte in (1) to obtain:
<. X
(2) $, =5, + (S, +4d) +(S;+2d)+... +(Sp-2d) + (Sp -d)}+ Sn
. ) - B

Y : ‘
Now we use the fricks. We rewrite the right member of (2) from right
to left - . N ' ’ N
b N -~ ) . : ()
Y (3) 8 =Sn+ (Snad) +4Sn - 2d) + T, +(s\; 2d) + (S + )+ s,

“and then add (2) and (3)

bo4) 28, =(S) +S ) + (5, +5) 4 (S +Sp)+... + (S) +S8n) + (S, +Sp) -

+(8) +Sp)

. 4

'On the ri'ght side of (4) we have' n pairs (Dé you see why?) so:

" (8)~28n = nis) + E)

‘ ‘,and'f

.

(6) |$n = 3 (S} +Sn).

4

Y

. - - v H
. 5 . Now we have, in equation (6), a formula for the sum of a sequence, $,

given the first and last ferms, ) S1 and S;; and the numbex{of terms, n.

\ .

.. .. f
If we don't know S.ﬁ' we ca:??alculaj:e it by the formula of section 2.2,

(7)’ Sp = Sj¢+ (n-1)d;|

3




or we can substitute this for Sn in (6) to give:

. y n ’ - 1
< (8) | $n = =([25, + (n-1)d " e * ‘
, n = 5 (25 + (n-1)a] I “Yi
Y N 0 = T -
S ' ‘ 4
A EXAMPLE 2.4-3 Find the sum of-the first 20 terms ofs s ~

the gequence beginning: _5,' 8, 11, <=

Sc;lution: Sl =S5, d=3, n=20. Substituting in formula {8}:

. Y *. 70 .
;o Sy =RTo[20 5 +(20-1)3] =670
. » . Q
v \ ) : L ’
EXAMPLE 2.\4-4 Find the sum of the first 100 natural numbers.

-

Solution:  §, =1, S =100, n=100, d=1. Using formula (6):
160 .. .
$100 = (1 +100) 25050 . /

4

The Geometr‘ﬁc Series

s

) . * - - e .
: Tur,nir;g now to the geomet~ic sequence we recall the role of r:
J - . ~ , )
Sn+1 =r 8§, for all n, We bubstitute this in (1) to obtain:
] ’ Sy ’
Y ' (9)" $_= S; +rS +r2‘s' $.0 4135 4l T
[N - PpnT. 0L T IO ) . 1 . 1 .
e . a’ : .
Now the trick. Multiply (9) by r: ,
L4 A , * —‘2 _ -
(100 r$ =rs, +rzsl+r3.s1 + ...‘-_i—rn S| +r‘“-’sl +r“sx
’ v, N
Subtract (10) from (9): ’
' r
¢t~ n : . )
. Sy s ars =57
. L
Factor the left member of (l1): N .
12 $ l-r)=5, - 'S, ' o
(1z) $ (1-r) =8, - - 103 S .
~r ! ’ . ) ~
N , . }5 * . ® .-




\

" This leads fo

4

4

(13) .

S+

S, - 15,

l.-r

L

(14),

-

$

n

_ S -r

l'-r

: ’ +
This formula corresponds to the second arithmetic sequence formula, -

*(8). We can rewrite ' (13) as

(15 =

h ]

, and substitute Sn forr

sl - r(r?l-lsl)'

:
1 -«

n-1

¢ .

)

(16) | $p =

Sl'- rSn

) 1‘__\1':14

2

P

-/

[

. S1 to give a formula corresponding to (7):

v

%

3

EXAMPLE 2.4 -5 Find the sum of the first 10 ter% the geo-

F ‘metric sequence whose defifling function is (3 - 2™).

Solution: The first senveral teTms are 6, 12, 24, .

r=2 and n=10.

5

601 - 219

Substituting in (14 ):

.
. -

(-1023)

$10° 1
‘

B

-2

6 -
Al

AN

= ‘6138.

-

We summarize here the formulas we have'developed: ‘
L]

GEOMETRIC SEQUENCES

n-1
Sl + (n-l}dl . S (

ARITHMETIC %EQUENCES

Sp =

~

$, =3 (S, +Sp)

-




’, . ‘ ’ . - . ’ 2. 4 -' 6
. Arithmetic Sequences {cont. ) Geometric 'Sequen_g:es {cont. ) _4
€ . . | ) ' = , N . .
‘. © 8§, - ™S
_n I | 1 .
$, = 3 [zsl + (n-1)d] B $p = ——

) v i-r . .

. . S_l(l'r‘n)(
. ’ h. N '$n=‘ - . .

-, ( l-r : .
- 7

. Exercise Set 2.4 . -

‘For many exercises a calculator will be helpful.

BER. B

1) F\ind the sum of the first 50 natural x;umbers.

- . 3
2) -Find the sum of the first 20 powers of 2: thatis, Zl, 22,, 2, ..., 220.

-

' v .
3 - 10 Identify each sequence as arithmetic, geometric, -or other. Find

the required $:n. o . \ ' . .
' 3) qp 3, 5, 71'--;$‘20 - 4) lr 31 51 71---;$n‘
5y 8,4, 2.1, ...:8, 6) Sp = 1000(0.5)"; $s
s . i . . 2’\ i
7)) (5-3n).$, . 8) (81(3)7 )%y S
b 9)  (x% -x +3); $g 16) 800, 750, 700, \..: $5, -,

. L 4
-, ! * ,'/’ . / ‘

11 In a famous problem- you are asked which you would prefer to re-
. ‘ . ‘ - -
ceive: a single payfent of a million dollaf_s or 2 30 day month in

: ¢ Which you are paid 1¢ the first day., 2¢ the second, 4¢ the third, -
. i ‘ s ’

. and so on, doubling the amount you are paia on each succeeding

-

. : .
day. Deétermine the better offer by careful calculation. . v

. 0
12) Progrm and solve exercise 3 by following the verbal algorithm

; °
- /\ of this section. o .

» ] 105 o,

-




+

<«

13) Modi}',y the verbal algorithm to calculate Sn and ‘$n forn=-1,23,..,

- . M
y

when you 'don't know the defining function, but only know that it is

.

an arithmetic sequence with known Sl' and d.

F ol

. v
!

14) Make a similar modification for a geometric sequence with known

. .
“

Sl and r, ‘ Y. . '
< .

15)  Another way to derive the forrula for $, is factor

v
.

$. = S. +rS +r25“+...+rn-15 tS(l+r'.+rz+...
n 1 1 1 -1 1

3 ' ‘o ( '. ) _.n
and substitute for 1 + r+ " + ... + " l/it‘s equivalent ! ] — .
o -r

.
~

. _ .0 ' ) CL . ,
Show that l—r = 1l+r+ r2 +... n-1 by either multiplication

l+r
: M.
s '
or division. .
P - : . .

16) What happans to formulas (13) and (16) when you have the constant

\ -7 ' .
sequence - 5, 5, 5, 5, .. ? Give a formula for $, for a gconstant

-
. a

‘series in terms, of Sl and n. _
e

17) (Check your second answer to ex®rcise 16 by using the arithmetic
¢ . -

&
sum formula,

’




\ . .
N .

et

_those of tii section, infinite series and limits. In this section we-will,

. ]
introduce these important ideas only partially and informally, the details

-
[ -t

Ve

and more formal asf)ec t7eft until.you meet these topics again in your
study of the calculus. N , o

Without knowing it, you dealt with both topice as early as grade six
. ' r - .

—~f
when you tried to represent 1/3 as a decimal and found'» .
, . ) 1

4

(1) = = .333533333333;_333333333..

always Wlth that same tantalizing and elusive 1/3 remammg after each

& e

LY

step of the division. We may rewrite the expression of the righf member

.
-

of (1) as: ’ ‘

1 - 34.03+ .003+.0003 +.00003 .+ ...
3 -
Notice thaf this right member is an infinite

(2)

1}
eometric series, infinite

meaning that it continues forever or does not stop. The defining function
“ v

for the gequence ?f terms to be ad}ed is:
v . ‘3 >

R oron AP .

)
You mafy check this by representing Sl' ~S-2 and S3. In this sequencde
3 - 1 ’
1
.of section 2.4 to get: :
— - ‘
* .

We have been uging the three dots, formally called’an elli ipsis, to'mean’
"and gh on following the same pattern. ' This is standa? mathematlcal

practice. i 1 U 7

'S, = Tgv»-and r = 75 . We may substitute this in one -‘of the sum formulas



If we evalhate this exp_rgssion!for values of g ‘we get (as we should

-
.

expect): e

~

»,

1 2
31 10
/

1

LI O

10)
1

v ~

99

1. _
1 3) = 3 100
>

999 ._ 333 :
= = .33
fooo ~ 1000 333,

—

Y

-

' These sums check directly with what we would get in equatic.m (2). - Since-

. . ‘ N ] . .
we know by how the series was generated that this valpe gets closer and
: . ,

closer to 1/3 we may write formally

1
lim $n = T
n-so -3

. We can read this "The limit of the series sum as h approaches infini ‘
. i . : ]

is one third.," In our informal um{erstanding it is reasonable for us to think
. = ' ] A

of limit as meaning something we get "'closer and closer to." (There are

many problems with this definifion, some of which will be'addressed in
Y . .

‘ »
the exercises’.) no

e v

, e

' 2

Nowtwe consider the series formula itself as n —» oo

s L4
S -

_ S (1. ™

n

. 1'—1‘/
‘ -

1

. -
-

The sense bf’thi_s is ''n becomes very la.‘rge. "

A 0108‘,




A ., - . . ° -
L] - - ’
[ 4 “ r ‘
) 4 - .
N b .
N 9 2.5-3
- . . ]
. , ¢ . 3
. ‘\ . 4 n g . »
i . ] - . 7 . s - -
’ . o \ . n- - .
focusing -our attentionon r . We claxg: that _ . | .o
7 ' A 'J ) . ' L
: . ) . 2 5 - ’ " : R o . rd
: = .31, 1 -l rcl, Jim r).=
SR . . <L AN e

.t -, ‘ . < '\' ’ ) -
ot / We will not prove this theorem, &'will instead try to justify it by medns
PR £ . . . -
LN I ° :

2o . of.'exagrip'les.' ¥ r=20.1, .it is to believe that r" gets closer and

-

-
N

_closerto 0./

. ' : R e . A :
s . - LA »0. 01 o . ) \9
5 . - . . ®
r- = 0.00001 ' -
’ . . - ¢ . .
. 10 ", : 3 .
. . r = 0.70000000001

. ‘ ® oo : : )

[N

But what abowg¢ r = 0.9°? Doe; (0. 9)n also approach zero™ Ni:t so quickly

~

-

perhaps, but it does:

s .
. ’
a0 ’ r? = 0.8l &
) . . ’ N ) . 5 _ ' ~
’ ' } r- = 0.59049 .
' )~ - - values
) o r& = 03486784401 . rounded to
' o ‘ 50 k 3 L . sten .
. e7Y = 0.0051537752 decimal
‘ s * ' digitg >
: ¢ N
, : r100- 0.°00002656 14 :
r2%% = 0.0000000007 >
You should check these values by calculation. ) ¢ -
- ‘ ) . . ~"
\, f -1¢r«gl1, \{Je have said that r" appro\ches' zero for large n.
P ‘ » - P

' -
' This has a profound effect on the formula for §;, under the same conditions

. .

n
) Sq (1 - 1™ §1-0 s

‘,,-.‘ ’ $n l1-r 1 - r ‘l-r .,

L

J

N L
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I

. . N .
»

.
' ‘
- .
.
.

\N e

“

-

¢

. g . .
4 . 2.5-4
* - - ol T
" N T ’ *
i /
We can write formally
. . - @
s . 8 .
2.5.2 ¥ -1<r<1, lims§ ?—‘ for the ge%r’::tric series $n

4

n—)co l -
M O 4

P . ' . -

* ) . 0 1
To apply this important theorem we rotice that any geometric series

that does not stop is an infinite series. We must only assure ourselves
. ’ * N ‘

that -1« r <1, We will abbreviate_r’}irg $1',i by $§_, or simply $.

EXAMPLE 2.5-1  Express asg/a ral'ionalv,n'umber'th;e decimal °

of 4 L g »

. 0.636363. ..

’

14 ‘ f
N . . \
Solution: We may rewrite .636363... as

.63 +.0063 + .000063 + ...

-

and identify S'1 =763 and r =.0l. Since the ’
series is infinite and -l< r <1, we may use
the formula of theorem 2.5.2 to obtain (I
N ) $ ’= & = _6_2 = l ' *
0 o0 1-.01 99 11 TN
. - " ’
/ EXAMPLE 2.5.2 Find the sum of the terms of the sequence
- (2 . z
. 3n - i R )
Solution: . We examine the first terms of this sequence
- 20 20 20 20 K
| 3' 9 27’ 8L’ .
\ v . . '
) to identify S, = 20 and r.= l D
‘ 1 3 3
. N A&
f 20
3 20
[ = —_— = lO I
’ 1.2 2,
3 .




\

!
v
|
l
5

§ 2.5-8

- - v ‘.

-~
In the exercises we will also examine limits of non-geometric’
. o T L

. . <
series.

- L

.
Sequences can have limits too as example 2.5-3 wiil show:

\
3 AN

~

EXAMPLE 2. 5»3./7 Find the limit of the sequence

n+6é .
Sh = 3 _.2n 2% N> oo 4 I

-

b

. Solution: Here we examine some terms

¢ ' .
\ Sy=1 s, = -8 S,= -3 . .S, = -2

We seem to be going nowhere fast, but try larger values

+ ~  gapt - _ -
100= -+ 538" 'S 450=--50%" S} 440 000

>

S,n= -.94

. 10 S

This suggests at least that S.e> - .5 as alimit. g

_diviging numgrator and denominator by n to obtain

’ ' 142 -r

___'n ) .
,3__.2 . /

.

n #
Now as n grows larger i and %J‘ will éet smaller and
n ¢

'the value of
n+b 1+
3.2n 2 22

\. . ) -ﬂ_
h ]

as we found.

¢ ‘ . \
~ Other sequences will be examined in less detail in the exercises.

*

To tonfirm this thm"mg we change the form of rgtzn—) by

‘A

= - 5000

. -
. - . * - -
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3

/

W IR .
(9 £ > . 8 "
’ . ~2.5- 6 .
. - S ) . -7 Cf
“‘ Exercise Set 2.5 . ' _ : . C o~
N Iu“br\each value of ,r", find by caleulation rs, krlo, vand rlOO
. .
correet to six decix;ia.l digits:
) ren 99 (find xplooo‘aISO). 2 re-.99 -
3 rel1 . . &) r=-Lo)
5) f =k . - ’6)‘r=-1
7 On the basis ;f ybu.‘r results in exercises 3 - 6, ’do you be‘];ieve that
- the rgst;iction (if,th;.oren{ 2.5.1 to lr'l <1 is~neces’sary'.:
8) Is theor"emj_. 5. i tr\{e for r = 0‘? Why? \) o
9) Give an egf*{mple of a ségu.ence with S, # 0 and r = 0. Does
the formd;auof theorem 2 52 work here? .
10)~4 Give an‘é.igument tl"xa:t a.'n arithmetic sequence with d # 0 does not

in

12)

13)

»
4

. - - ’ ' /
}}ave a lxgnt" K

Even d ='“'0‘ does not assure a limit to an arithmetic series .. Give

E]

one arithmetic series with\ch/= 0 that does not have a limit and one
‘. L ‘ . v

that doas. ™

Program . . 5 '"3 -
1Y Y S - 3n” - 10n +n
: - 2
n Tn + 4n3

- n

] .

By evaluating S'n. for increasingly large n, determine a candidate

for lim 3n2 . lOn3 +n " /z‘\ T, .
31—)65 7n + 4n° - n° :
,,/ {2_ - oo . [ .
. oo «
J’}xatify your candidate in exercise 12 by dividing numerator and
Y 3 . I T /
dehominator of S; by =n". .

: 112 :

t




,

14) Program

' | ’ 205 l ‘ '
. - n'- - - *

. ~~
. . (a) Evaluate Sp forn=1, 2, 5 10, 15, 19, 20,

s/

N
R N ——

. ‘ To what limit does S; appear to be gofhg? <\ .

(b) Now evaluate~Sp for n = 100, 1,000, 1,000, 000.

L .y

To what limit does Sp approach?
- rd

15)  Justify your amswer to 14(b). Hiat: Use the method of Example 2.5-3.

-

16) A ping pong ball is shot upward from a toy cardhon to a height of

» . 2

5 meters. It then falls back to the table on which the cannon stands

» ' .
and rebounds to a height of 4 meters. On the \ o o,
/ . next bounce it rises to 3.2 meters. If ) AN -
s a . N , "\‘
this sequence of bounces continues in ,' , 4

)‘ N ’ -
the same pattern, how for does the

ball travél‘ before it comes to rest?

[
-
e -
-
™ -
Y
- -
-
- ez g
-,
™ -
-~
-
»
.
’
.
,‘--"'
. .
B W= =

Hint: Don™t forget the dijtance up and down!

17) Starting with a square with side 8 cm., : - ' l
“ ’ form a second square by joining the - ) <\
(
\
- midpoints of two sides as shown. Cen- l

tinue this process. Find the surr: of

the perimeters of all squaregs con-

. sidered separately. .
oo sl
[ q A\
7
' 113
: 4

N

.
o
;( A.‘




-

~ 2

For the nested équares of exercise 17, find othe.sufn of the areas

of .all the squares conside red-separately.

’

From a squaré one fourth is removed, then

one fourth of one of the remaining three

fourths, and soon. If ﬂl{s procedure

is continued, to what area does the re-

maininf,ﬁece approach?

.
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2.6 Recul‘sion _ > : ) ‘

»

v .

In this section and those following yon will meet a number of ex-

4 v : .
.. -7 tensions of the basic ideas -presente(in'{his chapter. In them when you are

—— *

confronted with 2 new sequence or series, you will find it to your benefit

. oy
to carry out the following checklist of steps. (Others may occur to you
\ -

=

as well') . . .

~

1. A, I t‘he sequénce (or in the case of series the sequence of

" sums) is/g/iven by idenfﬂying Sp write the first few terms:/

RS
Sl, SZ' 53, S4 OR N

B. If the sequence is given as a sequence ‘of, terms, try to
identify the defining function for Sp-

2. Check to see if your sequence is arithmetic or geometric by

‘ 3
looking for a common difference (arithmetic) or. common ratio
v

. + -
’ (‘eqmetrid. If it is one of these, be prepared to apply appro-

~ . priate formulas

. ' ' 4
3. If \(our, sequence is ?leithar arithmeti¢ or geometric, examine
.. * ‘-
. how_you can get'from one :tep to the next. This is often useful
® . '

in examining the properties of a seﬂ'uence and eapeﬁ%auy ip pro-
: 4 .

gramming it '
4 . "’ L3 = x

! . 4

Let us examine step 3 further by means of an example. ;
. - N . 1

* EXAMPLE 2.6 -1 Find $_ for .ne sequence (7).

) /> ‘. - . . n - n'/

v . Partil Solution: In case yo:) have not met the notation n!, be-

/

. ,
- ' *
.
B 2 -
. )
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.
fore, we note its two equivalent mathema- ‘
. tical definitions
L ] ' -
i [ 4
e - DEFI =n! =1 23" n, 0 =1

DEFIOI O0!'=1, n'=n{n-1)!

1}

[

1

Thatthese two definitions are eciuivalzt may be seen by

cl:tecking the regults forn=1, 2, 3, ...

n, )
. n DEF T DEF I ,
- < ) ’ . 1
1\ A 1 110 =1-1= 1
2 1-2=2 2 11=2"1= 2 .
. 3 C1-2-3=6 3.21=32=6
o~ 4 1-2-3-4=24 4 IN=4-6=24
‘NO\T—we return to our example. L We seek: . -
» ‘ i
$n = % + ’2_1' +(% + ‘—l +... + — T(step'l of4our‘check1ist)
» o .
(‘ This series is neither arithmetic nor gepmefric (c;hecklist step 2)

"We can get an idea of the sum by programming and using the program
<2 - :

to calculate $n for incre,asing’ n. A verbal algorithm to_do-this is:
) - . .
1.-Set nel, $¢0 I | »
2. Se1/n! . )
3. $e—% + S ' y .
4. Display n, $
.5
6
7

%

If $ isnolonger changing, stop; otherwise
. no-'THn;I ) .

v 1. Goto step 2.
\ Uy .

*

A ) M .
Here as elsewhere in this chapter we consider n a natural number.
’ L]

’ » A A Y
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‘ . . ‘g‘ - ¢ 2.6-‘3‘

’
-

19 ) \ ~ ~" . ., -
. ¢ ' -
- There is-one difficulty with this algorithm. In step i
¢ : ]
2 we are using definitidn I to caleulate Sn. For given
) ' / ' ¢
n this involves n-I multiplications (even if ‘n! is avail- .
» ] ., . .: Q
able as a program step.) BQi compare Sn with S, .y
s = &
. n n!
L1
: . Sa+i-® @
/ ) —
- . A little thought should*suggest ﬂ:a‘t -
' ; '
L . 1 _l_" (Refer to Definition I
! (n+1)' = n' °  n+l . . }
3 ‘ )
and ' >
. S '
S 1 = n —
n + n+l1l [
~
In other words we can go from Sn to -Sn+l bi dividing by n + 1.
‘ This leads to a modifkd algorithm: ' ' -
., i. Set ne0, $+—0, Se—1 =
| 2. . S-—m
) i s
: /’ 4. Display n+1, $ ‘
: 5. If $§ is no longer changing, stop; otherwise
6. ne—ntl* ‘
7. Go to step 2. / . -
y . . ,
)
* . You will be asked in the exercises to program and caltulate
v ' ——

this. function.

' /

Ve 7
i Wha?we did in Example Z‘é- 1" was to use a recursjon formula

.

Sn+1 = Sn/(n + 1) .in place of the more complex defining formula Sn'= 1/n!
. &

A recursion formula is a formula whigh defines a term of a sequence by

the immediately preceding term or.té rms.
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b o - .
This is possible for arithmetic and geometric sequences as well
N . R
as many more complex sequences:
. . A
' Ar‘tthmeti:: Sequ.ence:- Sp41 = St @
Geometric Sequens snll = r Sn . . ) ,
- 3 4

The technique may be s~ directly for arithmetic and geometric series
. ‘ ‘ Y

as well. - : ‘ . ( '

EXAMPLE 2. 6-2 ' Express $n+l. for an arithmeﬁC\equence in )
¢‘ \ . b v
terms of $ . ' : . 6, |

s.n . ,
\ hY . oL . |
Solution: $n = S1 +~Szl+ S3 + ... 4 Sn*‘ N
$h41 = 5 +s2 +Sy, 4. +S +S = $m+sx;fH

FI

, {
y and since Sn+l = Sn rd.

i £

$n+1= $n+sn+d =$n+Sn+!

Note that in programming this :;vould be accomplished by ) ‘

‘ , Se=S+d ' -

-

$e$+5S

since Sn+1 has already been calculated in the first of thé\two steps.

You must be very careful of such cvalg:ulations.

-

A famous recursion defined sequence was first examined by Fibonacci

4

of Pisa and since by many mathematicians. It is the sequence

o 4 *
?1=1, S,= 1°

S

i . g v
. n+2 )

=S +5 .

§

-

. Yop-will have a chance to examine‘thie‘sequence}in the exarcises.
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Exercise Set 2.6 .o

L 3

L]

—

14

'
'y &

for a geometr!c series.

»

2) Translate your ax‘rer in Exercise 1 into a twqQ step calculation’ -

.
/’

algorithm.
~.<

.
»

1) Usge the method of Exa,mpie 2.6-2 to develop a recursion fo.i-m,ula. )

a4

3-8 To translate a sequence defining function into a recursion defini- .

: . S )
. _ - “n+l ) :
tion we seek k f°:;$n+l = kSnN. Clearly k = 5, .- Find k {or
eacl? of the following: (Note that k will usually be a function of n.) .
~ , -«
. . N .
3)  (m) 4) (@n-.1) .
2" 2 - 3P
" (27) (2 = 37)
\

7 (L)
n

9 - 13 “Trandlate into verbal algorithm steps the recursion formula for

each of the following. Use your results in Exercises 37 8 ‘

\ .
) ‘ 2n+1l
9) (2n-"1) Solution: In Exercise 4 we found Sn+l = Sn . 2.1 .90

2n+1l

we have S« S
.2n-1

\

10) (a 1) (2 -3

' - 2
13) 0§ = (n!]
n (2n)!

gnd then- $ =% +8S.

12) (L
n

LA

14) Use the second'algorithm of Example 2.6-1 to program and cal- -

/
Compare your answer with el -1,

/ 1
- culate $12 f(ir Sn— =

using the e* key on your calculator. '

’

15) Use the definition of the Fibonacci Sequence to write the first light,

terms of the sequence -
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16) A \jpbal algorithm for ge;lerating terms of the~Fibonac'ci Sequence

[} - . .
follows. In it we will use R ‘to repre\éent storage register n. .
n .
. - , - ] R ) _ |
: - " 1)} Display b o1 2, 1 Lo / |
. ' ' - ’ - S
. . ) ~ Note: This represents n = 1, Sl- =1fn= 2, S2 = 1 |
2) Set ne=3, Rlo-'l, Ry 1 :
) »
¢ i ' h
. Note: We are using R1 = sn-l, , '-RZ = Sn-Z : . -
. N . 3) R3<"-'R1 ;I—R2 Note: R3 =.Sn‘
» . .
4} Display n, R, . ~ Y V4
5) If n is large enough,. stop; otherwise
/ N : \
\L‘ 6) n €& n +'1, Rz“"' R.l, Rl’—R3 \ \ ' - R
/ ) < > ' ) l
7) Go to step 3. ¢ : .

| /. Program your’ calculating instrument for this algorithm and record

. Sn for n=1, 2, 3, ..., 12.

17) In the case of the Fibonacci sequenceg, the simple recursion formula

replaces a complex de.fining fullction:

- Program this defining function and calculate S, for n=1,2,73,...,12

a \ .
to compare with your answer to Exercise’16.

18 - 20 Itis pdssible to work backwards with some sequences (but not «,

S 5 etc. Fom each of the following calculate *

others) to calculate So, S 1’

SO' S_, &md S-Z' ‘ When possible also girveJ aigvormula relating S;n to S_.

’ ) -

f Cos
Recall that INT means the number "rounded down'' for numbers > 0.

Q. ’ . . 1
i < <v
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>

18) ’The arithmetic sequence "1, 3, 5, 7, ...

S

19) The geometric sequence 3, 6, 12, 24, .

. $
20) The Fibonacci sequence




z.7

interest formula

Applications ’ .

| ]

,An\important applicafion of sequencés is to banking. ‘Earlier in,

* your study of mathematics you shoeuld. have' learned the basic simple

J . *

14 b 3

NG

&

~ EXAMPLE 2.7-1 Fipd the simple interest on a $100 loan at 5%
. ] )

per yearvfor 4 years.
. .

Solution:  Substituting in the simple interest formula:

- i =100 (.05)4 = 20

The interest is $20. ' o |

*

N

%,
Compound interest differs from simple interest in that the interest

" is calculated on the new principal (often designated the amount).,/ s

’ - . . . \ .'
' for each unit of time is added to the principal so that subsequent interest-

-

EXAMPLE ,2.7-2  Find the interest on a $100 loan at 5% per year

for 4 years compounded annually.

i - Solution: (by arithmetic calculation):

-

Year 1: ip= 100 (.05)1 =5

n

: A = 100+ 5z 105.
J ‘ “
Year 2: i, - 105 (.05)1 = 5.25

, AZ =105+ 5.25=110.25 - (An_”— n ‘.n

L)

" in which i = inte rést, p = pr{indipal (the‘an'wun’! b/ankeci or-invested or loaned),

s
L

© r = the rate of interest (per unit of time) and‘'t = the number of un;xts of tixﬁe.’

-




2.7-2

o' <

o M » ) “~ *
. Year3: Y- 110.25(.05) 1=5.5125
g '-A3 = 110.25.+ 5.5125 = 115, 7625 -

; Year 4:  i=_115 7625 (.05)1 = 5, 788125

A, = 115.7625 + 5.788125 = 121. 550625

- ’ 'i'he final.amount less the principal is the compound

. .inter"est 80 ‘

. Total interést = $121. 550625 - $100 £ $21.55

-

Ay -

-

That seems like a great deal of work to go through to achieve a gain
’ . .

of $1.55 in interest over 4 years; however, we will see that this kind of

. difference is important. We now‘seek'a shorﬁc/uMcalcuhte compound /

interest.

In general, for the first unit of time, an investment p at-r interest

o o
- .

rate gives: , B

o . il = pr_'and A, = p + pr = p(l+r)

ime A, becomes the new principal and

z i, = Ai1'= p(l-+ r)r and . ]

+

For the second unit of t

~

. .. ) . Az = Al + iz = p(l4r) + p(l+r)r**= p(l+r)(l+r) = p(l+x')z

.
! \

) .; Similarly for ,A3, the amount after threﬂits of ,ti‘me;e

. Ay Epasy .
el ¢ Lo ‘ :
or A, : *. . ] - .
4 A= Rl r? . o . \

* . < ' g o . -
Note: Somie readers will be temmpted to round answers at each step.
Practice here.varies but in many cases today banks only round at the
. ‘end of a transaction. K
*ok : .
Be sure that you see how this factoring.is accomplished.

*

# . \

-
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l - Solution: ituti

2.7-3
4
This pattern provides the basm
—
. COMPOUND INTEREST FORMU LA
@ (2.7-1) ”
). A, =rpl + r)n
B

. € .
in whlch A is the amount jccumulated after n time units on principal

4
Pr at 1 rate of interest per tlrne unit,

]

EXAMPLE 2.7-3

Find the interest on a $100 loan at 5% per
year for 4 years compounded annually

. (This is Example
*
2,7-2 again. )

A=

Substituting in the compound interest formula (2. 7-1)
» 4

100 (1. 05)* = 121. 550625

1

This amount less the original principal represents the
interest earned: $121.55 ->$100 = $21.55

A Y )
In the formula A= p(l + r)?, the role of each fac or,

l1+r, maybe
considered ‘as contrrl}utmg two separate parts to the amount:

»
the multiplier 1 gives back the amount from the beginning
1+4r ’ of the period

»

the multiplier r giveé the integest for the pe‘rmd

This is then applied for n interest periods te give the effect (1 + r)

. [
In the past interest was often compounded annually, semi annually,
quarterly, or monthly.

Today, with access to computational tools, interest
is almost always COmpounded daily.

Here is a table that shows hnw stated

{
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SN0

L3 “ .
® '

>

4

interest rates may be converted to effectlive annifal rates:

N
N
N

L 4 -
rate for multiplier multiplier on effective
styted interest interest per interest amount annualX¥nteres tl
" rate period period per year  * rate
: . :
r compounded r l+r l+r . r ‘ l
annually ) :
r compounded %‘ 1+% (1 +5) (1+—'3)z- 1° l
. 2 L)
semi-annually :
r r r .4 ' r 4
r compounded I l+Z (l+z-) (l+—) -1
quarterly ‘ )
r compounded —:& 1 +li2 (1+75 ) a4+ 1.
monthly L \
_r_ T r 365% . r_ 365 I
r compounded 360 1+ 360 (1 + 360) {1+ 3‘60

daily

EXAMPLE 2.7-4

5% per year compounded daily.

"Solution:

. 05 00013888, . .

360 ..

the limit of our calcula

—_—t
* ~ .
Notice the different numbers‘fere.
fer the highest effective annual interest
law to a maximum r.
mortgage and loan rates must go up as i

eff@%tive rate as large as possible the divisor, 360, is used as the number

of days in a so-called 'banker's year."
ber of days in the calendar year.
as 'five additional interest days. ",

b

Find the interest on $10, 000 for 35 days at ‘

If the annual interest rate is 5% the daily rate is -

Today banks are in competition to of-

(One reason for this legal restriction is that home

Advgrtising often refers to this difference
. :

- l

Using this value,accurate to

tor, we haye:

rate, but they are restricted by
nterest rates rise.) To make the

‘ihe 365 then represents the num-

4

o
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for $1.00 after a year. Greedily we seek to increase our return still

. DA S o 2.7-5
I3 * b F

19, 000 (1. 000138889)%°

o
1)

10027. 81446 which rounds to $10027. 81

EXAMPLE 2.,7-5 Calculate the daily multiplier and the

)

effective ?nnﬁ interest rate fog_gle followjng annual rates

- . 3
compounded daidy: 5%, 72%, 9% "

bt }

. /l¢olutio’n: You should check the following calculations:

Rate . Daily Multiplier  Effective Annual Rate

. I \ 1+ 555 (1+ 3505
| .05 1.000138 . 05199769
0775 1. 00021527 ;08173683
L0y 1. 00025 . 09553036

Theikey’ to compound interest is to be found in the factors °

\

1+ )" .

-

We now examine a more general app‘fication of such factors. To lead to

this, suppose for a moment that we had 100% interest per year. Such a
- + » N .
large int@rest rate - which might suggest loan sharks - would retarn $2. 00

further by compounding. This would result in calculating

-

(1+"‘)

4

forn in?‘rhst penods (We'do not allow the extra days of our dally terest

-

calculatmg in Exercue 2.7-5.) Check the following calcblatxons of thns func-

~ .
-

tion for, ihc reanin‘g values of n:
C 3, 126
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. d ' 2.7-6
- o~ ’
/o S a
_ n- ' 1+ ) ,
« 1, 2 ,
. - ) 2 2.25 (semi-annually)
' 4 2.4414+ (quarterly)
12 2 613+ (monthly)
52 2.692+ (weekly) € .
365 2.714+* . (deily) . .
365,24 2.718+ © (houxly)
" 365.24.60 12. 71826+ (by the minyte)

It turns out that

it l1.n - *
lim (1+ =) =2. 718281828+ i |
n-» e0 n !

and this important mathematical constant is gssigned the name e. In
- ¢ L ° .

-~

» . .
- fact we may define e* as ' . »

eX= lim (1+ =)°
n-res n

z

- - i ! /
There is an e~ key on youyr calculator. You should check to see that e1

is indeed 2.71828+. You will meet this ubiquitous fpncftion a.gé.'m in the

—/exezcises and in Cha.p'ter 6. (In fact you already met it in exercise 2.6-14.) |

%
J . : \ . .
/ ' We turn our attention now to a quite different problem, a gambling
\ ’ 2 . .. B -2 o .
. problem that is translated into a series exercise. We supply the probability
. / X i )
- * - . » ‘ {l
background only superficially. , . ,
o - R \
(‘ .
. . . '
*

One way to remember the decimal approximation to this constant is to.
think of .it as 2.7 followed by two 1828's: thus; 2.7 1828 1828+“ This

repetition does not continue: e ’is like % in this regard.
%

For this pi-c;blem we are indebted to Stephan L. Snover and Mark A. Spi

ERIC e Ad27 '_ ‘-
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EXAMPLE 2. 7-6 'A carnival booth offers the following game.”

» [

You toss a fair coin (chance of heads 1/2, chance of tails 1/2)

‘ untilsyou toss the first head. As soon as that happens you are

to be paid in dollars the square of the number of Yosses. What

would be a fair (break-eveh) price fo pay to play this game?

Solution: Here is a chart showin; the number‘f tosses
’ ) against the amount you win g
. 'Toss FOR FIRSTHEAD 1 2 3 .4 ... n
~> PAYOFF 1 4 9 1 ... nf

' - ’
Thus, for ex*xple, if heads came up first on the fourth

N

. »
toss you would win $16. Simple probability theory shows
that your chances are:

TOSS FOR FIRST HEAD 1 2 3 4 ... n

P

CHANGE = 1/2 1/4 ~1/8 1/16 1/2n

and-your expected gain would be the sum of the series

17 y 2
$= — . 1‘+ —l- . 4 '+ p9 + -L' 16 +o-- + -n—+ f v
~e ™ 16 Al Zn

- s
- ? »
For the game, to be fair this is also the amount you should

Ty «
N L]

1
4 8

-

pay to play. Since $ is neither an arithmetic nor a geo-

metric series, a reasonable solution is by calculation via

Y

. aprogram. The procedures of section2.5 applidd Nere
! #

»* should suggest the ljmit: .,-,

N

v ~
.

nlim $n =. 6




! e
\ , o : i
Be sure that you carry out t\his calcﬁlation. (See exercise 2. 7-1).

A )

This result means that’ $6 is a fai.r‘g{i)ce‘ to pay to' play this ga{ne-. If

A}

you're asked to pay $10 to ;;la\y syou will lose on the average $4 per game.

* \
\E-xercise Set 2.7 . .

—
1) Program and calculate the value of $ for \example 2. 7-6.

-

-

-

2) Try the game for'yourself ten times.“ Find the average payoff per game.

" Do your results agree with the calculated value? (You may wish to
4 ’ ‘ v
combine values with those of your_classmates to obtain an average
v ' \ . : - -
. . of a larger number of plays,) e . .
' '

3) Modify your program in exercise (I) to'calculate the fair cost of the
game if the payoff is the cube of the pumber of tosses to fihm

- K 4) Test the game of exercise (2} l:'y ten trials.
( ! R L -

5 - 8. Find the effective annual interest rates for the following loans:

5) 6% compounded quarterly g . 6) 10% ¢ompounded monthly

. S ‘ o
7) 8 %% compounded daily 8). 5.% % compounded daily

1 .
- 9) Credit card purchases are often charged li% or 2% interest on the

- -

¢

. 4
# unpaid balance each month. Thus tHe multiplier per month is

1.0i5 or 1.02. Find the éct'ive annual :‘ate/of this charge.. Comment!

10 - 16. Loan and mortgagé payments become complicated by repayments

3

~of principél. Thus .the balance ‘orm principal on which interest is calculated

is changing all the time. Here you can work through a simplified example to

’

b

o - L | 129
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see how this \;orks., You take out a loan &f $1000 at iO% interest per )'rear

’ e
compounded annually, We seek the amount of the equal’payments if'you are

to pay at the end of each year'for ten years. ' . 4
10) I there were no interest how much would you pay each year?
. (
11)° If you Raid $100 each year on the prmc1pal and pa1d the interest for

that, year’your payments would be unequal Calculate them. Partial
»

801ut19n: Year 1: $l(ZO.+ .10 ($1000); ‘yea'r 2: $100 + . m@zoon etc.
Find thF total of these payments.. - . .
How much intere.gt is pa;d? P
Compare Fhi.s with the interest on $500*at 10% per year compounded
annually (with Ho repayments). . '

Find the average monthly payment in exercise (11). For equal re-
payments this may be the monthly p;yment.

For the first five years, who suffers by the method of exercise (15)?
Peter Minuit in 1626 purchased Manhattan Island from the Indians for

trinkets worth about $24 That seems like a remarkable deal, given

the current value of the island real estate. BthIet’_s examine this

/

[

value. Suppose i@stead of investing‘'in real estate the Dutch colonist
had stayed in.Rotterda_m and inve’sted/carefully in securities paying
an effective annual rate of 7%." What wo’uld hi;; investment be worth
today? :' | )

Develop a program t¢ calculate the amount to which Minujt's invest-
ment would have acc;'ued for a given input year. Use it to determine

Startmg with a loan of $1000. and ending with a loan of $0 means that the
EKC average loan was $500.
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: . v % .
; th@ue in 1700, 1776, wgo, 1864. 1900, 1918, and 1970.
' P .
19- 27 - * Sometimes calculations can be misleading as this series of
) “questions will show. We will calculate the approximate number of ancestors

v

you had at the time of Julius Caesar about 2040 years ago.

‘ 19) How many (biologie\al) parents do ‘);ou have ?*

20)

How many grandpar;‘zs do (or did) you have?
%‘

21) How many great grandparents did you have?
paterpmal — maternal

grand- grand- grand- grand-

™ : father mother father mother

father’ ;pc?the}' ’

L]

- you
A FAMILY TREE

22) _This pattern suggests that the number of relations is multi-

plied by wha}t numbtor each generatio;? 4

a

23) If one generation is 30 years, how many generations ate there

in 2040 years? S
24) Using your answers in 22 and 23, cvalcul’ate ﬂ‘ approximate

number of relatives you had 2040 years ago in Julius Caesar's

_N

time.

25) Calculate by this means how many ancestors you would have

had at the time of Homer about another 480 years earlier.
) .
26)  What is wrong with these results? In answering you may wish

to consult an encyclopaedir, almanac, or history book to find

the approximate world population today and 2040 years ago:

27) Where did our calculations go astray? |
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A Test 2.8 -1

/

2.8 _Cﬁa!ter 2 Test "~ ' ’ ‘ . .

0
-«

A , |
(1-4) Identify each of the foflowing sequences as (a) arithmetic
. . |

.,

(b) geometric tc)lneither aritﬁmetiq\sf geometric. 5

1) . 3, 3/2; 3/4, 3/8, ... ]

. b
2) 5, -10, 20, -40,
» Lo 3%
& . %,72, -2, -6; ...

€

Give an examplé of a gequence that is both aritBmetic and

geometric.
.

Find the tenth term of.ébe séquence 12, -6, 3?.-%_,

.as a decimal - o ) -

r

as a common fraction °
a . (' .

