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Abstract

dif
p

his paper outlines a technique ft. differentially weighting options

ofa multiple choice test in a fashion that maximizes the item predictive

validity. The rule can be app140 with-different number of categories
4

. and the,"optimal" number bf cdiegories'can be determined by significance

t ests and/or through the R
2

criterion. Our theoretical analysis indicates
114

that more complex scoring rules have: higher item validitiesihigher

item variances, higher sure Variances, and are also likely to increase

the interitem correlations and the test reliability. A plausible expla-

nation for the apparent paradox of lack orimprovemint in the test

validity, based do the relation between interitem "correlations a d item

validities, is offered.
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'Background

t.
s.!

Differential Weighting of Hult le -Cho items

The question of differential weighting of multiple-choice items has

generated a'large numberoof studies in the psychological and educational

literature (see Stanley & Wang 1970 and Wang & Stanley 1970 for reviews).

The bulk of the literature suggests that'assigning different weights to

the items does not significantly affect t he test characteristics and

performance., but the possibility,of differentially weighting the options

(distracters) of any. given item has some attractive aspects. As a

result, several studies comparing and evaluating a variety of procedures

of Differential-Options Weighting (DOW) hadebeen conducted in recent

years (e.g. Hendrickson 1971, Ramsay '1968, Reilly & Jackson 19

Echternacht 1976, Bejar & Weiss /9771 Donlon & Fitzpa4ick 1978). These

studies' suggest that the use of scoring procedures more complex than the

regular 0-1 rule, has a beneficial effect on some of the test character-_

istics. When jbese weights were aplied-to real and artificil data,

indices of reliability and internal consistency have been improved.

With one exception,/ however (Echternacht 1976), no significant improve

ment in the predictive validity of the tests has been reported.

This fact is surprising. One would expect that when the information

e
-conveyed by each items more complete ana better measured, the predictive

validity of both item and test will be increased, In this paper we

offer a theoretical analysis o f the effects of differential weighting on

validity.. By validity we refer to the prediCtion of an external criterion

independently measured. By taking this app we eliminate the item-test

regression (often, labelled the'discriminating power of the item) which

6
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is a special case of /alidity. We will comment on this problem in-a
4

separate section. We examine a procedure which has the property of
- ,

'maximizing the item- Criterion correlation.
.

Therefore any other nonoptimal
.

DOW,. or regular scoring rule, can be evaluated by'comparing its prescribed

1pm weights to the optill'weyghts. SuCh.a rule"provides an indication

of 'how well a scoring, rule can 0 expecte4.to improve the prediction of

the criterkoln and erovides a planingful standard. of comparison for any

other alternative ntn- optimal procedure-. It should be emphasized that

optimality here refers to item validity only, and that the rule may have

damaging effects (at least theoretically} on other aspects of the items

and the test, We will also examine some of the side effects of this

.technique which will enable us to better assess its overall performance.

Definition of the problem-land some notation

Imagine we have a quantitative criterion; X, which we want to

predict by a multiple-choice test, Y, containing k items (Y1, Y2... Yk)'.

-Without any loss of generali , we 'can assume t the scores of X are

scaled, or grouped, in a finite number of values (C). Therefore any

person taking X has ascore such that:

0 < X < C (1)

P

A typical ioam, Yg, has a options: one correct and (a -1) incorrect.

-Since not every examinee attempts to answer all items we must define an

additional catego'ry for omissions. We consider this category to be as

important,.meaningett-Land infOrmative as the other a optiolo. If we let
,

r-m(a+12, we cap represent the responses of all the examinees to a given

item in an rxC contingency table. Each row represents one option of the

a-2-



item, each.,column represents one level of score on the criterion X, and -'

th;lypical entryPinthe table, nij,is the number of People with score

Xj who selected option i. Following the regular statistical notation we

let n.j, ni. and n denote the marpnal column, row 'and total frequencies,

respectively. At this stage we nA4 to select an index of association

to describe the relation between X and Yg as reflected by the contingency

table. 'By direct analogy to the dichotomous scoring rule the multinomial k

generali2ations of.the biserial *nd point biserial correlations suggest

themselves as posiiile candidates. andeed-Donlon & Fitzpatrick (1978)

have already proposed using the multiserial cofrelation (Jaspen 1946) as

a generalized discrimination index. For our purposes we prefer the

point multiserial coefficient (Das Gupta 1960r,Bamdan & Schulman 1975).

for several reasons:

(i) Unlike the multiserial, It ds a PRE measure (Costner 1965), i.e.

