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Theoretical and” empirical evaluations were also made of the effects of
gueSSTﬂg on the dimensionality of test data, The resul®® indicated that -
guessing affacted highly discriminating items more “so than poorly discrimi-
nating items. However, the effect of guessing on the dimensionality of
Jtests with common d1str1but1ons of diff1cu]ty and discrimination indices
“was found to be minimal. Of the procedures evaluated for sorting items
into unidimensional item sets, pr1nc1¥a] factor analysis of phi coefficients
gave the best results overall. Nonmetric multidimensional scaling also
showed promise when used with Yule's Y, phi, or tetrachoric similarity
coefficients, but it did not perform as well as the factor analytic tech-
niques on the real test data. In summary, guessing does have an effect
on test data, but the effect is not very large unless items of extreme
difficulty are present in the test. Of the procedures eva]uated tradi-
tional factor analytic techniques gave the most, useful 1nfofmat1on for
sorting test items 1nto homogeneous sets.
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The Formation of Homogeneous Item Sets

- When Guessing.is a Factor in Item Responses

g One of the fundamental assumptions of most latent trait models is that
the, items in the pool of interest measure a single latent trait (Lord and
Novitk, 1968). Although some item pools do approx1mate the conditions speci-,
fied by this assumption (e.gq., vocabulary, arithmetic computatign, digit span,
etc.), in many cases item pools do not automatically fulfill the requirements
of a one-dimensional latent space. For example, most achievement tests de-
s1gned using a table of specifications are not un1d1mens1ona1 Further, it
is questionable whether some criterion-referenced test. item'domains measure
a single dimension. Therefore, some procedure is needed to form unidimensional
item sets for use with latent trait models.

Unfortunately, the procedures commonly used to form item sets that are
homogeneous in the ability measured have been criticized because*of some basic
inadequacies. Most of these criticisms stem from the use of items that are
dichotomously scored. Factor analysis, for example, was derived for use with
continuous variables. Since its basic model reproduces the observed score
‘from a linear combination of continuous variables, there is no way that dicho-
tomous responses can be adequately modeled. A symptom of this problem is the
difficulty factors obtained when phi cqefficients are factor analyzed. 1In an
attempt to alleviate this problem, tetrac29f%§ncorre1ations are oftem used in.
place of phi coefficjents., However, thesg correlations may not yield correla-
tion matrices’that have the appropriate properties for factor analysis (i..e.,
pasitive semidefinite). The end result of these problems is that the most
commonly used multivariate sorting procedure is theoretically inadequate for
forming unidimensional item sets when dichotomously scored items are used.

’ R ! , N

In response to the problems in the use of{ factor analysis with dichotomous
variables, Christofferson (1975) has developed factor analysis procedure
specifically for this special case, In order to avoid the prob]ems stemm1ng
from the use of correlation coefficients, he uses the proportions in two-way
tables of item responses as the basic data for determining the factor structure.
A generalized Teast squares procedure is used to estimate error free proportions,
and from these, estimate the parameters o6f the factor analysis model. The ob-
tained parameter estimates have been shown to be consistent and a chi-square
test has been developed to test the number of significant factors. Although
this procedure would seem to be the solution to the item factoring problem, it
can only be used on a maximum of 25 items because of computer storage and com-
putational time constraints. Thus, the procedure is nos)pract1ca1 for most
item pool construction situations.

Another approach has been tdken by Divgi (1980) to solve the item pool
dimensionality problem, but this procedure only provides a test for the pre-
sence of a singlq factor, rather thansa procedure for sorting items. In .
Divgi's procedure¢, the probability of a correct response to an item (expected
response) deternfined from a Jatent trait mogel is subtracted from the actual
response to that item to ohtain a residual.® These residuals are then intercor-
re]ated over items and the resulting correlation matrix is factor analyzed us1ng
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" the principal components Procedure, - If any strong factors are left in the
correlation matrix, it is proposed that this is evidence that'unidimensionality .
does not hold. This procedure is purported to be better than-the usual factor ~/
analysis of dichotomous variables because the correlations are based on the
continuous residuals, rather than binary data. However, this procedure is very

new and has not been critically evaluated, In any case, it does not yield a
procedure for forming unidimensional item sets.

In addition to the above procedures for determining the dimensionality
of item pools, cluster analysis and multidimensional scaling procedures are
also available, These procedures make fewer assumptions, but their usefulness
is unknown, Moreover, a review of the literature has not found any application '
of these procedures, to the unidimensionality issue.

forming unidimensional item sets is that often item pools are sorted subjective-
1y, without the aid of an analytic procedure. In many chses the dimensionality
of the item pool is not checked at al]. Obviously, an eisi]y used procedure

is needed to develop unidimensional item sets. One of the purposes of this
-research’ is to-find such a procedure.

The end result of the confusion caused by the ldt{hof good procedures for—

Unfortunately, the’mere fact that dichotomous] scored items are being
used is not the only problem that affects the determi ation of the dimension-
ality of an item pool., For multiple-choice items, guessing is another factor .
that may affect the observed dimensfonality, A review of the literature on
tatent traif theory and multivariate clustering procedures has found no studies
on the effect of guessing on dimensionality, so the magnitude of these effects
is unknown. However, work has been done on the effects of guessing on item
analysis, correlation, and reliability, Some hints concerning guessing effects
can be discovered there.. -

Carroll (1945) studied the effect of varied item difficulty and guessing
on the magnitudedof correlations between dichotomously scored .items using
the "knowledge or random guessing model". He found that variations in both
difficulty and chance success bring about a reduction in the size of the
phi coefficient between items, He also discussed the use of tetrachoric cor-
relations with dichotomously scored test items, and showed that variations
in difficulty had no, effect on the tetrachoric correlations when no guessing
was present and when the bivariate normal assumption was met. When..quessing -
was’present in the data the magnitude of the obtained correlations was lTowered.
This effect was stronger for more difficult items. Along with his analysis
of the effects of guessing and difficulty on these two types of correlations,
Carroll also developed correction formulae to compensate for the reduction
in correlation. The cbrrection for the tetrachoric correlatiof will be de- »
scribeg‘later in this report, sihce it was used in the research reported here.

Plumlee (1952) expanded an Carrol's work to determine the effect of vari-
wtion® in difficulty and guessing on item-test correlations and reliability. .
She developed an equation in her article that showed the relationship between
biserial correlations determined with and without guessing present, and .
another equation that showed the corresponding relationship for parallel form
reliability. 1In both cases, the equations predicted a reduction in the magnitude -
- of the statistics with the presence of guessing. b

+
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Plumlee then checked the accuracy of her equations-by determining the

. item discrimination values and reliability using items administered in comple-

tion and myltiple-choice form. The equations were used to predict the values -
for the statistics for the muyjtiple-choice tests from the .completion test stat-
istics. The predictions were close, but there was a tendency to over estimate
the statistics,, The differences were explained by the 19accuracy of the "know-
.ledge or random guessing model". . .

_ Mattson (1965) also determined the effects of guessing on reliability,
but he used a different approach than Plumlee. Mattson used a binomial error
‘model to estimate the standard error of measurement and the true score variance.
He .then showed how the true score variance is reduced by guessing effects. From
the standard error and true score variance terms, he developed a formula for
the reliability of a test when guessing is a factor, The reliability was shown
to decline with increased guessing probability.

A totally differqpt approach to the determination of the effects of
guessing on relfability was taken by Denney and Remmers (1940). They felt
that the addition of choices to a multiple-choice item was, in fact, analagous
to lengthening the test., Thus, the reliability of the test with more alterna-
tive choices could be determined from the test with fewer choices using the
Spearman-Brown formula (a four choice test is twice as long as a two choice
test). In their article they present data tnat showed that the Spearman-Brown
formula does model the guessing effect fairly well.s In that study, vocabulary
items were administered with two, three, four, or five choices and the reliabi-
lity was determined for each of the test farms using the splitgialf method.

In their article, as in all of the others, the reliability decreased with in-
creased guessing. :
»

To summarize the various theoretical positions, the proportion of trie
variance in a set of test scores was plotted against guessing level for a test
with a no-quessing reliability of .8l. The results are shown in Figure 1. Four
plots are shown on this graph, The first is the predicted reliability of a
test as a function of guessing for a test with a no-guessing reliability of .8l.
This plot was produced using Equation -30 deyeloped by Carroll (1945). A 50 item
test composed of items with .50 traditional difficulty was assumed in making this
plot., The second plot shows the effects of guessing on the squared biserial
correlation between an *em of .5 traditiomal difficulty and total score when
the no-guessing correlation is ,9, 'This relationship was determined from
Equation 24 in the article by Plumlee (1952). The third Tine shows the relation-
ship between reliability and guessing given in Table 1 from an article by Mattson
(1965). A no-guessing reliability of .8 was assumed for this plot, The fourth
line shows the reliabi]ity'és a function of guessing level §s determined by the
method proposed by Denney & Remmers (1340). The values were derived using the
generalized Spearman-Brown formula, assuming a reliability of .81 for a test
composed of items with 10 alternatives, .

. As iﬂn be seen from this figure, the predicted reliabilities are quite
different ™ Other than concluding that the reliability declines, no consistent pre-

diction can be made about the magnitude of the'decline. The implication of these
. data to the proportion of common variance in a test is that guessing effects will

A
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cause the common variance to decrease. The lower correlations suggested by

Caryoll's work would a]sb'imply that the number of factors (in a factor analytic
sense) would increase. -

Since, no clear cut findings were discovered in the review of the litera- \
ture concerning the effects of guessing on.multidimensional data reductiom
techniques, the present research study was designed to further explore these
effects. More specifically,~the purpose of the research was to evaluate vari-
ous procedures for forming homogeneous item sets, ang to determine the effects
of guessing on the techniques. Three approaches were taken to achieve this
goal." First, a theoretical model was developed, and guessing effects weré
predicted with the model. Secondly, simulated data were generated using the
theoretical model, and the predicted results were checked by actual analysis
of these datas Third, a real data-set was selected and analyzed to deteemine C
how well the theoretical and simulated results generalized. Conclusions were /
drawn from consistent patterns of findings from these three sets of results.

L]
¢

The Theoretical Model
. ' s S
The basic modél used here to determine the effects of guessing on the
proportion of common variance in an item is a modification aof the true score
model presented in Lord and Novick (1968, pp, 30-38). A univariate model will
be presented first, followed by a multivariate generalization.

Suppose that a population of examinees is normally distributed on a
unidimensional trait, T, that is required, to some extent, for' performancge
on a test item. Without loss of generality, this distribution can be assumed
to have a mean of zero and a variance of one., That.is, T d N(O, 1). Suppose
further that the trait measured by a test item, T', is not exactly the same
as trait T, but that it has a positive relationship with 7. ,If the correla-
.tion between the person trait, T, and the trait measured by the item, T', is
given by "a", then the score on trait T' for.Person j, t., can be estimated
from his/her score on T’tTj’ by,the formula J

a

t, = . i (1
it : . ()

_if a linear relationship is assumed, and if T' is assumed to have a standard
normal distribution---that is, T' d N(0, 1). . R

If the item in questién yields responses oﬁ a continuous gza]e, the ob-
served score on the item is given'by the usual true score que] as

- X5 = tste, . & , (2)
rd . R ’ - ‘
where x . is the observed score on.the item for Person j,.t, is the person's

true s;gre on the trait defined by the item score, and ¢ 19 a random &rror -
term wich is distributed ¢ d N(0,02),5 > 0, for Person 3.

.
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Based 'on Equations 1iand 2,

L E(x;) = E(t,) + E(e) , (3)
: . J J ‘ , ‘-
) p = E(arj) + 0
O , ' *
) = aTj . . ". . g
p - ' since trait estimaté 7. is constant for Person j. Since E(x.) is thé classi-
. ga] definition of a trﬂe score, the frue score op the item 1& defined as
S B * ’

<" " The variance of the observed score on Person j on the item is given by
Y

> ' . V(Xj) = V(t3 +¢)

T = V(tj) + V(e) + 2cov(tj, e).
Since t. is constant for Person j, and since the covariance with error is
assumed“to be” zero,

’ , v

. . V(xj) =0+ V() =02, - (4)
;; Up to this point the expectation and vdri;hce of the observed scere,
X., has been obtained based on.the probability distribution.of scores for

a“single person. Similar results can also be determined for the entire popu-
Tation of individuals., Notationally this will be indicated by starring the
subscr1pt indicating the person,. The pxpectation:of the score on the item
is then given by . .

v

E(X,) = B(TL) + ECe) .
E(aT,) + O

f; a E(T,)

~
)

. =a-0=0. '. (5)

.

The variance of scores an the test item is given by

V(X,) = V(TL) + Vle) + 2cov(TL, &) ’ \
= V(aT,) +32 + 0 ) . .
L = a2 + V(T,) +o2 -
=a? +g2, ' . (6)

since T, has a ‘variance of 1.0 and the covar1ance of the.trait score and

error js assumed to be zero, If the item trait scores are assumed to be
‘\




.
’ ) "'7"'
, - in standard séore form, V(X,) = a2 + 02 = 1,0, Therefore,
a2 =1 - a2, ‘
Equation ‘4 can theh be written as ' . ’
V(xj) =1 - a2, . ‘ (7)
- ' Since the real interest of this report is the effects of guessing on

the factor structure of dichotomously scored tests, the continuous item

score will now be dichotomized by specifying a value ¢ related to the diffi-

culty of the gtem, If x. is greater thah c, a score of 1.0 will be assigned

to Person j, and if x. 1§ less than ¢, a score of 0.0 will be assigned. More
= concisely, J

if X.>¢C, u, =1 e .
. ¢ J J ~
) ~ . and if x.<c,u,=0
. : \ J=" ‘ ,
where vy is the dichotomous score for the item for Person j. \ i
1

-]
The probab111ty that a person with ability T will get a score of

=1 on the 1tem is . ) -
+o s
P(U, = Ofx.) = § ¢(2)dz, - (8)
J 1 M ,
c
A
c - E(xj) ¢ - aty :
where z, = - ' , and ¢(z) is the normal ‘probability
,' V(les ~ '1 - 32 .' ' . : [ ’

density fungtion,” Tﬁé probability of a score of uj = 0 for a person with

.. - ability t. is _
' : ' NEOK
. P(U. = O|t,) = z) dz.
| 1 . ¢ (J' |TJ) “_i
- . ’ ‘ ’ .

This is essentra]]y the normal og1ve IRT model.

[

If Person j obta1ns a score of 0 on tgé item, (i.e., he/she does not
. know the correct answer), he/she may guess the correct answer with probab111ty
1/A, where A is the number of alternatives in the item if it is assumed-to be
multiple-choice. That is, with a 1/A probability, the O will be changed %o
.a 1. Theréfore, the probab111ty of obtaining a scoreof lon the 1tem when ~
guessing is a factor is g1ven by

4 .
. =1 = P(y, ="1|1,) + 0 1/A. 9
\. .P ; l'rj ; |TJ P(J I'E / | (9)

-

’

-
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One way to conceptualize the effect of guessing on this item is that
guessing causes the cutting score, c, to be shifted downward, increasing
the probability of a correct response, To determine the magnitude of this
shift, ghe cutting socre, c', that yields the correct probability of a correct
response, including the guessing effect, can be determined using the inverse
normal transformation: - -

C 2 e, = 1)), “ (10)
. J J ] \

The value of ¢! is obtained by transforming this z-score to the observed score =~
scale using . . e

~ 1

‘o= ;2 - a2 .. .
¢’ 5 1 - a2+ at§ (11)

° , N Vd
Note that c¢' has an’index, j, denoting that its value may be-different for .
each person, depending on the ability level Tj. The guessing effect: for ‘
Person j can then be defined as : . .