(8-11) Find the indicated term of each of the following sequence

or series. ‘ L . '

»

- 8) {tan é. i. étn @, .. } ’ S30 -
1 1 ‘ '
9) {1, “%, 75 }. $8;
10) {20, 14, 8, ... 17‘
11 1, 3,5, 7, ... | .
b1 } %20 ¢

1 4

-~

(12-13) Find the sum of thésqgfinite series.
A . g -

12) 500 + 250 + 125 + ... + 3.90625

13) 1+ 2+ 3 +—=+—+n

S




Test 2.8 - 2
(14_15) Find Fhe "sum',' of these infinite, series. &/\
14) 1+ .9+ .09+ .009 + .
15) 1+ % + % + 2% + NN

16) ‘'Express 2.435575 as a rational expression in simplest
form. . ‘ ) "

-17) Find the limit of the sequence Sn as N - oo .

2 18) Find the limit of the sequence
e s, = (1 + %)P as n T+ :o .

19) Debermi he exact value of 14!

20) Given the geometric sequence §; = 10 and r = .1, find d
’ fortche arithmetic sequence formed by taking the log of

eaeh serm ' ~
£

4‘1 -
= ‘\\\
.
.
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N
~

CHAPTER 3. ITERATION, MATHEMATICAL INDUETION, AND THE BINOMIAL
THEOREM {
In Chapter 3, we turn our attention to some‘fundamentgl
mathematical techniques: concepts, and notaﬂlon Your calculating
power and more specifically your ability program a c!ﬁculator .
) ‘ o

&

‘ ‘ }
or computer.to do routine tasks should give you the ‘tools not only
/ y -
v \ ;. '

to solve problems but also to understand the underlying concepts here.

3.1 Over and over and over and... Iteration’

.You have almost certainly met problems before that appeared
\
to be extremely difficult but that turned out to be transparently
° ) * »
simple oncesyou were able to develop the right approach. We con~

sider ope such problem here:

~ Simplify J2A+ 02 + 2 +J2‘¢f?;?

This example certainly looks d1fficu1t Most of us are al-

.

" ready uncomfortable W1th radicals - ‘they turn'up those messy irra-

‘tiongls like V2 = 1.41621356...’- and here we have still worse:

radicals within radicals. Not only that but these square roots and
twos go on forever. Given this example on a test our first response
might’azfl be to move on to “the next question. That would be un- A

fortunate, because you will see that the problem is quite reasonable

and may in fact g:\sqlved in several ways.

-

ar

— . .
This does not imply that there are no truly haéd problems, but mathe-
matics by its very nature often leads to remarkable and unexpected
simplifications. ///Jﬂl’ _

134

4




EXAMPLE 3.1-1 ° Simplify 2+ 42 + 2+rz——

" -

Solution 1: Wathematlclans ‘(and espec1ally textbook

writers) do not usually assign imggssible exercises,

80 we expect that there is indeed a value to.this

-

expression. Can we get an idpa at least of what
that:value‘is By calculation? Indeed we can. | .

Think of the expression as a kind of sequence:

-, ing froq‘tﬁe‘innermost ragital in each céée. Check *
the following Witb your o :
- \F3 . = L2
~ R P SR = 184787
| Zigsn. .= 1.9616

J2 +]7 +{2+—ﬁ— = 1.9904"

Now it-is not necessary to start over to carry out

calculator:
‘ +

-

.
4 ) s !
» ¢
ks .
. . # .
Sl Nl =S IS I N E B D RSN BN B B B S e
3y + 3

each of these calculations. WNotice that you get each

. “subsequent value'by adding 2 and taking the square root

of the sum.” These stepe are:

w10 [
RPN: m _
Continue this procedure until your result no longer

changes. To save effort and to aVOig errors it {s &

-

on al ebraic calculators -especially don't forget to complete the .
addit%on before taking the second square root. The steps here

'couldbe E] @ E . R '




' From what we found in Solution 1, we can write the recursion formula:

Y B 1

3.1 -3

. h good idea to prqgram” these steps.

The procedure you followed in Solution 1 1s called an‘iterative

procedure. To iterate means. qu1te simply to repeat Perhaps our
most important example of an iterative process comes from biology

breathing There are many, many others in our world

=,

e

Iteration is ve!y closely related to recursion which we studied
in section 2.6. 1In fact you may conslder the two words synonym
Here if we asslgn .values to our approximations'we can easily dev op

-a trecursion formula fox our ksolution R ‘

= {2 +§2 +H2HT o

/

Let:

and let ' _ C .
. ) Xy = vZ , Xy the first approximation | _ \\\\d
' Xy = |2 +J72 , X, the seéond‘approxihation <
= J2 +)2 +J2 » X4 the third approximation

xn_*_.1 = \JZ+ X,

which together with. X, = V2 , will 'generate the sequence.of ap-

=4

proximations we found in Solution 1. ' '_ g

~~

. . So far what'we havé done only formalizes Solytion 1. But there

is a tremendous honus in'this formalization as we will see. In fact

: Solution 1 is really not even a solution in a. strict sense. We

merely found that the calculator value no longer changed. If you.

-

135 -

o "




think about it for a minnte or two-ypu will realize that a cal-
c‘u.l.atnr with u%ré decimal places would have allowed continuing
change. The ,calc ator "solution” then just’ ledﬁ\us to a very good

\

guess. Let's see then what Solution 2 will give us.

EXAMPLE 3.1-1 (again): _Simplify‘\,‘Z YT

.
4 Solution 2: We identified the iteration formula

X+l " V71 Xn

-
-

. . o ’ ) R
on page 3.1 - 3. Now we ask ourselvles what ‘would happen*

-

\ when, in our *ltergtion or re'cursion. or repetition, we

truly no longer changed from one step to the next? At

thet time (Q should expect- c' ‘ s 3

~ ™ L3
X 41 ='xn = x; thg-value of the complex radical.
. If that 1; the case, we need substitute x fot

. [ .o
CXn+l and x, to get .

~ x =\2 + 5

This is an easy equat i to solve by the folldwing steps

S -

(by squaringy -

DD - |
x =2, -1 L e

Since x = -1, 1is extraneous (why?) néhaveftﬂne expected

'solution x =2, . . '

H . ) . \,

You will meet other 1terat1ve processes in the exercises and

then will apply this technique to the solution of equations i the -

N L4
, next section. H) ) ‘ - .'
L ) K '
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é;brciée Set 3.1 ' . : — : ’
1) Use the'methéd of Solution 1 (page 3.1 - 2) to find, . .

/ y =36 +J6 +l6 + .. - I

2) What is the recursion fqrmula‘for the iteration in exercise 17

- %) Use your recursion formila of exercise (2) and the method gf
 Solution 2 (page 3.1 - 4) to find y in exercise €1).
(4;L 11) Another setting in which iteration océur; is in the study
‘of{éontinued‘fractions. We will hot study this i;?ﬁresting topic

-in_detail in this course but will considei‘?nly specific cases of

infinite continued fractions, that is fractions of the form
: & ¢

a.+ 1
. b+ 1
c + 1
A ... 3 ‘o

‘Cbnfip4ed fractions have what are tethnically called coénvergents,

that is values that approach/g; converée to their value. ¥or the ~

example-above the convergents -are:

T 1, . 1 s 1
a, a- s » a+ —b—+'—I , a + bT_I__ ,
RS

In the following exercises use these ideas to find the value of x

)




4)

5)

6)

7)

8)
9)

10)-

¢

11)

3.1 -6

)
Write the fitst four“conve:geﬁfs for (a). Leave these answers

in fractional form. Label these convergents il. X3, X3, and

xa.

‘In your answer to (4), locate the part of x, that is the same

as x5. Draw a loop around this part.
Similarly loop - the part oﬁ‘x3 that is thg same as xz} and

following:-the same pattern loop the part of x, that is the same
- «

as xl.

If you have performed exercise (6) carefully, your work should
justify X = 2, Xy = 2 + %I . Continue this pattern qu
xq = £(x;) and x, = £(xq). . ) '

Generalizing from (7), express x ., as a function of
P;ogram your calculator or computer to tompute x 1 from X,
following your recursion formula fo; (8).

§tartiﬂ§ with x, = 2, c3lculate successive convergénts until
X4 = X, Give the value of in when this happens.

Replage X +1 and £n by x in your answer to (8). Solve for x.

How does this answer compare to your result in (10)?

" (12 - 20) Another of the many applications of itergtion techniques
is to the calculation of roots. If we wish to compute UN by ltera-

:tion one app;;§ch is by tﬁé following\meangzx\ RN
.Leél x- = Jﬁ- ‘ " .
x2 = N (squaring) ) ' ' @ ’
x= Y (atviding.by v .

2

You will need to recall’ that for ax“ + bx + ¢ = 0,
x = (-b *VbZ - tmc)/2a’




- x"|

12)

13)

16)

17)

18)

19)

*. 20)

L T

- use it to compute\3)60 . Use X, = 1. Check yq_r answer by

31-7.
L .
[
- , . - ~
2w= x + g- ‘(adding x) (%)
1 . . z
x. - 5 [x + I}%] (dividing by 2) ‘
Ve now set _ Lo ) .
\ ‘ ‘(b) xn+1/*-‘-- 1 (x + —:— )

‘ arhl we have our reeursion formula for finding N .

'Prcgram your calcuiator to compute xl_le f?om\x in formula (b).

Assume that N is ?tored in RO’ a4nd if necessary store X, in Rl.

Lgst the program steps.

) e RN -
'Use your, program ir exercise (12) to compute d19. store 19

in R0 fpter 4 in ’the display (as xl)‘. “Give your answer after
X, no lponger éhangés Compare this result with 19 ,calcu}ated':'

by use of the I,..key \
14) -
15)

Why was 4 a ggod c!oiie for xl

Repeat exerc (13) but using.x; = 1. =

Repeat exé:cise (13) but using X, = 1000.

Repeat exerc'lse (13) but using xl‘ = -10. ~Row does this solu-

-tion Qiffer from those of exercises 13 - 16? Is it <carrect?

Use the same method as the one be,fore exercise (12) to derive
a recursion equation for \} (Hint At, (*) gdd';x 2)

Prograﬁ your calculator” for the iteration of exercise (18) and

X - o,

cubing it by means of the |y key. ’ . . .

. . : 1 : .
Develop a formula for computing \SJ'N , piogram it and use this

() . -




‘program to comput'e\sjm_.-. (HPnt: At (%) add 4x.)
. . . S *
1t may be of interest to you that the.program of exefc%ee‘(f?) 14

often the one that is preprogrammed (or "hardwired?) into calcu-

lators fq;//he J keyh These hardwired programs usually use

‘,either X, =1 _or x; = N. The iterative technique of exex",cises’
(12) - (20) is named after the 'fan;bus' Englibh mat;hematician and 3y
scientist, Sir Isaac Newton. (You will recall perhaps that Newton
is’ supposed to have 'thought of the concept of gravity vhen he saw
. an apple fall from a tree.) The techniq\;e As variously)lled

Newton s Method or the Newton Raphson Method. In 1its more general

form it 1s a calculus technique

l
I
1
g
1
1
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3.2 - Solving Equations by iteration,

. - -

<« * In exercises 12-20 of,Seotion.3.I you have already used itera-
tion technihues to.éoIVe.equationsWof the'forﬁvxn = N: -In this
¥

;f, section'we will first solve systems of equations by iteration and

-

. then return 80 the solution of. 31ngle equations

Figure 3.2-1, shows the graph ,,of the system of- equations '

L . x4+ y=5 ) (11ne ] l
L i. =2x -3 _. .(line m)

. ¥ . "
We know, of course, that the solution of this system of equations

is found at point P of the grdp%* But here/we want to use the graph

instead to justify our iteration procedure)

- We convert the equations of lines’ ‘Z and m to the following
N 1

- . ’ (y=5-=x (1ine4L )

L;_3 (1fne m)

X

L
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—

Be sure tO'satisfy“yourself that the algebra-is correct. Notice | '

thatﬂone'gqéétion*is solved for.y in terms gf x, the other for x

in terms of y. I
E We start with an arbitrary choice for x, X, = 0. Substituting

this into the equation for line £ gives y, = 5. Substituting 5 for I

y-in the equation for line m gives xé = 4. Continuing to trade back l

N\ ;
and forth between the two equations, always substituting the currept

“Value of x or y to obtain a new value for the Wther, we obtain )

L A
/

The arrows show

Y .
*’f:” 9 how each value

w = WU

5 —%, 2.5 contributés to )

75 L, 2.25 the next.

”~ .
625 —=%> 2.375 ;

N N N W NN P>~ O

ZTable 3.2-1

Whaé is going on herez Whap‘is happening is that we are slowly
ponverging on the solutiops 'x and y of this system of equations.
We can see this on the graph. X, = 0 is a verticél line, in fact
the y-axis. When we subsEitﬁte this x value into the equation for
line 4 , the y value that results (yl 5) is the y value where

these two lines intersect as shown in Figure 3.2-2.

¥

/ Co
143 | \
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- Now'y = 5 is a horizontal line. When we sGbstitute this value
intq’the'equatibn for line m, the resulting x value (x2 = 4) is the
x coordinate of the intersection of ¥ = 5 with m. This part of our -
trail is ﬁarked in Figure 3.2-3. .
We have'éﬁly to continue this process to see how Table 3.2-1

is formed. Additional segments of our spider web trail toward P are

shown on Figure 3.2-4.

.4
Lo




The a#flment we have presented and Figuré 3.2-4 should justify
claim that the values of xé and y_ in Table 3.2-1 are converg-
ing on (x,y) ;~the solution of this system of equatioms.

But wait a minute. Why should we go "to all this work when we .
have much more straightforward methods of finding spiutions to- 8ys-

tems of equations? The answer to this question is imp??tant. There

. are many more complex equations that also respond to the iteration

technique that we have used when none of the other methods work. ﬁé

- have deyefoped and justified technique with avéimple examplg.

Naw let us apply it to a more’difﬁiéult problem:
: ~ ‘ " ‘2.
EXAMPLE 3.2-1 Solve for y: y =27 .
. - 2 : .
Solution: ' y = 277 is a complex equation indeed. One

L |
possible way to solve it is by trial and error. Choose

.

a yalue of y, substitute it, simplify, and see if tpe ‘

_equation balances. For example, if y = 1

2
2-y2 = 2—(1) = 2-1 =

L L " [

but since the left side of the equation/is 1, we are not -
too close. L

?ﬁ Another réute to a soldtion is to use iterétion, To
do this we introduce another'variéble;ﬂx, to givezus a

second equation. You should convince yourself that:

. B 2 (y=2% (1)
?i\ , y = 2‘y is equivglent to 2
. . . . - . < .. =y (2)

s

o - . ’ /1%
AN

ERNC ' SR i
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The system of equations may be solved by iteration.

Again we start with?a gﬁess,lxi = 0, substitute it in
-equation (1) to'gsnd Yy substitute this y-value into
equation {2) to get x, and so on. You should prograﬁ

. *
your calculator to check our progress in Table 3.2-2

" (see exercise 4): - oL ®
) n i X Y,
1 0 ;Iéf%’ 1 ,
2 1 —zsﬁla/ 0.5
R c ‘/‘ +
3 0.25 ——le 0.84
| 2= N
' 4 ;07174 961
ean- - +
25 . 0.500 0.707
\ , 26 - 0.500" 0.707*
\\\ 7 Table 3.2-2
,> Our original equation did not call for X, so we claim
y = 0.707
. - ° ’ ' / *
Lo * - /
An algorithm to accomplish this is:
1)) 'Seta=0.- . ' ' (This is x,)
2) a e 272, display-a. (This generateslyn)
3) Stop if enough pairs have been generated. .
’ 4)\ a & a2, display.a. - (This generates xn)g
'5) 6o back to step 2. | s
. 4 -
o o ) '
. . 5




I
»

You should check this in the origlnal equation to see

that it balances (approximately)’ o

To show how our iteration process relates to the graphs of

‘these functions, Figure 3.2-5 displdys the first several steps:

—— - Q ] ‘ ! - .-
- ; -
. ——— - - — |
‘ =] o ,
- -,__..___1 ~ .'l - rR=g . i
-gut - :
! A 1’ 0:“" R . |
— - - s T —_ e - v °
- ' L ?ﬁg*gs‘ ; ) A I
%=ty = P EE——— + -
{] x“ou v '
- ——t - e - . ——- —
. ’ N
S o < R W
, T AT ek ki
. : . ’!".' R B ..—L_._-.l___ — v
LI / I 1 : ~ L l ——
T s ..
— T T T i IR .
o [
! , IS ,
. 13 ——— .
| ol 5 L 1ox ] :
T : N N
o ' Frauns, 3.2-5 N e
N Ca F . B
- i | : . t 1 l ! !

You need not be concerned at this time how the graphs themselves were

P .

constructed ' . . . :

L]

In the exercises’ you will. explore these techniques further

and use them to solve other problems ; .

>~
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AN

4
Exércise Set 3.2
-~ -

' ‘system of equations on page 3.2 - 1. An algorithm for this

A

| -

Program your calculator to carry oyt the iteration for the

”f process 1is:
1. Seta=20 ’ ) (This ié xl)
o2 ,Let.a eJKSLa, display~a_' {This displays yéz
3. Let a ¢« (at+3)/2, display a ’(This d;gplays xn) _
] | ;ﬁ‘ Stop when enough pairs have been generated ’ ) S
Go back to step 2.

5.
Use this program to calculate X, and Yn until the two values ,
(separately) remain unchanged to 3 decimal places. (You should

‘\check your first few values against Table 3;2-1,.

xpompare your answers in (1) to the graph in Figure 3.1-1. -Do
x+y=395

y=2x -3 |

L]
-

2)
J
_ iour answers seem reasonable?
3) Solve this same system of equations ‘{

by another algebraic method. How does this answer compare

\

‘with youf iteration solution of exercise (1)?
4) Program &our calculator to carry out the fteration of Example

i ‘ : .
3.2-1. The algorithm for this is given on page 3.2 - 5. Use

your program to find Xe and yg to 2 decimal digit accuracy.
counter into your program, but it is

(You may want to build
enough here to cqunt s{eps yourself.)
po—




T 3.2-.8

In the iteration of Example'3.2-1, to what Value does x

F .
appear to converge? (See Table 3.2-1) Use this value and
* s

thé equation y = 2°* to express y im radical form.

How does your answer in-(5) for y compare to y26 in Table 3.2-27
2

Does your answer in (5) check in the original.equation'yl- 277 1

L4

14) In these exercises we seek an iteration solution for

Al -

{ 3y - bx = -3 ()

3y - 2x = 3 (2) °
Solve equation (1) for x in terms of y.
Solve equation (2) ﬁé; y in terms of x.
Develop an algorithm for'genérating successiye approximationg
xn,and‘yn to this system. - K
Program your algorithm of exercise (10) and use it to convergé
on values of x and y. What are these values?

éigure 3.2-6 is a graph of the system you have éolved. Hov

do your answers in (11) compare with the coordinates of P on

the graph?

i

M H | . | | .
- - E‘Seﬂ-!:r.;‘,lé; e
1 | ) ,

e b ek — e e -t
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3

Copy. Figure 3 2-6 on coordlnate.paper and sketch the ffrst :

- -

few steps of your iteratlon (xl =0, y;=1l-x = 1 5, ...).,
Why do you suppose that this. type of 1teretion is called a *

stepladder? -

.
P

14) Solve the system of equations given before exetcise,(é) by
- another algebraic means énd-coﬁpare with your answer.

. " \ !
- (15°- 22) These exercises are designed-to expose some problems as-

. : N
sociated with iteration techniques.

-
+

15) Recall the system of equations of page 3.2 - 1:

x+y=5 (L) _
y = 2x - 3* - (m) y

P

We solved equation (4) for y and equetion (m) for x. §;ré1y
it wogld-have been easier to leave equation (m) solved foryy
and solve equation (l ) for ‘
x=54y ,(,g')'
- o {y=2x-3 (m), ‘

» . (VA
But what happens now when we start with X = 0 and iterate be-
‘tween equations (m) and (£)? 1In a table 'of the form of‘Table
3.2-1, give values for x and y_ throhgh n=4.
We say that the values in exercise (15) are diverging. Why?',
(It will be helpful if you look up the wdrds diverge and. con-

verge in the dictionary.) -

] ' .
Suppose we had a system of equations which we converted to the

system ‘ X £(y) (*)
y = g(x) @

T




v .
\only to fmd that iteration of these equaaons diverged

What does your answer to exercise (15) suggest would be a’
< 2

reasonable procedure to convert your system to one which

e s

would converge7

'SoLve the system of equatlons for x and/ by’ 1teration-

W fent e .

19)_,'Try ‘to solve the folI{ojwing system by iteration:

N

v -{2x+y '3'}{ : o o
2x - y 1 Co
What 1s theylation betweeﬁ Xn+2 and xn" Between yn+2 and y ?

20) Copy the graph of?Flgure 3.2-7 on coardlnate pap

the literatlon route starblng with X, = O What,

it matter whiﬁ eka},lon is solved for

. ~ | s S

157
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frae

22) If,the slope of one linear equation is the negative of the -
.;§~ slepe of the other, this iteratiop technique‘does not work.

. ®
What are the slopes %£ the lines in exercise (19)?

¢

.

23) Solve the follow1ng system of equations by iteration starting

with X, = 0.5. :

. . %
K {y = (1)
h x =L (2)

-

A

-
.

Z4) Suppose in exercise (23) we were-only int%fested in the value

S

of x. We could eomblne the two recursion equations into one’
‘by the following steps (copy and complete)

« ‘&) t2 substituting from equation (1) into

.
X =
' LY

equation (2) . ' ~
simplifying -

b - ‘ _
To iteratdffrom X tox . we gpuld use this last equation

with}cripts: S : B

- 2 N . T -
Xn+l : ' >

SoiVe,the equation in exercise (24) ﬁy prog;amming the iteration

’
~ M ,

in exercise (25).
Rewrite the equation in pxercise (24) as a quadratic equation —
, & ‘

. equal to zero.

Check your solution in exetcise (26) in the equation.of exer-
Qa

cise (27).
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3.3 Some Applications of Iteration

Consider a thin recthgulaf;mebeT plate AﬁCb Sides AB and
CD are kept at 0°°C by me1t1ng 1ce packed against them Sides‘lﬁf
and ﬁf are kept at 100 C by boiling water. (These temperatures
cannot be ma1nta1ned at the corners, of course, but this'will‘not
affect our problem.) Clearly the plate will vary in temperature

from point to point. We seek the equilibrium temperatures at p@ihts
* )

P, and P,. See Figure 3.3 - 1. : - N -
1 2 See Fig y
. ~ o N
Ay E 00 C (B
g / {P P 1
100°C |5 1 42 100° ¢
" .— F N = .
S — W -
‘ 0° c . >

Figure 3.3 -1

To solve this problem we employ a thermodynamic principle:
‘The temperature at any point in the metal sheet is the average of
the temperatures‘at ”neighbqriag" points. Tﬁus, for example, the
temperature at P1 is the average of the/temperatures at E;~P2, F,

and G. Thus, if we represent the temperatures at'Pi and P, by t

R Y

and T,.we have:
- C 0% T+ 0+ 100
. t = R
4 [3

0+ 100+ 0+t
4

W

=

This and some other problems of this section were communicated to
us by P. Rosenbloom and S. Schuster.

)

.
+ - p%
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or .in simprified form as::

e e : Y
? S T R
4 3 _ j
“., T=_t +4%00 . . . ‘
~ ' .
. 2
EXAMPLE 3.3:1. Solve by iteration techniques the system

. . .
s of ‘equations:

¢ - T +100 X
- v .

L4

A . T é“ E + 100 '-3.
) ’ | |
Splution: . We need only guess a starting value, say

~

2. !
t>>t1 ‘ ty = 50 to initiate the iteration:
. . ’
t s h
Table .1 >0 ot ?7.3 +
2 34.37 33.59
3-3-1 * + :.,+ -
3 33.39 33.34
- + +
4 ‘ 33.337 33.334.
5 ) +

33.3337. 33.333"

. Continuing with this iteration sufgests that temperatures

. \ o ,
at .P, and P, are each 33; C. ‘
1 2 are ¢ 3 ¢

A 4

EXAMPLE 3.3-2 Solve the system of equations in Example
. 3.3-1 using t, = 0. \\-/’

Solution: This time the iteration wonld be

(3




) : 333
o |
) n i T
— ! 0 75
2 31.25 - 32.817
Table, 3 33.20" 33300 T
3.3-2 4 33.32" 33.337
5 333337 . 33333t L

¢

You should notice two things about Examples 3.3-1 and 3.3-2. First,
thé iteration converges to the same value. Second, the iteration in

Example 3.3-2 is any slightly slower in converging.

L d

b ' We have "solved”*tpe problem posed on page 3.3 -1 ohly‘érdaely.' )

In example 3.3-3'we will show the difection we would'go in refining

; this kind of problem
PR - 5
r° . EXAMPLE 3.3-3 ¢nilibrium temperatures at P,, P2' , P
(A 0° 1
7 , \} -
14 N -
111 [P F3
o) ' o
100 _ P, Pe P 100
; P NS 3
. = \ 4
“0° 3
Figure 3.3-2° _
Solution: . Let the temperature at Pi be ts
(for i =1, 2, .. ., 6) ' -3

-




S~ e 3.3 - %
e
|77

Then we have:

L 0+ tz + .t4 + 160 f,g t2 + ta 4+ 100
) ) [ A ' . 4
2 % . &
o - 0+ 100+t + ¢, _ t, + te + 100
3 . <4 4
- tl+-t5+0+100 _ t1+t5+100
4 . 4 *4 . N
,t= t2+té+0+t4 =- t2+t4+t6
5 4 4
~t'=t3+100+0+t5 =.t3+t5+100 )
6 4 A A

" Now we can set up our chart for de;erminlng these six

-

~ values. We have arbitrarily chosen initial value of all tf = 50

* .-
\ 2. ) t1,n t2,n1 t3,n ) t4,n fS.n t6,1
1 50 50, -5 50 50 50
2 ) - '
N
3 :
4

"*l.Table '3.3-3

To fill in this tabl use the iteration equatlons and the
350 + 50 + 100 _

last value of the appropyiate t's. Thus’t1 5 = A = 50.
th) o = 30 + 29 + 50 =38%etc. You will be asked in Exercise (1)

-

L
A

* - . L]
The first subscript. number designates the point which the temperatire
o Trepresents, the second the iteration step. You need not worry about

“R\ﬂ: this notation. _
ERL Y - Isq
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to ‘'extend this table.

- .

Exercige Set 3.3 ’

€
~

. . ‘ .
- 1) Continue the itesation in Example 3.3-3 to n = 4. Use direct

’

(not programmed) calculatiogggnd round answers to whole degreéa

to stmplify computation. .-

2)" What regularities do yoq‘find in your values in exercise (1)? -
- Justify ghese,regulafities by reference to Figure 3.3-2.
3) We could have simplified computation in Example 3.3-3 a great
~ deal by taking advantage of the symmetries of Figure 3.3-2.
"™ let t ‘be the temperétére at #ointé‘Pl, P3, ?a,and P6 and
. T be thertemperature at P2 and'Ps. evelop |two (iﬁgtead Jf six)
' iteration equations and find t and Tnébythé nearest degree. Do
your answers check with exercisé (1)?1 .
4) " Use iteration techniques to find equilibrium temperatures at
2 | Pl’ P,, ., Pg on ﬁ;gure 3.373.
F < 0 ’ _i. Be sure to notice
b P2 P3 / ~ that only one side
- 100° . B P4 PS P6\A 100° is 0°9.
: _ | %
100° ‘ |
Figure 3.3-3
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5)

. at Pl' PZ’ anq P3 on

3.3 -6

~
-

Use iteration techniqﬁes to find equilibrium temperatures

Figure 3.3-4.
1 o

P

0°

J
(¥4 ]
3
N

oo

OO

Pproblems we have just studied. in what follows we will treat probability’

ideas very informally (but c

3.3-5. Suppose that this

— Figure 3.3-3
. 0°

- {6 -10) Maze or labyrinth problems are quite similar to the physics

orrectly!). Consider the maze of Figure

&

<

" maze is made up of a series of tunnels meeting at Cl’ CZ'

and with the open ended tunne
" through this maze randomly.
the C's) he rests a moment an

directions quite by chance.

!

-

@
_
@ )
|

L
Sl JL_
i

Figure 3.3-5:

.1 Gy,

ls representing exits. A prisoner wanders

>
Each time he comes to a corner (one of

d then goes on, picking any of the four

(They all look alike to him, even th:
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direction from which he came .")

” Of course it i§ possible that the prisoner will wander forever.

~

The chancg,of this is in fact so small we eliminate it(i We assume

. /.,/
that sooner or later he will emerge from one of the open exits. AlT

but two o% the exits are guarded by guards (aé marked <:) but the two
exits frqelc3 are’}eft unéuardeg. We waﬁt to know theAchance of the
prisoner escaping from each of the pofﬂérs. .
To solve this problem we make the following assumptions:'
.(1) Chance of escape at éﬁguardéd exit: 0 - ’
(2) Change of escape at an ﬁnguardgd exit: -
(3) Chance of escape from a corner C.: 0'_<_,Pi 5_1* :
(4) The chance of escape atlﬁny corner is the average )

of the chances at adjacent cotners and rkits.

0'+p2+p4+0
(For example Py = T 2)

Write the recursion equations for the probabilities of escape
{

’ ]
from corners C, - €9. ) . |

Use your equations in exercise (7) to determine by iteratjion
the valdes of p;, Py, ..., Py, accurate to two decimal placeg.
(Use gn? initial values of each P> 0<cp<cl.)
VIn your answér to exercise (7) which is the best starting

point? the worst? Do these answers conform to your expecta

tions in looking at Figure 3.3-57 - -/

.

ii ' o - -

It should be clear to those at all familiar with pr ility that in
these circumstances 0 ¢ P ¢ 1. In fact-.assumption (3)'is not even .
necessary to-this problem. . .

159
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S . o
9) Worse days ahead. Another maze. With apologies to Frank

Stockton, a lady lost,'a tiger guarding one bank of exits - -

< . -
chan'ce of escape there 0.. We seek her chance for escape from

S~

each corner of this maze. (Her choiced are random as in -
P . »

" ‘Exercisés 6 - 8) B
:’ ‘ o eL—- —_———

¢

Note: There is another approdch to this kind of problem that students
with computer or microprocessor access may wish to explore. This
is the method of simulation. The computer simulates the condition
of the problem and then carries out a great many ‘trials. (Hundreds
of ladies are sacrificed in the process - theoretically.) Then the -
.computer assigns as probability of escape from a given corner the
number of escapes from that corner dithed by the number of trials
from that corner._ ey '

Pl o

’
e

. Lt
10) Make up your own maze with new conditions (for example more or -

fewer. branches it corners) but no\?ore than six exits.

\\ 11)* ‘A small country has an army officer corps of 1000 officers.
'\\ A new promotional system is inaugurated with the'following
\\\ annual conditions: i
\\
N
\ ’\\\ “ )
\ ’
* . e

This exercise is due to A. Engel.

| ERIC - Lo




12)

rl

L i Gengrals:?>> 20% retired
L ?f«} 5% promoted | 3 T~

Colonels . J ;
e 1:> 207 retired . / ,

’rﬁT\ 20%~promo;gg ‘ o

-

o« t\ f/’
M;JOIS 207 retired g
& 3
w |/\r
. - - 200 commissioned

This promotion system may be represented by means of threé

replacement statements. For. example, for genmerals we have:

-

G <« .8+ .05C

i promotions..
because 207 tretire
’ oy

State the replacement statements for colonels, C, and majors,

+

(I N

‘M. (Don't forget to subtract both promoted and retired.)

Choose an initial number of officers of the three ranks subject

to the éondition G+ C+M=1000. Make a table to represent - .
»
the annual army status. Compute ‘numbers of officers for n =1

(your iniedal values) to n = 20. (Round numbers to integers.
Why?) ‘
: n G c ‘M ‘ v

e

o
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® f '3 ) ) . /

¥

13) Demonstraté that the.initial condition of 1000 officers is
~ not necessary by repeating the iteration of exercise (12)
e for ' .
(a) @’=C=M=O,cr ‘
. (b} G=12000, C=0, M=0. (In this country
' the president was elected on the ni'omise that
N ) ) he would appoint all his supporters generals )
14). When these systems reach equ111brium so that the number of
\generals, colonels, and majors no longer change from year to
year, the ‘"(——j"in your replacement statements of exercise (11)
PRl ' ,..will be replaced by =. Make this chan_ée in Lyou'r three equations,'\‘
‘: :" : ‘ - solve ‘them algebraically and compare--the answers with your .
aniswers..to ezgercises (12) and (13).

N ~oC ]
&

162.




3.4 Undetermined Coefficients

# L

- ‘.

’ .
L4

You have seen by now that calculators and computers are

great at spewigg out long lists of numbérs. All }ou have had

to- do is.program some recursion function with a loop-and you have

a machine 1like Figure 3.4-1; - : ' f)
/

’
-

W, 5,503, ..

-

\./

Figure 3.4-¥ . .
' . ° - t
A simple bkamplé of this procéss is the sequence (2n-1). 1It is

proceésed as in Figure 3.4-2. “Q
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/ : . 3.4 - 2N

4

Without  a signal to stop such a machine will continue to spew ..
out.odd numbers ...327,329,331,..., 1000083,1000085,1000087, ‘oo
until your.computing instrument breaks down.

~86 we have~ the quite reasonable (and only slightly llmited )

\4\% e : '.

-

FUNCTIONS LEAD TO NUMBERS

. "
Here, in fairness, we explore the converse notion:

-

¢
NUMBERS LEAD TO FUNCTIONS
. ~ i
and we set out to develdp some means of carrying this out. Using

the analogy of our same functlon machine, we have the situation of

. i3
Figure 3.4-3: ﬁ

IR

$0, $2), § (3, . ..

)

o ‘ ‘ Figure 3.4-3.

* }
This is not just a theoretical situation. You can see -clearld

what is meant by the following two person exercise. Each of. you
should program the following glgorithm:-'(Do not let your partner

see the program steps!) I ' .

:E__' ’
No¢ lxmited in this text, but 11m1ted more gemerally by the:fact
that there are matheggtical functions on many things that are not
: numbers geometric shapes for example. .

- R - .
L d - ®
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" . 4 ’ - 3.4 - 3 v B . 1
. ' . ' j * B i
~ .—f"‘\,, . \ v . z ) .. v j
» 1. Letng? L T v . 1
‘ _g_ ae— f(n), display a . s > 1
/ece f is any function you choose It can be as , ' |
simple as 2n or as complex as, say, In Je - tan nlsin 4

-3.' When you have accumulated enough values, stop
. c»

4.‘ n@_ n+l . o L ) ' .”i

. 5. Go back"t_o‘step?Z: e \% y . o |

¢ Now set your, calculating device to run (or clear your display on a. J
-— . microprycessor) and ‘trade calculators Each of you will iave a

" machine Qhat w1ll‘ generate numbers. Your challenge is to decide -

T without looking '~ what is the functiop of step 2 of the algorithm

Be assured that this is far ‘more than a“little problem: desi ed

L)

Unless’ the function is qm.te simple, you 're probably. étumped '
to make you work in’ the mathematics classroom Mucﬁ scientific ac- '

'
. tiv:Lty ‘is of exactly'the form described here. The scient’ist collects

. ' data and looks for regularities in that data. And the best.kind of l
g___gularity 1s ﬂungtlonal equation that will allow him to predict l

the future - or unkr}.own parts of the past

.,

In most of the resgt. of thit section we re&frict ourse}ves to l |

‘

p'olinomial sequenc.es, in exercise ( 16 ), hawever, we '11 hint at . ;

how the idea is extended. To deal ‘witir polynomial sequénces we

[ L ] . . o : . . ‘

—, apply ‘the following rule: : e , / |
N : ~ - - . Y

¢ .. +@§ | 'WHEN, A" ARE FIRST COVCTANT, THE POLY- -

, 1
# - | ° NOMIAL FUNPTION 1S OE DEGREE n ‘ ' |

- . »
. g 0 = —i
co - . — 7
s
- s . . _ CR \
- .
. . e
.
-
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-
w8
. .

.\.‘c‘. ¢

Isn't that a wonderful rule?

’
o /

-not yet.

L
-

<

’Well, we'l

We first have to show what it means.

3.4 - 4

\
1 have to admit, no,

First we'll

show you (or remind,you) what we mean by the degree of a poly=

Simple enough?,

It should be.

lr = npmiafi

- " POLYNOMIAL™" o DEGR
j l ax + b » 1 (linear) -
v ) ax® + bx + c 2 (quadratic)

1
! . ax> + bx? + ex + d 3 (cubic)
;-
‘ n n-1 -
ax + bx "+ ...4q (n-th degree)

-

.The degree of'a polynomial is the

Now let us see *how we .determine

~highest power of the va
what that degree is.

EXAMPLE 3.4-1,

. v
~ ' *
.
-

function.f,. £

riable.
Determine the degree of the polynomial

SN
or the following}ﬁhta.

be x2 + 2

a variable cOnstant!

.5.

ave a =1, b

R}\33// But since ax2 + bx + g’ie a general statement,
a, b, and n*vary from function to function. This leads‘to~
the contractory seeming (and upsetting) idea of a

. n® f(n) -
‘° 1 0 N ’
- 2 N2 |
S 3 20 ¢
MU 4-1 4" 54 _ - )
5 112., .
67| 200 ‘ T
f
Here a, b, ¢, etc. represent constants like 6 or ;?' Thex;.
are called parameters ~For a specific quadratic for examp-
we might =2, and c = 5. The functidn whuld,: h-

parameter as

166 -.

-~
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Solution: We determine the differences

. . ' (Zﬁp)* for f(n)

o~

-~

w - ¥ f (n) AL - A N
\ - 1 0 4 N l
- > >~ 12 6
2 4 >
’ . \ 16 \
, , - pd > 18
. | 3 | 20¢ . . >6 ~
. ‘ ) 34
/. 24
g 54 > 6 ~
. > 58 -
, - . - >3o
5 112 .
> 88 ‘ Y
' 6 200 i

Notice that these differences are found merely b

ic a i . a y b
‘subtracting values in the preceding column. Since’
Zlg,a;e°the first differences that are constant (they
are .each 6), f(n) is of 'degrege 3. =y -

Our solution of Example 3.4-1 tells us that.this data

'

GEE 'GEN GI) G G GE O &N G B G D e e

leads to an equation of the form:

. 3 t.z . ]
f(n) = an™ + bn” + cn + d

LJ
\ -

S .
Our task in’'deciding what specific function f is, now reduced

to finding the values of a, b, ¢, and d. These are the undetermine

coefficients of this method. We will.see how to complete thig'
: i ' . ’
J Dis the Greek letter delta. It is often used in mathema-

tics to represent a differencc cg change. For example, slope
is oftén defined - A . - .

L4
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task in Example 3.4-2.

EXAMPLE 3.4-2, Find the function, f, for Example 3.4-1.
- .
Solution: We know from Example 3.4-1 that we seek
~.. a, b, ¢, and d in .

(1) f(x) = hn3 + bnz\i cn + d

\
s

We can find them by using our original data in

Table 3.4-],. For example we know that when n=1,
° f(n) = 0. (Substituting this into (1) we have:

(2) 0O=a+b+c+d

When n =‘2, f(nf = 4: Substituting these

values in (1): ' - .

> ¥

‘ (3) 4=8a+4b+ 2 +d
,—’T€> . . When n = 3, f(n) 20:
y &
(4) 20 = 27a + 9b + 3¢ + d
When n 4, f(n) = 54: ’
(5) 54 = 64a + 16b + 4c + d

Now we can stop. We have four equations in four

unknowns and we can solve them for a, b, c, and d. \
. . ¢

Solving them is messy but npt hard:
' - (\ First eliminate d: ' . , . ’
Equatién numbers

- - (6)

-

=) -@: . 4=Tat3+e
- S D =) - (3) "16=19a+.5b+?
- . (8) = (5) - (4): 344 37a+7b+c
Then eliminate ¢ by the same procesngn these new
— . .equations: . L I _
| ¢)) = (7) - (6): .12 = 12a + 2b

-




00 = (8) - (1) 18 - 182 + 2b

and b from these

» ay - (10) - (9): 6 = 6a -
and this giving, final '
- ' , a=1. ;
.- Substitute this into (9) gives: | l
, 12=120) + 28 ) l

. which leads to
b =0.

Using these values in equation (6) gives:

* - - 4 = 7(1) + 3(0) +.Q
which leads to
T
! c=-3
. | -
And finally, these then values in (2) yields:
' 0= 1+0-3+d\
P
) o
F N N

. \ .
Thus we find that our undetermiffed coefficients

area=1,b=0,c=-2,and d = 2. We plug them

into our function to give

f(n) = (l)n + (O)n + ( 3)n + (2)
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¢

.

We have already said that our method of .undetermined co-

efficients is limited to polynomial equations. Two other limita-

tions are of concern here:

(1) We must have enough terms to generate the needed
) differences to detgrmine degree. Thus in Example
3.4<1 ' we needed at least five data pairs. (Why?)

(2) We assume that the pattern continues.

Exé}cise Set 3.4

-

'
| -

D o |fm 28 | gm 3Hn|nme n | jm ¢
0 4 0 1 0 3 0 5
1 3. 1 4 1 2 1 14
2 6 2 7 2 «9 2 21
3 13 3 10 3¢ 30 3 . 26
4 - 24 4 13 4 71 4 29
5 39 5 16 5 138 5 30

b . X

5) Find f(n) in Exercise (1).¢ ) . -

6) Find g(n) in Exercise'(Z). - .

7) Find h(n) in Exercise (3). '

8) Find j(n) in Exercise (4).