.

R
2

pms
can be

-

interpreted as the percentage of variance of X accounted

for by Yg.

('ii) Unlike the multiserial, its values are bounded, i.e. -1 < R
pms

C 1.

(iii) Unlike the multiserial, the weights assigned t *the different cate-
,-

gories of Yg are not determined by my distributional'assumption.

(iv) These. weights can be selected in a way that maximizes the linear

relationship between X and Yg. These weights (Y
81
.) are a linear

function of the mean criterion score of the examinees selecting

optioni.Inparticular,ifweletibe the mean score of,the .
,

th
people who selected the i optiOn (i = L...r):

re. = (I nij X j)/ni.
j

-3-
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then the optimal weight

gi
= R. 4- B

are given by (Das Gupta 1960):

(3)

If we select A = 1 and B = 0 we can epress the point multiserial fidex

is a very convenient form.(Hamdan 197S).

R
2

pms

,

1-1 1 ni.
n

,

1 -- 2
1 ni. X.)

1
11-71 I p.j X j - (-1-1 n.j X j) ]

.2 1

4 _1
L

This,particulaeweightinghas two attractive properties:

(4)

(a) As Das Gupta (1960) points out, the squared optimal-point multi-
./ )

serial is equal to the square multiserial eta (Wherry & Taylor

1946),

(b) R
pms

can be expreeted as a ratio of two standard d4viatiOns (Hamdan

& Schulman 1975):

S(ii)
R
, pms S(X)

A model for evaluating the effects of DOW

7
It seems. -only natural to compare the optmar-scoring rule t4' thF

, -

regurir dichotomous alterdative4 1 = right, O.= wrong). This indeeCis

easily done within the framework of this model. Note thatff the dumber

of categories, r, is reduced to 2', then the point mulfiseriar is just

the regular point biserial. Furthermore it is well known--eDas Gupta

1960) that if 'r =2, R is invariant to linear traq;iotiations of Y
gl'-

and
g2'

-In other words the correlation will not be changed if we

I. -4-
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replace the 0 1 weights by'the optimal* weights. T4 implication is

'

obviods--ofte can compare the effectiveness of the twoscoring rule by

the percentage of variance accounted for, mhen 2 or r categories are
4W

usedand,, if some distributional assumptions are made, test,whefher the

difference is 'significant. But note that/scoring by 2 or r categories

are only end po- ints on a continuum of different optimal scaring rules.

We C` /define a hie(archy of models (all of them optimal) which vary in

1

'terms of their complexity and of the number of categories used by the

scoring-procedure. Consider the following models:
A

40 (i) r categories - all r qptions

(ii) (p+1) (r-4+1) options - q categories are combined into one

while p are left unchanged.

(iii) 3 options right, wrong, omit

.(iv) 2 options - right, gong + omit.

Models ti), (iii), and (iv) are natural and well known. We need to say

a word --about (ii). It .defines a class of models in which two or more

optio If s are combined on the basis of empirical or theoretical justifi-
, . 41

cations/ If one option is selected with very low probability it may be_

reasonable toAcombine it with the "omit' - .option. If there is some

natural relation between-some of the distracters it mayseem natural to

combine them according to this characteristic (see Echternacht 1976 for

such items), etc. The most impprtant point is that the responses-cam be

scored in a variety of ways, using different number of categories, and

for each model optimal weights can be easily derivvOy the same rule

(3) One could compare all these models and select the best.. otie - i.e.
, .

the one which predicts the highest proportion of variance in X relative

to the number of parameters fitted (the ddMber of categories).

I a.