~ : ' <
.= C - C., 12
9; ; . (12) |
t 3
Another way of conceptualizing the effect of guessing is that it shifts up-. '
ward the examinee's.propensity distribution by an amount gj. e
- Based -on the idea of guessing causing a shift in"a person's prdbensif} C
, distribution, a new continuous score for an itém ¢an be defined to include
guessing as a factor 'in the item response: . )
¢ £ )
.= X+ g.=t, e+ g., 13
it T TN : (13) .
F S , .
where gj is cong@ant for Person j on any given item, but-varies across people
and items. The ex egted value quﬁﬁis score for Person j is N .
' E(y.) = E(t,) + E(e) + E(g, ~
R (y;) = Bt ) + E(e) + Eg;)
' = Elat,) + 0 + .
) \ (ar;) 9 _ ‘ }
= at, + q,. , ‘ 14
TJ gj . (14) \
-In classical test theory, this expected Va]ue is defined as the true score .
on the item for Person j (Lord & Novick, 1968). Notice that there is a, guess- °
\ ing compgnent in this classical true score, The variance of y for Person j
s given by . *
: = )+ + .) + 2cov(t., g.) + 2cov(e, g.) *+ 2cov(t., €
_V(yj) /v(tJ) v(e) v(gJ) i (J gJ) ov( gJ)‘ (J )
- ) [ ]
' S0+1-a°+0+0+0+0 .
, vl ’
. =1 - (15) |

ERlC N 12
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-since t, and 9; are constant and the covariance with error.{s assumed to be .
zero. ' : .

» T . o

The probab111ty of a correct response tp an item when ability is measured

. on the y-scale (i.e., when guessing is a factor in the item response) is given:

by ‘ )
¢ 40 }‘ .
PHUS = 1]x5) = f olz)dz, , ( - (1)
<t 25 | :
where ' .
e c -"at, + ‘
[ z'. a:r\] g
) .
’ 1 = a2 - < - ’
o -

As was done previously, these results can be generalized to apply to

.the ‘scores obtained from a!' group of individuals rather than for a single

individual, as given in Equations 8 through 16, .The expected vatue of the -~

~ continuous item score for the population of 1nd1v1dua1s when guess1ng is a

factor in‘responses is,

//\siv))\iw") rele) +EG) N

. (aT ) + 0+ E(G*)
E(Ty) + E(Gy)
') L . B i = &?+ E(G,) = E(G*), f . ~ (17)

where G* is the random variable associated with thé guessing effect, Thus,
the average score on the item for the population is increased over the no-

guessing score by an amount equal to E(G,). The variance of the Y-score for -
the population is given by . ' .

v(Y,) = v(TL) + V(e) + V(G,) + 2cov(Ti, G,) + 2cov(e, G,) '/-_E§;< -
V(aT,) + 1 = a2 + V(G,) +azeov(aT*, G,) + 0 + 0 - L -
a2v(T,) + 1 - a2 + V(G,) + 2acov(T,, G,)

i * -

~ 1+ V(G,) + 2acpv(T*,‘G*). (18)

From Equations 17 and 18 the proportion in the population that will obtain

-a’'score of U, = 1 can be determined Th1s proportion is given bx

M
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! ‘,i". o
) ‘e - A’i“’ °
- . Sé}
v & -
. ’ -10- N
{
- SN TR { o(2)dz, (19)"
4'2 ) c. :
' PR W o ° .
where o .
C, = E(G*)
z!' = 1 .

- | T 1+ vie,) + 2acov(T,,-G,)

¥ i ‘
/

-The development of this model has now reached the point where it can
be applied to the major area of interest of this aper---determining the ef-
fect of guess1ng on the proportion of variance accountéd for by the common
factors in a test, First, for the unifactor case, the proportion of variance
accounted for on the item in'question by the unidimensional ability, v, when

. no guess1ng is present can be obtained from Equation 6°and the expression for
. the variance of the “true scores, t, over the populat1on of interest:

-

- N(TL) = V(aTy) = a2 V(T,) = a2, ‘ (zo>

.

The proport1on of observed variance for the 1tem accounted for by the true
scores is then

; . Wty L2 (21)
- - . = 22 .
, VX " 32r o2 T a2+1.a2 -3

Thus, the proportion of variance accounted for by the item trait is simply
sthe squared correlation between the trait and the true score on the item.

khe- proportion of variance accountéd for by the item true scores when
guessing is a factor'in item responses is ‘given by the ratio

’ VEL V),

Efe numerator of this ra{ “‘i.e variance of the true scores, can be obtained
rom Equation 14 as - ”' '

V(E(y,)) = V(aT..+~ GJ.) .
= V(eTj) T\V(Gj) + 2oov(aTj, Gj) '
2 y(1.) +*V(G.) + 2acqv(T., GJ.)

= a% + V(G,) + 2acov(T’ L G ). (22)

Using the value for variance of the observed score given by Equation 18, the
ratio of the true score variance to the observed score variance is given by .

[N

.

-
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v(e(yj{)‘ '= a2 + V(Gy) + 2acov(T,, G,) - (23)
V(Ye) -1+ v(6,) + 2acov(T,, G,) .
y ‘ v ¢

In the univariate case, Equat1ons 21 and 23 simply give the reliability of a
s1ng]e test item.

The resu]ts for the.\p1var1ate case can be generalized to the multi=
variate case by redef1n1ng tJ

m
t.= L

4

1

where Thk d N(O, 1) for each j and k, the a, are the correlations between the
ik and the continuous score on the test items, and p is the number of abilities
requ1r9d to perform on the items. The Toy and Ty are assumed to be uncor-

related for k # 1, The proportion of common variance i the no guessing case
then becomes . ‘

ey
’ e m 2' m -
z .a . . L)
V(T;\.) V(zak‘r*k) . ki]_ ak V(T*k) + 1#\] a1:chv(T*1, T*J)
= ) - = . ({\\
V(Xx,) 1 oY 1 . .
. .
m 2 4
I a CU ‘ ’
t£ oLkl R o Y L (25)

N 1 > . \ . s
where h2 is the commupality. When glessing is a factor, Equation 23 begomes

n
ﬁ + v(e*) +23 kcov(T*k. Gy )

e = k=1 . k=1 (26)

- ! bt ‘J n
V(Yy) I+Vv(G,) +2: akcovCT*k, G,)

k=1
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Predictions from the Thegretical Model

»~

With the deve]opment of the theeretical model presented on the préé;ous

pages, it is possible. to determine the magnitude of guessing effects for ‘per-

sons of a given ability, and for populations with known distributions of ability,

assuming the "knowledge or random guessing model" is correct, For example, if

" an individual with known ability 1, = -1 is administered an item with diffi-
culty .5 for the population as a wﬁele, a guessing level of .05, and a cor- «
re]at1on between the item and.trait T of .9, several important features can

be determined. First, the expected score on the trait defined by item per-
formance can .be obta1ned from Equation 1 as -.9. The variance of the estimatel
on the item trait for the person is given by Equation 7 as .19

Based on a cut score of 0,0 for the population for the no- guess1ng case,
the probability that Person j obtains a correct response to the item can be
obtained from Equation 8 as « 019, After introducing the effect of guessing
intd this item, this person's probab111ty of a correct response is 089
(from Equation 9). This change in probability requires a shift in the person's
propensity distribution of 1.49 standard deviation units, y1e1d1ng a guess1ng
effect from Equations 11 and 12 of .252, -

This same procedure can be followed for all levels of ability in the -
population., If the probab111ty distribution of ability in the population is ,
known, an e§pected guessing level for the population as a whole can be deter- .
* mined using - ~ '
©efe) ={) -g flg)dg. (27)-

*

'
.

Unfortunately, g has a funct1ona1 form that contains the inverse norpal
function, so direct computation of the expected value is impossible, There-
fore, for the purposes of this report, E(G) has been computed using the cadtious
adaptive Romberg €xtrapolation method (IMSL, 1979) of numerical integration.

Table 1 gives the ma pitude of the-expected value of the gGessing effect
for combinations of the prbbability of guessing on the item and the correlation
between, the item trait, t, and the person trait, t. The probability of guess-
Jing is def1ned here as the probabi]ity ‘of a correct response for a pefrson with
no knowledge of®the mater1a1 measured by the item., The correlation between
the item and person traits is the same as the loading of the item oh’the first %
faceor of a test measuring the person trait, A cutting score of 0.0 was used ’
for all combinations of guessing level and factor loading because any other
cutting score would yie}d‘a simple linear transformation of these results.

s L4
A Y he




-13- ' !

Most of the results presented in Table 1 match what would commonly be
expected of a guessing effect, As the probability of guessing increased, the
quessing effect increased, However, for low guessing probabilities the ques¢-
ing effect increased with increased factor loading, while for high guessing
probabilities, the guessing effect decreased with increased factor loading,

At a guessing probability of approximately ,25,,the guessing effect was fairly
constgnt, This interaction of guessing probability and factor loading was
unanticipated.

i Table 1°
Expected Value of the Guessing Effect
for ¢, = 0, and Various Combinations

. ~ of Guessing Level ajd Correlation
Between Item Trait and Person Trait

. s
%
]

Guessing Correlatign Between Person Trait and Item Trait
Level : : A
.6 N .8 ¢ .9

05 Y, 08 Q00 . 14
D .19 o .19 .21 .24
<25 30 ~ .30 .30 .31
.35 41 . .40 .39 : .38
.45 53 .51 : .48 , ..45
.55 .66 .62 . .58 .51
.65 .80, .75 : .68 _ .59
.75 .98 .91 _ .81 . .68

Note. Expected values were based on a N(0, 1) ability distribution.
. e A '
- N . ! ’ - 3

The reason for this interaction can be determined from Figures 2a, 2b,
2c, and 2d, which show the probability of a correct response to the item
with and without guessing, the guessing effect at various ability levels,
and the ability density function for guessing probabilities and first factor
loading of (.05, .6), (.05, .9), (.45, .6) and (.45, .9), respectively. From
these figures it can be seen that the magnitude of guessing increases more
quickly with decrease in ability for the .9 loading case than the .6 loading
case, This yields a higher expectation for the .9 loading case with a .05
guessing level. than for the .6 loading case, because the guessing effect
reaches an appreciable size within the range containing most of the ability
distribution in the former case, but not in the latter. When the guessing
probability is .45, the higher guessing level over the entire ability range
for the .6 loading item overcomes the steeper slope of the guessing effect -
for the -.9 loading item. In other words, the guessing effect is greater for
the Poorer item over a wider range of ability. « ,
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"The express¥on in the equation for the covariance is integrated over t, since

. v ) ! \
) -15=

-

From a practical point of view, these results suggest that guessing at
reasonable levels is a more serious problem for high Quality items than low
quality items, In the latter case, the errpr variance in the item masks-the
guessing effects. Of course, this conclusion assumes the correctness of the
"knowledge or random guessing model". .

Although the magnitude of the guessing effect has resulted in some in-
teresting findings, the more important area pf interest in this report is
the reliability, or proportion of common variance as a function of guessing
Tevel, This value can be determined from Equation 23, but first the variance
of the guessing effect, and the covariance of the guessing effect and ability
are required. The formulae used to obtain these statistics using numerical
integration are given by: - . : )

v(e) ?; (g - E(g))2 flo)dg, -
alnd o 1
covit, 6) =§ (g - E(g)) f(r)dr.

g is a function of tv. It should be recalled that t d N(O, %).

Table 2 gives the variance and covariance values for the same probability
of guessing values and the level of factor loadings used in Table 1. From
this table it can be seen that as the guessing level increases, the variance
increases, and the covariance of guessing and ability becomes more negative.
Also, the same trend can be seen as thg factor loading increases.

The negative covariances were expected in these results, since low
ability individuals guess more often the high ability individwals. The
increase in variance was also expected.. As the guessing level increases,
the guessing effect function shown in Figures 2a through 2d is shifted up-
ward, demonstrating a greater range of quessing effect. With increased
factor loading, the guessing effect function increases more sharply, re-
sulting in the greater magnitude of the variance. It is not surprising
that as the variance increases the covariance also increases in absolute
vatue. ¢ -

From the variance ¢f the guessing effect, the covariance of guessing
and ability, as well as the factor loading, the proportion of variance in
item responses accounted for by ability can be determined from Equation 23.
These proportions are presented for the cases used in Tables 1 and 2 in
Table 3. In addition to the Q.0 cutting score case (corresponding to .5,
traditional difficulty for the group), the proportions are presented for'
the .75-and .25 traditional difficulty cases. )

‘ .

-
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. C i Table2 | \
Variance of the Guessing Effect and

the Covariance of the.Guessing Effect and the.
Trait Level for Ci = 0 and

Various Combinations of Guessing Level
and Factor Loadings . o
~

L

First Factor Lbading

Guessing
Level ‘e . ol
.6 7 .8 9
.05 - VAR .00 01 - .03 .08
cov -.05 -.07 -.12 - .20
.15 VAR .02 .03 .06 12
cov -.11 -.15 -.20 -.28
.25 VAR .03 .05 .09 °§5
©cov -.15 -.20 -.25 -.83
.35 VAR .04 X B
_ cov . -.19 -.24 -.30 -.37
.45 VAR .06 9 713 .21
cov . -.23 -.28 7 -.33 -.40
.55, . VAR .07 11 16 23
cov ' -.26 -.3L -.36 ~.43
.65 VAR %, .09 13 .18 .25
i} - cov C-.29 . -.34 -.40 - .46
A \
.75 VAR 11 .15 21 . .28

Cov -.32 -.37 -43. a9
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Table 3
Proportion of Variance Accounted for in Item ReSponses
by Guessing Level, Factor Loading,

and Cutting Score

Cutting Factor Guessing Level

t Score Loaging
00 .05 .15 .25 .3 .45 55 65 .75 -
/ = . .

9 .81 73 69 .66 .64 61 .59 .56 .53

0 8 64" 57 .51 .47 44 - 40 37 .34 .31

¢ 7 49 .44 38 38 .31 27 24 22 .19

6 .36 .32 .28 .24° 21 .18 16 .14 .12

9 .81 .80 .78 .77 .76 .14 .73 .72 .70

-.6745 8 64 .62 .59 .57 55 .53 .50 .48 .45

: ?’\f 7 M9 47 45 42 40 .38 .35 .33 .30
‘6:- 6 .3 .35 .32 .30 .28 .26 24 22 .20

.81 .60 .52 .;;\‘\\*gg_ 39 .36 .33 .29 .