9) How does the inclusion of the pair (d; £(0)) simplify

i exercises (5) - (8)? <;- v

. ’ . L

»

(1 - 4) Determine the degree of the functions in each exercise:
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- 10) Find £f(n) for the data: 11) Find f(n). for ;he data:

n fig? ' _ n |, f(n)
0 - o\, | 0 10
’_/7 1 | w12 1 8 i
2 -18 . 2 6
4 3 -18 \ . 3 4
4 | -12 A 4 2
5 .0 5 0

(12 - 15) These exercises are designed to justify in part the
method we have been using without proof. We will consider the
casé for a quadratic function -

f(n) = an2 + bn + ¢

12) , Copy and complete the table
// f(n) . - -

b = 2
n an” + bn + ¢
‘ 0 c
1 .a+b+c
2 -
3 , .
L 4 ‘

13) qup%s;e, in terms of a, b, and ¢, Z&l and 152 columng —
for \your function in exer;ise‘(12). ; '
1@? What\is 152 in exercise (13)? Does this confirm our rule
for determining degree for a quadratic?
15) Confirm the degree law of‘page 3.4 - 3 for a cubic, that
" s T ) :
" £(x) = an> + bn + #n + d : ¢
By the methods of exercises (12) - (14). You will of course

need a 153 column.

CERIC | 171




(16 - 20) . In these exercises we show one direction taken
for non-polynomial functions.
16) - Of. course many functions are not polynomial fupctions.

For example, consider the function f(n) = 2%

f(n)

1

2

4

8

16
32 -

Complete Al ,ZSZ ' A3 , and zﬁ? columns. What is

happeniﬁg?

To determine equations from data like that of e%grcise (16) -
assuming that the function is not known as it is here -
mathematicians must look to other techniques. The rapid
growth of f(n) suggests the possibility of an exponential"
function here and one way to "tame" eipbnen.’al fpn!tions is
‘to convert them to éolynomiq; functions by j:king’logs.‘ Here
if we ;ubstitute’(i; the exercise (16) data) log f(n) we

have

log f(nl

0
.301
.602

Copy and completelthe table to 3 decimal\digit accuracy.




3.6 - 11

Determine éhe degree of the polynomial relating n to
iog‘f(n)'by férming_the lﬁ&n columns until they are
constant.
Let y = log f(n). ‘Seghy equal to the po}ynomial in n
whose degree ig ntified in exercise (18). Use the data
of exercisé ( o evaluate coefficients of the polynomial.
Replace y in ygpur~answer td exercise (19) by log f(n).
Your result shduld now be of the ﬁofm

log f(n) = polynomial in n
Write each side &s a power of ten:

. e :
" 1olog f(n) _ jqopolynomial in n

Show that your answer simplifies to the expected result
, ] i ,
y=2 , *

>

(21 - 24) These exercises show how the method of undertermined

'}

coefficientg,hay be applied to real data.

s .

=, 21). Draw three circles on.a sheet of scrap papef and piace a

penny , P, and a nickel, N, in the end circles as

shown. \ '

We want to know the minimum number. of moves necessary to

reverse the positions of the nickel ;Bd the penny acco

—— .

H

»
-




to the following two allowable moves\
AN

(1)‘ a coin may be moved to an adjaéept circle if

it is empty . . \\

(2) a coin may jump over one coin of the opposite
. type if the circle beyond it.is gnpty
How many moves does this task require?

Nuw we extend the game to two coins of each type and

five circles.

5000

By the same rules, what is the minimum number of moves
that it takes now to exchange positions? (Be careful that

you don't get yourself blocked.)

Extend the gaﬁg—to';ﬁree coins of each type and

A
seven circles, and then fouy coins’of each type and
nine circles. . Make a table to record your data.

f(n)

1
2
¢ 5
4

n - number of coins of each.type
f(n) ~ minimum number of moves to
complete the reversal of

positions

.




24)
25)

“ . > - .

Find .the function f in-your data of exercise (23).

Challenge your Meighbor to a caléulator duel. Each

of yod'pfogram a polynomial function of degree no higher

than 3, and with no more than 2 terms into your calcu-

lator. Use the algorithm of page 3.4 - 2. Exchange

calculators and see who can détermine the function first.

This must be done by using ghe data provided in yun mode.

A

It is not allowed to examine program steps.
» { - =
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3.5 Mathematical Induction

. Mathematical (ér fini;e) induction is an important mathema-

tical method of proof which is often confused°with.other.simi;35_:>

terms, in particular scientific induction and deduction. For that

reason we will. focus on mathematical induction by comparing it

with these related terms.

approaches to problems. “
DEDUCTION:  General laws apply to specific cases
INDUCTION: Specific cases lead to general laws.

Now deduction is a pr?fess used in mathematics without difflculty

This method was the basis of the proofs you developed in geometry.

. But induction as described here is not a strong enough method for

mathematical proof. The problem is that we cannot be sure that
we have taken into account all. cases. We will show you this by means

of an example we met in another context earlier in this chapter.

EXAMPLE 3.5-1 Prove by (scientific) induction that

V20t
. ! <!

for any finite number of twos is always less than 2.

Solution attempt: We check the truth of our state-
ment for various numbers of twos. (Confirm these

L4

values by calculation.)




F ’ * .
¢ . e T . . . N ;
. T 352 -
RN ' o L ‘
-\ ' One 2: y2.= :1.‘5-' . .+ less cﬁgn _2‘@ - '

. .Two 2's: ¥2 +V2 ='1.9"" 1léss than'2
Three 2's: J2 43 417 '=_1.97'_\;§Ie<than-z .
Four 2's: 52 +52 +W .= 1, " less than 2 “
Five 2's: VZ 40 115 +57+_JT; 1.998" less than 2
Six 2's: {2 ]2 15 T T 11994 less #han 2

&
Lo
L
Iy AN EE aE am
n "

' . ' ; less than 2 '
. A p
Fifteen 2's:  1.9999999958" less than 2 l
Here we're faced with two insurmountable problems., First,
* our calculator soon doesn't hgye enough accuracy and even
suggests that the ‘theorem is untrue. For my “calculator
(ten digit accuracy) for example:
Seventeen 2's: 2.0 ?
The second problem is that even with an "infinitely"
‘ accurate calculator we could never list all cases. Thus
- . mathematical pre@f by scientifi inductign fails.
We have seen that scientific inanctiz\

tical technique. Before we leave scientific induction however, we
should polnt out that it is still an extremely important technique
in science What it lacks is only the ‘surety we seek in mathematich

. This final lack is the reason why we hear of so many scientific
’

theories, whose strength 1s supported by data collected over centurie

- : F

..1 5 )

cannot be a mathema- '
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aum S s
)

1

Still theré exists the possibility'of-disproving one of these v

-

L]

works may be seen in Newton's Theory of .Gravitation which was ac- =
—_T—

|

. . : -

theoties by displaying a single exception. An example of how this 'l
|

v p ”
cepted by scientists for several hundred years until Einstein

Afound exceptions .that required.modifications in that theory.
.. ~ /~£ .

Let us return to our example mow to see how we can prove

it by the method of mathematical induction:. We will then formalize -
L\*~) : EXAMPLE 3.5-2 Prove by mathematical induction

that process.

that

O

for any finite number of two's is less than 2.

.
.- .
G G GOE N U BN oS G o e
.
.
.
.

- Solution: Wg start as in Examplé 3.5-1: e ‘
‘ one 2: N7 f;l.S' Less than 2 ; ;é
But now we recall the recursio; procedure we used ] g
- to get from one nu%beripf 2's gb ;he.next: . T
X 4y = JE_I—§;, whé%e n is. the' number of tyo's . 'j

v sé far. ’ .

We argue that ) d - N o

Xy < 2 ..
. 2 + Xy < 4.‘ - (adding 2 to each member) |
J7_1_§;'< 2 ~' (taking posit@ve‘sguére‘rO¢§
/ T X1 < 2 ' (since s_,, = J2_1-§;)

Thus we see that whenever Xy <2, thep Xy < 2:

' |
‘ ' . Al -

» o
\
\

173

Using this fact and the fact we established earlier; o




—~ 8
) 3.5 -4 . X
) . '
2 ! L ]
- l
. x <2 - | !
Xy < 2) (using xf{é 2 implies X<
%, < 2)“’ DR
X, <2 S """
)
llc‘,=_n' ‘ | x, <2 . ' : _"
o e i

. This, process will &ontinue and we have proved that

[ 4
gi-

the radical ex,presslen 1s indeed alyays less thaiZ
.Let us apply the process of mathematical 1nduct10n to a simple

nnd familia?® thsmal model. We 11ne u'o domlnoe,s stood on end '.Ln :

. » suchs a’ way that when one domluo falls so too doec the next i
. ‘,N.L . . % , - e
L ) o -
. P 7\, »
ot ; §
B - - \l l

2 6 -7 "_ "9 10 11/12 S e

Co New tip the Slrsb domlno agamsr_ che second Doing soO starts an
’i', - 1nduct1ve process-‘». 1 t1p§‘9#2 2 tlps 3, 3 tips 4, N n tips ntl,
b{o matter how many domlnoes are lined up in this wag they will ALL

. o ' falll (;“lotice the two parts of what " we_ d1d te tip all domlnoes

v ) b .
. : (K) We tlpped the flrst domlno - .

. | X .

. R . :(2) We had the domlnbes set up so that each domino tipped
R ey , 'y y

AT ' ' : would tip the next. . . ' ; o .

.

.

J S S
' + 817y
¢ @




< Stated formally we have justified
. . ’ N

F

THE PRINCIPLE OF FINITE Eynucrloh (PFI)

" For any statement- S(n) about n, an 1nteger
> i, 'when o
(1) S{i) is true, and .
(2) wherlever S¢k) is tyye, then S(k+l) is
true (k an integer .> i)
then S(n) is true for a11 n>i.

»
o \

”~ * - ‘
In this principle i 1s most often taken to be equal to one and

the pr1nc1p1e then app11es to tige natural numbers
In Example giS 2 we establlshed Part (1) Qf the principle -
. —4 N
by showing X = 1.5 < 2. " In that same example we established Part
(2) of the principle by shcwgﬁg that %, < 2 1mplied X <2,

4 .

Now we'll use the pr1nc1p1e in a new example 3 .

EXAMPLE 3.5-3. _ Find a-formula -for

+ L b+ —1 s
2:3 . 34 n(nt+l)

! N
and prove -

it by the'Principle ofs Mathematical Induction (PFI).

Solution: Firswzwe‘seek a formula by examining Sn

3, 4

for n = L,




1._ 3, 1_ 16 _ 4 ,

S, = S, + = 2 = -
 °37 LT %7 T 70 | 5

n

Noiv 'y set out to prove that this formula works.

Part (1) of PFI. We must show Sl of the series

(S1 = 1 ) is equal to $1 of our guessed formula
1:2 ¥ 4 ‘
e L1 .
(Sl = | 1_+i ) » Since both equal %_ , we have est;ab-
lished Part (1). .

Finaorly we must prove Part (2) of PFI. Given
Ck+1

pe . S we_must show that S, .. = ——

B K (k+1) +1
recourse to S, and to our series definition.
dc@this we proceed as follows -

Sk, =k _ Hypothesis of Part (2) of PFI
k4l
S, = X 4+ 1 b th i £i

Y —_— e series defi-

o k+1 (k+1) (k+2)
; g P - nirions for n = K+,
4 - [
_k(D 41 _ K2+ 2+ 1 o
(k+1) (k+2) (k+1) (k+2) -
, o wn? e L
, k+1) (k+2) k+2 (k+1)+1

Notice bpw in proving Part IT of PFI, we are given that our

formula is true for n = k (This is like saying, that we are g’en,

A reavonable guess for a formula for Sn is Sn = T

é

i




i

in this -part that the kEh domino will fall.) We then use this

\ o
hypothesis to prove that we can get the formula for n = k+l by
recougse_to our given information,in this -case the serie§ defini-

R N
tion. . .

-
« The Principle of Mathematical Iduction is a most important.

one. When Guiseppe Peano reduced the number of pestulates about

AN

s .
number systems to five, this principle was one of the fivel 1In fact

% P
it provides the method of proof that is basic to development of

N

Peana's syétem beyond his five axioms. You will have an opportunity-

to apply this 1mportant principle tn the exercises. w

Exercise Set 3.5

- .

& ' ’
(1 - 5) 1In 'these exercises you are given a statement about a
' -~ Toe ’ . .

- natural number, n. By trying a few values of n, decide which state-

menty you think are true and which felse‘, Do not try to prove any

»

of them. (Your calculatoisshould help )

1) 2n? + 1 is a prime\nnmbe;.

2) 2> nd L, |
i : ) * g

3) 2:-4" + 1 is divisible by 3. ~

. ’ \ ) -
4) n2 + n + 41 is a prime number, given that the following

numbers are among the primes: 43, 47, 53, 61, 71, 83, 97,

(;j:z;)113,.13;, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421,
- 461, 503, \547 593, 641, 691, 743, 797, 853, 911, 971, 1033,

1097, 1163 1231 1301 1373, 1447, 1523, 1601.
) »

7/

\
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4

The sum of the first n odd .numbers is n?.

The number* of chords join{ng n points on a circle is

==

n(n-1)/2.
In exercise (2) find a natural number value of n for which
the statement is true. Do you_thigk that thi# statement is

true for all values of n 1afger than this?

-

(8 - 12) We seek to prove the statement of exercise (S):}_The
sum of the first n odd numbers is nl.
8) True or fqlgé: The nth odd number may be represented 2n-1. .

9)  The following is equivalent to the statement we wish\io
prove: 1+ 3+ 5+ ... +(2n-1) = 2
Pfove Part (1) o} PFI for your compleﬁed statement in (9).
Prove Rart (2).of PFI for your cotnpieted statement in (9))
that is . ' 2
Given: 1+ 3+ 5 #_... (2k-1) =k

Prove: (1 + 3+ 5+ ... + 20y -1) = (k+1)2

(Hiflt: add the underscored term to both sides of the given

]
equation.)

Do your proofs in (i0) and (11) establish the truth of the

theorem 1+ 3+ 5+ ... « (2n-1) = n’

for all n?

(13 - 16). We seek to prove statement (6): The number of chords
L] . .

* joining n points on gweircle is n(n—l)/Z:
13) Prove Part (1) oA or this. statement, for n = 1. . (How

‘many chords are thé Is this the same value as that of

-

the formﬁla?




~

To prove Part (2) of PFI for this statement, recall that

. we have ¢ . )

Given: Joining k points are k(k-1)/2 chords..

* What value do we want to es‘abllsh for k+1 points’ (Hint:
Substitute k+1 in the formula )

Consider the partial diagram

for k'points. How many new

-chords would the g+1 point add

to the figure7 R 7 .

Use your result in Exerc1se (15) to flnlsh éFI Part (2) for

’this theorem

Prove by PFT thar 1+ 2+ 22+ ... + 281 o o0 'y

The triangular numbers dre the numbers formed by placing
spheres (like billiard balls)-togéther in triangular érrays,

(where n is the number of balls on an- edge.)
1§

0O
O c% oc?o C?C%%)O ,_o%so

t1=‘ =3 “3"d t4=1 t

'Derive a férmula for tyby the method of undetermlq\f
e ~

coefflcients '

5

’ Prove your formula in Exercise (18) by ‘PFI.




g Peman)

- ) ‘ 3.5 - 10

(from G. Polya, Induction and Analogy‘in Mathematics)

"Look at the mathematiciaﬁ", said the logician. ''He ob-

. derves that the first 99 numbers are less than 100 and

infers hence, by what he ‘calls induction, that all numbers

are less than 100."-

"A physicist believes, ' said the mathematician,

"that 60 is divisible by all numbers. He observes that

21)

60 is divisible by 1, 2, 3, 4, 5, and 6.° He examines a
few.more ééses, as 10, 20, and 30, taken at random as he

says. Since 60 is divisible also by these, he considers
N

‘the exgerimental evidence sufficient.”

"Yes, bu aok at "the engineers, ™ said the physteist.’

"An engineer su .écted thaf'all odd numbers aré prime num-
berg.%%At any rate \1 can be considered a prime number, he
argued. Then there éqme 3,5, and 7, all indubitably prlmes.
Then thege comes 9; an kward case, it does not seem to be
a pride numberi Yet 11 an&\13 are ce{tainly primes. 'Coming
back to 9,'he said, 'I conclu é that 9 must be an experimental

error.'"

What kfnd of iﬁddction is beirg app ied‘in these e%ampiés?
DiFFICULT."Here is an arguﬁent by PF thag all billiard
balls are“fﬁe same color. We first restate the theorem:
In any gek of n billiard ball®s. all n are the same color.

PFI Part (l}_ Clearly any one b¥'liard ball i% the same
i t :

color as itself, -

155 ~

.




; | ah%“*%ag;' _ , 3.5 -11

PFI Part (2) We are given ﬁhat any set of k billiaxd
balls are the same color. Here is a set of k+]
billiard balls: - | ,

£

(D) balls o
0000...0000 o

Emerely apply our given argument twice:

k balls ’ , :
N ' °
‘. CO000...0000 =
A‘ \_—-—-—'ﬁvf / )

—_ - - - s —

— mm e - — . e ——

_k balls

i
!
{
! . , ‘
. Find the flaw in this argument. Be cageful. Do not reject

- Since these .sets overlap, they must all be the samé color.
° -
PFI in the process.
. -
¢ \
/ :E"( " t




3.6 The Binomial Theorem

/ -
- l ]

All through this course we have been interested in short-

cuts, ways of saving time and energy. i(I_n_'exactly this way »

laziness has probably always been the prime‘mover in man's devel-

opment of civilization.) We now seek one more very useful shor.t-

A

cut, the means for finding the coefficients of various powers of

a binomial tike a + b. ‘ \
N » ,,‘-

You may check by multiplying (if you have nothing else to

do with your time) the following products:

. (ash)® =1
(atbyl = a + b
. (atb)Z « aZ + 2ab + b2
(a+b)3 = 3 + 3a2b + ab2 + b3 -
(a+b)4 _ b4 423 + 6a2p2 + dab? + b
(a+b) - 3p2 3 4+ sap* + b

a5 + Saab + 10a b + 10a b
(215)6 = 26 + 625 + 152%2 + 20a3b3 £ 15a2% + 6apS + b6 ,

\ ! x

Those are enough to suggest some very simple patterns followed by

E . . . s
the Jetters a and b. We can ea.ii generalize them:

For (a-i'b)rl we have i ' A o
1 a® + n an-1 b-+<:>an'2 b2-+<:> n- 3 35 ._._F<:>a2qr-2
+ n abn'1 +'£h where the lodps represent coefficients to be filled

in. These(éularltles are as fol Mws

- Y

' Ifi?




(1> There are n+l terms. . ‘ ‘

th

(2) a starts to the n powér and goes down one power in,

each successive term.

\ (3) b starts to the ¢ power ;nd increases one power in each.
successive term.
(4) The sum of the powers of a and b in each term is
alway* n* . ‘ *
(5) " Numerical coefficients increase to the middle and then
decrease. The kth coefficieﬁt.is the same- as the (n-k)th
’ coefficiént. . " o
EXAMPLE 3.6-1  Express as a polynomial (3x - 2y)5.
- Solution: We égn use what we found for (a+b)5'0ﬁ page
' ) 3.6-1, substituting 3x for a and (-2y) for b in’
‘ o eacﬂ term: , .
’ ," Bx)° + 530 (-2y) + 1060322+
. . 1003002 (2207 + 5030 (220 + (2y)7 -
" %implifyipg we have:
© U 243 - 8l0xby + 1080x3y2 - 7206253 + 2/40xy‘* - 32y°
) Now let us focus on tLe ‘n‘umeric;al coefficients of ‘(all—b)n. . ¢
To do this we will extract frem the products on page 3.6 - 1 only
‘n and the coefficié;ts to form what has been called Pascal's Tri-
' gngle: . - -
P N
. \ O
¢




3.6 - 3.

=}

0- 1
1 1 1
2. 1 2 1
"3 1 3 3 1
4 | 4 6 4 1
5 1 5 .10 10 " s 1
6 1 6 15 20 15 5

How can we continue this patterm? Certainly one way would be to
multiply out (a+b)7 and copy the coefficients, but some regulari- -

ties shouldtleap out at you. Before reading on you should try to

construct row 7 by compariné it with earliér rows.

Almost certainly ybu will have 'extended the table to give the

following: ' o i i; ‘
. ) $
5 1 5 10 10 5 1 S
6 1. 6 15 20 15 6 ) SN
7 1 7 . _ 7 1
he ' >

It is clear that the first and last numbers are ones” and that the
next numbers in aré each n. Pp*haps‘you also discovered-the pét—
tern that pfoduc;d the other c&effiéients.x If you didﬁ'f, look

back at the 15's ahd the—Zq in row 6. Comﬁare them with tﬁe‘nug—

bers in row 5.

3




AWl

6

7\

spaces.
the row above.

~
Now almost certainly you should be able to fill in those inner

\w

AN NI 3T
I 61 \\/,20\\/,15\\/,.6,\7/, 1

R4

They are each the sum of the numbers on either side in

}

AN .
Express as a polynomial (2x + 7)
Continue Pascal’'s Triangle to find

EXAMPLE 3.6-2
Partial Solution
the coefficients of (a # b)
6 16 1) 6 1 -
7 1 7 21 7 o1
8 1 8 28 28 .8 1.
Thus we know (a + b) = a8 + 8a7b + 28a6 2, .o
7 Substituting 2x for a and ? for bwe have
(208 + 8207 () + 28(2x) %% + ..., and
" 256x8 4512k + 448xO 4 L. . ‘
-
In the exerc1;es you will have Bﬁtopportunlty to practice
this eipansion téchniqqe We will then return to it in the next ,
chapter. voe ’ RS . |

2
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- . .
.

+ MExercise Set 3.6

* 1) Construct Pascal's Triangle to n =10 from n =% witHouf“ .

reference to ﬁage 3.6 - 3. =~
%Z' (2 - 5) Use your answer in é§erc1se (1) to expand énd 31mplify
s the following: l .
, 2) (a+ b 3) (a+p0 i
. 4 (2% + 3y)5 y . 5) - (x - 93 . , '

6) Complete Example 3.6-2 of the text.

(7 - 14) Give only the requestéd term for each expansion. (Re-
fer to your answer in exercise—~(1).) = “~_
7) (a+b)?  4th term 8 (a+b), 6th.temm -

. -
9) (a + b)loo‘ first term , 10) (a + b)soo, second' term

11) (2x + 3y)19 second term 12) (3x - §-y)7 4th term
™ 13) (x - y)zf; second term 14) (x - y) , 30th term
" 15) Find (205)° by calculator. '

16) Find (205) y using the b1nom1a1 expansion with a = 200 axf

C b =5, E - .
13) Give the first-three terms of (1.04)6 by using the binomiai

'’ expan31on with a = land b = 04.
18) Notice how in exeéercise (17) as powers of b 1ncrease the value

of tgrms becomes increasingly small. For thls reason, when
( .

b is smali compared to a we hahe ' . - .

’a + b) = a" + na®ly + b2 . (other terms)
w-—‘__/

7

T T SMALL, "CONTRIBUTION TO TOTAL |




e

19)

20)

- - . < :
a . e ¢ ;
.

and we have the approximation

(a+bB)" = a" +n an'1 b. ®

Use the method of exercise (18) to find (20.03}4 to the

nearest ten. ‘

.

Complete the qgﬁénsion of (20.'03)4 to determine your error

o

in‘exercise.(l9).

» ¢ .
- ‘( . .
* - .




Chapter 3

N

1) By iteratibnxtechniques,

TEST

"y
= 3.

2

solve for y:
y 4
Refer example 3.2-1

b

LI ¢

Program your calculator and list ‘the values in the Bable

x °.

. n

O O N :(

10

“15
20
25

‘ iy

)

.2)  Refer to.Section’3 3- problem #9 - The Lost Lady and the

Tiger.,K Use the follou;ng maze: \ ~
’» . A : C;‘ C'
. ’ . oy :Z:::) ‘[:E,;
N \ [ ¥ : el C,4 ('1 .
L U
- ;:: — J *
. ] A .

Represent the probablllty of escape from corner C1 as pp

etc .

~

Llst the f1ve recursion equations for- chance of
. escape from each corner. Use 3uur equatlons (two decimal

places) to find ‘each probability. /Z

]

~

': '. i 193 ‘ ‘ . ’ N /




T © 3.7 -2 ' ’ \\

. ' - t‘ . ‘ 7 {

3) A ofhalil country has an’zrmy borps,of 200 generals, 400

colonels and 800 majors. The government feels there are

too pany off1cérs in the army and therefore establishes 5

a new promotlonai system whereby 207 of the generals are

. ' " retired each year and only 5% of the colonels are pro-’
moted. In turn 25% of the colonels are retired each yearx

. and 207% of the majors are promoted. Two hundred majors

‘ ‘are comm1551oned each year but 407 of the majors are also
retired each year. Eventually the tQtal\number of offlgtrs

wilL staballze Ose the following algqglthm and complete

-) the table (le your calculator to 0 decimal places.)
Algorlthm o L N M. ~C G
1) Remembér M, C, & 0 | 800 [ 400 | 200
. 2) N=20 1 ’ .
o3y . M= 200 + .6M 2
4 C = .20M + .75C 3 :
5) G = .05C + .8G 4
6) ° N=N+1 ) ] 5
v T 7)) If N =41 STOP |10
. . A e
~‘3) GO TO STEP 3 } X 20
' : 29
- ’ e 30
¢ - 4) Find the equation of the.polynomial functiol given the
’ ' following set of values: gi
. n 'f(n) .
L
. , .
. ¢ ‘ 2 14 .
3 .40 . '
4 | 88 .
. . 5 164

194
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k ‘

N .
A Y
] { N . , -

- 5) - Prove by the brincép1e of Tinite induction that: -

(Tn-T)
In-1)

L LELHT 4 L+ (Bne2) 5 R l .
PN S 2 1.4 . .
6) Expdnd and simplify (3x" - 7yj - .
- . . .l 8
- 7) Find only thi/sixth term of the expansion: (2x-y2)
: ) s
) -«
. .2 : <
¢ v ] \ * ,
\-
L4 \7 »

'

~ .

'
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CHAPTER 4 APPLICATIONS OF THE, FUNDAMENTAL COUNTING s )
v i . -
e PRINCIPLE '

-

’

In' this chapter ‘we return to one of the most basic of mathe- -

- matical skills, counting. Most. of you learned to count before }ou

wt

-4.1 The Pundapental Cogyting Principle

’ . * . ’
even entered school; now you will have a chance to exténd.that -

* ’

skill to some sophisticated applications.

s

‘Fbunting solves many many problems in the real world, but
when tﬁé number; with‘which we are dqaliqg become larée coun;ing
can take time. That was’o?r original motivation forllearning
arithmetic operations. ‘Fo; exgmple: when we have ¢ounted 15 apples~
ip oné paékage and 13 in‘another, we save ourselves the timelof re-
cqunf%né all the agP1e§ when we findMhe total, 28, by.additionz
Here we introduce a similar counting short cut. We will do -

-

this by means 'of a gimple-eigmple:

! Y A .
EXAMPLE 4.1-1 Th® map below shows routés between Kansas

4

N :City, St. Louis, and Cincinnati” How méﬁy different
routings are there frbm'Kansag City to Cincinnati via

St. ‘Louis? : ' , -

.8 S—

- ‘ P "




+

L . b1 -2
. . L. - -
N < R ' .
.’ Solution (1): By direct” count we have the following
routes: ] -/ V- “ .
'1, A-D 2. A-E 3. A-F 4. 'A‘- o
5. B-D 6. B-£E/ 7. s-r 8. B-G
* 9. C-D 10. C-E 11. C-F 12 -G
' ﬁherévafe a total of 12 routings. . ‘ )*\

Solution (2): By ana}ysis; ! P

For Route A there are &4.connecting routes (D,E,F, G)

4

‘For Route B there.are &4 connecting routes (D,E,F,G)

For Route C there are 4 connecting routéé (D, E F ,G)

Thus there ares4.+ 4 + 4 = 12 routings _
. -

‘Solution (3): By more refined amalysis T
For each of the 3 routes from.Kansas City to St Lgui

\
(A,B,C) there are 4 routes from §t. Louis to Cincin-

?

nati (D,E,FfC). ) ' y

Thus there are 3 - 4 = 12 routihgs ‘ 1 ,

" We will 1ook at this same problem by means of a very useful

*
courdting device called a tree diagram: -
< . N ’ )

Co.

0
-

\)4

It might better be called a root diagram because the tree and
branches are almost always drawn upside down.

o 197 ‘ D
N |

.



, ® ‘
) S , & 2 ,
T \ ’ h .
D, eE/Fl § . > ’E -F _ D . u
{ > (g{ (c) (C). (c) © EC © © O & D

4~——4The*tréé‘diagram is tséful in many situations which call for‘i?’
. . ~ - -
2 - L. . ’ N

organization of.information especially where that infgftmation takes

the form of finite ordered choices. We.will use this‘'device again
g ’ - ) - } g
N later. . _ : 3

-

F

‘What this example and thege’ approaches to it are meant tc’\\

4

. ,\

FUNDAMENTAL COUNTING PRINCIPLE_(FCP) oot
R ¥ - L . -

-1f in n successive choices, the first can be

‘justlfy is, the following: ) . o ‘

"| done in c, ways, the second in c, ways, etc.,
- then the total number 'of choices in order is

pl

-
- . 1+ Cano L. ,
. €17 a3 e T Cp

- ! ’uWe have ééén FCP used if th:'case-of ghe,rOuting from Kénsas'Ci;y
R . to ﬁtnciﬁnagi via St. Louis. In that example there"wereYB'choices
¢ of ne;;eé from Kanéaé City’to,St 'Louis 4 of routes from St. Louis
~ to C1ncinnat1 leadlng to 37 4 = 12 E?f al route cﬁhices for the full
. . , - \

trin

Now lét-us see ﬁow thigfprincible may be used' in problems.(

'\) ‘ A . ( lgdll, ’
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;  EXAMPLE 4.1-2

3 digits followed by three 1etters.

—
There are many such lfstings in practtce.

‘4.1 -4,
y ~

"

-

Most licepse plates in New York State H}ﬁe q

A typical plate .
, (N oL . : N
258 EVR o

. ~ ~
gf no regtrictioné are placed on these listimgs,

A3
A
- ¥

‘many plates of -this type are pessible?

Solution: ‘A useful devige fof FCP is a series of boxes

into which th@ numbet of choices of each type is

placed .

i . -

v ]

— )

Here are thé number ‘of choices is:

T

10 | 10 | 10| 26 [ 26 | 26 N

3} ’

1

By. the FCP the total oh01ces is then the product of i

1these choices:

}7 576,000 (Since New York State

has about 7,000,000. registered cars,_this number is

sufficient - for ncw.)

[}
4

(3

”~

.~

e

dre not allowed because they bruise sensitivities.
- ¢

/\ h » ¢ = ! .

1949

- ) o N }"

Many letter groups:, for




-, EXAHP&E 4.1.3 How, dany A*fferent 5 letter words may be
v J' . pelled with the letyers &,B,C, D,E, and,F, if no laetter .
is repeifed in any word? ‘(Note: In mat?ematlcs a word ,

" need have no dictionary meaning. Here. for example

y . r ABCDE is 4 word.) . \
- * ' \

Solution: Using the chdice boxes: | - .
Y 6 |5 |& 3@ AV T
. . ~ ij Al \‘

Notice that the flrS£ letter ‘chosen is any one of six,

- but the second cannot dupllcate the first so only five
1
age 1eft VN :
- 7 '  ; -
. By FC;L—we have a”total of 6~ 5 - & -3 - 2=720 ,
v ) words. %
.ot . A . ’ . \
— N -

. ’ -
" EXAMPLE 4.1.4  How many of the words in Example 4.1-3 begin .
) NS

-

i ' with A and end with B? o : o
¥ . . Solution: Fill in the restricted boxes first: . o .
" v . 5 v = '
A B )
\ ) ) ‘1 '1 .~ ‘ A

- ] ' J ! \
. . o

Now fill in the' other boxes. AN

1 4 3 2 1
oo [ N . 4 * 3
’ - By F%P we have a total of 1 +"4 - 3 - 2 - 1 =24
b 0 such words. )
S f
(.
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‘ S .
4 . -

,EXAMPLE 4.1-5 How mahy three or four 'letter words may

be found with the letters A4,B,C,D,E, and F? No re-

pegted letters allowed. f : . B

4

. Solution: Consider the thrq?/le;ter words and the

v

four- letter words separately..

6|5 4|, Cole |5 |s] 3

*

letter words or a total of 480 words in all.

e

Notice in the last example that we added 120“and- 360. -FCP was

. R L]
not the téchnique to be used here. You must be very alert to note

11 vt

difference(’-o ften the word "of' suggests when addition is in

~ There are 120 three letter words and 360 four- . l
.l

" this
‘order . ’ of -
N »

. 7 ' "'

Exercise %et 4.1 o _ . ' . //

. ¢ ) h . .

1) List the worps that can be formed under the conditions of
Example %,1-& Are there 2£9

" 2) bndgr the conditjions of Exapple 4.1-1,7Row mény different ropnd
/tripg,*Kansas City to Cincirnati, are posqiblé?

35 Under the’c0ndit}0ps of Example ail-l, how many differqnt roﬁnd
trips are possible, ﬁansas City to Cincinnat;, if no route is-
driven twice on a‘trip? T .

4)‘ Construction is being done on several of the routes in Example

no westbound traffiec is allowec on route D. How many round trips

without repeating a route are possible?

4.1-1. MNo eastbound trafflc ie a” Lowed on routes B and F, and ]
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* 4.2 Probability ., - ‘ C

If you happen to be a sports ‘enthusiast} you'most -likely y

are familiar with the idea of oads;'relating to teams or indivi-

‘

duals participating in athletic contests.

‘ .

- For‘instance, you' may read that a footbaif\team has,f—l odds
of goiné to the Super Bowl, or a horse has 5-2 odds of winning a
‘rads. , T . : . ,

What does this mean exactly? </ : o

£ .

. 0dds are againet the team going te the. Supet Bowl or against
i%ihe horse winning the‘raee. Thus if the footbail season was ruh

| through 8 times, the team with 7-1 odds would 'make it once‘and
'vail-7 times. 1In the race, the horse at: 5-2 would wir twice and .
losejg times. o . "

1 / ‘-
“ .

If we talk of Drobabllity however the reference is for-an

- \ N
event occurrlnga : y . 51 . .
¥ Probability i& the ratio of the event .
. happening divided by the total number of
* events i . ‘
. | . e . . ®
» {

The football team's probability of attending the Suger Bowl

_1s —I¢7— or ‘% while the proﬁhbillty of,the horse w1nn1ng is
i - »

R o2 ~ - .
_715_ or ' = . . / ‘ _
2 . . / /

‘
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Basically there are two types of probability: 7

. . ) T i 4 ., .J'I. .
1) Predicting anp occurrence based on past studies or experi-

e

ences such as forecasting the weather or life expectancy.

2) Predicting events established by known facts. This involves -
' PR ey ~ ) ,

experiments such as the roll of a die, draw of a card, flip

of a coin or 'spin of a wheel. TIn the exercises we will see

ways ,of shortcutting the physical work . . . Y

TS;'humber of outcomes '"for" an event must be less than or

. »

equal to the total possible outcomes. Cléarly, it is no;.pos- 2
+ sible to have a probability, greatef than ohe.» Also the least

probabiiity possible is zero. /

¢
-

+

R , ] .
. v
4 -
- .
’
.
[ [ [ ] 1 ] ] AR ] ‘Snmae ERR. Il ) R ¢ S 1 R Y R SRR

EXAMPLE 4.2-% From life ingurahce records,'givgn 100, 000

20 year olds, 47,700 will be living at the age of 70.

What\is the Drobability of a 20 year old lfj;ng to the -

-

age of 707
Solution? The number "'for" is 47,70

- | “The total is 100,00 -"

Th2 probability is I%%%%g of .4770

L ) =

EXAMBLE 4.2-2 If the letters A,H,M,T are arranged in
\

any 65der, what is the probability that this wof#d will.

rd

spell MATH? o ' . . .

"Solution: By The Fundamental Counting Principle there
v ' :

¢

are 4-3-2:1 or 24 different arrangements only one
. P Y

\203 ' /

}
|
}
i
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P /7 ! . ’ 4,2 - 3 ’ ’
- ‘ . ‘ \ o N *
: of which spells MATH The probab111ty oﬁr-d’ )

. N/
'P . spellang this word would be 25 or .0417.
’ 1t . -
EXAMPLE 4.2-3 - N ’ ’

.

a) Civen The lett syE, S, T, T how many recog-
nizablz different ways can these letters be '

arranged7 y ,
.. . \
b) = What is.the probability of arranging these letters

o in such an order as“to spell the word FEST? ’
. ®

Solution: a) By the FCP we have 24 arrangements, .

however 1f the two T s are switthed there'is no

Y -

recognizable different spelling. Therefore we P
. ' '

4

have 24 * 2 or 12 different spellings.
’ b) The orobablllty of spelllng TEST would
' be 1/12 or 0833 S .

-~

- . “EXAMPLE 4.2-4 When playing Backoammon what is the prob-
A ability of rolling "double sixes" with the’ d1ce?
-Solution. By the Fundamental Counting Principle there
can pe 6:-6 or-36 outeomes vhen rolling a_ pair of-
S dice. Of these 36 different resulte only one is

a double six. Therefore the probabilitv of rolling

(J/\:

’

a double six is 36 or 0278
o
- aAlternate Solution » The probability of rolling a six
; *, b on the first die is 3,//The probability of rolling

Y a six on the seeg?g is also E' "The probabiliti/jf

-

204 ‘ - 2
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A . a, double six is % ;'%- = 1 . Intgeneral - 1f

'thue proheblllty of .dn event /f.s Pl and after

I ) . / ‘ event is 2‘, “then thexob'abil'i:ty of both .hap-

IR T ‘.p_ening is Pl 2 By

5 o In tnany probablllty exneritneqt ’;rancl.om- digit table"pfyw -
_':b'e of value. ‘If 50, 000 digits were 1lstéd at random how many of
” these d;'.gits a7ould you expect to be 9's? How many would yau ex- '-?‘
T . pect to be 2'8‘7 etc;b Of course you most la.kely would expect to;‘

| have 5 000 . of each d1g1t but this would be qu:?te rare. .Ao 11y

T if 6 of the digits were w1th1n 67 of the/5 000, the table WOuld

: - be go\od enough to - ‘use. I C ) ,

-
> .
. 2 -~

It does not have theo t].’ca"l‘ support.

¥

To genﬁra't‘e Sjlglts at a titne FIX 5. ¢/
'Remember N . . ‘
R «(1n N)2 - (In will Be exnl';ored in Chapter 6)

Remember R ‘ o _ &

e
-

Take the fractional part of R and display .

- — .
.

(U, B N Ve

\, NeTR, Go to Step 2
e

Select 'a "seed" number N, N> 0, N # 1 invo\:der to

4

AY

generate the randg,m diglts

. ) '
'.j"‘f{‘ - For the aeJnumber N =1.73 th following 200 digits are

T generﬁg} This process could be continued to generate as many

v
| “ . _ , _
1 IR RS 'S
‘ . 4 - "
- . \ .
-3 ‘ :
b . ,
N

S A 15

. f‘ . An algorlthm for a cprde "random digit generator" follows. -
o . : T L€ generaty l




4

s

-~

l o "~
, (r" . . &2 -5
. — . .
N , ‘ - o/
B L
& 94285_ o 192210 © 26594 . 7?979 . 03054~ ,
© 00090 . - 11026 k " 16376, 39246 v 00184 >
. 92309 42763 72165 - 1loe42 - 01931 |
66271 | 91500 ., . 00789 T 44419 . 95164 ,
27960 76840 03687 00131 < . 04952
32861° . 08762 T 83513 (80688 ‘. 34999
) 10216 ,' 00946 . . 72077 © WIS74 . 0 & 05681
: 62678 . 93269 ' [agmse . .58:,41 - 19465 iy
'Supoose %é desire to sample the grade point anerages of
100.seniors in a graduating class of 500. Ve may assign each
stndent a three digit number 0014/002 ‘ 506. Using the random C
(’,6%\ digit table we may take the f1rst three dlgits of each 5 d1
{ numbér in Column 3. We”would obtaln the numbers 265, 163, 721, ‘
007, etc. S$tudents 265, 163 and 007 would be checked. The three
digit numBer 721 would be 1¢nored This process, using three ' ’
) di Lt combinations in t arious columns wbuld be continued un-
¢ til 100 students ‘were ﬁed. ;’T ' !
e . . , e

. “The Bifthday Problems: "~ .

RCRE s

What Qs the probabllity that at least two people in your
mathematics elassroom will have the same birthday? - (Year of blrth
need -not match.)

. To establish an algorithm, consider the probability that aj> ,

" six wiII'EQE show up o a single throw of a die,

”’

' : | . /2 ’ ! 7 * »
:.j | . g[h), .