We now examine the effect'of combining,q categories into one, while

keeping the first p unthadged,on the correlation Define the new cate-
.,

gorir Yc, and also define:

'r

nc. = 1 ni. . (6)

i=p+1

r

Xc. = (F ni. Xi) /nc.

i=p+1

(7Y

These manipulations do no affect the denominator and the second term ill

the numerator of (4). The first term in theenumeratoryan be rewritten

a :

P

n

1
fl ni. Ri2 + nc. 1c2]

and if we let Rp(q)
ms

be the new point multiserial ,correlation it can be

easily shown that

r

ni. nj. (Xi - Rj)2
i4tj=p11:1

R
2

- R
2

pms pms(q)
n nc, S2 (X).

111

If we only combine two categories (say k'an4 1),, this is reduced to:

n n (SC - )
k.. 1. 1 k

R
2

- R
2

pms pms (B)
n (nk S2(X)

Eq9) is always positive, which implies that ifone reduces the number

- of categories the correlatiod pith-the criterion mutt always decrease
. .. 4

The reduction-iv p'ercentage of variance accounted for is a-monotonically

-6-



decreasing function of the sample size, the'variance of the criterion

and the size of the new category; it is a monotonically increasin

function of thg Weigheeil sum of squared pairwise differences between the

means of the q categories combined. These relations suggest that/Using

Simpler scoring rules (combining' categories) may have only a,pegligible
0

effect on the item validity when the means of the.combined group are

'relatvely homogeneous and the sample size and criterion variance 'are

large. On the other hand; if the sample size and variance of X are

small and if the means are relatively heterogeneous, the more complex

rule can significantly increase the correlation. Finally, for a'given

criterion (with a fixed variance) adMinistered to a fixed sample (fixed:

n), the best way to simplify the scaring rule is to combine the categories,

with the most similar means.

If we are interested in testing hypotheses about R2 . we must
pms

.

assume that the .criterion conditional distribution at. the k level of

YCi =.1...r) is N(pi,
2

) (Hamden & Schulman 1975). In this modeYwe

can test independence (p.
pms

= 0) for anyscoring'rule with s categories

= 2... r), by:

F = (n-s) R
2

pms p
/(s-1)(1-R

2

ms
)

This statistic has an F distribution with (s-1) and (n-s)'d.f. under the

0,

null hypothesis. To test equality of two models with al and s2 categories

[(Ho: p
pms(s1)

= p
pms(i2

can .use thp statistic: -
10=

F

2
- R

2
Hn-s1)111

pms(s1) pms(s2)

[1 - R
2

pms(s1) ](sl-s2)

4

(12)



S.

es

3
4

which 4e.diqributedas an_F with'(sl-s2) and (n-si ) -, der Ho.
..:

. Generally, for each item, Yg, a series of testa similar: to ose lier-
..* k . ,

... . ,e.

formed in a standard regression analysis dan.be used in order to assess
..' I * . -

/. .: the best scorinCrule and its effectiveness (Cimer 1972) .

t

-c

.e. ,

ea,

L '

4

The effect of different scoring rules on other test characteristics\

(a) Item variant/
,..

A
. {Once the weights to be attached to the r options are determined we

can calculate the ktem's variance by the regular formult:

`4, '\r
S
2

= [11 . Y . - (11 ni. Y )
2

]
g

71 ni 71

i=1 1=1 8i.

which is just a.re-exiires,sion of the numerator

combining q categories into ohe, the reductiOn
411 .

.

.

2
- Si(q)Sg

s .

of (4). Therefore,

in 'the item's variance is:

(13)

I ni. . - )2
ri#S-.11)+1 -gl

n nt411. .

'The sum of squared pairwise differences in (14) isc.just inear .

function of the-variahce of the means in the combined categories around
, ,

Xc. Therefore, (14) indicates that whenia simpler scoring rule is, 4-
employed the'variance of the responses in each item is invariably' reduced,

and this reduction is proportional to the variance of the optimal weights
4

and dnversely related to sample. size. Minimal reduction in variance for

any given item will be obtained when we combine. categories With homo-
,

geneous means.°

sin

1
-8-
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(b) Interitem correlation

Consider two arbitrary items in the test,,Ye and Yh, scor4d on'all

s.
*categories. Given their correlations with the criterion, Rxg 4nd Rxh

(we drop the pms notation for simplicity); their inte'rcorrelation is

restricted.by (Glass & Collins 1970):