: : : 30 .26+ .22 .19 17 14

- 49 .3 .26 21 17 .14 12 _ .10 .08
3. .26 .18 .14 11,09 .07 ~ .06 .05

o -
~J
E -

(8]
oy~ OO W
(]

Ky
E-3
(828

Note. Ability is assumed to be distributed N(0, 1).
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Note first that as the guessing Jevel increases; the proportion of
item variance accounted for by ability decreases, and that it decreases more
dramatically for the more dificult items. For the most difficult item o
(cutting score of .6745), even the .05 guessing level has a substantial ef-
fect. As the size of the factor loading declined, the proportion of variance
in the item scores accounted for by ability also declined, as expected. »

It must be kept in mind when interpreting these results that they refer
to the proportfon of variance accountegd for by ability (re]iabi]ity) for only
one item. The values for a test made up of many items would be substantially
higher, the actual value depending on the distribution of difficulties of
the items, their individual guessing levels, and the interitem covariances, \
Because of the complexity of the problem of determining the reliability of
test using the theoretical model proposed, only the reliability for a singl
item is presented,

a
\
e

Evaluation of Empirical Item Sorting Procedures

Since a theoretical analysis of the effects of guessinéaon the proportion
of cofmon variance in a test composed of many items was not possible, the more
realiftic, and therefore more complex, cases were studied by applying the
avai¥able item sorting procedures to various simulated data-sets and real
datasets., The basic design for this componegﬂ of the research study was to
produce item sets with known structure using gimulated and real test results,
and then attempt to recover the structure using each of several available tech-
niques. The techniques considered included: factor analysis, cluster analysis,

-nonmetric multidimensignal scaling, and datent trait theory

Besides the choice of techniques to be used on the item response data,

.another decision needed to be made concerning the coefficient used as a measure

of similarity between the items. Factor_analysis is rather limited in "this
choice, being tied to correlation type statistics, Cluster analysis and non-
metric multidimensional scaling do not have this Timitation, opening up the
possibility of using many other measires of similarity, Therefore, the fol-
lowing coefficients were applied to thd data, and the various techniques were
applied-to each: phi coefficients tetrachoric correlation, corrected tetra-
Chorics, eta coefficient, Yule's Q, Yule's Y, approval score, Kendall's tau B,
Goodman/Kruskal's gamma, agreement score, and the Lijphart index., The formula
and reference for each of these coefficients is given in Appendix A,

Ttem Sorting Procedures .-

Each of the techniques used in the analysis of the'item response data °
has many variations in basic procedure as well as several options as to spe-
cific method of application, Therefore, before describing the research design
any further, the specific techniques used will be described to make their idént-
ity unambiguous, -

~
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Factor Analysis Two basic factor analysis procedures were used on the
.ata: the method of principal components, and the method of principal factors.

- These two procedures differ mainly in that the former assumes that all of the

variance influences the magnitude of the correlations, while the latter assumes
that some variance is unique to each item and a reduced number of- factors
(Tess than the number of items) explains the correlations. Although the latter
procedure seems more reasonable, both were used on selected data-sets to deter-,
mine their relative value, ’

In addition to the basic factor analysis procedures, two types of ro-
tations wer€ used to help in the interpretation of the results. The two ro-
tations used were VARIMAX, and OBLIMIN: These two were selected because of
their general availability, and because they allowed comparisons between
orthogonal and oblique solutions. X .

T \

The factor analyses were run on only three of the similarity coefficients
mentioned above: the phi coefficient, the tetrachoric correlation, and the
tetrachoric correlation’corrected for guessing (Carroll, 1945). The other
coefficients were not used becau§2 they did not even approximate the assump-
tions of the factor analytic model,

’
t

Because of the different factor analytic options.available in different
packages, four different packages were used to perform the analyses. These )
included SPSS (Nie, Hull, Jenkins, Steinbrenner arg Brent, 1975), SOUPAC .
(Computing Services Office, 1974), OSIRIS TIT (Institute for Social Research,

1974? and SAS (Barr, Goodnight, Sall, and Helwig, 1976). - In some cases, 'the
same analyses were run using two.different packages to check their compara-
bility. Differences inresults obtained from the different package programs
were minor. i

Cluster Analysis Two different cluster analysis approaches were.taken
for thjs study. .The first, labeled CLUSTER for this report, builds clusters
of items one at a time. The procedure first searches the input similarity
matréx for the two items with the highest similarity., The matrix <s then

© _ searched for the item that has the highest minimum similarity to the three

items in the cluster, This item is also-added to the cluster, This procedure
continues until no items can be found with a similarity greater than a pre-set
cut-off value. At that point the matrix is again searched for the two 1tems -
not ipcluded in the first clustér with the highest similarity. These two

items form the beginning of a new cluster, The clustering procedure then

continues until all items are used or unt#l none of the similarities exceed

the cut-off value, -

The second clustering procedure used, called HICLUSTER in this report,
is a hierarchical clustering procedure, In this procedure, the mgst similar
pair of items is connected first, then the next most similar, anggip on, to
form initial clusters,. These initial clusters are combined when all of the
points in one cluster are connecfed to.all of the points in another cluster,
Clustering in this procedure continues until all of the items are included
in one cluster, All of the similarity coefficients listed above were used
with both of thesg procedures, .ot .

! .
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. Both of the c1u§tering procedu}ai used for this study were applied using

programs from the OSIRIS ITI computer program package, Although.this pack-
age is not as widely ,available as SAS or SPSS, the clustering routines from
this package were used because of their greater versatility.

Nonmetric Multidimensional Scaling The nonmetric multidimensional
scaling procedure used for the data analysis in this study was the basic
* MDSCAL procedure developed by Shepard (1962) and Kruskal (1964). This pro-
cedure rank drders the similarity 6f the items used in terms of the spec1f1ed
similarity coefficient used, and then attempts to define a space of minimum
d1mens1ona11ty such that the distances between the items in the space are
ranked in the same order as the initial similarities., The procedure uses a
steepest descent iterative approach to improve the relationship between the
spatial configuration and the initial similarities. _.When the rate of improve-
ment levels off, the solution is accepted. A Euclidean metric was ysed for
all of the analyses using this procedure. i

The OSIRIS ITI version of MDSCAL was used for all of the analyses pre-
sented in this report., Each of the coefficients mentioned above was used
as a similarity measure for this procedure, since 1t makes no,assumption other
than an ordinal scale concerning the coefficients, Although numerous other
multidimensional scaling a1gorifgps exist, this algorithm was selected because
it is widely available,

Latent Trait Analysis  Although latent trait analysis is not commonly
thought of as a multidimensional clustering technique, some results obtained
in previous, research suggested that it might be used as such (Reckase, 1979).
" That research suggested that when several factors are present the LOGIST
(Wood, Wingersky, & Lord, 1976) item calibration program selects one factor
as abasis for item ca11brat1on. Thus, items with high discrimination para-
meter estimates should be from the same latent d1mension, while those with
Tow estimates should be from othér dimensions, By deleting the highly dis-
criminating items -after each Min of the program, another set of highly dis-
criminating items may be found that measure a different latent dimension.

Thus, iterative use of the program, with item déletions between successSive
iterations, may yield sets of homogeneous items. It-was the purpose of the
analyses performed for this research to determine if that were indeed the—case.

e
. . <
Data-Sets ' . - ' >

k3 L]

As mentioned earlier, the item sorting procedureé were applied to two
kinds of data-sets: simulated and actual test data. The simulate” responses
of examinees to item® were used so that precise control could he maintained
over :the dimensionality of the data, The actual test data were used to get
a more realistic evaluation of the procedures. The production procedures and
character1st1cs of the data-sets will now be described.

»
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Simulated data -A total of 24%simulated data-sets were produced.for
this study. These data-sets all represented the responses to 50 items by
1000 individuals. They-varied in the number of dimensions used to generate
the responses, the distribution of item difficulties{ .the guessing level,
and the distribution of the guessing level. A1l of the'data-sets were gen-
erated using a variation of the procedure described by Wherry, Naylor,. Wherry

4

& Fallis (1965). .

This'p}ocedure generates data using the basic tinear factor analytic
,model. A more detailed description of the procedure is given in Reckase (1979).

The procedure developed by Wherry et, al. genewates data to-'match.a
specified factor structure, but does not include a guessing effect, There-
fore, after the simulated responses were produced usipg the above procedure,
the incorrect responses to an item were randomly changed to correct rg&sponses
at a rate equal to khe guessing probability for the item. This was done by
comparing a flat random number on the 0.0 to 1.0 range with the guessing level
for the item, and changing an incorrect response to a correct response if the
selected random pumber were less than the guessing level.

The total list of data-sets produced for the study are presented in
Table 4. As can be seen from the table, more than half of the data-sets pro-
duced used only one generating factor. These data-sets were produced te.de-
termine the effect of guessing on the obtained dimensionality of a set of test
. data. Both the level .of guessing and the distribution of parameters were var-
~ied for these data-sets. T
The next set of data-sets listed in the table used two orthogonal factors
to generate the item responses. This set of relatively simple multidimensional
data-sets was used to determine whffﬁlprocedure could adequately find the homo-
geneous jtem sets within the test, If a procedure were not successful on thig

"easy" set of data, it was eliminated from consideration. v .
The remaining simulated data-sets used three or nine orthogonal factors
to generate the item responses. These data-sets were generated to have a
large first factor to more accurately simulate what was believed to be a
realistic state of nature. Only item sorting procedures that succeeded on the
two-diménsional data were applied to theserTﬂﬁicomp1ex data-sets.

Redl Data The real data-set used in this study was produced by sampling
items and responses from the results of the 1975-76 administration of the Iowa
Tests of Educational Development (1972). The desire here was to produce a test
with two underlying dimensions that contained all the sources of variation
present in typical test,administrations. To achieve’the desired dimensionality,
items were selected from the Expresston and Quantitative Thinking subtests of
the ITED. These two subtests were judged to be most dissimilar, and so most
“1ikely to yield the desired structure. A total of 50 items were randomly
selected from the 105 items in the two subtests using a stratified randdm
sampling approach. Thirty-three of thé items in this data-set were from the
Expression subtest and 17 were from the Quantitative Thinking subtest.

25
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’ Table 4
. // | Catalogue of Data-Sets S
N ' B . ~
* ) . 4 C
Dimensionality of Data Set S Labels¥ o
Y, - :
1-Fawtor *  spi50N.CG00, SD150R.CGO0, SDi50R.CGOS -
, SDI5O0R,CG18, SDL50R.NG15,SDI5ON.CG15 . ~..
- ’ SDI50R.CG25, SD150R.NG2S, *§h150N, 0625
o, * SDI50N.CG35, SDI50R.CG35, “SD150N.CGA5
4.  SD150R.CG45,-SD150N,CGS5, SD160R.CGS5 .
¢ SDISON.CG6S, SBI50R.CG65, SDISON.CG7S
SD150R. CG75 | o
| . 2-Factor’ « . " SD250R.CG00, SD250N.NG20, SD250R.CG25
5 * 4 . , ‘
9 . 3-Factor - S[350N.NG20 o »
| 9-Factor E SLO50N.NG20 . .
LS -~ d )
X v’
*

The 1abe1 of the data-set describes the data- set The first two letters .
stand for S1mu1at1on data. The next three oy four digits tell the number
of factors and number-of items, «Al1 data-sets' contained 50 items. The
Tetter following the‘50 tells the-distribution of traditional item diffi-
culties: N or R meaping normal or rectangular, respectively. Following
1, the period is CG or NG, standing for constant or normaHy distributed
guessing. The final two digdits give theg guessing level. The values given,
- are the guyessing levél for CG data- sets ar the mean guessing level for NG
' data- sets &

4

~
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Research Design ) L

-The basic resegrch design of this study contains four compongnts~_ First,
the four.techniques of interest (factor analysis, cluster’analysis, nonmétric
mul€idimensional scaling, and latent trait analysis) were applied to the one
dimensional data-sets, with gue§§ing varied, to attempt iﬁ'discover the effect
of guessing on the techniques., This was done by plotting various characteristics
-of the techniques (e.q., size of first eigenvalue) against the guessing level

-+ to determiné if any relationship existed. Also, the structure of the data-sets

Was considered unknown and the results of the procedures were analyzed to deter-
mine if the unidimensional structure could be discovered. . This set of analyses
f?rmed a basis for'Fomparison for all" of the subsequent analyses.

.

The second,pﬁglysis component consisted of applying the four.techniques to
the two, three, and nine-dimensional data-sets. For each of the data-sets, an
attempt wasaﬂgdgrto'recoven the underlying structure of the data, If a procedure
faili;;ﬁaf“ low dimensional data-set, it was not used with the more compl ex

data-gsets,
~e.

)
’

The third analysis component consisted of applying the faur techniques to
the real data-set. The procedure used with the real data-set was similap ;to

that used with the simulated data-sets, The technigues were evaluated on their
ability to repraduce what was thought to be the undérlying structure of the &
data-set; In this case the data-set was constructed to have two components,

but since the true structure coufd not be ‘determined with certainty the inter-
pretation of the results was much more cautious,

The final analysis performed for this study was.the comparison of the
results obtained using Mg simulation data with those suggested by the research
Titerature. That is, the obtained reliability as a function of guessing was

-compared to the theoretical predictions, - y

AY

Results

»

One-Dimensional $imu1ated Data

~

The results of the apﬁﬂication of the four techniques to the one-dimensional
simulated data will be presented first. The factor analysis results yill be pre-
sented first, followed by the-multidimensional scaling, cluster analy¢i€, and
latent trait analysis results,
. . / L. - .
Factor Analysis The first analysis performed ustfrg the factor ana1ysf%
ptocedure was determination of the relationship between the size of the first
factor on the test and the magnitude of the guessing. component contained in
he responses to each item on the tegiéggﬂo obtain this information, a principal
omponents factor analysis was performed on tetrachoric correlations for eight
ata-sets. These data~sets were all generated using a normal distribution of
e radi}iona] item-difficulty gentered around ".5. Each was generated using.a
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: . constant guessing level. The gtessing level used were O, A5, .25, .35, .45,
. .55, .65, and .75. A1l data-sets were generated so that each item had a .9
loading on the first factor before the guessing éffect was added.
To show the relationship befween the guessing level ‘and the size of the
first factor, the proportion of total test variance accounted for by the first
factor was plotted against the size of the- guessing component, This p1ot is
given in Figure 3, along with a plot of the KR-20 reliability against’ the guess1ng
Tevel. As can be seen from.the plot, the proportion of variance accounted for
by the first factor .dropped off substant1a11y with an increase in guessing. At
the .15 guessing level, the proport1qQ of variance had already declined to .62
from the .83 obtained" for the no guessing case. It is interesting to note that
the decline-in the KR-20 re11ab111ty is not nearly as dramatic, showing its
insensitivity to guessing effects.

Along with the analysis of the proportion of variance accounted for by the
first factor, an attempt was a]so made to determine jf guessing induced additional
__factors_in the test. That is, did the decline in the first factor indicate the
presence of other factors. To determine this, the nuiber of factors in each
factor analysis was determined using the skree techn?ﬁﬁe. The factor loadings
for those factors were than studied to determine whether they were interpretable.
For al11 cases except the .00 and .75 guessing level data-sets, two factors seemed
to be present in the data. The second factor for all of the two factdr cases
looked 1ike a guessing factor, with high loadings for the difficult items. For
higher guessing levels, the second factor was not as clear, d1sappear1ng altogether
for the .75 guessing level data-set.