.0027." The probability that the two of you do ggg'havé the same

Jb,j.rthday is 1—-3-65' = 355 o i N

.ing one of ‘these two dates is ‘3%5 . The probability o~ the -2

D X e . -

AP ) 4.2 - 6

s . . [y ‘

Thee probability a six will show up is éﬂ Therefore the 7%'

probability that the six will not éhow:up is 1- % = % .
The probability af you and your closest friénd'in the ﬁathe-

matics class having the same bIrthday .(non-leap year) 'is j%f or

1 364 . . : . -

: . oA
Let'§ add a third person. If you and your friend haye two_

different birthdétes, the probabiliéy of the third person.match-'7

- N g . 363
third person not matchlng one of these dates is 1-335 355

. Referring to the alternate solution for example 4 2-4, the
probability of all three people nof/ﬁav1ng the same birthdate can

be written. ’ R 4
» .
364 363 _ 9918

Therefore the probability for the same birthdate is 1-.9918 (/

L

‘n.= 3

= .008%. >

.
-
'

For n = 4 we have I - 36T 363 3% = L0164

\

[ [ ] ] ] [ [ i . [ e [ ] [ Ol Ol BBl B

S

An algorithm to géﬁerate the probability of two people having

the same birthdate based on the nunber of people ﬁ?esént follows.

o N = number of people present,

1) Let A=1, N=2
366-N -

3) A« A - X
S
4) Pe—1 - A, Digplay N, By |
5) Ne—N+ 1 P ", -
6) Go to ﬁtep 2.

3

.

v
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"_Using_the algorithm, complete the following table of values: T
n 2 | 3 |4 5 | 6m| 7 1 81 9 | 10
X T -1 I
p |.oozz.|.ooaz [.018Z‘ | C | '
- . ) . Fd -

Exercise Set 4.2 oo - o —~

. > N .
. ’ '3

1) Assuming the letters B A-D i that order, are allowed on

New York State license plates, what is. the probablllty of

l ~

) . _rece1v1ng a plate with these letters in that particular
ER ;

order? See Sectior 4. L. o r
2) Given the letters,d, C, H, I, M, R, S, S, T, what is the
‘probablllty of arrangthg all of these letters to spell the

word Christmas?- . : : ’
et *

3) Given.the 1etters A*A, H, H, K, K, N, U7 what is the prob-

ablllty of arranglng\these 1etter§~t6 spell the word v

Hanukkah7 S ‘ ’ ,‘

. 4) One your,way to sthool each day there are three signal lights.
i} T e 2 \ . ;o
. Each light stays green in;your favor for-30 seconds.and red

. . ? . -
for 30 seconds. What is -the probability you will not be stopped
- by a red light going to school? . N
\ -= : ) . R
5) In exercise 4),*Shange the time for the green light/4; your

R ‘ f
favor  to one'midﬁte. What is’”the probability you will not

be stopned? .

- . N
f
d -

. -

. }o . . - r
-~

. K N e )

s . .

N

b ey
i
"~
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6) af A card is drawn at random from an ordinary bridge

deck of 52 cards. Find the probability that- this card is

.

card, that is an Ace, ning, Queen, Jack or Ten.
b) Find the probability that the card drawrf is not an
‘ L”honor card that is a2, 3, 4, .5, 6, 7, 8V or 9%

c) From a) and b) above, !ist a conc1u31on regarding -the

probabllity of an event occurring, compared to that same

event not occurrlng

-

,'

7) Using the randgm digit algorithm and your owrr selection for
N, generate a random digit table of 200 digits.
i 8) Co;nt the number of times each digit is listed in your .
o random digit table. ' ‘

I
I
I
I
I
I
]
I
|
f’ 9) Combine the totals from exercise 8) for a11 members of the '
d . | class.. A . ‘ ‘ ' ' )I
| 10). Using your random digit'tablerfp ' |
- " a) ,Find an alterpative to fiippino a coin 100 times. l
- " 'b) _Explain a method to use Jfor a replacement.to actually
e rollxng—a pair of dice. ) _ I
11) ’a) For 10a), how many of the hypotheticai flips*were heads?
tﬂ' For 10b) how many of the first 36 rolls are doubles?- I
. 12) Use your random digit table or the algorithm to select three I
) ' names 'at random/from a telephone bdok.
13) Using a random digit genera*or, suggest a method for draft- l
v / . ing‘individua1s to the military carvice?
14) How many people wouLg have to be present in a room in order '
A that the probabilityiof two of them having the same birth-

Y . A

date would be greater than one-half? ‘

Q “. 209 ﬂ
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4.3 .Permutations

///‘\Rs a senior, you most lik ely arc as conscientious a student
as yqu wer;'two.or three years ago.’ \

. Supgose you plan to work on four differenf homework 5351gn-
ments this evening but cannot deczap on which ofder to do this ~
work, . — h

You may want to—start‘witH'Math foIio;ed by ﬁnglish, then
Soéial‘éruéiea anH.finally écience Then agaln it may be English
first,‘rhen the Math, a little Sc1ence and finally Social Studies.

'[How man&)different arrangmenets are possible? »

.\§ By the F. C. P. you will have 4-3:2:1 or 24 different pos-
" tibilities. L 4 S : N ‘
‘ When arranging 1nams in a line or a definite order as we did
) ' abave, ‘we use the word permﬁéatlon to descfibe that preéﬁse ar-
,‘. p rapgement. ’
. A/pfrmutation of a number of objects is >_ s ‘ 3 o
i : ' any arrangeﬁant of the’ Objecﬁﬁ into a dis- A -
tinguishable)order

1

*
i \\ - : ’

A . »

|
B

-0 peop1é‘ may be arfanged in a line 20°19-18-17 ... 3-2°1
ways. , . _ . - e
o . } ggne basgball ﬁlayers may.be arranged in 9-8:7:6:5-4-3:2-1 .
&. . different, batting ‘orders. >
” n bbjects can be arranged in n(n- 1)(n 2) ... 3-2-1 ways.

4

) 2iu T N




4.3 - 2
e o '
Because of the ‘long sequence of factors, we use a spe®lal

symbol for arrangemeﬁts such as the above. [

: /7
* . * The prodﬁbt of all the wholg ndmbeis froml ton

s

i
" is called n factoyial denoted by n! * o

. .
“ N . \
2

nl =1-2-3... (n72)(n—1)spa

e ' L i ’ .
. R v W

nl = n(n-1)(n-2) ...3-2:1

OR
n! = n(n-1) 1~

-

The 20. people may be arranged 20! ways. The 9 baseball

players may be arrangéd‘9! ways. -

An Algorithm may be written:to gengrate the growing factorial- .
? ‘ .

o - 3 G )
_ function. R : AN
) K Py . -
~ 1) Let'N*= F = I’ ‘
- . B . ) . . ) N
“ 2) Display N \ .
-3 FeF .\, Display T - ™ S
. °' ' -
‘. 4] N+—N+1 , , ' ’ X . -
. M R . , " R [.
g “5 Go.to 2.. )
{ . - . ” ¢
' ' ot o NG
"’ , < 211 N
"y , o /

Fa special case is ‘0! which is defined. to equal 1.

Y
.
’ l
.
| l
| l
[




. ‘ UQing the algorithm, complete the following table: .)

‘o Py [y . ‘ i § : -~
7 L,4 0l ' v nl - . .
- A Nl Y ‘ .
-~ ) 1 8 ’ . . i )
2 2 9 - ' (
: 3] 6 B G ) ‘ ) ,
4 . 11 ° . ‘
' v
S 5 12 .
N 6 ' 13 )
7 ' 14
8 - 15 > .
v D 1
PLE | w, - NS O N
EXAMPLE 4.3-1 How many different ways may all the cards’
from a bridge deck be dealt out? n , -.'
- M .. )
Solution: Since there -are 52 cards in ‘a bridge deck,
. ‘gPe cards may all be dealt out in 521 different
* ‘ ' ways. . ( B _ ‘ _
i. S To compute the value %nl for large values, of n,
(—én algorithm may be written. .
+ o 1) Remember N . . ,
oD tem-1 - :
3) TeM-N S
) . 4) Né-N-1 T ¢ ‘ .
5 If N> 0 Go to Step 8 ' .
6) Display T S a o
7) ¥STOR : - ' !
8) Te—T-N g . ,
9) Go to Step &4 4 : .
L) . .
Writing a program frg% the algorithm when N = 52, yields °
67 o ' ‘ ’

L .065-10

- -
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" ' Now we will develop the rule %o; the nquér of E;tmuéa-' —
. ' ™~

tions of n'different things taken r at a timebdennted by P(8,r) o

- ¢ 4 .
T, . . LI
§
. [ Ly

EXAMPLE: How many different three letter words may be formed

v

T

from the work: POKER? h .

-

. ' Solutign: We may select arry of the 5 letters for the
. . i Be s . ¢
first element of ou{’wor%, the second element in

° 4 ways and the third in 3 ways. This yields 5-4-3

, or 6@ different 3 letter words: . ,

' This is a permutation of k ‘;ihg \taken three at a time or

P(5,3)P(5,3) = i /.

1
-+

EXAMPLE: Find P(n,r) ' :
Solution: The first elemeﬁi’may be filled in n ways.

This may be written n-0, the second,elemeﬁt (n-1)

“ v L

- ways, continuing until we have written r elements

, ﬁ) or facto;s ' . ‘ ) . !
P 4 \ e
RS lst fartora—{a-9}~e;—n- B
oy 2nd " . (n-1) ° .
3rd " (n-7) . . L - .
Vv t — -
. th
g@!, L T factor (n (r 1)) or (n r+l)

P(n,r) = n(n-1Y(n-2)...(. - r+1)'. . - ,
. . ‘ ]

By the Fundamental Counting Priﬂ?fﬁil:- ’ .o l
213 |
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.Permutaéion Algorithm,%

1) Remember N, R, P =1 ' . '

2) M« N-R + 1, Remember M

3) 'IchNGOTOSTEP6 R
4)  DISPLAY P X

5) sTbR " I - ’
6) P=M-P | . ‘

7)) M=M+1 ’
~~. 8 60 TO STEP 3 -

Factorial notation may be used for permuytations. & t‘
Let us multiply the right gidé of the pergutation equation

by 1 in disguise:

P(n;r)’= n(n=-1) (n-2) ... (n-r+£x . %g;;%% ' . . - -7
, . Y ‘ .
‘(n-r)! = (n-r)(n—rrl)(n-r-Z) .. 3-2-1
Therefore P(n,r*\f:n(n-k)(n;z) .y (: ;;llin -r) (n- r;l) -1
ich simplifies to: S : '
Wp ch s P es to ~— ’ | eﬁ’
. . (n r) = . noy T -
A
s ..

* Exercise Set 4;3

L}

i) . Usfng the Permu%atfqn Aigorithm, write a‘program that gay
be‘used to find P(n,r). (

2)’ Snow White and the Seven Dwarfs arb planning to go tobogganing
a) How many ways *can they rida an 8- person (or l-person, Q

) Y dwarfs). toboggan:.'f

214




5)

6)

e)

ﬁost te$e§rone nulbers have three digits’ followed by four

dlglts. "Suppose no repetition of the £irst three digits is
arowei. . '

a) What is the'maximumwgumber of telephone numbers?

. har 4

b)

&)

b)

1 1 1
Show that m + m = 'H:I

a)

b)

’

. that will hold only 5 of them? - .

What is “the probability a telephonelﬁhmber‘will only

have odd diglts7
sing .the first defij}tion of P(n r) ,
‘P(n,d) = n(n-1)4n-2) ... (n-(n-1)) v

What does this suggest about defining 0!?

L

.
.
.
.
R [ ¥ ] F o [ R [ [ ] ol b y ] o 1 ’

How many ways can they ride if'they.have a toboggan *

How many ways can- they ride the 8-person tdboggan if
5 [ .

Grumpy refused togiide7 e .t

>

How man* ways can they ride an 8-person-toboggan if g

‘Bashful refuses to, go first?
!

If Prince Charming comes along with a 9-person toboggan,

how many ways can thev all ride?

= n(n-l)(n 2) ... (1) =.n!

Use the second definition of P(n,r) = (%%?fT‘ to find

P(n,n).

How-ma%y words .can be formed from the letters of the
A S
word HYPERBOLA taken all together?

In how many of fhe words in a) will the letters hy in

that order. occur together? "

4




‘ . . R
' 4.3-7
: : . \ .
y ‘ .¢) How many of the_words in a) will the letter h and y
€ . . . ) v s *
not occur togethet? ' ’ ' /

] ' . <

. ? ‘
7) Generally we label polygons with Capital letters at th

vertices. ' What is thé probability of labeling.a triangle) ¢
o with the lette(s A, B, ¢ in clock;ise dr&er if all lette
gf'thg alphabet'arg edﬁally likély to be selected at random?
8) a) Given the digits 1, 1, 2, 2, 3, 3, 4, 4, how many dif-
( férént'seven—digit numbers may be written? /
*b) How many numbqrs‘éreater than 3,000,000 may be written?

:
c) What is the probaPility“of writing a number greater,

) / !
N than 3,000,0007 - s O )
+d) t is the probgbility of writing a nﬁmbe; greater than
- 4,400,000? | |
S 9) Given.P(n r) = n! R . : \\
. ’ (-o)yT . ' : ,

§
N\

- Find P{n,rz+1) in terms of P{n,r) .

10) There may be times when it is necessary to calculate P(n,r)

. forr=0,1, 2 ... n. Using the result from exercise'9) an
w

‘algorithm may be written.

1) Rewmember N, R . ‘ A
2) M+ N+ 1 ' ¥
3 If R=0 then P =1 because P(n,0) =1
" 4) Display P A - .

'5) If P=0 Go to Step 10
6) R<«— R+1
"7y Te Mu R
8) PemP - T
9) Go to Step 4
10y  STOP . . /




! -
/ \ . ‘Q 4 ‘ .
4 o
. ~ 4.3 - 8
. coe
\ » Lo” o . -
Write a program tp complete the following table for n = 9.
P N - .
' : 3
A ] ' ‘ b ] . . .
N 11) LS P(“»r) - . '
0 e . " \ |
] l / . . .
" . . .
1
3 : , /
. b .
. 5 ' -
: y
7 .
8
9.
= : l
4
o ]
’ - I
N k |
. ¥ " . 7
\
\
& ' ‘. ‘ \ . »
:“;,%' ]
k ."m:"‘ . ~—
. 1
217
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' , . C
l ~ 4.4 " Combinations s ".. | .7 '
l \Let's’gd\back to doing homework assigments as mention in | -
X Section 4.3, L ‘ B | . )
l ’ If(a‘ student decides to study-three of four academic courses

[ 4
&

over the week-end -in how many ways can this student seledt\vhe :a' L

’

¢ subJects without regard to order7

, If the order was important we would have P(4, 3) =24 - " ]

ot

Since we are not concerning ou{felves with ‘the onder o% which

’

., N

'subJect is‘to be studie&’first second or third, the number of

ways is reduced. '
if the fopr'academic‘coorses are Math, Science, English and
" Social Studies there can only be iour different selections.
Math, English, Social Studies o : C
- Math, Eng£i§h, Science By . .

Math, Science Social Studies

English Science, Social Studies N

We say there are 4 combinations /

T S R ) e am‘am e

N

Combination Definitiodn:

—— ~
A Combination of a.number of objects is a

selection of these abjects without regard

.t

for order.

| ——

We deftote a combination of n objects taken r at a time ~ °

¢

A

. as C(n,r), thus from above

C(4,3) = & , -

. .
/T A- - ‘- -
. .
.
.




, I
. | A 4.4 - 2 T
i_ ,\\ " : : ’ . ° N . A v
. - .Boing back to the-study assignment: ' '
) . ol ]
Let M= Math E = English H = Social Studies, S = Science
v ! . ®. ' - . . - . . L l
‘ Combinations . Permutations | —~
3 . . \
« o M,E,H - _ MEH, MHE, €MH, EHM, HEM, HME - l
- M,E,S ) \ MES, MSE, EMS, ESM, SEM, SME -
M,S H . 'MSH, MHS, SMH, SHM, HSM, HMS
E,S,H " ESH, EHS, SEH 'SHE, HSE HES

*

It is evident that there are 24 Permutations of the 4 gubjects
taken 3 at a time. T@esa\Zﬁ Permutations may be obtained by re-
- arranging each Combination in 3! ways.

° © “Thus: C(4,3):31 = P(4,3) 2 — N ] ,
y C(4,3)-(3-2+1) = (4-3-2)
4'3'2&
C(4,3) = =4
. 4.3 =171 =

In general, each!!%mbiﬂation of r objects eaﬂ be arranged in
“ri ways. ' fherefore, each C(n r) yields C(n r) -rl permutations

Therefore “C(n,r)'rl = P(n, r)

\' P r
: 1 P : ! 1
‘lf y ~9$n'r) = ] 5 L - (n?r)l ) Tl
I N RN TR
" femy = FrmenyT s | - i\ .
o T e - f v e

‘-1 “EXAMPLE 4.4-<1 ‘In how.many ways can a bridge hand of 13

-~
‘ ;ﬁ /'/;rds be selected from a standard-deck of 52 cards?

Solution: Since t?gporder of receiving the cards does
not ﬁatter we have g combinatlon problem. \ o
¥ - | sa1 _52-517...40-39)
' b - e ) . “: R . 21{) L

.
.-
.
:
»
n om s .mmm °
. am e




4.4 - 3

EXAMPLE 4.4-2 Suppose 21 astronauts arg aveilable for

the lunar landing program and 12 have had orbital
L} , .

. . Xperience. : ) .
»\j:) ﬁow many crews of three can be made up?

,b) . What is the probab\lity that the‘crew of three will

« beg made'up of at least one experieneed and one in-

-
L]

experienced person?

21!

éolutioﬁ: a) C(21.3)‘= - 1336,

b) There are/ﬁwo cases to be considered:
1. Having two experienced andmggg
. inexperieﬁEed OR o
- 2. One experienced ahd two inekperienced-

-t

astronauts ‘to make up the crew of three.

For (1) we have C(12,2) or 66 ways of choosing two
° 3 . ) .

astronauts from the 12 with experience, and for

-

each--choice, there are C{9,1) or 9 ways of ‘choosing
one astronaut from the 9 with3ut experience. There-
fore we have C€(12,)-C(9,1) = 66.9 = 594 crews for

. (1). : , - L
Similarly for (2) there are €(12,1)-C(9,2).= 12-36

-

= 432 possible crews. . \

—

The probability of having at least one experienced

.and one experienced astronaut on the crew is: -
' 594 + 432. _ - 4.0,
,
’ {
2ty -




‘e

: ‘ . ' : L4 - &
w .
To use your calculator to find combinations, an algorithm

- may be developed.

Combination Algorithm: C(n,r) r # 0

1) Remember N,R . . ;

2) Be&R, T& N N
. 3) ReR-1 ’

4) If R=0 Go to Step 9

5) B«~—B-R : ; . l
6) Ne—N-1 " " .
7) , T« T-N y . I
8) Go to Step 3 - .
C = _T- ) l
B N

9
AT stop

o ‘> Exercise Set 4.4; ,

- 1) Write a program using the Coﬁbination Algorifhdt&nd ;heck.
the result for EXAMPLE 4.4-1. . . B ,/
(2, 7) Use the program to evaluate each of the following:
2) . €(100,3) . 3) C(100,97) - &) €(52,5)
U 5) c(52,47) 6 c(1510% .. 7 cfs,s)
’ k8-13) Find ;he value of r that makes‘each of the'following true.
85 Ck10;3) = é(lO,r). 9 C’8,7)(= c(8,r) 10) C(6,4) = C(r,2) I
11) .C(12;7) = C(r,5) 12) C(r,6) = C(r,2) 13) 'C;n,r) = C(n,x);

r in terms of n
' . B
and x.

(14-16) A Mathematics, Class contains 14 boys and 9 girls:

14) 1In how many ways may a commnittee Of three students be selected l

T

. from this class? -
-, i
* . 15) How many of these committees contain only bays? I
\)4 ] ” A ) 2() I - . k]




4

.:-

Y, ‘ b4 - 5 '1;

16) How many‘of‘ hese ‘ommittees contain only girls?
17) Arrange the £ollowingN\in igcre;sing order: 10!, €(7,3),
P(7,3), 74 + 31, 3& i

A

(18-21) What. is the prdbablllty when receiving 5 cards dealt from

b

a deck of dgfcards that the five cards h

0 18) Wwill coﬁkeln four cards of the same kind? L

19) Wwill contain three cards of one kind and two of another?

(¢ :

{ ("full house )
20) Will contain five cards from the__;me suit? (”flush") Note:
exclude, stralght flushes, (5 card sequences). 5
21) Rank the'hands of "4 of-ra kind";,"flush" and "full house'.
Give d reason for your ranking. . ’

- -
! ’
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* 4.5 - Binomial Expansion Aga'j

< C(5,2) ® C(5,3) = yiup = 10

R 4.5 -1 -

1

| 4 - - w N

L]

In-Se‘tiéﬁ'3.6 the binomial theorem wes devzlqped and- .

the numerical coefficients for (a+b)n were obtained from <
Pascél's’Triangle. ] j
. b 4

n

0 1 l

1 1 1

2 1 2 1 .
.3 . 1 3 3 1 N

4 o, 1 4 6 4 1 »
5 T 1 5 0 10 5 1

6 ' 1 6 15 20 15. 6 1

s ) /

K RN
Let us relate these numbe s to combinations. For the row

!
- \
ly. .. -'.
R G O onf SN0 BB BN BN aEm e
- . a

where n = 5, we will find the -alues of C(5,r) where'r =-0,1,2,3,4,5!

\_//‘L_.\ 51 \ ) Vo
65,0 = CC,5) = giay < 1
C(5,1) = C(5,4) = g7 =3

\
. *
Theése values eorreqond to the 'six values for the row where

= 5 , - - . -
n ~ I — . .
. We may.therefore replace this row with: (
. C(5,0  c(5,1) €(5,2) €(53) cC(54) C{5,5) .
. S Fy A
- 223 ‘
—— \ A 4
° R ' ..

-
.




)

.

, Recall that to complete thé next row in

we:added pqggious values: ’
=5 1 10, 10 5
| L.n_ _ 5 0 0 5 1
\ n=6 1

LR 3
The values in the row f

15 20 15

~ tion notation: ’ -

1T

L
~

- C(S,%L\\//C(S,1)$\//C(5,2)\\//C(5,3)\§/(

4.5 - 2 A

~

Pascal s Triangle,

S e

*

N N N T N
6 6 1

i

/
= 6 also can beowritten in C%EPina-

C(s,a)\\/,ccs;sj

c(6,0) -c(6,1) Ef6}2) c(6,3) C(6,4) c(6,5)  €(6,5)

— 4
C(5,0) + C(5,1) = ¢(6,1)

thus  C(5,1) + C(5,2) = C(6,2)
(5,298 ¢(5,3) = c(6,3)

etc. -

v

-

In ghnerai we may state: ' C(n, rvl) + C(n r) - C(n+1 r)

The proof will be Ibft for an exercxsé

! '

= ¥

+ Al

Notationt .,J/
(a+®)" = C(n,0)a" “040 4 cn,1)a™ bt + c(

4 C(n,rPa Tpr ;h .[. + C(n,n- l)a b

el

Take special note of the expgnengs\bf a - and b.

bggs the same as r; exporient for 4 is n-x.
/ ( . -

-

(

L 2y

We may é%w rewrite the binomial expansion in Combination

n, 2)an 2 2

n- } + C(t};n)an'n-bQ L

.The exponent for

i




4.5 - 3.

\. ’ l
» s M *
v ' ‘ .
. .
. .
. : . 7o
. ¢ {
. R
RN ) - . ’I
. 1 . 3
.

Therefore to obtain a particular term in an expansion,t say

the r?h'term, the coefficignt is obtained by finding C(n,r-1).

R ' 52 . l

EXAMPLE: Find the 30°" term only of (a+b) .
Solution: The coefficient of the 50th term will BF

N

s o ‘ _ thg same as the coeff1c1ent of the 2nd term as
" o C(52,50) = C(52,2). ;o \\\_/ -

Either way the 50th term isC(52,50)a 2,50 og 13g6s 2,20 I

_If en entire expah31on of a binomial is necessary, an al-
gorithm may be written to calculate a row ; of Pascal's Triangle

i

lje wil_l pse the property. -

S c@mD s omn IF . \/4

b

- n! _ n(n-1)...(p-r+l) (n- -r-1)!
Cn, e+ ="y Tz F ~ Y (rll)r§m~-(n2§?1§%(n r-1) =

[ n(n-1).. . (n- r+1) 1 (n-r)

3 ‘ NEE:2S

. .
n(n-1)...(n-r+1)(n-r)! _ n(n-1) .- . (n-r+l)
r!l (n-vr)! r!

. but C(n,r) =

e
. . \ = , o-r
Su?stltutiﬁg we have: C(n,r+l) C(n,p) T

!

1) Remember N

2) Me N+l g

3) Let R=0 thenC =1 | ' -
- 4) ‘pisplay C_
.5) IfC=0 Go toStep 1l = 2

’ « A ' ".
N / _ _25

’

Pascal's.Triangle Algorithm N < 36 -/ 4 I




» - y
: .8 . N
( N . 4.3 2 \t\;:\
. - ‘ N \\
6) Re~R +1 . . )

/I ) ce&g
'8)  T¢—M-R ( - | ~
99 Ce—C-T ) v
10) Go to Step 4 -

11)'» STOP

Exercise Set 4.%

1) Using the algorithm write a program to find a Tow of Pascal's

< Triangleg Check /your results by verifying the row when n=6.

2 G+nd H A+ D
4) (xz_ - x3? T 5). (a - ax)? )
8 @B+ 6 ) (2 + 4m)’

-

~

8) Prove C(n,“;-l) + C(n,r) = C(n+ 1, r)

-

' (2-7) Use your program to help expand the follqwmg
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/

4 h Summation Notation

. /‘ .' There ig an abbreviated way, called Si notation, to wri.te, -
finite sums of a recursive nature such as those sums produced by = .
- the binomial theorem. - ' ,
0f course, the Greek tetter-Sigma Z will be used. .
O
1

A
In Chapter 2 we wrote the. series sum as $ a; + a, + a3 a

. -
' . nv -

T We may abbreviate this with 3 a, where a, repx‘esents some

. k‘l N .

e function and k is ‘the domain. " :7 7

It is read as the sum of all 8y a§ k goes from 1 to n. N

3

1

4
- EXAMPLE & 6-1 Fvaluate 3 - 112
. . ) - . ‘ . - k:l

-

wd

- . ° » » - 1
) Solution: Here 4= K

1 _1,1.1.1_25
EE 2 A A A R

7
EXAMPLE 4.6-2 Evaluate Z k(k-2)
— k=4 _

Solution: Hervé,ak = k(k- 2) and k begins u)ith 4,

' 7
. Therefore Z k(k-2) = 4(2)+5(3)+6(4)+7(5)=8+15+24+3

k=4 .

4



N , _
0 b1
1 1 _ 1
Solution (7) , 7 = (fl ,
L
(2’) + (2') + (2‘) + (2‘) + G .
2 (3 OR Z O
k=0 } '
. 4

The binomial expansion may be written;with sigma notation: ‘

(a+b) =~C(n,0)-a" %+ ¢(n,1) "1l iC(n,k) - K.pky | eon nyan-ngn

Therefore: (a+b)n = f C(n,k)-an'k~13_k o
7 k=0 i . ) ®

. ¥
!

‘ Exercise Set 4.6 :

[

(1 - 8 Find the numerical values%of each of the finife sums : . -
5 C 4 | 5
; 1 i 2k ‘ k.
n ¥ : 2) ¥ ¥ H Xk .
¢ k=1 K&FD - k=0 \a k=1
\ > . \ '
5 5 4 " 6) ,
- k=0 k+I ) - .. k=1 ~-\1‘ ' k=1 k - \\V
' 6 ‘ 12 '5 ‘ . /
D3 3k%oskel 8) 3 2k2 /
: © k=2 k=2 Y -

(2 - 16) Replace the questlon mark in each of the followin

! -~
with the symbol =, <, or > o %i
P 0 S 2)” (X ©) +2
9) 7 0 + +
=0 | K=0 ‘Z% '
99 - . 100 ’ © 100 100
1) 5 1?2 g z: K2 5: k2 2 (28 k)2
K=0 k=1 k=0 k-0




. - 4.6 - 3
| ~

(13 -\16) éxpress each of the following finite sums inﬁsfﬁ\\\

L4 -

notation:

’ 1) Feregrgty

.o

3, 9, 2 81
) st tostes . /

15) 1 +3+5+7+9+ 11+ 13 + 1% '

10 et .

L

e . -
e

2y _ . ‘




4.7

1)

2

3)

4)
. 5)

6)

7)

8)

9)

10)

I's

~ ; ’ ' uTest 4.7/%/1

'Chepter 4 Test : .

~

\<

-

In preparing a multi%le choice test;, a teacher
writes 15 questions with four different choicks
for each gquestion. How many different ways could
a student answer the test? (assuming all questions

are answered) L /(///1)44

1

In a certain hléh school, there are 17 Englis@//
teachers, 20 Social teachers, 16 Science teachers,

14 Mathematics teachers and 10 Physical Education
teachers. If a student takes all five subjects,

what is te probability the student will receive

the teacher' of his or her choice in each subject?
Fix 9. . . 2)

How man& different eleven. letter words can be N
formed from the letters that make up the word

7=

"Mathematics'? . » . Y 3)
121 -
Solve BTTST . - 4)

A poker hand consists of 5 cards dealt from a

. deck of 52 cards;, How many different poker.

hands are possible? R 5)

x # y but @(n,x) = C(n,y) Find a value for

X in terms of n and y that makes the stetement

true. - 6)

x - “B(n, r{/f,ﬁ{n r) F1nd the value of x in

terms of r. . St - 7)

1. -1 .

Simplify completerﬁxpzﬁ:Iy WA 8)

Find the 11th “term only in the expansion of

(5y + Zb) : ) : 9)
- o

If P(n,4) =2 . P(n,2) find n. 10)/

250




11)

12)

- 13),

14

- Test 4.7 - 2

Solve for n: P(gle? .= 60 °
|>. 13
Evaluate:
K
kT

k=0

:Write the binomial expansion fa+b)n in sigma

2 .

notation . . 5 , . SR
What is the probabllity that if ‘three persons
are in a room, none of the three have the same

birth-month?

11) -

12)




¢HAPTER 5. POLYNOMIAL f"UNcnqNs

- 5:1 * Craphing Polynomial Functions

N -

'\ ~ v - . . '
Earlier in your study of mathematics you were concerned with quad-

ratic functions, functions of the form ax- + bx + ¢, and hnea.r\ functions

. .

. - . ©

of the form mx +b. - In this chapter you will meet. more general and higher =~ *°

Ed .

power functions. Your calculating tools w'illahel'g you to deal with them.

1 ’

.
- 0y N Vo N

a2

~

- .,
3

+ ' Given a whole number n 4nd a variable x, then.a fu‘tion P(x)

~

“of the type e - o ' . . s .
P Sl 4. P rarx? ? + : '
(x)-a..nx R ag x azx -La.[x ao } .
where 'a ... a_, a_, a, a are constants and a # 0 will be referred
n, 32 1" o0 . n

L, . . * ’ ’
to as a polynomial function of degree n . If the terms are arranged in de-

) A s » ’

scending order of exponents, the function is said to be expi'essed in

standard'form. You may, if you wish, use 'y in place of P(x) in re'pre-
. . - * . b
senting a polynomial function. ‘

L] [y

» - I3
All polynomial functions when plotted will be smooth curves without
breaks. These functions may be drawn without lifting the pencil, that is,

they are contimious. The domain of a Polynomial function is the set of real

~—

L
4
+

numbers.

&

* : . T

-
‘"If n=0, “zero degree or a constant function
n=1, first deg're:e or a linear function . s
.n =2, second degree or a quadtatic function - '
N n =3, third degree or a cubicfunction - .etc. .
’ . "« . ¢ ,;'/ ‘11 . . 1.
. . Pe . yC o N . . .
: 233" Lk TR
. , - s . el -

¢.




. 5.1-.2

As mentioned ear‘ier, in previous ‘courses’ you became- quite

familiar with ligear and Quadratic functions, therefore in this section
7 . -
A ) - we \mll focus our a.ttentlon on functlons of deg ree *grea.ter than two.

~ =

v ' A programmable calculator is a great aid in graphjing these poly-
nomlal functions. Slmply write a program canm"lg of the projr key-
. .: . . A L'}

strokes needed to &valuate the function, followed by R/S| or PAUSE

<

ing valuel of x, each time running the program to obtam the P(x) or y

~ value, ,point§ may-be obta.in'ed for p’lotting the function.

- ~

15 you are working witha computer or W1de -paper prmtmg progra.m-
, : . K‘ﬁ s ¢ <
- N mable calculator, you can. ''aut ate" the’ entlre process by’havmg the :
. : ) -
' ‘ machme actually draw the graph, in a somewhat cru m, uslng a syi'nbol

/ y "such,as_ "*'" to represeht ea‘h roint, -It is easiest to do thls sndeways so

‘ - . 3 - it * ) Y
at the x-a“xis is vertical. : . . . .

. - »
A - Let's first consider d less demandmg task that even non- prmtmg

/

% programmabl calculators can perform; cHodsing regularly spaced x- values
GO T . . . . P

‘and a key that re'tur-ns the program to th{e beginning By repeatedly enter -’
¢ l

AN D

F L « ' within an interval say-from X = gatox ="t [s, t] This is an arlthmetlt
- N . s ) <

.Y sequence of values withg constant difference of- d. s, s+d, g +24, ...

" We can stop the process as soon as the value exceeds t. e
. + . . ' '
. ’ - . . . . ‘ . - R ’*’
' v . The algorithm for this procedure is: . ‘ L~ e ‘
R ' . . )
- T ) -+« 1) Remember 8, t, d . . o t
. ' . P ) . ) i ' . '
2) X é— 8, splay x ’

1 ¥ bt

AN
. “/
£
V)
W
o
il
L Y




. . . . 5,.1.3
T * 3) Calculate P(x) and display P(x)
4) x¢—x+d’
) 34 ¢ e - LS - v
. 5) If x+d>t stop ; )
o /
' . 6) Go tostep3 '
EXAMPLE 51,1  Sketch the cubic 2 —
- : 2
P(xl; x3+-;-x - 6x -2
for the interval [-4,\3] for d =.5
~ - ; . - L
" ’ When’programming a calculator,” it saves calculating steps to rewrite

, 4 as possible, A binomial \flill finally be nested in a series of products. The -
‘ polynomial is then said to be in hested form .
. 3 3 ' W
Pix) = x4+ 3x-6x-2 R f
2% N
. -.P(x)=’(x2+%x-6)x\-2
v a ‘ . . 3 .
P(x) = [(x+E)x-6]x-2
- : . ) ~ ‘
Now it is not necessary for us to square and cube x, We can instead cal-
w ., r. N - B '
, culate "from the ingide out'.
* - . ' ‘
' )
HP 33E. .‘Rl(—- 5, RZ(-_—- t, R3*—2597/
1" RCL 1 08 GTO 10 14 21 RCL-1
92 GSB 12 | 09 GTO 01 15 5 - 22 X
03" RCL 3 10 CLX 16 + 23" 2
4 STO +.1 ‘ 11 "R/S , 7 RCL 1 24 -
85 RCL 2 - 12 fpauseor . 18, x 25 f
g6 RCL 1 J . R/S (x) .19 6 26 g RIN
7 £ x>y 13 1 .- subroutine 20 -
s begins.
Step 3 may be handled as a subroutine contained at the end of the p
. - : :
¢ )

o
-~

pause or R/S P(» »

*Sthe pofyanial by factoring, x from part of the expressix as'‘many times

-

wra;’n.




‘a

Ry

00
01
02

‘03

04
05
06
07
08
09
10
11
12
13
14

10
20
30
40
50
60
70
80
90

— 8,

RCL
01
SBR
A A
‘RCL,
03
Sum
01,
RCL
01
x> t
RCL
02’
INV 2nd
x>t

INPUT S, T, D

X=85

15
I'6
17

19
20
21
22
23
24
25
26
217
28
29

PRINT " X", "P{X)"

Y = X#(XHX +3/2)-6) -2

PRINT X, Y

¥»=X+D

.

IF X>T GOTO 90

GO TO 40

END -

is

Rze—-"t."\%__'d

C

RST
2nd Lbl
c .
CLR

R/S )
2nd Lbl -

- A

2nd Pause
+ sub-

1 routine
begins

o ow;m -

-

30
31
32
33
34
35
36
37
38
39
40
41
42

2nd“Pause
INV sub

— M\

Vs

V4

?

.-

.
.
+
l» [
.
[



d. The grc;h

ing information is obtaine

the follow

*
the prograﬁ

Run.éig

L

N

-

P(x)

+

.

£Jb

+
[
I

7 an

L]

P(x)
1.25

.

of the function is then sketched.

1N

Q

Aruitoxt provided by Eic:

E

,%e

.
.




i : Graphing polynomial functjonsswith a computer

‘ -
¥ - : - ‘. +

* : When "drawing" a graph ona cathod-ray-tﬁbe (C RT) oronag

~

,\/
{
I
L}

‘oEEEE @ ThEER ISR BN EEEER

computer prmty paper we begla by .obtammg information on the number R

+ " of 'lines available and the number of characters per Ime We wish to
s "

. locate, qur first value of x (s) on the first line and move' to the right a

«

L = i
number of character spaces Forrespondi’ng to the P(x)or y value, |

markiﬁg this point with a *'*'. This process i8 continued on a se'}iérai:e
. 3 R

liie for each x until our final point (t, P(t)) is px;ixl‘ted on the lags linQ ,

Let us assume there are 1:‘1, spacés between theTSp and bottom lines;

P
0

t\en the distance d between any two lines would be tN. z. The sequence

of x walues would read

: : € x , ‘ o ) .
t-s s 4 2(t-8) L N(t s)

i v8, 8.+ ?,

\_ There willbe N + 1 values or lines. -

-

. ‘ The y-spacing requires more thought. We desire to“utilize the full
t . - r / ) e
0 . width of our display, therefore*we ..red to know the largest and smallest .

values for P(x). The difference between these two values fﬁ/our example
. 5/1-1 is 20.5 - (-18) or 38.5.  If our computer can display 60 charac- "

1 )
s ters on a line we will allot ( —5‘)(6')) characters per unit on each line.

' N i \N(;O .
/, ' ' C =735 O oo
N . :w..,,}w“- »

N ' .. 237
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no Q C , . 5.1 -7

: The Yy locahon for the lowest value (L)  of the graph will correspond

‘ L ]
<. ) ‘to .('—1-8) (3 ) or (L) (C) characters. This potnt ek 2l v should prxnt on
i - 60 ) |
the left margin The greatest value correspon’is, to (20,5) ‘(38 5) charac- .
8 g ) |
0 ters and thls pomt should be prmted at the rlght hand mar-gm )
. ; ’
S Notetha't 20. 9(——) (18;(38 5)—&0 .
PR - ! L R .'Ia T . . N N ’ A§
v ) To locate a pomt exactly in the midfle of a line, tMat is for a |y valu
 20:3) + (-18) = 1.25," 1d. 1.25)( =22 18 '
'-o ,‘2_. = 1,25, wewou move (‘ )(m)-( )( or
. :;\ . b »
(19. 25)(——- = 30 chaz:acters to the rlght ‘ .- L. \w
B - N
In-s:neral to locate the propeg 2nd coordinate, move to the right
. - ’ C'
C-L- C Ccharacters,. .
\ Point - Plotting Algorithm ' C e . L. !
- - . ( [} ' .
- s and t répresent the xQ-intervaI
H and L represent the P°(x)-'ixrterva1 (high and low respectively)y
’ N + 1 is the numbeg of line’s av‘ailab‘le
) W is the number of charecters per line
* /f-
1) Remember s, t, N, H, L, W . .
. , ¥ ) !
: -8 a W e
N 2‘) d‘—‘_lq":, xc—s,Cv—H_‘Ls’
. <
3) Calculate Y by a subroutine _ K
‘ : ‘ - . ,
' | ¥ ze—C Y-C L _ '
5) Rrint "*' at Z units to the right (for TRS 80, Tab (Z) "*") ot
. ¢ .
‘ < - [
J. 6) If N= 0. STOP Do
h 7 Ne—N-1 x¢—x+d GO TOSTEP 3 N
3 .




rl

.
1

. ;' The graph of P(xié x> 4 % x2 - 6x - 2_is sketched below using a

1% ' TRS 80 computer. , Axis added after the run,

)

18 READ S, T, N, H. L, W . ,
20 D=(T-S>/N ‘ S :

2@ X=S ’ . *
40 C=ul/C(H-LD . J
S@ Y=Xk(Xx(X+I/2D-6D— ' .
60 Z=CHY-CxkL . - ) .

76 LPRIMT TARB(Z>"#*" -

ce IF N=8 GOTO 128 . . .
99 MN=N-1 . .
180 X=X+D
116 GOTO S8
120 DATA -4.3,14,28. 5, -18, €60 ' )

-
1
B - . N
- -

A

' . . ’ .
- ) , . & : . . * )
/ , . . *

W
N

"
"
R R DR e B B B B 5 BBy =>@$

—

Ce

PN
()
<
“
N
N\

S ———

P
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R ' R 5.1.9 |
! 4 - : ™
Exercise Set 5,1 - ’
. . , . - . v
I Write a program that can be used to find the function values

for each x in the interval [s, t] as listed. ' Use the indicated value for

d, Attach the program as a subroutine and tabulate the points. Finally

graph the function to the nearest tenths ‘

1) Afx)=x° -3x% - 9%+ 11 (3,5, -d=.5
2) Bl = 2x>- 9x2\ 12x - 5 (-1, 4), d=.5 h
: 3) Cx) 2 x +3xd o [-1.5, 3.5], d = .25
4) D(x) N R S [-1.5, 3.5], d = .25
. °) E(x) = 43{4 +2x3 - 19x% - 11x + 6 ) ‘ iy
o .o . - [-2.25, 2.25], d=.25

6) Flix)=2x+3x3 -7x2 - 12x - 4

L d

[-2.25, 2.25]), d = .25

7Y Gi(x) = x5 + Zx4 75x3 - 10x2 +4x + 8 o

[-2.2, 2.2], d=.1




5.2 -1 >

¢ 5.2 Approximating

omial Functions ’ . \

When sketching a polynomial function -we should have vome idea of

B Gl EEE R hEm

P
*'hat interval to work with and what the graph will look like outside that

-

[N

- \ g

interval.