Rgh = {Rxg Rxh ±(1R2xh)(1-R2xg))" (15)

We considerconsider the effect of combining q Categories on this interval. Let

11, and 11(q) denote the lower limits of the interval when the items are

scored with'r and (p+1) cAegories, respectively. The difference between

these lower bounds is:

.

a
11 - lf(q) ='[Rxg Rxh - Rxg(q) Rxh(q)] +

(16)

[4(1-R2xg(q))(1-R2x1(q)) - 4(1-i2xh)(1-R2xg)] .

t

Since it was shown that R
2s
1> R

2

s
(q) (s = 1... r), and consequently that

it follows that eq. (16) is always poSitive--combining(1-R
xs

). <(R x2
i(0) '

categories reduces the lower bound for inter -item correlation.

Let le an4 lc(q) represent the length of the interval, or in other

.

words the range of vanes that.Rgh can take, when r or (p+1) categories

AO* '
* , It

rare used. It can be hown,4that:.

lc(q) -(1c = 2414(1-R2Xg(q))(1-R2xh(q)) - 4(1-R2xh)(1-R2xg)] . (17)

The range of possible values of'Rgh is increased or, in other words, the

. 0
restrictions imposed on th internal relations between items through

their correlations with the,external criterion X ale relaxed. The lower

bound Ind the length of the interval determine its upper limit (ul).

-9-
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4 4

.Combining the informatinn from (1k) and (17) it follows that:

U1(q) > Ul if [WO - lc] > WO] . (18)

It becomes clear that the upper limit of the interval can increase,

decreaseor remain.unchanged depending on the nature and thagnitude of
__,/

- ell
the changes in the item-criterion correlations. This is a particularly

interesting result because it demonstrates one_possible explanation for

the lack of improvement' in validity oi..est. Although DOW improves
5

the individnal'items validities, it can also simultaneously increase,the

"nteritem correatems and the overal system validity can remain practi-

cally undanged,

If we assume that the values of Rgh are symmetrically distributed

within the interval, its expected value is at the. central point (see

Mulaik 1976 for an elaborate proof for the specifacase Rxh = Rxg =

If we use an r categories scoring system:

Oh'

and for

fRghlRxb; Rxg] = Rxh Rxg ,

-q+1) categoriesr

E [Rgh(q)IRxhfq); Rxg(q)] = Rxh(q) Rxg(4) .

TherefOre we can write

'4.

E [RghjRxh; Rxg - Rgh(q)IRxh(q); iin(q)] =

[Rxh Rit - Rxh(q) Ibig(q)] .

(21)

The expected value of the correlation between a pair ofitems decreailes

after combining q categories. _,..C., Onsider.t he explanation for the lack of
.

improvement in validity offergd in the'previou's paragraph. The last

-10-
1



result demonitra

t9

0

a uch a situation is net only possible
(

but also

--very likely tO occur:'
, e). )

(c) Variance of scores .#0/
,.. .

The score of each individual on scale Y.is defined'as the sum of

the scores on the k items composing-the scale. Therefore the variance,

S2(Y), is given by:

k k
S
2
(Y) = 11 Sij

i=1 i#j=1.

(22)

where --Sij is the covariance of items i and j. We hive already shown.

that siii)lified scoriae rules havethe effect of ilivaii4bly reducing the

item variances, standard deviatiio and the lower bounds of their Ater-
.

.

correlation and, conditional upon the symmetric distribution,of Rij

given Rix and Rjx, the expected interitem correlatiOns. These facts,

combined togetheY,Nindicate that the variance of the Y scores is very

likely to deereaste when categories are combined. In fact, a sufficient

condition for'this to happen is that Rij(q) < Rij (i,j = 1... kY.