In addition to the creat1on of a second factor in these data-sets, the
loadings of the items on*the first factor were also affected., They were found
to decline with an increase in the difficulty of the test items. Since this
did not occur for the .00 guessing data-set, the effect can be attributed to

. guess1ng

) Since the guessing factors were ‘defined by loadings on the hard items, it
would seem reasonable that the distribution of item difficulties would interact
with the gquessing effect. To t this conjecture, a data-set was produced with
a rectangular distribution of d???écu1ty rather than a normal one, as in the
, previous data-sets, and a .25 guessing level. The results of the principal
- component anatysis of this new. data-set showed that the presence of items of more
extreme 'difficulty had the effect of reducing the proportion of variance accounted
for by the first factor from .50 to .41 and increasing the number of factors in
the data-set, The shree technique indicated four factors, but only three were
.readily interpreted. The second and third factors for this data-set both seemed
to be guessing factors. For comparison purposes, the factor loadings for the
first two principal components from the normally distributed data-set, and the
first three from the rectangu1ar1y distributed data-set are présented in Table 5.
Notice the.guessing factors in the data and the'decline _in the first factor
loadings with the increased difficulty of the items, Several other data-sets
were produced with rectangutarly distributed difficulties and their analysis
.. produced similar results,, ’
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Principal Component Factplzb%iog Tetrachorit'Corré]atiEns
yfor Simulated Tests with Normal apd Rectangular Distributions
of Difficulty and .25 Guessing Level -
> | , -
A )
] : ractors (Normal Distribution). Facters {Rect. Distribution)
[tem Difficulty 1 T . Difficulty I 1 .
1 15 39 S 01 06 13 . "3
2 18 44 . 37 4 03 09 23 07
3 19 55 3 05 17 150 36
4 21 50 48 = 07 12 29 ° . 42
5 22 59 22 09 20 %" 31
6 .27 60 27 : 11 - 25 25 19 "N
7 29 : 64 . ?1 . 13 30 27 ' 38
8 29 58 37 ’ 15 29 43 . 05
9 29 64 24 oA 23 37
10 31 66 26 ‘ 19 39 31 32
11 33 * 68 21 o 55 25 14
12 34 - 68 20 S 49 33 18
13 34 7 18 25 47 = 36 -14
'14 37 65 18 27 5 . 32 .14
15 38 ‘58 17 29 785 - 40 _  -03
~ 16, 39 74 13 31 63 31 -01
17 41 . 68 16 . 33 55 36 -04
18 42 .73 -01 35 + 66 24 -15
19 42 .67 13 . 37 62 32 -05
20 & . s 12 39 66 8 07
21 48 73 - 07 : 41 63 34 . -26
22 48 73 01 ] 43 68 “ 26 01
23 52 72 03 45 66 28 -11
2 52 72 06, 47 4 019 -07

25 52 .- 72 =01 - 49 71 20 -19
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. Table 5 {Continued) ,
. Principal Component Factors from Tetrachoric Correlations
- for Simulated. Tests with Normal and Rectangular Distributions

N of Difficulty and .25 Guessing Level
; | , .
] Factors (Normal Distribution) Factors (Rect. Distribution)
* JQtem  Difficulty I I1 « Difficulty I oI III
26 54 777 . 02 51 72 18 -14
- 27 54 T4~ 02 53 © 70 08 06
C 28 54 73 -03 ’ 55 76 10 -11
" 29 ia 55 73 .08 " 57 73 14 -13
30 55 , 75 07 59 75 03 -4
31 56 78 -04 61 78 -10 17
32 57 2 TS (i T /4§§f"—‘:32 06 -21
33 58 75 . 08 65 77 09 -07 .
© 34 58 74 06 67 79 08 . ~09
3% 58 77 -07 69 75 -09 -15
36 60 76 -04 71 81 -18 -01
37 60 76 . -18 73 77 -08 -07
38 60 T4 14 75 78 14 -10
. 39 61 74 -10 77 78 -20 -13
40 61 79 . -18 79 78 -25 05
S o4 62 - 77 ~15 81 77 .23 01
42 . 64 7 - -18 - 83 - 77 -23 " 05
© 43 64 78 -21 85 79 -32 01
44 65 .8 24 87 =~ 79 ., -35 13
45 65 © 75 -26 -89 77 -39 . 0l
46 . 66. 74 27 91 77 -36 04
* 47 69 - 78 . 32 93 . 76 37 .19
48 70 77 -35 95 79 -49 17
49 70 75 -35 97 - 75 .43 02
50 79 71 42 .99 63 60 - 55
Note, A1l values are preSented without decimal points.
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_to the factor analysis, resulting in meaningless results.
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?Fom this set of analyses, three types of results were observed concerning
the effects of guessing on the ghidimensional simulation data. First, quessing
reduced the contribution of the first principal component to the factor analysis
results. Second, the loadings of the items on the first factor were reduced to
the extent that guessing affected the items, Third, extra factors which seemed
to be guessimg factors were present im the principal component solution. Similar
results were\gbtained when the principal factor procedure was used instead of
the principal onent solution, ’

4

Since the purpose of this report is to find methods for recovering unidimen-
tional sets of items from a test, one further analysis was run on the one-factor
rectangular distribution of difficulty data-set with ;25 guessing. The purpose
of this analysis was to determine if the correlation matrix could be corrected
for guessing. Carroll's (1945) correction for the four-fold tables used to
compute tetrachoric correlations was selected for this purpose. Since the true
quessing level for an item is not usually known, the data were corrected for
guessing using .15, .25, and .35 gugssing levels. The corrected tetrachoric
correlation matrices were then factor analyzed using the principal component
technique. The first two factors obtained for the corrected matrices and the
uncorrected solution are shown in“Table 6,

The most obvious result that can be seen in Table 6 is that overcorrecting
for guessing (.35 correction) results in a very unusual factor analysis solution.
The first seven items defined unique factors, and many of the factor loadings
were essentially 1,0, Overcorrecting for guessing ¢learly does serious harm

Correcting for guessing at the .1% and .25 level gave more reasonable
results. The first factor loadings were increased above the uncorrected values.
In many cases the =25 correction yielded loadings close to the .9 values used
to generate the data, The .15 correction did 1ittle to remove the second factor
from the solution, The .25 correction did tend to restrict the influence of the .
second factor to fewer items, mainly the most difficult items in the data-set.

In general, these results indicate that™the correction for guessing for the
tetrachoric correlations has some merit, but care must be taken not to over-
correct, The first factor loadings are improved by the procedure, but the cor-
rection did not totally remove the second factor, which was attributed to guessing.

Nonmetric multidimensional scaling The first analysis performed using the
nonmetric multidimensional scaling technique was the application of the MDSCAL
program to the one factor data with a rectangular distribution of item difficulty
and no guessing. This analysis was perfarmed on the data using each of thirteen
similarity coefficients, These included the following: agreement coefficient,
k:;gé coefficient, kappa coefficient, Lijphart index, Kendall's tau B, approval

score, phi coefficient, Yule's Q, Yule's Y, phi over phi max, gamma, tetrachoric

correlation, and eta coefficient. Each of these coefficients is described in
Appendix A. This Tdrge set of coefficients was used since MDSCAL does not require
any special characteristics in a measure of similarity, and it was hoped that
one of these coefficients wottld be less sensitive to guessing effects than the
others. . A
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Table 6 '

Factor Pattern Matrices for a Two-Factor

Principal Componeqt Solution of One-Factor Data with .25 Guessing .
with Various Levels of Correctign for Guessing

- &
y No Correction .15 Correction = .25 Correction .35 Correction
. Item I 11 I 11 I 1 I II
1 06 13 14 24 64 75 00 00"
2 09 23 17 42. 78 92 00 00
3 17 15 3 18 99 48 00 00
41 12 29 24 ° 51 " 66° 63 00 00
5 20 36 .32 ¢ 59 7169 .00 00
6 2 25 38 36 y. 75 30 00 00
7 30 27 49 34 91 14 00+ 00
8 ‘ﬁ, 29 43 41 .56 64 51 97 -61
g 41 23 60 22 90 " 09 101 “ 07
10 39 31 53 37 72 33 100 03
11 53 25 75 15 100 06 101 07
12 49 33 67 30 95 -06 101 07
13 47 36 60 34 79 -0l 99 -48
14 - 54 32 71 28 95 12 101 07
15 55 ° 40 70 40 94 10 ¢ - 101 07
16 63 1 3 79 26 100 00 101 07
17 55 36 66 35 80 17 9  -29,
18 66 24 81 10 - 98  -l4 101 08 .
19 S 32 2 .V 19 100 .03
20 66 28 78 23 94 13 . 101 07
21 63 34 73 28 82 13 ., 98, -39
v 22 68 26 78 24 93 . 20 101 04
23 . 66 28 76 25 .8 19 98  -04
24 74 19 86 09 97 03 101 -01
25 71 20 80 13 9% 08 99 -23
¥ ’ . :
_Note. All values are presented without decimal points, . {

)\/




-30-

-

Table 6 (Continued)
Factor Pattern Matrices for a Iwo-Factor
Principal Component Solution of One-Factor Data with .25 Guessing
with Various Levels of Correction for Guessing

No Correction .15 Correction " .25 Co;rection .35 Correction
, Item I I1. I "I I 11 1, II
AN T :
26 - 72 18 % 06 : 90 -01 99 07
< 27 70 08 .79 01 89 06° 97 11
28 76 10 8 _ 03 % - 00 101 - 09
29 73 . 14 80 09 91 12 . 98 . -18
\ 30 75 09 82 03 )| 02 97 -18
31 78 -10 - 85 -12 o 92 <08 99 06
32 72 06 78 . 00 84 -14 . 95  -29
33 77 -09 83 -18 88 -21 98 o7 (
34 79 -08 ™84 -14 91 -17 - 99 11
35 75 09 + - 80 -20 82 43 9
36 . 8l <18 87 -25 . 90 48 99 QZ
37 .77 -08 82 -07 92 14 9%  -14
38 78 -14 , 82 - .17 87 -22 97 " (05
39 .« 78 220 82 -24 88 -17 96 -11
40 78 -25 82 -31 84 -54 97 08
41 77 -23 81 -25 86\ 13- 9%+, 08
42 N -23 81+ =25 89 -23 ) 96 04
43 - 79 ~32 83 -34 87 -46 98 07
“ 79 -3 - .8 41 93 -4 98 05
45 77 -39 80 -35 86 ©  -24 97 15
46 coT -36 80 -37 88 29 . 98  -04
47 - . 76 37 82 -28 94 -03 97 04
48 79 -49 83 -46 95 -43 99 06
.49 75 .43 g - -4l 85 = 71 98 06
50 63 -60 81 -37 72 52 80 1,16
- - LaF
Note. A1l values are presented without decimal points.
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After the MDSCAL analysis was completed, the resulting two-dimensional
configurations were plotted and the stress of the solutions were noted. Stress
1s a measure of the deviation of the obtained distances between ,the jtems in
the MDSCAL solution from the distances present in the fnitial data. The value
is standardized by the'squared deviation of all 6f thegdistances from the mean
distance. The smaller the stress, the better the fit 6f the MDSCAL solution,

The results of the analysis of the coefficients applied to the one-factor .
data indicated that three different types of solutiqns were being obtained for
the data. Six of the coefficients (agreement, koppa, kappa, Lijphart, tau B,
and phi) yielded plots that placed the items along a straight line on one
dimension, with the items ordered in difficulty--the easy items at one end and
the difficult items at the other. The values of the stress index yaried from
.048 to .029, with the kappa coefficient giving the smallest value. The reason
for this pattern is that these coefficients are all affected by the difficulty
of the test items, with {tems close together in difficulty being judged more
similar, A plot of the MDSCAL result for the kappa coefficient 1i§given in
Figure 4. . SR

The second type of solution was obtained for six of the coefficients
(Yule's Q, Yule's Y, phi/phi max, gamma, tetrachoric, and eta). This solution
resulted in a circular cluster of points. The position of the item¢ within
the cluster seemed to have no obvious relationship to the difficulty of the
items. The stress value for the solutions ranged from .34 to .33, with Yule's
Q and gamma giving the smallest values. This solution is a result of the fact
that these coefficients are not affected by the difficulty of the item, and 7.
therefore all pairs of items are found to be equally similar for one~dimensional
data. The circular pattern is a result of trying to get all of the items equal
distances apart in a two-dimensional space. Of course this cannot be done, so
the stress of the solution$ are higher than those fgr the first set of coefficients,
An example of the circular solution for the gamma coefficient is given in Figure
5,

3

The third type of solution obtained from the MDSCAL procedure resulted from
the application of the approval statistic, This solution had all of the ea
jtems clustered tightly in the center, with the hard items spread out to on
side. The pattern ig a result of the way this statistic is computed, S
simply the proportion of times both items are answered correctly at the same
time. Thus, easy items are found to be more similar than hard items, which
have fewer correct fresponses. This solution had the lowest stress of all of
the procedures, with.a value of .021, The plot of this solytion is given in
Figure 6.

/
The next analysi$ run ‘using the nonmetric multidimensio scaling technique
was the computation of the two-dimensional solution using each coeffiyient for
the one-factor, rectangular distribution of difficulty data-set wi .25
guessing level. The purpose of this analysis was to determine which coefficient
gave a solution that was least affected by guessing.

1
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The coefficients that yielded linear plots for the no guessing case gave
two different types of plots for the .25 guessing case. The agreement, koppa
and Lijphart coefficients resulted in wedge shaped plots for the two dimensional
MDSCAL solutions, with the items high in guessing being in the wide part of the |
wedge. The stress was identical for all three coefficientsy with a value of .104.._~
This was substantially higher than the .042 achieved for the no guessing case. 1

" Figdre 7 shows the plot of the results for the agreement score. Since these three

»

coefficients gave identical results, only the agreement score will be given further
consideration,

The second type of plot obtained from the coefficients giving a linear
plot for the no guessing data was a crescent shape with the easiest and hardest
items at the points of the crescent.. The Kendall's tau B, phi and kappa co-
efficients gave this type of pattern. The stress far these $olutions ranged

.from ,137 to .168, up from .029 to .048 whei no guessing was present. Of these

three coefficients, kappa resulted in the MDSCAL solution with the smallest

stress value. The plot of the two-dimensional solution for the kappa coefficient **
is given in Figure 8, The effect of guessing on these coefficients seems to be

an increased similarity in the very easy and very hard items, resulting in the
curvature in the plots, . i \

The coefficients that resulted in circular patterns for the‘one-dimensional
data with no guessing also yielded two patterns when MDSCAL was-applied to.the
one-dimensional data with .25 guessing. The Yules Q, Yule's Y, phi/phi max,
gamma, and tetrachoric coefficients all resulted in two-dimensional solutions
that showed the original circular patterns distorted by pulling the items most
affected by guessing down to the lower left. Guessing increased the distance
between the items most affected by guessing, causing greater dispersion for
those items, The stress values for the solutions ranged from .219 to .270, with
the tetrachoric correlation giving the smallest value. Phi/phi max gave the.
largest stress value and showed the greatest dispersion for the easy items. The
distortions caused by guessing brought about a reduction in the stress value
from the .33 value obtained when no guessing was present, It seems that the
guessing effect brings about a more linear continuum than was present previausly,
making the data easier to fit.. The plot of the two~dimensional MDSCAL solution
for the tetrachoric correlations is presented in Figure 9, ,

The second type of solution obtained from the set-of coefficients that,
resulted in circularyplots was obtained for.the eta coefficient. ¥In this case’
the plot remained circular, but the hard items migrated to the circumference ‘of
the two-dimensional structure, while the easy items moved to the cknter, The
stress for this solution increased from ,330 for the no guessing solution to
.365 for the guessing solution., Figure 10 presents the plot of this solution.