* By factoring out the highe-st power when a function'is in standard

4 - form,' we have, using the example from Secti'on 5.1, 1: ‘ \\ T
- b _ 3 i 3 2 _ 3 i 6 2
' P(x)-x+Ex,.6x_2—-.P(x).x(1+2x.xz _,..;3_,_

-~ o

As x becomes very large (increases without bound or approaches

infinity) the value in parenthesis approaches 1.- This is because eaél;

- fraction becomes very srmall ag its denominator increases. For that reason

v

-~ P(x) approaches theggvalue of xawhich, in this case, becomes very large.

i

We use the following nol:aiion*
3 Al 3 6

2 2 2 3
'as X —» OO, (1\+, 7% x2‘ - -;3")—-.»1 and P(xz—vx.

In the same manner, as X —» - 0O ,

\\m (1 + —Z_::(- - -;62- - ;25.) —.}'1 ard ‘F’(x) — x3, which is very small,

{

J

3
xn+... a; x +a
{

More generally, given P(x) = a,

sz'.+ ax +a0

. by factoring put the leading term

\
\

s *\\ . e - _ \ -
Do not confuse the notation x—>o0, a8 x approaches infinity, with
Rl ¢— s, which means R, is replaced by s. '

'
v

. . .r 241»' /
) ' AN

w - . .
o

3 s
LN - . - j

: ‘
> ) “
.




al

: T 5.2 .2

r
- a ! . '.‘
n 3 ’ 8.2 : al . a
P =. a.X (14— + : + 0
L = B e L
n ¢ .n . n

Therefore as Ix[ —> oo , P(x) —s ax",

. - n

-

. 7 -

. We can see that the leaéiﬂg term becomes the/dominating value as

x becomes very large or very small.

/
d : s ‘ 3.3 2 .
The graph of the cubic function P(x) = x " + > x - 6x -2 (as in
fact every cubic function) extends indefinitely both upward and downward
(the range is thus the set of rgal numbers). A cubic funciion, unlike a
second degree function (parabolic graph) does not have an absolute maximum

or minimum point. But the graph on page 5.1-5 suggests that the pomt

(-2, 8) from P(x) seems to be highe r than other nearby points of

the graph. If this is indeed true, the point is called a relative maximum

point and the function P is said to have a relative ma;:imum P(-2) =

when x = -2. Similarly, P seems to have a relative minimum P(1) = -5.5 /
e - -
when x =1". ‘ Lo

—_— e >

™ -

At‘ this time we'cannot be sure of thesge relative maxlmum az;d minimum
points; we can, however, test values on either side of x o, . to
1, comparing these P(x) values thh P(-2) and P(}).

L 4

-2 or

| I PR




Frequently lines are dr;.wn, .

intersecting a point on a graph. If

'the point is located on a function', only
one of these lines wil’ be tangent to

the function at that particular point.

\ - - 3 - - 3
A point will represent a relative maximum or minimum if the

tangent to the function at that point is parallel to the X-axis.

\

e

A zero of the function P(x) is a value r such

L]

.

, that P(r)’= 0..—

1 -
i

Graphically a real.zero of any function is simply the value of x

*

where the graph crosses the X-axis. If the zeros are not real, the func-
tion will not jni;erseét the X-axis. EXAMPLE 5.1.1 shows three real

values, x = 2 is obvious, the other two zeros may be estimated to the ’

s
I

nearest tenth -3.2 and -.3. . In Section 5.4 we will use our calculator to

-

- -

find these zeros to greater accuracy.

All polynomial functions may > written in factored form such as

\
.

r.,r, ... r

1" 27 3 n

P(x) = a (x - rl)(x - rz) (x = r3)~.. .(x - rn) where r

are members of the complex number system.

) . >~

P(r,) = 0, P'(rz) =0, ... P(tn) = 0.
r,r., ... are the zeroa of the function.
1 2 n e ' ey

o, e

243 V.o -




5.2 -4 ’ ’ -

J

Y - [
An n degree polynomial will have.n factors and NG v
'& ) co:r?onding 'zeros a.r’u/i_ the equ‘a.tion\\ywill have n

roots. Each value of r that is a real number will

répres-ent an X-intercept when P(x) {s' graphed.

If an even number of the real values of r are the same, the graph
’ 'Y

of the function will be tangent to the X-axis at that particular value of r.

) 4‘\& Az R N :
< L] >

,We will not take up the process, of factoring polynomials at this time.

EXAMPLE 5.2.1 _,Find fhe zeros of

P(x) = x3 - 5x2'+ 2x + 8

Solution:  P(x) = \(x” - x < 2)(x - 4)
. £ . ?w ’ P(x) = (x + 1)(x - 2)(x - 4) .

/-1, 2, and 4 are the X-intercepts
W - . or zepds of the function. Relative
' maximum between -l:and 1. Relative

minimum between 2 and 3.
S

o~

, 24 -




52 .5
. - ' F
EXAMPLE 5.2.2 Find the zeros of
Q(x) = 2x3+7x2+8x+3 © -
F 2
Solution: Q(x) = 2x +3)(x + 1}{x + 1)
. )
Qx) = 2(::%%)(“1)2 N

Y

-3/2 and -1 are the zeros. -1 is said

v

to be a zero of the function of multipli-
(8 L4

’

\A city two. Relative-maximumn between

A R4

“3/2 and -1,
@ T

£XAMPLE 5.2.3 Find the zeros of .

.
~,I
.

e 3 -
R(x) = x> - 3x% 4 3x.- 1= (x-1) Lo .
3 . ) -
Solution: Rx) = (x - 1)
ﬁw 1 is a zero of multiplicity three.

(-

/

—A—X
17

EXAMPLE 5. 2.4 Find the zeros of

K(x) = x4 - 6x3 + 5x2 « 24x - 36

Solution: Kix) = (x° - 4)(x° + bx +9)
KL") » K(x) = (x - 2)(x + 2)(x +3)° qu-

> Three X - intercepts 2, -2, -3.

. Relative maximum between -2 and -3.

S :

N GEE S GBS GBS S S Sas osm amml

-245 .
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"'EXAMPLE 5.2.5 . Find the zeros of = 7

. Tix) = x% + 5x% - 36

‘ :

-

. Solttion: T(x) = .(x% - 4)(x% £ 9)

T(x) = {x+ 2)(x% - 2)( x + 3i)(x - 3i)’

" Two X- intercepts -2, 2. Note that .
this is NOT a parabola, T(x) is much

\ AN .
"flatter''. Note too that the complex

- %
zeros do not appear on this real graph. .
. |
I

The zeros of this function are 2, -2, 3i, .and 3i.

N I

1 "’
EXAMPLE 5.2.6  Find the zeros of o0 T

V(x) = 2x° +5x% + 8x + 20 .

Soluti;)n: V(x) = (2x + 5)(x2 +4)
i | Vix) = 2(x + -';'- )(x + 2i)(x - 2i) - .
‘ - _5/2 an;i 2i and -2i are ‘zer;a and o ‘

’ ' 3
“ there is only one X-intercept. ;

-

.
A

x'Y

.
i
'
.
Lo
' ~ R
l . -~

‘ .. - In EXAMPLES 5.2.5 and 5.2.6 two of the values of r are complex

- -

I conjugates. Remember the coefficients of a polynomial_function" , /
l. . | ;n . a~3, a,, al, ao are real numbers. Clearly complex u\alues of r '

must occur in even multiples, in fact i‘hey w{ll be conjugates (a + bi, a - bi).
- R Py

?
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yl
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o
. N -
/

:‘?.; o . EXAMPLE 5.2.7 Find the zeros of -
PR L . . v a
h L 4 AT . . ) .
" 1 P(x‘_) = x4 - ‘l»x3 + 6x2 - 4x‘+"5
T | o,
— % . * Solution: P(x) = (x° +1)(x" - 4x +5)

P(x) = . (x - il)(x +i)(x - (2 4 i)«)/.(- (2:- )

f No real zer% no X-inte‘rceﬁt's.

’lﬁ\-

“ay
r

©
N -~

. . . .
. . .
.
. . . S
. . . .
dEER Sl Dl TEEm. =B b Y [ ] ok 2 S =B S ek OEk I s

.
. X
[ [ L -
) ‘

: S EXAMPLEI 5.2.8 Find the zeros of - -

M ¢

w =-x3+3x~4 , ] J

Solution: “Wi(x) = -,(:-c3 -.‘3x2 + 4)

o - '/\/ W(x).= -(x +' l)(x2 - 4x + 4) '
L) , ’ s . -
Phd . .. 9 L4

T 'N(}) \ . W(x) Mafx + 1)(x - 2)(x - 2) * N

[4
as x—+»00 W(X) —3> - oo

" " M
i . <
.

4
- 4 =
as x-—z,-ocW(x‘)-——boo

»

. -~ \\ - iy
¢ R . - T, e the“intercepts. Relafive -
. N

\Y

r mMaximum at 2. Relative minimum at 0.

-

.
& " -

A

- ,A,,;Q, . s
¢ . \) L - ’ -
B L AU o

—

b

-
[

1
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1)
Qs

3)

4y

Exércise Set 5.2 - ' .
N 1 " - -

, :
_Xor Q(x} in EXAMPLE 5.2.2

4 . .o
b) Estimate the relative maximum value for x

- For B(x) in Exercise.Set 5.1 - 2

a) Estimate the relative miﬁimurﬁ point

7

. Fdr W(x)in EXAMPLE 5.2.8 ~ - -

. & v
a) Esgtimate the relative m#himum paoint

- -

.

b) Estimate the relative maximum point -

For 'A(x) in-Ext_arcise Set 5.1 -1

. | i

a) Estimate the relative'maximum and relative minimum point.’

b) -Estimate the three zeros to the nearest tenth

[

¥
a) Estimate the relative maximum and relative minimum points
» -

b) Estimate the three zeros’

[ 4

For C%x)' and D(i in the Exercise Setof 5.1 - 3 and 5.1 - 4
v ’ ‘

. . _ -
a) Estimay relative maximum: and minimum poi.‘s for C(x)

b)- E;ﬁmaie)’the relative maximum and minimum points for D(x) ,

¢} C(x) = .D(x). Therefore for every x the twc} functions are ad-
N L * -

-
& -
»

ditive inverses. Write a general sta.terﬁent‘regé.rding the com-

‘p‘a.rison_ df relative mpaximum ahd minimum 'gints for functions

.-

such as- )ancLI')(x), that are opposites. -

For E(x) in

rcise Set 5.1 - 5 estimate the four zeros to the

nearest tenth.. 4 .
- .
, - . 245 * (\
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4

For F(x) and G(x) in Exercise Sets 3.1 - 6and 5.1 - '7 write both
.- ‘ \/ ¢ ,

functions in factored form. ) ~—

>

, ) :
(8 - 15) Provide a rough sKetch for each of the following functions:

8) |y, =2x>+ 18x
' 4+
9) “Relative maximum point (0, 2) .
“ Relative minimum point (-4, -4). . P
Eoiht of tangency (2, 0)
x- intercepts at -6 and -1 , « - N e
- - N , - . .
10) 5th degree polynomial 'as ’ .
one zero at -1 - - . -
- zéro of multiplicity 4 at (2, 0)

=2

s

11)  Turning points (-3, 4), (0, -2) ay < 0, note turning points

, < wrefer to relative maximum and relative minimum points. Zeros at
’ ' ’ ¥
. . )

- -2 and*~4. A zero of multiplicity 2 at 1. . -

- (X - i)x +i)(x 4 1)

"

13) Y3

14) vy

2 1
-2x (x+ 7 )

2 x4+ 1%

15) Y x (2x - 3

|
I
!
I
I
-
!
12) h:xm+nm-@2 | " y | ’i
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5.3 Slopes of L1nes_Tangent,Ig*§ Function .

*

In Elementayy Aigebra you acquired the skill of~dividing a
'polynon?ial P(x) by a binomial of the formic - ¢. Obtaining a

quotient Q(x) and a remamder R. ‘, N

EXAMPLE 5.3°1  Given P(x) = % x37- 3x2 + 5x + 4,

o divide P(x) by x - 2 - | '
‘ Sblut:y.on: s x2 _ Z‘x + 1.' : )
’ . =2 | % x> -3x2 -+ 5x + 4 R
oy x0T . .
% ' ’ ,‘,--‘2x2 +5x
o ‘ ’ -'?xz + 4x
~ X+ 4
’x -2 )
6 =R
' - ( |
\ " ' ‘
. N
-

2o




This factoring or division pyocess
was shortened in Intermediate Algebra

- ¥
when synthetic division was used

" If P(x) is written in nested form R
and the expression is eva{uated one step
at a time the procedure w

"t . to synthdgié division. .

11 be identical

5.3 -2 -

]

“ellf um =om om

+

1

© [P
o11bt 2.

»

J

P(x) = [@x - 3+ 5] x+4
(x[F- 3) x+5]x +
[Qﬁ;- 3? X ;-j] x + 4

for x

T

4

\\\\ B(zfgk‘+ 5/ x + 4
[('_2) + 5])( + 4

A +5]x+4

4

O EEX
P L] +e
T . , o A + 4 -

P(@) =R = 6

The method is simply multiplying the leading coefficient

by c, adding this product to theinext crafficient- and continuing

the p?ocess.
s N . L4

o

251
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.




- Do ' 5.3-3

We will now investigate, what information division by a

o

binomial will give us. L S )
—§£§l~= Q(%)~+ 27%; X% ‘ * !
@) P = Q) - (x-c) R ) . ‘
If x=c, P(c) = Qg)-(b):r_ R or P(c) = R |
Repeating this division Py_ X-c Zon Q(x) :efults in a second - .
quotient f(x) and a second remainder 'S. . <
. .

Qlx) f(x) + S

X-C X-C

<

(i) Q) = £(x) - (%0) + 5 -

2] 7 ~ -

* Substituting for Q(x)'in (i) yields ‘

P(x) = [f(x) - (x-c) s S]“(x-c)7+ R .
P(x) = f(x) - (x-c)2;+ (x-¢)S + R !
but R = P(c) as x approaches c.
P(x) = ‘f(x) . (x’“-c')2 +;(3-C)S % P(c)
G g Pk ) = P(c) - - ’
.or (iii) S =L (k) - (x-c) + S * ,
X-c_ , \
now as x—% ¢, the right s}d% of the equation approachés"S. *
- L e el ) ; L
P(x;_; P(c) represents -the slope of a line joining the,points
\ ! -
(Ci P(C)) and (xi P(x))' &




5.3 - 4

- - '

. Givéﬁ{a‘function P(x), select a ppiﬁt (¢, P(ec)). Notice what

takes place as x —*.c

NP2
Al

(o) ® &

X —¢ \\\\ . xi?c' \\\4

The linehﬁgihing the two points approaches a tangent to the func-
» tion at (c, P(c)). - ' . .
The slope of this tangent line is \

Y1 Y2 _ P(x) - P(c)
xl-x2" a = C '

~
L2

3

from (iii) as x— ¢ m — S and S is the "second'" remainder

when P(x) is divided by x - c.

»

3x2 - 2x + 1. Dividing by x-2

]

From EXAMPLE 5.3.1 Q(x)

once again we obtain

. . 2 3 -2 4
, ' 1 -2
% -1 |-1 = s :
3 2

—- " Therefore for the function P{x) = xx~ - 3x

+ 5x + 4 when x = 2:
the line tangent to P(x) at x = 2 has a slope of -1. P(2) = 6, /

therefore the equation of this tangent line is y-6 = -1 (x - 2) or

L
.

253
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® 3-3 -‘5

EXAMPLE 5.3.2 Find the equation of the line tangent to
ﬁP(x) at x = 4.

(.

Sélution: P(x) = %x3 - 3x2

+ 5% + 4 by double

synthetic division.

4

4 5 -3 5 /A
. 2 -4 4
4 5  -1. 1 |8=R-=p(4)
2 4
X 1 .i 5=5
Y-y = Sx-x) (%, yl)(Géw—(a. 8)
y -'8-=5( - 4) ‘
, ' ‘

y 3 5x - 12




5.3 - &
We may now confirm our thoughts regarding the relative mﬁéih

mum and minimum points for the polynomial P(x) = x3 + % x2‘-6x -2
graphed in Section 5.1. - -
) (-2, 8) seeméd to be.a relative maximum. By ''double

.division" we obtain

¥

L =
-
[
(9,
w
n
wn
—~

*

S = 0. Therefore the slope of the line drawn tangent to P(x)

is 0. Only a horizontal line has, zero slope, therefore (-2,8)‘15

a turning point, in this case a'relative maximum. ~
: v ,

eyl

pairs of X-intercepts, there is.a relative maxi%rh or relative

minimim. -

[
.

Y ! > -6 -2 s : : '
: -2 1 10 - Y
) 1 -5 -5 |8=R - '

Our calculator or computer can assist us in finding the turn-
: ; ,
ing points for a function. By writing a program we can search be-

tween zeros for these turning points. ‘'Between every two successive

l
1
l
1
|
l
|
i
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~ . B v T

: "Double Synthetic Division" Algorithm.

Given: - P(x) = anﬁn + ... a3x3 + azxz +a;x + aj
n <7
‘ 1) ‘Letx =g¢"

Zip‘ Calculate P(x) by a nested foré subroutine, RJ= P(x).
Remembet™ b ...b,, by, and by; n < 6 coefficients of the
, quotient Q(g): RO f—-bo, Rle—— bl’ etc. i
3)  *pisplay R ,
- *.6)  caleulate Q(x), S = Q(x)

‘) .
" . . _
5) ~ Display S, STOP ' . .
J
\ J
. 2
p ' \ Y -

L2

S '
] If R = Qf.c is‘g zero of P(x) and x - ¢ is a factor.
L 24 —

** 1f s - 0, (x, R) is a turning point. . ’




*

" Exercise Set 5.3 - S ) .

1) Use dOUblekiyﬂt\hEtic division to verify’thalt; the point (1, -5.5)
'i‘s a relative minimum for the function P(x) = x3 + %xz - 6x - 2.
(2 -7) Write a proéram d4fd then ube it to find all the turning .

points'for the following functions within the interval listed. At

Ul "

-

most there can be n-1 turning points for a nth*isgree polynomial.

Ler\d =1,

2) AG) = 33 < ex? - 6{f; 3 [1.3] a
,‘ 3) B(x) = x3 + 3x2 - 9x'+ 5 ' [—4, 2: B » -
Y L0 = 23 7 3x% - 36x + 10 7 [-3. 4] ~ -
(),‘I;(x') = 3 - 31&{2 -9x + 67 ) [—2,.5j _ h

6 E® = mt+ad-1xd+3 |3, 2] I

7) F(x) = x° - 5% + 2 E v [-2. 2] J

«

¥

8‘) The zeros of G(x) = -x3 + x2 + 2x -arg, b', -2 and -1

EY

a) Estimate to the nearest tenth the relative maximum point

for G(x). ) - : :

-

b) Estimate to the nearest tenth the rel?ve minimum point

for G(x). ~ Py

(9 - 12) Find the equation of the ]‘.ihe tangent to the function

9) f£(x).= 4x> - 19x - 15 at x = -1 | ,
: > ,

C10) s g(x) = x4 - 2> - 3x% - x +5 atx =2 N o

11) h(x) = 2x3 - x2 - 22x - 25 at x = -1.5
2

X

2x3 + 3x

il

12) k(x) +2x -5 atyry = .5 o~

K]

‘ Yy for the value of x asiflisted. ‘ l
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5.4 * _Calculating Zeros of a Function : //'

/
In this section we w111 program the, calculator or compq%er

to "find the®real zeros of a- functlon to any pre- determined/hegree
i , /
of accuracy. C : : ‘

" As you may have observed from the graphs of continuous funcl

. ~

tions in previous sectiens,_the second coordinates for consechtive
x values halp us in estimetiﬂg the location of the zeros..

If tﬁere is no zero of function P(x) between two values of ;9
then ‘the functlon does not 1ntersect-Ehe x-axis between these o
'values and the second coordlnates have the same sign.

. CASEA T ' CASE B

I \.‘:*..' 7° " . " o
| /'\t,‘i__ . —F +—> X .

-

—————3X
Y e e

in each case P(xl) . P(xz) > 0
_ If a z€ro is located between two values of X, the graph inter-
sects the x-axis at least once between .the two values and

v -,

CASE C . - . . CASE D *
| 7% '

/ R)<o | i Y@),"’ - v -

]:_in each case P(xi) . P(xz) < '0
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EXAMPLE 5.4.1  Given: P(x).= x* - 2x> - &x> + 6x + 3._

Fi#Mding the values of R(i) for each x in the int?rval
: ‘.

.[-2, 3) with the‘cbmmon diffetence of .5 yields

— . Solution: - o P(x)

—_— X X P(x)
2 ‘ @2 |7 5] 48 !
' 1.5 -3.2 14 4 '

‘ -1 -4 \ 1.5 | 1.3 .

- -.5 -7 TN R

B | 2~ -170
' ‘ 0 3 2.5 .8

3 | 130

.y

The drrows indicate where the function values change
sign. - There must be-at least one ‘x-intercept between
the respective X values fot these P(x). Since a fourth

degree equatlon can have/no more than four zer©os, thete

‘w111 be one zero between -2 and -1.5, Yone between ~-.5 and .

. L .0, one between 1.5 and 2 and one between ,and 2.5.

If we sketched the graph of P(x), each zero could
probably be estlmated to the nearest tenth It would be
quite dl%flcult td be more accurate unless we narrowed
‘our interval and decreosed’the cemhon difference. We

. cduld then test x values unti?rthe sign of P(x) changed,
repeating the ptocess of "narrowing” the inteéval-and
- common diﬁferencei This is a most time consuming task.

‘ A faster method to obtain a zero of the function

‘would be to find the mldpﬂ‘nt of the two X va&\es,

X, +t X .
X, = ‘”l_f_fl , f1nd P(x ) and compare this value against

one of the known functlon—values.

€

Q s N N, N ' :
| . S :
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| ;

Let P(Xl) =-Vy1’ P(xz) = yz and P(xm) = ym .

ILLUSTBATiON I, : ILLUSTRATION II

ify -y, <0 | Cify, iy, >0
Replace"x1 with x Replace x, with X
find new midpoint, _, find new midpoint
. r
evaluate, etc. i ~ evaluate, etc.
N
r ' ~ , -

Continue this process until the two x values agree to

the Qpecified accuracy. This repeating process i; talled
iterxation and the method is called the interval bisec-
tion metﬁbd. .
Interval Bisection Algorithm
1) Remember xl,n‘x2

Xy + x

2) Findm = -+, 2
3) Find P(m)

4y Find P(xy) - ' -

5) Tg P(m) - P(xz) > 0, xée—-m{ Display-xl, X,) go to

ﬁ) If p(m) - P(iz) < 0, Xje—m, Display Xy, Xy S;EP

7) If P(m) - P(x,) = 0, DISPLAY m, STOP

/.

8) - Compare the new wvalues for x, and Xy If they
agree to the required number af decimal places,
" ’ - -
STOP. YR
R ' THIE -
9) GO TO STEP 2 -




- ’-' . - N " ‘\5'4-4‘/

For the illustration the two points ar® selectéd quite far apart

* . ~
:
- -+ - -

- .- . ’ « - .
Lo . : ) ) -~ .
. : i 3

2

Th.p 1nterval bisection algorithm when used to find the!zero

-t

‘of P(x). between 2 and 2l5 in EXAMPLE 5.4.1 requ1res 12 iterations

-0 . R 3

to obtain an accuracy to the nearest ten thousandth.

A methgg‘that w1lf/;e much faster than interval bisection is
based on the'familiar linear.interpolation approach you used in
Intermediate Algebra. When 1nterpolat1ng, two points (xl, yl) and _
(x2, 2) are selécted on a continqpus fupction. If thlse two, points
are picked close enough together a line egment drawn between them
'1s not®very distinguishable from the actual curvediline of the func-

-

tion. Ry using eqnal ratios From similar triangles an 1nterpolated.
h 4

Y

y value is computed that is close to the actual value y, on the curve.

’ ’
rd N
v ’ » -
° . - t L I . ‘g. .

'~ This .safe straightness.assumption is used when finding the

A, !

S . : . - . . .
zero of a‘function By a xecursive process,the error made in esti-

3

mating is succes51Vely narrowed down"

Eo find this =x value where P(x) = 0, we begin by selecting

L]

two point§ A a d B such that:, their QLLOHd coordinates are opposxte .

in 91gn If:the function is continuous, thls 1nsuﬁes a x- intercept
\
A‘ I t - . 3 \\‘ - »

26 - .

[ ]
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‘. - -

obtain an estimate & for the zero of the function.

% .

We compute the value of ¢ by using slopes.

D SRS SR £ .
T -
S| Xy " ¥ .

- »

We then compute P(c) and'contiqye the method ﬁsing:point (e, P(p)); Y

w» .

th (xl,yl) or (xz,yzi\\:jgﬁnding on which points second coofdﬁn&éﬁ
7

. " \
has the opposite sigﬁ as J. As-we continue the process each line

segment crosses closer to'the point where P(x) ="0; tuc uesired Zero

" of the function. : ’

- 262

<

..
« 3
L e

L




.

.

Repeated Linear Interpolation Algorithm.

-

1) Remember Xy and X, »

2) Calculate y, and Yy

X " Yy - ¥ N :
Yo = ¥T ) ' : — -

- 3) Find ¢ =

<

(To save steps the' 2::4-and - keys may .
be helpful, when using a calculator.). -

A) Cdlculate P(c), IF P(c? =0 STQF

5. 1f P(c)- y; < 0 GO TC STEP 7
6) If P(c) -y, ¥ 0 (GO TO STEP 8

7 (xz, yz) <——'(;:, P(c)), display Xy GO ';0 STE‘I> 9

8) w(ff!ryl) «— (c; P(c)), display.x; GO TO STEP 9

4

9) When xi or X, doeé not change the walue to the decimal

.accuracy reguired STOP ijgerwise GO TO STEP 2.

263



.Exercise Set 5.4

19)

2)

3)

-

k]

Draw fogr separate illustrations, two of increasing and two of
decreasing functions, suéh.that in two illd;}rétidns (c, P(c))
would continually replace\(xl, yl) and in twd‘i%lustrations '
(c, Pic)) continually replaces (xz, y

Use the linear interpolation algerithm to find the zero of EX-
AMPLE 5.4.1% between 2 and 2.5 to the nearest ten thousandth.
. Count the number of iterations required.

Find the remaining three zeros of EXAMPLE. 5.4.1 to four decimal

place accuracy. : > .t

. .

(4 1,11;>Find all the real zeros of theé following functions to four

place agcuracy:

o
5)
6)
7)
8

9).

Ax) = x> - 3x + 1 - é ‘f\“ﬂ
B(x) = 20x3 - 30x% + 12x - 1 |

C e = x® - 3x3 - 20k - 26x - 8
D(x) ="x4 + 5x3 - 27x2 + 31x - 10
E(x) = x3 + 4x2 + i&% + 15 Qg :5 )
Fx) = %3 + 2x R 1" | S .

£ 2
. g\ R
) .




5.5 ., Factoring Polynomial Functions

~written in factored form. To obtain a factored polynomial ex-

o

_— pression we make use of the remainder and factor theorems used

in .Section 5.3. | . ~

P(x) _ * R. -
x - ¢~ Qx) f X-c
P(x) = Q(x) (x-c) + R
if x=2¢
P(c) "= T(e) (0) R \
P(¢c) = R L . Remainder Theorem
; If R=0, P(c) =0 and x-c is
/<HL a faogor of P(x) * Factor :Theorem .
3 : - . T
. . To find the femainder, ssubstitute values for x in P(x).

If the result is zero, obtain the remaining polynomial after

=

factoring by tﬁ? synthetic-proééss illustrated in 5.3. >

If the polynomial has rational factors, ® will be a

rational number. Only certain values for ¢ need to be tested.

8

Rational Zero Theorem

L

. _ n r-1 2.
Given P(x)\— a_x + a _1% +\... a)x + a)x + ag

being rationals. If P(x) has a rational
> ’ /’ _ -

R - § a
8n 810 90

zéro, its numerator is a factor of ag and its denomina-
: -

- tor is a fictor of a . 265 .
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~

L]

- Proof: Assume this rational zero is in simplest, form
g,. P and q are relatively prime ‘integers having no common factor. i
Since g is a zero .
By = 2 (Byn 2yn-1 Py2 4 5. (P =
p(q) an(q) + an-l(q) + ... aZ(q) + al(q) +ag =0
multiplying by q, we have
K . »
n -1 2 n-2 1l n-1
(1) ap” + a 1 P Mg +'... azp;qn + a;p QT+ aoqn =0
‘ ‘or )
. _n=17 2 n-2 n-1 n n
4n-1P qQ+ ... apq + a;pq + aoq = -a.p
''q is a‘tor of each term on the left side, therefore q must bg'
an exact factor of the right side of the equatfah\\\p and q are
: , L ' R A
reldtively prime, the only conclusion is that. q is a fatto:\gf a ..
s N\
- Similarly from (1) \-
~ -1 2. n-2 . n-1 " n
anpn + an_lpn q +‘.:.‘§2p qn ’+ algqn = -aoqn .
s p 1is an exact factor.of ag -
EXAMPLE 5.5.1 Factor the polynomial _ . .
p(x) = 4x% + 123 - 15x2 - 38x + 30 '

Solution: From the Rational Zero Theorem, if g

L 3

is a zero p 1is g factor of 30; A (1, 2, 3, 5, 6, .
10, 15,-30) and q is a factor of 4; T (1,2, 4).

.2 N | N )

N

N
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‘ Possible rational zeros B (1’ 2,3, 5. 6,10, 13, 30
- 1, 2, 4

-

which are the integers é;(l, 2, 3, 5, 6, 10, 15, 30) and

the fractions * (%, %, 3/4, 5/4, 3/2, 5/2, 15/2, 15/4)
4

Rewriting the polynomial in nestea form and testing the

‘Wi‘

»

; integers by program, yields

x .| P(x) X P (x)
-6 { 2370 - 0 30
-5 845 1 _7*“
-3 9 “— Mo need to continue
:% ig % 239 as P(x) will continue
' ) to increase.

I
I
P(x) = x‘(x(x(4x + 12) - 15) -38) + 30 '
i

N\
There>is a zero between 0 and 1. The only possible

rational zeros here are X, %, 3/4

X P(x)

i
l 19.8 ¢ No rational ger
‘ from 0 to 1.

There is a zero between 1 and 2. The only possible rational

Zeros ere S/Q and 3/2 i

- . X | P(x) :
1 25 "7.7 " .
. 15 Yoo T o .

P(1.5) = 0. Therefore x - 3/2 is a factor

2#37

~

P




—By synthetic division

32 4 12 <15 238 ¢ *30
6. 27 18  -30
4 18 12 -20 | 0 .
_ 3 2
Q(x) = 4x + 18x" + 12x - 20
P(x) = (x-c)- Q(x) + R ,
- P(x) = (x - 3/2)(4x3 + 18x% + 12x - 20) + 0 |
P(x) = (2x - 3)(2x3 + 9x% + 6x - 10) )

Any factor of Q(;) will algg be a factor of ka). Tberé
is no need to retest valugs that did not work for P(x).

We will ﬁow search for any remaining rational .zeros,
One possibility is that x-3/2 is a factor more than once (Graph

L)

is tangent to x-axis)

Qx) = x [x (2x+ 9) + 6] -10 . A

-

x| Qe ~ , (
¥l 1.5 ’ [26 . -
Other possibilities: Bétween any two x values the ggaph

' -
of the function could have intersected the x-axis an even number-

of times. The sign of the f(x) values would not change. If the

sign changes theré could be an odd number of intersection points.

Inspecting yithin the interwal [-3, -2] we obtain
. . : | .
another zero |
“x ) Q)
-2.5 I 0 -5/2 l 2 9 6 -.0
o . P -5 -10 +10
2 4 -4 0

\

263




- o - 5.5 -5

= (2% - Dlx+ 3 267+ bx -4

182 P

Once we have reduced the polynomial to an expression where

a quadrwtic is remaining, the figal two zeros may be obtained, if

necessary, by the quadratjc mAila
x2 + 2x - 2 =
X = = 73
X = = -2.73
Final factored form
- . . . N
. . P(x) = (2x-3)(2x+5)(x # 1 - VD(x + 1+ V3I) '

-

" . *
Two ‘rational zeros 3/2, -5/2

-

Two irrational zeros -1 + J?;, -1 - J?T
‘ ’
Irrational zeros of the form a + Vb will always occur as
solutions in conjugate pairs a + Jb, .a.- Vb. As mentiaaed in
Section 5.2, this is .also true for zeros that are not re§1.' Complex

zeros will occur in conjugate pairs-a + bi, a - bi.

- -

b

Exercise Set 5.5

- “(1,- 12) Rewrite the following polynomials in factored form.

- "y
1) A = 6x> 4+ 1lx% - x - 6 - : ,

2) L B(x) = 2x3 - 5x2 - 9x.+ 18
1) cx) = 2% + 11x3 + 9xA - 27x - 27
401k + 21x% - 16x +4

L)  D(®), = 2x

L)

];qu‘ | 269,

BE e

R R E e e



. 5) E(x) ;.x3 - 2x2 + 4x - -8
6) F(x) = 3x0 - 5x% + 3x - 5
7) G'(x) = 3x4 - x3 -f7x2 + 4x - 20°
8) - H(x) = Q‘: - x3 - 15x2 + 9x - 27
9) J(x) 8x' - 36x3 + 54x2 - 27x
10)  K(x) = 45x* - 42x3 - 4x? + 8x

£+

:
[

{ =

he

270
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5.6 Rational Functions

- : /
A rational function is a quotient of two polynomial func- g
“ . . y
tions . ’
Reo = EX g6 #70 o

o

\ R /

g(x)

_Rational functions are similar to rational numbers apd may

be expressed in various ways

4 8 12 _ <40 _
71 I 70T

=
=

‘ ?
x - 1 _ x-+1 __ =2 -
xZx X +.1 (x+1)(x2+1) -2x - 2 -

- L)
- t

The.simplest rational expression is when the nwmerator ‘and

denomipator have no common factors. The expression is then in

lowest terms.

4

For the rational function above —i—%—I is in lowest terms.

The graph of this rational function -however, will differ from the

- -

because of ulffergnt domains. , - -

X+ X
) . s . f(x)
The domain of a rational function R(g) = §T§T consists

of all reél numbers except for the real zeros of g(x). (This

last requirement is to insure that R(x) is defined; that is, the

denominator—ts Aot zero.) g .
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2 ; ' |

EXAMPLE 5.6.1  The domain of —Lr consists of all

* Teal numbers x # -1.

' . The domain of — X ® is any real number
£ X" 4+ x .

X, x#0 orx#¢ -1, j
For some disallowed treplacements of the variable in a
rational function, both the numerator and denominator equal zero.

For other replacements only the denominator equals zero.

7 o f(x) x2 -9
EXAMPLE 56.2 S(X) = m = }{—-3_
Solution: If x =3, £(x) = 0 and g(x) = 0 )
f

T(x) =

if x =2, only g(x) = 0 /////

. If a »ational function R(x) £(x)

has a

. _ glx)
value for x = a such that g(a) = 0 and f(a) ¢ 0,

. . *
then the function R(x) has a vertical asymptote

at x = a. S -

»

- [
If a rational function‘gﬁy) = §%§% has a N
< ‘

value for x = a such‘that both g(a) f_o and f(a) = 0,

then the function will have a "missing point" on the

graph wheri X =a. 1\

.

An asymptote is a line toward which a graph tends as x "gets close"
or approaches some specific value or as X .increases or decreases
without bound.

Qo ’ . 27‘8

-
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T ——

T T . D i w-v.- N B
For the exampIE“TTx)ﬁ=J%%;;%r,‘“M:T\*_L‘ ; : “"-~w

e

as x—-——bZ‘ from either direction only g(x)-——-)O and [T(x)I’-“* o,

T X { T(x) ‘ ‘ - e .
1.99999 { -499,998 x =2 will be a \f\

'2-00901 +500, 002 vertical asymptote

x2 -9

For S(x) = 5=

as x ——43 both f(x) and g(x) -—-’0 and S(x) — k

5
h .' . “ i

2.99999 6.00000

3.00001 6.00000

x3 - Sx2 + 6x

(x-3) (x-2) - >

EXAMPEE 5.6.3 M(x) =

M(x) will have missing points at x = 3 and x =

ne)

EXAMPLE 5.6.4  N(X) =-72—7y7sc

vertical asymptotes at x = 3

and x = 2.

w

oo

N
i)




—
) If the numedator of a rational function is

s

' one degree .more than the degree of the denomina-

——

-

P , * . -
- .| tor, the function may contain &  "slant” asymptote.

v
'
Al ’

x2t+ 4
EXAMELE 5.6.5 R(x) = —5x—

. ‘\/

Solution: By division R(x) = %x“+- 5% J

as |x|] — oo 3§ —0 and RZx)-—»%—x

@

R(x) = %x is the slant asymptote.
k\\’) . X =0 1is a vertical asymptote.

’

»

. N\ .
If the degree of the numerator of a rational

function is less than or equal to the degree of-

b -

the denominator, the rational.function will have

a horizontal asymptote:

*A slamt asymptqte is an oblique straight/line.‘

LI
274
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EXAMPLE 5.,'6.‘6\ o f(x) and g(x) same 'degree

4
ey = 3%
S(x) = g +1

B& division:

£

S(x)==3+x-13—f 1
,

PR

as [xl-_—réoS‘(x) —3

)S(x) = 3, horizontal

asymptote ,

x =\1, vertical asymptote
’

.

 EXAMPLE 5.6.7 deg f(x) ) deg g(x)
‘Solution: T(x)\7 -§1l—

. 2 X - 4 4 - -

R v ‘ vertical asymptotes. ,——_.~

X =2 and x = -2 are

]
L4

) QDivide each term by the highest degrée'variavle. *;_“_;//

¢ L3 -, I

i

.’ , iy -

1 .
] - ___2.
' X
‘ .‘ . 3 ’
. . . “ o - "ﬁ\‘ 1 —’\

.
r s

as. |x}—> o0 2 T(x) — 0

T(x) = 0%is & ‘horj.:ﬁrnta‘ asymptote. '

W
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Exercise Set 5.6 ' S ’ . .
S - , . ’ ‘ : "
1) Write a program to assist you in graphing F(x) = '8:: t 30 ’
for an interval of’ [-8,"12] d = Wl‘ét difficulty

4

. arises when d is changed to .57 -
(2 - 4) Over, the years, .many functions have acquired special
L4
names. Investigate the following functions, dgtjermine when . p0551b1e

)
the domaln range and asympto\t/‘e; Use the algorithms from previous

sectlong to graph each function. . ~ ' P
2) The ' 'serpentine"” S¢x) = —2&2— - e - . . -
- x“+ b ' . L

. , ‘ \

Let a = ;6 b = 2, Interva]l [—5} 5]__

3) The ’ p]fster" P(X) $ —2——2— - . . B . < h
‘ for a=1, b= 2, Interval 5 5] [./ o
4) The "witch" W(x) = /\\ L
. \ X + a . . .
for a = 2 Interval [ 5 5] L . .

| (5 - 12)‘ For the foflowing Raticnal functlone use the alggrithms :

to assist you.in sk etchlng the graphs within the interval listed

5w s Bl [,0] =
6) T(x) = X (X ." 1) & 2 [—4, Z‘p ) . ‘ ' -
. . (x-'}-l) (3x-2) < . ) _ . )
(x + 1) L ; )
7 U(x) = -3, 3 ‘. i
) * 2(x-2) (x-l) [ J\ ‘ - ' -
& . ’ ‘ .. ) ] " |
.. (x -3¢ - : SN
8 V(x) = . o "
) * x* -}27 4, 4 <
3 2. s . /\'
3x < x7'+ 1 . -4
9). N(x) = : -3, 3 - : .
* x"2 + 1 [ ] g
. i , e - ' .
275 > . ’




Given y = —75—————
. . x° - x+1

*SketcH the function. Ui}ng various intervals, determine

the hlghest and.lowest value of y (Thé\(enge of the
functlon) - T ’ o
. Determine the anzi of the functlon y =

an algebralc agproach
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=5. 7 Area

.- ~
Many times in mathematles you have been requlred to flnd

-

section you will be expected to evaluaté the area of irregular

~

LY . . -
shaped rdgions. Problems concerning areas, volumes, masses and

othex mathematical and physical topics will be in abundance
e

A

' during future coursas.. In the calculus this will involve a method

~ called integration. Unitil that time, however, we will use the

l the area of c1rpu\ar rectangula, square etc., regions. In this

calculatof and the formula for the area of a trapezoid to solve
these problems. ? g v
aonsider an irregﬁlar éhaped region bourided by a continuous

. ' v

. ) N e ’ .
’ If we wish to find the area’of region S (shaded), we ofdy

form a trapezoid and -evaluate 'its area.

l ‘ © K=3h(bp+b) ‘- ;

I

VK = 5(b - a)(£(a) + £(b)) ‘
e 7 s area k will approximate the required area S. The
approximation is not too néar.éhe-aréa of S. However, if we di-
videethe,interyal.k[a, b] “ iﬁ;o n smaller congruent igtervals,
Q - . ! . ‘ .'-. ’
_ A < .