, 45 ,
A special case, which will be discussed later, is one where the

r

"`esaibination of the categories has an unifym effect on all the items,

i.e.'each item variance is reddced by the same proportion. Note that

this does not imply that the item variances are equal when r or p+1

categories are used, but, rather indicates the ct that there is a
110

functional relaption5between the number,of categor es and the item vari-

ancessand that coorbining q categoraNhas.a relatively homogeneous effect

bp a;1 q variances. 'Formally, let S2(q) = d2 1...k, o < d < 1),
-

-

and in this case:



S.2 (Y) -

,i)
k k

S (Y)(q ) = 1-d).[I Si + F F Si Sj (Rij - Rij(q))]. (23)

i=1 i#j=1

(d) . Reliability
. ,

1

..4s, A popular- method of calculating reliability is to obtain the ratio

8

of the mean interitem covariance and the mean item variances, Ryy, and
\

A I

to use it as an estimater of the areliability of single
t
item ii the

Spearmoian-Brown piophecy formula (Stanley 1971). If the score is based

on r categories:

Ryy

k I I Si Sj Rij
itj=1

2 k. 2
(k-1) I S21.

1=1

and if only (p+1) are used:

Ryy(q) =

'k

k E I. S.4) Sj(q) Rij(q)
i$j=1

2 k 2
(k-1) I S 1(q)'

1=1.

4

The difference between the two estimates can be-written as:

Ryy - Ryy(q) =

k k

. (24)

kw

14%

(25).

r

k [Z I I S 1(q)SiSjRij-S
2
1Si(q Sj(q)Rij(4)]

I=1,i$j=1

2
(k-1) [I S

2 k
1 S

2
1(q)]

1=1 1=1

1
(26)

It appears that the effect of the scoring rule on the reliabilities

depends on the pattern olvarianced, covariances and their respective

p



P

/r.
reductions. To simplify formula (25) we assume that when categories are

combined the variance of each item is reducedbY an amount. proportional

to its init.lar magnitude, i.e. Si(q) = d Si (i = 1...k,-o < d < 1): In

this case:

k

k [1 S1 Sid. Si (Rid - kij(q))]lid
Ryy - (q) A

4

2 k '2 2
(k-1)- [1 S 11

1=.1.

S

(27), //

4

The amoupt'oCreduction in the test reliability is independent of the

tOnstant d, and it is proportiontl to the weighted sum of reductipns in

item intercorrelations which were discussed in a previous section. The

direct relation between he reliability of a test and the mean item

intercorrelation was demonstrated empirically in a.recent paper by Bejar

and Weiss (1977) : .

(e) Test-validity

We nownow combine some of the regults from the previoui sections'in

order tto examine ,the behavior of -the. validity of Y (Axy). Gulliksen

(191p p: 382) gives. the formula for the total test validity as a func- .

)i
tion of %e item yAlidities add the test variance:

k ./

Rxy = [1 Rxg 40/s(Y) (2 &)

g.7.1

After combining q categories the validity'becomes:

Stxy(q) = [1 Rxq) Sg(q)] /S(YY(q)
g=1

n
-134

(29)



and the reduction in the percentage of variance orthe criterion explainer

',by the predictor is:

( b

k k
[s2(Ay)(q) s24 R2101

S2(Y) S2g(q)
R2xgoo]

. 8
. (30)Riy - Riy(q) =

ESI(Y) S2(Y)(q)]

Using again the assumption of uniform reduction is variance across
-

items (Pi(q) = dS.) we can rewrite the last equation as a function of
1

, .

variances and correlations:. 4.

/
r

k k . k k r

U .[1 1 S
2
1 S.2 4

/
xg-R2 xg(q)Y1 + 1 1 1 S

2
g SiSj(R

2
xg Rij(q)-R

2
xg(q) Rij)]

g1 , 1,
. g i#j

2
Rx2y - Rxy(qY-

, A ' 1k k k k .

....N[l S-1 + I SiSj Rij][I S
2
1 + I 1 SiSj Rij(q)] (31)

\l. 44-1- -1___ i#j-N.

.( \ . .

4

Note that,the second term'in the numerator involves the item-test as

'4
well as the intezitem correlation.. It is therefore very difficult to

Evaluate the 'mpact of the new storing rule on le validity. While the

first term in he numerator is .always positive0he second can also,

assume negative values.- In fact, if -46 assume that all correlations

with the criterion are reduceby An,amount proportional to their initial

1 '
value (Rij(q) = d Rij, i#j =

1
< 1)

)
the second term vanishes.