The approval score, the coefficient that gave the third type of pattern . 3
for the no guessing data, resulted in"a pattern similar to that obtaineg\f%r
the eta coefficient when guessing was present. A‘circular pattern resultéd,
with the hard items at the circumference and the easy items at the center.
The center cluster was much tighter in this case, however. The stress of this

\
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solutioﬁ*ﬁ;;\ﬁﬁth higher than the solution for the no guessing data, with a
value of .239, comparedsto the ,021 obtained earlier, A plot of thé results
for the approval score is presented ig Figure 11,

. One other coefficient was considered for use with the MDSCAL procedure,
hat coefficient was the tetrachorfc correlation corrected fof guessing, To
Check-its usefulpess, the tetrachoric correlations determined from the one-
dimensional, .25 guessing data were corrected for guessing using .15, .25 and
+35 guessing levels, The resulting coefficients were then analyzed using the
MOSCAL procedure. The results for the .15 correction gave a pattern similar
to the uncorrected data, but with slightly higher stress (,234 vs, ;219), The

* .25 correction resulted in a circular pattern similar to the no guessing data,
but with hard items at one side of the plot of the solution., The stress wis
.320, almost as high as for the no guessing data (,334), .

%

The .35 correction resulted in a solution with the seven hardest 1tems
in.one group and all of the rest in another, The stress for this solution
was a very low .074. This solution was similar to the no guessing solution .
for the approval score, '
. ‘ c
From the analysis of the one-dimensional, .25 gquessing data, four different

) patterns of effects can be seen as a result of guessing. The coefficients that

gave linéar patterns when no guessing was present were either broadened into
a wedge (agreement score) or bent into a crescent (kappa coefficient). The

coefficients that gave circular’p ;ﬁ@xns when no guessing was present were either
stretched to one side by guessing (T

thSyachoric correlation) or maintained a
circular pattern, but with the hard items on the outside and easy items in the
middle (eta coefficient). Carroll’s correction for guessing did tend to com-
pensate for guessing effects, ~ However, the MDSCAL solution only matched the no
guessing solution §f-the correction matched the true guessing level. Otherwise,
the solution was distorted,

Cluster Analysis As with the factor analygﬁs and multidimensional
scaling procedures, the first analysis performed with the two cluster analysis

. procedures was the application of the techniques to one-dimensional data with

no guessing. After the no gue$sihg analysis, the techniques were applied to

the one-dimensional data set with .25 guessing to determine guessing effegts. \//
In all cases data-sets with rectangularly distributed traditional difficulty
indices were used to make clearer any ftem difficulty effects. A1l of the co-
efficients listed previously were used for these analyses, along with both
cluster analysis procedures, CLUSTER and HICLUSTER, The CLUSTER results will

be presented first, i

The CLUSTER rdsults are difftcult to interpret because the number of
clusters obtained depends on the cutoff value used to accept an item into a
cluster, S1light changes in the value resutt in substantial changes in the
number of clusters obtained, Despite these difficulties, a pattern was deter-
mined- in the results, The cluster analysis solution determined for the kappa,
phi, agreethent, Lijphart, koppa, tau B, and approval coefficients were all
related to the difficulty of the items. That is, items of similar difficulty
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were clustered fogether., In contrast, the solutions based on Yule's Q,
Yule's Y, eta, tetrachoric, phi/phi max, and gamma tended to form gingle
large clusters or clusters unrelated to item difficulty, This result is
reasonable, since the latter coefficients all yielded coefficients that are
fairly independent of item difficulty, while the former set of coefficients
are dependent on item difficulty, Individual results will not be presented
for the CLUSTEF procedure, since they are too dependent on the cutoff value

for placing an item in a cluster, and no procedure is known to decide on the
number of clusters. .

* The HICLUSTER proéZdufe gave somewhat similar results to those of the
cluster procedure, The hierarchicial solutions developed for the gamma, phi/
phi max, tetrachoric, eta, Yule's Q, and Yule's Y coefficients had no discern-
able relationship to item difficulty, while the solution for the Lijphart, phi,
kappa, agreement, tau B, koppa, and approval coefficients were related to item -
difficulty. Among this latten group of coefficients, three distinct patterns
of entrance of the items into the clusters were noted, When using the Lijphart,
koppa, and agreement coefficients the clustering procedure initially clustered
the items of extreme difficulty and then worked in toward the more oderate
items. The solutions based on the phi, tau B, and kappa coefficieqts initially
Clustered the middle- items and then worked out toward the extremes. The approval
score solution first clustered the easy items and then worked toflard the most
difficult. These different patterns of results reflect differences in the effect
of item difficulty on the magnitude of the coefficients. Some have the highest
values for middle difficulty items, while others haye the highest value for
items at the extremes of the difficulty range. As with the CLUSTER procedure,
no procedure was known for determining the appropriate number of clusters, so

"no individual results will be presented here,

The application of the CLUSTER procedure to the one-dimensional, .25
guessing data gave somewhat predictable results. For the kappa, phi, agreement,
Lijphart, koppa, and tau B coefficients, the clusters formed still had a ten-
dency. to be related to the item difficulty, but. the relationship was not as
clear. Further, more clusters were formed than when no guessing was present,
This is a result of the reduced magnitude of the coefficients as a result of
guessing. The results for the Yule's Q, Yule's Y, eta, tetrachoric, phi/phi
max, and gamma coefficients changed somewhat from the no guessing case. The
clusters formed for the guessing data hafl some relationship to the difﬁicu]ty
of the items, where none was present when guessing was not present. Correcting
the tetrachoric correlations for guessing at .any level did not remove this effect.
The results for the approval score were very similar to those presented for the
no guessing data -- the easy items\formed a large cluster, while many small
clusters were formed from the more d¥fficult items. :

The HICLUSTER protedure gave quite different results, The majority of
the coefficients formed a hierarchic%;»structure by grouping the easier items
first, and then working down toward fhe hard items. The coefficients that
presented this pattern were the gamma, tetrachoric, Lijphart, koppa, agreement,
kappa, and approval coefficients. The Yule's Q, Yule's Y, phi, and tau B co-
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efficients showed some of this effect, but the results were not as strong. The
phi/phi max and eta coeffitients clustered the items in essentially the same
way as when guessing was not present. When the tetrachoric correlation was

corrected for guéssing at any level, the effects of item difficulty on the
clustering was removed. ’ |

The analysis of the CSUSTER and HICLUSTER results indicate that di fferent
types of clusters are develdped depending on the type of coefficient used.

Some coefficients yield\elusters related to item difficulty, while others do
not. Guessing tends to force a relationship with item difficulty for both
techniques for most of the coefficients, This will have to be taken into
account when working with multi~-dimensional data. .

Latent Trait Analysis The anafﬁgis of the one-dimensional, no-guessing
data with the LOGIST program gave exactly the results that were expected. The
three-parameter logistic a-parameter estimates were all uniformly high around
a value of 2.0, The b-parameter estimates were evenly spaced in the range from
+3 to -3, and the c-parameters were all estimated as 0.0, These results were
obtained by running the LOGIST program with the defiyﬂt program control values.

Similar results to that obtained for the no-guessing data were also obtained
when the simulated data contained a ,05, .15 or ,26 guessing Tevel, assuming
multiple choice items with 4 -responses, The a- and b-parameter estimates gave
results similar to.,those described above, and the c-parameters were accurately
estimated at the value used to generate the data, When the Tevel of guessing
used to generate the item data was above .25, however, the default options in
the program were unable to accurateiyestimate the parameters, With guessing
at the .35 level,’ th& c-parameters were underestimated for all but the hard .
items. The a-parameter estimates tended to be Tow for the moderate and hard
items, and the b-parameter estimates were becoming more erratic, The parameter
estimates for the .25 and .35 cases are presented in Table 7, The parameter
estimates are progressively worse for guessing at the .45, .55, ,65, and .75
Tevels. . -

The parameter estimates obtained from the LOGIST program for~the high
guessing leveTs could be improved by releasing the constraints on the c-para-
meter, When the range of acceptable c-values was made larger the program did
a good job of estimating the parameters at the .35 and .45 levels., Parameter
estimates for higher guessing tevels were still inaccurate.

In evaluating the results of these analyses, it is clear that LOGIST
program does well when the guessing levels are Tow to moderate, and poorly
when guessing is high. These results should be taken as very favorable overall,
since it is unlikely that guessing on typical multiple choice items is ever as
high as .65 or ,75. That is, subjects wigh ability at -= are unlikely to have
that high a probability of obtaining a correct response to an item. When the
guessing level is reasonable, the program does a very accurate job of estimating
the parametears. :
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Table 7

, _ Item Parameter Estimates for the One-Dimensional Data
with .25 and .35 Guessing Levels
and Recfangular Distribution of Difficulty

Guessing Level

a Y

Item Number , .25 , * .35
a b c a b c *
1 . 2.00 2.44 .45 .15 7.90 .250
2 2.00 2.14 - .25 .08 14.57 .250
3 2.00 1.97 .240 .93 2.64 .305
4 1.91 1.73 245 .63 2.16 .264
5 2.00 1.51 = 7245 - 1.95 1.72 .306
6 2.00 1.48 .250 x93 1.66 , .331
7 2.00 1.8/ .285. 1.86 147 * 307
8 2.00 1.18 .250 1.47 . 1.33 .327
9 2.00 1.11 ¢ .250 .93 1.14 .250
10 2.00 1.00 290 1.87 1.09 .328 .
11 2.00 .88 .245 .94 73 - .250 .
12 2.00 .88 .245 1.29 1.01 L334
13 2.00 .80 .250 2.00 .82 .321
14 2.00 72 .245 2.00 .81 .367
15 / 2.00 .66 .240 2.00 72 .325
16 2.00 .56 .245 1.37 41 .250
17 . 1.88 .51 .250 1.30 .27 .250
18 1.91 .46 .240 2.00 .52 * .310
19 2.00 .34 1.41 .29 .250
‘\295\ 2.00 .30 1.57 .14 .250
21 2.00 .21 1.70 .09 .250
. 22 2.00 .20 1.70 .05 .250
23 | 2.00 ‘17 1747 -.00  .250
y 24 2.00 .08 1.65 -.01- .250
25 1.95 .07 1:50 -.15 .250
26 2.00 -.00 1.63 -.21 .250
27 1.78 -.09 1.58 -.22 .250
28 2.00 - -.14 1.68 -.36 - .250
29 2.00 -.14 2.00 -.39 .250
30 .2.00 -.31 2.00 -.29 .250
31 2.00 -.33 2.00 -.48  ,250 ‘
. 32 1.83 -.40 2.00 -.50 .250
33 2.00 -.54 2,00 -.52 .250
34 2.00. -.53 2.00 -.64 .250
35 2.00 -.60 2.00 -.74 .250
36 2.00 -.70 1.98 -.73 .250 i
37 2.00 -.74 2.00 -.79 .256 -
38 1,97 -.80 2.00 .-.92 .250
39 2.00 -.89 2.00 -.90 .250
40 2.00 -.97 1.85  -1.08 .250
41 2.00 -1.01 2.00 -1.05 .250
42. 2.00 -1.18 2.00 -1.06 .250
43 2.00 -1,23 2.00 -1.21 .250
44 2.00 -1.44 2.00 -1.33 . 250
- 45 2.00 - -1.60 2,00 -1.38 .250 .
46 2.00 -1.51 2.00 -1.48 .250
47 *2.00 -175 2.00 -1.64 .250
i A T
o 50 T2, -3: . °5 '
. — 2. 2y 431.36 3.2 .250
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Summary Fhe purpose of this section has_béen to report the results
of the four techniques considered in this report -- factor analysis, non-
metric multjdimensional scaling, cluster analysis, and latent trait analysis--
to one-dimensional data to serve as a,frame of reference for the analysis of
multidimensjonal data. The factor analysis, multidimensional scaling, and
Tatent trait analysis gave a clear indication of the one-dimensional nature
of the data when no guessing was present. When guessing was present the di$
torting effect could be seen in the results of each of the techniques. The
precent of variance in the first factor was reduced for the factor analysis
"technique, along with reduced first factor loadings and the presence of extra
guessing factors., The two-dimensional representations of the MDSCAL results
were stretched or bent by the guessing effect, apd LOGIST parameter estimates
were less accurate when high guessing was present (.35 and .above).

The results of the two cluster analysis procedures were harder to interpret
in that it was hard to decide how many clusters were in the data. One consistent
finding was that guessing was found to make the solutions more dependent on item
difficulty, The problem with the determination of the number of clusters seems
to make this‘technique less useful for forming unidimensional subsets.

Each of <he aboJe techniques was ‘applied to two-dimensional data to
" determine how well the items could -be sorted into unidimensional sets. Only
techniques judged to perform this sorting task well were used in later analyses.

Two-Dimensional Simulated Datfa

The results of the application of the four teghniques to the two-dimen-
sional data will be presented in the same order as in the previous section:
factor analysis, multidimensional scaling, cluster analysis, and latent tratt
analysis. Three two-dimensional simylated data-sets were subjected to analysis:
(a) 3 data-set with a rectangular distribution of difficulty and no guessing;
(b) 3 data-set with a"normal distribution .of difficulty and normally distributed
guessing around .20; and (c) a data-set with rectangularly distributed item
difficulty and constant guessing at .25,. These three data sets were selected
to vary the difficulty of the sorting task and the realistic nature of the data.
A11 data-sets had 50 items, 1000 cases, and loadings for each item of .90 on
one factor and .00 oh the other. The factor loading matrix used to generate
the data is given in Table 8,

Factor Analyais For each of the data-sets, six factor analyses were
possible, These included the analyses using either the principal component
or principal factor method on phi, tetrachoric, or corrected tetrachoric/correla-
tions. In some cases, maximum 1ikelihood factor analysis was alsa run on the
data, ~

The simplest of the three data-sets containing two factors had a rect-
angular distribution of difficulties and no guessing effect. Of the six
possible analyses, the principal factor analysis on phi coefficients gave the
best overall results. From this analysis, it was easy to identify the items
generated from each factor, and the eigenvalues indicated two major factors and
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Table 8
Factor Loading Used-to Generate
the Two-Factor and Three-Factor Simulated Data
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and two minor were present in the data. The factor loadings resulting from .
this analysis are shown in Table 9. A1l of the other analyses performed on

this data-set yielded factor loading matrices that did not clearly identify

the items in each factor, or that indicated that too many factors were present.