’ : ) -~ ) 2'{()-.

. . . »
.l ¢ ‘< » 4 -

. A . A . )
I ~ function f(x), the x-axis and two verticg} lines x.=.a and x = b. o




¢
.
X
.
‘
- )
£ !
) ]
.
t . ’

-n trapezoids can be formed and the sum of the areas of these n
K L.

¥ ‘ AN
trapezoids will be much closer to the area S. - . \

*

»

.
\ .
As we increase the number of trapezoids, the area may be ;

computed to a finer measurement of accuracy.

-

_ S = k) +kytkyt o kg _
\’ -~
Ky =BGk - xg) [£(xg) + £0e)]
m ¥ - . ) : .
ky = 50, - oxp) [EG) + £ ]
kr1-,-1 B %(xn-—l - X'A—Z). , [f'(xn'-“Z) +\f(xn-2)]
. kﬁ, = 35()'(r1 B xn-I} [f(xn—l) + f(xn)]
X - Xg » : ' ' \ "o,
v 5=y () [f(xo) F2f(x) 4 2E(x)) + L 2E(x ) HE(X
' OR -

P

[5 (Fxp+Ee)) + f(x1)+‘éf(x2)+...f(xn_1)]
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Area by Trapezoids Algorithm "

1) ﬁRegember A, B, N ¢ -- e :
‘' 2) LetH-= Eﬁé , Remember H ' . L - _?_

3) Calculate £(A), f£(B) § -

4) . Let C = £(A) ; f(B> , Rementber lcl *

5) Let N = N-1, if N = b, Go to 9

0y Let A=A+ H . _

7)-  Calculate ‘f(A)l .

-8), C=2C+ £(a), Gg to 5 - ) e
9 s LR ' I
10) 'STOP .
, ’ . ‘
¥ EXAMPLE 5.7.1 Given f(x) = 1 2 find the area under ‘i

1+ x
— the curve to five decimaiAplaces‘for the interval [0, l] .

N = number of trape201dsx ‘Zﬂ

»

“

-

—7X
- ;\\ :.

Abgolute value symbols may be used when the‘afra of the entire v
region being calculated is '"below'" the x-axis <. Othérwise the
area will be.represented as a negative number. 5

/ | 25() .




for ™= 5 .

for N = 10
i for N = 20 . S = .18529 |
for N = 50 S = .78538 ‘
. for N = 100 ‘_ S = .78539 - |
' ™ '

The exact-value using Calculus is L = .785398.

.
. .
*

A function may "dp" below the x—axis. Care must therefore

be taken that a zero of the function:is not located in the interior
Jzof one of the.n g;apezoids. Inaccurate results would then be at- -
‘tained. One*approach that will help‘avoid>difficutty"is to compute
the arga'aqpve_apd ‘the area be oh the x-axis separately. Then add
these argas‘fogetﬁeﬁa . '

S ¥ ERAMPIE 5.7.2  £(x) = x° - 3%

Solution: - . (hq : :
_— . | A .

Find to the nearest hundredth -

4 2% Z//

the area of the region "between" the
. ;i . .

x-axis and the function for the “n-

terval [0 2 ] . "By factor;gg '

Af(x)’- x(x-2) (x-1) zeros are at 0, 1, 2

For N = 50 Sl = .250
- . symnetrical regions /
For'N = 50 Sy = .250 . ‘ {
s : t
Total Area .50 -

— ) - .

- =
R -
. '
N .
.



This same method may be employed when finding the area be- *

oy

tween two continuous functions f£(x) >g(x). J
' v |
EXAMPLE 5.7.3  Find the : 1'N |
area to the nearest tenth . | § §
for the region between ‘ R N |
il fi{x) = x3 and\g(x) = -x3, | Q |
interval ['0, ] i
- ) l‘
For N = 50 sy = 4.00 N
N For N.= 50 s, = 4.00 .
R - *‘ - - - — - - - - - -
i | Total Area = 8.0
| : .
,‘ . ‘
_ ?
]
l Exercise Set 5.7 "
' g (L -7 \{ind the area of between the graph of the function and
— the i-axis wi'thin the interval listed. \ gy
! 1Y
' 1) fLx) =-x~ [0, 4] '
) 2) - g(x) = x> - bx [-2, 2] S . .’
l 3) h( _' 3 . ']. A .
x) = X~ #12x + 4 1, 3
TR n* [o. 1] ,
G5y ok =x® o % o, 1) AN ' )
] . o Lew- 2+ 3,00 L \
7y m) = 23 - X+ 2 [0, 2] . i N
l L ‘L .4 * ] o - ‘L
, R 252 ‘ N Y
o o B .




- L3

Given f(x) and g(x) as graphed, éxplain a procedure to

find the area of the shaded region between the two curves.

* The x-values of the points of intersection are a €nd b.

. /—

"(9-10) ~Hging amethod similar to problem #8 above, calculate

)

the area of the region enclosed by the curves.

9)  A(x) = %x +1° B(x) = (x-1)2 —
=9 - x2 ) g(x) = xz(x2 - 9) -

éO) f(x)

SR T R D B B B B




5.8

Test 5.8 - 1

Chaptef\S Test
X

(1 - 6) Multiple choice ]

1)

2)

*3)

4)

5)

6)

Which of the following is a polynomial function?

14

= 27 ' b
() | £ = &Gy gy - .l
(3  f(x) =‘(x-2$2 .. L) ER) = x-2
Which of the following has a;\ésymptote?
(1) £(x) = x3 + 2x + 1 2 feo =X
(3 £ =sinx . @) £x) = 1n =

_n.2/3 : _ x+1
(1) f(x) = 2x f.x +1 | (2 f(x) = 57
(3) £ =x%+ 3x - 7 (4)  f(x) = x
Which -of the followf%g is a continuous function?
(1) f(x) = tan x (2) £ =x +x
+ »
3 £ =X %) £ = x*-
b2
Which of the following functlons has-exactly three zeros?
(1) £x) = 3% +#3x+3 _ (2) £(x) =3 sin x
(3) " f(x) = 3¥ . (B) f(x) = 3x3 - 3
» Which of the following functioﬁs is tangent to the x+axis at
= 23, . . . ' D
(1) £(x) = (x-2) (x+1) (x+3) =(2) f(x).=.2%¥
y . »
G) £ = x=22t]) T (4 £(x) = 21n x

"Which of the following functions has a "hole" in its graph at




¢

Test 5.8 - 2

7) .Each of the following refer to the polynomial:
E(x).= (x+2) (x-1) (x+.5)2
a) What are the zeros of f(x)?
}‘b) Make a rough skefch of £(x).
c) Write f(x) as a polynomial in ‘standard form.
d) What is the equation of the line that ie tangent Lo
f(x) at x = 71? _ o
‘ e) Determine an interval that contains the relative minima
. " of f(x).
8) (a -'b) Refer to the following bolynomial:
£(x) = 9x> - 15x™ '+ 34x3 + 26x% - 27x+ 5

a) Determine all possible rat10na1 roots for f(x)

®

>

b) Determine the rational roots of f(x).

/

Y
G N N AN N N n S &
‘ ] ;|m o
.

Y

9) a) Sketch the graphs of the following two functions:

£(x) = 2-x° .i
e - - ' H
glx) = -x \
b) Find the points that satlsfy the two equations slmultaneoule'
c)’ Find the‘'area bounded s *he two funct1ons (nearest hundredtl"
- " Use N =50.. .
b * ' I
»
, , I
.0 255 1
. D - ﬁ
) : .
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. will be ejfended.

6.1 -1

CHAPTER 6. EXPONENTS AND LOGARITHMS

=

In this chapter your ideas™~about exponents ‘and logarithms
%

9:1 From Rational to Real Expénents

-

In your earlier study of mathematics, positive integral

exponents were characterized by the following definition:

[ .
Defirition 6.1.1. b =b.b.b ... - b, n a positive

n factors

integer.

" You can easily calculate exact answers for expressions like

28 or 5? by either using the |y*| key, a y T x cormand or re-

peated mult%plications. When numbers become larger than can be
exhibited on the display they are written in scientific notatlon
and the exact value is not 1mmed1ate1y available. ° &

“Thus . 7°l = 5.5855 _ 1017,

Clever algebraic techniques can be employed to remedy this situa-

tion. - ) ’ o
(

= B




:»'”w

-

. = 823 x 10%)3 + 3(823 % 102%(543) +3(823 x 103)(543)
- +5433 ~
® . = (557,441,767 % 109) + (1,103,368,941 X 10°)

+ 729,982,181 % 10° + 160,103,007
= 557,441,767,000,000,000
' 1,103,368;941,000,000
729,982,181,000
160,103,007

= 558, 545,866,083,284,007 <

—_—

EXAMPLE 6.1.3 Determine 325 exactly:

I's
) 6 L\;\i
EXAMPLE 6.1.2 betermine 721 exactly.
721 _ (7743 (823543) (823x.1o3 + 543)3

425 _ 318 | 37 _ 337,420,489 [ 2187]
387,420,489 [2 X 10%-+ 1 x 107 + 8 X 100+ 7]
774 840,578,000 . . ' -
38, 742,048,900 . ’ '
30,993,639,120 \ : ! d
|

2,711,943,423

-

« = 847,288,609,543
N LY 4 2 \, \ - - . \ ] -
-Notice that each of the ?}amples made use of exponengs and

scientific notation. EXAMPLE 6.1.1 used the identity

(x + y)3 = x3 + 3x y + 3xy2 + y3. EXAMPLE 3,1.2 used the distri-

butive property. ven thhe most sophisticated‘computers'will only.

v

display a Efedetermined number ,of digits sO such techniques are
[}

+

often necessary.

eST. SRR

-~ '
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Rational exponents have meaning when we define _

v v - -

Fs

Definition 6.1.4

1

- T - )
bx/y = 4?) b ‘1'b < 0, y odd, x and y are integers and

. * X . % !
= is reduced.
y?

(.

We must be careful to notice that even roots of positive

\ .
\ . . . .
bx/y ='«y[ b= ;/9 >0y x and y are'inpegers-%nd X is reduced:

o

numbers desfgnate principal roots so {4 equals 2, not t 2.

<
-

- Recall also that even roots of negative num are imaginary

so \J-4 = 2i. Most calculators cannot even processkggg\izots of -
. ‘ ) \
negative numbers so we need to ‘exercise a #¢ttle good mathematical .-

sense.
EXAMPLE 6.1.5 - «% -27 yields an eer; messagé‘bup

2T = 3. | o,
f ‘ o d

\  Since odd roots of negative nu%bers are negative
- - E .' »
JI7 = -3. ’ B s
, e , - N ‘ :‘,‘ i
& M ) ’ . i [

EXAMPLE "'6.1.6 b U;IQ yields an error mess#ge byt
V1o = 3.1623.. - ] .

/ »

- . ‘
Since even roots of negative numbeg; are imaginary
- . '

N-1g = 3.1623i. | ' !
.o = J

Al ] -

It is‘importaﬂt to rémember‘that your'display is always ‘a

rational ﬁuﬁber'(because<it terminates) so often you a. e determiniug

-
’ -
-
.

-
- .\Q -? ,
2557 S > ™\
’ SJ ’ ' . ‘ . .
o S : X s
. . . . .
- ; , -t L L. ’ r o / *

®

)
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L .
P
- - l
‘ z . . . 6.1 - 4 l
N v . . "
: . S
. a rational approximation o % an irrational number, By"definitlc '
—___ irrational numbers are numbers that cannot be expressed as ;ermlﬂa-
N . -
ting . or repeaflno decimals. - L ! l
Real exponents have meaning when we accept the follow1ng l
L]
very important statement: . . ’
/' Every real number, can be expressed a~§ h I
- od
P the, sum of an infinite series of rational | _
numbers:./ ‘ . A : . l
= /\ ‘
The proof of this statement is not w1th1n the realm of thlfé l
‘ *
course, but you have ‘seen these ideas before in Chapter 2. You
will see further consequences of this statement and a proof in l
- . -
future mathematics .courses¥ : N
¢ " . J l
EXAMPLE 6.1.7 _
\\\"‘ . © . . - 1 10 1 . !
T~ 2 is the limit of the series 1 + y +p + 8- 1_6 |
3.28 is the limit of series 3 + .2 + .08 + .000 + .0000 + f§..
, -3 is-the limit of the seties .5 + .05 + .005 ¥ .0005 + ...
. _ - N ) o
o : VZ is the limit of the series 1 + .4 + .0l + 004 + .0002
r o . * .
¥ ‘ . ‘ . .
Now we can view real expouente In this neéw setting. N ) .
‘ - B N -~ \
_ . /. I
-EXAMERE 6.1.8 .
) L+ % P VR - , l |
, 82=81+ + X + —81 8%-8“"8 .846 L)




e
% .5+.05+.005+.0005+. .. _
6”7 = 6; =

'SJ_—

In general:

»

3.28_ 43t 2+.08+.000+. .. _

4

-

a

1+ 4+ 01+.004+.002+.

- . Definition 6.1.9

t
1 n

is rational and lim t
‘N-»oo

r

hooghe oy L. T
T

1’,,“.

6% . 05 ¢-005 ,.0005 -

-~

Zu.

.5360&:

i I e e

=5 .5%.

) } (
4,501, 5:006 .

M O g

5" \fsZ. Js- \,/5 .

. where r is real,

Later in this chapter we will further ggpport the existence of

real exponents when we consider exponentél functions.

.

v

L3

It is easy to believe correctly there are infinitely many

irratfanal

"

numbers when you consider all real exponents..

It is

. also easy to believe correctly that any computation ignores small

numbers after awhile so our dlsplay however good, must be only an

approxlmation

e

ki

0002




. 6.1 - 6
./ ,b ‘ 1 s 1
) . o .4
] ’ . ) ; . 4
: EXAMPLE .6.1.10 -
Approximate each of the following by using the first
. N M “y
five terms ofethe infinite series expansion of the exponent.
A ' - . .
Check your results by direct calculation. —_
Pl .

B ./ ¢ = s .
JF - 8- 833 - g3, 503500340003 5.00003,

Ik

1A§66 (1.6044)(L.ﬂ063)(¥L0006)(l-OOOl)' cen

- -
22 ' =
. . i v ']
¢ o = 7 .by dirgct calculatjion. o)
Notice that VU8 1is exactly 2 because 23 = 8.
. .Jg' . 1 ;mfn
52 2y gteded (VT = 1:732L by calculator)
_ sbo57. 503, 5002 5.000L *
e = 5(3.0852) (1 0495) (1.0032)¥.0002)
- = 16.2437 ' g
SJE. = 16,2425 by direct calculation. i

™

p i Noticé that 16,2425 < 16.2437 because Ug--C//ZK}JZI

. ) : o
" We end this section with - summary of properties of real
2 Al . < -

- 4

exponents:

»
i

Laws of Exponents 6.1.11

@) b =1, ifb# 0 (00 is not defined)
- * 3 _ -~ ) ) » .
(b) bF = i b#0 . ‘ \ .
¢ . b "
: r .S r+s . »
' ,(e) bE.bS = BT b >0 N
° | : CN
©od) G5 =b™ b0 RIT .
. =~




Exercise Sek6.1

>

N, a
: f ) / ~
’ ¢
~ )
' 6.1 -v7-
;-
¥ )
r ) AR
(@ 25 = 577 b 2o L L
b oz .
(6) T = b8 b >0 . ‘
(g) (ab)f = afbt a and b gre7hot both negative -
. g
' .. [
(h) (%)r = 55; a and b are not both negative, b # 0
. ' 4

b . .

each of the following expressions
calculator, as they are written

calculatof after each has beeén simplified

i .
_3.__
W2
N\ s
16(7.1030) é 14.2060
8 . )

ﬁt
(1 - 6) Evaluate
i (a) on your
'(b). on your
Examgle?
@ 2.4
e
42
\ '%J_
2 ,v2
(b) o
: 42
Dy \Ys-2?¢
9 .2
» 2
/.

3 > '
W22 - g VT LB T L 07,
. ‘ - .
> 2y "481(.0625)°
P 5% 4 5% L
N
L5
' L 4
\ + -y
292 .
~ ]

2060

]




.
1w

. T L. .9 .
< ::.. u"'z‘ LFZ( ’ . "’2'" JT
5 @) . S, 6 .03 :
.o . EE = . . ” -~
A n LD o o (L&) 8 _
.3 VA VA : .
- (9 - 14) Evaluate each of the following expressions to four

. '3deciﬁal places. ° -
e T | 1) V-7

, 11k, 2 V&S - 12)  -5i Vcos 100 . .
i3). » 9L -9 oy T L '
‘ ’ :

(15 - 22) - Evaluate each of the following by using a series ex- -

pansion of the exponent. Compare‘your results with direct calcu-

»
i

lation. .
15) 82 (use2=1+%+ %+ 3+ PR
= A S (X1
%, 3 1.1, 1 1
# 1 . N . ‘ . .
17) 27" (use 3 3+ .03 + .003 +;]0003 + .00003)“\
) Vi 4 S

18) 5" (use 5= .5+ .07 + .00% + .0004 + .00002) - ~
19) 6 1‘5 (use V2 = 1.41421) )
200 8.6% (use U5 - 2.23607) ‘ ' o \
S ) . ’

. . 21) _5? (use §?= 3.14159 in the exponent)

. 22) JE‘B_' Yuse V3 = 1.73205) »

. . ¥V
. ' ' @ .
(23 - 26) Determihe the exact/ﬁalue of- each of the fqllo%ing:
¢ 23)  (1734826) 2 7 24)  (12345)° '
7
25) (27 > I ey (@b
, / .
27) Fill in the blank with' >, < or = g .
2 ' V2 .
, 3y V2 32,7
5 (V2) ____(ﬁ 245

ERIC S < .
N | O

3
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6.2 - Relatiéns Between Exponents and Logarithms

+ .~ -

Logaﬂi@hms, logs for éhort, are a particularly important
- .

. L - M .
kind of exponent. A log of a number is a real mumber that can

be characterized by the followimg definition:

long - X fiﬁ A

Another way to express this relation is ;o'séy:

Definition 6.2.1

b

& ]

Definition 6.2.2 . . ™
- SR AY -1?" ‘
The equation x = lgng is equivalent\to the ‘

v . r

equation N = B%
Definitions (6.2,1) and (6.2.2)_e;::;§s exactly the same %dea in
v a l <

different ways. ~ A
. EXAMPLE 6.2.3 . , .
log, 100 : ’
10 10 1 _ 102 = 100 (6.2.1)

A

2 = log),100 is equivalént to 100 = 102 (6.2/2)
¥
.8451 _

o

logyn7 ‘ - ‘
510 7 (6.3.1) '
7 = 10-8451

_—_— 10 = 16

\ 8451 ='loglo7 is equivalent to

,\\ l 6.2.2) .

From our definitions, the.fam;liar laws of logarithms follbw

-

( ’
immediately from the laws of exponents.
® . ]

X 28‘1

Y




rv‘ -
- - [ 4
o 6.2 - 2
- . ] ~ ‘\ ’
Rules of Logarithms 6.2.4 ' . :
\ P T \ ' -
(a? log; (xy) = logix + lpg,y , , ' )

1 X

o (b ogb(y) | |
{ (c) logb(g?) y log,x - , - A
. 1 v , ) -

(d) 1oggézf§) = § loggx | ‘ B

A —_—

logbx - logby

-

Before tomputing machines became prevalent the power of

Lllogs lay in the fact gﬁat by them multiplication and division

\ : Y :
were reduced to the simpler operations of addition and subtractioh.

Finding powers wa? made much easier "and fiQ&ing roots became

I

reasonable.  Think of how difficult it would be to find 7" or’

5
‘}
G SN BN oEN AN a4 &am A e

é} 2 without a calculating machine or logarithms. An "old-fashioned"
. calculating devicé, the slide rule, is'dssigned around the theory
. % -
\‘( - - °
+of logarithms. A curious tiJ»it eof math history is the fact that. ..

logs were discovered early in the 17th century before exponents

L]

. 4 ) / )
.vere in use. . _
14 -

-

: -
Common logarithm

%]
£

re logs whose baseMsg 10. When no base

is designated, as log 100 = 2, it is assumed in this text that the

-

-~

base is 10. Tables of iogs are —~itten in baiﬁ'ln by tradition

and th2 fact that our number system has developed around the number
) N

16'.". . . . ‘ .
. T - _ o .

. "Logarithms ¢an be produced for any base.that is a positive
. - -

!

number other than-l. Let's develop a four-place table pf'logarithmé

for base 3.

~



' \
. * . {
¢ 6.2 -3 .
" ' ‘
‘w1l o2 a3l 4} s I6 ! 7 | 8 191 10
logyn |- 0 |.6310] 1]1. 2620[ 1.4650 | 1.6310 ll 7712{ 1.8930| 2 |2.-0940 !
a‘ ’, , ) .
- 3 ' 1
32 =1 sologyl =0
31 =3 so logy3 = 1 ) '
We can determine log32 by trial,anp error
5 ' C o 5 0L, ~ NI
. 3 = 1.7321&/too smal} ( = —2—) * ) -
' : . \ g4
3-735 - 7.2795 too big (73 = x231,
. —
{ 31&*5 - 1.9870 too small f 625 _".75%.3
3675 L g 'trmy roo big (675 - 625875, -
Z N .
3-6563 = 5 0565 too big (*6363 - -6875+.625,
36407 5 0215 too big (6407 = .6563+.6® | ‘
- 36929 1 5 0043 too big (+6329 - +64074.625 —
3-6290 _ ) 9958 too small (6290 - :6329+.625,
3°6310° 5 0000 Hubran) - (: 6310 - :6290¢.6329,

‘ .
The following verbal algorithm does this computation.

A\

The algorithm ~_
determines logba.when it is already kmown that logbés'logbakzlogbd

and logbc and logbd are knowd.

* .
Notice the averaging technique employed here. It is extremely
efficient and a device that can often be used in many settlngs
to converge on an asswer

. . 205 .




LI

1 Remembear gz,
' 2. . e ¢ logbc

'3, <f *—-1og$d

“4, g < %(etf)

N

5.  Compute b8

6. 1f b= a

7. 1f bB<ca

8. f «— g

9. g <« %(gte)

10. go to 5

11, e g

( 12. g % (g+f)
13. go to 5
. N '

The beginning of a:trace for Jetermining log.2 is:
, & 083

-

o

., . . . .s
{

.. :
print e and stop

go to 11

.

v

.
-
.
N .
DR DR D B D D Dl B . EE T am Y EEEm e

a b ' C d e  f g bg
T A P |3 0 1 5 ] 1.732
: 5 .75 .75 | 2.2795 )
, | «|.625 .625 | 1.9870
. '] .6875 | 2.1282
. ! - L . _
- ‘ ' ]
logéd = 2 log(2) by 6.2,4(c)
&
= 1.2620 ‘ ,
10336,— 1og32 + 10g33 by 6.2.4(a)
= 1.6310° é
. ~ LRIy



6.2 -5
- 3
:,log38 = log32 + 10034 by 6.2.4(a) .
~ « ]..8930* - )
_ logy9 .= 2 log,3 by 6.2.4(c) - ,
= 2 . o , ,
logy10 = log,2 + logy5 by 6.2.4(a) : ‘ : :

= 2.0960

. ’ ~ .
Trial aud ecror can be employed again to determine log35, log37,

/} and log310

: . N ‘ : ‘

: _Even our small table of logs can be used for computation,

-4 if our calculators and computers: are- nearby J o . T
EXAMPEE 6.2.5

Determine 45

}
Solution: log4> = 5 logy4 =~ 6.3100 . * - .
‘ ~3%3190 _ 1 0247096 so 45 = 1:024.7906 -

s\ -

' By direct calculation 4 = 1024,

R . R . ,
dlearly 47 must be'an integer. A little good mathematical

sense tells us that 45 must be 1,024 slnpe powers of 4 must end in  *

~

4 or 6

¢ [y i ~
i

- * ! This example points out an important fact when calculating
with logarithms. No matter how accurate your tables aPe, you can.

» only hope for a good approximation. Calculators and computérs per-

-

‘ . £ . . s
form many functions by means of logarithms. This.is one reason why

/- Notice that 1.968’9"\§ 3¢.6563) since 8 = 72 \S\O 1oy 3¢ Log2.
295 .
' _ A .
\\ s




A

- : . " - . . . !
even expensive and sophisticated machines -have errors. - -~

> .
. .
;. [ I

o . . ' ' 7
EXAMPLE 6.2.6 . b - N
Determine ‘3}8 . i v
. ¥ . solution: . /
”» | . log 3 é -1 iog 8 #;.2704
, 3 o7 37/
\ ! ,
3-270% _ 1 3459 /"
By direct calculatioh'@ 8 ,@ 1.3459 '
- . ! /.
] l,' LI
At first glanee EXAMPLES 6. 2 5 and 6.2.6 seem to be silly
ways to use a calculator for we can/ determlne the values of 45

/
‘and\) "directly. These examples ate de51gned to exhibit. not

only the propertle& of logarlthms and expOnents but to nurture an
appreciatlon for the historic-l sugﬁlflcance of logarlthms as a

computatlonal tool and to recognlze the genius of thelr 1nvent16n“

e i S

(1 - 10) Use ‘our table ofrogarlthms base 3 to determlne each

|
|
i

‘lx
Exercisa Set §.2 , .

of the following to the nearest “enth. Check your results gy

)

direet calculation. s
n o, U6 2y Jg o R
3) 8%x7 - k) 9% 6
55 \J§6 _ 6) U5

7)21;

1
|
N
l
i
i
o




. -
g
. . "
.
. . . .
- L]
1 A -
-
R . . -

) g

-

-

e N
14
\

_11)

. (l3

9)

L

.eaqh of the followihg to the nedrest tenth.

*direct galculation.

. .2 - . F T
, , 6 7 ; .
&
65 1 10y 3 JT .
B . .
~ ) o -
5 19y 2.
KAVAY . . ;{7‘“
. R » ~
- . 4? .
- 18) Complete the follow1ng table and use 1t to determine’

o«

Check 7our “results by
/ .

K n 11 .| 12- [-"13 146 | 5=
logjn | t
- -
13) ,log3l.2 ) 14) 10531.4,-, . v
- f/ T ' . -
15) 1og3.13 16) 1053.15 ‘ ~ _
17) log3.0015’ . ) - 18) log4.00012
. ) = , . f‘
19) Why are your answers to (15 - 18) negative numbers? )
~ 120) Why. is 0 not an acceptable base for logarithms?
’ -
21) Why is 1 not an acceptahle base for logarithms"
L
22)  Why are negatlve numbers ‘not acceptaple bases for logarithms"
23) Is the logarithm of a negative number negatlve? Why or why not
24.) If long = l Wwhat relatlonéhip lS “true between b and N? _
' 25) Complete the ‘trace of log32 ) I -
26) I-Jrz.te a program for your own. calculatJhg/*deVJ.ce for logb
P that follows ,the verbal algorithm of this section.
l ¢ 27). Show that if-’ {nl, n,, n,, } is a geometric sequence
I ‘ ' then {’I‘&gbnl, logyn, 3 logbn3, } is an arithmetic se- "'
i /7 quence where b> 0, b # 1.
b

You may wish to do exercises 25 and 26 first and use your resulls.

[ ' -

Juy

. ‘
"

*

A
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Logarithms to Different Bases®, *-
AW

- .

bd o . .
In Section 6.2 we deftrmi)ea log,n

/) ship bégween'Ibgs'and=expo‘i?ts’and trié}

I~

. P £ .
- .~to Zonsider the relations

BY i

%, .
& ' {:
:""-' - , " .

fexrent bases.

;. EXAMPLE 6.3.1

il

Let log52 = x

tﬁen .5x‘= 2 just as beﬁofe.
\ . ® Solution: log(5%) = log\z*
. - / x log 5 = log'?
: : _log 2 -
: X" Tog S
. -300 -
.Y ¢ . . 6990.
] ~ _
ff _—— & and loggz = 4307
4307 5

° < Also 5°

We use base 10 only because it is convenient, only a keystroke

. .
- - X

away. Aﬁy other base could also bg used.

"Récall that if no base is specified it.1
'\I‘hus’log2 means log102.'

\ 301

. .
! .
“
.. .
” -
.

">?ind_iog52 to four decf¥al places. .
ke ‘ : a

.

by'ﬁsiﬁg.the relation-’

and error. We now wish

-
-3

o A

taking the log of bo
, -gides by 6.2.4 (c)
B .aice that this is
' .divisiohrgg.log .

.4307

Y

[y )

~

.
i

s

s assumed to be bgge 10,

f

hip betweérj logarithms of numbers, to dif- ’

4

8/

, .
.
: o
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Y L J
’ . - :
' ’ N ) - . L€
}\,\ . ) .'. \ ) . '
| . / 6.3 -2 = .
\d . . - ’, ". , " N
& . - . T X % :
. . - : L
. EXAMPLE 6.3.2 . Using the log,n chart from'6.2 *
. ' - . N )

— . L.
find/lngZ. o ,
. ‘\ Solution: . igt logg2 = x - ' )
h_-' B T phen 5% =2 "/

' B x logs5 = lagy2 -

* 4

x = 228 = L4307,

. These two exampleés illustrate the following theorem: ,
- Theorem 6.3.3 L ' ' X ‘
eorem 6.3. IR
\ Q/ (l
S ‘ ] 1ogby
log v = '

- * .I.Uglbd

*

I. ' and logg2 =..4301 =+

' ;/ ’ Proof: let logéy = X 4
P ‘ . then a® =y
. x _
] - B W
>, = . )
: . P 1ogba = 1ogby; -
o - L
. logyy
' . \ ~ X = —
_ - - ‘ - 1ogba S
l’ Notice that this proof follows exactly the same format as
I EXAMPLES 6.3.1 and 6.3.2. 7
tT » ’ &

*
R
Lad . -
b} -
. .
e . . .
.
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A"

Logarithms can be used to solve problems that gppear, to

the casual obsé&ven, to have no relation to logarithms.

-

/ EXAMPLE 6.3.4 How many digits are there in 249?
Solution: ] ' .
% = let 2%9 - 10% A
l log 249 = log 0™ ]
o B 49 log 2 = x log 10 = x
! * N 14.7505 = x ~
' v so ﬁ249 - 1014.7?05;
1014 <_.101‘4.7505 < LOlS
+ 114 _ : .
- 10 havs'IS digits _
v L. 101°* has 16 digits
| so ~ 10%%730% hag 15 qigits N .
and 2% has 15 digits. ' f/ N
’ 'By direct calculation 249 - 5.6295 X 1014 which has 15 digits.
Notice that for this example it is essential to use base 10.
J
Exercise Set 6.3 \ -
(1 - 10) Determine each of the following to four decimal places.
\o

CheckQYOur_answer by using-an exponential expression.
\

1) 1og254 2) . log3150 . ¢
, 3)  1ogy;0.009 ) 103,0.416
5) logJ—'6 . ‘ 6) logJ§-7
‘ LY
7) logﬂ\ 8 N | « 8) log N 1
O ‘ ‘ . 303 [

' r

ol B R EE =



& 7, . 63-4

z N | ¥ .
w ‘ Q :
.- A = "
9) ‘4 ]:Og‘_0310 ' 10) ].Og.79 ’ - .
(11 - 14) Determine.each of the' following: é
1) ‘l.ognlrf P . . 12) logﬁ\,ﬁ' |
. . : . . |
- . , |
13) . logy@ ' 14) log x2
(15 - 20)‘ Detérmine.how many digits are in each of the following
‘numbers. .
15) 420 a 16) 518
» " , i B . . —
12789 v, 18) 25312 ' ‘ i
. . r' ¢
1) 5799 -/ - 20) 3%
/(21 - '26) Determine the value of each of the following expressions:  _.
log,81 + Adog, b4 log,16 + log,l
21y 3 T 2 22) 2 2 ~
log, 10,000 . . Togs25 + Tog,b64 -
v e . ’
: . ' 25
2 + logy(logs5) . log) , 75 * log,4V2
23) < 24)
3 ‘vlogo.;%r log4J7_ - logj‘?\ﬁ_
25) 5.+ olog® _ 2(TogiZ) % + log M0 + log 51
’ ~ - .
26) 6+ 7'°87%_ 3 1log .00L - log,7 >
(27 - 30) Ve wish to determine a relationship between log_b and
logyas R S B
*
*27) Complete the fqollowing charts ‘ ) :

-3

log,3 | log32 10557- 10g75j log102 10g210 )
N o '/7
S 4 . - .7




-
[ LI

. 28) Create 5 more log b and log,® charts of.your own.

n

29) Write a relationship bétween logabiand logba. (H%yt: .

v ;aq:b%o: woyy L1draTnm) < N J
‘ - 30)‘ Prove your ;ela;ionship'iq (29). You may want  to use l
. 1ogab = x and logba = y and convert these lég expreséipns I
) ) to exponential expreésions. ‘ . ' !
k 31)° Wﬁite.é verbal algérithm to’ compute Jogba assuming tha%- ' l

‘ your “computing device has a log key or log command.

\

-

32) Write, a prodram for logba using your answér to exercise.31.

* A
. ) , ( N
’ N ’ A ]
. « N
~J ‘ .
. . .
e — T
’ a
LY A 3
)
.
4 - -
/- ’
Al - -
-
L J .
.
- . A
-
» - L ]
f .
>
;
’
’ e |
’
(4 '
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6.4 Natural Logarithms and e ©

In this section we will 2

ag
"that is the base for a special kind of logarlthm called natural .

logarlthms.
e . 3

EXAMPLE 6.4.1 Cousider(ﬁi:\zbllowing sequence:

ca+ph o a+pl a+ Pl a+bh ] ashk
B ‘ ~
To determine the first 10 terms of this sequence we can use the

N - - —

following verbal algorithm: "

Né 1, display N° (N is counter, M is term)
Determine M = (1' + %)h, display M.
Nﬁ-Nbe _—

When N = 11.. stop, otherwise go to step 2.

b

S~ NN -

The following are programs for tQ}s algbrlthm

" HP-33E ’
1 0 8 1 15° RCL 1
2 STO 9  + 16 fx¢y -
1 , 10  RCL.1 17 GTO 03 , :
“2\\ STO{+ 1 11 f yx( 18  RCL 2.. . »
) 5 ' RCL\l S 12 5 (term) °
6 R/S (counter) 13 \gé% 2 g?g RTN, store 10 in RZ
7 g. 1/x 14 ENTER
. , , ,
TI 58 _
E 4 .
00 0 ‘ 11 1/x 22 - x>ct .
;01 STO 12 + 23 RCL
02 01 ~ 13 1 24, 01
.+ 03 _ .2nd Wbl 14 - 25 . TNV 2nd o
} 04 \ A ~15 . ¥ 26 x=¢t :
05 1 . 'tﬁ RCL £ 27 A -
.06  SUM 7 01, 28 R/S (stops program)
07 . 01 18 . = 29 RST
08 -« RCL ¢ 19 R/S (term) LRN, RST, store 10 in R2,
: 09 0l 20  RCL R/S

‘/10 . R/S (counter) 21 02 , ~




b

\

Id

3 ' i " “.

TRS-80 . ! ) -
10 N =1 1 5 " It.N =11 GO 10 70

20" M = (1 + PN _ .60 GO TO 20 .

30 PRINT N,M 70 END

40 NE N+ 1 ¥

Load the program into your calculating device and %#{l in the
\ -
following table. Find a to 4 decimal places.

~

T n an ! n an e -
¥ =
1 s 6 .
2 7 o
3 2.3704 8
b4 . 9
5 10 2.5937

~

«

Finding-the 100th term of this sequence would take a long time
(more than 30 minutes) by this method. But we can find the
100th term directly” by calculating (1 + 5 00 = 2.7048

v
Verify each of the followfhg to 8 decimal places

10,000th teérm = 2.71826823 \
400,000th term ='2.71828047
10,000, 000th: term = 271828169 )
100,000,000th terg = 2719263482, ) . o
» soo,o"oo.,froo'th term = 2.71828182 ,
4 -~
It seems safe to assume that the sequence ' .- .

1L+ ploasp’toas L Larp®.

nm . o /- ' ; |

* . . -' ] ) LY * [
Notice that this sequence is neither arithmetic 'or geometric.

J

v | L 30y

- _ "
. : .

‘\‘




\

v . - , 6.4 - 3
8

. i \ g <
. ’ + ' . oy *
approaches 2.7182818" «when k increases without Hound. The
‘ 3 ¢ ) . . . ' <
limit of chis 1nf1n1te sequence can be expressel as: - .-
[ 4

iy -

lim (1 + -) = 2.7182818"

n—+oq
] ' t
Lo EXAMPLE 6.4.2 ' Consider the fol owing series:
' &4h+%+%rhg+l+”. * '1“‘

The sequence of partial sum of this series begins:

$1=1 e ,

v ‘ .
L4l =2 . .
$3=1+1+%=25 7

.\ ': . 3 v .
To determine the -terms in the sequence of partlal sums of thls
/ »
ser%?s we can ‘use the following verbal algorithm:

1. Ae 1, Bé—lg Ce 1, De—1 (A is counter, D ‘is term)
\ -
Display ‘A and D. " .

AhA+1 DeD + 1 o7

Display A and D.

cbuplite C «<C * B

Compuke 1/c N P \
o = . 8

2
3
4 .
5. B«B +1 T ) -
6
7
8. Compute De—D + 1/C . > A
9. Ae—A +.1 | | .

e

7

 ——— : : :
2.7182818" Wpans.a number a.little , bigger than 2.7182818.

Recall that,1by$definition, ol = 1.




1 ) L N
; . v §.4 -4
L. ‘-&*, Y ) . - _
L ' - ' '
Foy e .
pie 10. DiSplay A and D. / .- -
. - . <
11. Go back torétep 5..
{ -
o '12. When %ou have reacHéd the sum you want, stop.%
T The follow1ng are programs for this algorlthm
HP 33E (Ro_ls counter, R3 is term) -
. ol 1 13 STO+ 3’ 25, STO + 1
; 02 STO O 14 RCL 3 26 RCL.1°
03 STO 1 15 R/S (term) 27. {STO X 2
04 STO 2 16 GSB 24 - 28 RCL 2
05 STO 3 .17 1 ' ' 29 g l/x
06 R/S (counJer) 18 . STO + 0 -3 30 STO + 3 '
07 R/S (term) 19 ' RCL 0. - - 31 g. RIN .
i 08 1 - 20 R/S (counter) RUN, gRTN, f fix 9,
09 STO + O 21 RC€L 3 R/S - .
10 RCL 0O - 22 R/S (term) .. 3
11 R/S .(counter) 23 GTO 16
12 1 24 1 ,
: TI 58 o EﬁQO_}S countér, R03 is term) ' ‘
] 0 1 . 21 03 4§~ Ot- i
T 0 STO, 22, R/S (term) X 43. RCL
‘ L) 02 00 o 23 2nd Lbl 44 . 01
| g 03 STQ 24 B 45 2nd PRD
. 04 1 25 SBR —- 46 02
05 STO | s 26 A o 47 RCL
o6 02 - oL 27 1 . 43 02
07 STO N 28 - SIM. B 49 1/x, ,
08 29 30 .. 50 . SUM -,
( .09 R/s/ggguncer) 30 * RCL 51° 03
10 R/S (term) 31 00 52 INV SBR
. 32 - R/S (counter)“ "LRN, RST, R/S
./F 33 RCL ‘
3 34 03
RCL — 35 R/S, (term) ]
15 ©00. 36 . GTO . :
16+ R/S (counter) 37 B : o ' Vi
17 ' 1 38 . 2nd Lol ]
18 SUM y .39 A
19 03 . 40 - 1
20 RCL 41  SUM* . -
. ‘ . , /
e 300 °




20 A=31B=1: C=1: D=1 '
‘ 30  PRINT A, D * -
40,. A=A +1 ” .
50 D=D+1 , - _ .
60 PRINT A, D. ) ; 9y
70  B=B+1 : { . :
80 cC=C*B .
90" D =D + 1/C
100 A=A+1" ) ‘
11lvu PRINT A, B v
120 IF A'= 16 60 TOo 130 . ’
130 GO TO 60 . ~
140 —~ END . - ,
. <~ s L}
,Load the program into your calculating device and f£ill in the
B ’ ‘ 5 . ‘ . ~
following table. ~ - .
1 . '
Find §;, to 8 decimal places. : .
- n . Sn ’ ? n _ Sn - ' : e
fJ 1“ 9 e .
2 10 : _
3 ) 11 .
X 4 i 12 2.71828£93 , ‘
5 T 13 - & -
6 2.71666667 T 14 2.71828183
7 15 .
2 8 2.71825396 Je | : ~
. . v.

I

It seems safe to assume ghat the series .
- ,“ - . 4 ——— e PR *

1 1,1 .1 .1 1, = +
oT £ IT‘ﬁ T+ gr * ZT;+ ...\+. kTt approac?es 2.?182818

when k increases without bound. 'This infinite sum can be expressed

’, . . N . [
—= " as: ' } :
[ o) -
° B 1 = ' ¥ + A "
N z: = 2.7182818

- me O P

3i0




6.4 -6

. Y .
1 L N\ | :

. *°

This number 2 7182818+ looks like a very spec1a1 number

—— '
~

aE
~

P

ndeed it igh It is the number g. One cf the many ways to/, 1‘

e

definEJe is theafgllowingi ’ - S . .
[ ] ’ g i ‘o * ! L
i * Definjtion 6.4.3 . C . : T
. Lo _ 31 ) |
e = lim (1 + = = —
. m—poo n Ag !
= 2.71828187 . . .
~ ! eis an irrational number so it 'has no éxact representation} .

as a decimal. - e is also.a transcehdental number. This means
N .