Equation 01) provides furthersupport to the explanation offered in the

6
previous section_ to the lack of improvement igivalidity. It is clear

oo
that the overall improvement, in validity depends on the effect of the

scoring procedure on both the item correlations and interitem Correlations.

We, can, expect a significant gain in the'percentage of variance predicted

in tests in, which we can significantly improve the item valijoitiei and
.0.

-!14-
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reduce the .interitem correlations' for at least not increase .them).

This is more likely to hapn if the, initial' item validitie s are low.

Final Remarks .

In the introductiOn we hi4e emphasized that the function 'being
p

optimized is the item-criterion correlation, and that an external and
. .

.
. .

independently measured criterion is necessary.- We are not aware of any
....

empirical or theoretical study in which the procedure eiam,ined hen was

used, although French (19521 haspointed out some of its desKrable

properties. However, several studies (e.g. Hendrickson 1971, Echternacht 4

1976))have used a similar technique,i. The_m",difference between their .
.

approach
. -

\I
. 'add the present one is that insttad of gh.external criterion,

.

they use the score on the remaining (k-1) itemt of the test and therefore,'
4

ionstead of optimizing external validity, they'optimizeihternal consis-

tency. A problem in this approach is that the two\l.7riaNei being

correlated aicnot experimentally independent--the weights for item Yg

depend on the scores -on the other (i-1).4tems, and these scdres depend on

XhJioptimal weights. One solution to Ulla problem is to use an iterative
A 4

procedure in w- hich the weights and the)riterion.are recalculated until

thg increase in reliability does not exceed a fixedrespecified value.

. Typically the convergence was found to bg very quick andthe improvement

in reliability only marginal. What are the implications of these findings

to the pracedure outlined here? It is hard to judge but there aregoo d

reasons to believe that using an 'external criterion 0 dptermine the
4 -

weights should yield better results. In the'iterative procedure the

)I

initial weights

(

e either (0,1) or (- (i1:Ty, 1).

r4
Q15-
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the most nqn-optimal weights, since it was pointed out that the improve-

44,

went in item validity is proportional to squared differences between the

means. The interhal consistency procedure is likely to improve its

performance if different, starting values are used. Possible candidates

'foot this role seem to be (a) optiog-test point biseriil or blserial

correlations, (b) theoretically deteriined a prio ri weights, or (c)

weights proportional to the means c4lculated from a second independent

sample. Empirical' work comparing these .different starting poipts for

the iterative algorithm and the procidtke pvtlined above is needed.

We have outlined,atechique for differentially weighting options

-of a" multiple choicemeost in a fash*bn that maximizes the item predic-

tive validity. The rule can be applied with different number of cate-
r

gories and the "optimal" number of categories can be determined by

significance tests and/or through the R2 criterion. Our thenfetical

analysis indicates that more complex` scoring rules have: hiiher item

,validities, higher iteM variances, higher score-variances, and are alsb

.

likely to increase the inter-Item correlations and the test reliability.
...

.
I .

A plausible explanation for the apparent paiadox.of lack of improvement

in the test validity, based on the relation between interitem correlations

and item validities, wasoffered.

The mechanism suggested as the cause of this phenomenon was deve-

loped within the framework of the particular optimi ation procedure

examined-in this study. Yet, simiM explanations

other DOW procedures 'since all o4 them are developed at the item level

and do not account for the interitem relations.

uld be 4ffered,

-16-
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Overall,-it appears that the key to the success of Any TA procedure

is in the nature of the, test's items. A- scoring rule is likely to be,

successful if a rt contai% items with distracters which can differ-

enti4e between various levels of partial information, te. distracters

that have differential appeal for different ability levels./If the

distracteis are Yelativety homogeneo 'this procedure (nor any other DOW
( ,

technique) is not likely to be successful. Therefore we speculate that

DOW live0 higher probability of success in achievement and criterion
A

'referenced tests, and in ests in which the distracters are systemati-

cally
..

desig)ed to reflect different levels of partial information. (e.g.

Echternacht 1976). More theoretical and empirical work on this question

is pecesvry. 4

O

-

6
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