The analysis of the data-set with rectanqgularly distributed difficulty
and guessing set at .25 gave quite a different result. The principal component
analysis of the tetrachoric correlations corrected for guessing at the .25 level
gave the most accurate classification of items into the factors, but also yielded
a solution with 12 eig&sfalues greater “than 1.0, The first two eigenvalues were
clearly larger than thai#est, howaver. Unfortunately, the results cannot usually
be expected to be as good. A problem with this procedure is that the level of
guessing on the test items is seldom accurately known. The principal factor
approach did almost as well in correctly indicating the factor used to generate
the <items and showed many fewer factors present in the data (four eigenvalues
greater than 1). Therefore, the principal factor approach with phi coefficients
was considered the best procedure for use with this data. The factor loading
matrix for the first two factors of the solution is also given in Table 9. Note
the reduction in the magnitude of the factor loadings with increased guessing
and with the extremity of the proportion correct on the items.

_ The two data-sets described above are “hot very realistic because tests
seldom have rectangular distributions of difficulty or constant guessing.
Therefore, a two-dimensional data-set with normally distributed item difficul-
ties and normally distributed guessing levels was also analyzed. The results
of the analysis of these data were uniformly good for all of the techniques.
‘A1l techniques gave information that allowed the items on each factor to be
clearly identified. The only difference appeared in the number of factors
indicated in the data, The principal factor analysis of phi coefficients was
the only technique that accurately indfcated that two factors were present.
This fact, and the good showing for the other data-sets, seems to indicate
that it is the technique of choice for the two-dimensional data, The results
for this technique for the normally distributed data-sat are also given in
Table 9. Note that for all of the phi coefficient analyses reported the load-
ings are much lower than those used to generate the data, The results of the
analysis of the tetrachoric correlations more closely approximate the magnitude
of the loadings used to generate the data, but they touldnot be used to classify
the items as accurately.

Nonmetric Multidimensional Scaling The nonmetric multidimensional
scaling procedure was applied to the same three two-dimensional data-sets
used with the factor analysis procedure: two dimensions, rectangular dif i-
culty, no guessing; two dimensions; rectangular difficulty, constant .25

essing; and two-dimensions, normal difficuliy, normal .20 guessing. The
éﬂsults of the analysis of these data-sets will be reported in the order given
above.

.

The MDSCAL program was run on the two-dimensional, rectangular difficulty,
no guessing (SD250R,CGO0) data-set using 11 similarity coefficients. , The kappa
and Lijphart coefficients were deleted since they give identical results to the

-
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Table 9

Factor Loading Matrices from the Analysis
of Three Two-Dimensional Data-sets

[}

Data-set / Techn1qde

SD250R5 CGOO

ltem $D250R.CG25 ~  SD250N.NG20
Principal  Factor/Phi Principal  Factor/Phi Principal  Factor/Phi
1 > Il 1 11 1 I1
1 15 11 -03 =00 -44 28
2 27 -14 10 05 24 40
A T T S
2 -0 08 - -41
5 26 39 +-05 15 4 22
6 47 =21 22 00 27 45
7 48 -30 25 ~ 01 25 44
8 31 49 -10 27 -43 - 25
9 31 52 -05 24 -48 22
10 56 -30 35 07 25 42
11 54 -35 43 07 26 40
12 34 56 -07 41 -48 25
13 58 -34 40 06 22 43
14 35 59 -03 37 -41 28 .
15 © 35 60 -06 42 -42 22
16 bl - -38 - 46 06 23 41
17 64 -37 51 12 21 41
18 36 62 - =11 49 -41 23
19 63 -39 53 11 24 41
20 37 63 -08 51 -38 24
21 43 62 -08 - 52 -49 : 20
22 64 -39 56 04 24 38
23 62 -43 53 * 05 25 39
24 37 64 -11 55 -49 16
25- 64 -39 58 . 10 26 47
26 38 63 -13 58 -39 20
27 39 66 -10 | 54 -45° 22
28 64 -41 59 04 21 « 43
29 38 63 -10 57 -48 20
30 65 =37 60 07 21 41
31 63 -39 58 12 26 43
32 38 59 -06 »57 -41 22
33 37 60 . -09 57 -39 24 <
34 - 60 -39 59 08 22 39
35 36 59 -08 62 -38 52
36 58 -36 62 10 20 42
37 58 -34 09 08 24 37
38 38 55 -06 58 -44 24
39 56 -3% 58 11 25 36
40 34 56 -07 55 -44 27
33 49 -09 © 53 -42 19
A2 51 -26 56 08 22 40
43 47 -28 54 - 08 25 34
44 25! 46 -08 46 -45 23
45 42 =23 " 52 05 23 43
46 25. 39 -08 46 -42 18
47 22 f 35 » =06 39 -38 18
48 ,4;‘ 29 -13 40 11 25 38
49 24 ~08 33 03 17 36
50 \ 06 11 _ =00 17 .37 15
{
Note.

A4

11 factor 1oadings‘are presented without decimal points.

o2 .
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agreement coefficient for dichotomous data, Of the remaining coefficients,
those that gave a linear pattern previously gave two solutions for the two-
dimensional data, The agreement coefficient yielded an oval shaped solution
(See Figure 12) and the kappa, phi, and tau B coefficients resulted in configura-
tions with the points defined by the items distributed along two roughly parallel
liges (See Figure 13), Since the agreement coefficient based solution could not
. be\®sed to separate the items into unjdimensional sets it was dropped from
further consideration. . The other three "Tinear" coefficients could be used '
equally well to separate items into homogeneous sets, although .the phi and tau B
coefficients gave solutions with stress values smaller than that for the kappa
coefficient (.061 vs, ,101), - : R
. Of the six coefficients that gave a circular solution .for the one-factor
data, five gave a solution for the two-factor, no guessing data that sorted the
Ttems into two distinct, tight clusters, The five coefficients were: ‘gamma,.
phi over phi max, Yule's Q, Yule's Y, and tetrachoric. The results for Yule's Y
is presefited ip Figure 14, Any of these five coefficients could be used to -sort
the items into homogeneous sets. ’

The sixth "circular" coefficient was the eta coefficient. The solution
obtained using this coefficient could also be used to sort the items into homo-
geneous sets, but the resulting plot had more spread and had a higher stress

~value than the previous coefficients (,200 vs, .096 and .104). Figure 15 shows
a plot of this solution, - -

The remaining coefficient applied to this data set was the approval
score. Figure 16 shows,a plot of the MDSCAL solution using this similarity
coefficient, It gave a butterfly shaped pattern with the easiest items in
the middle, Because of the closeness of the points representing the easy
items from different factors in this solution, it may not yield a result that p
1s useful for sorting items into homogeneous sets, The stress value for the
solution was ,117, )

When guessing was added to the parameters used to generate the two factor
data, the results were only slightly different for the "Tinear" coefficients.
" The linear sets of points had Somewhat greater spread for the hard items, but
the two dimensions were stillclearly recognizable. Figure 17 shows the results
- for the tau B coefficient.

The "circular” coefficients were affected somewhat more than the "1inear"
coefficients. The tjght clusters of points found when there was no guessing
effect were spreadwglite dramatically, showing the effect of guessing. The
Fesults for Yule's Y are shown in Figure 18, demonstrating this, effect.,” .

4

The scatter in the solutions obtained using the eta and approval coefficients
" increased with the presence of guessing to the point where the separate subsets o
“of items were nolonger readily identified. These two coeffictents were therefore
dropped from further consideration,
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One final analysis was performed on this data-set. The MDSCAL program
was applied to the matrix of tetrachoric correlations corrected for guessing
at the .25 level. The resulting plot of the solution was somewhat clearer

than that for the uncorrected tetrachoric correlations, but the stress increased
from .146 to .174,

After deleting the agreement, approval, and eta coeffictents from consid-
eration because they gave ambiguous results, eight coefficients remained.
These eight were computed on the two-dimensional data-set with normal difficulty
and normal guessing (SD250N,NG20). The results were uniformly good, looking
approximately 1ike Figure 14. Because of their similarity, individual results
will not be presented,

The results of the analysis of the two factor data-sets show that the
MDSCAL program applied to any of kappa, phi, tau B, gamma, Yule's Q, Yule's Y,
tetrachoric, or corrected tetrachoric coefficients yielded solutions capable
of sorting the items into the factors used to generate them. Of this set of
coefficients, Xendall's tau B gave ‘the solution with the lowest stress value.

Cluster Analysis Both the CLUSTER and HICLUSTER programs were applied
to the three data-sets analyzed by the factor analysis and nonmetric multi- -
dimens jorak<caling procedures, - The results obtained frox the application of
these two techniques to the data-s§ts were generally disappointing. While the
factor analysis and multidimensionkl scaling procedures could accurately classify
the items into the correct factor, in no case, regardless of the coefficient used,
could the cluster analysis procedure do so. This poor showing occurred despite
the fact that a two cluster solution was assumed in advance. If the number of
clusters present in the data had not been known, the results would have been
much worse, since no reasonable criterion was known for determining the number
of clusters.

~e

To demonstrate the poor quality of the information obtained from the
cluster analysis procedures, the number of misclassified items based on the
analyses of the data using 10 different coefficients is shown in Table 10,

These results were based on a two cluster solution using the HICLUSTER procedure,
and the closest to a two cluster solution that could be obtained from the CLUSTER
procedure by varying the criterion for entering a clustér. The results are
presented for the SD250R.CG25 data-set, The results for the data-set with a
normal distribution of item difficulties were substantially better, with few
errors in classification, but the items_in that data-set have been shown to be
very easy to classify using the other procedures. '

'

As can be seen from Table 10, many of the items were placed in clusters
defined by items from the other factor. The agreement and approval scores
yielded particularly bad results for the CLUSTER procedure because, many different
clusters were formed, none of which conformed to the structure used to generate
the data. Ironically, the approval score, which gave the worst results for the
CLUSTER program, gave the best results for the HICLUSTER program. Because of the
erratic apd often poor results obtained from the cluster analysis procedures,
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Table 10

" Errors.in Classification of Items Onto Dimensions
for the CLUSTER and HICLUSTER programs
Using a Variety of Coefficients.

»
5 )

i ]
Program
Coefficient
CLUSTER*. | HICLUSTER

Agreement 24 21
%Pproval 37 2

ta 33 10
Gamma 7 : - 8
Lijphart_ 24 : 21
Phi 16 22
Tau b 16 , 21
Tetrachoric . 7 - 8
Yule's Q 7 : 8 .
Yule's Y 14 8 .

* The poor results for some of the analyses using CLUSTER were due to the
fact that a two cluster solution-could not be obtained,

>

they were removed from further consideration as item sorting techniques.

Latent Trait Analysis The application of the LOGIST program to the three
two-factor data-sets gave good results for the no guessing and the normally
distributed .20 guessing case, and fairly good results for the two factor data
with rectangular difficulties and .25 guessing, In the former \two cases, the
items generated from one factor had uniformly high discriminatio parameter
estimates while those from the other were uniformly low. Items cduld be cor-
rectly classified 100% of the time. In the latter case, six iterations of the
program, deleting Tow discriminating items after each iteration, were required
in order to get a set of items that had uniformly high discrimination parameter
estimates. Only one ftem of the 25 items retained came from the alternate
factor. Unfortunately, the six iterations required about nine minutes of CPU
time, compared to about 30 seconds for factor analysis, Unless the number of
iterations needed to form the homogeneous item sets can be kept to a small
number, this procedure may be prohibitively expensive.

Three-Dimensional Simulated Data The three dimensional data-set generated
for this study was produced to match what was considered to be a reasonable
model of real test data. This data-set had a general first factor with .5
loadings for each item. The second and third factors were bipolar, with half

of the items having .5 loadings on one of the factors and half on the other.

62 .
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The factor 16ading matrixused-to generate the data is presented in Table 8.
The .5 loadings used for this data-set were thought to be much more reasonable
than the .9 loadings used for the previous data-sets,

Three procedures were applfed to this data-set: factor analysis, multi-
dimensional scaling, and latent trait analysis. As mentioned eariier, the
cluster ahalysis procedure was dropped from consideration because it could not
be used to sort items into homogeneous sets, The f?ctor analysis results will
be presented first, ) -
Factor Analysis A1l six of the‘?actor analysis solutions described for
the two factor data were obtained for this data-set, These included the prin-
gipal component and principal factor solutions on phi coefficients, tetrachoric
correlations, and tetrachoric correlations corrected for guessing. Of these,
the analysis of the tetrachoric correlations corrected for guessing clearly
did not give a good representation of the structure used to generate the data.
The principal factor solution could not be obtained at all, and the principal
component solution did not give meaningful factors. This is probably due to
the fatt that the tetpachoric correlations were corrected for constant guessing
at a .20 Tevel, while the guessing level in the data varied substantially around
.20, Thus, for many of the items the procedure over corrected for guessing.
These results indicate that correcting for guessing is not a reasonable procedure
with realistic data where the true guessing level of the items is unknown.

Of the other solutions, the principal component solution on the tetrachoric
correlations, and the principal factor solution on phi coefficients gave the
best results, The varimax rotation of the principa¥ factor solution on phi
~coefficients was especially accurate, correctly class ng all ‘of the items.

This solution is presented in Table 11, Note-that in this solution separate
factors were defined by the positive and negative ends of the factors used to
generate the data. The good results obtained for the analysis of phi coefficients
reinforces the results obtained on the other simulated data-sets, possibly in-
dicating that the principal factor, techniques on phi coefficients should be
used for jtem sorting with real test data.

Nonmetric Multidimensional Scaling The nonmetric multidimensional scaling
analysis of the three-dimensional data using the eight coefficients selected
on the basis of the previous analyses gave uniformly good results, In all cases
except when the tetrachoric correélations were over corrected for guessing at_the
.25 level, every item could be correctly classified onto the appropriate factor.
As with the factor analysis, the items from the opposite ends of the bipolar
factors were put into separate clusters, Those from the same factor were at
opposite ends of the diagram in a two-dimensional plot.