. , *
\ that e :ennot be expres$ed as the root of a polynomial equation.
e is‘probably called "e" because it represents a special-kind of

exponent (as you will see latér) #md because it was written

2
. .
when it was flrst developed by the great mathematicians

"

/
Euler and, Gauss. Another ‘of Euler's important distoveries is
the remarKable equation involving five}important constants: —
ry . -
. s

i : ' )

»

y; e is the base for natural logarithms wﬁiph are usuafly writ-

ten as In rather than loge. . -

. »

Definition 6.4.4- o )

.

’ . ! . -
.. /-,

‘ x = An y is equivalent fo y =-e* g/
~ . /

¥ L _ Lo
Other transceqﬁentaL numbers are ﬁ: log 2, 2J7. If this idea
intrigues you refer to Numhers: Rational and Ixrational by Jvan
Niven, Yolume 1, New Mathematical Library, the Mathematical As-

sociation of Amerlca
) L]

ERIC - - 31



will see a lot more of the 1mportant and surpr131ng constant,

e, in your future mathematical career.

) ) . \ .
Natural logarithms are the '"best'" logarithms te use in

/
many applicatlons of the calculus and in modern\analysis. You

Y

-»

.

’

~ -

R . \
gﬁ your calculating device.

Exercise Set 6:4
1) ! netermlne how to dlsplay le
(2 - 7) Refer back to EXAMPLE 6.4.1.
2) -Find the SOOtP term of the sequence
3) . Find the 5000th term of the sgquence.
4)  Find the 107 term of the‘sequence.
5) !Fied the 1010 term of the sequence.
6) Whyﬁls your answer to (5) ”strange”’
n Write a few sentences to conwince another student that
lim (1+ D™ = e # 2918281828, |
(8~- 11) Load your‘calculating device with the program of
EXAMPLE 6.4.1.

to determine:

4

8)
)]

\ ] ' .
Estimate how long it would take your calculating device to

v

the 20th term‘of'%he sequience: .

the\50§h term of the sequence

determine:

10) % the 10° term of the sequence
11)

the 1010,term of' the -sequence

14

- -

.How long does it take your calculating devied

-

A



.

»
’ 7
- \ -
culating device with th® program of ..

te
)
i~
to

s N\
Find each'of the fgllowing. For calculators:

4

Clear the registers before each run. Store the—apprqpriate

number in_Ré. For comﬁuters: Alter line 50. ' \ ‘ I
200 1 ' 30 1 — i
12) . . 13) =
) aT. D) ol '

30 1

» . ’ '
TSt oar ST a1 ?  Explain. e
< ~ T omeg . mav . ) ' ‘ -
J5) Write a few sentences to convince another student tHat

4

oo 1 C '
Zﬁ‘r = e # 2.718281828.

meo

16) Determine a relationship between ‘lniO and }oglq?.

17)' Prove the re}aFionship you developed in exercise 16.
(18 - 21) Decide whether c=ch of the following is trué‘%r
false. Give a reason to Supporf your answer. -

18) In x < log x for x > 0 . o ,
19) fn S nx- Lny |

. v e '
20) In xP = /n px ) . N
21y elne - \ S
' 'k'vBA : ) ) ' !
(22 - 26) Coptinued fractions were studied by the great mathe-
*

maticians of the 17th and 18th century and are the focus of

" mathematical research even today. A trontinued fraction is a-

fraction that continues. . - - LN

* - )
* "A good reference is Continued Fractions by D. C. Olds, Vol.. 9,
New Mathematical Library, the Mathematical Association of America,
1963. 4 : ‘ \

l', .
“ Q ‘ P

-~



2 et
7 = 9t ax

Continued fragtions tan be infinite.

o , !
Examgle: 1:{'= I+ "2 +

. - ,
Are you ready? e = Z 4

22) Verify the continued fraction representation for %79-

{
L

319




(23 - 24) Approxiglate" 2 by
t t ~ X - I
23).. | 7 28)
I+ 2
.24

L+ |

~
s

-

(25 - 27) - Approximate ‘e by
. 25) |

& +

P

N

27) What is wrong with the follgwing ':prog"?

L et 41 -0

eiﬂ‘ - -1

it
e = §i
—2- Ve

S
| .

\ Z#Olso'ifotor !




6.5 Natural Growth and Decay, and Applications .

- &

é . . .
52 - The name 'matural" is appropriate for\E?tural logarithms

befause of their appearance in various léﬁs of growth and decay.

~

Radioactive mglerials decay at a rate proportidnal to the

. ‘ . i '
“‘amount of material\present. This is characterized by the equa-.

. *
tion: - «

kt - I .
- y = c-e?

y is~the amount/jf material remaz;zhg at time t- .,
¢ is the amount -of material present at time zero
k depends on the” particular substance and the units being

a18ed.
. , ‘\‘J -
EXAMPLE 6.5.1 (Radioactive Decay) . |

A physicist has 20 grams of rdadioactive radium.
The half-life of radium is 1600 years.” How mich¥of the
! AN

radium will be present after (a) 2000 years
\\ (b) t years
(¢)* How long will it take

for 2 of the 20 grams of radium to disappear?

-

4
]

——— : R 6 - )
A given amount of radium will be sglfegone after 1600 years.

-




(a) We musq,firgt détermine k:
' 10 = 20ek(1600)

“In 10 = Ln 2061600k *
In 10 = /n 20 + 1600k /n e
In 10

In 20 + 1600k {j)ﬁ A
1600 =k -

) \ #:' .

In 10 - /n 20

I

2000 years.
(b) —y—'; 20e" i0004t

'(c) When 2.grams disappear there will be 18 grams left.

18 = 20e" - 0004t

ln 18 = Jn (20e"0°04t)
In 18 = /fn 20 +'(-.0004t)/n e -
In 18 = /n 20 - .0004t

ln/tf-zn 20 .

7. 0004
" 263.4013

t

Two grams will disappear in gpproximately 263 years.

-.0004 = k ‘ : '
\\ ‘ .
P y = 20e" - 0004(2000)
. . y = 20e" 8 Pl
’ y = 8.9866 . .
There will be approximately 8.9866($rmm? left- after '



-

esent. This is also characterized by the

. of the pepulation

kt

equation:
' n y =c-.e . -

'y is the sime of the population at time t
‘ -9

. 2 i¢ the size of the population at ti&e zero (your

Zi
p ‘'reference point)

k depends on the particular population being con- i

N sidered and the units being used. é

—

EXAMPLE 6.5.2 (Population Growth) Py

The numb®r of bacteria at 9 A.M. is estimated to

? be 1000. At noon the bacteria count iglestimatgd to‘Be
N TN

- - . . . 8500. (a) How many bacteria are there afté; t hours? i
(b) When will there Qg;approximately 20,000 |
Bécteriaj \

u(a)) We firsg'need to find k.

. ., 8500 = 1000eX(3 - s

~ o L 8500 = In 1000 + 3k /n e
. | Ln 8500 = fn 1000 + 3k

=+ Jn 8500 - In 1000 _ "
=

‘h .- v 1134 =k ) ‘ Jf—;

e




6.5 - &4 . a4 v

. .
. .
/\.__\
N »
.

' y = 1000e" 7134t |
« . Vaud g ‘ i | -
. - ) There will be approximately 1000e'7134t
| bacteria after 6>hours. ‘: <
- Tb) : " 20,000 £ 1 006'713,1“: ’ . . ‘
. . 20 = é-713ﬁt: ‘ K
- In 20 = - 7134t n e tL : |
h - In 20 s ¢ - 1 v
- —713% : |
4.1992 = t ‘ N c
. 4 hrs. 12 min. = t ™. L .
- 4 ) . ' ) '

At approximately 1:12 PM there will be 20,000 bacteria.

\\\ EXAMPLE 6.5.3 (Bank Interest) C L -
= .

As seen in Chapter 2, if a bank gives intereét-ai a4

"rate compounded annually, the amount in an account is

J\/'\
given by the formula
A .
' A=P 1+ DM

// . A is the total in'ehe account after n years -
\\ ’ -2 > P is the initial depqsit‘ ..

. v Fi !
i-is the rate of Interest expressed as a decimal.

— . . - ’ ” 1
& \

,(as Find the total amount of $1000 invested a§ a rate
" of 6% for 10 years. A = $1000. (1 + .06)10 . °
= $i79n 85 |
+ . If the bank gave compound interest the formila would be

] A=P (L + %)“q

‘o |

Q ' Py Lt ‘. }
ERIC o , 19 . o
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where o is the rfumber of times the interest is

cpmpounded per year.

The expression (1 + —)“q should look familiar. i is

fiXed and small. gq and nq’ are gefting very large. Recall

iy

~ without restriction (continuously) the maximum total amount

would be determined by
‘ A=p.eft
- . :
r isrthe yearlz‘;ate in decimal form

A is the total accumulation gfter t years
2
v P is the principal (amount®invested).

g Continuously compounded, interest is a "natural" growth.
»

/ .
that lim (1 + —) = e. o, if, banks compou%ged their interest

/ . N ) - -
Relation 6.5.4 T, N
v . ' v - »
’.f ‘ 1 * Natural growth ahd decay at”a rate proportional to
. ; the number present 1s‘th£racterlzed by the relation '
A - y =c- ekt * 2

"~ EXAMPLE 6.5:5 (Rocket Launching®)

LN T =

{ ~ The velocity gained by a launch vehicle when its

. propellant is burned to depletion is expressed b( the
- I - . ' . .
o {
Refer to page 6.5 -1 for explanaLion of the variables.

**This information is provided courtesy of the National Aero-
nautics and Space Administration publication Space Mathema-
Y tics PP. 72-7 ; :

340 j\“f

A
. . . .
I : «
4 . [ ., ’
N

\30
‘\ =




O\

.~ : 4' ' . , } 65 _.?r.:
. . ) .

\ \ o .
equation’ v = c¢.In-R. The dauneh velocity gaiged during

.« -

the burn 1s v, the exhaust velocity-is ¢ and R is -
the mass ratio. The mass ratio R is defi%sg by

- _ takeoff weight-
? ‘burnout weight °

. entize-launch vehicle or jusé\é_§ing1e stagef The takq:

This ratio applies to either the

off weight consists of propellant (fuel), f, s%rﬁcture;

- ” 5, and payload, é.A Thus the thass ratid is )
g L R FP+S+P
‘ T XS +FF
D A \

- At burnout all the fuel has been consumed so F = 0. It
. .
has been found that the wefght of fuel cannot be more than

about 10 times the weight of the structdre.\\,,——*‘“‘~s

(a) What is: the 1afgest(possible value for R? v
- , e .
‘ © ‘R .10s+8+P _ 1lls+P _ 115 + 11P - 10P
S+ P : S +P S+ P
| 10p -~ | ’
= 11 - S+7 ’%_hl

= 4

If R =11 then P = 0 so the rocket woﬁld have no room .

for a paylqad.’ ’ ‘
! ‘ . N ' =~
( (b) 1If the highest energy propellant availdble for take-
off from Earth hagf;n average exhaust velociéy’of §,600 feet
‘ {
per second, détermine-the velocity of a launch vehicle with,
' R= 10, - " v =9,600 Jn 10

= 22,104 .82 feet’per gsecond.

( . | ?21

.,
R R R el
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-

The total launch velocity of a vehicle must Ee
about 34,000 feet per second so this vehicle/gannot
fly.‘ Even if R = 11 the launch velocity would not
be 30 Q00 feet per second. .
(c) What must the exhaust velocity be so that the
vehicle in (b) could be placed into orbit?

. 0,000 = c 4n 10 ‘ \ .

13,028.8345 ft/sec = ¢

-

. \ ¢
The solution to this problem is staging. As seon as

— the propellant in the first stage has been burned, the
§\stage i/s jettisoned and permitted to fall into the ocean

go that the vehicle is freed of deadweight. The second

and subseqnént stages become more effective and orbit il

possible.’ : :

Exercise Set 6.5

1)° Apsume that the number of bacteria B present dfter t

minutes "is given by the formula. N = 200 e'27t.

a) How man§ bacteria are present aftler ¥ hour?

b) How many bacteria are present after 2 hours?

c) How lcng'wili it take to have 15,000 bacteria?

The half-lifé of radioactiye bismuth is 5 days. If a
i . :
scientist has 15 granfs, -

(a) How{;;ch of the bismuth will disappear after 12 days?

- (b) How long will it take for 6 grams to disappear?




¢
’

#ne gram of radioqctive lead is made. At the end of

two hours .04 gram remains. What 1is the haif-life of

radioactive lead? . ‘

. 4
In a certain culture bacteria grow at a rate proportional
. - , - .

to the number present. At a certain instant the number -
of bacteria present is 1000. The number present 10 hours
later is 7000. How long does it takéwthe population to

d le? T
o’ub € ’ v

Smart Sidney deposits $5000 in a bamk that continuously

e 3
compounds its ‘5% annual interest. How mmuch does Sidney

have after 7 years?
Sidney deposited $5000 as described in exercise 5. Susie
deposited .$5000 at a bank that compounded its 5.57% interest

»

morithly. If they both intend to leave their mopey in thefir -

respective banks for 5 years, who made the better invest-

ment? '

The population of Buffalo, New York was<532,759 in 1960

and 462,768 in 1970: Assuming natural 'growthf, predict

.

the population of Buffalp in 1980:—

In 1960r£ﬁe popﬁlatio of Atianta, Géérgia was 487,000.
In 1970\th§ population was A97,000L Assuming natural ‘
growth, when will the populatio; be 1,000,0007? . '_
The wo;ld's pépulation doubles in about 33 years. Imn 1970 !
‘the world population was about %,OOO,GO0,000. Assuming

normal growth, what is a reasonable projection for the

world's population in 20007 —

/
.
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10, _ In solution, sugar decomposes at a rate proportional
to the amount still undissolved. - -
« (a) Express thisbrelation as\an exponential equation.’
(b) 1If 30 1bs. of sugar reduces to 11 1bs. in four
hours, when will 80% of the sugar’be decomposed? =
11) Many-satellites have radioisotope power supplies. The
" l power output in watts of such a supply is given by the
' - eguation P = 50 e"t/250 where t is the time in days.
(a) How much power will be available.at the end of 1 year?
(b) What is thg half-life of the pewer sﬁpply?
(¢) 1If the.equipment aboard the satellite requires 10
" watts oﬁrpower to ‘operate properly, what is the
- ‘ ) operational life of the satellite? )
12) n approximate rule for atmospheric pressure at altitudes
» less’ than SD-miles is that standard atmospheric pressure,

14.7 pounds per square inch, is halved for each 3.25 miles .-

of vertical ascent. '

L 4

(a) Write an exp@nential equation to express_this rule.
(b) Determine the atmospheric pressure at 20 miles. o ¢’

(c) Find the altitude at which the pressure is 25% of -
) v

L]

Co standard atm&spheric pressure.
(d) What alt1tude is just abeové 99 percent of the atmos-
" phere? (Pressure and density are proportioqal the6
desired altitude is the point at which the pressure

is 1% of standard atmospheric pressure.)

.
° .
. (9] -
&
‘ . . . a
«

"' o 324" ¢ | ‘
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6.6 Exponential and LogaritHmic Equations
' N
. Our knowledge of exponents and logs allows us to solve

many very sopliisticated (and complicated-looking) equations.

is calléd an exponential equation. An equatio;“;;\§hich there

-

I
y An equation in which the unknown appe-ars in an exponent l

"is the logarithm of an expression involving an unknown is cal-

led a logarithmic equation. ' I
R . ,

e .EXAMPLE 6.6.1 - Solve for x and check:

‘ ’ TR 32xj!-1 - 111—x

v LR 1og (5\ . 32x+1) - 10g (111"x)

|
- ) log 5 + (2ﬁ+1) log 3 (1-x) log 11
' log 5 + 2x log 3 + log' 3 = log™¥l - x log &} o

2x log 3 +.a log 11 = log 11 - log 5,- log 3

log /1l

x (2 log 3 + log 11) log 5 - log 3

_log il - log 5 - log 3
X = 2 Tog 3+ log II

X = -.0675 (to 4 dectial places)

. Chegk: - | ‘ : R
. « . 32(-.0675) + i | 1l - (--0675) g
5 . 38650 " 111.0675 {g\
12.9324 12.9326

This problem could also be easily done using natural \

logs. Logs to any base could be nsed but log and In are

-~ easily accessible on calculating machines.




. : - . Y .
- ‘ . . /-\
» ' .

EXAMPLE 6.6.2 ° Solve.for x and check: .
. ’ x108 ¥ _ 10,000 x> ;, T
1 log (x1°8 *) = 1og (10,000 x3)
" log x - log x = log 10,000 + 3 log x
(log x)2 =4 + 3 log x -
L ! 2 ‘ \ v
~ ‘(log x)© - 3 logx - 4=0 ////9 -
) \\\/4 . r

0o

log x:ﬁ\i.o ‘or log xt1 = 0

. (log x-4) (log x+1)

log x =74 : log x = -1
x = 10,000 X = .lx

Check: ) _

10, 000108 10,000 10,000 (10,0003)

- 10,000" .| 10,000% p ,
- .1108-1 10,000 (.1)3
- M 1 ’ .
a1l 10,000 (.001) ‘ S

- 10 10 -

/ Clearly log i¢ the only reasonéble choice here.

\

EXAMPLE 6.6.3 =~ Solve'for x and check:

’/‘ . / . . . ) -
Sl * e?* s 2eX 4+ 1= 0 T
Sl - (e*-1) (e*-1) = 0
G X
. o e” -1=0
f
) e* =1

/'ln eX = fd 1




L

&
Check: . X N~
0 20 _ 2041 | o
el - 20141
12 +.1
_—
EXAMPLE 6.6.4 Solve for x and check .
batn x+1) =.7 °
ol (x+1) _ .7
Since e[n N N, --In (x+1)= e".7'
» -
o < L7
_él:l x+1 e®
7
x+1 =,ee
' - x+1l = 7.4914
| x = 6.4914

gheck:

In In (6.4914 + 1)
Ao In (7.4194)
In 2.0138"

K€




EXAMPLE 6.6.5 . . L

" Togg V3x + & .= 1.73 - .
SlngJ'§x+4 . 51. 73 y i ‘ . )
\j3x +7

v a3+ 4

S

.

161889

" x = 86.0271 -
"Chegk: ‘ . B

logg J3(86.0271) +4 .| 473 ,
logs 16.1889 | ‘ ;

| Ln 13\15@2

1.73

»

- ﬁ . : . -

EXAMPLE 6.6.6 R N, -

x=J2,+J2+ﬁ+ﬁT+_.?T"

A first attempt at déiermining a more_"oédinary“ form for o

x might involve evaluating the finite expression

~ )

'. .' Zém Lzﬁgfa-da%ﬁ S

x = 1.9998

Since x > 1.9998 it seems reasonable to expect x = 2.

e

But, this 18 clearly not a good enough procedure. C A

[4 . * '

262.0814 L : ;' -




K
J

. -

T coo b ',3=J2+Jz+\l2+... . . el
, . 7 o B B R . »,
) " . So T x =02 + x s ] N

x2=2+}E s ) ! ! *

xz‘x;2=q

| '
4 T C e . |
¥ x-2Dx+1) =0 - < i

. —x-('2=0 x+1=0 ° - -
. . "' - ' - -
. . x =2 x==-=1" )
v . g . x>0 sox# -1 -,

.+ sb indeed x = 2. .
\{ o, <®
R 4 M T e ° ] -
This example’ is not rélated ii logarithms and oaly\rembtely

= related to exponents, but it is a eresting .kind of hemai:i?l

o expr'essioi:x. The technique is worth remembering, especially if fou
- - e "~ _,,_‘ -
.~ want someday to be a star in a math contest. ' - /
" ‘cer_cis'e Set 6.6 T
vy (1 - 4 S‘oiﬁe for n. . AR
'-"' 1y L= ar®™l . ) x = aladn
. , “« . . & [
3) ‘x-= 1og3n . "4) x2 =3 +fAn
. : .
(5 -‘i8) -Solve for x to four'decimal,pllages. . LCheck '?our‘ N
an'swers. ' ' ' . ) C
‘5‘3‘ 57x - 75x+}. . Yo 6) ‘3x+2 - 5x—2, :

A

7-‘) /loé log (x+1) =.-.2 . | 8) fnln (x-3) = -1.2

[




_" e 6.6 < 6
?} o \
95 fbgs (x+1) + logsa(x+2) =1 S ' )
"10) ‘logy (x43) - logx =2 = —— ‘ | -~
/ e S

13) x"*=15 1) x98X., L
'13) e 3e® 420 16) e™* . ¥ = R |
). In (Inx) =1.2 . 18) 1log (log x) = -.3

.

(19 - 20) VSolvg for x: - - )
19) x=U3+ 3+ 7% ... 200 x=ls+Us+ 57 .

R ' -~

(21 - 24) A technique similar to that employed ip EXAMPLE 6.6.6

) . ) *
can be used to‘gvaluate infinite continued fractions.
1 : - -

[ 4

- + 2.+
Y - 1. ‘
X0 l= e ' *
. L 2 + 1
- 'r . . 7+ .
-'\ } _ 1 K E
. x—,1+ r— .
1 IR ' -
x =1+ \
x(x+1l) = x+Y + 1
x2+x=x'+2" /
)
x2 2.2
‘ o x =02 ,
) ) Refer to 6.4 exercises 21 - 25,7 _ 4
AR . 350 . B

7‘ g
Ay
"]




. 6.6 - 7
‘Solve for x: T
) x =247 —— 22) x.=3/+%
+1 + 1
i1 1
! . + 1 / : . + 1. .
’ 2 \ 611 -
' 5,
T ‘Q -'.
, \, ’
) ) N
N\
'
|
¢ e
v . ‘
il . ! , -
v 1:\' : ‘
4
. ~ - ’
R - * L
. * 331 4
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6.7r Graphs of Exponential .and Logarithmic Functions .-

>
v

In this section. we will carefully consider the graphs
.of exponential and 10gar1thm1c functi.ons These graphs con- ;
yey important ancL characterlstlc mformation about these two .

qlasses of functi.ons

| EXAPLE 6.701 ' (
. ‘ Graph the folLow’ing functions: ’
- X
» . f(x) 1.2 . |
O E(x) = 1.4% \ ~
. g £(x) = 1.7% <o :
] ’P'tf“f<x)=2.’" ‘

- _ - ,’f(x) = X .

: ‘= 3.51{ . .

9 d: '( - LN
“ £(x) = 10% -

~

AR )

1) From the graphs of each of these functions determine the

K «’:’ (a) domain ‘ ‘
o \ g (b) range
’ | (c) - £€0) : _
() + £(1) R - ‘
(e) . the character of .f(x-)“as X —f -0
“: (f) © the character of f(x) as x —* + oo

. (g) the continuity or \discon_t;i\ui‘t_y of f(x)
" (h) the character of f(x) as x‘'increases b

* o o i,

’ - . * . . S

) o 2) Make a list .of g‘eneralizations ddout f(x) = b* when b>1"

N
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Lo 6.7 - 3

. -~

2. The class 6f functions f(x) = b*

as follows: - P
(a) The domain is all rxeal nuthbers
(b) The range is/ﬁilbposixive real numbers
(c) £(0) ="1. The graph passes through the point (0,1)
(d) _f'l(b) = 1. The grash passes through the point (1,b)

(©) Mm £ =0
‘ (f) 1lim £(X) = + oe - ) -
R o0 .
- c N
(g) They are continuous throughout*their dpomain
., (h) As x increases, f(x) increases
-

* . ! . . . .
In calculus, this characteristic.is Scalled monotonic, increasing.

L}
’

e

. Solution: 'i:qsing t@e tecﬁniqués of graphing dgveloped in o~
‘} v sgction 5.1 we‘c;n prograﬁ“our éaléglatiqé deyice to compute
;- + ordered pairs for.each of tﬁesé_fﬁictions: (Use d < .5). We :
. obtain ;hé preceding ggaph}W,- T .
® ) . . o -
Coe .
- 1.-: : ) - .
10 IR Yl IR NN A 3.5% 10%
’aQFvall reals alllre;ls ail n;al§‘ all’;ea}s all reals| all reais-;
b:‘{x | -x >0] | x> & {x | % > 0}'{}: i x > O} {x j,7£> Gi{x | x >~q {x ﬁ$
el L1 1 | 1 ! 1 r | 1
d |- 1.2 |71 EXE R e . 3.5 10
e P00 | £00 | £ =0 | £(x)20 | £GO>0 | £x)—0 | £(x)=0
£ [f®)seo |[£s0 | f)mee | £ o | f(x)mag | £(x) 2o | £(x) b oo
g | continuous | continuous | continuous |continuous |continuous |confinuous |continuous
H’__ increases iﬁbreag;s [ increases * ‘ingfeases. increases ' increases increases
- — 7 — z

b>1 can be chafacterized

f a




. : 6.7 - &

We have been able to compile an impreééi e list. Many of
these stateiments will not be proved until‘you study the '

Calcylus. Each statement is true.

EXAMPLE 6.7.2

Graph the follbwing functions

f(x) = }ogllzx

f(x) = log1 4%

f(x) ejlogl 7% )
f(x) = 1og2x . * -
£(x) = In x

v £(x) = loggx
- | yadh
1) From the graphs of these functions determine the:
. 4
a) domain,

: b) range
o 71w
~ d £

e) the character of f(x) as x-—40+ *

f) the charatter of féx) as x —»+ o0
g) ’the continuit?ﬂbr_&iécdntinuity of f(x)
h) the charactcys of f(x) as .x 1increases

.

1) thb‘invérse of f(x) (denoted f°1(x))

2) Make a list of generalizations about f(x)- = logbx, .

when b >Nl.

[ 4

x-—-%O+ means as X approaches zero from th; positive direction.

335 .
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Pld

Solution: Again using ‘the techniques of graphing de-

veloped in section 5.1, we can program our calculating

+

 device to compute ordered pairs for each of thése f/unctions.

(Use d € .5 and logbx = %%g—b’s . Store b in FCA.) . We obtain
the fallowing graph. '
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£(x)| 1981.2% 4{;1 4% | logy g% | logyx | 1;1, X logyx log x +
=él_/ ! x>0]/(x! x> 0} |{x l‘x>03*{x | x>0 |[x t=x>0} {{x | x >0} {x’"x>0f
b [all reals ‘all reals |.all ré&ls all realsj‘all reals| all reals|all. rea
c 1 1 1 1 1 1 1 NE
d 1.2 |* 1.4 1.7 2 |- e T3, |10 T
- . - : =
e |EX) s ol f(x)>-oo | f(X)r-00 |£(X)> -00 | £(X)r—oo |f(XK) >0 |E(x)—-Ib
£ f(x) oo | f(x) =200 | f(X)—>o0 |f(X)—> o0 |f(X)—veu f(X)—~>oo |f(x)—
g continuous | continuous | continuous continuous "continuous continuous conti;t-
I - | increases increases increases increases inc!'eases increasés increanl_
i | 1.2% 1.4% R BT B 3% 10%

\ (h)

characterized as follows:

42)
(b)
(¢)
(@)
(e)

(£)
(g)

i

statements.

the Calculus. Each statement is true.

S .
One easy way tq tell inverses of functions on a graph is to re-

lim f(x) = - oo
K ~y— o0

’

__2. " The class of functions ka) = log,x b>1 céan be

o

The domain is all positive real—numbers .
The range is all real numbers

(0)

+ oo

18 £00

They are continuous throughout their domain

‘ - -
As x increases, f(x) increases. £f(x) is monotonic

@

increasing.

f-l(logbx) =

Many  of these statzmerit. «ill not be proved until

flect the graph along the lt/e f(x) =

Again we have been able to comp:ile an Impressive-list of {

1. The graph passes through the point (1 0) -
(1) = b. The graph passes thrqugh the point (b 1)
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Several ,combinations of : AR Th- l
exponential functions appear 3
$ often enough in physical ap-
plicatlons of mathematics to 3
be given special names Two | 3
examples are -the hyperholic
. sine, denoted sinh and the ‘
hyperbolic cosine, denoted : .
cosh. : ! 1
. < : y an
X =-X : . TZ7 1.
- 1 T 1 '
sinh x = -£ e . . : : AT T
2 : i : T
: i RamaaaaEE
‘ . dainaeaasssseEEes
X | P
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cosh x = 7 . . , + anw EEERE A
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‘ EXAMPLE 6.7.3 s f x sseusenn
‘ L oA : 5 '
» T
. - M4 IEERF 8
Graph.f(x) = sin h =" . i :
eX - X - ? n
3 “in the .interval
. . Tﬂ[ 4 1
/ [-3. +3]). Use the technigues : ] f H
—_— .
from Section 5.1 andichoose . ! -
: , ET I n I e
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Exercise Set 6.7

-

(1 - 5) A Consiﬁer the graphs in EXAMPLES 6.7.1 and 6.7.2.
Answer each of the following with >, <, = or none of these.
1) If1<a<b, x>0 then a* . p¥ |
2) 1f1<a <b, x>0 thé iqg;x ___r;_logbx
3) 1fa, x>1 then'a® log_x
4) 1f0 < x <y then , logbx — logby
5) If 0< x < y then b% by
—
~ (6 - 8) Complete each Q} the followingxwith <,
.8inh x + cesh x x .

(7) cosh2 - 81nh X L\\\

8) cosh2 x + 31nh2

g 9). graph £f(x) = sinh, g(x) = cosh and hkx) = % ~on the

same axis in the interval (-3, +3] . What relationshlp

holds among these functlons when ‘x > 07

(10 - 13) Consider the class of functions f(x)';wbx where
® < b < 1. Some members of this class are:
~ f(x) = .5% o
TE) = 01X
f(x)
f(x)

& : . N
F rhe shag; of this graph, although it lﬁoks like a parabola, is

called a catenary. It is not a parabola becaUSe it is not a
polynomial.
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10)

[}

11)

12) |

L 13)

~ (14 - 17) Consideréthe class of functions f(x) = logbi where

i
y
¥

;
1 . .- -
- 14

P ' ' ¢
Graph each of these functions and determine
a) domain j
b) range ? !
c) £(0) 5 . a
d)y £(1)° :

e) the characfter of £ £f(x) as.x — - oo
) the charac&ef of "£(x) as x—>+oo

g) the contin@ity or dis¢continuity of f(x)
h) £N(x)

i) the character of £(x) as x increases. ]
Make a list oé generalizations about £(x) = b when 0 < b < 1.

Compare your lﬁst from exercisell to the list of EXAMPLE 6.7.1.

Make a list ofégeneralizatioﬁs about £f(x) = b* when b > 0,

b#1. :

L

Graph f(x) = bx when b = 1. Does this fit your géneraliia—
tions of exercﬁsell? Why is 1 not considered as a base for

an exponential’ function? : ~

0 < b < 1. Some members of this class are:

f(x§ = log ox ) . -
f(x§ = log.olx

f(x} = loglx .
% 3
£(x) logzx
: 7

!
\
)

!

‘

Ll

ol

f




6 7 - 10

14) Graph each of these functiems and‘determine

a) domain ' : -8

b) range o .

o) £ty -

d £l .

e) the character of f(:f) as ;c—-»0+ - k ' . '
f) the character of f(x) as x '+ oo . I
g) thé continuity or dlscontinuity of f(x) -

h) £ 1x) : C l

i) the character of f(x) as x increases. .
- - 15) Make a list of generallzatlons about f(x) = logbx when

0<b < 1. o

e

-

-16) Compare. f%ur llst from exercise 14 to ¢he list of EXAMPLE
6.7.2. - Make a list of géneralizatlons about f(x),-»logbx
when b >0, b # 1. ‘

17) Graph f(x) = logbx . when b = 1. Does this fit your gene;ali-
' ,. zatidns of exercise 15?7 Why.is 1 not considered as a
for a logarithmic function?’ A
(18 - 19) Consider the class of functions f£f(x) =.bx where
b < 0. One member of this class is f(x) = (~.5)%.
18) graph'f(xX‘= (-.5).x ‘ ' T :

19) What outstapding characteristits does this. functjion have?

<

(20 - 21) Consider the functiong:

f(x) = ¥% g(x),= log,x
g(x) = x? ' Lix) = log 2 - *
‘ , h(x) = 2% w(x) = 2 log x
' ) = xE - n(x) = log.x
. 311
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i

" .20) Make a sketeh of each bf these functions.

J
f

- 21) Which of. thése functions are inverses?
225" 0n the same pet of axes, graph £(x) = lnlx[ ‘and

g(x) = lln l . Compare these two functions
23) The function] f(x) = x* has many interesting properties
a) Graph'f(x) = x* when x > 0.

+

b) when x’S.Oﬂ . .

c)

Graph f(x) =

—

Based on your answers to a) and b), )whatﬁean

e i

you say about 0°?

—
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; 6.8 . Loﬂarithmic Scdles . - : ) "/ :
. " In this section we will consider several uses for
Ly Lo .-
loganthmic scales -4 . . : |
'é Ordinary graphs are made on p )e‘f that is divided into

Ctr
. units by 5uniform scale. Often it is more convenient, more -.

“‘revea'iing and more practicala’bo use another kind of scale calli‘t
a logarithmic scale. "On a logarithmic *scale the orc'ig#\ repre-

% gents the value of eghe variable and the other convenient values '
. ) ® 4’ ‘
of the variable are marked at distances from the origin corre-
" .sponding to the‘logarithmsf : ﬁ
ne - . ‘ g
" EXAMPLE 6.¥.1 - - 4

) " . Construct a logar’ithmic gcale.

.a 5 . @ N . ) N R
\Th‘is scale is detemined by the log of\each of the numbers.

. Since logaritMS can be determined for any appropriate base,
i v

Ty

log scaI‘es can be made to corr@spond to any different choice

of un1t 1en-gth T sca1e is mace' from a unit of an inch and
\J “ . _u . - . ‘\
base 2. . . . \ ST
log,1 = 6~ 0 inch, . log,6 = 2.6°—* 2,6 inches
B 10g22 = IQ——"Q inch "log27,= 2.8':-—‘-2:8 dnches \.
‘." ‘l * log,3 = 1 6—>1.6 inches _ '—10g28 = '3.‘——3—-3 inches * \
' ‘ logzﬂ = inchés, . rogzﬂ = 3. 2-—-—-—‘»5 - inches \
" log,5 = M‘ inches ‘ log,10, =,3. 3 — .} inches .
e ' . \ ) .‘
) “ . - * Ld ) i — ) ‘ d l
.’“ " N 343 - .
. Y w’ . )
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6.8 - 2

Py

- Before the wide availability of calculatorS'and com-

nuters'many in"olve calculatlons were comruted by a device
i »
called a sllde rﬂlp. A slide rule uses the principles of ¥

Y logarithms and logérithmic scales. A simple slide rule can be

constructed by making two logarfthmiq scales of the samgq base.- -

Multiplication is carriedqput by the proéerty that

o
log xy = log x + log y. The sum of. tRy logarithms is given by

the sum of the corresponding distances on the .scale.

EXAMPLE 6.8.2 S
3 Multiply 2 xE3 on ~logarithmic scales.,
Ad, 2 3 + g & 7800,
T L | - 3 T -y
e B e s irgg.
. v‘ . k] 1 4 ) § L t‘ﬂ;\v v R
C D
~_  log.2 = AB
,  log3=c ~  °

‘log 2 + log 3 =PAB + CD = AE thus 2 3 = 6

P4 |
; .

ust as for linear scales, there is graph paper -having,
1ogafithmic scales. If both scaleg are:logarithmic it is called

full logafithmic paper. If-one scale is.logarithﬁic and' one is

linear it is called semilogarithmic paper. The principal ad-

vantage of ldgarlthmlc or semllogiﬁlthmlc graphs is that certain

functions have much simpler graphs on these kinds of paper than

on linear scales Because 19gs are only defined on positlve

-numbers at most twq{gnadsfnts, rather than’fopr quadrants are

. . <
necessary. i )

- - 344 (\
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6.8 -3

.
‘ \u
.

| ~ EXAMPLE 6.8.3

X .I'l 1-2 | 3

Graph x7y -

A table' of Vhfugs is: -

era |5 | 6 T | s

’;

3,224 on full logarithmic paper. ..

\'-/
10

| 9 |

’ Ty ‘.2 li707t.385
. o
”.._
K %0
20
y (.
- So

g0
20

~—

Liso!.179| :156l 1108| .0981 074 | .63

- - — - - ."_17_5‘ _
- SR Hem e
- e a el e
S - N
- B A
T, RS
« ‘ . N e T
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; I

|
i
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: - ~ 6.8 -4
_ S |
| ' This graph is a straight Jine because
. . ~
' logb(i3 y2)_= log, 4 ' becomes
,3 lbgbx'f 2;10gby = logb4 _ which=is a linear
~ . R - .
equation in log,x and l1dg,y .-
* 9, PO
‘PXAMPIE 6.8.4 9
Graph y = ;x on semilogarithmic paper.
v . ] logby = x(iogb3) . o

. Since logd3 1is. a constant it is convenient to
' ‘ .
r y and a linear scale for x. A

'S
use a log scale

?i>tlfab1e of valué27i :

X { ‘0 L 1 ngi
1

IE

L]
)
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. Exércise Set for 6.8

‘ ) v
(1 - 10) Build a slide rule\GEIhg,Semilog graph paper and

use it to cbmputg each of the.fdllowing:

‘1) 2x8 ' . 2) 3,x6
3) 5.3x6 T W w2x3
5 2.7x 1% " §)  5.1'x 2.3
N (5)? 8) (N?

L]

9) (1.8)3 1) (249)3

LY

(11 - 14) Develop & way to divide on a slide rule. Use
yaur "hpmemade".élide rule to determine:

11) 50 s 2 . 12) 18 =3

)

13) 3.6 + 1.2 *14) 4.8 + 1.6

(15 - 18) Graph each of the following on full log paper.

15) xy =3 16) xy° = 4

17) xy’=1.7 ° 18) *%y3 = 3.1

(19 - 22) Graph .each of th% follo&ing on semi-log paper.

y = 1.7% S 20) y=2.5%

(21) y = 23x “ . "' ‘ 22)’ wy = 31.1)(

.

FE 3

(23 .- 28) ldentify the scales-dn-which each of ‘the folldwing

* would be a straight line.

235 y = x3 51/ ZZ). y2 = x3
25) *x3 - y1. - 3

27) y = 72%




_ ‘ 6.% Chapter 6 Test -~

v

(1-2) Evaluate 6@ 4 decimal places:
- 4 o ¢
1y J-T T @ D loggs .
- 3) Determine the exact value of 318, iy

4) Determine the wvalue of
‘ log 8 %g s logZJT
“ ' 1og416 - log3 W3

1“‘

) 5) Determine the exact value of lim(l + E){.
o _ . o L oee )
65 " Solve for n: 'S = ar® ! k& )
(7-8) S&lve fo? X to,d decimal places:
7y 5¥Y2 = 3%2 C 8y log e (x-3) = -2

(9-f6) Identify the scales on which each of the following. would

be a straight line.

3

9 y=x 1)y =

-

A]

11) Assume that it is known that the nimber of hacteria: N,

present after t minutes is given by ‘

a) How many bacteria are prescnt after one-half hour? -

b) How lpng will it take .o have 50,000 bacteria?

1}

e p
REN)

L8




Test 6.9 - 2

‘{12-15) Complete each of the following:

12) The domain of the function f(x) = 10g2 1X is
lay =

Lexy =

15) If £(x) = 1.3 then 1lim f(x) =

Ny ~oo

—

13)  If f(x) = log,x then £~

14) 1If f(x) = logbx then £~

——

(16-20) Decide whéther‘bacﬁ of the following is true or false.

16) In xp='£npx ;
17)" 10%98 ¥ - & N | /.
‘18) The natural log of'd negative number is a negative
number.

19) .If . 0<y<x and b >1 then b'< b*.
20) Lnlxl =,|[n xl
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CHAPTER 7. TRIGONOMETRIC ‘FUNCTIONS

In this chapter we will discuss some familiar ideas in
newﬁsett{hgs‘and some new ideas in familiafrgettings. In parti-
cular’we Will study the amazing relationships between trigono-

metric functions and complex numbers.

7.1 *Circular Functions

T

We wish to create a function that associatgs t real numbers
with the points on a circle. We will call this function, €, for
circular. The domain of C is all rel[ numbers and the”range of

C ig the points on a cjrcle. For easy reference let(; locate our

circle on the coordinate piane having center (0,0) and radius 1.

e LN L
b b1 N,
¥ & -y

S

a}l real number

-

To have a place to start let C(l) = (1,0). The other functiona?
values of C 4an be determined by "wrapping' the number ling around

the unit/ftpq{e. The circumference of.the unit circle is 2 7~ (-

8o some functional values of C are easy ;p'determine. .

c( T2 Oy

c(™) = (1,0
L3

C(-—j—) '= (0,-1)
c2m) (0:1)




_— _ < 7.1 - 2

14

N - -
* 1

One intefesting pfbperty}of_c is already apparent.

< . .
' © e =c@y =c-2T) =cw®)y =c-4 Ty = ... -
. o 4 \

C is clearly nottal -1 functfpn. Iﬁfinitely many rgal numbers

- ar%Jassociated with the same point on the unit circle.

~
C(t +.2W ) = Cc(t) for any real number t.

Definition 7.1.1 A function which has the property that it re-
5 . N ‘
. peats in value at regular intervals is called a circular function

(or periodic function or wrapping function).

-~

P

-

. } ,\' ~
Our function C repeats at the regular interval 2 ¥ so it is
' . said to have period gji'. Another interésting property of € is

that since it is mot 1 - 1, it,SZthg_have an ipverse.

' Let us determine more of ;he functional values of C. Our know-
'.lédge of the cifcle and analytic geometry can be brought to bear. in
our’aﬁalysis. -
X
EXAMPLE y.1.2 What\is c§ 7;)?

; Soluqion: c(0) = (1,0

c(+) = (0,1)
g _
cip) =2 *




Aleg) o ..7.‘1l3

- C(0)
: L, \
€ : rd
LN\ :
-
r(€£\ -75; y) where x and y are the sides of a square

. “whose dlhgonal is 1

. 8D x2 +.y2 =

1§ - .?{2+x2=

- ) 2x? =

N‘v.;;lr-‘r-‘r-‘

X = y
« /

thus’ C( ) = ( V2 t)'2) = 7071 .7071
A )-

EXAMPLE 7.1.3  What is C( -3-)7 :

o)

o c(@) ﬁ) | | s
el
\ »
. L o .K 0(0) N )
F < -
v | 7

.

3 z (ZIT) SO 3 is 3 of the.way around the c1rc1e
starting at (1,0) so & = 3(360 ) = 60° and x = .5,

ERIC " 353~
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y = .5!}_3.30

/

C(T) = (.5, .8660).

e , o .
EXAMPLE- 7.1.4 What is C(1)? l
<" N\ . /}_ . f
Solution: % = .7854 <1 < = 1.0472 I
4 ’ 'g *
~ 7 T . -
- %(I '3') 35(1-2') = 2-2; = ,9163 too small l
- S WL %(15") 150 . ge17
) V1A 3 = = ~Z3 - 6(.:00 small i
%(}-55% + I) = %(31" 9—"{ 1.0145 " too big

%(-% + 3;2) %(—é—%) %/2—?"-; .9981 close enough.

.0 ‘ 3
T .9981 = (.1589) 27’ so 1 is apvroximatély .1589 of the
" .way around the circle startlng at (1,0) so & = .1589(’600)'

. "( - ’ =57O . /\

(’,U)

: v - o v
x = cos 57°,°y = sin 57° &0 C(1) = (.5446, ~8387).

354



. 1L-5 .

Voo . ““. '
A Qgtter approximation of C(1) is 5.5403, .8415). -Can you tell

«

wvhy? Pause to think for "a minute before you continue reading.

Y

. We have reail9 been discussing the familiar concept of radians.

) 4
Thus we can makg.the fdllowingxgeasonable definition of C.. e
Definition 7.1.5 . N e~ 4
R . ‘
. Let t be a real number and C a circular function of period
-\ )
20" then ) .

C(t) = (x, y)-where
kg
X =cost, y='sintand t 1is in radian measure. .

-

"EXAMPLE 7.1.6 ’ | ' ; |

(a) Determine C(2). _ :
C(2) = (-.4161, .909%)
L g ~ :
(b) Detgrmine all t-so that C(t) ="(.8660, .5) .

0.5236
0.5236

Cos™! (.8660)
Foo. . sin! (U5),
Thus t = .5236 + k 2 ° where k is an integer.

~

Py

‘Notice that 5236 radians & 300 * ,
L | )
| The symbol f means eq;iv§Léntn ﬂ
‘ a ] é}si;‘ | .

iy




1 ‘f
E .
/- - A 7.1<6
. (t166°)'$t> : S
1 > &= .S.23LMAI'J&5
y s N - )
h) 4 -S- 2.
~ , o 13
—~ - o= B
\ -
. R f
) 9
g ) A 2
Ao

~.

(¢) Determine all ¢t

o

so that C(t) = (-.8660, .5)
Cos™l (-.8660) = 2.6179
sipl ¢.5) . = ‘5236

2.6179 # .5236 What could be wrong?

1

Recall that the Cosnl(x) and Sin-l(x) . functions deal only

-}Jj

~.with principal values of cos"l(xf and siﬁ’l(x).relatioﬁé.

355 -




L ]
» ’ s -
' | .
S .o
” ‘\/—‘
S *,} .
, - : \ - & 7.1 -7 v
& | . . oA
s - - . 4 ) * | . R
"o - . . - 3 -
: .now/fg < t < O for t on the "first wrap"
3 'f\' ,\' N )
D et .5236 < ¥ put L <2.6179 < W,
, y 2z 2 e

_ Recall® that sin & =#sin (180 - &) (in degrees)

\,’ Vo so sip S 4 =-’,sin ( - 6:))\/(in radians)
so sin (.5236) =/sin (2.6179) ¥
and t = é.6l79 + k2T where k is an integer. )
. - . !
, . S b
- . Exercise Set 7.1 * '
Ty, < ' ) M - - k)

(1:- 6 F'oxj each of- the, fellowing determine two elements i:n the .

: " . - )
range of C that are Tqual, to the given point;where C is a circullr

function of period 2 . g - . ) s
o ) T - . . R
' ' Example: -~ o .
e c(3) =ce+3) =p3-6T) -

T ) e . _
3) ¢(5 7’!\) . 4y C4(3'I,I" ) \-» ! R
5). €(-.3573) " ; ~ 6) .- p(-1.5826) . 7 L
LT . S N

{7 - 12) . For each of t}re'followin'g determine two elements in

. ' ' . 4 - v % -

= ~

) the domain of C*, where C* ‘is a cir.cu'lﬂe;r function with period 4. /

» 5‘7)' Y.y, L8y ceny -
S Mo L 10 Lt o
1i) yc*e) T L1y cfedty
) . . N ‘ ) %

35>




7-1 - 8

(13 - 20) , For each of the following let C be a circular function

from the réal numbers to the- unit circle with C(0) = (1,0).

13) c<4§) 14 ?rcv%g)
15) €(- -30 ; \ 16)  Cc(-3)

17) ¢c(5) 18)  C(10) .~
19) c(V2) 20)  C(e)

£

/
(21 - 26) For each of the follow:Lng. determlne all t so that
C(t) is the 1nd1cated-ordered pair. .C: tK—-> unit circle such

4hat C(0) = (1,0).. Express t -in radians and degrees.
. * l\

21) (.7071,; .7071) - 22) (.5, .8660)
(U573, -2/3) 26) g§§/3 V3/3)
(-.6, -.8) o, 26) 7 (-.4 -.9k6§)

L]

Determine: - oA I

In each ‘of the followlng, P is a periodic function

P’OY = (x, 0) whcre x > 0

¢ .
\A

Find p(0) S -

-3 .

Det'ermlne the perfod ol erch function P
27) P(.6435) = (3,4) 28)  PaT) = (3,0
2§)6(-2.8176)= (-1, -2.9782) 30), P(2:1112) = (5, +3)

-

m - . *
* - . - .
- - ‘ 1 . # * AV
+ 0
. . S
\/ . o * A -~ -~
. .
[ . . ¢ \ ‘
. - e P
»




7.2 \Polar Coordinates

-

at

i

You are.f¥miliar with the idea of associating points in the
plane with ordqred'pairs of real numbars. The rectangular or ..

Euclidean or Carteéian plane is a,gfid in which the ordered pair_

/

associated with a point is determlned by it§ directed dlstance
vertlcally and horlzoﬁislly, from two perpendicular llnes Thus
the ordered pair (x,y) represents a point, P, that is x distance

vertically and y distance horizontally from these lines.

’
-

Another system of locatlng P is by measuring its distance ~

from the origin and the angle that the ray -’ oF makes with the

positive directlon of the vertical axls

.
- J ] =
’ -
R .
i -

e




. The segment OP is designed by p (rho, pronounced rd)
and the angle {  (gheta, pronounced tha ta). Thus P, in polar
coordinates, is represented as ( £ & ) The or1g1n 0 is called
““the pole. The distance / may be any ‘real number and is measured
along the terminal side of & . rf\P is negative it'is‘measured
along the ‘terminal side of & extended through the pole. & is

measured counterclocMvise if it is positive and clockwise if it is

(-2, -150°) and (2, 390°) all rdpresent the same point.

(2;30.) ~P(~2,2l0°)

|
ﬁegative. The polar coordinates (2, 300), (2, -3300), (-2, 2100), ' :

] . [ Vam [
.

. Clear&, there is no 1 - 1 correspordence of ordered pairs and

~

points in the pdlar plane.'

Points can be plotted cqnveniently on polar coordinate paper

that has equally spaced concentric circles whoge center is the

-pole and equally spaced radial liaes ..ngvgh the pole. - ®

w 300
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It is often convenient to switch from rectangular coordinates

1

to polar coordinates or vice versa.

From trigonometry jt is clear that
= X 1 = o = Z
cos & 7 » sin & \% , tan {r z

LR

l ’




’ . 3 ' ¢ 7.2-4

and —-

~J
[
Pt
»

]

p.cost”, y= P.sint"

r~o5 9
- {0=-f,‘ x2+y2, = arc tan% -

* These four equations allow us to easily change from

g

one systen to anot}i. Most scientific calculators have
special keys that allow you to perform a change with only

a few keystrokes. Microprocessors can be easily programmed

v -
- » "

1 to execute these conversions. . d
' & .EXAMPLE 7.2.2 . Determine how to change the rectangular ’
cdordi.naté (x,y) to the polar coordinate (f , B i
. 4
HP33E _TI-58 | TRs-80
(key y) (key ©)
~ ENTER , Xx>< t. 10 INPUT X:Y
(key x) T , 7 (key y) " 20 A = SQR(X12 + YT2)
g —>P INV 2nd F -~ R ‘ 30 B = (TAN(Y/X))*_57.29'8§
(Jdisplay is {9 ) (display is &) 40 PRINT ".("A","B")"
R‘l{ : x % t - . ‘/, l

2w

. (display is £ ) (display #s ¢ )




Exercise Set 7.2

- ’

(1 - 10) Plot each of the following polar .coordinates.on polar

i

coordinate paper.

-

1) A(3, -30°) 2) B (6, 60°) i
3) €0, 20°) 4) D (-1, 180°) /
o ﬁ”° c
5 E(4, 0% 6) F(4, 1) - z
21 3
7) G (+5, -=3) 8) H @3, 7)
7
9) 1(-2, Iy 10) J (-6, -2259)
(11 - 14) Characterize the points whefé\\ -
1) p=2 12) p=
| 13)  § = 45° N 14y o =P

f
i 15) Determine how to change the polar cégrdinate~(f7,9f) to the
_ rectangular coordinate (x,y) on yoﬁ& calculating device.
- (16 ; 21) Find the nonnegagive‘polar coordinates for the follow-
j' ing points (a) by hand : . j
i. (8) by using your calculating device.
165 0, 2)
' 18) (- V2, V2)
20) (-4, -3) | 21)
l .
|
I

|

T ' (-1, 0) s

19) (2 J3, -2) |
(-5, -12)

Find- the rectangu;gr!Coordinates for each of the%fol~

(22 - 27)

lowing points (a) by hand 1l : .

(b) by using your calculating device




22) (6, 270° 23) (-8, 150°)

24) (302, 1359 : 25) (2, -30°)
\ 26) (-.5, - 27) (-2, %;

(29 - 30) Confer section 7.1 and use your knowledge of polar

coordinates to| find:

29) ¢(5)

30) t such thap c(t) = (.5, )

S




/

7.3  Graphs of Eguations in Polar Coordinates

We have transformed points from rectangular coordinates °
to polar coordinates and the reverse. We can do the same for

equations. Recall equations from Seétion 7.2:

' X = pcos y = L 8in & x2+y2=/’2

&= arc tan :Z:

EXAMPLE 7.3.1 . Find the polar coordinate equation cor-~

.-y *

:
respanding to 3x -:2y = 2,

»

Solution: 3x - 2y = 2 ‘ 5

3( P cos® ) - 2( g sin &) 3 2 by substituytion
» T -

3/°cosé--2,osin9' 2

P(3cos & - 2sing ) = 2

&

Y A G 0N e aE B e
R,

EXAMPLE 7.3.2 Find the rectangular cootdinate equation

3
1 + 4 cos o

3 .
1 + 4 cos

‘corresponding to L =

. Solution: T

/0,+ b P cose =3
L+ bx =3
: - 4x
P - 24x + 16x?
- 26x + 16x2

- 24x + 15x2

365




We can aiso graph polar equations.

L)

)
) EXAMPLE 7.3.3 Graph the polar equation
pP=2(1 + sin &)

A program is helpful' in determining coordinates.
0 | 10° | 20° | 30° | 40° | s0° | 60° | 70° | so°
2 ' 2.3 | 2.7 l 3 | 3.3 | 3.5 l 3.7 l 3.9 l 4.0 ~l 4

| ' | ’ |

100° | 110° | 120° | 130° | 140° | 150° | 160° | 170° |.1

4 | 3.§-l 3.7 51 3. 1 2. 2.3

e
190° | 210°
1.7 | 1. 1

300°
.3




[

This gfﬁph is called a cardioid because it is a heart shaped curve.

y ' - )
\\\ Exercise Set 7.3 ‘ 7

(1'- 10) Transform the following eduagions to the corresponding
- polar coordinate equations.

1) x =4 S22 y=-3

3) 2x -3y =17 4y x =y +4

‘ - ‘
5), x2 + y2 =9 6)  x%y = 10
v




7.3 - 4

7 xy=17 - 8) x2+y>-3x+2y=0
9) x2 - y% =10 , 10) y>=3x °~ >

(11-20) Transform the following equations to~the corresponding-
. i . -
rectangular coordinate equation.

1) p=3 12) & = 30°
13) P =3sin@ +3és©& 14 P=3sgin & - 2 cos&
N «

15) p cos & =8 16) P> sin & =9

o2 ‘ ] 3
1 L= IF3cosE 18 £ = SIme FZcese

19) /0 = sec & ' ‘ 20) = tan®-
a ’h‘ 3 f

(21 - 34) Graph each of the following on nolar coordinate paper.

Plot points at 10° intervals.

~ 21) p.= 1+ 2 sin & - 2522) -,/O = 1 - cos 9-‘
23) p =3 cos 28 ~ - 24) f = 2 sin 36 |

. 25) [ = tan & - 26) pP'= sec &
m pereie ® ot rram
29) P =242 cose {50 p =3+2sine i
31) A =36 - 32) pOr=6
33) ,/5= 2% _ ) . 34) /0 = 4 sec &

L
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7.4 . . Polar Form of Complex Numbers . . o

Compiex numbers can be graphed by uéing a ébgl;;;ate system
having a real and an imaginary axis. We can also graph complex
numbers in polar coordinates. 4

Let z = a + bi then
/‘mw
v b |— % =a+bi
P .

4

cos &

a g i

N

sin &

-y
“ Reals - -

Rio*

| 4

2% rcos® andb=rsin©G . Thus z=r cos®& + r sin & ‘

2

-

) ) & )
or z =1 (cos & + 1i sin & ) .and explain the following important

definition. -

Definition 7.4.1. Let z = a + bi be a complex
number then z = r’ (cos & +'1 sin & ). This
is called the EQlEE form of a complex number.
The length r is called the modulus of z and the
angle © 1is called the argument of z. .

Since r 1is a length it is alvays rionnegative: 1In fact r

is the absolute value of z or r = |z| . Recall that lx[ = in,
g0 r = Izl = U(a+ bi)z = \Ja{:x b2 . : : £\7
. . » : o
1 4
s 369




7.6 - 2

¢

-

& EXAMPLE 7.4.2 ‘ Express -2 + 2i J3 in polar' form

V-2 + (2 13)2
NG+ 12

ces & T SmG' '74_3'
3 s
cos & - sin& ”7

e - ". 690

© must be"a 2nd quadrant- angle.
sin 60° = sin 120° so & = 120°.
-2 +2iU3 = 4 (cos 120° + i sin 120°)

~
s

4

«This éxau‘1p1e exhibits the need to ren;eﬁber the following identities.

;
i

sin (- & ) = -,sing cos (- ©) = cos &

s

sin (180 - &) =sin® -  cos (180 -& ) = - cos&-

The following verbal algorithm can be used to write a pro-
gram to do this example.
remember a, b.
22 2
T, e + b
ra

O & cos (r) remember &

remember r

dlsplayr e, 6"

1
2
3
4. G'* & sin -(; , rememlger 6‘
5
6

StOD

-

% : .
& and & are both included in this algorithm to help us remember

that cps-l)'c ‘and sin” ™ ' are not functions and we may have to think

370 : o

~

.

-




A

AR z(cq\4§>2 &.31n €>) then

3

: - 7.4 - 3
A ~ “ )
: ' - ol 7 g
\ cax':'éfull'y before we can decide the value of & . . .
¢ ot . ' ’
EXAMPLE 7.4. 3 , Express 2(cos 230 + i- sin 230 ) in
standard algebraic form o *
A3 - %
) 1
. 5130 - - . . <
S /{ ‘ a = 2(cos 230%) = -1.2856 .
P . S - . . ‘ 0‘ . -
. hE & 7 . b= 2(sin 2307) = -1.5321
. - .
T4t ., 2 (cos, 230° + i sin 230%) =
' v " -1.2856 - 1.5321i
Th\:a followmg algorlthm can be used to ‘write a program to do
this example. ~/ v ' ' ) ‘é

- 1. Remember r.&
2. a « r cos &
\.

PR

, remember a

? - ' 3w b &« 'r sin & , remember. b ' :
! 3 * . - P . .
s - 4‘ di:spl‘ly/a: b ,’ . . 4 : ‘-/ . ‘
» ls,l" S»tOp. t.. -, !/ .
‘ ' - | ‘ S T et

* . - ’ . . i . ;- ‘. - i L "' . ) \

4he polar formy of complex numbers enable us to easily multi-
. . 2 ; :

~

ply and divide th‘em?‘ : _ ‘ . -

]
. A} r

!

" Theorem 7,4.1_' . If zl =n {cos 9- + i sin '9—1) and_

- 212 r]_-r2 Ecos(é +G—2)+1,s1n(e-1+6-2)]

Proof “ ' ’

21&2 = [rl(cog &1 + i sin.@‘l)_‘_]‘" . '[rz‘ (Gﬂ? 9'2 +1i Sinﬁzﬂ

=1 'r2 -CC')‘S',&I cos @}'+ i co!»@”l sin 92’+ i s'in S2 co's.ﬁ)

CN .,Al +. ) . e—l 4 o - R ;
' o ‘i” sin sin '] p ,
- ) . 1 g’ .
- P - - ' ’ . * )
"‘ - ¢ ‘ R . ’ i N - .
. v . . ’ P .. -
. 371 . s
» - A “ .
, : . ~ .




Recall that:
. . » -
cos X cos y - sin 'x sin y = cos (x+y)
» : \
sin,x cos y + cos x sin y2= sin (x+y)

212, = I Ty [cos €, cos.&, - sin & sin &, +

! i in & &, + &, sin ©
. 1.(sm 'ijcos 2 cos £, sin 1)]

‘.zlzé = Lffz'[cos ¢ &i‘+ & ,) * isin (&4 + 82)]

»
* \

EXAMPLE 7.4.6 Find the product B -

~

I(cos 32° + ¢ sin 32°): 5(cos 106° + i sin 106") Fa
P 1) [cos (32 + 106)° + i sin~(32 + 106)°

_ . _ A

15 _(cos 138° + i sin 138°) .

-
[

" Theorem 7.4.7» \/ ’

i

If zy = T (cos 6‘1 + 1 51n 9‘1) "a.n_c,l

ré (ces' 6’2-‘+ i ,sux 8'2). then‘ ' .

- . A ‘ .
1 ' : : ‘
i__—z- [cos ( @'1 - .erz) + 1 sin ( @'1 - 8“2)] . | .

L3

r, (cos. &L\’ isin ©p)
r2. (cos S, 1 1{ sin 9.2—) ’

#
L]

ry cod &+ i sin erl) ' (cos.@g - 1 sind 62)
r@i&z + 1 sin e—z)'-' (cos &y - 1 sin 5—57 .

»




r_]_._ (cos ©

Rgcall éhat

CCa

.8in x cos y - sin y

'sinz X + cos2

EXAMPLE/ 7.4.8

1205 €~ 1 sin @ycos EpF 1 sin &p-1%sin &ysin ;) -
2 . 2 | ! '
(cos® &, + sin“ &)

2 2 | B
8'lsin 92) + i(sin & cﬁos@i)].

2 + sj.n2 Efé)

B

cos y + sin x

"

- tisin (&) - 6]

the' quotient

5 (co¥ 120° +°i 'sin 120°) 3 2(cos 212° +

i

"= 2.5 (cos 268° + i sin 268°)

It is eustomary to represent the poiar forms of complex n

in terms of positive angles?

sin 212°)
[cos (120 - 212)° + 1 sin (120 - 21f)

cos (-92)° ¢ i'sin (-92)0]



Exercise Set 7.4

(1.- 8) Rewrite each of the following complex numbers -in polar

* .
form. ’ . . : »
N

1)
3)
5) .- 6
7). 5i , -3i
; L)

(9 - 16) Rewrite each of ‘the following polar forms of complex

numbers in standard algebiéic form.
b4 v

9) 5 (cos 30° + i sin 30%  10) 3 (cos 210° + i sin 210°) |
11) 3 (cos 90° + i 51n 90° ) lé) cos 0° + i éin 0°

v
13) - .73 (cos 118° + i sin 118°) 14) 3.42 (cos 243° + i sin 243%)
L15). J"(cos 275° + i sin 275°) 16) U7 lcos 138°% + i sin 138°%) <

(17 - 2&) Perfofm the following operations.

17) 3 cos 10° + i sin 10°) - 5%cos 106° + i sin 106%)
: . ,

18) 2 (cos 135° + i sin 135°) -7 (cos 213° + 1 sin 2139

6 (cos 78° +7i sin 78%)  .,q) (5 U7 (cos 238° + 1 sin’238%)

19)
~ 2 (cos 27° + i sin 27°) , K\\ 6 (cos'103° + i sin 103°) °

L3

v . ‘
1 ! .. 5(cos 10° + i sin 10°)
;- [o) (o] 22) (o] AnO
3 (cos210° + i sin 210°) 2 (cos 209° + i sin 209°)

4

21)

A A
-

You may want to write programs using the verbal algorlthms pre—
sented in thie section.




’ . 7.4 -7

L3
L]

14

23) 3 (cos 18° + 1 sin 1892 24) 5 cos 250° + 1 sin 250%)2 ° .

(25 - 28} Change.the following compléx numbers to polar. form,
perform the indicated operations in polar form and fthen express

. A . A 3 .
the results in rectangular form.

25) (2+3iU3)2-4id3) " - 260 ({3 -1) 2 1+ id3)
27) (5 - 21y ¢ (6 + .51)  28). (L.+ 31)%

T
29) Findothe distance between the points a + bi and ¢ + d.l .

-30) Show that if i‘l(cos 9—17+ i sin 9‘1) = r‘zgcos 82 + i sin 9'2)

tl;‘en r) =1, and 9'1 = 9‘2 + k 360° where k is an integer.

/-
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g

7.5 De Moivre's-Theorem

-

) In section 7.4 e developed means for multiplying complex
' ' numbers in polar form. We can gxtend that idea to -powers and
roots. ) § - - -
Let z = r(cos & + i sin & ) and n a positive integer =

then

= [r (cos B + i sin &)J . [r (co‘(}+.i‘ sin@l R
' . -

- ’ . .- ~ A . .
p Lr {cos & + 1 si {) n terms . $:?

=rr [COS(@’+€'+ +b’)+131n(6'+8’+ +@’)
- hw o deomns, : -~ - N'Qms

[cos (n&) +1 51n (n- 9)]
thus [r (cne@’-l—lslne')@ = nIEOS (n- 6)+l$ln (n- 9)]

*

We have just proved a spec1al case of a more general theorem

known as Delloivre's Theoren.
]

‘b[? Theorem 7.5.1 (DeMoivre) . ‘ %
« { )
If n be any complek number then T .

[* (cos.br + i sin& )] ™ =" [cos (n6) + i sin (n'&)] T

\

— -

- . DeMoivre's thed¥gg*is named after Abraham de\F01vre (1667 1754) .
He was born in France but did most of his work in England where he
was a friend of Newton and a fellow of the Royal Socxety "-. '

Using DeMoivre's theorem-we gan not only find powers but roots -

of complex numbers. - § . .
» . . . .
. s

- o .




Y
?

EXAMPLE 7.5.2 Determine (3 + Z;i)10 using De Moivre's

Theorem.

*

Solution: 3 + 4i < 5(cos 53.1301° + sin 53.1301°)
[5¢cos 53.1301° + 1 sin 53.1301°)] 0= 520Fcos (10-53.1301%)
i sin (10.53.1301%]
= 9,765,625 [cos (171.3010)° + i sin (171.3010)°]
= -9,653,286.999 + 1,476,984.007i
~9,653,287 + 1,476,9841

A
-~

EXA@ELE 7.5.3. Using DeMoivre's theorem find the three cube

roots of 8. . i
o 8- —— e

Solutlon ‘.f 8 (cos 0° + i sin 0°) and

8 = 8 [cos (O +k - 360)° + 1 sin (o-+'h360)?]
A
where k is any positive integer

g5 8% Feos (9+k360 i sin (915§3§Q)°]

2 Lcos(—) + 1 sin(j)oj when k = 0°

360) ] ‘when k = 1

720 J when k

n

If,k.= 3'the result i same as for k =

2(cos 0° + i sin 0°) =
2(e6s 120° + i sin 120°) = -1.+ i3
2(cos 240° + 1 sin[2400) 1l -iJE _ t

-~ ¢

po—n

. The cube roots of 8-are 2,':1 + iJE, -1 - iy3.




7.5 -3

It can be proved, by means beyond our present grasp, that:’ j
e'=1+-élt —g—! —3-!- _%44_”«. ¢ o ' l
Acos@' 1 - 2—!- gf g .. l
sing - £ - 704 &7 & +§é;;9
v
I
I
!
i

where e is the base of natural Logarlthms and 9' is measured in T

-

N

\éa:zns ’
. If we.let i-0 = 6‘ where i = 'r:—l- we obtain

an’, Gant 08, ap®

cos & =1 - S 3 - i
* VAR 6 8
T SRR - S | Il /L et
2 . ) SLTIT T T T+ 5T "'}8-!- + ... ‘ '\
. ; sin & = «ig"_ (i6)3 .\ (ims “.%er (m)9 3
. \ . T 3 St G =T
T 2.3 4,5 .6,7  .8,9
s ; ) .ivp
: R e S + 0 - )
- 3 5 7,9 )
sin & _ 9 B ) 1) )
—1 - 1 tTTm otsr tyrtaort
‘ . . . - ﬂ
/ _,_5139’-;-’_I_15§n c 2L - isinf
- . - . g g‘: ‘3. ﬁl} )
. cose-i'sin@{=l+1-+2-r+§-r+m.+ .
.. . . - —de'_ , ’
eos & - i sin@’ =~eg = el = e-;é"
' no]w re.Place é;’by -(‘7 , cos & = cos\(;ﬁ’) ] )
"S,i-n E’ = sin(-é‘*) y { -
and we obtain - . ) “\\ |
‘ cos - +7i sin & = RL O ~ "-/7
O /‘ ' . , . : . I . .
ERIC _ o 375 ) .
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v ' .- -
‘ -
‘This important result is called Euler's formula. It has pargi-
cular-significance to electrical and electronic ehgineers.‘ If ._.

=
I~
9’= i we have

r~

ei“ = cos® + i sin =§-1 + i(O') - or . 4
N ' : ' : iﬂ\‘ g )

Euler's Equation: e =a-] -
Exercise Set 7.5 ‘ *
(1 - 8) Use DeMoivre's Theorem to find the value of each of the

» following expressions. . '
1) (-3 + 1" ) (2 - 31)° . /
3) [ (cos 28° + 1 sin 28%)]° 4)  [2 (cos 107° + 1 sin 107%)] 7 -
5 (1 - 102)10 : &) (B3--1- .
7 (-1 -1)78 8) (-1 +i)7° S >y
9) Find the fourth roots of (2" - ZiJS)-and represent your answers T wc
' . K - &‘ .- -

in algebraic form.

[y

\ ‘ . :
10) Find the cube roots of (-5 + 3i) and represert your answers

in algebraic form. L w

11) Find the cube roots of 1. ° .
S . - 3
1 - B ar

12) - Find the fourth roots of 1i.

(13 - 16) Any.polynomial of degree n with éomplex numbers as

coefficients has exactly n distinct complex roots. Find all the .
* * .

roots .of each of the foi};wing equatioﬂ%. ’ . E

? -

. 37 ?




o ) 7.5 -5
13) x*-1=0 . 14 x> -32=0/ /
15) x> +27i=0 . 16) x%=ilZ -1
17) Use Euler's formula to*verify DeMoiwre's theorem for any -
positive integer n. . ’ i
. » . . : :
(18 - 19) ‘Use Euler's formula to show that
el | i s RGN g
18) sin & = o Qg] cosH = 5 ‘
* :
éb) Explain why a positive integer raised to aw irrational power
) as ZJE has an infinite number of values hone of’which is a

-

real number.
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7.6 . Calculating Trlgonometric Functions

You have always determined specific values of trigonometric
qunctiops bx‘either using tables or pushing keys on your calcu-
lating device. ‘But where do "these numbers come from” oo,
- One way to compute trigonometric values is by uslng infinlte

' .se;}es Recall that a polynomial, P(x) is an é‘Pression of the

form P(x) = anx + an_lxn 1+ a9 + x7° 2 A a2x2 + alx1 + ag

where the coefficients are constants and n is a positive integer.

If a polynomial continued forever it would be a power series.

\ .

. Definition 7.6.1

.
¥

The expression f(x) = o + cq X + czx? + c3x3 + .3. where

—

the ci's are constants is called a power series.

.

A polynomial has a finite number of terms. A power series has :
infinitely gany terms. Thus, when we evaluate a power series we‘

can only calculate an approximate value.

L

» T L2 x3'.x4 -
EXAMPLEf7.6.2 Evaluate f(x) =1+ ? + 3T + 3T + 5T T
' x6 ) > .
' . ogTH when x = .5 wusing-only the first six
. terms of . the series. ' . -

N 2 : 3 5 6 '

. - .25 5 ; 03125 .015625
' LT R M
v "2 1.648719618. Co
s . v . * ‘}51 . '




7.6 -2
_ Nqgtice that the values of higher degree terms get smaller becauge
the numerators get smaller and the denominators get larger. If
x = 1 this series becomes
1 1 1

4

.

This particular power series is an "old friend.”
. bad ‘
y
Definition 7.6.3 -
‘ 2
eX = f(x) =l+x+pp+ar+ .o ..

other, "old friends" that can be represented.as power series are:

P} -

Definition 7.6.4%

sing ' ...; . €@ in radians

A Y

Definition

cos & L AN ﬁr e ¢ in radians

"These partitular power series are of a geheric type called,Téylor

series. When you study the Calchlps you wili not only stud§ why

these sertes—represent these functions but other properties and

)

applications of these series.’

EXAMPIE 7.6.6 Calculate cos( g; ) using the first five

terms of its power series. .

D

o 2 6
Solution: ~ / D (g) (
3 e 3 SR

/

-




b, b

;\6 e -
@ b
V- 5+ =z - 775 * 50370

= .707106806 . .

™

We know that cos( ) = J— = 707106781 so it is easy to see

that only five terms(gf th1s.power series give accuracy up to

six decimal places.

Another way to calculate values for trigonometric series is
Ny : -
. to consider the geometry of the unit circle and use recursion.

Let 9’ be a measure of an angle in radlans When & - is placed in

T -
the unlt circle we have the followlng d.:Lagram.

?Uy
(X\ L&’)Z;'—N'\\ \9‘
/ o Y
¢ S\ 4 AAREEEVE
) ‘ “ /(l,.o) . -
—~ - %"? . \\: A ' ’ L .
"\, S - ,

We shall be interested in the length {: of the chord of arc length - .

v &etet_‘ed by the angle of measure & .

PYd




&Y . - ’ - “‘
o X2y y2 =1 ‘ (x,y) is on the.unit circle -
(x¥1)2 + (y--O)2 = cg . distance formula .

By subtractiﬁg the ysecond equatior from the first we obtain -

»

2x- 151 -2 - | »

»

80O cos = X

a - %c

E ‘(o ’ : } .
diameter perpendicular to our chord-bisects it-and its

arc. Also, the angle inscribed in the semIETrgié\ii’i/right ,
angle. - , ‘\\__ﬁ\;// ‘e o -

-

and we have similar triangles. The diameter is of length 2 so

; . 2 :
k:h = h:2 and k = hf . Also,; by the Pythagorean theorem
: - , Y o )

.‘cz‘ 2', . o

- "N\ )

L - » 'kZ




thus 22" .9 o - , S

En o+ & = p? L )
or e = n2 - 0%y, — - .

b

The important thing to no;ice‘in this formula is that if Ay re- |
ﬁ}eséntsyhz, the square of the chord for the ;rc 672, then )

"AICA-AI) gives the square.of. the chord for the arc ér . As we saw

3
above, cos Ef.is 1 minud half “this number.
§ s ,

—

How can we find A;?, Sigge %?9= (%) ( %;b, A 'S ¢:

1

h
where AZ is the 'square of the chord for %? .

- . A\
~
%
.

v
]

. i . .
Similarly, Ay = A3(4-A3), A5 being the square of the chord for 078.
. In general . . ' ' : . ¢
Ay 1 =.Ak§4-Ak) where Ay is the square of the chord
B ’ ] * 7 *
for Oj2k, - /

4




- start 'somewhere.

_turns out. that arc

If we are actually doing the computations this

+

&
s

nea*ly equal' to its own chord.

in using ( 9765536)2 for the (chord)

If we are given

Thus a very small error is made ~

e.

A

is so small that it is

* il

7.6 - 6

way we must

& betvieen 0 and 2 @V, it

llvery

i
i
i

+ We car present this calculatlon as a verbal aIgorithm '

1. A< ( ©/65536)°

2. Ae A4 - A)
"3, NeN+1
4 If N =

E

BN
EXAMPLE 7.6.7

' devife for verbal algorithd/7.6;6.

HP 33E

01  ENTER

02 £ clear reg

03 - 6 -

04 )

05 D !
06 3

07 6

bog‘ g XQ i

10 STO 1 .
11 0

Ne~ 0 !

Ly

-

STO 2

-
STO 3 -
. RCL 1

CHS

STO x 1
STO + 2

J3S¢

'_Z 6.6 Verbal algorithm for comDutlng cosé} where 0<= b < 2” ‘o

16 display 1 - 0.5A and ‘STOP otherwise go to step 2.

Write a program for your calculating

23 RCL 3
24 RCL 2
25. £ x # y? N
26 _6TO 16
27 "RcL 1
28 .
29° 5.
30 x
31 . CHS
32 1 d
3 +
4




2
Lo~
\ 7.6 «'7
< N (
. " :l b
‘TI.58 - a E )
00" ¢ 16 2nd.LB1 . 232 x # t?
., 0L 6 17 A - 33 A
02 5 . 18 RCL™, - "34 RCL
03 5 19 ol - . 35 01 RN
04 3 20 +/- ‘ 36, X . -~
05 * 6. 21 o+ - , 37 C g
06 =, 22 4 - . - 38 5
07 x ‘ 23 = , 39 = \
08 STO 24 2nd Prd_ 40 +/- :
09 01 - 25 01 - &Y  +
10 0 .26 -1 - 42 1. .
11 STO . 27 SUM Jo. 43 =
12 02 28 02 o 4 ° R/S *~ ’
13 , 1 . 29 RCL N 45  RST - :
14 6 /30. -02 . - C e ‘ ’
15 x>t 31 INV 2hd
Q .
\
~ TRS-80 s
10 INPUT T : . .
) 20 A = (T/65536) * 2 , o>
30 N=0 , . .
40 A =A(4 -A) ) .
50. N=N+ 1 .
. .60 * If N = 16 PRINT 1 - 0.5%A AND STOP ¢
. ELSE 20. : L : \
. r

Exercise Set 7.6

(L - 6) Using the first sevgn(terms of the power series exﬁansioﬁ, '
of e* determine each of the following. Compare yourkfesults with

those obtained by directly using the™key (6r_instruptien) for powers
: . * ~ ’

of e on your calculating device.
‘ ' *

1y &2 7> S A ()
P \
3) e3 d 4) e® o

/ »
‘ 387




(7 - 14) Using the ﬁirst‘five terms of the poﬁé; series’ expan-

'sion of cos®  or sin Ef deﬁermlne each of the following Com=-
pare your results with those obtalned by dlrectly u51ng the key

(or 1nstructlon) for these functlons ‘on your calculating deviie.-

7) sin (T i' ' 8) cosq} v .
. ~ . ‘ . /u\_
9) cos /6 : 10) sin - / L
11) cos (-7) sin (-7)
O ‘\\‘ '

13) si‘~27 141//cos 123° ‘ .

“15) Toow many decimal places would you expect the apprbxima-

’\
tion of e2 to be accurate if you use only the first seven

terms of its power serles? Explain. (Confer exercise, 1 )

16) How manx_dec1mal plﬁces would you expect the approxlmatlon
’ g .
of eos —g-to be accurate if you use only the first five terms
A . .
of 1ts power series? , Explain. (Confer exercise 8.)

(9%

. 5 .
’ 17) Plot a graph ofvy = x - 7y + §T« for -4 < x < 4 at intervals
of axes

plot vy = sin x. For-what

rh
w
Q
3

values of x dé the graphs seem to be close together?.

4
X

18) Plot.aﬂgraph of y y 1 - 31 A for -4 < x < 4 at intervals

-

"of .5. On the same et of axXes plot.y cos x. For what
t

N values "of 'x do the graphs seem to be close together7 )

(L9 - 22) Use algorlthm 7.6.6 (or.programs 7.6.7) to determine

_each of the following. Compare your results to the 1nd1cated
. . v ,’/ .

“You may wish to write a progradm to do these exercises. '
4 . = "‘. - N . .
4
v

. : T \ ¢ .- . ' ) J
Q ‘ - ‘ . 35() . , ' LI




" 19) ' cos . TY6 (9) 20), cos™ - 8y Y
3 ~ 5 ' 20 ' Nl
21) ces (<) (1) . 22) cos 123 (14) . . - .




A

A\ ,  Chapter 7,k TEST T o, ‘ o
1) Find the rectang;].ar coordinates of tl:xe following .1
. ) polnt: (35?2', LSO). N 3 ? | 1
2) ¥ Repreéént‘the point (-2‘[7,\L 2) in bolaf Icoordinat.e form * . 1
+ with r« 0. o E ().-.
' 3) %ransfom the equation x + y = 6 from recténgular 'to
polai- coordinates . ( | NF .
Ly ‘Tr-ansform the eqt‘xation /52 + 3P, cos & =4 from polar to
5 ‘ rectangular Q/o:hinates, . \ AN |
' e " 5) .Express & (cos 210o i sin 2100) in "a + bi \f,\rm
i .r 3 Chanée x2 + y2 = 2% + @5 from rectangx‘ . ooordl‘nates to
’ « polar coordlnate\ i . r ‘
D Express 1 - i in the fo“z\(cos e + 1'. sin & ). \
. 8) Expftess in the forn a + bi the quotient obtalned‘when -
12 (cos 90° + i sin 90 ) is d1v1ded by 3(cos 60° + 1 sin 60° ).
9) A root of x3 +8=20 11e§ in quadrant Iv., Express this
' . rbot in the form r(cos& + i sin& ).
’ 10) Multiply 2(cos 115° + i sin 115°) by 6(cos 245° + 1 sin 245°)
Y ' and express the result ir the _rectangular form, a + bi. .
~11) A cemplex root of x> + 32 = 0 1s ‘
" 2 ) (D 2cos 72 # i sin 72°)
‘ ) ) (2) 2(cos 36° + i sin 36° )
-, . (3) - -2(cos 108° + i sin 108°) )
\ . 4y  -2(cos 36° - i ‘sin 36% \'
"y 123 Exp¥ess the product of~ 3 + 2i and 2i in™the form r cis & j.
e : N ) 340 f *
| ‘ .
hovd O y ’




17)

'Write the expression [4(cos 30° + i sin 300)] g_in_
the form' a + bi. : ' M Y

-

Express the complex number V2 + iJ2 1in'the polar form-.
"r(cos & + i sin &), 9

Expre'ss the quotient —%—-L}}— in polé} form (Slmpllfy

completely. )

‘Using .DeMoivre' BJTheorem find: T
| [&(cos 45° + i sin 45 )] 5
/'(b) 1+ 133

Us’iﬁg De Moivse's Theorem, find the indicated roots:
(a) The five f1fth roots of V2 -i {7

(b) The four fourth roots of 2 (cog 100 + 4 sin 100° )

Y

, Complgte me table and then,  on the Polar'coordinate paper

provided, .sketch the graph of r = 1 - 2 cos & -

Fix 1 om your calculator ; ;-
& |r o & |r - & |r

10°7] . " 1300 . 2500 ’

202 #1400 2600 !
302 150° . 2103 :
402 * 160° .- 2800 :
50 1709 2900

60o 180 300

70 190 310

80 - 200 320 ty
906 . . 210 330

100o 220 340

110 . ' 230 350

130 240° 360°