Although all eight coefficients could be used to accurately sort the
items into homogeneous sets, there were slight differences in the stress of
the solutions. Stress values ranged from .114 to ,125, with Yule's Y and the
tetrachoric correlations giving the smallest values,. The two-dimensional
MDSCAL solution for Yule's Y is given in Figure 19,

E3
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Table 11
\__,,A Factor Loading Matrix from the Varimax Rotation
of the Four Factor Principal Factor Solution
on the Three Dimensional Data-Set.
Factor .
Item \ -4
I 11 111 Iv
1 14 51 - -04 09
2 - 49 12 > 16 -06
3 21 -02 41 20
4 -05 24 j 22 38
5 47 11 09 00
6 23 =11 39 18
7 48 08 15 01 g
8 16 49 -08 16
9 16 46 -06 13
- 10 10 51 00 - 15
11 48 05 07 03
12 -04 26 13 46
13 46 09 17 -02
14 13 48 -07 07
.15 54 12 07 =01
16 -07 15 05 52
17 45 16 23 -02
18 14 -03 42 14
19 45 16 16 -10
20 43 10 N 13 06
21 -07 14 12 41
22 -10 19 18 40
23 15 -08 51 03
24 41 16 11 -06
25 15 45 =02 10
26 12 45 -06 04
27 49 10 15 -03
28 07 47 -14 17
29 14 48 -07 14
30 21 -05 43 10
31 11 . =06 4? 04
32 v 01 13 1 48
33 16 -12 31 18
34 12 39 -02 15
35 10 43 -02 10 .
36 00 11 11 42
37 37 13 20 -11
38 - 15 -12 45 15
39 43 12 14 -03
40 -06 15 19 40
41 12 44 -02 12
42 18 -03 50 09
43 45 11 05 =01
44 48 10 07 -01
45 25 36 -17 20
46 17 ~02 42 17
2; 06 43 02 01
42 14 05 00
49 08 -04 Ei g 06
50 16 -09 38 14 -

~ Note. A1l values are presented withoyt decimal points.
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FIGURE 9
THO-DIMENSIONAL MDSCAL SOLUTION
FOR THE THREE-FACTOR DATA-SET
WITH GUESSING NORMALLY DISTRIBUTED AROUND .20

USING YULE'S Y COEFFICIENT
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Latent Trait Analysis The analysis of the three factor data with the
LOGIST program resulted in an accurate classification of the {tems onto the
respective factors. The discrimination parameter estimates for the items from
one'end of a single bipolar factor all had untformly high values ‘of around
1.0, while the rest of the items had parameter estimates of .30 or Tess. As
with the previous analyses, each end of the bitpolar factors defined separate

sets of items. To obtain the complete sorting of the items, three runs of the
program were required,

Summary . A1l three prgcedures used to analyze the three factor data-set
resulted in solutions thatould be used to form homogeneous item sets. The
factor analysis proced defined clear sets of items using the principal
component n tetrachoric correlations and the principal factor pro-
cedure om®phi coefficients. The MDSCAL program gave clear solutions using
the phi, tau B, kappa, tetrachoric, corrected tetrashoric, Yule's Y, Yule'? Q
and gamma coefficients, Only when the tetrachoric correlations were corrected
at too high a level did the procedure degenerate. A similar finding was .
observed with the factor analysis procedures. The LOGIST analysis of the data
also gave accurate sortings of the items, but three program runs were requjred
to’sort all of the items. The results of the application to a more realistic
nine factor data-set will now be reported.

Nine Factor Simu]afed Data -

The nine factor simulated data-set was the most realistic of the simula-
tion data-sets produced. Its characteristics were designed to match those of
.an actual achievement test measuring nine content areas. This data-set had a
general factor and eight group factors, the last one being bipolar, The major
loadings on the first eight factors were all positive, reflecting the structure

seen in most achievement tests. The factor loading matrix used to produce this
data-set is given in Table 12, _ g

The results of the analysis of this data-set using factor analytic tech-
niques are similar to those obtained for the three factor data-set. Both
the principal ¢ nefts analysis on tetrachoric correlations and the principal
factor qna]ygigpggophi coefficients gave results that were easily used to sort
the items into homogeneous groups. As an example of these results, the varimax
rotated principal factor solution is shown in Table 13, Notice that no general
factor is present in this solution. The general factor was present in the
initial principal factor solution, but was rotated out with the varimax rotation,

Nonmetric Multidimensional Scaling® The application of the MDSCAL program
to the complex nine factor data-set using thesmight coefficients selected on the
basis of the previous analyses gave generally good results. Only the tetrachoric
correlations corrected for guessing gave poor results. The problem with that
coefficient again seemed to be over correcting for guessing due to the fact that
the guessing level for individual items was unknown, The other seven coefficients
gave good results, with Yule's Y, Yule's Q, gamma, and the tetrachoric correlation
having s1ightly higher stress values than the phi, tau B and kappa coefficients,

§

y | 65 .
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TaJ1e 12

Factor Loading Maérix Used to Generate
‘the Nine-Fqctor Data-Set.

1?actor
o1 II nmr W v VII | VIII
1 5 5 0 0" 0 0 0 0 0
2 5 5 0 0 0 0 0 0 0
3 5 , 5 0 0 0 0 0 0 0
4 5 2 5 0 0 0 0 0 0 .0
5 5 5 0 0 0 0 0 0 0
6 “5 5 0 0 0 0 0 0 0
7 5 -068 5 0 0 0o 0 0 0
- 8. 5 -068 5 0 0 0 0 0 0
9 5 -068 5 0 0 0 0 0 0
10 - 5 -068 5 0 0 0 .0 0 -0
11 5 +068 5 0 0 0 0 0 0
12 5 -068' <064 5 0 0 0 0 0"
13 5 -068  -064 5 0 0. 0 0 0
14 5 -068  -064 5 0 0 0 0 0
15 5 <068  -064 5 0 0 0 - 0 0
: 5 -068- -064 5 0 0 0 0 0
5 -068 -064 © -073 5 0 0 0 0
5 -068 -064 --073 5 0 0 0 0
5 -068 -064  -073 5 .0 0 0 0
5 -068 -064 -073 5 0 0" -0 0
5 -068 -064  -073 % 5 0.+ 0 0 0
5 .-068 -064  -073 -086 5 40 0 0
5 -068 -064 -073 -086 6 0 0 0
5 -068 -064  -073 -086 5 0 0 0
5 -068 -064 -073 -086 5 0 0 0
5 -068 -064 -073 -086 5 0 0 0
5 -068 -064  -073 -086 5 0 0 0
5 -068 -064  -p73 -086 5 0 0
5 -068 -064 -073 -086 5 0 0
5 -068  -064  -073 -086 5 0 o
5 -068 -064 -073 -086 5 0 0
5 -068 -Q64 -073 -086 5 0 0
5 -068 -064 -073 -086 5 0 0
5 -068 =064  -073 -086 ;g 0 0
5 -068  -064 . -073 -086 -1 5 "0
5 -068 -064  -073 -086 -176 5 0
5 -068 -064  -073 -086 -176 5 0
5 -068 -064  -073 -086 -176 5 0
5 -068 -064 -073 -086 -176 5 0
5- -068  -064  -073 -086 =176 =273 5
5 <068 -064  -073 -086 -176  -273 5
5 -068- -064 -073 -086 -176 =273 5
5 -068 -064 =073 -086 -176 =273 5
5 -068 064  -073 -086 #2176 =273 5
5 -068 -064  -073 -086 -176 =273 5
5 -068 -064 -073 -086 -176 =273 -6
5 -068 -064. -073 -086 -176 - -273 -6
5% -068 -064  -073 °-086 -176  -273 -6
5 -068  -064  -073 -086 2176 -273 -6
5 -068 . =073 -086 -176 -6

A1l values are

presented without decimal points.
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' i ;j Table I V :
. ~ Factor Loadings from the Varimax Rotation “

of the Principal Factor Analysis . .
of the Nine-Fae;pr Data-Set .. -

S £t S T T
[ . | -
Vi : y -
1 -00 01 08 06 08 . 06 06 07 -
2 -04 08 02 " 03 07, -02 06 04
3 -05 02 02 08 03 08 05 10
4 10 - 08 02 00 05 04— 95 09"
5 og\ 11 08 08 03 10 09 07 .
6 1 03 10 06 04 06 07 02
7 - 04 14 10 10 13 04 06 39
8 12 03 12 11 14 "~ 10 . 07 37
9 07 07 06 08 -02 05 08 46
10 06 13 10 09 11 06 02 44
11 02 09 07 06 05 11 10 41
12 04 02 07 02 12 46 07 11 .
13 0¢ 04 -00 08 08 45 10 09
14 13 03 .09 - 09 03 44 00 -01
15 03 11 03 09 ¢ 09 48 07 05
. 16 04 03 15 03 04 45 01 06
17 . 06 08 12 06 13 02 41 05"
18 08 \0l 04 04-, 37 02 .
19 , 06 0 11 09 47 00 _—
20 07 11 09° 06 .39 09— ™
21 05 09. 63 02 48 13 -~
\ 22 04 46 04 06 04 16 .
23 08 48 09 05 07 08
24 04 5 05 07 07 05
25 %17; 49 07 - .04 12 04 .
26 43 07 07 05 02 .
27 04, 44 Q2 06 05 07
28 11 02—10 06 - 03 05
29 05 08 46 05 °4L 08
- 30 . 05, 07 54 07 11~ 00
31 P 08 04 44 03 . 06 - 11
32 -02 06 48 05 06 ©° 03
33 . 06 -04 45 08 12 02
34 50 05 05 02 09.. 02
35 N 43 06 06 08 08 14
36 52 10 08 08 08 . 06
37 58 05 06 05 06 11 .
38 53 06 11 .07 -01 08
39 S 50 08 00 09 12 01 N
- 40 09 03 07" 05 04 - 05 N
41 07 03 06 05 08 06
42 -01 02 06 00 09 07 .
. 43 00 07 05 -02 03 06
44 01 14 06 07 05 09
45 05 02 05 11 02 7
46 07 . 07 10 07 03 05 . .
! 47 , 07 09 04 05 04 - 01 .
48 66 02 02 06 02 07 05 . 07
49 75 ° 00 04 07 03 08 03 06
50 60 03 . 02 06 06 04 07 06

Sy (Note. A1l values are préﬁented Qithout decimal poihts.
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“tut yet yielding slightly clearer two dimefisional plots. The plot for the
Yule's Y coefficient is shown in Figure 20. Examination of the plot will show
that thegtems in the data-set_have been divided into nine clearly distinguished
clusters, . . ‘ )
Latent Trait. Analysis  The LOGIST analysis of the nine factor data-set .
gave disappointing results, Although the b- and c-parameter values were accu-
rately estimated, the a-parameters. gavé very Tittle indication of the items
belgnging to a particular factor. The a-parameter estimates varied between
.41/ and .81, with no noticable relationship tcf the factor structure. Despi te
the initial ambiguous look of the results, a homogeneous set ﬂx items could

be ‘obtaimed by running the program eight times, deleting the T ‘with the
lowest a-value estimates after each run, Since such a procedu s clearly
impractical, the LOGIST program does not seemsto be a viable procedure for form-
ing unidimensional item sets, ) .
. /

summary  From the analysis of the one-, two-, three-, and nine-dimensional
simulated data-sets, the factor analysis and multidimensional scaling procedures
seem most useful for sorting items into undimensional item sets. Of the factor
analysis procedures, principal component analysis.of tetrachoric correlations
and principal factor analyfof phi coefficients gave the best results. *

3
Of the seven coeffigients used with the MDSCAL program, those that are
not affected by jtem difficulty seem to give a slightly better sorting of the
items tharm those coefficients that are affected by item difficulty., These , -
coefficients include Yule's Y, Yule's Q, gamma, and the tetrachoric{correlation.

0f these, Yu]e'jl seems to be a good choice for formfﬁﬁ'iﬁk@hsets cause of
t atio

its ease of complitation and clear solutions for the simul data,

.
§

The results for the latent trait analysis approach indicated that thé
pyécedure is too t#me consuming for reqular use as an item sorting procedure,
Although the procedure can be used to get homogeneous item sets, it requires
many separate analyses and uses substantially more computer %ime than the other
.procedures.

The cluster analysis procedures used on the simpler data-sets were found
to be inadequate for item sorting., No reasomable means could be found to
determine the number of clusters, and the clusters that were formed often con-
tained only some of the items generated from the ?ame factor. T e

“ On the basis of these results, only the principal component analysis of
tetrachoric correlations, prin¢ipal factor analysis of phi coefficignts, and
MDSCAL analysis of the seven coefficients mentjoned above can be recommended
for forming sets of items compatible with IRT methods. These techniques were
applied.to the test data from the Iowa Tests of Educatiomal-Development as a
final evaluation of their capabilities, .

L

-

ITED Data
The ITED data-set was produced by randomly sampling 33 items from the 69

s
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THO-DIMENSIONAL MDSCAL SOLUTION
7
“FOR THE NINE-FACTOR DATA SET
WITH GUESSING NORMALLY DISTRIBUTEC AROUND .20
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items in the Expression subtest and 17 items from the 36 items in the Quantita-
tive subtest of Form'Y-6 to form a 50 item test that should have had two rela-.
tively distinct componants. For ease of analysis, the 33 verbal items were
placed first in the test, followed by the 17 quantitative items. For these

. Nitems, responses for 1000 examinees were sampled from the responses of 4000
examinees who took the test during the 1975-1976 school year. The examinees
were equally divided among Grades 9, 10, 11, and 12, By producing the data-set
in this way, it was hopedf that a real data-set of known structure would be
developed. .

Factor Analysis The results of the varimax rotation of the principal
factor solution of phi coeffici®nts for the ITED data-set are presented in
Table 14, The results of the principal component solution for tetrachoric v
corretations were similar and will notsbe shown, As can be seen from the table,
two major factors are present in the data. Factor I is composed of most of the
items from 4 to 23, which are all verbal comprehension items., Factor II is
composed of most of the items from 34 to 50, which are all quantitative items,
Only 17 of the 50 jtems in the test do not 1oad on these two factors, Of these,
six were spelling items that were mistakenly included with the verbal compre-
hension items (Items 28-33). These results show a relatively clear sorting

iOf the test items iato homogeneous content areas.

Nonmetric Multidimensional Scaling The results of the application of
of the MDSCAL program to the inter-item similarities obtained from the seven
coefficients retained up to this point were much the same, with stress values
only ranging from .252 to .255 and little variation in the two-dimensional plots
of the items, Figure 21 shows a representative two dimensional plot of the
interrelationships of the 50 jtems based on Yule's Y coefficient. The initial
. impression obtained from this plot was that there was no clear separation of

. items into the different content areas. Without know1ng which items were verbal
and which were quantitative} this procedure could not give information for
accurately sorting the items by type. Examination of higher dimension solutions
also gave no clear results,

’

The use of knowledge concerning the content area measured by each item
gives a more positive interpretation to these gata, Items 34 to 50 aye all
quantitative items, The MDSCAL analysis resulted in a two-dimensional repre-
dentation that placed all of these items in clgse proximity in the right side-
of- the plot. The results of the procedure act8a11y produced a fairly distinct
separation of these items from the verbal items. Unfortunately, this pattern
. was very difficult to distinguish without previous knowledge of the structure.
» of the test. For these data, at least, the factor analysis procedure gave
information that was more useful for sorting items into unidimensional sets, )

Discussion

q:rhe purpose of this report has been to investigate techniques for forming
sets of test items that meet the assumpt1ons of most latent trait models. That

. 73 .
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Table 14
‘Varimax Factor Loading Matrix

for the ITED Data

Itém Factor
I 11 111 v’ v
1 < 10 11, 50 -00 07
z 19 13 39 07 07
3 20 12 45 10 05
4 47 18 17 11 10
5 42 21 20 15 21
6 33 23 28 07 14
7 39 18 21 24 . 09
8 44 23 23 14 16
9 38 23 19 06 14
10 48 23 19 14 08
11 o \ 29 24 29 04 13
12 # TN 18 17 40 09° 10
13 09 53 13 10
14 55 2 14 11 12
15 v 21 43 23 09
16 51 23 14 13 12
17 40 20 27 08 14
18 5 29 16 12 04
19 . 46 20 21 10 18
20 56 18 18 16 11
21 36 19 23 10 31
22 42 - 20 14 15 37
23 23 22 22 12 41
24 30 22 23 08 46
25 .29 17 20 16 34
26 13 21 - 45 14 11
27 37 16 20 24 09
28 33 26 21 36 01
29 34 25 24 38 11
30 23 22 23 62 15
31 17 06 39 17 07
32 16 15 41 28 09
33 25 26 24 45 - 14
34 19 39 18 21 -01
35 10 43 25 09 11 .
36 27 52 10 12 08
37 19 58 27 16 14
38 24 52 17 15 16
39, 39 42 07 13 09
' 40 20 N 35 26 05 09
OFen 27 35 27 07 14/
47 19 31 40 10 14
4 25 43 19 09 . 09
44" 23 50 18 24 17
45 26 48, 18 18 12
46 18 25 31 A0 18
47 18 37 33 11 15
48 25 44 21 104 17
49 33 44 70 15 03 07
50 19 .40 ~ 39 09 11

-
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THO-OIQENSIONQL MOSTAL SOLUTION
USING THE ITED-DRTA SET . t
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is, procedures were evaluated for sorting items into sets that measured a
single latent trait., The investigation of this problem was performed using
three approaches, First, a theoretical model of guessing based on the "know-
ledge or random guessing” principle was produced and some theoretical results
were determined. Although this model is clearly not a correct reflection of
the way individuals really interact with test Ttems, it was hoped that some

insights into the effects of guessing on the observed dimensionality of item*
sets would be obtained, )

The second approach taken in this investigation was to generate simulated
test data according to the theoretical model produced in the first part of the
study and use that data to evaluate factor analysis, cluster analysis, nonmetric
multidimensional scaling, and latent trait analysis on their ability to form
item sets measuring a single dimgnsion, Data-sets with various numbers of
factors were produced for thisxﬂﬁrpose, and the amount of guessing affecting
the items was varied. Since the true structure of these data-sets was known,
the quality of the results obtained from the four techniques considered was
easy to evaluate,

The third approach taken in this research was to produce a data-set of
Known structure from existing response dita on subtests of the Iowa Tests of
Educational Development, and to attempt to recover.that structure using the
four techniques mentioned above, The data-set produced contained quantitative
and verbal items, which logically should have resulted in two homogenedus sub-
sets of items. This approach was inc1uded‘in<£he study since simulation data
never really does an adequate job of modeling the interaction of examinees with
test items. This "real" test data-set was the most stringent test of the pro-
cedures, ’ '

The results of the research reported here often matched what would be
expected on the basis of a logical analysis.of guessing and dimensionality’
effects, but sometimes unanticipated results were obtained. For example, the
theoretical model predicted that, as guessing increased, the proportion of
variance accounted for by the major factor in a test would decrease, _ This re-
sult was expected and was supported by the analysis of the simulation data.

The reviewﬂ%f the Titerature also suggested such a relationship. However, it
was unexpected that an interaction would be found between the level of guessing
and the saturation of an item «ith the major component on a test., Highly dis-
criminating items were found to be more affected by low levels of guessing

than low discriminating items, while the reverse was true for high

levels of guessing (above .25). Since most multiple-choice items have average
guessing leyels below .25, this implies that guessing is a more serious problem
for good items. This finding had not been seen in-the reéearch literature \
previously. '

It is interesting to note that the theoretical predictions concerning -
guessing, including those presented in this paper, are not all consistent with
each qther. The results obtained by Plumlee (1952), Carroll (1945), Mattson
(1965), and Denny and Remmers (1940) certainly are not consistent, ‘and the
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results presented here do not agree with any of these, This multiplicity
of results reflects the complexity of the guessing phenomenon and the numerous
approathes taken to modeling guessing,

The results of the analysis of the simulation data were consistent with
the theoretical predictions from the models. With increased guessing, the pro-
portion of variance accounted for by the first factor in a test decreased, and
"guessimg" factors appeared., Also, the maghitude of the loading of individual
items decreased ¥ith increased quessing, and the effect was stronger for the
more difficult Atems. A1l of these results were expected. What was not expected
was that tests with rectangular distributions of traditional item difficulty
were required to make these effects clearly evident, With more realistic; normal
distributions of item difficulty, the guessing effects were much smaller. This
suggests that guessing effects may not be too serious a problem in actual
testing settings when the item difficulty is not tog extreme,

The use of nonmetric multidimensional scaling, cluster analysis, and
lTatent trait analysis had not been seen previously in the l1iterature, so much
of the results obtained was unanticipated, The two major kinds of MDSCAL plots
for the one dimensional data, linear and circular, were unexpected, but further
analyses showed that they were a function of the effect of item difficulty on
the magnitude of the similarity coefficients., The linear plots indicate a
difficulty effect, while the circular plots indicate that item difficulty has
1ittTe effect. " :

When beginning this research, it was hoped that cTuster analysis or latent
trait analysi$would serve as an alternative to factor analysis as a technique
for purifying item pools. Unfortunately, the results of this research indicated
that this hope was unjustified. Cluster analysis seems to be unsuited for this
purpose. Possibly, as the research on cluster analysis progresses, better
guidelines will become available for determining the number of clusters present
in the test data.and the procedure will, as a result, become more useful.
Currently, it cannot be recommended for this use.

Latent trait analysis, the repeated application of the LOGIST program,
did perform the item sorting task well, but in'a very cumbersome and expensive
manner, For these reasons, it ‘cannot be recommended.

The multidimensional .scaling technique applied in this research did live
up to expectations. For all of the simulation data-sets the procedure presented
ipformation that could be used to identify the unifactor item sets when used
with the phi, kappa, tau B, tetrachoric, gamma, Yule's Q, or Yule's Y coefficients,
Unfortunately, the results were not as good for the real test data. The quantita-
tive items were well clustered, but it was hard to distinguish between the .
quantitative cluster and the yerbd&k items. .Perhaps with further research better
results can be obtained with real test data. The results do emphasize the fact
that simulation data-are not a good substitute_for real data.

N
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_The procedures that performed best of all those studied were the
principal component analysis of tetrachoric correlations and the principal |
factor analysis of phi coefficients., The interpretation of the factor analysis
results was not as clear as for thelgpSCAL results when simulation data wgre
used, but was more clear for the reaY data. This was true even for the factor
analysis of phi coefficients, which are supposed to be plagued by difficulty
effects. Difficulty and guessing factors were noted when items of extreme
gifficu]ty were used, but these factors were not found for the more realistic

ata-sets.

The factor analysis of tetrachoric correlations worked well when the
principal components technique was used, but not when the principal factor
technique was used. The reason for this may be the added effect of the in-

~ stability of the tetrachoric correlations when iterative estimates of communal-
‘ ties were made., These problems with the estimates of the tetrachoric correla-
. tions were most severe for extremely easy or difficult items.

. The end result.of the research reported here is that the traditional
factor analysis procedure seems to perform the best of the techniques investi-
gated for identifying items that form unidimensional item sets. The nonmetric
multidimensional scaling procedure worked well for the simulation data, but the
results for the real data were ambiquous. Because the study may have been
biased in favor of the factor analytic procedures, due to the fact that a linear
model was used to generate the simulation data, the real data-set analyses were
the key to the chdice of a procedure., The best procedure when using this data-
set was the factor analysis procedure.

LY

Summary and- Conclusions

The effects of guessing on techniques for- sorting items into sets that
- measure the same single dimension were determined using theoretical, simulation,
and real data analyses., The theoretical results showed that, as guessing
increased, the percent of variance accounted for by the major component of a
test decreased. Guessing was also found to affect highly discriminating items
more than low discriminating items. The results of the theoretical analyses
presented here did not match those presented previously in the lterature.

The factor analysis of simulated data-sets mirrored the theoretical
results. As guessing increased, the proportion of variance accounted for by
the first factor of the test declined, The magnitude of the loading of the
items on the factor was also reduced, This effect was strongest for the most
difficult items. When items of extreme difficulty were present in the simulated
tests, guessing and difficulty factors were found,

The application of the nonmetric multidimens ional scaling procedure to
the simulation data gave different results depending on the similarity coefficient
that was used. If the coefficient were affected by the difficulty of the items,
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" a linear pattern was found wheh the solution was plotted. If the similarity
coefficient were not affected by the difficulty of the items, a circular

plot was obtained. Guessing distorted these patterns, but the MDSCAL procedure
still separated the items into homogeneous sets with 1ittle difficulty when
simulation data were used. The procedure did not give adequate results for
real data. '

Cluster analysis and latent trait analysis were not found to be useful
for sorting items into unidimensional sets. The cluster analysis procedure
tended to give too many small clusters, and no way was known for combining
them into larger clusters that corresponded to the known structure of the data.
Repeated application of the LOGIST program to sort the items into undimensional
sets worked, but was too expensive and cumbersome.

0f the procedures studied, the principal component analysis of tetrachoric
correlations and the principal factor analysis of phi coefficients gave the most
consistently positive results. Until a better method can be found, these time
honored procedures should continue ga’be used to form unidimensional tests.

.«
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APPENDIX A

g

Similarity Coefficients

Many of the coefficients used in this study are based on the responses
of two items as summarized,in a 2x2 or 3x3 contingency table. For consistency
the First 10 coefficients will be described using the following 2x2 table ’

arrangement: . v
Item j~
. 0 1 )
0 a b ath
Item i .
'1 c d c+d
§
atc b+d Nsatb+c+d

where a, b, ¢, and d are cell fréduenpies and N is the total number of
examinees. . !

Agreement Coefficient

-

The agreement coefficient (Weisberg, 1968) is the proportion of examinees
responding in the same way to both items, and is given by:

atd ,

C1=—N-— \

Approval -Score

The approval score (Weisberg, 1968) is the proportion of examinees passing
both items, and is given by: (

. d,
C, = 7§

Eta Coefficient

The eta coefficient (Neisberg; 1968) is a measure of any type of association
between two variables. It 1S usually used to determine the association between
a nominal variable and an interval variable, This eta coefficient is in no way
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related to the eta coefficient used in analysis of variahce procedures. This
eta Ts given by the following formulaqi ' :

1) ifad > bc and b > ¢,
, " n=(ad-bg)(b-Q .
(c +d)(c+a)(b+c)
2) if ad > bc and b < ¢ . >,
- (ad - bc) (c -b) )
"TFd) (bra) (c *h
3) if ad < bc and d > a, .
- {ad - bc) (d -a) | .
" (@ c)(a ¥ b(a ¥y ‘
and " 4) if ad < bc and d < a, .

n=iad-bc) (a-d .
(d +c)(d + b)(a+4d)

¢ kS

r Kappa Coefficient . *’“\

v

The kappa coefficSent (Coherr, 1968) is essentially an agreement score
corrected for chance agreement, and is given by:

(a+7d) - ((a+b)(a+tc)+ (c+d)
K = )

+d)]. ¢
T-"1(a fETaQC)+TC.'+ .

b
(b + d)]

Koppa Coefficient

/

The koppa coefficient (MacRae, 1970) is the agreement score corrected
for disagreement, and is given by:

-
-

 =2atd-(b+c), <z§/ *
N

el

. The phi coefficient (MacRae, 1970) is a Pearson product moment correlation
3 - between binary variables, and is given by:

Phi Coefficient

rd

4

) ad - bc \/

¥

] v (a +cJ{b +dj{a +DbJ{c+d)

‘ @ /'-~ . ! * / R




Phi/Phimax Coefficiant .. i

v
]

The phi/phimax coefficient (Weisberg, 19687 is the-pHi coefficient
di¢ided by the maximum possible phi iggfﬁicient that could be obtained from
a table with the same marginals. ThTS procedure ctorrects the phi coefficient
for item difficulty effects. The phi/phimax coefficient is given by the
following formulae: . p

,

. ~
1) ifad >bc and b < ¢,
ad - bc

' A CEX R
2) if ad > bc and b > c,

, v - _ad - bc .

S CRX I G
3) if ad < bc and d > a,

v ad - bc .
¢ "f@rca+o’

A

and 4) if ad < bc and d < a,

¢
v = __ad - bc . .
o Y T E@EgE R

Tetrachoric Correlation ¢

The tetrachorif correlation (MacRae, 1970) is an estimate of the
correlation between two continuous variables having a bivariate normal distri-
bution. It has been assumed that the variables have been artifically dichotomized
to produce the 2x2 table obtained for the two items. The tetrachoric correlation
is: approximated by: -

v . . rt = sin (g. . M), /\\i/
vad + vbc : |
where the valué in the parenthesis 1is in radians. The tetrachoric correlations
were corrected for guessing frou the 2xZ table using the procedure set out by
Carroll (1945), ’ -

-

Yule's Q Coefficient

(24

Yule's Q (MaeRae, 1970) is a measure of the power of one variable to
predict another, and is gkvrn by:*

]

»

AN

N
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‘ ' . , R % ra -

Y - ¢ . * -
o q = ad - be. - o

. ’ ) ~ ad + b .

Yule's Q is a 3pec4a1 case of Goodman and Kruskal's gamma coeffacibnt
~ -

Yule S Y Coefficient ‘- ' . ; :
. P ' » 3 - /
! o YuTe's ¥ (MaeRae, 1970) is given by: . ‘ . .
. ’ : Yy .
LN ' 2 )/_a.‘l"/B—C- %

It can be seen that Pis | Q, and Y*are transformations of each other,

The remaining four coefficients are best described using the following

. table: )
- ) s @'l
Co . - Item j i
L <0 1 2 . "
) - o b G a+b+c ’ .
R i "ftemd 1 | d e f d+e+f, _
i 2 | g | pA i gth+i
. < atd+g [bteth |c+f+i, N
- _ . -~ - -
where zero }eprzsents fa111ng the item, 2 represents passing the 1tem and 1-
- represents a neutral or intermed1ate q;sponse
2 Goodmar andﬁusk.ﬂ's Gamma qufﬁcieAnt . R
)

-

Goodman and Kruskal®s gamma (Hays, 1963) is given by:

o Bl

I ~ )
R Tk ,
Sp+ 5
: _ ; /
% where . .
. $; = a. (e+f+h+i) + b(f+i) + d(h+i3 + ei .
and . ‘ B ’

( . S, = ¢ (dtettg+h) + b(d+g) + £g+h) + eg.

0 Q . . 83 . . N




‘e
[ /
/

The gamma*poeff1c1ent was developed as a measure of association between
ordinal varlables
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. ‘9
Kendall' s tau B Coefficient f 7

Kendall's tau B (Hays, 1963)-1s given by:

-

S, =S

tb 21 2 \
- )33 et s
; where S1 and S2 are as set out above, and
/2
| ~
- S5 =183 +'S, + alb+c) + be + d(e+f) +-ef + g(h+i) + hi] x

™IS+ S, + a(d+g) + dg + b(eth) + eh'+ c(f+i) + fi.

e

‘Lijphart's Index

L3

Linhart s index (MaeRae, 1970) was deve1oped as a measuxﬁ\of voter
agreement, and is given by:

,’ . 1_A+ﬁ+b;h+fl .‘“
- N i -4
) 4 \ .
~ where A is the agreement score, v
: v

Pearson's Corpelation

This coefficient is the traditional product moment correlation coefficient,
- and 1is: given by: - ‘

[y

[ N (ati-cog) - (TLT2)(T3W) . ) '
< = : -
YD1D2 -
where ’
, TL=g+h+i,
T2=a+b+Tc,
N - T3=c+f+1i,
. T4=a+9+d.
. 01 = N(T1+T2) - (T1- 12)2,
and *oe

= N(T3+T4) - (T3—T4)2.
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